This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Observation of 𝝌𝒄𝑱𝟑(𝑲+𝑲)\chi_{cJ}\to 3(K^{+}K^{-})

M. Ablikim1, M. N. Achasov4,c, P. Adlarson75, O. Afedulidis3, X. C. Ai80, R. Aliberti35, A. Amoroso74A,74C, Q. An71,58,a, Y. Bai57, O. Bakina36, I. Balossino29A, Y. Ban46,h, H.-R. Bao63, V. Batozskaya1,44, K. Begzsuren32, N. Berger35, M. Berlowski44, M. Bertani28A, D. Bettoni29A, F. Bianchi74A,74C, E. Bianco74A,74C, A. Bortone74A,74C, I. Boyko36, R. A. Briere5, A. Brueggemann68, H. Cai76, X. Cai1,58, A. Calcaterra28A, G. F. Cao1,63, N. Cao1,63, S. A. Cetin62A, J. F. Chang1,58, G. R. Che43, G. Chelkov36,b, C. Chen43, C. H. Chen9, Chao Chen55, G. Chen1, H. S. Chen1,63, H. Y. Chen20, M. L. Chen1,58,63, S. J. Chen42, S. L. Chen45, S. M. Chen61, T. Chen1,63, X. R. Chen31,63, X. T. Chen1,63, Y. B. Chen1,58, Y. Q. Chen34, Z. J. Chen25,i, Z. Y. Chen1,63, S. K. Choi10A, G. Cibinetto29A, F. Cossio74C, J. J. Cui50, H. L. Dai1,58, J. P. Dai78, A. Dbeyssi18, R.  E. de Boer3, D. Dedovich36, C. Q. Deng72, Z. Y. Deng1, A. Denig35, I. Denysenko36, M. Destefanis74A,74C, F. De Mori74A,74C, B. Ding66,1, X. X. Ding46,h, Y. Ding34, Y. Ding40, J. Dong1,58, L. Y. Dong1,63, M. Y. Dong1,58,63, X. Dong76, M. C. Du1, S. X. Du80, Z. H. Duan42, P. Egorov36,b, Y. H. Fan45, J. Fang59, J. Fang1,58, S. S. Fang1,63, W. X. Fang1, Y. Fang1, Y. Q. Fang1,58, R. Farinelli29A, L. Fava74B,74C, F. Feldbauer3, G. Felici28A, C. Q. Feng71,58, J. H. Feng59, Y. T. Feng71,58, M. Fritsch3, C. D. Fu1, J. L. Fu63, Y. W. Fu1,63, H. Gao63, X. B. Gao41, Y. N. Gao46,h, Yang Gao71,58, S. Garbolino74C, I. Garzia29A,29B, L. Ge80, P. T. Ge76, Z. W. Ge42, C. Geng59, E. M. Gersabeck67, A. Gilman69, K. Goetzen13, L. Gong40, W. X. Gong1,58, W. Gradl35, S. Gramigna29A,29B, M. Greco74A,74C, M. H. Gu1,58, Y. T. Gu15, C. Y. Guan1,63, Z. L. Guan22, A. Q. Guo31,63, L. B. Guo41, M. J. Guo50, R. P. Guo49, Y. P. Guo12,g, A. Guskov36,b, J. Gutierrez27, K. L. Han63, T. T. Han1, X. Q. Hao19, F. A. Harris65, K. K. He55, K. L. He1,63, F. H. Heinsius3, C. H. Heinz35, Y. K. Heng1,58,63, C. Herold60, T. Holtmann3, P. C. Hong34, G. Y. Hou1,63, X. T. Hou1,63, Y. R. Hou63, Z. L. Hou1, B. Y. Hu59, H. M. Hu1,63, J. F. Hu56,j, S. L. Hu12,g, T. Hu1,58,63, Y. Hu1, G. S. Huang71,58, K. X. Huang59, L. Q. Huang31,63, X. T. Huang50, Y. P. Huang1, T. Hussain73, F. Hölzken3, N Hüsken27,35, N. in der Wiesche68, J. Jackson27, S. Janchiv32, J. H. Jeong10A, Q. Ji1, Q. P. Ji19, W. Ji1,63, X. B. Ji1,63, X. L. Ji1,58, Y. Y. Ji50, X. Q. Jia50, Z. K. Jia71,58, D. Jiang1,63, H. B. Jiang76, P. C. Jiang46,h, S. S. Jiang39, T. J. Jiang16, X. S. Jiang1,58,63, Y. Jiang63, J. B. Jiao50, J. K. Jiao34, Z. Jiao23, S. Jin42, Y. Jin66, M. Q. Jing1,63, X. M. Jing63, T. Johansson75, S. Kabana33, N. Kalantar-Nayestanaki64, X. L. Kang9, X. S. Kang40, M. Kavatsyuk64, B. C. Ke80, V. Khachatryan27, A. Khoukaz68, R. Kiuchi1, O. B. Kolcu62A, B. Kopf3, M. Kuessner3, X. Kui1,63, N.  Kumar26, A. Kupsc44,75, W. Kühn37, J. J. Lane67, P.  Larin18, L. Lavezzi74A,74C, T. T. Lei71,58, Z. H. Lei71,58, M. Lellmann35, T. Lenz35, C. Li43, C. Li47, C. H. Li39, Cheng Li71,58, D. M. Li80, F. Li1,58, G. Li1, H. B. Li1,63, H. J. Li19, H. N. Li56,j, Hui Li43, J. R. Li61, J. S. Li59, Ke Li1, L. J Li1,63, L. K. Li1, Lei Li48, M. H. Li43, P. R. Li38,l, Q. M. Li1,63, Q. X. Li50, R. Li17,31, S. X. Li12, T.  Li50, W. D. Li1,63, W. G. Li1,a, X. Li1,63, X. H. Li71,58, X. L. Li50, X. Z. Li59, Xiaoyu Li1,63, Y. G. Li46,h, Z. J. Li59, Z. X. Li15, C. Liang42, H. Liang71,58, H. Liang1,63, Y. F. Liang54, Y. T. Liang31,63, G. R. Liao14, L. Z. Liao50, J. Libby26, A.  Limphirat60, C. C. Lin55, D. X. Lin31,63, T. Lin1, B. J. Liu1, B. X. Liu76, C. Liu34, C. X. Liu1, F. H. Liu53, Fang Liu1, Feng Liu6, G. M. Liu56,j, H. Liu38,k,l, H. B. Liu15, H. M. Liu1,63, Huanhuan Liu1, Huihui Liu21, J. B. Liu71,58, J. Y. Liu1,63, K. Liu38,k,l, K. Y. Liu40, Ke Liu22, L. Liu71,58, L. C. Liu43, Lu Liu43, M. H. Liu12,g, P. L. Liu1, Q. Liu63, S. B. Liu71,58, T. Liu12,g, W. K. Liu43, W. M. Liu71,58, X. Liu38,k,l, X. Liu39, Y. Liu80, Y. Liu38,k,l, Y. B. Liu43, Z. A. Liu1,58,63, Z. D. Liu9, Z. Q. Liu50, X. C. Lou1,58,63, F. X. Lu59, H. J. Lu23, J. G. Lu1,58, X. L. Lu1, Y. Lu7, Y. P. Lu1,58, Z. H. Lu1,63, C. L. Luo41, M. X. Luo79, T. Luo12,g, X. L. Luo1,58, X. R. Lyu63, Y. F. Lyu43, F. C. Ma40, H. Ma78, H. L. Ma1, J. L. Ma1,63, L. L. Ma50, M. M. Ma1,63, Q. M. Ma1, R. Q. Ma1,63, X. T. Ma1,63, X. Y. Ma1,58, Y. Ma46,h, Y. M. Ma31, F. E. Maas18, M. Maggiora74A,74C, S. Malde69, Y. J. Mao46,h, Z. P. Mao1, S. Marcello74A,74C, Z. X. Meng66, J. G. Messchendorp13,64, G. Mezzadri29A, H. Miao1,63, T. J. Min42, R. E. Mitchell27, X. H. Mo1,58,63, B. Moses27, N. Yu. Muchnoi4,c, J. Muskalla35, Y. Nefedov36, F. Nerling18,e, L. S. Nie20, I. B. Nikolaev4,c, Z. Ning1,58, S. Nisar11,m, Q. L. Niu38,k,l, W. D. Niu55, Y. Niu 50, S. L. Olsen63, Q. Ouyang1,58,63, S. Pacetti28B,28C, X. Pan55, Y. Pan57, A.  Pathak34, P. Patteri28A, Y. P. Pei71,58, M. Pelizaeus3, H. P. Peng71,58, Y. Y. Peng38,k,l, K. Peters13,e, J. L. Ping41, R. G. Ping1,63, S. Plura35, V. Prasad33, F. Z. Qi1, H. Qi71,58, H. R. Qi61, M. Qi42, T. Y. Qi12,g, S. Qian1,58, W. B. Qian63, C. F. Qiao63, X. K. Qiao80, J. J. Qin72, L. Q. Qin14, L. Y. Qin71,58, X. S. Qin50, Z. H. Qin1,58, J. F. Qiu1, Z. H. Qu72, C. F. Redmer35, K. J. Ren39, A. Rivetti74C, M. Rolo74C, G. Rong1,63, Ch. Rosner18, S. N. Ruan43, N. Salone44, A. Sarantsev36,d, Y. Schelhaas35, K. Schoenning75, M. Scodeggio29A, K. Y. Shan12,g, W. Shan24, X. Y. Shan71,58, Z. J Shang38,k,l, J. F. Shangguan55, L. G. Shao1,63, M. Shao71,58, C. P. Shen12,g, H. F. Shen1,8, W. H. Shen63, X. Y. Shen1,63, B. A. Shi63, H. Shi71,58, H. C. Shi71,58, J. L. Shi12,g, J. Y. Shi1, Q. Q. Shi55, S. Y. Shi72, X. Shi1,58, J. J. Song19, T. Z. Song59, W. M. Song34,1, Y.  J. Song12,g, Y. X. Song46,h,n, S. Sosio74A,74C, S. Spataro74A,74C, F. Stieler35, Y. J. Su63, G. B. Sun76, G. X. Sun1, H. Sun63, H. K. Sun1, J. F. Sun19, K. Sun61, L. Sun76, S. S. Sun1,63, T. Sun51,f, W. Y. Sun34, Y. Sun9, Y. J. Sun71,58, Y. Z. Sun1, Z. Q. Sun1,63, Z. T. Sun50, C. J. Tang54, G. Y. Tang1, J. Tang59, Y. A. Tang76, L. Y. Tao72, Q. T. Tao25,i, M. Tat69, J. X. Teng71,58, V. Thoren75, W. H. Tian59, Y. Tian31,63, Z. F. Tian76, I. Uman62B, Y. Wan55, S. J. Wang 50, B. Wang1, B. L. Wang63, Bo Wang71,58, D. Y. Wang46,h, F. Wang72, H. J. Wang38,k,l, J. J. Wang76, J. P. Wang 50, K. Wang1,58, L. L. Wang1, M. Wang50, Meng Wang1,63, N. Y. Wang63, S. Wang12,g, S. Wang38,k,l, T.  Wang12,g, T. J. Wang43, W.  Wang72, W. Wang59, W. P. Wang35,71,o, X. Wang46,h, X. F. Wang38,k,l, X. J. Wang39, X. L. Wang12,g, X. N. Wang1, Y. Wang61, Y. D. Wang45, Y. F. Wang1,58,63, Y. L. Wang19, Y. N. Wang45, Y. Q. Wang1, Yaqian Wang17, Yi Wang61, Z. Wang1,58, Z. L.  Wang72, Z. Y. Wang1,63, Ziyi Wang63, D. H. Wei14, F. Weidner68, S. P. Wen1, Y. R. Wen39, U. Wiedner3, G. Wilkinson69, M. Wolke75, L. Wollenberg3, C. Wu39, J. F. Wu1,8, L. H. Wu1, L. J. Wu1,63, X. Wu12,g, X. H. Wu34, Y. Wu71,58, Y. H. Wu55, Y. J. Wu31, Z. Wu1,58, L. Xia71,58, X. M. Xian39, B. H. Xiang1,63, T. Xiang46,h, D. Xiao38,k,l, G. Y. Xiao42, S. Y. Xiao1, Y.  L. Xiao12,g, Z. J. Xiao41, C. Xie42, X. H. Xie46,h, Y. Xie50, Y. G. Xie1,58, Y. H. Xie6, Z. P. Xie71,58, T. Y. Xing1,63, C. F. Xu1,63, C. J. Xu59, G. F. Xu1, H. Y. Xu66, M. Xu71,58, Q. J. Xu16, Q. N. Xu30, W. Xu1, W. L. Xu66, X. P. Xu55, Y. C. Xu77, Z. P. Xu42, Z. S. Xu63, F. Yan12,g, L. Yan12,g, W. B. Yan71,58, W. C. Yan80, X. Q. Yan1, H. J. Yang51,f, H. L. Yang34, H. X. Yang1, Tao Yang1, Y. Yang12,g, Y. F. Yang43, Y. X. Yang1,63, Yifan Yang1,63, Z. W. Yang38,k,l, Z. P. Yao50, M. Ye1,58, M. H. Ye8, J. H. Yin1, Z. Y. You59, B. X. Yu1,58,63, C. X. Yu43, G. Yu1,63, J. S. Yu25,i, T. Yu72, X. D. Yu46,h, Y. C. Yu80, C. Z. Yuan1,63, J. Yuan34, L. Yuan2, S. C. Yuan1, Y. Yuan1,63, Y. J. Yuan45, Z. Y. Yuan59, C. X. Yue39, A. A. Zafar73, F. R. Zeng50, S. H.  Zeng72, X. Zeng12,g, Y. Zeng25,i, Y. J. Zeng59, X. Y. Zhai34, Y. C. Zhai50, Y. H. Zhan59, A. Q. Zhang1,63, B. L. Zhang1,63, B. X. Zhang1, D. H. Zhang43, G. Y. Zhang19, H. Zhang80, H. Zhang71,58, H. C. Zhang1,58,63, H. H. Zhang34, H. H. Zhang59, H. Q. Zhang1,58,63, H. R. Zhang71,58, H. Y. Zhang1,58, J. Zhang80, J. Zhang59, J. J. Zhang52, J. L. Zhang20, J. Q. Zhang41, J. S. Zhang12,g, J. W. Zhang1,58,63, J. X. Zhang38,k,l, J. Y. Zhang1, J. Z. Zhang1,63, Jianyu Zhang63, L. M. Zhang61, Lei Zhang42, P. Zhang1,63, Q. Y. Zhang34, R. Y Zhang38,k,l, Shuihan Zhang1,63, Shulei Zhang25,i, X. D. Zhang45, X. M. Zhang1, X. Y. Zhang50, Y.  Zhang72, Y.  T. Zhang80, Y. H. Zhang1,58, Y. M. Zhang39, Yan Zhang71,58, Yao Zhang1, Z. D. Zhang1, Z. H. Zhang1, Z. L. Zhang34, Z. Y. Zhang76, Z. Y. Zhang43, Z. Z.  Zhang45, G. Zhao1, J. Y. Zhao1,63, J. Z. Zhao1,58, Lei Zhao71,58, Ling Zhao1, M. G. Zhao43, N. Zhao78, R. P. Zhao63, S. J. Zhao80, Y. B. Zhao1,58, Y. X. Zhao31,63, Z. G. Zhao71,58, A. Zhemchugov36,b, B. Zheng72, B. M. Zheng34, J. P. Zheng1,58, W. J. Zheng1,63, Y. H. Zheng63, B. Zhong41, X. Zhong59, H.  Zhou50, J. Y. Zhou34, L. P. Zhou1,63, S.  Zhou6, X. Zhou76, X. K. Zhou6, X. R. Zhou71,58, X. Y. Zhou39, Y. Z. Zhou12,g, J. Zhu43, K. Zhu1, K. J. Zhu1,58,63, K. S. Zhu12,g, L. Zhu34, L. X. Zhu63, S. H. Zhu70, S. Q. Zhu42, T. J. Zhu12,g, W. D. Zhu41, Y. C. Zhu71,58, Z. A. Zhu1,63, J. H. Zou1, J. Zu71,58
(BESIII Collaboration)
1 Institute of High Energy Physics, Beijing 100049, People’s Republic of China
2 Beihang University, Beijing 100191, People’s Republic of China
3 Bochum Ruhr-University, D-44780 Bochum, Germany
4 Budker Institute of Nuclear Physics SB RAS (BINP), Novosibirsk 630090, Russia
5 Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
6 Central China Normal University, Wuhan 430079, People’s Republic of China
7 Central South University, Changsha 410083, People’s Republic of China
8 China Center of Advanced Science and Technology, Beijing 100190, People’s Republic of China
9 China University of Geosciences, Wuhan 430074, People’s Republic of China
10 Chung-Ang University, Seoul, 06974, Republic of Korea
11 COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
12 Fudan University, Shanghai 200433, People’s Republic of China
13 GSI Helmholtzcentre for Heavy Ion Research GmbH, D-64291 Darmstadt, Germany
14 Guangxi Normal University, Guilin 541004, People’s Republic of China
15 Guangxi University, Nanning 530004, People’s Republic of China
16 Hangzhou Normal University, Hangzhou 310036, People’s Republic of China
17 Hebei University, Baoding 071002, People’s Republic of China
18 Helmholtz Institute Mainz, Staudinger Weg 18, D-55099 Mainz, Germany
19 Henan Normal University, Xinxiang 453007, People’s Republic of China
20 Henan University, Kaifeng 475004, People’s Republic of China
21 Henan University of Science and Technology, Luoyang 471003, People’s Republic of China
22 Henan University of Technology, Zhengzhou 450001, People’s Republic of China
23 Huangshan College, Huangshan 245000, People’s Republic of China
24 Hunan Normal University, Changsha 410081, People’s Republic of China
25 Hunan University, Changsha 410082, People’s Republic of China
26 Indian Institute of Technology Madras, Chennai 600036, India
27 Indiana University, Bloomington, Indiana 47405, USA
28 INFN Laboratori Nazionali di Frascati , (A)INFN Laboratori Nazionali di Frascati, I-00044, Frascati, Italy; (B)INFN Sezione di Perugia, I-06100, Perugia, Italy; (C)University of Perugia, I-06100, Perugia, Italy
29 INFN Sezione di Ferrara, (A)INFN Sezione di Ferrara, I-44122, Ferrara, Italy; (B)University of Ferrara, I-44122, Ferrara, Italy
30 Inner Mongolia University, Hohhot 010021, People’s Republic of China
31 Institute of Modern Physics, Lanzhou 730000, People’s Republic of China
32 Institute of Physics and Technology, Peace Avenue 54B, Ulaanbaatar 13330, Mongolia
33 Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica 1000000, Chile
34 Jilin University, Changchun 130012, People’s Republic of China
35 Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
36 Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia
37 Justus-Liebig-Universitaet Giessen, II. Physikalisches Institut, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany
38 Lanzhou University, Lanzhou 730000, People’s Republic of China
39 Liaoning Normal University, Dalian 116029, People’s Republic of China
40 Liaoning University, Shenyang 110036, People’s Republic of China
41 Nanjing Normal University, Nanjing 210023, People’s Republic of China
42 Nanjing University, Nanjing 210093, People’s Republic of China
43 Nankai University, Tianjin 300071, People’s Republic of China
44 National Centre for Nuclear Research, Warsaw 02-093, Poland
45 North China Electric Power University, Beijing 102206, People’s Republic of China
46 Peking University, Beijing 100871, People’s Republic of China
47 Qufu Normal University, Qufu 273165, People’s Republic of China
48 Renmin University of China, Beijing 100872, People’s Republic of China
49 Shandong Normal University, Jinan 250014, People’s Republic of China
50 Shandong University, Jinan 250100, People’s Republic of China
51 Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
52 Shanxi Normal University, Linfen 041004, People’s Republic of China
53 Shanxi University, Taiyuan 030006, People’s Republic of China
54 Sichuan University, Chengdu 610064, People’s Republic of China
55 Soochow University, Suzhou 215006, People’s Republic of China
56 South China Normal University, Guangzhou 510006, People’s Republic of China
57 Southeast University, Nanjing 211100, People’s Republic of China
58 State Key Laboratory of Particle Detection and Electronics, Beijing 100049, Hefei 230026, People’s Republic of China
59 Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
60 Suranaree University of Technology, University Avenue 111, Nakhon Ratchasima 30000, Thailand
61 Tsinghua University, Beijing 100084, People’s Republic of China
62 Turkish Accelerator Center Particle Factory Group, (A)Istinye University, 34010, Istanbul, Turkey; (B)Near East University, Nicosia, North Cyprus, 99138, Mersin 10, Turkey
63 University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
64 University of Groningen, NL-9747 AA Groningen, The Netherlands
65 University of Hawaii, Honolulu, Hawaii 96822, USA
66 University of Jinan, Jinan 250022, People’s Republic of China
67 University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
68 University of Muenster, Wilhelm-Klemm-Strasse 9, 48149 Muenster, Germany
69 University of Oxford, Keble Road, Oxford OX13RH, United Kingdom
70 University of Science and Technology Liaoning, Anshan 114051, People’s Republic of China
71 University of Science and Technology of China, Hefei 230026, People’s Republic of China
72 University of South China, Hengyang 421001, People’s Republic of China
73 University of the Punjab, Lahore-54590, Pakistan
74 University of Turin and INFN, (A)University of Turin, I-10125, Turin, Italy; (B)University of Eastern Piedmont, I-15121, Alessandria, Italy; (C)INFN, I-10125, Turin, Italy
75 Uppsala University, Box 516, SE-75120 Uppsala, Sweden
76 Wuhan University, Wuhan 430072, People’s Republic of China
77 Yantai University, Yantai 264005, People’s Republic of China
78 Yunnan University, Kunming 650500, People’s Republic of China
79 Zhejiang University, Hangzhou 310027, People’s Republic of China
80 Zhengzhou University, Zhengzhou 450001, People’s Republic of China
a Deceased
b Also at the Moscow Institute of Physics and Technology, Moscow 141700, Russia
c Also at the Novosibirsk State University, Novosibirsk, 630090, Russia
d Also at the NRC ”Kurchatov Institute”, PNPI, 188300, Gatchina, Russia
e Also at Goethe University Frankfurt, 60323 Frankfurt am Main, Germany
f Also at Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education; Shanghai Key Laboratory for Particle Physics and Cosmology; Institute of Nuclear and Particle Physics, Shanghai 200240, People’s Republic of China
g Also at Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443, People’s Republic of China
h Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, People’s Republic of China
i Also at School of Physics and Electronics, Hunan University, Changsha 410082, China
j Also at Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China Normal University, Guangzhou 510006, China
k Also at MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, People’s Republic of China
l Also at Lanzhou Center for Theoretical Physics, Lanzhou University, Lanzhou 730000, People’s Republic of China
m Also at the Department of Mathematical Sciences, IBA, Karachi 75270, Pakistan
n Also at Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
o Also at Helmholtz Institute Mainz, Staudinger Weg 18, D-55099 Mainz, Germany
Abstract

By analyzing (27.12±0.14)×108(27.12\pm 0.14)\times 10^{8} ψ(3686)\psi(3686) events collected with the BESIII detector operating at the BEPCII collider, the decay processes χcJ3(K+K)\chi_{cJ}\to 3(K^{+}K^{-}) (J=0,1,2J=0,1,2) are observed for the first time with statistical significances of 8.2σ\sigma, 8.1σ\sigma, and 12.4σ\sigma, respectively. The product branching fractions of ψ(3686)γχcJ\psi(3686)\to\gamma\chi_{cJ}, χcJ3(K+K)\chi_{cJ}\to 3(K^{+}K^{-}) are presented and the branching fractions of χcJ3(K+K)\chi_{cJ}\to 3(K^{+}K^{-}) decays are determined to be χc03(K+K)\mathcal{B}_{\chi_{c0}\to 3(K^{+}K^{-})}=(10.7±1.8±1.1)(10.7\pm 1.8\pm 1.1)×106\times 10^{-6}, χc13(K+K)\mathcal{B}_{\chi_{c1}\to 3(K^{+}K^{-})}=(4.2±0.9±0.5)(4.2\pm 0.9\pm 0.5)×106\times 10^{-6}, and χc23(K+K)\mathcal{B}_{\chi_{c2}\to 3(K^{+}K^{-})}=(7.2±1.1±0.8)(7.2\pm 1.1\pm 0.8)×106\times 10^{-6}, where the first uncertainties are statistical and the second are systematic.

I Introduction

Experimental studies of charmonium states and their decay properties are important to test quantum Chromodynamics (QCD) models and QCD based calculations. In the quark model, the χcJ(J=0,1,2)\chi_{cJ}(J=0,1,2) mesons are identified as PJ3{}^{3}P_{J} charmonium states. Unlike the vector charmonium states J/ψJ/\psi and ψ(3686)\psi(3686), however, the χcJ\chi_{cJ} mesons can not be directly produced in e+ee^{+}e^{-} collisions due to parity conservation, and our knowledge about their decays is relatively deficient. These PP-wave charmonium mesons are produced abundantly via radiative ψ(3686)\psi(3686) decays, with branching fractions of about 9%, thereby offering a good opportunity to study various χcJ\chi_{cJ} decays. Currently, theoretical studies indicate that the color octet mechanism (COM) com may substantially influence the decays of the PP-wave charmonium states. However, some discrepancies between these theoretical calculations and experimental measurements have been reported in Refs. ref::theroy1 ; ref::theroy2 ; ref::theroy3 ; ref::pdg2022 . Therefore, intensive measurements of exclusive χcJ\chi_{cJ} hadronic decays are highly desirable to understand the underlying χcJ\chi_{cJ} decay dynamics.

In this paper we present the first observation and branching fraction measurements of χcJ3(K+K)\chi_{cJ}\to 3(K^{+}K^{-}) by analyzing (27.12±0.14)×108(27.12\pm 0.14)\times 10^{8} ψ(3686)\psi(3686) events ref::psip-num-inc collected with the BESIII detector ref::BesIII .

II BESIII DETECTOR AND MONTE CARLO SIMULATION

The BESIII detector ref::BesIII records symmetric e+ee^{+}e^{-} collisions provided by the BEPCII storage ring ref::collider in the center-of-mass energy range from 2.0 to 4.95 GeV, with a peak luminosity of 1×1033cm2s11\times 10^{33}\;\text{cm}^{-2}\text{s}^{-1} achieved at s=3.77GeV\sqrt{s}=3.77\;\text{GeV}. The cylindrical core of the BESIII detector covers 93% of the full solid angle and consists of a helium-based multilayer drift chamber (MDC), a plastic scintillator time-of-flight system (TOF), and a CsI(Tl) electromagnetic calorimeter (EMC), which are all enclosed in a superconducting solenoidal magnet providing a 1.0 T magnetic field. The solenoid is supported by an octagonal flux-return yoke with resistive plate counter muon identification modules interleaved with steel. The charged-particle momentum resolution at 1GeV/c1~{}{\rm GeV}/c is 0.5%0.5\%, and the dE/dx{\rm d}E/{\rm d}x resolution is 6%6\% for electrons from Bhabha scattering. The EMC measures photon energies with a resolution of 2.5%2.5\% (5%5\%) at 11 GeV in the barrel (end cap) region. The time resolution in the TOF barrel region is 68 ps, while that in the end cap region was 110 ps. The end-cap TOF system was upgraded in 2015 using multi-gap resistive plate chamber technology, providing a time resolution of 60 ps Tof1 ; Tof2 ; Tof3 .

Simulated data samples produced with a geant4-based Geant4 Monte Carlo (MC) package, which includes the geometric description of the BESIII detector and the detector response, are used to determine detection efficiencies and to estimate backgrounds. The simulation models the beam energy spread and initial state radiation (ISR) in the e+ee^{+}e^{-} annihilations with the generator kkmc Jadach01 . The inclusive MC sample includes the production of the ψ(3686)\psi(3686) resonance, the ISR production of the J/ψJ/\psi, and the continuum processes incorporated in kkmc Jadach01 . All particle decays are modelled with evtgen Lange01 using branching fractions either taken from the Particle Data Group (PDG) ref::pdg2022 , when available, or otherwise estimated with lundcharm Lundcharm00 . Final state radiation (FSR) from charged final state particles is incorporated using the photos package PHOTOS . An inclusive MC sample containing 2.7×1092.7\times 10^{9} generic ψ(3686)\psi(3686) decays is used to study background. To account for the effect of intermediate resonance structure on the efficiency, each of these decays is modeled by the corresponding mixed signal MC samples, in which the dominant decay modes containing resonances of ϕ\phi are mixed with the phase-space (PHSP) signal MC samples. The mixing ratios are determined by examining the corresponding invariant mass as discussed in Section VI.

III EVENT SELECTION

We reconstruct the events containing the charmonium transitions ψ(3686)γχcJ\psi(3686)\to\gamma\chi_{cJ} followed by the hadronic decays χcJ3(K+K)\chi_{cJ}\to 3(K^{+}K^{-}). The signal events are required to have at least six charged tracks and at least one photon candidate.

All charged tracks detected in the MDC are required to be within a polar angle (θ\theta) range of |cosθ|<0.93|\rm{cos\theta}|<0.93, where θ\theta is defined with respect to the zz-axis, which is the symmetry axis of the MDC. The distance of closest approach to the interaction point (IP) must be less than 10 cm along the zz-axis, |Vz||V_{z}|, and less than 1 cm in the transverse plane, |Vxy||V_{xy}|. Particle identification (PID) for charged tracks combines measurements of the energy deposited in the MDC (dEE/dxx) and the flight time in the TOF to form likelihoods (h)(h=p,K,π)\mathcal{L}(h)~{}(h=p,K,\pi) for each hadron hh hypothesis. Tracks are identified as protons when the proton hypothesis has the greatest likelihood ((p)>(K)\mathcal{L}(p)>\mathcal{L}(K) and (p)>(π)\mathcal{L}(p)>\mathcal{L}(\pi)), while charged kaons and pions are identified by comparing the likelihoods for the kaon and pion hypotheses, (K)>(π)\mathcal{L}(K)>\mathcal{L}(\pi) and (π)>(K)\mathcal{L}(\pi)>\mathcal{L}(K), respectively. Those with likelihood for kaon hypothesis greater than that for pion hypothesis are assigned to be kaon candidates.

Photon candidates are identified using showers in the EMC. The deposited energy of each shower must be more than 25 MeV in the barrel region (|cosθ|<0.80|\cos\theta|<0.80) and more than 50 MeV in the end cap region (0.86<|cosθ|<0.920.86<|\cos\theta|<0.92). To exclude showers that originate from charged tracks, the angle subtended by the EMC shower and the position of the closest charged track at the EMC must be greater than 10 degrees as measured from the IP. To suppress electronic noise and showers unrelated to the event, the difference between the EMC time and the event start time is required to be within [0, 700] ns.

A four-momentum conservation constraint (4C) kinematic fit is applied to the events. In each event, if more than one combination survives, the one with the smallest χ4C2\chi_{\rm 4C}^{2} value of the 4C fit is retained. Figure 1 shows the χ4C2\chi^{2}_{\rm 4C} distributions of the accepted candidate events for data and MC samples.

Refer to caption
Figure 1: Distributions of χ4C2\chi^{2}_{\rm 4C} of the accepted candidate events. The dots with error bars are data, the red solid line is the signal MC sample that has been normalized to the data size, and the blue hatched histogram depicts the inclusive MC sample, which has also been normalized to the data size.

The requirement on χ4C2\chi^{2}_{\rm 4C} is optimized with the Figure of Merit (FOM)

FOM=SS+B.\mathrm{FOM}=\frac{\mathit{S}}{\sqrt{\mathit{S}+\mathit{B}}}. (1)

Here SS denotes the number of events from the signal MC sample, normalized according to the pre-measured branching fractions; BB denotes the number of background events from the inclusive MC sample, normalized to the data size. After optimization, we choose χ4C2<50\chi^{2}_{\rm 4C}<50 as the nominal requirement.

IV BACKGROUND Analysis

The continuum data collected at s=\sqrt{s}= 3.650 and 3.682 GeV, corresponding to an integrated luminosity of 800 pb-1 lum , are used to estimate the QED background. No event satisfies the same selection criteria applied to ψ(3686)\psi(3686) data. Furthermore, the inclusive MC sample is used to study all potential backgrounds from ψ(3686)\psi(3686) decays, and no event is observed in the χcJ\chi_{cJ} signal regions. Consequently, all peaking background components are treated as negligible in this analysis.

V Data analysis

The distribution of the invariant mass of the 3(K+K)3(K^{+}K^{-}) combination, M3(K+K)M_{3(K^{+}K^{-})}, of the accepted candidate events is shown in Fig. 2. Clear χc0\chi_{c0}, χc1\chi_{c1} and χc2\chi_{c2} signals are observed. The signal yields of χcJ3(K+K)\chi_{cJ}\to 3(K^{+}K^{-}) are obtained from an unbinned maximum likelihood fit to this distribution.

In the fit, the signal shape of each χcJ\chi_{cJ} is described by a Breit-Wigner functions convolved with a Gaussian. The widths and masses of Breit-Wigner functions are fixed to PDG averages ref::pdg2022 for χc0,1,2\chi_{c0,1,2}, respectively. The parameters of the Gaussian are floated. From this fit, the signal yields of χc0\chi_{c0}, χc1\chi_{c1}, and χc2\chi_{c2}, NχcJobsN_{\chi_{cJ}}^{\rm obs}, are obtained to be 37.4±6.337.4\pm 6.3, 24.6±5.224.6\pm 5.2, and 46.3±7.046.3\pm 7.0, respectively. The statistical significances are estimated to be 9.5σ\sigma, 9.0σ9.0\sigma, and 13.7σ13.7\sigma for χc0\chi_{c0}, χc1\chi_{c1}, and χc2\chi_{c2} individually, which are determined by comparing the fit likelihood values separately with and without each χcJ\chi_{cJ} signal component.

Refer to caption
Figure 2: Fit to the M3(K+K)M_{3(K^{+}K^{-})} distribution of the accepted candidate events. The points with error bars are data, the blue curve is the overall fit, and the red dashed line is the fitted background.

VI Detection efficiency

The efficiencies of detecting ψ(3686)γχcJ\psi(3686)\to\gamma\chi_{cJ} with χcJ3(K+K)\chi_{cJ}\to 3(K^{+}K^{-}) are determined with the mixed signal MC sample with fractions of the components of χcJ2ϕ(K+K)\chi_{cJ}\to 2\phi(K^{+}K^{-}), χcJϕ2(K+K)\chi_{cJ}\to\phi 2(K^{+}K^{-}), and χcJ3(K+K)\chi_{cJ}\to 3(K^{+}K^{-}) derived from a three-dimensional fit on the three K+KK^{+}K^{-} invariant mass spectra of the data events. Table 1 shows the fractions of the sub-resonant decays. The variations of these fractions are taken as systematic uncertainties. The obtained detection efficiencies for χcJ3(K+K)\chi_{cJ}\to 3(K^{+}K^{-}) are (13.3±0.1)×103(13.3\pm 0.1)\times 10^{-3}, (22.3±0.1)×103(22.3\pm 0.1)\times 10^{-3}, and (25.0±0.2)×103(25.0\pm 0.2)\times 10^{-3}, respectively, including detector acceptance as well as reconstruction and selection efficiencies.

Table 1: The fractions of the sub-resonant decays for the mixed signal MC events.
2ϕK+K2\phi K^{+}K^{-} ϕ2(K+K)\phi 2(K^{+}K^{-}) 3(K+K)3(K^{+}K^{-})
χc0\chi_{c0} 0.4800.151+0.1670.480^{+0.167}_{-0.151} 0.0380.038+0.3060.038^{+0.306}_{-0.038} 0.4810.158+0.1390.481^{+0.139}_{-0.158}
χc1\chi_{c1} 1.0000.005+0.1311.000^{+0.131}_{-0.005} 0.0000.000+0.1250.000^{+0.125}_{-0.000} 0.0000.000+0.0410.000^{+0.041}_{-0.000}
χc2\chi_{c2} 0.7830.180+0.2430.783^{+0.243}_{-0.180} 0.2170.180+0.1790.217^{+0.179}_{-0.180} 0.0000.000+0.2220.000^{+0.222}_{-0.000}

VII BRANCHING FRACTION

For each decay ψ(3686)γχcJ\psi(3686)\to\gamma\chi_{cJ}, χcJ3(K+K)\chi_{cJ}\to 3(K^{+}K^{-}), about 10.8×10510.8\times 10^{5} signal MC events are generated using a 1+λcos2θ1+\lambda\cos^{2}\theta distribution, where θ\theta is the angle between the radiative photon and beam directions, and λ=1,1/3,1/13\lambda=1,-1/3,1/13 for J=0,1,2J=0,1,2 in accordance with the expectations for electric dipole transitions ref::generate . Intrinsic width and mass values in PDG ref::pdg2022 are used to simulate the χcJ\chi_{cJ} states.

The product of branching fractions of ψ(3686)γχcJ\psi(3686)\to\gamma\chi_{cJ} with χcJ3(K+K)\chi_{cJ}\to 3(K^{+}K^{-}) is calculated as

χcJ3(K+K)ψ(3686)γχcJ=NχcJobsNψ(3686)ϵ,\mathcal{B}_{\chi_{cJ}\to 3(K^{+}K^{-})}\cdot{\mathcal{B}}_{\psi(3686)\to\gamma\chi_{cJ}}=\frac{N^{\rm obs}_{\chi_{cJ}}}{N_{\psi(3686)}\cdot\epsilon}, (2)

where ϵ\epsilon is the detection efficiency and Nψ(3686)N_{\psi(3686)} is the total number of ψ(3686)\psi(3686) events in data. Combining the branching fractions of ψ(3686)γχcJ\psi(3686)\to\gamma\chi_{cJ} decays quoted from the PDG ref::pdg2022 , the branching fractions of χcJ3(K+K)\chi_{cJ}\to 3(K^{+}K^{-}) are determined. The obtained results are summarized in Table 2.

Table 2: Signal yields in data, detection efficiencies, and branching fractions (ψ(3686)γχcJ)(χcJ3(K+K))\mathcal{B}({\psi(3686)\to\gamma\chi_{cJ}})\cdot\mathcal{B}({\chi_{cJ}\to 3(K^{+}K^{-})}), and (χcJ3(K+K))\mathcal{B}({\chi_{cJ}\to 3(K^{+}K^{-})}). Except for ψ(3686)γχcJ\mathcal{B}_{\psi(3686)\to\gamma\chi_{cJ}}, the uncertainties are statistical only.
χc0\chi_{c0} χc1\chi_{c1} χc2\chi_{c2}
NobsN_{\rm obs} 37.7 ±\pm 6.2 24.9 ±\pm 5.1 46.4 ±\pm 7.0
ϵ(×103)\epsilon~{}(\times 10^{-3}) 13.3 ±\pm 0.1 22.3 ±\pm 0.1 25.0 ±\pm 0.2
ψ(3686)γχcJχcJ3(K+K)(×107)\mathcal{B}_{\psi(3686)\to\gamma\chi_{cJ}}\cdot\mathcal{B}_{\chi_{cJ}\to 3(K^{+}K^{-})}~{}(\times 10^{-7}) 10.5 ±\pm 1.8 4.1 ±\pm 0.9 6.8 ±\pm 1.1
χcJ3(K+K)(×106)\mathcal{B}_{\chi_{cJ}\to 3(K^{+}K^{-})}~{}(\times 10^{-6}) 10.7 ±\pm 1.8 4.2 ±\pm 0.9 7.2 ±\pm 1.1

VIII SYSTEMATIC UNCERTAINTY

The systematic uncertainties in the branching fraction measurements originate from several sources, as summarized in Table 3. They are estimated and discussed below.

Table 3: Relative systematic uncertainties in the branching fraction measurements (%). The last item is the systematic uncertainty of the introduced reference.
Source χc0\chi_{c0} χc1\chi_{c1} χc2\chi_{c2}
Nψ(3686)N_{\psi(3686)} 0.5 0.5 0.5
K±K^{\pm} tracking 6.0 6.0 6.0
K±K^{\pm} PID 6.0 6.0 6.0
γ\gamma selection 1.0 1.0 1.0
Fractions of different sub-processes 3.3 0.8 2.4
M3(K+K)M_{3(K^{+}K^{-})} fit 3.3 7.0 5.2
4C kinematic fit 3.0 3.0 3.0
MC statistics 1.6 1.2 1.1
Sum 10.3 11.5 10.8
(ψ(3686)γχcJ)\mathcal{B}(\psi(3686)\to\gamma\chi_{cJ}) 2.0 2.4 2.0
Total 10.5 11.7 11.0

The total number of ψ(3686)\psi(3686) events in data has been measured to be Nψ(3686)=(27.12±0.14)×108N_{\psi(3686)}=(27.12\pm 0.14)\times 10^{8} with the inclusive hadronic data sample, as described in Ref. ref::psip-num-inc . The uncertainty of Nψ(3686)N_{\rm\psi(3686)} is 0.5%.

The systematic uncertainty of the K±K^{\pm} tracking or PID efficiencies is assigned as 1.0% per K±K^{\pm}ref::tracking , which is estimated with the control samples of J/ψKK¯J/\psi\to K^{*}\bar{K}.

The systematic uncertainty in the photon detection is assumed to be 1.0% per photon with the control sample J/ψπ+ππ0J/\psi\to\pi^{+}\pi^{-}\pi^{0} ref::gamma-recon .

To estimate the systematic uncertainties of the MC model for the χcJ3(K+K)\chi_{cJ}\to 3(K^{+}K^{-}) decays, we compare our nominal efficiencies with those determined from the signal MC events after varying ±1\pm 1 standard deviation of the relative fractions of the sub-resonant decays, including χcJ2ϕK+K\chi_{cJ}\to 2\phi K^{+}K^{-}, χcJϕ2(K+K)\chi_{cJ}\to\phi 2(K^{+}K^{-}), and χcJ3(K+K)\chi_{cJ}\to 3(K^{+}K^{-}). The relative changes of efficiencies, which are 3.3%, 0.8%, and 2.4% for χc0\chi_{c0}, χc1\chi_{c1}, and χc2\chi_{c2} decays respectively, are assigned as the corresponding systematic uncertainties.

The systematic uncertainty of the fit to the M3(K+K)M_{3(K^{+}K^{-})} spectrum includes three parts:

  • The first is the background shape estimated by allowing a slope in the background. The changes of the fitted signal yields, 1.4%\% for χc0\chi_{c0}, 6.5%\% for χc1\chi_{c1}, 4.4%\% for χc2\chi_{c2}, are taken as the corresponding systematic uncertainties.

  • The second is from the signal shape, which is estimated by varying the width of the χcJ\chi_{cJ} state by ±1\pm 1 standard deviation. The change of the fitted signal yield of each decay is negligible.

  • The third is due to the fit range estimated with alternative ranges of [3.225,3.635][3.225,3.635], [3.225,3.615][3.225,3.615], [3.215,3.625][3.215,3.625], [3.235,3.625][3.235,3.625], [3.225,3.625][3.225,3.625] GeV/c2c^{2}. The maximum changes of the fitted signal yields, 3.0%\% for χc0\chi_{c0}, 2.8%\% for χc1\chi_{c1}, and 2.8%\% for χc2\chi_{c2} are taken as the corresponding systematic uncertainties.

The systematic uncertainty resulting from the M3(K+K)M_{3(K^{+}K^{-})} fit is determined be 3.3%\% for χc0\chi_{c0}, 7.0%\% for χc1\chi_{c1}, and 5.2%\% for χc2\chi_{c2}, when combining these three uncertainties in quadrature.

The systematic uncertainty of the 4C kinematic fit comes from the inconsistency between the data and MC simulation of the track-helix parameters. We make helix parameter corrections to take the difference between the efficiencies with and without the corrections as the systematic uncertainty. The systematic uncertainties of the 4C kinematic fits are obtained to be 3% for all decays χcJ(K+K)\chi_{cJ}\to(K^{+}K^{-}) (J=0,1,2J=0,1,2).

The systematic uncertainties due to the statistics of the MC samples are 1.6%, 1.2%, and 1.1% for χc0\chi_{c0}, χc1\chi_{c1}, and χc2\chi_{c2} decays, respectively.

The systematic uncertainties from the branching fractions of ψ(3686)γχcJ\psi(3686)\to\gamma\chi_{cJ} decays quoted from the PDG ref::pdg2022 are 2.0%, 2.4%, and 2.0% for χc0\chi_{c0}, χc1\chi_{c1}, and χc2\chi_{c2} decays, respectively.

We assume that all systematic uncertainties are independent and combine them in quadrature to obtain the total systematic uncertainty for each decay.

IX Summary

By analyzing (27.12±0.14)×108(27.12\pm 0.14)\times 10^{8} ψ(3686)\psi(3686) events with the BESIII detector, the product branching fractions of ψ(3686)γχcJ\psi(3686)\to\gamma\chi_{cJ}, χcJ3(K+K)\chi_{cJ}\to 3(K^{+}K^{-}) are determined to be ψ(3686)γχc0χc03(K+K)=\mathcal{B}_{\psi(3686)\to\gamma\chi_{c0}}\cdot\mathcal{B}_{\chi_{c0}\to 3(K^{+}K^{-})}=(10.5±1.8)(10.5\pm 1.8)×105\times 10^{-5}, ψ(3686)γχc1χc13(K+K)=\mathcal{B}_{\psi(3686)\to\gamma\chi_{c1}}\cdot\mathcal{B}_{\chi_{c1}\to 3(K^{+}K^{-})}=(4.1±0.9)(4.1\pm 0.9)×105\times 10^{-5}, and ψ(3686)γχc2χc23(K+K)=\mathcal{B}_{\psi(3686)\to\gamma\chi_{c2}}\cdot\mathcal{B}_{\chi_{c2}\to 3(K^{+}K^{-})}=(6.8±1.1)(6.8\pm 1.1)×105\times 10^{-5}, where the uncertainties are statistical. The decays of χcJ3(K+K)\chi_{cJ}\to 3(K^{+}K^{-}) are observed for the first time with statistical significances of 8.2σ\sigma, 8.1σ\sigma, and 12.4σ\sigma, respectively. We measure the branching fractions of χcJ3(K+K)\chi_{cJ}\to 3(K^{+}K^{-}) to be χc03(K+K)=\mathcal{B}_{\chi_{c0}\to 3(K^{+}K^{-})}=(10.7±1.8±1.1)(10.7\pm 1.8\pm 1.1)×106\times 10^{-6}, χc13(K+K)\mathcal{B}_{\chi_{c1}\to 3(K^{+}K^{-})}=(4.2±0.9±0.5)(4.2\pm 0.9\pm 0.5)×106\times 10^{-6}, χc23(K+K)\mathcal{B}_{\chi_{c2}\to 3(K^{+}K^{-})}=(7.2±1.1±0.8)(7.2\pm 1.1\pm 0.8)×106\times 10^{-6}, where the first uncertainties are statistical and the second systematic. These results offer additional data for understanding of the decay mechanisms of χcJ\chi_{cJ} states.

X ACKNOWLEDGMENTS

The BESIII Collaboration thanks the staff of BEPCII and the IHEP computing center for their strong support. This work is supported in part by National Key R&D Program of China under Contracts Nos. 2020YFA0406300, 2020YFA0406400; National Natural Science Foundation of China (NSFC) under Contracts Nos. 11635010, 11735014, 11835012, 11935015, 11935016, 11935018, 11961141012, 12025502, 12035009, 12035013, 12061131003, 12192260, 12192261, 12192262, 12192263, 12192264, 12192265, 12221005, 12225509, 12235017; the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; the CAS Center for Excellence in Particle Physics (CCEPP); Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contract No. U1832207; CAS Key Research Program of Frontier Sciences under Contracts Nos. QYZDJ-SSW-SLH003, QYZDJ-SSW-SLH040; 100 Talents Program of CAS; The Institute of Nuclear and Particle Physics (INPAC) and Shanghai Key Laboratory for Particle Physics and Cosmology; European Union’s Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement under Contract No. 894790; German Research Foundation DFG under Contracts Nos. 455635585, Collaborative Research Center CRC 1044, FOR5327, GRK 2149; Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Development of Turkey under Contract No. DPT2006K-120470; National Research Foundation of Korea under Contract No. NRF-2022R1A2C1092335; National Science and Technology fund of Mongolia; National Science Research and Innovation Fund (NSRF) via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation of Thailand under Contract No. B16F640076; Polish National Science Centre under Contract No. 2019/35/O/ST2/02907; The Swedish Research Council; U. S. Department of Energy under Contract No. DE-FG02-05ER41374.

References