This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Observation of D𝟎b𝟏(𝟏𝟐𝟑𝟓)e+νeD^{0}\to b_{1}(1235)^{-}e^{+}\nu_{e} and evidence for D+b𝟏(𝟏𝟐𝟑𝟓)𝟎e+νeD^{+}\to b_{1}(1235)^{0}e^{+}\nu_{e}

M. Ablikim1, M. N. Achasov4,c, P. Adlarson76, O. Afedulidis3, X. C. Ai81, R. Aliberti35, A. Amoroso75A,75C, Q. An72,58,a, Y. Bai57, O. Bakina36, I. Balossino29A, Y. Ban46,h, H.-R. Bao64, V. Batozskaya1,44, K. Begzsuren32, N. Berger35, M. Berlowski44, M. Bertani28A, D. Bettoni29A, F. Bianchi75A,75C, E. Bianco75A,75C, A. Bortone75A,75C, I. Boyko36, R. A. Briere5, A. Brueggemann69, H. Cai77, X. Cai1,58, A. Calcaterra28A, G. F. Cao1,64, N. Cao1,64, S. A. Cetin62A, X. Y. Chai46,h, J. F. Chang1,58, G. R. Che43, Y. Z. Che1,58,64, G. Chelkov36,b, C. Chen43, C. H. Chen9, Chao Chen55, G. Chen1, H. S. Chen1,64, H. Y. Chen20, M. L. Chen1,58,64, S. J. Chen42, S. L. Chen45, S. M. Chen61, T. Chen1,64, X. R. Chen31,64, X. T. Chen1,64, Y. B. Chen1,58, Y. Q. Chen34, Z. J. Chen25,i, Z. Y. Chen1,64, S. K. Choi10, G. Cibinetto29A, F. Cossio75C, J. J. Cui50, H. L. Dai1,58, J. P. Dai79, A. Dbeyssi18, R.  E. de Boer3, D. Dedovich36, C. Q. Deng73, Z. Y. Deng1, A. Denig35, I. Denysenko36, M. Destefanis75A,75C, F. De Mori75A,75C, B. Ding67,1, X. X. Ding46,h, Y. Ding34, Y. Ding40, J. Dong1,58, L. Y. Dong1,64, M. Y. Dong1,58,64, X. Dong77, M. C. Du1, S. X. Du81, Y. Y. Duan55, Z. H. Duan42, P. Egorov36,b, Y. H. Fan45, J. Fang1,58, J. Fang59, S. S. Fang1,64, W. X. Fang1, Y. Fang1, Y. Q. Fang1,58, R. Farinelli29A, L. Fava75B,75C, F. Feldbauer3, G. Felici28A, C. Q. Feng72,58, J. H. Feng59, Y. T. Feng72,58, M. Fritsch3, C. D. Fu1, J. L. Fu64, Y. W. Fu1,64, H. Gao64, X. B. Gao41, Y. N. Gao46,h, Yang Gao72,58, S. Garbolino75C, I. Garzia29A,29B, L. Ge81, P. T. Ge19, Z. W. Ge42, C. Geng59, E. M. Gersabeck68, A. Gilman70, K. Goetzen13, L. Gong40, W. X. Gong1,58, W. Gradl35, S. Gramigna29A,29B, M. Greco75A,75C, M. H. Gu1,58, Y. T. Gu15, C. Y. Guan1,64, A. Q. Guo31,64, L. B. Guo41, M. J. Guo50, R. P. Guo49, Y. P. Guo12,g, A. Guskov36,b, J. Gutierrez27, K. L. Han64, T. T. Han1, F. Hanisch3, X. Q. Hao19, F. A. Harris66, K. K. He55, K. L. He1,64, F. H. Heinsius3, C. H. Heinz35, Y. K. Heng1,58,64, C. Herold60, T. Holtmann3, P. C. Hong34, G. Y. Hou1,64, X. T. Hou1,64, Y. R. Hou64, Z. L. Hou1, B. Y. Hu59, H. M. Hu1,64, J. F. Hu56,j, S. L. Hu12,g, T. Hu1,58,64, Y. Hu1, G. S. Huang72,58, K. X. Huang59, L. Q. Huang31,64, X. T. Huang50, Y. P. Huang1, Y. S. Huang59, T. Hussain74, F. Hölzken3, N. Hüsken35, N. in der Wiesche69, J. Jackson27, S. Janchiv32, J. H. Jeong10, Q. Ji1, Q. P. Ji19, W. Ji1,64, X. B. Ji1,64, X. L. Ji1,58, Y. Y. Ji50, X. Q. Jia50, Z. K. Jia72,58, D. Jiang1,64, H. B. Jiang77, P. C. Jiang46,h, S. S. Jiang39, T. J. Jiang16, X. S. Jiang1,58,64, Y. Jiang64, J. B. Jiao50, J. K. Jiao34, Z. Jiao23, S. Jin42, Y. Jin67, M. Q. Jing1,64, X. M. Jing64, T. Johansson76, S. Kabana33, N. Kalantar-Nayestanaki65, X. L. Kang9, X. S. Kang40, M. Kavatsyuk65, B. C. Ke81, V. Khachatryan27, A. Khoukaz69, R. Kiuchi1, O. B. Kolcu62A, B. Kopf3, M. Kuessner3, X. Kui1,64, N.  Kumar26, A. Kupsc44,76, W. Kühn37, J. J. Lane68, L. Lavezzi75A,75C, T. T. Lei72,58, Z. H. Lei72,58, M. Lellmann35, T. Lenz35, C. Li43, C. Li47, C. H. Li39, Cheng Li72,58, D. M. Li81, F. Li1,58, G. Li1, H. B. Li1,64, H. J. Li19, H. N. Li56,j, Hui Li43, J. R. Li61, J. S. Li59, K. Li1, K. L. Li19, L. J. Li1,64, L. K. Li1, Lei Li48, M. H. Li43, P. R. Li38,k,l, Q. M. Li1,64, Q. X. Li50, R. Li17,31, S. X. Li12, T.  Li50, W. D. Li1,64, W. G. Li1,a, X. Li1,64, X. H. Li72,58, X. L. Li50, X. Y. Li1,64, X. Z. Li59, Y. G. Li46,h, Z. J. Li59, Z. Y. Li79, C. Liang42, H. Liang72,58, H. Liang1,64, Y. F. Liang54, Y. T. Liang31,64, G. R. Liao14, Y. P. Liao1,64, J. Libby26, A.  Limphirat60, C. C. Lin55, D. X. Lin31,64, T. Lin1, B. J. Liu1, B. X. Liu77, C. Liu34, C. X. Liu1, F. Liu1, F. H. Liu53, Feng Liu6, G. M. Liu56,j, H. Liu38,k,l, H. B. Liu15, H. H. Liu1, H. M. Liu1,64, Huihui Liu21, J. B. Liu72,58, J. Y. Liu1,64, K. Liu38,k,l, K. Y. Liu40, Ke Liu22, L. Liu72,58, L. C. Liu43, Lu Liu43, M. H. Liu12,g, P. L. Liu1, Q. Liu64, S. B. Liu72,58, T. Liu12,g, W. K. Liu43, W. M. Liu72,58, X. Liu39, X. Liu38,k,l, Y. Liu81, Y. Liu38,k,l, Y. B. Liu43, Z. A. Liu1,58,64, Z. D. Liu9, Z. Q. Liu50, X. C. Lou1,58,64, F. X. Lu59, H. J. Lu23, J. G. Lu1,58, X. L. Lu1, Y. Lu7, Y. P. Lu1,58, Z. H. Lu1,64, C. L. Luo41, J. R. Luo59, M. X. Luo80, T. Luo12,g, X. L. Luo1,58, X. R. Lyu64, Y. F. Lyu43, F. C. Ma40, H. Ma79, H. L. Ma1, J. L. Ma1,64, L. L. Ma50, L. R. Ma67, M. M. Ma1,64, Q. M. Ma1, R. Q. Ma1,64, T. Ma72,58, X. T. Ma1,64, X. Y. Ma1,58, Y. M. Ma31, F. E. Maas18, I. MacKay70, M. Maggiora75A,75C, S. Malde70, Y. J. Mao46,h, Z. P. Mao1, S. Marcello75A,75C, Z. X. Meng67, J. G. Messchendorp13,65, G. Mezzadri29A, H. Miao1,64, T. J. Min42, R. E. Mitchell27, X. H. Mo1,58,64, B. Moses27, N. Yu. Muchnoi4,c, J. Muskalla35, Y. Nefedov36, F. Nerling18,e, L. S. Nie20, I. B. Nikolaev4,c, Z. Ning1,58, S. Nisar11,m, Q. L. Niu38,k,l, W. D. Niu55, Y. Niu 50, S. L. Olsen64, S. L. Olsen10,64, Q. Ouyang1,58,64, S. Pacetti28B,28C, X. Pan55, Y. Pan57, A.  Pathak34, Y. P. Pei72,58, M. Pelizaeus3, H. P. Peng72,58, Y. Y. Peng38,k,l, K. Peters13,e, J. L. Ping41, R. G. Ping1,64, S. Plura35, V. Prasad33, F. Z. Qi1, H. Qi72,58, H. R. Qi61, M. Qi42, T. Y. Qi12,g, S. Qian1,58, W. B. Qian64, C. F. Qiao64, X. K. Qiao81, J. J. Qin73, L. Q. Qin14, L. Y. Qin72,58, X. P. Qin12,g, X. S. Qin50, Z. H. Qin1,58, J. F. Qiu1, Z. H. Qu73, C. F. Redmer35, K. J. Ren39, A. Rivetti75C, M. Rolo75C, G. Rong1,64, Ch. Rosner18, M. Q. Ruan1,58, S. N. Ruan43, N. Salone44, A. Sarantsev36,d, Y. Schelhaas35, K. Schoenning76, M. Scodeggio29A, K. Y. Shan12,g, W. Shan24, X. Y. Shan72,58, Z. J. Shang38,k,l, J. F. Shangguan16, L. G. Shao1,64, M. Shao72,58, C. P. Shen12,g, H. F. Shen1,8, W. H. Shen64, X. Y. Shen1,64, B. A. Shi64, H. Shi72,58, H. C. Shi72,58, J. L. Shi12,g, J. Y. Shi1, Q. Q. Shi55, S. Y. Shi73, X. Shi1,58, J. J. Song19, T. Z. Song59, W. M. Song34,1, Y.  J. Song12,g, Y. X. Song46,h,n, S. Sosio75A,75C, S. Spataro75A,75C, F. Stieler35, S. S Su40, Y. J. Su64, G. B. Sun77, G. X. Sun1, H. Sun64, H. K. Sun1, J. F. Sun19, K. Sun61, L. Sun77, S. S. Sun1,64, T. Sun51,f, W. Y. Sun34, Y. Sun9, Y. J. Sun72,58, Y. Z. Sun1, Z. Q. Sun1,64, Z. T. Sun50, C. J. Tang54, G. Y. Tang1, J. Tang59, M. Tang72,58, Y. A. Tang77, L. Y. Tao73, Q. T. Tao25,i, M. Tat70, J. X. Teng72,58, V. Thoren76, W. H. Tian59, Y. Tian31,64, Z. F. Tian77, I. Uman62B, Y. Wan55, S. J. Wang 50, B. Wang1, B. L. Wang64, Bo Wang72,58, D. Y. Wang46,h, F. Wang73, H. J. Wang38,k,l, J. J. Wang77, J. P. Wang 50, K. Wang1,58, L. L. Wang1, M. Wang50, N. Y. Wang64, S. Wang38,k,l, S. Wang12,g, T.  Wang12,g, T. J. Wang43, W. Wang59, W.  Wang73, W. P. Wang35,58,72,o, X. Wang46,h, X. F. Wang38,k,l, X. J. Wang39, X. L. Wang12,g, X. N. Wang1, Y. Wang61, Y. D. Wang45, Y. F. Wang1,58,64, Y. L. Wang19, Y. N. Wang45, Y. Q. Wang1, Yaqian Wang17, Yi Wang61, Z. Wang1,58, Z. L.  Wang73, Z. Y. Wang1,64, Ziyi Wang64, D. H. Wei14, F. Weidner69, S. P. Wen1, Y. R. Wen39, U. Wiedner3, G. Wilkinson70, M. Wolke76, L. Wollenberg3, C. Wu39, J. F. Wu1,8, L. H. Wu1, L. J. Wu1,64, X. Wu12,g, X. H. Wu34, Y. Wu72,58, Y. H. Wu55, Y. J. Wu31, Z. Wu1,58, L. Xia72,58, X. M. Xian39, B. H. Xiang1,64, T. Xiang46,h, D. Xiao38,k,l, G. Y. Xiao42, S. Y. Xiao1, Y.  L. Xiao12,g, Z. J. Xiao41, C. Xie42, X. H. Xie46,h, Y. Xie50, Y. G. Xie1,58, Y. H. Xie6, Z. P. Xie72,58, T. Y. Xing1,64, C. F. Xu1,64, C. J. Xu59, G. F. Xu1, H. Y. Xu67,2,p, M. Xu72,58, Q. J. Xu16, Q. N. Xu30, W. Xu1, W. L. Xu67, X. P. Xu55, Y. Xu40, Y. C. Xu78, Z. S. Xu64, F. Yan12,g, L. Yan12,g, W. B. Yan72,58, W. C. Yan81, X. Q. Yan1,64, H. J. Yang51,f, H. L. Yang34, H. X. Yang1, J. H. Yang42, T. Yang1, Y. Yang12,g, Y. F. Yang43, Y. F. Yang1,64, Y. X. Yang1,64, Z. W. Yang38,k,l, Z. P. Yao50, M. Ye1,58, M. H. Ye8, J. H. Yin1, Junhao Yin43, Z. Y. You59, B. X. Yu1,58,64, C. X. Yu43, G. Yu1,64, J. S. Yu25,i, M. C. Yu40, T. Yu73, X. D. Yu46,h, Y. C. Yu81, C. Z. Yuan1,64, J. Yuan34, J. Yuan45, L. Yuan2, S. C. Yuan1,64, Y. Yuan1,64, Z. Y. Yuan59, C. X. Yue39, A. A. Zafar74, F. R. Zeng50, S. H. Zeng63A,63B,63C,63D, X. Zeng12,g, Y. Zeng25,i, Y. J. Zeng59, Y. J. Zeng1,64, X. Y. Zhai34, Y. C. Zhai50, Y. H. Zhan59, A. Q. Zhang1,64, B. L. Zhang1,64, B. X. Zhang1, D. H. Zhang43, G. Y. Zhang19, H. Zhang81, H. Zhang72,58, H. C. Zhang1,58,64, H. H. Zhang59, H. H. Zhang34, H. Q. Zhang1,58,64, H. R. Zhang72,58, H. Y. Zhang1,58, J. Zhang81, J. Zhang59, J. J. Zhang52, J. L. Zhang20, J. Q. Zhang41, J. S. Zhang12,g, J. W. Zhang1,58,64, J. X. Zhang38,k,l, J. Y. Zhang1, J. Z. Zhang1,64, Jianyu Zhang64, L. M. Zhang61, Lei Zhang42, P. Zhang1,64, Q. Y. Zhang34, R. Y. Zhang38,k,l, S. H. Zhang1,64, Shulei Zhang25,i, X. M. Zhang1, X. Y Zhang40, X. Y. Zhang50, Y. Zhang1, Y.  Zhang73, Y.  T. Zhang81, Y. H. Zhang1,58, Y. M. Zhang39, Yan Zhang72,58, Z. D. Zhang1, Z. H. Zhang1, Z. L. Zhang34, Z. Y. Zhang77, Z. Y. Zhang43, Z. Z.  Zhang45, G. Zhao1, J. Y. Zhao1,64, J. Z. Zhao1,58, L. Zhao1, Lei Zhao72,58, M. G. Zhao43, N. Zhao79, R. P. Zhao64, S. J. Zhao81, Y. B. Zhao1,58, Y. X. Zhao31,64, Z. G. Zhao72,58, A. Zhemchugov36,b, B. Zheng73, B. M. Zheng34, J. P. Zheng1,58, W. J. Zheng1,64, Y. H. Zheng64, B. Zhong41, X. Zhong59, H.  Zhou50, J. Y. Zhou34, L. P. Zhou1,64, S.  Zhou6, X. Zhou77, X. K. Zhou6, X. R. Zhou72,58, X. Y. Zhou39, Y. Z. Zhou12,g, Z. C. Zhou20, A. N. Zhu64, J. Zhu43, K. Zhu1, K. J. Zhu1,58,64, K. S. Zhu12,g, L. Zhu34, L. X. Zhu64, S. H. Zhu71, T. J. Zhu12,g, W. D. Zhu41, Y. C. Zhu72,58, Z. A. Zhu1,64, J. H. Zou1, J. Zu72,58
(BESIII Collaboration)
1 Institute of High Energy Physics, Beijing 100049, People’s Republic of China
2 Beihang University, Beijing 100191, People’s Republic of China
3 Bochum Ruhr-University, D-44780 Bochum, Germany
4 Budker Institute of Nuclear Physics SB RAS (BINP), Novosibirsk 630090, Russia
5 Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
6 Central China Normal University, Wuhan 430079, People’s Republic of China
7 Central South University, Changsha 410083, People’s Republic of China
8 China Center of Advanced Science and Technology, Beijing 100190, People’s Republic of China
9 China University of Geosciences, Wuhan 430074, People’s Republic of China
10 Chung-Ang University, Seoul, 06974, Republic of Korea
11 COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
12 Fudan University, Shanghai 200433, People’s Republic of China
13 GSI Helmholtzcentre for Heavy Ion Research GmbH, D-64291 Darmstadt, Germany
14 Guangxi Normal University, Guilin 541004, People’s Republic of China
15 Guangxi University, Nanning 530004, People’s Republic of China
16 Hangzhou Normal University, Hangzhou 310036, People’s Republic of China
17 Hebei University, Baoding 071002, People’s Republic of China
18 Helmholtz Institute Mainz, Staudinger Weg 18, D-55099 Mainz, Germany
19 Henan Normal University, Xinxiang 453007, People’s Republic of China
20 Henan University, Kaifeng 475004, People’s Republic of China
21 Henan University of Science and Technology, Luoyang 471003, People’s Republic of China
22 Henan University of Technology, Zhengzhou 450001, People’s Republic of China
23 Huangshan College, Huangshan 245000, People’s Republic of China
24 Hunan Normal University, Changsha 410081, People’s Republic of China
25 Hunan University, Changsha 410082, People’s Republic of China
26 Indian Institute of Technology Madras, Chennai 600036, India
27 Indiana University, Bloomington, Indiana 47405, USA
28 INFN Laboratori Nazionali di Frascati , (A)INFN Laboratori Nazionali di Frascati, I-00044, Frascati, Italy; (B)INFN Sezione di Perugia, I-06100, Perugia, Italy; (C)University of Perugia, I-06100, Perugia, Italy
29 INFN Sezione di Ferrara, (A)INFN Sezione di Ferrara, I-44122, Ferrara, Italy; (B)University of Ferrara, I-44122, Ferrara, Italy
30 Inner Mongolia University, Hohhot 010021, People’s Republic of China
31 Institute of Modern Physics, Lanzhou 730000, People’s Republic of China
32 Institute of Physics and Technology, Peace Avenue 54B, Ulaanbaatar 13330, Mongolia
33 Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica 1000000, Chile
34 Jilin University, Changchun 130012, People’s Republic of China
35 Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
36 Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia
37 Justus-Liebig-Universitaet Giessen, II. Physikalisches Institut, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany
38 Lanzhou University, Lanzhou 730000, People’s Republic of China
39 Liaoning Normal University, Dalian 116029, People’s Republic of China
40 Liaoning University, Shenyang 110036, People’s Republic of China
41 Nanjing Normal University, Nanjing 210023, People’s Republic of China
42 Nanjing University, Nanjing 210093, People’s Republic of China
43 Nankai University, Tianjin 300071, People’s Republic of China
44 National Centre for Nuclear Research, Warsaw 02-093, Poland
45 North China Electric Power University, Beijing 102206, People’s Republic of China
46 Peking University, Beijing 100871, People’s Republic of China
47 Qufu Normal University, Qufu 273165, People’s Republic of China
48 Renmin University of China, Beijing 100872, People’s Republic of China
49 Shandong Normal University, Jinan 250014, People’s Republic of China
50 Shandong University, Jinan 250100, People’s Republic of China
51 Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
52 Shanxi Normal University, Linfen 041004, People’s Republic of China
53 Shanxi University, Taiyuan 030006, People’s Republic of China
54 Sichuan University, Chengdu 610064, People’s Republic of China
55 Soochow University, Suzhou 215006, People’s Republic of China
56 South China Normal University, Guangzhou 510006, People’s Republic of China
57 Southeast University, Nanjing 211100, People’s Republic of China
58 State Key Laboratory of Particle Detection and Electronics, Beijing 100049, Hefei 230026, People’s Republic of China
59 Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
60 Suranaree University of Technology, University Avenue 111, Nakhon Ratchasima 30000, Thailand
61 Tsinghua University, Beijing 100084, People’s Republic of China
62 Turkish Accelerator Center Particle Factory Group, (A)Istinye University, 34010, Istanbul, Turkey; (B)Near East University, Nicosia, North Cyprus, 99138, Mersin 10, Turkey
63 University of Bristol, (A)H H Wills Physics Laboratory; (B)Tyndall Avenue; (C)Bristol; (D)BS8 1TL
64 University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
65 University of Groningen, NL-9747 AA Groningen, The Netherlands
66 University of Hawaii, Honolulu, Hawaii 96822, USA
67 University of Jinan, Jinan 250022, People’s Republic of China
68 University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
69 University of Muenster, Wilhelm-Klemm-Strasse 9, 48149 Muenster, Germany
70 University of Oxford, Keble Road, Oxford OX13RH, United Kingdom
71 University of Science and Technology Liaoning, Anshan 114051, People’s Republic of China
72 University of Science and Technology of China, Hefei 230026, People’s Republic of China
73 University of South China, Hengyang 421001, People’s Republic of China
74 University of the Punjab, Lahore-54590, Pakistan
75 University of Turin and INFN, (A)University of Turin, I-10125, Turin, Italy; (B)University of Eastern Piedmont, I-15121, Alessandria, Italy; (C)INFN, I-10125, Turin, Italy
76 Uppsala University, Box 516, SE-75120 Uppsala, Sweden
77 Wuhan University, Wuhan 430072, People’s Republic of China
78 Yantai University, Yantai 264005, People’s Republic of China
79 Yunnan University, Kunming 650500, People’s Republic of China
80 Zhejiang University, Hangzhou 310027, People’s Republic of China
81 Zhengzhou University, Zhengzhou 450001, People’s Republic of China
a Deceased
b Also at the Moscow Institute of Physics and Technology, Moscow 141700, Russia
c Also at the Novosibirsk State University, Novosibirsk, 630090, Russia
d Also at the NRC ”Kurchatov Institute”, PNPI, 188300, Gatchina, Russia
e Also at Goethe University Frankfurt, 60323 Frankfurt am Main, Germany
f Also at Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education; Shanghai Key Laboratory for Particle Physics and Cosmology; Institute of Nuclear and Particle Physics, Shanghai 200240, People’s Republic of China
g Also at Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443, People’s Republic of China
h Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, People’s Republic of China
i Also at School of Physics and Electronics, Hunan University, Changsha 410082, China
j Also at Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China Normal University, Guangzhou 510006, China
k Also at MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, People’s Republic of China
l Also at Lanzhou Center for Theoretical Physics, Lanzhou University, Lanzhou 730000, People’s Republic of China
m Also at the Department of Mathematical Sciences, IBA, Karachi 75270, Pakistan
n Also at Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
o Also at Helmholtz Institute Mainz, Staudinger Weg 18, D-55099 Mainz, Germany
p Also at School of Physics, Beihang University, Beijing 100191 , China
Abstract

By analyzing a data sample of e+ee^{+}e^{-} collisions with center-of-mass energy s=3.773\sqrt{s}=3.773 GeV, corresponding to an integrated luminosity of 7.9fb17.9~{}\rm{fb}^{-1} collected with the BESIII detector operating at the BEPCII collider, we study semileptonic decays of the D0(+)D^{0(+)} mesons into the axial-vector meson b1(1235)b_{1}(1235) via the decay b1(1235)ωπb_{1}(1235)\to\omega\pi. The decay D0b1(1235)e+νeD^{0}\to b_{1}(1235)^{-}e^{+}\nu_{e} is observed with a significance of 5.2σ\sigma after considering systematic uncertainty, while evidence for the decay D+b1(1235)0e+νeD^{+}\to b_{1}(1235)^{0}e^{+}\nu_{e} is obtained with a 3.1σ\sigma significance. The product branching fractions are determined to be (D0b1(1235)e+νe)×(b1(1235)ωπ)=(0.72±0.180.08+0.06)×104{\mathcal{B}}(D^{0}\to b_{1}(1235)^{-}e^{+}\nu_{e})\times{\mathcal{B}}(b_{1}(1235)^{-}\to\omega\pi^{-})=(0.72\pm 0.18^{+0.06}_{-0.08})\times 10^{-4} and (D+b1(1235)0e+νe)×(b1(1235)0ωπ0)=(1.16±0.44±0.16)×104{\mathcal{B}}(D^{+}\to b_{1}(1235)^{0}e^{+}\nu_{e})\times{\mathcal{B}}(b_{1}(1235)^{0}~{}\to\omega\pi^{0})=(1.16\pm 0.44\pm 0.16)\times 10^{-4}, where the first uncertainties are statistical and the second systematic. The ratio of their partial decay widths is determined to be Γ(D0b1(1235)e+νe)2Γ(D+b1(1235)0e+νe)=0.78±0.190.05+0.04\frac{\Gamma(D^{0}\to b_{1}(1235)^{-}e^{+}\nu_{e})}{2\Gamma(D^{+}\to b_{1}(1235)^{0}e^{+}\nu_{e})}=0.78\pm 0.19^{+0.04}_{-0.05}, which is consistent with unity, predicted by isospin invariance, within uncertainties.

Experimental investigations of light hadron spectroscopy in semileptonic decays of the DD mesons (DD denotes D0D^{0} or D+D^{+}) can be used to shed light on the role of non-perturbative strong interactions in weak decays. The first quantitative predictions for the partial widths of various semileptonic DD decays into SS- or PP-wave light meson states came from the quark model developed by Isgur, Scora, Grinstein, and Wise (namely ISGW) isgw . This model was later updated to include constraints from heavy quark symmetry, hyperfine distortions of wave functions, and form factors with more realistic behavior at high recoil masses (ISGW2) isgw2 . To date, studies of Cabibbo-suppressed semileptonic DD decays are not as advanced as their Cabibbo-favored counterparts, which have been extensively studied both theoretically and experimentally pdg2024 ; Ke:2023qzc ; Li:2021iwf . In general, these decays, which are mediated by the quark level process cde+νec\to de^{+}\nu_{e}, are expected to be dominated by the ground state pseudoscalar and vector mesons. Due to limited phase space, heavier mesons, such as PP-wave states or the first radial excitations of the du¯d\bar{u} and dd¯d\bar{d} mesons, are less likely to be produced. Among the heavier mesons, the most promising to be produced is the PP-wave b1b_{1} meson, which is accessible via Db1e+νeD\to b_{1}e^{+}\nu_{e}. Throughout this Letter, b1b_{1} denotes b1(1235)b_{1}(1235). The ISGW2 model predicts the branching fractions of D0b1e+νeD^{0}\to b_{1}^{-}e^{+}\nu_{e} and D+b10e+νeD^{+}\to b_{1}^{0}e^{+}\nu_{e} to be 1.08×1041.08\times 10^{-4} and 1.32×1041.32\times 10^{-4} isgw2 , respectively. The covariant light-front quark model predicts the branching fraction of D+b10e+νeD^{+}\to b_{1}^{0}e^{+}\nu_{e} to be (7.4±0.7)×105(7.4\pm 0.7)\times 10^{-5} cheng .

The axial-vector meson b1b_{1}, which is identified as a P11{}^{1}P_{1} state in the quark model, was first observed by the HBC Collaboration in 1963 MA:1963 . Before 1994, it was studied in pp¯p\bar{p} ppbar:1967 ; ppbar:1969 , γp\gamma p gammap , and pπp\pi ppi:1974_1 ; ppi:1974_2 ; ppi:1977 ; ppi:1981 ; ppi:1984 ; ppi:1984_1 ; ppi:1991 ; ppi:1992 ; ppi:1993 reactions, where the focus was on mass and width measurements. Later, it was widely observed in hadronic decays of DD, BB, and charmonium states pdg2024 . Historically, theorists and experimentalists usually considered the ωπ\omega\pi decay mode to be dominant. However, this has never been validated experimentally. The b1b_{1} mesons produced in semileptonic DD decays offer an ideal opportunity to gain insight into their nature bes3-white-paper . Furthermore, compared to the large backgrounds and complex interference patterns found in hadronic processes pdg2024 , the semileptonic DD meson decays are theoretically cleaner because leptons are not involved in strong interaction M.A . The verification of theoretical calculations of semileptonic DD decays into the b1b_{1} help to constrain theoretical calculations in decays of the τ\tau tau2:2018 ; tau1:2020 , BB B:2012 ; B:2012ew ; B:2017 , and charmonium states with b1b_{1} involved in the final states jpsi:2001 ; jpsi:2004 ; jpsi:2019 .

To date, there is limited experimental information available on Db1e+νeD\to b_{1}e^{+}\nu_{e} decays. Only BESIII has previously searched for Db1+νD\to b_{1}\ell^{+}\nu_{\ell}, using a portion of the same data used in this analysis, but no significant signal was obtained b1ev . This Letter reports an observation of D0b1e+νeD^{0}\to b_{1}^{-}e^{+}\nu_{e} and the first evidence for D+b10e+νeD^{+}\to b_{1}^{0}e^{+}\nu_{e}, by analyzing 7.9 fb-1 of e+ee^{+}e^{-} collision data taken at s=3.773\sqrt{s}=3.773 GeV. Throughout this Letter, charge conjugate channels are always implied.

Details about the design and performance of the BESIII detector are given in Ref. BESIII . The end-cap time-of-flight system (TOF) system was upgraded in 2015 using multigap resistive plate chamber technology, providing a time resolution of 60 ps etof . Approximately 63% of the data used here was collected after this upgrade. Simulated samples produced with the geant4-based geant4 Monte Carlo (MC) package which includes the geometric description of the BESIII detector and the detector response, are used to determine the detection efficiency and to estimate the backgrounds. The simulation includes the beam energy spread and initial state radiation (ISR) in the e+ee^{+}e^{-} annihilations modeled with the generator kkmc kkmc . The inclusive MC samples consist of the production of DD¯D\bar{D} pairs with consideration of quantum coherence for all neutral DD modes, the non-DD¯D\bar{D} decays of the ψ(3770)\psi(3770), the ISR production of the J/ψJ/\psi and ψ(3686)\psi(3686) states, and the continuum processes. The known decay modes are modeled with evtgen evtgen using branching fractions taken from the Particle Data Group  pdg2024 , and the remaining unknown charmonium decays are estimated with lundcharm lundcharm . Final state radiation from charged final state particles is incorporated using the photos package photos . The Db1e+νeD\to b_{1}e^{+}\nu_{e} signal MC events are simulated using the ISGW2 model isgw2 , where the b1b_{1} is parameterized by a relativistic Breit-Wigner function with mass and width fixed to the world-average values of 1229.5±3.21229.5\pm 3.2 MeV/c2c^{2} and 142±9142\pm 9 MeV, respectively pdg2024 .

At s=3.773\sqrt{s}=3.773 GeV, the DD and D¯\bar{D} mesons are produced in pairs without accompanying particles in the final state. Because of this, one can study semileptonic DD decays with the double-tag (DT) method. Single-tag (ST) D¯0\bar{D}^{0} mesons are first reconstructed using the hadronic decay modes D¯0K+π\bar{D}^{0}\to K^{+}\pi^{-}, K+ππ0K^{+}\pi^{-}\pi^{0}, K+πππ+K^{+}\pi^{-}\pi^{-}\pi^{+}, KS0π+πK_{S}^{0}\pi^{+}\pi^{-}, K+ππ0π0K^{+}\pi^{-}\pi^{0}\pi^{0}, and K+π+πππ0K^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0}; while ST DD^{-} mesons are reconstructed via the decay modes DK+ππD^{-}\to K^{+}\pi^{-}\pi^{-}, KS0πK^{0}_{S}\pi^{-}, K+πππ0K^{+}\pi^{-}\pi^{-}\pi^{0}, KS0ππ0K^{0}_{S}\pi^{-}\pi^{0}, KS0π+ππK^{0}_{S}\pi^{+}\pi^{-}\pi^{-}, and K+KπK^{+}K^{-}\pi^{-}. Semileptonic DD candidates are then reconstructed from the residual tracks and showers not used in the tag selection. Candidate events in which the DD decays into b1e+νeb_{1}e^{+}\nu_{e} and the D¯\bar{D} decays into a tag mode are called DT events.

Because the branching fraction of the b1ωπb_{1}\to\omega\pi decay is unknown, the product branching fractions of the decay Db1e+νeD\to b_{1}e^{+}\nu_{e} (SL{\mathcal{B}}_{\rm SL}) and its subsequent decay b1ωπb_{1}\to\omega\pi (b1{\mathcal{B}}_{b_{1}}) are determined from

SLb1=NDTNSTtotε¯SLsub,{\mathcal{B}}_{\rm SL}\cdot{\mathcal{B}}_{b_{1}}=\frac{N_{\rm DT}}{N^{\rm tot}_{\rm ST}\cdot\bar{\varepsilon}_{\rm SL}\cdot{\mathcal{B}}_{\rm sub}}, (1)

where NSTtot=ΣiNSTiN_{\rm ST}^{\rm tot}=\Sigma_{i}N^{i}_{\rm ST} and NDTN_{\rm DT} are the total ST and DT yields after summing over all tag modes ii; sub=ωπ0{\mathcal{B}}_{\rm sub}={\mathcal{B}}_{\omega}\cdot{\mathcal{B}}_{\pi^{0}} for D0b1e+νeD^{0}\to b_{1}^{-}e^{+}\nu_{e} and sub=ωπ02{\mathcal{B}}_{\rm sub}={\mathcal{B}}_{\omega}\cdot{\mathcal{B}}^{2}_{\pi^{0}} for D+b10e+νeD^{+}\to b_{1}^{0}e^{+}\nu_{e}, in which ω{\mathcal{B}}_{\omega} and π0{\mathcal{B}}_{\pi^{0}} are the branching fractions of ωπ+ππ0\omega\to\pi^{+}\pi^{-}\pi^{0} and π0γγ\pi^{0}\to\gamma\gamma, respectively; and ε¯SL=ΣiNSTiNSTtotϵDTiϵSTi\bar{\varepsilon}_{\rm SL}=\Sigma_{i}\frac{N^{i}_{\rm ST}}{N^{\rm tot}_{\rm ST}}\frac{\epsilon^{i}_{\rm DT}}{\epsilon^{i}_{\rm ST}} is the average signal efficiency of reconstructing Db1e+νeD\to b_{1}e^{+}\nu_{e} in the presence of an ST DD, where ϵSTi\epsilon^{i}_{\rm ST} and ϵDTi\epsilon^{i}_{\rm DT} are the ST and DT efficiencies for the ii-th tag mode, respectively.

All charged tracks detected in the multilayer drift chamber (MDC) must be within a polar angle (θ\theta) range of |cosθ|<0.93|\rm{cos\theta}|<0.93, where θ\theta is defined with respect to the zz-axis, which is the symmetry axis of the MDC. Except for charged tracks from KS0K^{0}_{S} decays, they must originate from an interaction region defined by |Vxy|<|V_{xy}|< 1 cm and |Vz|<|V_{z}|<10 cm. Here, |Vxy||V_{xy}| and |Vz||V_{z}| denote the distances of closest approach of the reconstructed track to the interaction point (IP) in the xyxy plane and the zz direction (along the beam), respectively. Particle identification (PID) for charged tracks combines measurements of the specific ionization energy loss in the MDC (dEE/dxx) and the flight time in the TOF to form confidence levels for pion and kaon hypothesis (CLπCL_{\pi} and CLKCL_{K}). Charged tracks with CLK>CLπCL_{K}>CL_{\pi} and CLπ>CLKCL_{\pi}>CL_{K} are assigned as kaons and pions, respectively.

Each KS0K_{S}^{0} candidate is reconstructed from two oppositely charged tracks satisfying |Vz|<20|V_{z}|<20 cm. The two charged tracks are assigned as π+π\pi^{+}\pi^{-} without imposing further PID criteria. They are constrained to originate from a common vertex, and required to have an invariant mass within (0.487,0.511)(0.487,0.511) GeV/c2c^{2}. The decay length of the KS0K^{0}_{S} candidate is required to be greater than twice the vertex resolution away from the IP. The quality of the vertex fits (primary-vertex fit and secondary-vertex fit) is ensured by a requirement of χ2<100\chi^{2}<100.

Photon candidates are selected using showers in the electromagnetic calorimeter (EMC). The deposited energy of each shower must be more than 25 MeV in the barrel region (|cosθ|<0.80|\!\cos\theta|<0.80) and more than 50 MeV in the end-cap region (0.86<|cosθ|<0.920.86<|\!\cos\theta|<0.92). To exclude showers associated with charged tracks, the angle subtended by the EMC shower and the position of the closest charged track at the EMC must be greater than 1010^{\circ} as measured from the IP. To suppress electronic noise and showers unrelated to the event, the difference between the EMC time and the event start time is required to be within [0, 700] ns. For π0\pi^{0} candidates, the invariant mass of the photon pair is required to be within (0.115, 0.150)(0.115,\,0.150) GeV/c2/c^{2}. To improve the momentum resolution, a one-constraint (1C) kinematic fit to the known π0\pi^{0} mass pdg2024 is imposed on the photon pair. The four-momentum of the π0\pi^{0} candidate updated by the 1C fit is kept for further analysis.

To separate the ST D¯\bar{D} mesons from combinatorial backgrounds, we define the energy difference ΔEED¯Ebeam\Delta E\equiv E_{\bar{D}}-E_{\rm{beam}} and the beam-constrained mass MBCEbeam2/c4|pD¯|2/c2M_{\rm BC}\equiv\sqrt{E_{\rm{beam}}^{2}/c^{4}-|\vec{p}_{\bar{D}}|^{2}/c^{2}}, where EbeamE_{\rm{beam}} is the beam energy, and ED¯E_{\bar{D}} and pD¯\vec{p}_{\bar{D}} are the total energy and momentum of the D¯\bar{D} candidate in the e+ee^{+}e^{-} center-of-mass frame, respectively. If there is more than one D¯\bar{D} candidate in a given ST mode, the one with the minimal |ΔE||\Delta E| is kept for further analysis. The ΔE\Delta E requirements and ST efficiencies for the different tag modes are listed in Table 1.

The ST yields are extracted by performing unbinned maximum likelihood fits to individual MBCM_{\rm BC} distributions. In the fit, the signal shape is derived from the MC-simulated signal shape convolved with a double-Gaussian function to consider the resolution difference between data and MC simulation. The background shape is described by the ARGUS function argus , with the endpoint parameter fixed at 1.8865 GeV/c2c^{2} corresponding to EbeamE_{\rm beam}. Figure 1 shows the fits to the MBCM_{\rm BC} distributions of the accepted ST candidates in data for different tag modes. The candidates with MBCM_{\rm BC} within (1.859,1.873)(1.859,1.873) GeV/c2c^{2} for D¯0\bar{D}^{0} tags and (1.863,1.877)(1.863,1.877) GeV/c2c^{2} for DD^{-} tags are kept for further analysis. Summing over the tag modes gives the total yields of ST D¯0\bar{D}^{0} and DD^{-} mesons to be (7896.0±3.4stat)×103(7896.0\pm 3.4_{\rm stat})\times 10^{3} and (4149.9±2.3stat)×103(4149.9\pm 2.3_{\rm stat})\times 10^{3}, respectively.

Table 1: The ΔE\Delta E requirements, the measured ST D¯\bar{D} yields, and the ST efficiencies (ϵSTi\epsilon_{\rm ST}^{i}) for different tag modes. The uncertainties are statistical only.
Tag mode ΔE\Delta E (GeV) NSTi(×103)N^{i}_{\rm ST}~{}(\times 10^{3}) ϵSTi(%)\epsilon^{i}_{\rm ST}~{}(\%)
D¯0K+π\bar{D}^{0}\to K^{+}\pi^{-} (0.027,0.027)(-0.027,0.027) 1449.3±1.21449.3\pm 1.2 65.34±0.0165.34\pm 0.01
D¯0K+ππ0\bar{D}^{0}\to K^{+}\pi^{-}\pi^{0} (0.062,0.049)(-0.062,0.049) 2913.1±2.02913.1\pm 2.0 35.59±0.0135.59\pm 0.01
D¯0K+πππ+\bar{D}^{0}\to K^{+}\pi^{-}\pi^{-}\pi^{+} (0.026,0.024)(-0.026,0.024) 1944.1±1.51944.1\pm 1.5 40.83±0.0140.83\pm 0.01
D¯0KS0π+π\bar{D}^{0}\to K_{S}^{0}\pi^{+}\pi^{-} (0.024,0.024)(-0.024,0.024) 447.6±0.7447.6\pm 0.7 37.49±0.0137.49\pm 0.01
D¯0K+ππ0π0\bar{D}^{0}\to K^{+}\pi^{-}\pi^{0}\pi^{0} (0.068,0.053)(-0.068,0.053) 690.6±1.3690.6\pm 1.3 14.83±0.0114.83\pm 0.01
D¯0K+π+πππ0\bar{D}^{0}\to K^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0} (0.057,0.051)(-0.057,0.051) 450.9±1.1450.9\pm 1.1 16.17±0.0116.17\pm 0.01
DK+ππD^{-}\to K^{+}\pi^{-}\pi^{-} (0.025,0.024)(-0.025,0.024) 2164.0±1.52164.0\pm 1.5 51.17±0.0151.17\pm 0.01
DKS0πD^{-}\to K_{S}^{0}\pi^{-} (0.025,0.026)(-0.025,0.026) 250.4±0.5250.4\pm 0.5 50.74±0.0250.74\pm 0.02
DKππ+π0D^{-}\to K^{-}\pi^{-}\pi^{+}\pi^{0} (0.057,0.046)(-0.057,0.046) 689.0±1.1689.0\pm 1.1 25.50±0.0125.50\pm 0.01
DKS0ππ0D^{-}\to K_{S}^{0}\pi^{-}\pi^{0} (0.062,0.049)(-0.062,0.049) 558.4±0.9558.4\pm 0.9 26.28±0.0126.28\pm 0.01
DKS0πππ+D^{-}\to K_{S}^{0}\pi^{-}\pi^{-}\pi^{+} (0.028,0.027)(-0.028,0.027) 300.5±0.6300.5\pm 0.6 29.01±0.0129.01\pm 0.01
DK+KπD^{-}\to K^{+}K^{-}\pi^{-} (0.024,0.023)(-0.024,0.023) 187.3±0.5187.3\pm 0.5 41.06±0.0241.06\pm 0.02
Refer to caption
Fig. 1: Fits to the MBCM_{\rm BC} distributions of the ST D¯\bar{D} candidates for different tag modes. The dots with error bars are data, the blue curves are the best fits, and the red dashed curves are the fitted combinatorial background shapes. The pair of red arrows are the MBCM_{\rm BC} signal windows.

In the presence of the tagged D¯\bar{D} candidates, D0b1e+νeD^{0}\to b_{1}^{-}e^{+}\nu_{e} and D+b10e+νeD^{+}\to b_{1}^{0}e^{+}\nu_{e} candidates are selected from the residual tracks and photons not used in the tag reconstruction. The selection criteria of charged and neutral pions are the same as those used in the tag selection. For the selected candidates D0π+πππ0e+νeD^{0}\to\pi^{+}\pi^{-}\pi^{-}\pi^{0}e^{+}\nu_{e} and D+π+ππ0π0e+νeD^{+}\to\pi^{+}\pi^{-}\pi^{0}\pi^{0}e^{+}\nu_{e}, two possible π+ππ0\pi^{+}\pi^{-}\pi^{0} combinations can form the ω\omega candidate. In order to veto backgrounds from Da0(980)e+νeD\to a_{0}(980)e^{+}\nu_{e}, the invariant masses of both π+ππ0\pi^{+}\pi^{-}\pi^{0} combinations (Mπ+ππ0M_{\pi^{+}\pi^{-}\pi^{0}}) are required to be greater than 0.6 GeV/c2c^{2}. This rejects almost all of the Da0(980)e+νeD\to a_{0}(980)e^{+}\nu_{e} background events. One candidate is kept for further analysis if either of the π+ππ0\pi^{+}\pi^{-}\pi^{0} combinations falls in the ω\omega mass signal region Mπ+ππ0M_{\pi^{+}\pi^{-}\pi^{0}}\in (0.757,0.807) GeV/c2c^{2}. Events in the ω\omega sideband region, defined as Mπ+ππ0M_{\pi^{+}\pi^{-}\pi^{0}}\in (0.697,0.742) and (0.822,0.867) GeV/c2c^{2}, are used to study potential combinatorial background in the ω\omega signal region. To reject background events from D0(+)K¯1(1270)[KS0π+(0)π(0)]e+νeD^{0(+)}\to\bar{K}_{1}(1270)[\to K_{S}^{0}\pi^{+(0)}\pi^{-(0)}]e^{+}\nu_{e}, we require the invariant masses of all π+π\pi^{+}\pi^{-} (π0π0\pi^{0}\pi^{0}) combinations satisfy |Mπ+π(π0π0)MKS0|>0.008|M_{\pi^{+}\pi^{-}(\pi^{0}\pi^{0})}-M_{K_{S}^{0}}|>0.008 GeV/c2c^{2}.

Identification of e+e^{+} candidates is performed with combined dEE/dxx, TOF, and EMC information. Based on these, we calculate confidence levels for the positron, pion, and kaon hypotheses (CLeCL_{e}, CLπCL_{\pi}, and CLKCL_{K}). Charged tracks satisfying CLe>0.001CL_{e}>0.001 and CLe/(CLe+CLπ+CLK)>0.8CL_{e}/(CL_{e}+CL_{\pi}+CL_{K})>0.8 are assigned as e+e^{+} candidates. To further reject background events from misidentified hadrons and muons, the deposited energy of any e+e^{+} candidate in the EMC must be greater than 0.8 times its momentum reconstructed in the MDC.

The invariant mass of the b1e+b_{1}e^{+} system (Mb1e+M_{b_{1}e^{+}}) is required to be less than 1.82 GeV/c2c^{2} to suppress peaking background contributions from the decay Db1(0)π+D\to b_{1}^{-(0)}\pi^{+}. To suppress backgrounds with extra photons or π0\pi^{0}s, the maximum energy of any extra photon that has not been used in the event selection (EextraγmaxE^{\rm max}_{\rm extra~{}\gamma}) must be less than 0.30 GeV, and there must be no additional π0\pi^{0} candidates (Nextraπ0N^{\pi^{0}}_{\rm extra}) in the candidate event. In addition, the opening angle between the missing momentum and the most energetic unused shower when found, θγ,miss\theta_{\gamma,\rm miss}, is required to satisfy cosθγ,miss<0.3\cos\theta_{\gamma,\rm miss}<0.3 and cosθγ,miss<0.4\cos\theta_{\gamma,\rm miss}<0.4 for D0b1e+νeD^{0}\to b_{1}^{-}e^{+}\nu_{e} and D+b10e+νeD^{+}\to b_{1}^{0}e^{+}\nu_{e}, respectively. To suppress backgrounds due to final state radiation, the angle between the direction of the radiative photon and the e+e^{+} momentum is required to be greater than 0.20 radians.

The presence of the missing neutrino is inferred using a kinematic variable defined as

UmissEmiss|pmiss|c,U_{\rm miss}\equiv E_{\rm miss}-|\vec{p}_{\rm miss}|\cdot c, (2)

with

EmissEbeamEb1Ee+,E_{\rm{miss}}\equiv E_{\rm{beam}}-E_{b_{1}}-E_{e^{+}}, (3)

and

pmisspDpb1pe+,\vec{p}_{\rm{miss}}\equiv\vec{p}_{D}-\vec{p}_{b_{1}}-\vec{p}_{e^{+}}, (4)

where Eb1(e+)E_{b_{1}\,(e^{+})} and pb1(e+)\vec{p}_{b_{1}\,(e^{+})} are the measured energy and momentum of the b1b_{1} (e+e^{+}) candidates in the e+ee^{+}e^{-} center-of-mass frame, respectively. We calculate pDp^D¯Ebeam2/c2mD¯2c2\vec{p}_{D}\equiv-\hat{p}_{\bar{D}}\cdot\sqrt{E_{\rm{beam}}^{2}/c^{2}-m_{\bar{D}}^{2}\cdot c^{2}}, where p^D¯\hat{p}_{\bar{D}} is a unit vector in the momentum direction of the ST D¯\bar{D} meson and mD¯m_{\bar{D}} is the known D¯\bar{D} mass pdg2024 . The beam energy and the known DD mass are used to determine the magnitude of the momentum of the ST DD mesons in order to improve the UmissU_{\rm{miss}} resolution. The signal candidates are expected to peak around zero in the UmissU_{\rm miss} distribution and near the invariant mass of the b1b_{1} in the ωπ\omega\pi mass spectrum (MωπM_{\omega\pi}).

To obtain the signal yields, we perform two-dimensional (2D) unbinned maximum likelihood fits to the Mωπ(0)M_{\omega\pi^{-(0)}} vs. UmissU_{\rm miss} distributions. In the fits, the 2D signal and background shapes are modeled by the simulated shapes derived from the signal and inclusive MC samples, respectively, and the yields of the signal and background are left free. The projections of the 2D fit on the Mωπ(0)M_{{}_{\omega\pi^{-(0)}}} and UmissU_{\rm miss} distributions are shown in Fig. 2. From the fits, the signal yields are NDTN_{\rm DT} = 35.6±8.935.6\pm 8.9 and NDTN_{\rm DT} = 17.5±6.717.5\pm 6.7 for D0b1e+νeD^{0}\to b_{1}^{-}e^{+}\nu_{e} and D+b10e+νeD^{+}\to b_{1}^{0}e^{+}\nu_{e}, respectively, and the signal significances are estimated to be 5.2σ5.2\sigma and 3.1σ3.1\sigma, by comparing the likelihoods with or without the signal involved and taking into account the change of degrees of freedom. Because the non-resonant component is highly suppressed in semileptonic DD decays and due to limited statistics, all ωπ\omega\pi candidates are assumed to come from b1b_{1} decay. The non-resonant component is considered as a source of systematic uncertainty. Based on MC simulations, the detection efficiencies ε¯SL\bar{\varepsilon}_{\rm SL} are estimated to be 0.0715±0.00050.0715\pm 0.0005 and 0.0417±0.00040.0417\pm 0.0004 for D0b1e+νeD^{0}\to b_{1}^{-}e^{+}\nu_{e} and D+b10e+νeD^{+}\to b_{1}^{0}e^{+}\nu_{e}, respectively.

Refer to caption
Fig. 2: The projections onto (a, c) Mωπ(0)M_{\omega\pi^{-(0)}} and (b, d) UmissU_{\rm miss} for the decays (a, b) D0b1e+νeD^{0}\to b_{1}^{-}e^{+}\nu_{e} and (c, d) D+b10e+νeD^{+}\to b_{1}^{0}e^{+}\nu_{e}. The dots with error bars are data. The blue solid, red dashed, and black dashed curves are the fit result, the fitted signal, and the fitted background, respectively. The color-filled histograms are from different background sources, as labeled in the legend.

The systematic uncertainties in the branching fraction measurements are discussed below. The uncertainty associated with the ST yield NSTtotN_{\rm ST}^{\rm tot} is estimated to be 0.1% Dtokkenu . The uncertainty from the quoted branching fraction of ωπ+ππ0\omega\to\pi^{+}\pi^{-}\pi^{0} is 0.8%. The efficiencies of the e+e^{+} tracking and PID are investigated using a control sample of e+eγe+ee^{+}e^{-}\to\gamma e^{+}e^{-}, and those of the π±\pi^{\pm} tracking and PID as well as for π0\pi^{0} reconstruction are estimated with control samples of D0Kπ+D^{0}\to K^{-}\pi^{+}, D0Kπ+π0D^{0}\to K^{-}\pi^{+}\pi^{0}, D0Kπ+π+πD^{0}\to K^{-}\pi^{+}\pi^{+}\pi^{-}, and D+Kπ+π+D^{+}\to K^{-}\pi^{+}\pi^{+} with the same tags. The systematic uncertainties in the tracking (PID) efficiencies are assigned as 1.0% (1.0%) per e+e^{+} and 1.0% (1.0%) per π±\pi^{\pm}, respectively. The systematic uncertainty of the π0\pi^{0} reconstruction efficiencies, including photon finding, the π0\pi^{0} mass window, and the 1C kinematic fit, is assigned as 2.0% per π0\pi^{0}.

The systematic uncertainty associated with the ω\omega mass window is assigned to be 1.9% using a control sample of D0KS0ωD^{0}\to K^{0}_{S}\omega reconstructed versus the same D¯0\bar{D}^{0} tags as the nominal analysis. The systematic uncertainties arising from the EextraγmaxE_{\rm extra\,\gamma}^{\rm max} and Nextra,π0N_{\rm extra,\pi^{0}} requirements are estimated to be 1.8% and 2.0% for D0b1e+νeD^{0}\to b_{1}^{-}e^{+}\nu_{e} and D+b10e+νeD^{+}\to b_{1}^{0}e^{+}\nu_{e}, respectively, which are estimated using the DT samples of D0Ke+νeD^{0}\to K^{-}e^{+}\nu_{e} and D+KS0e+νeD^{+}\to K^{0}_{S}e^{+}\nu_{e} decays reconstructed versus the same tags as the nominal analysis. The systematic uncertainty related to the b1b_{1} resonant parameters is estimated using alternative signal MC samples, which are produced by varying the mass and width of the b1b_{1} by ±1σ\pm 1\sigma. The maximum changes of the signal efficiencies, 1.4% and 4.8%, are assigned as the systematic uncertainties for D0b1e+νeD^{0}\to b_{1}^{-}e^{+}\nu_{e} and D+b10e+νeD^{+}\to b_{1}^{0}e^{+}\nu_{e}, respectively. The uncertainty from limited MC statistics is estimated to be 0.3%. The systematic uncertainty due to the MC generator is assigned by examining the DT efficiency with the signal MC events produced with the phase space model. The maximum changes of the DT efficiencies, 1.4% and 0.5%, are assigned as the systematic uncertainties for D0b1e+νeD^{0}\to b_{1}^{-}e^{+}\nu_{e} and D+b10e+νeD^{+}\to b_{1}^{0}e^{+}\nu_{e}, respectively. The systematic uncertainty associated with the cosθγ,miss\theta_{\gamma,\rm miss} requirement is estimated to be 1.0% by analyzing the DT sample of D0KS0πe+νeD^{0}\to K_{S}^{0}\pi^{-}e^{+}\nu_{e}. The systematic uncertainty due to the sideband estimation of the ω\omega background, which may be from D0(+)b1(0)e+νeD^{0(+)}\to b_{1}^{-(0)}e^{+}\nu_{e} with b1(0)π+ππ0π0()b_{1}^{-(0)}\to\pi^{+}\pi^{-}\pi^{0}\pi^{0(-)}, is estimated by examining the measured branching fractions after considering this contribution. The changes in the branching fractions, 0.5% and 4.6%, are taken as the corresponding systematic uncertainties.

To estimate the systematic uncertainties of the signal and background shapes in the UmissU_{\rm miss} fit, a simulated shape convolved with a double Gaussian function with floating parameters is chosen as the alternative signal shape, and the simulated background shape derived from the inclusive MC sample is replaced with a 1st-order Chebyshev polynomial function. The difference in the fitted signal yields are taken as individual systematic uncertainties. The uncertainty arising from background shapes is mainly due to unknown non-resonant decays, and is assigned as the change of the fitted DT yield when they are fixed by referring to the well known non-resonant fraction in D+K¯(892)0e+νeD^{+}\to\bar{K}^{*}(892)^{0}e^{+}\nu_{e} kpi . The total systematic uncertainties are 10.7%+8.8%{}^{+8.8\%}_{-10.7\%} and 13.9%+12.7%{}^{+12.7\%}_{-13.9\%} by adding all the individual contributions in quadrature for D0b1e+νeD^{0}\to b_{1}^{-}e^{+}\nu_{e} and D+b10e+νeD^{+}\to b_{1}^{0}e^{+}\nu_{e}, respectively.

The product branching fractions are determined to be (D0b1e+νe)×(bωπ)=(0.72±0.180.08+0.06)×104{\mathcal{B}}(D^{0}\to b_{1}^{-}e^{+}\nu_{e})\times{\mathcal{B}}(b^{-}\to\omega\pi^{-})=(0.72\pm 0.18^{+0.06}_{-0.08})\times 10^{-4} and (D+b10e+νe)×(b10ωπ0)=(1.16±0.44±0.16)×104{\mathcal{B}}(D^{+}\to b_{1}^{0}e^{+}\nu_{e})\times{\mathcal{B}}(b_{1}^{0}\to\omega\pi^{0})=(1.16\pm 0.44\pm 0.16)\times 10^{-4} for D0b1e+νeD^{0}\to b_{1}^{-}e^{+}\nu_{e} and D+b10e+νeD^{+}\to b_{1}^{0}e^{+}\nu_{e}, where the first and second uncertainties are statistical and systematic, respectively.

In summary, by analyzing 7.9fb17.9~{}\rm{fb}^{-1} of e+ee^{+}e^{-} collision data taken at s=3.773\sqrt{s}=3.773 GeV, we report the first observation of D0b1e+νeD^{0}\to b_{1}^{-}e^{+}\nu_{e} with a significance of 5.2σ\sigma and find a first evidence for D+b10e+νeD^{+}\to b_{1}^{0}e^{+}\nu_{e} with a significance of 3.1σ\sigma after considering systematic uncertainty. The product branching fractions are determined to be (D0b1e+νe)×(b1ωπ)=(0.72±0.180.08+0.06)×104{\mathcal{B}}(D^{0}\to b_{1}^{-}e^{+}\nu_{e})\times{\mathcal{B}}(b_{1}^{-}\to\omega\pi^{-})=(0.72\pm 0.18^{+0.06}_{-0.08})\times 10^{-4} and (D+b10e+νe)×(b10ωπ0)=(1.16±0.44±0.16)×104{\mathcal{B}}(D^{+}\to b_{1}^{0}e^{+}\nu_{e})\times{\mathcal{B}}(b_{1}^{0}\to\omega\pi^{0})=(1.16\pm 0.44\pm 0.16)\times 10^{-4}. Assuming (b1ωπ)=1{\mathcal{B}}(b_{1}\to\omega\pi)=1, these results are comparable with the theoretical predictions in Ref. cheng , thereby reinforcing the assumption that the ωπ\omega\pi final state is the dominant decay mode of the axial-vector b1b_{1} meson. Using the obtained branching fractions, the world-average lifetimes of the D0D^{0} and D+D^{+} mesons pdg2024 , and assuming that (b1ωπ)=(b10ωπ0){\mathcal{B}}(b_{1}^{-}\to\omega\pi^{-})={\mathcal{B}}(b_{1}^{0}\to\omega\pi^{0}), we determine the partial decay width ratio Γ(D0b1e+νe)2Γ(D+b10e+νe)=0.78±0.190.05+0.04\frac{\Gamma(D^{0}\to b_{1}^{-}e^{+}\nu_{e})}{2\Gamma(D^{+}\to b_{1}^{0}e^{+}\nu_{e})}=0.78\pm 0.19^{+0.04}_{-0.05}, which is consistent with unity within uncertainties after considering the shared systematic terms, and is thus consistent with isospin conservation. Observation of the b1b_{1} in semileptonic DD decays opens a new avenue for experimental investigation. Future analysis of their decay dynamics, which will be made possible with the larger data samples currently being collected by BESIII bes3-white-paper and a potential future STCF stcf , will provide deep insights into the inner structure, production, mass, and width of the b1b_{1}, as well as provide access to hadronic-transition form factors.

The BESIII Collaboration thanks the staff of BEPCII and the IHEP computing center for their strong support. This work is supported in part by National Key R&D Program of China under Contracts Nos. 2023YFA1606000, 2020YFA0406300, 2020YFA0406400, 2023YFA1606704; National Natural Science Foundation of China (NSFC) under Contracts Nos. 12375092, 11635010, 11735014, 11935015, 11935016, 11935018, 11961141012, 12025502, 12035009, 12035013, 12061131003, 12192260, 12192261, 12192262, 12192263, 12192264, 12192265, 12221005, 12225509, 12235017; the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; the CAS Center for Excellence in Particle Physics (CCEPP); Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contract No. U1832207; 100 Talents Program of CAS; The Institute of Nuclear and Particle Physics (INPAC) and Shanghai Key Laboratory for Particle Physics and Cosmology; German Research Foundation DFG under Contracts Nos. 455635585, FOR5327, GRK 2149; Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Development of Turkey under Contract No. DPT2006K-120470; National Research Foundation of Korea under Contract No. NRF-2022R1A2C1092335; National Science and Technology fund of Mongolia; National Science Research and Innovation Fund (NSRF) via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation of Thailand under Contract No. B16F640076; Polish National Science Centre under Contract No. 2019/35/O/ST2/02907; The Swedish Research Council; U. S. Department of Energy under Contract No. DE-FG02-05ER41374.

References