This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

{fmffile}

diagram

Oblique corrections from leptoquarks

Francisco Albergaria  and Luís Lavoura
Universidade de Lisboa, Instituto Superior Técnico, CFTP,
Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
E-mail: [email protected]E-mail: [email protected]
Abstract

We present general formulas for the oblique-correction parameters SS, TT, UU, VV, WW, and XX in a model of New Physics having arbitrary numbers of scalar leptoquarks of the five permissible types. We allow for a general mixing among the scalars of the various electric charges, viz. 4/3-4/3, 1/3-1/3, 2/32/3, and 5/35/3. We then extend the formulas to the case of a New Physics model with additional scalars in any representations of the gauge group SU(2)×U(1)SU(2)\times U(1), mixing arbitrarily among themselves.

1 Introduction and notation

Leptoquarks:

In this paper we consider a model of New Physics (NP), i.e. an extension of the Standard Model (SM), that has arbitrary numbers of scalars placed in triplets of colour-SU(3)SU(3) which are

SU(2)SU(2) singlets with weak hypercharge555We use the normalization Y=QT3Y=Q-T_{3}, where YY is the weak hypercharge, QQ is the electric charge, and T3T_{3} is the third component of weak isospin. 1/3-1/3

σ0,2;\sigma_{0,-2}; (1)

SU(2)SU(2) singlets with weak hypercharge 4/3-4/3

σ0,8;\sigma_{0,-8}; (2)

SU(2)SU(2) doublets with weak hypercharge 7/67/6

(δ1,7δ1,7);\left(\begin{array}[]{c}\delta_{1,7}\\ \delta_{-1,7}\end{array}\right); (3)

SU(2)SU(2) doublets with weak hypercharge 1/61/6

(δ1,1δ1,1);\left(\begin{array}[]{c}\delta_{1,1}\\ \delta_{-1,1}\end{array}\right); (4)

SU(2)SU(2) triplets with weak hypercharge 1/3-1/3

(τ2,2τ0,2τ2,2).\left(\begin{array}[]{c}\tau_{2,-2}\\ \tau_{0,-2}\\ \tau_{-2,-2}\end{array}\right). (5)

In Eqs. (1)–(5),

the letter σ\sigma denotes singlets of gauge SU(2)SU(2), the letter δ\delta stands for doublets, and the letter τ\tau means triplets;

the first number in the subscript is two times the third component of weak isospin T3T_{3};

the second number in the subscript is six times the weak hypercharge YY.

In the notation of the recent Ref. [1], which refers to the original Ref. [2],

the scalars in Eq. (1) are leptoquarks of type Φ1\Phi_{1}, viz. scalars placed in the representation (𝟑,𝟏,1/3)\left(\mathbf{3},\mathbf{1},-1/3\right) of the gauge group SU(3)×SU(2)×U(1)SU(3)\times SU(2)\times U(1);

the scalars in Eq. (2) are leptoquarks of type Φ1~\Phi_{\tilde{1}}, viz. scalars placed in the representation (𝟑,𝟏,4/3)\left(\mathbf{3},\mathbf{1},-4/3\right) of SU(3)×SU(2)×U(1)SU(3)\times SU(2)\times U(1);

the scalars in Eq. (3) are leptoquarks of type Φ2\Phi_{2}, viz. scalars placed in the representation (𝟑,𝟐,7/6)\left(\mathbf{3},\mathbf{2},7/6\right) of the gauge group;

the scalars in Eq. (4) are leptoquarks of type Φ2~\Phi_{\tilde{2}}, viz. scalars placed in the representation (𝟑,𝟐,1/6)\left(\mathbf{3},\mathbf{2},1/6\right);

the scalars in Eq. (5) are leptoquarks of type Φ3\Phi_{3}, viz. scalars placed in the representation (𝟑,𝟑,1/3)\left(\mathbf{3},\mathbf{3},-1/3\right) of SU(3)×SU(2)×U(1)SU(3)\times SU(2)\times U(1).

Leptoquarks666In this paper we focus exclusively on scalar leptoquarks. Various authors use the term ‘leptoquarks’ to mean some vector, i.e. spin-one, fields. are scalars that are in multiplets of SU(3)×SU(2)×U(1)SU(3)\times SU(2)\times U(1) such that they have (renormalizable) Yukawa couplings to one lepton multiplet and one quark multiplet of the SM. Leptoquarks have recently been much used in models that seek to explain one or more unexpected experimental results like those on the muon magnetic moment, the W±W^{\pm} mass, the decays bcτνb\to c\tau\nu, and the decays bs+b\to s\ell^{+}\ell^{-}; see for instance Refs. [3, 4, 5, 6, 7, 8, 9, 10].

Oblique parameters:

The oblique parameters are defined as [11]777We use the sign conventions in Ref. [12]. Those conventions differ from the ones used in many other papers, viz. in Ref. [11]. For a resource paper on sign conventions, see Ref. [13]; using the notation of that paper, our convention has ηe=ηZ=1\eta_{e}=\eta_{Z}=1 and η=1\eta=-1.,888The definitions (6) build on, and generalize, previous work in Refs. [14, 15, 16]. They are appropriate for the case where the functions AVV(q2)A_{VV^{\prime}}\left(q^{2}\right) are not linear in the range 0<q2<mZ20<q^{2}<m_{Z}^{2}. This means that, using those definitions, NP does not need to be much above the Fermi scale.

S\displaystyle S =\displaystyle= 16πcW2g2[AZZ(mZ2)AZZ(0)mZ2Aγγ(q2)q2|q2=0\displaystyle\frac{16\pi c_{W}^{2}}{g^{2}}\left[\frac{A_{ZZ}\left(m_{Z}^{2}\right)-A_{ZZ}\left(0\right)}{m_{Z}^{2}}-\left.\frac{\partial A_{\gamma\gamma}\left(q^{2}\right)}{\partial q^{2}}\right|_{q^{2}=0}\right. (6a)
+cW2sW2cWsWAγZ(q2)q2|q2=0],\displaystyle\left.+\frac{c_{W}^{2}-s_{W}^{2}}{c_{W}s_{W}}\,\left.\frac{\partial A_{\gamma Z}\left(q^{2}\right)}{\partial q^{2}}\right|_{q^{2}=0}\right],
T\displaystyle T =\displaystyle= 4πg2sW2[AWW(0)mW2AZZ(0)mZ2],\displaystyle\frac{4\pi}{g^{2}s_{W}^{2}}\left[\frac{A_{WW}\left(0\right)}{m_{W}^{2}}-\frac{A_{ZZ}\left(0\right)}{m_{Z}^{2}}\right], (6b)
U\displaystyle U =\displaystyle= 16πg2[AWW(mW2)AWW(0)mW2cW2AZZ(mZ2)AZZ(0)mZ2\displaystyle\frac{16\pi}{g^{2}}\left[\frac{A_{WW}\left(m_{W}^{2}\right)-A_{WW}\left(0\right)}{m_{W}^{2}}-c_{W}^{2}\,\frac{A_{ZZ}\left(m_{Z}^{2}\right)-A_{ZZ}\left(0\right)}{m_{Z}^{2}}\right. (6c)
sW2Aγγ(q2)q2|q2=0+2cWsWAγZ(q2)q2|q2=0],\displaystyle\left.-s_{W}^{2}\left.\frac{\partial A_{\gamma\gamma}\left(q^{2}\right)}{\partial q^{2}}\right|_{q^{2}=0}+2c_{W}s_{W}\left.\frac{\partial A_{\gamma Z}\left(q^{2}\right)}{\partial q^{2}}\right|_{q^{2}=0}\right],
V\displaystyle V =\displaystyle= 4πg2sW2[AZZ(q2)q2|q2=mZ2AZZ(mZ2)AZZ(0)mZ2],\displaystyle\frac{4\pi}{g^{2}s_{W}^{2}}\left[\left.\frac{\partial A_{ZZ}\left(q^{2}\right)}{\partial q^{2}}\right|_{q^{2}=m_{Z}^{2}}-\frac{A_{ZZ}\left(m_{Z}^{2}\right)-A_{ZZ}\left(0\right)}{m_{Z}^{2}}\right], (6d)
W\displaystyle W =\displaystyle= 4πg2sW2[AWW(q2)q2|q2=mW2AWW(mW2)AWW(0)mW2],\displaystyle\frac{4\pi}{g^{2}s_{W}^{2}}\left[\left.\frac{\partial A_{WW}\left(q^{2}\right)}{\partial q^{2}}\right|_{q^{2}=m_{W}^{2}}-\frac{A_{WW}\left(m_{W}^{2}\right)-A_{WW}\left(0\right)}{m_{W}^{2}}\right], (6e)
X\displaystyle X =\displaystyle= 4πcWg2sW[AγZ(q2)q2|q2=0AγZ(mZ2)AγZ(0)mZ2],\displaystyle\frac{4\pi c_{W}}{g^{2}s_{W}}\left[\left.\frac{\partial A_{\gamma Z}\left(q^{2}\right)}{\partial q^{2}}\right|_{q^{2}=0}-\frac{A_{\gamma Z}\left(m_{Z}^{2}\right)-A_{\gamma Z}\left(0\right)}{m_{Z}^{2}}\right], (6f)

where gg is the SU(2)SU(2) gauge coupling constant and cWc_{W} and sWs_{W} are the cosine and the sine, respectively, of the Weinberg angle. The functions AVV(q2)A_{VV^{\prime}}\left(q^{2}\right) are the coefficients of the metric tensor gμνg^{\mu\nu} in the vacuum-polarization tensor

ΠVVμν(q2)=gμνAVV(q2)+qμqνBVV(q2)\Pi^{\mu\nu}_{VV^{\prime}}\left(q^{2}\right)=g^{\mu\nu}\,A_{VV^{\prime}}\left(q^{2}\right)+q^{\mu}q^{\nu}\,B_{VV^{\prime}}\left(q^{2}\right) (7)

between gauge bosons VμV_{\mu} and VνV^{\prime}_{\nu} carrying four-momentum qq. In AVV(q2)A_{VV^{\prime}}\left(q^{2}\right)

one only takes into account the dispersive part—one discards the absorptive part;

one subtracts the SM contribution from the full result.999In this paper we do not need to perform this subtraction, since we are dealing with NP scalars that have non-integer electric charges and, therefore, do not mix with the SM scalars.

Note that

S+U=16πg2[AWW(mW2)AWW(0)mW2Aγγ(q2)q2|q2=0+cWsWAγZ(q2)q2|q2=0]S+U=\frac{16\pi}{g^{2}}\left[\frac{A_{WW}\left(m_{W}^{2}\right)-A_{WW}\left(0\right)}{m_{W}^{2}}-\left.\frac{\partial A_{\gamma\gamma}\left(q^{2}\right)}{\partial q^{2}}\right|_{q^{2}=0}+\frac{c_{W}}{s_{W}}\left.\frac{\partial A_{\gamma Z}\left(q^{2}\right)}{\partial q^{2}}\right|_{q^{2}=0}\right] (8)

has a somewhat simpler expression than UU.

It is convenient to separate the parameters SS and UU in two parts:

S=S+S′′,U=U+U′′.S=S^{\prime}+S^{\prime\prime},\quad U=U^{\prime}+U^{\prime\prime}. (9)

The parameters SS^{\prime} and UU^{\prime} are identical to the original SS and UU, respectively, as they were defined in Ref. [14]:

S\displaystyle S^{\prime} =\displaystyle= 16πcW2g2[AZZ(q2)q2|q2=0Aγγ(q2)q2|q2=0+cW2sW2cWsWAγZ(q2)q2|q2=0],\displaystyle\frac{16\pi c_{W}^{2}}{g^{2}}\left[\left.\frac{\partial A_{ZZ}\left(q^{2}\right)}{\partial q^{2}}\right|_{q^{2}=0}-\left.\frac{\partial A_{\gamma\gamma}\left(q^{2}\right)}{\partial q^{2}}\right|_{q^{2}=0}+\frac{c_{W}^{2}-s_{W}^{2}}{c_{W}s_{W}}\left.\frac{\partial A_{\gamma Z}\left(q^{2}\right)}{\partial q^{2}}\right|_{q^{2}=0}\right],\hskip 19.91692pt (10a)
U\displaystyle U^{\prime} =\displaystyle= S+16πg2[AWW(q2)q2|q2=0Aγγ(q2)q2|q2=0+cWsWAγZ(q2)q2|q2=0].\displaystyle-S^{\prime}+\frac{16\pi}{g^{2}}\left[\left.\frac{\partial A_{WW}\left(q^{2}\right)}{\partial q^{2}}\right|_{q^{2}=0}-\left.\frac{\partial A_{\gamma\gamma}\left(q^{2}\right)}{\partial q^{2}}\right|_{q^{2}=0}+\frac{c_{W}}{s_{W}}\left.\frac{\partial A_{\gamma Z}\left(q^{2}\right)}{\partial q^{2}}\right|_{q^{2}=0}\right]. (10b)

Clearly then,

S′′\displaystyle S^{\prime\prime} =\displaystyle= 16πcW2g2[AZZ(mZ2)AZZ(0)mZ2AZZ(q2)q2|q2=0],\displaystyle\frac{16\pi c_{W}^{2}}{g^{2}}\left[\frac{A_{ZZ}\left(m_{Z}^{2}\right)-A_{ZZ}\left(0\right)}{m_{Z}^{2}}-\left.\frac{\partial A_{ZZ}\left(q^{2}\right)}{\partial q^{2}}\right|_{q^{2}=0}\right], (11a)
U′′\displaystyle U^{\prime\prime} =\displaystyle= S′′+16πg2[AWW(mW2)AWW(0)mW2AWW(q2)q2|q2=0].\displaystyle-S^{\prime\prime}+\frac{16\pi}{g^{2}}\left[\frac{A_{WW}\left(m_{W}^{2}\right)-A_{WW}\left(0\right)}{m_{W}^{2}}-\left.\frac{\partial A_{WW}\left(q^{2}\right)}{\partial q^{2}}\right|_{q^{2}=0}\right]. (11b)

Purpose of this paper:

In this paper we compute the oblique parameters for a NP model with arbitrary numbers of leptoquarks, mixing arbitrarily among themselves. Our work generalizes earlier partial results in Refs. [17, 18, 19, 20, 21, 22]. At the end of this paper we present a generalization wherein the oblique parameters are computed for any NP model solely with extra scalars, whatever the representations of SU(2)×U(1)SU(2)\times U(1) those new scalars are in—just assuming that no new scalar either develops a vacuum expectation value or mixes with the scalars of the SM.

Plan of the paper:

In the next section we write the Lagrangian for the gauge interactions of the scalars, carefully defining the mixing matrices that appear in that Lagrangian. Section 3 performs the computation of the relevant diagrams and explicitly gives various functions that appear in the formulas for the oblique parameters. Those formulas are then given in Section 4. Section 5 presents a few illustrative examples of application of our formulas to simple models with leptoquarks. Section 6 generalizes our work to scalars in any representations of SU(2)×U(1)SU(2)\times U(1). Section 7 summarizes our main results. In Appendices A and B we deal, respectively, with the counting of mixing parameters and with the parameterization of the mixing in models with leptoquarks. In Appendix C we explicitly demonstrate that SS^{\prime} and UU^{\prime} are finite as they should be.

2 Interactions

Numbers of scalars:

There are in our NP model nσ,2n_{\sigma,-2} multiplets of type (1), nσ,8n_{\sigma,-8} multiplets of type (2), nδ,7n_{\delta,7} multiplets of type (3), nδ,1n_{\delta,1} multiplets of type (4), and nτ,2n_{\tau,-2} multiplets of type (5). All these five numbers nσ,2n_{\sigma,-2}, nσ,8n_{\sigma,-8}, nδ,7n_{\delta,7}, nδ,1n_{\delta,1}, and nτ,2n_{\tau,-2} must be multiples of three, since all the scalars are in triplets of SU(3)SU(3); otherwise, those numbers are free.

Our model has fractionary-charge scalars that we call

hh-type scalars, viz. the ones that have electric charge Qh=5/3Q_{h}=5/3;

uu-type scalars, viz. the ones that have electric charge Qu=2/3Q_{u}=2/3;

dd-type scalars, viz. the ones that have electric charge Qd=1/3Q_{d}=-1/3;

ll-type scalars, viz. the ones that have electric charge Ql=4/3Q_{l}=-4/3.

The total numbers of hh-type scalars, uu-type scalars, dd-type scalars, and ll-type scalars are

nh\displaystyle n_{h} =\displaystyle= nδ,7,\displaystyle n_{\delta,7}, (12a)
nu\displaystyle n_{u} =\displaystyle= nδ,7+nδ,1+nτ,2,\displaystyle n_{\delta,7}+n_{\delta,1}+n_{\tau,-2}, (12b)
nd\displaystyle n_{d} =\displaystyle= nσ,2+nδ,1+nτ,2,\displaystyle n_{\sigma,-2}+n_{\delta,1}+n_{\tau,-2}, (12c)
nl\displaystyle n_{l} =\displaystyle= nσ,8+nτ,2,\displaystyle n_{\sigma,-8}+n_{\tau,-2}, (12d)

respectively. Notice that

ndnunh0.n_{d}\geq n_{u}-n_{h}\geq 0. (13)

Scalar mixing:

One bi-diagonalizes the leptoquark mass matrices by making

δ1,7\displaystyle\delta_{1,7} =\displaystyle= H1h,\displaystyle H_{1}h, (14a)
(δ1,7δ1,1τ2,2)\displaystyle\left(\begin{array}[]{c}\delta_{-1,7}\\ \delta_{1,1}\\ \tau_{2,-2}\end{array}\right) =\displaystyle= (U1U2U3)u,\displaystyle\left(\begin{array}[]{c}U_{1}\\ U_{2}\\ U_{3}\end{array}\right)u, (14h)
(σ0,2δ1,1τ0,2)\displaystyle\left(\begin{array}[]{c}\sigma_{0,-2}\\ \delta_{-1,1}\\ \tau_{0,-2}\end{array}\right) =\displaystyle= (D1D2D3)d,\displaystyle\left(\begin{array}[]{c}D_{1}\\ D_{2}\\ D_{3}\end{array}\right)d, (14o)
(σ0,8τ2,2)\displaystyle\left(\begin{array}[]{c}\sigma_{0,-8}\\ \tau_{-2,-2}\end{array}\right) =\displaystyle= (L1L2)l,\displaystyle\left(\begin{array}[]{c}L_{1}\\ L_{2}\end{array}\right)l, (14t)

where hh in Eq. (14a) stands for a column matrix containing the nhn_{h} hh-type scalars; and analogously for uu, dd, and ll in the other three Eqs. (14). The matrices H1H_{1}, U1U_{1}, U2U_{2}, U3U_{3}, D1D_{1}, D2D_{2}, D3D_{3}, L1L_{1}, and L2L_{2} have dimensions nδ,7×nhn_{\delta,7}\times n_{h}, nδ,7×nun_{\delta,7}\times n_{u}, nδ,1×nun_{\delta,1}\times n_{u}, nτ,2×nun_{\tau,-2}\times n_{u}, nσ,2×ndn_{\sigma,-2}\times n_{d}, nδ,1×ndn_{\delta,1}\times n_{d}, nτ,2×ndn_{\tau,-2}\times n_{d}, nσ,8×nln_{\sigma,-8}\times n_{l}, and nτ,2×nln_{\tau,-2}\times n_{l}, respectively. The matrices

H1,(U1U2U3),(D1D2D3),and(L1L2)H_{1},\quad\left(\begin{array}[]{c}U_{1}\\ U_{2}\\ U_{3}\end{array}\right),\quad\left(\begin{array}[]{c}D_{1}\\ D_{2}\\ D_{3}\end{array}\right),\quad\mbox{and}\ \left(\begin{array}[]{c}L_{1}\\ L_{2}\end{array}\right) (15)

are unitary.101010Without loss of generality, one may chose a basis where H1H_{1} is equal to the unit matrix. We refrain from doing that, in order to keep the notation as general as possible.

Mixing matrices:

We next define the mixing matrices that appear in the charged-current interactions of the scalars. They are

𝒩\displaystyle\mathcal{N} =\displaystyle= H1U1,\displaystyle H_{1}^{\dagger}U_{1}, (16a)
𝒱\displaystyle\mathcal{V} =\displaystyle= U2D2+2U3D3,\displaystyle U_{2}^{\dagger}D_{2}+\sqrt{2}\,U_{3}^{\dagger}D_{3}, (16b)
𝒬\displaystyle\mathcal{Q} =\displaystyle= 2D3L2,\displaystyle\sqrt{2}\,D_{3}^{\dagger}L_{2}, (16c)

respectively. The factors 2\sqrt{2} in Eqs. (16) arise because the charged gauge interactions of the triplets are 2\sqrt{2} times stronger than those of the doublets. The mixing matrices that appear in the neutral-current interactions of the scalars are

H¯\displaystyle\bar{H} =\displaystyle= 2QhsW2×𝟙nh,\displaystyle\mathcal{H}-2Q_{h}s_{W}^{2}\times\mathbbm{1}_{n_{h}}, (17a)
U¯\displaystyle\bar{U} =\displaystyle= 𝒰2QusW2×𝟙nu,\displaystyle\mathcal{U}-2Q_{u}s_{W}^{2}\times\mathbbm{1}_{n_{u}}, (17b)
D¯\displaystyle\bar{D} =\displaystyle= 𝒟+2QdsW2×𝟙nd,\displaystyle\mathcal{D}+2Q_{d}s_{W}^{2}\times\mathbbm{1}_{n_{d}}, (17c)
L¯\displaystyle\bar{L} =\displaystyle= +2QlsW2×𝟙nl,\displaystyle\mathcal{L}+2Q_{l}s_{W}^{2}\times\mathbbm{1}_{n_{l}}, (17d)

where 𝟙m\mathbbm{1}_{m} denotes the m×mm\times m unit matrix and the matrices \mathcal{H}, 𝒰\mathcal{U}, 𝒟\mathcal{D}, and \mathcal{L} are related to the mixing matrices in Eqs. (16) through

\displaystyle\mathcal{H} =\displaystyle= 𝒩𝒩,\displaystyle\mathcal{N}\mathcal{N}^{\dagger}, (18a)
𝒰\displaystyle\mathcal{U} =\displaystyle= 𝒱𝒱𝒩𝒩,\displaystyle\mathcal{V}\mathcal{V}^{\dagger}-\mathcal{N}^{\dagger}\mathcal{N}, (18b)
𝒟\displaystyle\mathcal{D} =\displaystyle= 𝒱𝒱𝒬𝒬,\displaystyle\mathcal{V}^{\dagger}\mathcal{V}-\mathcal{Q}\mathcal{Q}^{\dagger}, (18c)
\displaystyle\mathcal{L} =\displaystyle= 𝒬𝒬,\displaystyle\mathcal{Q}^{\dagger}\mathcal{Q}, (18d)

respectively.

Gauge interactions:

The gauge interactions of the scalars are given by the following pieces of the Lagrangian:

ASS\displaystyle\mathcal{L}_{ASS} =\displaystyle= igsWAθ[Qhh(hθhhθh)+Quu(uθuuθu)\displaystyle-igs_{W}A_{\theta}\left[Q_{h}\sum_{h}\left(h^{\ast}\partial^{\theta}h-h\partial^{\theta}h^{\ast}\right)+Q_{u}\sum_{u}\left(u^{\ast}\partial^{\theta}u-u\partial^{\theta}u^{\ast}\right)\right. (19a)
+Qdd(dθddθd)+Qll(lθllθl)],\displaystyle\left.+Q_{d}\sum_{d}\left(d^{\ast}\partial^{\theta}d-d\partial^{\theta}d^{\ast}\right)+Q_{l}\sum_{l}\left(l^{\ast}\partial^{\theta}l-l\partial^{\theta}l^{\ast}\right)\right],
AASS\displaystyle\mathcal{L}_{AASS} =\displaystyle= g2sW2AθAθ(Qh2hhh+Qu2uuu+Qd2ddd+Ql2lll),\displaystyle g^{2}s_{W}^{2}A_{\theta}A^{\theta}\left(Q_{h}^{2}\,\sum_{h}hh^{\ast}+Q_{u}^{2}\,\sum_{u}uu^{\ast}+Q_{d}^{2}\,\sum_{d}dd^{\ast}+Q_{l}^{2}\,\sum_{l}ll^{\ast}\right),\hskip 8.53581pt (19b)
WSS\displaystyle\mathcal{L}_{WSS} =\displaystyle= ig2Wθ+[h,u𝒩hu(hθuuθh)+u,d𝒱ud(uθddθu)\displaystyle i\,\frac{g}{\sqrt{2}}\,W_{\theta}^{+}\left[\sum_{h,u}\mathcal{N}_{hu}\left(h^{\ast}\partial^{\theta}u-u\partial^{\theta}h^{\ast}\right)+\sum_{u,d}\mathcal{V}_{ud}\left(u^{\ast}\partial^{\theta}d-d\partial^{\theta}u^{\ast}\right)\right. (19c)
+d,l𝒬dl(dθllθd)]+H.c.,\displaystyle\left.+\sum_{d,l}\mathcal{Q}_{dl}\left(d^{\ast}\partial^{\theta}l-l\partial^{\theta}d^{\ast}\right)\right]+\mathrm{H.c.},
WWSS\displaystyle\mathcal{L}_{WWSS} =\displaystyle= g22Wθ+Wθ[h,h(𝒩𝒩)hhhh+u,u(𝒩𝒩+𝒱𝒱)uuuu\displaystyle\frac{g^{2}}{2}\,W^{+}_{\theta}W^{-\theta}\left[\sum_{h,h^{\prime}}\left(\mathcal{N}\mathcal{N}^{\dagger}\right)_{hh^{\prime}}h^{\ast}h^{\prime}+\sum_{u,u^{\prime}}\left(\mathcal{N}^{\dagger}\mathcal{N}+\mathcal{V}\mathcal{V}^{\dagger}\right)_{uu^{\prime}}u^{\ast}u^{\prime}\right. (19d)
+d,d(𝒱𝒱+𝒬𝒬)dddd+l,l(𝒬𝒬)llll],\displaystyle\left.+\sum_{d,d^{\prime}}\left(\mathcal{V}^{\dagger}\mathcal{V}+\mathcal{Q}\mathcal{Q}^{\dagger}\right)_{dd^{\prime}}d^{\ast}d^{\prime}+\sum_{l,l^{\prime}}\left(\mathcal{Q}^{\dagger}\mathcal{Q}\right)_{ll^{\prime}}l^{\ast}l^{\prime}\right],
ZSS\displaystyle\mathcal{L}_{ZSS} =\displaystyle= ig2cWZθ[hH¯hh(hθhhθh)+u,uU¯uu(uθuuθu)\displaystyle i\,\frac{g}{2c_{W}}\,Z_{\theta}\left[\sum_{h}\bar{H}_{hh^{\prime}}\left(h^{\ast}\partial^{\theta}h^{\prime}-h^{\prime}\partial^{\theta}h^{\ast}\right)+\sum_{u,u^{\prime}}\bar{U}_{uu^{\prime}}\left(u^{\ast}\,\partial^{\theta}u^{\prime}-u^{\prime}\,\partial^{\theta}u^{\ast}\right)\right. (19e)
d,dD¯dd(dθddθd)l,lL¯ll(lθllθl)],\displaystyle\left.-\sum_{d,d^{\prime}}\bar{D}_{dd^{\prime}}\left(d^{\ast}\,\partial^{\theta}d^{\prime}-d^{\prime}\,\partial^{\theta}d^{\ast}\right)-\sum_{l,l^{\prime}}\bar{L}_{ll^{\prime}}\left(l^{\ast}\,\partial^{\theta}l^{\prime}-l^{\prime}\,\partial^{\theta}l^{\ast}\right)\right],
ZZSS\displaystyle\mathcal{L}_{ZZSS} =\displaystyle= g24cW2ZθZθ[h,h(H¯2)hhhh+u,u(U¯2)uuuu\displaystyle\frac{g^{2}}{4c_{W}^{2}}\,Z_{\theta}Z^{\theta}\left[\sum_{h,h^{\prime}}\left(\bar{H}^{2}\right)_{hh^{\prime}}h^{\ast}h^{\prime}+\sum_{u,u^{\prime}}\left(\bar{U}^{2}\right)_{uu^{\prime}}u^{\ast}u^{\prime}\right. (19f)
+d,d(D¯2)dddd+l,l(L¯2)llll],\displaystyle\left.+\sum_{d,d^{\prime}}\left(\bar{D}^{2}\right)_{dd^{\prime}}d^{\ast}d^{\prime}+\sum_{l,l^{\prime}}\left(\bar{L}^{2}\right)_{ll^{\prime}}l^{\ast}l^{\prime}\right],
AZSS\displaystyle\mathcal{L}_{AZSS} =\displaystyle= g2sWcWAθZθ(Qhh,hH¯hhhh+Quu,uU¯uuuu\displaystyle-\frac{g^{2}s_{W}}{c_{W}}\,A_{\theta}Z^{\theta}\left(Q_{h}\,\sum_{h,h^{\prime}}\bar{H}_{hh^{\prime}}\,h^{\ast}h^{\prime}+Q_{u}\,\sum_{u,u^{\prime}}\bar{U}_{uu^{\prime}}\,u^{\ast}u^{\prime}\right. (19g)
Qdd,dD¯ddddQll,lL¯llll).\displaystyle\left.-Q_{d}\,\sum_{d,d^{\prime}}\bar{D}_{dd^{\prime}}\,d^{\ast}d^{\prime}-Q_{l}\,\sum_{l,l^{\prime}}\bar{L}_{ll^{\prime}}\,l^{\ast}l^{\prime}\right).

Notice the presence in Eqs. (19c) and (19d) of the matrices defined in Eqs. (16) and the presence in Eqs. (19e)–(19g) of the matrices defined in Eqs. (17). Also notice that, out of the four matrices in Eq. (19d), only 𝒩𝒩=\mathcal{N}\mathcal{N}^{\dagger}=\mathcal{H} and 𝒬𝒬=\mathcal{Q}^{\dagger}\mathcal{Q}=\mathcal{L} coincide with matrices in Eqs. (18).

3 Tools for the computation

PV functions:

The Passarino–Veltman (PV) functions [23] B00(q2,m12,m22)B_{00}\left(q^{2},m_{1}^{2},m_{2}^{2}\right) and A0(m12)A_{0}\left(m_{1}^{2}\right) are defined by111111We use the definitions of Ref. [24] for the PV functions.

μϵd4ϵk(2π)4ϵkθkψ1k2m121(k+q)2m22\displaystyle\mu^{\epsilon}\int\frac{\mathrm{d}^{4-\epsilon}k}{\left(2\pi\right)^{4-\epsilon}}\ \,k^{\theta}k^{\psi}\,\frac{1}{k^{2}-m_{1}^{2}}\ \frac{1}{\left(k+q\right)^{2}-m_{2}^{2}} =\displaystyle= i16π2[gθψB00(q2,m12,m22)\displaystyle\frac{i}{16\pi^{2}}\,\left[g^{\theta\psi}\,B_{00}\left(q^{2},m_{1}^{2},m_{2}^{2}\right)\right. (20a)
+qθqψB11(q2,m12,m22)],\displaystyle\left.+q^{\theta}q^{\psi}\,B_{11}\left(q^{2},m_{1}^{2},m_{2}^{2}\right)\right],\hskip 19.91692pt
μϵd4ϵk(2π)4ϵ1k2m12\displaystyle\mu^{\epsilon}\int\frac{\mathrm{d}^{4-\epsilon}k}{\left(2\pi\right)^{4-\epsilon}}\ \frac{1}{k^{2}-m_{1}^{2}}\ =\displaystyle= i16π2A0(m12),\displaystyle\frac{i}{16\pi^{2}}\ A_{0}\left(m_{1}^{2}\right), (20b)

respectively, where μ\mu is an arbitrary quantity with mass dimension. The quantities q2q^{2}, m12m_{1}^{2}, and m22m_{2}^{2} are assumed to be non-negative. The PV function B11(q2,m12,m22)B_{11}\left(q^{2},m_{1}^{2},m_{2}^{2}\right) in Eq. (20a) is not needed in this paper; on the other hand, we need

B00(q2,m12,m22)\displaystyle B_{00}^{\prime}\left(q^{2},m_{1}^{2},m_{2}^{2}\right) \displaystyle\equiv B00(q2,m12,m22)q2,\displaystyle\frac{\partial B_{00}\left(q^{2},m_{1}^{2},m_{2}^{2}\right)}{\partial q^{2}}, (21a)
B¯00(q2,m12,m22)\displaystyle\bar{B}_{00}\left(q^{2},m_{1}^{2},m_{2}^{2}\right) \displaystyle\equiv B00(q2,m12,m22)B00(0,m12,m22)q2.\displaystyle\frac{B_{00}\left(q^{2},m_{1}^{2},m_{2}^{2}\right)-B_{00}\left(0,m_{1}^{2},m_{2}^{2}\right)}{q^{2}}. (21b)

The PV functions may be numerically evaluated by using softwares like LoopTools [24] and COLLIER [25].121212For the present purposes, in the results given by those codes one should take only the real, viz. dispersive, parts of the PV functions, while dropping the absorptive parts, which have no relevance for the oblique parameters. They may also be evaluated through analytic formulas given in Ref. [26].

The function gg:

One has [26]

B00(0,m12,m22)=div12+124[ln(m12μ2)+ln(m22μ2)+g(m12m22)],B^{\prime}_{00}\left(0,m_{1}^{2},m_{2}^{2}\right)=-\frac{\mathrm{div}}{12}+\frac{1}{24}\left[\ln{\frac{m_{1}^{2}}{\mu^{2}}}+\ln{\frac{m_{2}^{2}}{\mu^{2}}}+g\left(\frac{m_{1}^{2}}{m_{2}^{2}}\right)\right], (22)

where div\mathrm{div} is a divergent quantity which is defined in Eq. (C3) and cancels out in the final results, and

g(x)={x33x23x+1(x1)3ln(x)5x222x+53(x1)2x1,0x=1g\left(x\right)=\left\{\begin{array}[]{lcl}{\displaystyle\frac{x^{3}-3x^{2}-3x+1}{\left(x-1\right)^{3}}\,\ln{x}-\frac{5x^{2}-22x+5}{3\left(x-1\right)^{2}}}&\Leftarrow&x\neq 1,\\[5.69054pt] 0&\Leftarrow&x=1\end{array}\right. (23)

is a function that obeys g(1)=0g\left(1\right)=0 and g(x)=g(1/x)g\left(x\right)=g\left(1/x\right). This function is depicted in Fig. 1.

Refer to caption
Figure 1: Plot of the function g(x)g\left(x\right). The scale in the horizontal axis is logarithmic.

The function θ+\theta_{+}:

From the formulas in Ref. [26] one gathers that

B00(0,m12,m22)=A0(m12)+A0(m22)4+θ+(m12,m22)8,B_{00}\left(0,m_{1}^{2},m_{2}^{2}\right)=\frac{A_{0}\left(m_{1}^{2}\right)+A_{0}\left(m_{2}^{2}\right)}{4}+\frac{\theta_{+}\left(m_{1}^{2},m_{2}^{2}\right)}{8}, (24)

where [27]

θ+(m12,m22){m12+m222m12m22m12m22ln(m12m22)m12m22,0m12=m22.\theta_{+}\left(m_{1}^{2},m_{2}^{2}\right)\equiv\left\{\begin{array}[]{lcl}\displaystyle{m_{1}^{2}+m_{2}^{2}-\frac{2m_{1}^{2}m_{2}^{2}}{m_{1}^{2}-m_{2}^{2}}\,\ln{\frac{m_{1}^{2}}{m_{2}^{2}}}}&\Leftarrow&m_{1}^{2}\neq m_{2}^{2},\\[5.69054pt] 0&\Leftarrow&m_{1}^{2}=m_{2}^{2}.\end{array}\right. (25)

The function ρ\rho:

We define the function ρ(x,y)\rho\left(x,y\right)—where xx and yy are positive—through

ρ(x,y)2[B00(q2,q2x,q2y)B¯00(q2,q2x,q2y)],\rho\left(x,y\right)\equiv 2\left[B_{00}^{\prime}\left(q^{2},q^{2}x,q^{2}y\right)-\bar{B}_{00}\left(q^{2},q^{2}x,q^{2}y\right)\right], (26)

which is q2q^{2}-independent. Using the analytic formulas in ref. [26] one finds that

ρ(x,y)={163(x+y)4+(xy)22+[(yx)34+x2+y24(yx)+x2y22]ln(xy)+(xy)2xy4f(x,y)xy,162xx2f(x,x)x=y.\rho\left(x,y\right)=\left\{\begin{array}[]{lcl}\displaystyle{\frac{1}{6}-\frac{3\left(x+y\right)}{4}+\frac{\left(x-y\right)^{2}}{2}+\left[\frac{\left(y-x\right)^{3}}{4}+\frac{x^{2}+y^{2}}{4\left(y-x\right)}\right.}&&\\[5.69054pt] \displaystyle{\left.+\frac{x^{2}-y^{2}}{2}\right]\ln{\frac{x}{y}}+\frac{\left(x-y\right)^{2}-x-y}{4}\ f\left(x,y\right)}&\Leftarrow&x\neq y,\\[11.38109pt] \displaystyle{\frac{1}{6}-2x-\frac{x}{2}\ f\left(x,x\right)}&\Leftarrow&x=y.\end{array}\right. (27)

In Eq. (27),

f(x,y)={Δ(x,y)ln(x+y1+Δ(x,y)x+y1Δ(x,y))Δ(x,y)0,2Δ(x,y)[arctan(xy+1Δ(x,y))+(xy)]Δ(x,y)<0,f\left(x,y\right)=\left\{\begin{array}[]{lcl}\displaystyle{\sqrt{\Delta\left(x,y\right)}\ \ln{\frac{x+y-1+\sqrt{\Delta\left(x,y\right)}}{x+y-1-\sqrt{\Delta\left(x,y\right)}}}}&\Leftarrow&\Delta\left(x,y\right)\geq 0,\\[11.38109pt] \displaystyle{-2\sqrt{-\Delta\left(x,y\right)}\left[\arctan{\frac{x-y+1}{\sqrt{-\Delta\left(x,y\right)}}}+\left(x\leftrightarrow y\right)\right]}&\Leftarrow&\Delta\left(x,y\right)<0,\end{array}\right. (28)

where

Δ(x,y)=12(x+y)+(xy)2.\Delta\left(x,y\right)=1-2\left(x+y\right)+\left(x-y\right)^{2}. (29)

The function ζ\zeta:

The function ζ(x,y)\zeta\left(x,y\right)—where xx and yy are positive—is defined through

ζ(x,y)2[B00(0,q2x,q2y)B¯00(q2,q2x,q2y)],\zeta\left(x,y\right)\equiv 2\left[B_{00}^{\prime}\left(0,q^{2}x,q^{2}y\right)-\bar{B}_{00}\left(q^{2},q^{2}x,q^{2}y\right)\right], (30)

which is q2q^{2}-independent. Using the analytic formulas in ref. [26] one finds that

ζ(x,y)={11365(x+y)12+xy3(xy)2+(xy)26+[x2y24+(yx)312+x2+y24(yx)+x+y12(xy)+xy(x+y)6(yx)3]ln(xy)+Δ(x,y)12f(x,y)xy,494x3+Δ(x,x)12f(x,x)x=y.\zeta\left(x,y\right)=\left\{\begin{array}[]{lcl}\displaystyle{\frac{11}{36}-\frac{5\left(x+y\right)}{12}+\frac{xy}{3\left(x-y\right)^{2}}+\frac{\left(x-y\right)^{2}}{6}+\left[\frac{x^{2}-y^{2}}{4}+\frac{\left(y-x\right)^{3}}{12}\right.}&&\\[5.69054pt] \displaystyle{\left.+\frac{x^{2}+y^{2}}{4\left(y-x\right)}+\frac{x+y}{12\left(x-y\right)}+\frac{xy\left(x+y\right)}{6\left(y-x\right)^{3}}\right]\ln{\frac{x}{y}}}&&\\[5.69054pt] \displaystyle{+\frac{\Delta\left(x,y\right)}{12}\ f\left(x,y\right)}&\Leftarrow&x\neq y,\\[8.53581pt] \displaystyle{\frac{4}{9}-\frac{4x}{3}+\frac{\Delta\left(x,x\right)}{12}\ f\left(x,x\right)}&\Leftarrow&x=y.\end{array}\right. (31)

The functions ρ(x,y)\rho\left(x,y\right) and ζ(x,y)\zeta\left(x,y\right) are illustrated in Fig. 2. They are both very small when x1x\gtrsim 1 and y1y\gtrsim 1.

Refer to caption
Refer to caption
Figure 2: Plots of the functions ρ(x,y)\rho\left(x,y\right) (left panel) and ζ(x,y)\zeta\left(x,y\right) (right panel).

Computation of the diagrams:

Suppose the vertices VμS1S2V_{\mu}S_{1}S_{2} and VμVνS1S2V_{\mu}V^{\prime}_{\nu}S_{1}S_{2} have Feynman rules

=iX(kp)μ,\displaystyle=iX\left(k-p\right)_{\mu}, (32a)
{fmfgraph*} (75,75) \fmflefti1,i2 \fmfrighto1,o2 \fmfdashesi1,w1 \fmfdashesi2,w1 \fmfphotonw1,o1 \fmfphotonw1,o2 \fmflabelS2S_{2}i1 \fmflabelS1S_{1}i2 \fmflabelVμV_{\mu}o2 \fmflabelVνV_{\nu}^{\prime}o1 =iYgμν,\displaystyle=iYg_{\mu\nu}, (32b)

respectively, where VV and VV^{\prime} are gauge bosons (v.g. either AA, ZZ, W+W^{+}, or WW^{-}) and S1S_{1} and S2S_{2} are scalars. Using those Feynman rules we have

AVVS1S2(q2)=X1X24π2B00(q2,m12,m22)A^{VV^{\prime}S_{1}S_{2}}\left(q^{2}\right)=\frac{X_{1}X_{2}}{4\pi^{2}}\,B_{00}\left(q^{2},m_{1}^{2},m_{2}^{2}\right) (32ag)

for diagrams of the form in Fig. 3,

{fmfgraph*}

(100,100) \fmflefti1 \fmfrighto1 \fmfboson,label.side=lefti1,w1 \fmfboson,label.side=leftw2,o1 \fmfdashes,right,tension=.3,label=S2S_{2}w1,w2 \fmfdashes,left,tension=.3,label=S1S_{1}w1,w2 \fmflabelVVi1 \fmflabelVV^{\prime}o1

Figure 3: One type of diagram for vacuum polarization. VV and VV^{\prime} are gauge bosons, S1S_{1} is a scalar with mass m1m_{1}, and S2S_{2} is a scalar with mass m2m_{2}.

and

AVVS1(q2)=Y16π2A0(m12)A^{VV^{\prime}S_{1}}\left(q^{2}\right)=-\frac{Y}{16\pi^{2}}\,A_{0}\left(m_{1}^{2}\right) (32ah)

for diagrams of the form in Fig. 4.

{fmfgraph*}

(100,100) \fmflefti1 \fmfrighto1 \fmfboson,label.side=lefti1,w1 \fmfboson,label.side=leftw1,o1 \fmfdashes,label=S1S_{1}w1,w1 \fmflabelVVi1 \fmflabelVV^{\prime}o1

Figure 4: Another type of diagram for vacuum polarization. VV and VV^{\prime} are gauge bosons and S1S_{1} is a scalar with mass m1m_{1}.

In Eqs. (32ag) and (32ah), qq is the four-momentum of the gauge bosons.

4 Results for the oblique parameters

TT:

For the oblique parameter TT we have

T\displaystyle T =\displaystyle= 18πsW2mW2{4[h,u|𝒩hu|2B00(0,mh2,mu2)+u,d|𝒱ud|2B00(0,mu2,md2)\displaystyle\frac{1}{8\pi s_{W}^{2}m_{W}^{2}}\left\{4\left[\sum_{h,u}\left|\mathcal{N}_{hu}\right|^{2}B_{00}(0,m_{h}^{2},m_{u}^{2})+\sum_{u,d}\left|\mathcal{V}_{ud}\right|^{2}B_{00}(0,m_{u}^{2},m_{d}^{2})\right.\right. (32aid)
+d,l|𝒬dl|2B00(0,md2,ml2)]\displaystyle\left.+\sum_{d,l}\left|\mathcal{Q}_{dl}\right|^{2}B_{00}(0,m_{d}^{2},m_{l}^{2})\right]
h(𝒩𝒩)hhA0(mh2)u(𝒩𝒩+𝒱𝒱)uuA0(mu2)\displaystyle-\sum_{h}\left(\mathcal{N}\mathcal{N}^{\dagger}\right)_{hh}\,A_{0}\left(m_{h}^{2}\right)-\sum_{u}\left(\mathcal{N}^{\dagger}\mathcal{N}+\mathcal{V}\mathcal{V}^{\dagger}\right)_{uu}\,A_{0}\left(m_{u}^{2}\right)
d(𝒱𝒱+𝒬𝒬)ddA0(md2)l(𝒬𝒬)llA0(ml2)\displaystyle-\sum_{d}\left(\mathcal{V}^{\dagger}\mathcal{V}+\mathcal{Q}\mathcal{Q}^{\dagger}\right)_{dd}\,A_{0}\left(m_{d}^{2}\right)-\sum_{l}\left(\mathcal{Q}^{\dagger}\mathcal{Q}\right)_{ll}\,A_{0}\left(m_{l}^{2}\right)
2[h,h|H¯hh|2B00(0,mh2,mh2)+u,u|U¯uu|2B00(0,mu2,mu2)\displaystyle-2\left[\sum_{h,h^{\prime}}\left|\bar{H}_{hh^{\prime}}\right|^{2}B_{00}\left(0,m_{h}^{2},m_{h^{\prime}}^{2}\right)+\sum_{u,u^{\prime}}\left|\bar{U}_{uu^{\prime}}\right|^{2}B_{00}\left(0,m_{u}^{2},m_{u^{\prime}}^{2}\right)\right.
+d,d|D¯dd|2B00(0,md2,md2)+l,l|L¯ll|2B00(0,ml2,ml2)]\displaystyle\left.+\sum_{d,d^{\prime}}\left|\bar{D}_{dd^{\prime}}\right|^{2}B_{00}\left(0,m_{d}^{2},m_{d^{\prime}}^{2}\right)+\sum_{l,l^{\prime}}\left|\bar{L}_{ll^{\prime}}\right|^{2}B_{00}\left(0,m_{l}^{2},m_{l^{\prime}}^{2}\right)\right]
+h(H¯2)hhA0(mh2)+u(U¯2)uuA0(mu2)\displaystyle+\sum_{h}\left(\bar{H}^{2}\right)_{hh}\,A_{0}\left(m_{h}^{2}\right)+\sum_{u}\left(\bar{U}^{2}\right)_{uu}\,A_{0}\left(m_{u}^{2}\right)
+d(D¯2)ddA0(md2)+l(L¯2)llA0(ml2)},\displaystyle\left.+\sum_{d}\left(\bar{D}^{2}\right)_{dd}\,A_{0}\left(m_{d}^{2}\right)+\sum_{l}\left(\bar{L}^{2}\right)_{ll}\,A_{0}\left(m_{l}^{2}\right)\right\},

where lines (32aid) and (32aid) originate in AWW(0)A_{WW}\left(0\right) while lines (32aid) and (32aid) originate in AZZ(0)A_{ZZ}\left(0\right). Utilizing Eq. (24) on Eq. (32ai), we obtain

T\displaystyle T =\displaystyle= 116πsW2mW2[h,u|𝒩hu|2θ+(mh2,mu2)\displaystyle\frac{1}{16\pi s_{W}^{2}m_{W}^{2}}\left[\sum_{h,u}\left|\mathcal{N}_{hu}\right|^{2}\theta_{+}\left(m_{h}^{2},m_{u}^{2}\right)\right. (32aj)
+u,d|𝒱ud|2θ+(mu2,md2)+d,l|𝒬dl|2θ+(md2,ml2)\displaystyle+\sum_{u,d}\left|\mathcal{V}_{ud}\right|^{2}\theta_{+}\left(m_{u}^{2},m_{d}^{2}\right)+\sum_{d,l}\left|\mathcal{Q}_{dl}\right|^{2}\theta_{+}\left(m_{d}^{2},m_{l}^{2}\right)
h<h|hh|2θ+(mh2,mh2)u<u|𝒰uu|2θ+(mu2,mu2)\displaystyle-\sum_{h<h^{\prime}}\left|\mathcal{H}_{hh^{\prime}}\right|^{2}\theta_{+}\left(m_{h}^{2},m_{h^{\prime}}^{2}\right)-\sum_{u<u^{\prime}}\left|\mathcal{U}_{uu^{\prime}}\right|^{2}\theta_{+}\left(m_{u}^{2},m_{u^{\prime}}^{2}\right)
d<d|𝒟dd|2θ+(md2,md2)l<l|ll|2θ+(ml2,ml2)],\displaystyle\left.-\sum_{d<d^{\prime}}\left|\mathcal{D}_{dd^{\prime}}\right|^{2}\theta_{+}\left(m_{d}^{2},m_{d^{\prime}}^{2}\right)-\sum_{l<l^{\prime}}\left|\mathcal{L}_{ll^{\prime}}\right|^{2}\theta_{+}\left(m_{l}^{2},m_{l^{\prime}}^{2}\right)\right],

The function θ+(m12,m22)\theta_{+}\left(m_{1}^{2},m_{2}^{2}\right) is given in Eq. (25). It is a finite function; thus, in Eq. (32aj) there are no divergences, contrary to what happens in Eq. (32ai), wherein the functions B00(0,m12,m22)B_{00}\left(0,m_{1}^{2},m_{2}^{2}\right) and A0(m32)A_{0}\left(m_{3}^{2}\right) are divergent. The function θ+(m12,m22)\theta_{+}\left(m_{1}^{2},m_{2}^{2}\right) is moreover positive definite; thus, the two first lines of Eq. (32aj) constitute a positive contribution to TT, which always exists in a model with leptoquarks, while the two last lines of that equation are a negative contribution, which only exists if at least one of the matrices \mathcal{H}, 𝒰\mathcal{U}, 𝒟\mathcal{D}, and \mathcal{L} has nonzero off-diagonal matrix elements.

VV and WW:

For the oblique parameters VV and WW we obtain the results

V\displaystyle V =\displaystyle= 18πcW2sW2[h,h|H¯hh|2ρ(mh2mZ2,mh2mZ2)+u,u|U¯uu|2ρ(mu2mZ2,mu2mZ2)\displaystyle\frac{1}{8\pi c_{W}^{2}s_{W}^{2}}\left[\sum_{h,h^{\prime}}\left|\bar{H}_{hh^{\prime}}\right|^{2}\rho\left(\frac{m_{h}^{2}}{m_{Z}^{2}},\frac{m_{h^{\prime}}^{2}}{m_{Z}^{2}}\right)+\sum_{u,u^{\prime}}\left|\bar{U}_{uu^{\prime}}\right|^{2}\rho\left(\frac{m_{u}^{2}}{m_{Z}^{2}},\frac{m_{u^{\prime}}^{2}}{m_{Z}^{2}}\right)\right. (32aka)
+d,d|D¯dd|2ρ(md2mZ2,md2mZ2)+l,l|L¯ll|2ρ(ml2mZ2,ml2mZ2)],\displaystyle\left.+\sum_{d,d^{\prime}}\left|\bar{D}_{dd^{\prime}}\right|^{2}\rho\left(\frac{m_{d}^{2}}{m_{Z}^{2}},\frac{m_{d^{\prime}}^{2}}{m_{Z}^{2}}\right)+\sum_{l,l^{\prime}}\left|\bar{L}_{ll^{\prime}}\right|^{2}\rho\left(\frac{m_{l}^{2}}{m_{Z}^{2}},\frac{m_{l^{\prime}}^{2}}{m_{Z}^{2}}\right)\right],
W\displaystyle W =\displaystyle= 14πsW2[h,u|𝒩hu|2ρ(mh2mW2,mu2mW2)+u,d|𝒱ud|2ρ(mu2mW2,md2mW2)\displaystyle\frac{1}{4\pi s_{W}^{2}}\left[\sum_{h,u}\left|\mathcal{N}_{hu}\right|^{2}\rho\left(\frac{m_{h}^{2}}{m_{W}^{2}},\frac{m_{u}^{2}}{m_{W}^{2}}\right)+\sum_{u,d}\left|\mathcal{V}_{ud}\right|^{2}\rho\left(\frac{m_{u}^{2}}{m_{W}^{2}},\frac{m_{d}^{2}}{m_{W}^{2}}\right)\right. (32akb)
+d,l|𝒬dl|2ρ(md2mW2,ml2mW2)],\displaystyle\left.+\sum_{d,l}\left|\mathcal{Q}_{dl}\right|^{2}\rho\left(\frac{m_{d}^{2}}{m_{W}^{2}},\frac{m_{l}^{2}}{m_{W}^{2}}\right)\right],

where the function ρ\rho is given in Eq. (27).

XX:

For the oblique parameter XX one has

X\displaystyle X =\displaystyle= 14π[QhhH¯hhζ(mh2mZ2,mh2mZ2)+QuuU¯uuζ(mu2mZ2,mu2mZ2)\displaystyle-\frac{1}{4\pi}\left[Q_{h}\sum_{h}\bar{H}_{hh}\ \zeta\left(\frac{m_{h}^{2}}{m_{Z}^{2}},\frac{m_{h}^{2}}{m_{Z}^{2}}\right)+Q_{u}\sum_{u}\bar{U}_{uu}\ \zeta\left(\frac{m_{u}^{2}}{m_{Z}^{2}},\frac{m_{u}^{2}}{m_{Z}^{2}}\right)\right. (32al)
QddD¯ddζ(md2mZ2,md2mZ2)QllL¯llζ(ml2mZ2,ml2mZ2)],\displaystyle\left.-Q_{d}\sum_{d}\bar{D}_{dd}\ \zeta\left(\frac{m_{d}^{2}}{m_{Z}^{2}},\frac{m_{d}^{2}}{m_{Z}^{2}}\right)-Q_{l}\sum_{l}\bar{L}_{ll}\ \zeta\left(\frac{m_{l}^{2}}{m_{Z}^{2}},\frac{m_{l}^{2}}{m_{Z}^{2}}\right)\right],

where the function ζ\zeta is given in Eq. (31).

SS and UU:

Following the decomposition in Eqs. (9)–(11), for the oblique parameters SS and UU we have

S′′\displaystyle S^{\prime\prime} =\displaystyle= 12π[h,h|H¯hh|2ζ(mh2mZ2,mh2mZ2)+u,u|H¯uu|2ζ(mu2mZ2,mu2mZ2)\displaystyle-\frac{1}{2\pi}\left[\sum_{h,h^{\prime}}\left|\bar{H}_{hh^{\prime}}\right|^{2}\zeta\left(\frac{m_{h}^{2}}{m_{Z}^{2}},\frac{m_{h^{\prime}}^{2}}{m_{Z}^{2}}\right)+\sum_{u,u^{\prime}}\left|\bar{H}_{uu^{\prime}}\right|^{2}\zeta\left(\frac{m_{u}^{2}}{m_{Z}^{2}},\frac{m_{u^{\prime}}^{2}}{m_{Z}^{2}}\right)\right. (32ama)
+d,d|H¯dd|2ζ(md2mZ2,md2mZ2)+l,l|H¯ll|2ζ(ml2mZ2,ml2mZ2)],\displaystyle\left.+\sum_{d,d^{\prime}}\left|\bar{H}_{dd^{\prime}}\right|^{2}\zeta\left(\frac{m_{d}^{2}}{m_{Z}^{2}},\frac{m_{d^{\prime}}^{2}}{m_{Z}^{2}}\right)+\sum_{l,l^{\prime}}\left|\bar{H}_{ll^{\prime}}\right|^{2}\zeta\left(\frac{m_{l}^{2}}{m_{Z}^{2}},\frac{m_{l^{\prime}}^{2}}{m_{Z}^{2}}\right)\right],
U′′\displaystyle U^{\prime\prime} =\displaystyle= S′′1π[h,u|𝒩hu|2ζ(mh2mW2,mu2mW2)+u,d|𝒱ud|2ζ(mu2mW2,md2mW2)\displaystyle-S^{\prime\prime}-\frac{1}{\pi}\left[\sum_{h,u}\left|\mathcal{N}_{hu}\right|^{2}\zeta\left(\frac{m_{h}^{2}}{m_{W}^{2}},\frac{m_{u}^{2}}{m_{W}^{2}}\right)+\sum_{u,d}\left|\mathcal{V}_{ud}\right|^{2}\zeta\left(\frac{m_{u}^{2}}{m_{W}^{2}},\frac{m_{d}^{2}}{m_{W}^{2}}\right)\right. (32amb)
+d,l|𝒬dl|2ζ(md2mW2,ml2mW2)],\displaystyle\left.+\sum_{d,l}\left|\mathcal{Q}_{dl}\right|^{2}\zeta\left(\frac{m_{d}^{2}}{m_{W}^{2}},\frac{m_{l}^{2}}{m_{W}^{2}}\right)\right],

where the function ζ\zeta is given in Eq. (31); and

S\displaystyle S^{\prime} =\displaystyle= 1π{h,h|hh|2B00(0,mh2,mh2)+u,u|𝒰uu|2B00(0,mu2,mu2)\displaystyle\frac{1}{\pi}\left\{\sum_{h,h^{\prime}}\left|\mathcal{H}_{hh^{\prime}}\right|^{2}B_{00}^{\prime}\left(0,m_{h}^{2},m_{h^{\prime}}^{2}\right)+\sum_{u,u^{\prime}}\left|\mathcal{U}_{uu^{\prime}}\right|^{2}B_{00}^{\prime}\left(0,m_{u}^{2},m_{u^{\prime}}^{2}\right)\right. (32ana)
+d,d|𝒟dd|2B00(0,md2,md2)+l,l|ll|2B00(0,ml2,ml2)\displaystyle+\sum_{d,d^{\prime}}\left|\mathcal{D}_{dd^{\prime}}\right|^{2}B_{00}^{\prime}\left(0,m_{d}^{2},m_{d^{\prime}}^{2}\right)+\sum_{l,l^{\prime}}\left|\mathcal{L}_{ll^{\prime}}\right|^{2}B_{00}^{\prime}\left(0,m_{l}^{2},m_{l^{\prime}}^{2}\right)
2[QhhhhB00(0,mh2,mh2)+Quu𝒰uuB00(0,mu2,mu2)]\displaystyle-2\left[Q_{h}\,\sum_{h}\mathcal{H}_{hh}\,B_{00}^{\prime}\left(0,m_{h}^{2},m_{h}^{2}\right)+Q_{u}\,\sum_{u}\mathcal{U}_{uu}\,B_{00}^{\prime}\left(0,m_{u}^{2},m_{u}^{2}\right)\right]
+2[Qdd𝒟ddB00(0,md2,md2)+QllllB00(0,ml2,ml2)]},\displaystyle\left.+2\left[Q_{d}\,\sum_{d}\mathcal{D}_{dd}\,B_{00}^{\prime}\left(0,m_{d}^{2},m_{d}^{2}\right)+Q_{l}\,\sum_{l}\mathcal{L}_{ll}\,B_{00}^{\prime}\left(0,m_{l}^{2},m_{l}^{2}\right)\right]\right\},
U\displaystyle U^{\prime} =\displaystyle= S+2π[h,u|𝒩hu|2B00(0,mh2,mu2)+u,d|𝒱ud|2B00(0,mu2,md2)\displaystyle-S^{\prime}+\frac{2}{\pi}\left[\sum_{h,u}\left|\mathcal{N}_{hu}\right|^{2}B_{00}^{\prime}\left(0,m_{h}^{2},m_{u}^{2}\right)+\sum_{u,d}\left|\mathcal{V}_{ud}\right|^{2}B_{00}^{\prime}\left(0,m_{u}^{2},m_{d}^{2}\right)\right. (32anb)
+d,l|𝒬dl|2B00(0,md2,ml2)\displaystyle+\sum_{d,l}\left|\mathcal{Q}_{dl}\right|^{2}B_{00}^{\prime}\left(0,m_{d}^{2},m_{l}^{2}\right)
QhhhhB00(0,mh2,mh2)Quu𝒰uuB00(0,mu2,mu2)\displaystyle-Q_{h}\,\sum_{h}\mathcal{H}_{hh}\,B_{00}^{\prime}\left(0,m_{h}^{2},m_{h}^{2}\right)-Q_{u}\,\sum_{u}\mathcal{U}_{uu}\,B_{00}^{\prime}\left(0,m_{u}^{2},m_{u}^{2}\right)
+Qdd𝒟ddB00(0,md2,md2)+QllllB00(0,ml2,ml2)].\displaystyle\left.+Q_{d}\,\sum_{d}\mathcal{D}_{dd}\,B_{00}^{\prime}\left(0,m_{d}^{2},m_{d}^{2}\right)+Q_{l}\,\sum_{l}\mathcal{L}_{ll}\,B_{00}^{\prime}\left(0,m_{l}^{2},m_{l}^{2}\right)\right].

Utilizing Eq. (22), and the cancellation of the divergences proved in Appendix C, one simplifies Eqs. (32an) to

S\displaystyle S^{\prime} =\displaystyle= 112π{h<h|hh|2g(mh2mh2)+u<u|𝒰uu|2g(mu2mu2)\displaystyle\frac{1}{12\pi}\left\{\sum_{h<h^{\prime}}\left|\mathcal{H}_{hh^{\prime}}\right|^{2}g\left(\frac{m_{h}^{2}}{m_{h^{\prime}}^{2}}\right)+\sum_{u<u^{\prime}}\left|\mathcal{U}_{uu^{\prime}}\right|^{2}g\left(\frac{m_{u}^{2}}{m_{u^{\prime}}^{2}}\right)\right. (32aod)
+d<d|𝒟dd|2g(md2md2)+l<l|ll|2g(ml2ml2)\displaystyle+\sum_{d<d^{\prime}}\left|\mathcal{D}_{dd^{\prime}}\right|^{2}g\left(\frac{m_{d}^{2}}{m_{d^{\prime}}^{2}}\right)+\sum_{l<l^{\prime}}\left|\mathcal{L}_{ll^{\prime}}\right|^{2}g\left(\frac{m_{l}^{2}}{m_{l^{\prime}}^{2}}\right)
+h[(2)hh2Qhhh]ln(mh2μ2)+u[(𝒰2)uu2Qu𝒰uu]ln(mu2μ2)\displaystyle+\sum_{h}\left[\left(\mathcal{H}^{2}\right)_{hh}-2Q_{h}\mathcal{H}_{hh}\right]\ln{\frac{m_{h}^{2}}{\mu^{2}}}+\sum_{u}\left[\left(\mathcal{U}^{2}\right)_{uu}-2Q_{u}\mathcal{U}_{uu}\right]\ln{\frac{m_{u}^{2}}{\mu^{2}}}
+d[(𝒟2)dd+2Qd𝒟dd]ln(md2μ2)+l[(2)ll+2Qlll]ln(ml2μ2)},\displaystyle\left.+\sum_{d}\left[\left(\mathcal{D}^{2}\right)_{dd}+2Q_{d}\mathcal{D}_{dd}\right]\ln{\frac{m_{d}^{2}}{\mu^{2}}}+\sum_{l}\left[\left(\mathcal{L}^{2}\right)_{ll}+2Q_{l}\mathcal{L}_{ll}\right]\ln{\frac{m_{l}^{2}}{\mu^{2}}}\right\},
U\displaystyle U^{\prime} =\displaystyle= S+112π{h,u|𝒩hu|2g(mh2mu2)+u,d|𝒱ud|2g(mu2md2)+d,l|𝒬dl|2g(md2ml2)\displaystyle-S^{\prime}+\frac{1}{12\pi}\left\{\sum_{h,u}\left|\mathcal{N}_{hu}\right|^{2}g\left(\frac{m_{h}^{2}}{m_{u}^{2}}\right)+\sum_{u,d}\left|\mathcal{V}_{ud}\right|^{2}g\left(\frac{m_{u}^{2}}{m_{d}^{2}}\right)+\sum_{d,l}\left|\mathcal{Q}_{dl}\right|^{2}g\left(\frac{m_{d}^{2}}{m_{l}^{2}}\right)\right.\hskip 19.91692pt (32aog)
+(12Qh)hhhln(mh2μ2)+u[(𝒩𝒩+𝒱𝒱)uu2Qu𝒰uu]ln(mu2μ2)\displaystyle+\left(1-2Q_{h}\right)\sum_{h}\mathcal{H}_{hh}\ln{\frac{m_{h}^{2}}{\mu^{2}}}+\sum_{u}\left[\left(\mathcal{N}^{\dagger}\mathcal{N}+\mathcal{V}\mathcal{V}^{\dagger}\right)_{uu}-2Q_{u}\mathcal{U}_{uu}\right]\ln{\frac{m_{u}^{2}}{\mu^{2}}}
+d[(𝒱𝒱+𝒬𝒬)dd+2Qd𝒟dd]ln(md2μ2)+(1+2Ql)lllln(ml2μ2)}.\displaystyle\left.+\sum_{d}\left[\left(\mathcal{V}^{\dagger}\mathcal{V}+\mathcal{Q}\mathcal{Q}^{\dagger}\right)_{dd}+2Q_{d}\mathcal{D}_{dd}\right]\ln{\frac{m_{d}^{2}}{\mu^{2}}}+\left(1+2Q_{l}\right)\sum_{l}\mathcal{L}_{ll}\ln{\frac{m_{l}^{2}}{\mu^{2}}}\right\}.

The function gg in lines (32aod), (32aod), and (32aog) is given in Eq. (23). In lines (32aod), (32aod), (32aog), and (32aog) μ\mu is the arbitrary mass introduced in Eqs. (20); SS^{\prime} and UU^{\prime} do not depend on the value of μ\mu, just as they do not depend on the divergent quantity of Eq. (C3).

5 Models with few parameters

We present in this section three examples of leptoquark models, each of them with two leptoquark multiplets and one mixing angle. For the sake of simplicity, for each model we only write down the expressions for the three original oblique parameters TT, SS^{\prime}, and UU^{\prime}. Note that we multiply the original Eqs. (32aj) and (32ao) by a factor 3 because of the three possible colours of each leptoquark.

5.1 (nσ,2,nσ,8,nδ,7,nδ,1,nτ,2)=(1,0,0,1,0)\left(n_{\sigma,-2},n_{\sigma,-8},n_{\delta,7},n_{\delta,1},n_{\tau,-2}\right)=\left(1,0,0,1,0\right)

There is one uu-type scalar with mass mum_{u} and there are two dd-type scalars with masses md1m_{d_{1}} and md2m_{d_{2}}. The matrices U2=1U_{2}=1, D1=(cθ,sθ)D_{1}=\left(c_{\theta},\ -s_{\theta}\right), and D2=(sθ,cθ)D_{2}=\left(s_{\theta},\ c_{\theta}\right), where θ\theta is a mixing angle. Therefore, the matrices 𝒩\mathcal{N}, 𝒬\mathcal{Q}, \mathcal{H}, and \mathcal{L} do not exist, 𝒱=(sθ,cθ)\mathcal{V}=\left(s_{\theta},\ c_{\theta}\right), 𝒰=1\mathcal{U}=1, and 𝒟=(sθ2cθsθcθsθcθ2)\mathcal{D}=\begin{pmatrix}s_{\theta}^{2}&c_{\theta}s_{\theta}\\ c_{\theta}s_{\theta}&c_{\theta}^{2}\end{pmatrix}. So,

T\displaystyle T =\displaystyle= 316πsW2mW2[sθ2θ+(mu2,md12)+cθ2θ+(mu2,md22)cθ2sθ2θ+(md12,md22)],\displaystyle\frac{3}{16\pi s_{W}^{2}m_{W}^{2}}\left[s_{\theta}^{2}\ \theta_{+}\left(m_{u}^{2},m_{d_{1}}^{2}\right)+c_{\theta}^{2}\ \theta_{+}\left(m_{u}^{2},m_{d_{2}}^{2}\right)-c_{\theta}^{2}s_{\theta}^{2}\ \theta_{+}\left(m_{d_{1}}^{2},m_{d_{2}}^{2}\right)\right], (32apa)
S\displaystyle S^{\prime} =\displaystyle= 112π[3cθ2sθ2g(md12md22)+sθ2ln(md12mu2)+cθ2ln(md22mu2)],\displaystyle\frac{1}{12\pi}\left[3\,c_{\theta}^{2}s_{\theta}^{2}\ g\left(\frac{m_{d_{1}}^{2}}{m_{d_{2}}^{2}}\right)+s_{\theta}^{2}\,\ln{\frac{m_{d_{1}}^{2}}{m_{u}^{2}}}+c_{\theta}^{2}\,\ln{\frac{m_{d_{2}}^{2}}{m_{u}^{2}}}\right], (32apb)
U\displaystyle U^{\prime} =\displaystyle= 14π[sθ2g(mu2md12)+cθ2g(mu2md22)cθ2sθ2g(md12md22)].\displaystyle\frac{1}{4\pi}\left[s_{\theta}^{2}\,g\left(\frac{m_{u}^{2}}{m_{d_{1}}^{2}}\right)+c_{\theta}^{2}\,g\left(\frac{m_{u}^{2}}{m_{d_{2}}^{2}}\right)-c_{\theta}^{2}s_{\theta}^{2}\ g\left(\frac{m_{d_{1}}^{2}}{m_{d_{2}}^{2}}\right)\right]. (32apc)

5.2 (nσ,2,nσ,8,nδ,7,nδ,1,nτ,2)=(0,0,1,1,0)\left(n_{\sigma,-2},n_{\sigma,-8},n_{\delta,7},n_{\delta,1},n_{\tau,-2}\right)=\left(0,0,1,1,0\right)

The is one hh-type leptoquark with mass mhm_{h}, one dd-type leptoquark with mass mdm_{d}, and two up-type leptoquarks with masses mu1m_{u1} and mu2m_{u2}. The matrices U3U_{3}, D1D_{1}, D3D_{3}, L1L_{1}, and L2L_{2} do not exist; the matrices H1=D2=1H_{1}=D_{2}=1 are just numbers. We have 𝒩=U1=(cθ,sθ)\mathcal{N}=U_{1}=\left(c_{\theta},\ -s_{\theta}\right) and 𝒱=U2=(sθ,cθ)\mathcal{V}^{\dagger}=U_{2}=\left(s_{\theta},\ c_{\theta}\right); the matrices 𝒬\mathcal{Q} and \mathcal{L} do not exist, =𝒟=1\mathcal{H}=\mathcal{D}=1, and 𝒰=(sθ2cθ22sθcθ2sθcθcθ2sθ2)\mathcal{U}=\left(\begin{array}[]{cc}s_{\theta}^{2}-c_{\theta}^{2}&2s_{\theta}c_{\theta}\\ 2s_{\theta}c_{\theta}&c_{\theta}^{2}-s_{\theta}^{2}\end{array}\right). So,

T\displaystyle T =\displaystyle= 316πsW2mW2{cθ2[θ+(mh2,mu12)+θ+(mu22,md2)]+sθ2[θ+(mh2,mu22)+θ+(mu12,md2)]\displaystyle\frac{3}{16\pi s_{W}^{2}m_{W}^{2}}\left\{c_{\theta}^{2}\left[\theta_{+}\left(m_{h}^{2},m_{u1}^{2}\right)+\theta_{+}\left(m_{u2}^{2},m_{d}^{2}\right)\right]+s_{\theta}^{2}\left[\theta_{+}\left(m_{h}^{2},m_{u2}^{2}\right)+\theta_{+}\left(m_{u1}^{2},m_{d}^{2}\right)\right]\right. (32asa)
4cθ2sθ2θ+(mu12,mu22)},\displaystyle\left.-4c_{\theta}^{2}s_{\theta}^{2}\,\theta_{+}\left(m_{u1}^{2},m_{u2}^{2}\right)\right\},
S\displaystyle S^{\prime} =\displaystyle= cθ2sθ2πg(mu12mu22)+112π(7ln(mu12mh2)+ln(md2mu22)+8sθ2ln(mu22mu12)),\displaystyle\frac{c_{\theta}^{2}s_{\theta}^{2}}{\pi}\,g\left(\frac{m_{u1}^{2}}{m_{u2}^{2}}\right)+\frac{1}{12\pi}\left(7\ln{\frac{m_{u1}^{2}}{m_{h}^{2}}}+\ln{\frac{m_{d}^{2}}{m_{u2}^{2}}}+8s_{\theta}^{2}\,\ln{\frac{m_{u2}^{2}}{m_{u1}^{2}}}\right), (32asb)
U\displaystyle U^{\prime} =\displaystyle= 14π{cθ2[g(mh2mu12)+g(mu22md2)]+sθ2[g(mh2mu22)+g(mu12md2)]4cθ2sθ2g(mu12mu22)}.\displaystyle\frac{1}{4\pi}\left\{c_{\theta}^{2}\left[g\left(\frac{m_{h}^{2}}{m_{u1}^{2}}\right)+g\left(\frac{m_{u2}^{2}}{m_{d}^{2}}\right)\right]+s_{\theta}^{2}\left[g\left(\frac{m_{h}^{2}}{m_{u2}^{2}}\right)+g\left(\frac{m_{u1}^{2}}{m_{d}^{2}}\right)\right]-4c_{\theta}^{2}s_{\theta}^{2}\,g\left(\frac{m_{u1}^{2}}{m_{u2}^{2}}\right)\right\}.

5.3 (nσ,2,nσ,8,nδ,7,nδ,1,nτ,2)=(0,0,1,0,1)\left(n_{\sigma,-2},n_{\sigma,-8},n_{\delta,7},n_{\delta,1},n_{\tau,-2}\right)=\left(0,0,1,0,1\right)

There are one hh-type leptoquark with mass mhm_{h}, two up-type leptoquarks with masses mu1m_{u1} and mu2m_{u2}, respectively, one dd-type leptoquark with mass mdm_{d}, and one ll-type leptoquark with mass mlm_{l}. The matrices U2U_{2}, D1D_{1}, D2D_{2}, and L1L_{1} do not exist; the matrices H1=D3=L2=1H_{1}=D_{3}=L_{2}=1 are just numbers, while 𝒩=U1=(cθ,sθ)\mathcal{N}=U_{1}=\left(c_{\theta},\ -s_{\theta}\right) and 𝒱/2=U3=(sθ,cθ)\mathcal{V}^{\dagger}\left/\sqrt{2}\right.=U_{3}=\left(s_{\theta},\ c_{\theta}\right). The matrix 𝒬=2\mathcal{Q}=\sqrt{2} is a number. Furthermore, =1\mathcal{H}=1, 𝒟=0\mathcal{D}=0, =2\mathcal{L}=2, and 𝒰=(3sθ213sθcθ3sθcθ3cθ21)\mathcal{U}=\left(\begin{array}[]{cc}3s_{\theta}^{2}-1&3s_{\theta}c_{\theta}\\ 3s_{\theta}c_{\theta}&3c_{\theta}^{2}-1\end{array}\right). So,

T\displaystyle T =\displaystyle= 316πsW2mW2{cθ2[θ+(mh2,mu12)+2θ+(mu22,md2)]\displaystyle\frac{3}{16\pi s_{W}^{2}m_{W}^{2}}\left\{c_{\theta}^{2}\left[\theta_{+}\left(m_{h}^{2},m_{u1}^{2}\right)+2\,\theta_{+}\left(m_{u2}^{2},m_{d}^{2}\right)\right]\right. (32ava)
+sθ2[θ+(mh2,mu22)+2θ+(mu12,md2)]\displaystyle+s_{\theta}^{2}\left[\theta_{+}\left(m_{h}^{2},m_{u2}^{2}\right)+2\,\theta_{+}\left(m_{u1}^{2},m_{d}^{2}\right)\right]
+2θ+(md2,ml2)9cθ2sθ2θ+(mu12,mu22)},\displaystyle\left.+2\,\theta_{+}\left(m_{d}^{2},m_{l}^{2}\right)-9c_{\theta}^{2}s_{\theta}^{2}\,\theta_{+}\left(m_{u1}^{2},m_{u2}^{2}\right)\right\},
S\displaystyle S^{\prime} =\displaystyle= 9cθ2sθ24πg(mu12mu22)+112π(7ln(mu12mh2)+4ln(mu22ml2)+3sθ2ln(mu22mu12)),\displaystyle\frac{9c_{\theta}^{2}s_{\theta}^{2}}{4\pi}\,g\left(\frac{m_{u1}^{2}}{m_{u2}^{2}}\right)+\frac{1}{12\pi}\left(7\ln{\frac{m_{u1}^{2}}{m_{h}^{2}}}+4\ln{\frac{m_{u2}^{2}}{m_{l}^{2}}}+3s_{\theta}^{2}\,\ln{\frac{m_{u2}^{2}}{m_{u1}^{2}}}\right), (32avb)
U\displaystyle U^{\prime} =\displaystyle= 14π{cθ2[g(mh2mu12)+2g(mu22md2)]+sθ2[g(mh2mu22)+2g(mu12md2)]\displaystyle\frac{1}{4\pi}\left\{c_{\theta}^{2}\left[g\left(\frac{m_{h}^{2}}{m_{u1}^{2}}\right)+2g\left(\frac{m_{u2}^{2}}{m_{d}^{2}}\right)\right]+s_{\theta}^{2}\left[g\left(\frac{m_{h}^{2}}{m_{u2}^{2}}\right)+2g\left(\frac{m_{u1}^{2}}{m_{d}^{2}}\right)\right]\right. (32avc)
+2g(ml2md2)9cθ2sθ2g(mu12mu22)}+12π(sθ2ln(md2mu12)+cθ2ln(md2mu22)+ln(md2ml2)).\displaystyle\left.+2g\left(\frac{m_{l}^{2}}{m_{d}^{2}}\right)-9c_{\theta}^{2}s_{\theta}^{2}\,g\left(\frac{m_{u1}^{2}}{m_{u2}^{2}}\right)\right\}+\frac{1}{2\pi}\left(s_{\theta}^{2}\ln{\frac{m_{d}^{2}}{m_{u1}^{2}}}+c_{\theta}^{2}\ln{\frac{m_{d}^{2}}{m_{u2}^{2}}}+\ln{\frac{m_{d}^{2}}{m_{l}^{2}}}\right).

6 Generalization

In this section we generalize the formulas that we derived for leptoquarks. We consider a set of NP physical scalars with any electric charges, making the provisos that none of the new scalars has vacuum expectation value and that they do not mix with the scalars of the SM. Also, we assume that all the new scalar fields are complex.

We consider a set of physical New Physics scalars ss that have electric charges QsQ_{s} (i.e. each ss has a corresponding QsQ_{s}) which differ among themselves by integers.131313If in the NP model under consideration there are physical scalars with electric charges that differ among themselves by non-integer values, then they must be treated separately. For instance, a set of NP scalars with electric charges 5/35/3, 2/32/3, 1/3-1/3, and 4/3-4/3 (like the leptoquarks) must be treated separately from a set of NP scalars with electric charges 33, 22, and 11. The charges QsQ_{s} may be either positive or negative.

We place all the scalars of each set in a column vector, ordering the scalars by their decreasing electric charges; this vector generalizes the vector

(hudl)\left(\begin{array}[]{c}h\\ u\\ d\\ l\end{array}\right) (32ba)

wherein sit the nh+nu+nd+nln_{h}+n_{u}+n_{d}+n_{l} leptoquarks of Section 2.

The column vector of the previous paragraph must constitute a—in general, reducible—representation of the gauge group SU(2)SU(2). Therefore, the following operators, represented by matrices, act on it:

  1. 1.

    The operator M=2T+M=\sqrt{2}\,T_{+}, where T+T_{+} is the raising operator of the gauge group SU(2)SU(2).

  2. 2.

    The operator M=2TM^{\dagger}=\sqrt{2}\,T_{-}, where TT_{-} is the lowering operator of SU(2)SU(2).

  3. 3.

    The Hermitian operator M¯2T3\bar{M}\equiv 2T_{3}, where T3T_{3} is the third generator of SU(2)SU(2).

Since the algebra of SU(2)SU(2) has T3=[T+,T]T_{3}=\left[T_{+},T_{-}\right],

M¯=MMMM.\bar{M}=MM^{\dagger}-M^{\dagger}M. (32bb)

The three operators are, of course, represented by matrices that act on the column vector. The matrix MM is off-diagonal: it only has nonzero matrix elements MssM_{ss^{\prime}} for Qs=Qs1Q_{s^{\prime}}=Q_{s}-1. Conversely, the nonzero matrix elements (M)ss\left(M^{\dagger}\right)_{ss^{\prime}} only occur for Qs=Qs1Q_{s}=Q_{s^{\prime}}-1. The matrix M¯\bar{M} only has nonzero matrix elements M¯ss\bar{M}_{ss^{\prime}} when Qs=QsQ_{s^{\prime}}=Q_{s}. Since the scalars in the column vector are ordered by decreasing electric charges, one has

M=(0M1000000M2000000M30000000Mn000000).M=\left(\begin{array}[]{ccccccc}0&M_{1}&0&0&\cdots&0&0\\ 0&0&M_{2}&0&\cdots&0&0\\ 0&0&0&M_{3}&\cdots&0&0\\ \vdots&\vdots&\vdots&\vdots&\ddots&\vdots&\vdots\\ 0&0&0&0&\cdots&0&M_{n}\\ 0&0&0&0&\cdots&0&0\end{array}\right). (32bi)

For instance, in our leptoquark model we had M1=𝒩M_{1}=\mathcal{N}, M2=𝒱M_{2}=\mathcal{V}, and M3=𝒬M_{3}=\mathcal{Q}. Clearly then,

M¯=(M1M100000M2M2M1M1000000MnMnMn1Mn100000MnMn).\bar{M}=\left(\begin{array}[]{cccccc}M_{1}M_{1}^{\dagger}&0&0&\cdots&0&0\\ 0&M_{2}M_{2}^{\dagger}-M_{1}^{\dagger}M_{1}&0&\cdots&0&0\\ \vdots&\vdots&\vdots&\ddots&\vdots&\vdots\\ 0&0&0&\cdots&M_{n}M_{n}^{\dagger}-M_{n-1}^{\dagger}M_{n-1}&0\\ 0&0&0&\cdots&0&-M_{n}^{\dagger}M_{n}\end{array}\right). (32bo)

The electric-charge operator is given in this basis by

Q=(Q1×𝟙00000Q2×𝟙000000Qn×𝟙00000Qn+1×𝟙),Q=\left(\begin{array}[]{cccccc}Q_{1}\times\mathbbm{1}&0&0&\cdots&0&0\\ 0&Q_{2}\times\mathbbm{1}&0&\cdots&0&0\\ \vdots&\vdots&\vdots&\ddots&\vdots&\vdots\\ 0&0&0&\cdots&Q_{n}\times\mathbbm{1}&0\\ 0&0&0&\cdots&0&Q_{n+1}\times\mathbbm{1}\end{array}\right), (32bu)

where the unit matrices 𝟙\mathbbm{1} have the appropriate dimensions, which may not all be equal. Note that

Q1=Q2+1==Qn+(n1)=Qn+1+n.Q_{1}=Q_{2}+1=\cdots=Q_{n}+\left(n-1\right)=Q_{n+1}+n. (32bv)

One must also take into account the SU(2)SU(2) commutation relation [T3,T+]=T+\left[T_{3},T_{+}\right]=T_{+}. With T3=M¯/2T_{3}=\bar{M}/2 and T+=M/2T_{+}=M\left/\sqrt{2}\right., it yields [M¯,M]=2M\left[\bar{M},M\right]=2M. Hence, the submatrices in Eq. (32bi) are related by

2M1\displaystyle 2M_{1} =\displaystyle= 2M1M1M1M1M2M2,\displaystyle 2M_{1}M_{1}^{\dagger}M_{1}-M_{1}M_{2}M_{2}^{\dagger}, (32bwa)
2M2\displaystyle 2M_{2} =\displaystyle= 2M2M2M2M1M1M2M2M3M3,\displaystyle 2M_{2}M_{2}^{\dagger}M_{2}-M_{1}^{\dagger}M_{1}M_{2}-M_{2}M_{3}M_{3}^{\dagger}, (32bwb)
\displaystyle\vdots \displaystyle\vdots
2Mn1\displaystyle 2M_{n-1} =\displaystyle= 2Mn1Mn1Mn1Mn2Mn2Mn1Mn1MnMn,\displaystyle 2M_{n-1}M_{n-1}^{\dagger}M_{n-1}-M_{n-2}^{\dagger}M_{n-2}M_{n-1}-M_{n-1}M_{n}M_{n}^{\dagger}, (32bwc)
2Mn\displaystyle 2M_{n} =\displaystyle= 2MnMnMnMn1Mn1Mn.\displaystyle 2M_{n}M_{n}^{\dagger}M_{n}-M_{n-1}^{\dagger}M_{n-1}M_{n}. (32bwd)

The gauge-kinetic Lagrangian for the NP scalars is

\displaystyle\mathcal{L} =\displaystyle= s(μs+igsWAμQssig2cWZμsFsss\displaystyle\sum_{s}\left(\partial_{\mu}s+igs_{W}A_{\mu}Q_{s}s-i\,\frac{g}{2c_{W}}\,Z_{\mu}\sum_{s^{\prime}}F_{ss^{\prime}}s^{\prime}\right. (32bxb)
ig2Wμ+sMsssig2WμsMsss)\displaystyle\left.-i\,\frac{g}{\sqrt{2}}\,W_{\mu}^{+}\sum_{s^{\prime}}M_{ss^{\prime}}s^{\prime}-i\,\frac{g}{\sqrt{2}}\,W_{\mu}^{-}\sum_{s^{\prime}}M^{\dagger}_{ss^{\prime}}s^{\prime}\right)
×(μsigsWAμQss+ig2cWZμs′′Fss′′s′′\displaystyle\times\left(\partial^{\mu}s^{\ast}-igs_{W}A^{\mu}Q_{s}s^{\ast}+i\,\frac{g}{2c_{W}}\,Z^{\mu}\sum_{s^{\prime\prime}}F^{\ast}_{ss^{\prime\prime}}{s^{\prime\prime}}^{\ast}\right.
+ig2Wμs′′Mss′′s′′+ig2Wμ+s′′Mss′′Ts′′),\displaystyle\left.+i\,\frac{g}{\sqrt{2}}\,W^{\mu-}\sum_{s^{\prime\prime}}M^{\ast}_{ss^{\prime\prime}}{s^{\prime\prime}}^{\ast}+i\,\frac{g}{\sqrt{2}}\,W^{\mu+}\sum_{s^{\prime\prime}}M^{T}_{ss^{\prime\prime}}{s^{\prime\prime}}^{\ast}\right),

where

FssM¯ss2sW2Qsδss.F_{ss^{\prime}}\equiv\bar{M}_{ss^{\prime}}-2s_{W}^{2}Q_{s}\delta_{ss^{\prime}}. (32by)

The Lagrangian (32bx) produces the following interactions of the scalars with the photons:

ASS\displaystyle\mathcal{L}_{ASS} =\displaystyle= igsWAθsQs(sθssθs)\displaystyle igs_{W}A_{\theta}\sum_{s}Q_{s}\left(s\partial^{\theta}s^{\ast}-s^{\ast}\partial^{\theta}s\right) (32bza)
AASS\displaystyle\mathcal{L}_{AASS} =\displaystyle= g2sW2AθAθsQs2ss.\displaystyle g^{2}s_{W}^{2}A_{\theta}A^{\theta}\sum_{s}Q_{s}^{2}\,ss^{\ast}. (32bzb)

It also produces interactions of the scalars with the WW gauge bosons, given by

WSS\displaystyle\mathcal{L}_{WSS} =\displaystyle= ig2s,s[Wθ+Mss(sθssθs)+Wθ(M)ss(sθssθs)],\displaystyle i\,\frac{g}{\sqrt{2}}\,\sum_{s,s^{\prime}}\left[\vphantom{\left(M^{\dagger}\right)_{ss^{\prime}}}W_{\theta}^{+}M_{ss^{\prime}}\left(s^{\ast}\partial^{\theta}s^{\prime}-s^{\prime}\partial^{\theta}s^{\ast}\right)+W_{\theta}^{-}\left(M^{\dagger}\right)_{ss^{\prime}}\left(s^{\ast}\partial^{\theta}s^{\prime}-s^{\prime}\partial^{\theta}s^{\ast}\right)\right],\hskip 19.91692pt (32caa)
WWSS\displaystyle\mathcal{L}_{WWSS} =\displaystyle= g22Wθ+Wθs,s(MM+MM)ssss.\displaystyle\frac{g^{2}}{2}\,W_{\theta}^{+}W^{\theta-}\sum_{s,s^{\prime}}\left(MM^{\dagger}+M^{\dagger}M\right)_{ss^{\prime}}s^{\ast}s^{\prime}. (32cab)

The interactions of the scalars with the ZZ are given by

ZSS\displaystyle\mathcal{L}_{ZSS} =\displaystyle= ig2cWZθs,sFss(sθssθs),\displaystyle i\,\frac{g}{2c_{W}}\,Z_{\theta}\sum_{s,s^{\prime}}F_{ss^{\prime}}\left(s^{\ast}\partial^{\theta}s^{\prime}-s^{\prime}\partial^{\theta}s^{\ast}\right), (32cba)
ZZSS\displaystyle\mathcal{L}_{ZZSS} =\displaystyle= g24cW2ZθZθs,s(F2)ssss.\displaystyle\frac{g^{2}}{4c_{W}^{2}}\,Z_{\theta}Z^{\theta}\sum_{s,s^{\prime}}\left(F^{2}\right)_{ss^{\prime}}s^{\ast}s^{\prime}. (32cbb)

Last but not least, there is the ‘seagull’ interaction of a photon and a ZZ with two scalars, given by

AZSS=g2sWcWAθZθs,sQsFssss.\mathcal{L}_{AZSS}=-\frac{g^{2}s_{W}}{c_{W}}\,A_{\theta}Z^{\theta}\sum_{s,s^{\prime}}Q_{s}F_{ss^{\prime}}s^{\ast}s^{\prime}. (32cc)

Therefore,

Aγγ(q2)\displaystyle A_{\gamma\gamma}\left(q^{2}\right) =\displaystyle= g2sW24π2sQs2[B00(q2,ms2,ms2)A0(ms2)2],\displaystyle\frac{g^{2}s_{W}^{2}}{4\pi^{2}}\,\sum_{s}\,Q_{s}^{2}\left[B_{00}\left(q^{2},m_{s}^{2},m_{s}^{2}\right)-\frac{A_{0}\left(m_{s}^{2}\right)}{2}\right], (32cda)
AγZ(q2)\displaystyle A_{\gamma Z}\left(q^{2}\right) =\displaystyle= g2sW8π2cWsQsFss[B00(q2,ms2,ms2)A0(ms2)2],\displaystyle-\frac{g^{2}s_{W}}{8\pi^{2}c_{W}}\,\sum_{s}\,Q_{s}F_{ss}\left[B_{00}\left(q^{2},m_{s}^{2},m_{s}^{2}\right)-\frac{A_{0}\left(m_{s}^{2}\right)}{2}\right], (32cdb)
AZZ(q2)\displaystyle A_{ZZ}\left(q^{2}\right) =\displaystyle= g216π2cW2[s,s|Fss|2B00(q2,ms2,ms2)s(F2)ssA0(ms2)2],\displaystyle\frac{g^{2}}{16\pi^{2}c_{W}^{2}}\left[\sum_{s,s^{\prime}}\left|F_{ss^{\prime}}\right|^{2}B_{00}\left(q^{2},m_{s}^{2},m_{s^{\prime}}^{2}\right)-\sum_{s}\left(F^{2}\right)_{ss}\frac{A_{0}\left(m_{s}^{2}\right)}{2}\right], (32cdc)
AWW(q2)\displaystyle A_{WW}\left(q^{2}\right) =\displaystyle= g28π2[ss|Mss|2B00(q2,ms2,ms2)s(MM+MM)ssA0(ms2)4].\displaystyle\frac{g^{2}}{8\pi^{2}}\left[\sum_{ss^{\prime}}\left|M_{ss^{\prime}}\right|^{2}B_{00}\left(q^{2},m_{s}^{2},m_{s^{\prime}}^{2}\right)-\sum_{s}\left(MM^{\dagger}+M^{\dagger}M\right)_{ss}\frac{A_{0}\left(m_{s}^{2}\right)}{4}\right].

It immediately follows that

T\displaystyle T =\displaystyle= 12πsW2mW2[s,s|Mss|2B00(0,ms2,ms2)s(MM+MM)ssA0(ms2)4\displaystyle\frac{1}{2\pi s_{W}^{2}m_{W}^{2}}\left[\sum_{s,s^{\prime}}\left|M_{ss^{\prime}}\right|^{2}B_{00}\left(0,m_{s}^{2},m_{s^{\prime}}^{2}\right)-\sum_{s}\left(MM^{\dagger}+M^{\dagger}M\right)_{ss}\frac{A_{0}\left(m_{s}^{2}\right)}{4}\right. (32ce)
12s,s|Fss|2B00(0,ms2,ms2)+s(F2)ssA0(ms2)4],\displaystyle\left.-\frac{1}{2}\,\sum_{s,s^{\prime}}\left|F_{ss^{\prime}}\right|^{2}B_{00}\left(0,m_{s}^{2},m_{s^{\prime}}^{2}\right)+\sum_{s}\left(F^{2}\right)_{ss}\frac{A_{0}\left(m_{s}^{2}\right)}{4}\right],

where we have used cW2mZ2=mW2c_{W}^{2}m_{Z}^{2}=m_{W}^{2}. Employing Eq. (24), one obtains

T=116πsW2mW2[s,s|Mss|2θ+(ms2,ms2)s<s|M¯ss|2θ+(ms2,ms2)].T=\frac{1}{16\pi s_{W}^{2}m_{W}^{2}}\left[\sum_{s,s^{\prime}}\left|M_{ss^{\prime}}\right|^{2}\theta_{+}\left(m_{s}^{2},m_{s^{\prime}}^{2}\right)-\sum_{s<s^{\prime}}\left|\bar{M}_{ss^{\prime}}\right|^{2}\theta_{+}\left(m_{s}^{2},m_{s^{\prime}}^{2}\right)\right]. (32cf)

One furthermore obtains

V\displaystyle V =\displaystyle= 18πcW2sW2s,s|Fss|2ρ(ms2mZ2,ms2mZ2),\displaystyle\frac{1}{8\pi c_{W}^{2}s_{W}^{2}}\,\sum_{s,s^{\prime}}\left|F_{ss^{\prime}}\right|^{2}\rho\left(\frac{m_{s}^{2}}{m_{Z}^{2}},\frac{m_{s^{\prime}}^{2}}{m_{Z}^{2}}\right), (32cga)
W\displaystyle W =\displaystyle= 14πsW2s,s|Mss|2ρ(ms2mW2,ms2mW2),\displaystyle\frac{1}{4\pi s_{W}^{2}}\,\sum_{s,s^{\prime}}\left|M_{ss^{\prime}}\right|^{2}\rho\left(\frac{m_{s}^{2}}{m_{W}^{2}},\frac{m_{s^{\prime}}^{2}}{m_{W}^{2}}\right), (32cgb)

and

S′′\displaystyle S^{\prime\prime} =\displaystyle= 12πs,s|Fss|2ζ(ms2mZ2,ms2mZ2),\displaystyle-\frac{1}{2\pi}\,\sum_{s,s^{\prime}}\left|F_{ss^{\prime}}\right|^{2}\,\zeta\left(\frac{m_{s}^{2}}{m_{Z}^{2}},\frac{m_{s^{\prime}}^{2}}{m_{Z}^{2}}\right), (32cha)
U′′\displaystyle U^{\prime\prime} =\displaystyle= S′′1πs,s|Mss|2ζ(ms2mW2,ms2mW2),\displaystyle-S^{\prime\prime}-\frac{1}{\pi}\,\sum_{s,s^{\prime}}\left|M_{ss^{\prime}}\right|^{2}\,\zeta\left(\frac{m_{s}^{2}}{m_{W}^{2}},\frac{m_{s^{\prime}}^{2}}{m_{W}^{2}}\right), (32chb)
X\displaystyle X =\displaystyle= 14πsQsFssζ(ms2mZ2,ms2mZ2).\displaystyle-\frac{1}{4\pi}\,\sum_{s}Q_{s}F_{ss}\ \zeta\left(\frac{m_{s}^{2}}{m_{Z}^{2}},\frac{m_{s}^{2}}{m_{Z}^{2}}\right). (32chc)

On the other hand,

S=1πs,s|M¯ss|2B00(0,ms2,ms2)2πsQsM¯ssB00(0,ms2,ms2)S^{\prime}=\frac{1}{\pi}\,\sum_{s,s^{\prime}}\left|\bar{M}_{ss^{\prime}}\right|^{2}B_{00}^{\prime}\left(0,m_{s}^{2},m_{s^{\prime}}^{2}\right)-\frac{2}{\pi}\,\sum_{s}Q_{s}\bar{M}_{ss}\,B_{00}^{\prime}\left(0,m_{s}^{2},m_{s}^{2}\right) (32ci)

and

U=S+2π[s,s|Mss|2B00(0,ms2,ms2)sQsM¯ssB00(0,ms2,ms2)].U^{\prime}=-S^{\prime}+\frac{2}{\pi}\left[\sum_{s,s^{\prime}}\left|M_{ss^{\prime}}\right|^{2}B_{00}^{\prime}\left(0,m_{s}^{2},m_{s^{\prime}}^{2}\right)-\sum_{s}Q_{s}\bar{M}_{ss}B_{00}^{\prime}\left(0,m_{s}^{2},m_{s}^{2}\right)\right]. (32cj)

In order to establish the finiteness of SS^{\prime} and of S+US^{\prime}+U^{\prime} we have to make sure that

0\displaystyle 0 =\displaystyle= s,s|M¯ss|22sQsM¯ss,\displaystyle\sum_{s,s^{\prime}}\left|\bar{M}_{ss^{\prime}}\right|^{2}-2\,\sum_{s}Q_{s}\bar{M}_{ss}, (32cka)
0\displaystyle 0 =\displaystyle= d,s|Mss|2sQsM¯ss,\displaystyle\sum_{d,s^{\prime}}\left|M_{ss^{\prime}}\right|^{2}-\sum_{s}Q_{s}\bar{M}_{ss}, (32ckb)

respectively. Now,

s,s|Mss|2\displaystyle\sum_{s,s^{\prime}}\left|M_{ss^{\prime}}\right|^{2} =\displaystyle= tr(MM)\displaystyle\mathrm{tr}\left(MM^{\dagger}\right) (32cla)
=\displaystyle= tr(M1M1+M2M2++MnMn),\displaystyle\mathrm{tr}\left(M_{1}M_{1}^{\dagger}+M_{2}M_{2}^{\dagger}+\cdots+M_{n}M_{n}^{\dagger}\right),
sQsM¯ss\displaystyle\sum_{s}Q_{s}\bar{M}_{ss} =\displaystyle= tr(QM¯)\displaystyle\mathrm{tr}\left(Q\bar{M}\right) (32clb)
=\displaystyle= tr[Q1M1M1+Q2(M2M2M1M1)+\displaystyle\mathrm{tr}\left[Q_{1}M_{1}M_{1}^{\dagger}+Q_{2}\left(M_{2}M_{2}^{\dagger}-M_{1}^{\dagger}M_{1}\right)+\cdots\right.
+Qn(MnMnMn1Mn1)Qn+1MnMn]\displaystyle\left.+Q_{n}\left(M_{n}M_{n}^{\dagger}-M_{n-1}^{\dagger}M_{n-1}\right)-Q_{n+1}M_{n}^{\dagger}M_{n}\right]
=\displaystyle= tr[(Q1Q2)M1M1+(Q2Q3)M2M2+\displaystyle\mathrm{tr}\left[\left(Q_{1}-Q_{2}\right)M_{1}M_{1}^{\dagger}+\left(Q_{2}-Q_{3}\right)M_{2}M_{2}^{\dagger}+\cdots\right.
+(QnQn+1)MnMn],\displaystyle\left.+\left(Q_{n}-Q_{n+1}\right)M_{n}M_{n}^{\dagger}\right],

which proves Eq. (32ckb), because Q1Q2=Q2Q3==QnQn+1=1Q_{1}-Q_{2}=Q_{2}-Q_{3}=\cdots=Q_{n}-Q_{n+1}=1. Moreover,

s,s|M¯ss|2\displaystyle\sum_{s,s^{\prime}}\left|\bar{M}_{ss^{\prime}}\right|^{2} =\displaystyle= tr(M¯2)\displaystyle\mathrm{tr}\left(\bar{M}^{2}\right) (32cmb)
=\displaystyle= tr[(M1M1)2+(M2M2M1M1)2+(M3M3M2M2)2+\displaystyle\mathrm{tr}\left[\left(M_{1}M_{1}^{\dagger}\right)^{2}+\left(M_{2}M_{2}^{\dagger}-M_{1}^{\dagger}M_{1}\right)^{2}+\left(M_{3}M_{3}^{\dagger}-M_{2}^{\dagger}M_{2}\right)^{2}+\cdots\right.
+(MnMnMn1Mn1)2+(MnMn)2]\displaystyle\left.+\left(M_{n}M_{n}^{\dagger}-M_{n-1}^{\dagger}M_{n-1}\right)^{2}+\left(-M_{n}^{\dagger}M_{n}\right)^{2}\right]
=\displaystyle= 2tr(M1M1+M2M2+M3M3++Mn1Mn1+MnMn),\displaystyle 2\,\mathrm{tr}\left(M_{1}M_{1}^{\dagger}+M_{2}M_{2}^{\dagger}+M_{3}M_{3}^{\dagger}+\cdots+M_{n-1}M_{n-1}^{\dagger}+M_{n}M_{n}^{\dagger}\right), (32cmc)

because of Eqs. (32bw). Therefore, using Eq. (32clb), we see that Eq. (32cka) is also true.

Employing Eq. (22) on Eqs. (32ci) and (32cj), one at last obtains

S\displaystyle S^{\prime} =\displaystyle= 124π{s,s|M¯ss|2g(ms2ms2)+2s[(M¯2)ss2QsM¯ss]ln(ms2)},\displaystyle\frac{1}{24\pi}\left\{\sum_{s,s^{\prime}}\left|\bar{M}_{ss^{\prime}}\right|^{2}g\left(\frac{m_{s}^{2}}{m_{s^{\prime}}^{2}}\right)+2\,\sum_{s}\left[\left(\bar{M}^{2}\right)_{ss}-2Q_{s}\bar{M}_{ss}\right]\ln{m_{s}^{2}}\right\}, (32cna)
U\displaystyle U^{\prime} =\displaystyle= S+112π{s,s|Mss|2g(ms2ms2)+s[(MM+MM)ss2QsM¯ss]ln(ms2)}.\displaystyle-S^{\prime}+\frac{1}{12\pi}\left\{\sum_{s,s^{\prime}}\left|M_{ss^{\prime}}\right|^{2}g\left(\frac{m_{s}^{2}}{m_{s^{\prime}}^{2}}\right)+\sum_{s}\left[\left(MM^{\dagger}+M^{\dagger}M\right)_{ss}-2Q_{s}\bar{M}_{ss}\right]\ln{m_{s}^{2}}\right\}.

7 Conclusions

In this paper we have derived general formulas for the oblique parameters in a model with an arbitrary number of scalar leptoquarks. Those formulas include the mixing matrices 𝒩\mathcal{N}, 𝒱\mathcal{V}, and 𝒬\mathcal{Q} that appear in the charged current of Eq. (19c); and also the matrices H¯\bar{H}, U¯\bar{U}, D¯\bar{D}, and L¯\bar{L} that are derived from 𝒩\mathcal{N}, 𝒱\mathcal{V}, and 𝒬\mathcal{Q} through Eqs. (17) and (18). The final formulas for the oblique parameters are TT given by Eq. (32aj), VV and WW given by Eqs. (32ak), XX given by Eq. (32al), and SS and UU given by Eqs. (32am) and (32ao). The relevant functions gg, θ+\theta_{+}, ρ\rho, and ζ\zeta are given by Eqs. (23), (25), (27), and (31), respectively.

We have then considered the more general situation where the New Physics is constituted by (complex) physical scalars ss that originate in arbitrary representations of the gauge group; those scalars are allowed to freely mix among themselves, but not to mix with the scalar doublet of the SM. In this case the fundamental mixing matrix is MM that appears in Eq. (32ca); therefrom one derives M¯\bar{M} in Eq. (32bb) and FF in Eq. (32by). The final results for the oblique parameters are then given in Eqs. (32cf), (32cg), (32ch), and (32cn).

Acknowledgements:

The authors thank the Portuguese Foundation for Science and Technology for support through the projects UIDB/00777/2020, UIDP/00777/2020, and CERN/FIS-PAR/0002/2021. The work of F.A. was furthermore supported by grant UI/BD/153763/2022. The work of L.L. was furthermore supported by project CERN/FIS-PAR/0019/2021.

Appendix A Parameter counting

In our leptoquark models the total number of parameters is ntotal=nmasses+nmixingsn_{\mathrm{total}}=n_{\mathrm{masses}}+n_{\mathrm{mixings}}. Here,

nmasses\displaystyle n_{\mathrm{masses}} =\displaystyle= nh+nu+nd+nl\displaystyle n_{h}+n_{u}+n_{d}+n_{l} (A1)
=\displaystyle= nδ,7+(nδ,7+nδ,1+nτ,2)+(nσ,2+nδ,1+nτ,2)+(nσ,8+nτ,2)\displaystyle n_{\delta,7}+\left(n_{\delta,7}+n_{\delta,1}+n_{\tau,-2}\right)+\left(n_{\sigma,-2}+n_{\delta,1}+n_{\tau,-2}\right)+\left(n_{\sigma,-8}+n_{\tau,-2}\right)\hskip 14.22636pt

is the total number of distinct leptoquark masses; nmixingsn_{\mathrm{mixings}} is the number of independent parameters in the mixing matrices. The latter may be computed as follows.

Since the matrices \mathcal{H}, 𝒰\mathcal{U}, 𝒟\mathcal{D}, and \mathcal{L} may be derived fom the matrices 𝒩\mathcal{N}, 𝒱\mathcal{V}, and 𝒬\mathcal{Q} through Eqs. (17) and (18), in order to know nmixingsn_{\mathrm{mixings}} one must count the parameters in the latter matrices. They are derived from H1H_{1}, U1U_{1}, U2U_{2}, U3U_{3}, D2D_{2}, D3D_{3}, and L2L_{2} through Eqs. (16). Let us assume, for the sake of simplicity, the latter matrices to be real. We use the fact that the first mm rows of an n×nn\times n real orthogonal matrix may be parameterized by m(2nm1)/2\left.m\left(2n-m-1\right)\right/2 parameters. Therefore,

H1\displaystyle H_{1} has nδ,7(nδ,71)2parameters,\displaystyle\frac{n_{\delta,7}\left(n_{\delta,7}-1\right)}{2}\,\ \mbox{parameters}, (A2a)
(U1U2U3)\displaystyle\left(\begin{array}[]{c}U_{1}\\ U_{2}\\ U_{3}\end{array}\right) has (nδ,7+nδ,1+nτ,2)(nδ,7+nδ,1+nτ,21)2parameters,\displaystyle\frac{\left(n_{\delta,7}+n_{\delta,1}+n_{\tau,-2}\right)\left(n_{\delta,7}+n_{\delta,1}+n_{\tau,-2}-1\right)}{2}\,\ \mbox{parameters}, (A2e)
(D2D3)\displaystyle\left(\begin{array}[]{c}D_{2}\\ D_{3}\end{array}\right) has (nδ,1+nτ,2)(2nσ,2+nδ,1+nτ,21)2parameters,\displaystyle\frac{\left(n_{\delta,1}+n_{\tau,-2}\right)\left(2n_{\sigma,-2}+n_{\delta,1}+n_{\tau,-2}-1\right)}{2}\,\ \mbox{parameters}, (A2h)
L2\displaystyle L_{2} has nτ,2(2nσ,8+nτ,21)2parameters.\displaystyle\frac{n_{\tau,-2}\left(2n_{\sigma,-8}+n_{\tau,-2}-1\right)}{2}\,\ \mbox{parameters}. (A2i)

However, one must take into account the fact that, in Eqs. (16), the transformations

H1AH1,U1AU1,\displaystyle H_{1}\to AH_{1},\ U_{1}\to AU_{1}, (A3a)
U2BU2,D2BD2,\displaystyle U_{2}\to BU_{2},\ D_{2}\to BD_{2}, (A3b)
U3CU3,D3CD3,L2CL2,\displaystyle U_{3}\to CU_{3},\ D_{3}\to CD_{3},\ L_{2}\to CL_{2}, (A3c)

where AA, BB, and CC are arbitrary nδ,7×nδ,7n_{\delta,7}\times n_{\delta,7}, nδ,1×nδ,1n_{\delta,1}\times n_{\delta,1}, and nτ,2×nτ,2n_{\tau,-2}\times n_{\tau,-2} real orthogonal matrices, respectively, leave 𝒩\mathcal{N}, 𝒱\mathcal{V}, and 𝒬\mathcal{Q} invariant. Therefore the total number of parameters in 𝒩\mathcal{N}, 𝒱\mathcal{V}, and 𝒬\mathcal{Q} is

nmixings\displaystyle n_{\mathrm{mixings}} =\displaystyle= nδ,7(nδ,71)2+(nδ,7+nδ,1+nτ,2)(nδ,7+nδ,1+nτ,21)2\displaystyle\frac{n_{\delta,7}\left(n_{\delta,7}-1\right)}{2}+\frac{\left(n_{\delta,7}+n_{\delta,1}+n_{\tau,-2}\right)\left(n_{\delta,7}+n_{\delta,1}+n_{\tau,-2}-1\right)}{2} (A4)
+(nδ,1+nτ,2)(2nσ,2+nδ,1+nτ,21)2+nτ,2(2nσ,8+nτ,21)2\displaystyle+\frac{\left(n_{\delta,1}+n_{\tau,-2}\right)\left(2n_{\sigma,-2}+n_{\delta,1}+n_{\tau,-2}-1\right)}{2}+\frac{n_{\tau,-2}\left(2n_{\sigma,-8}+n_{\tau,-2}-1\right)}{2}
nδ,7(nδ,71)2nδ,1(nδ,11)2nτ,2(nτ,21)2.\displaystyle-\frac{n_{\delta,7}\left(n_{\delta,7}-1\right)}{2}-\frac{n_{\delta,1}\left(n_{\delta,1}-1\right)}{2}-\frac{n_{\tau,-2}\left(n_{\tau,-2}-1\right)}{2}.

Utilizing both Eqs. (A1) and (A4), we find that the leptoquark models with the smallest numbers of parameters are the ones in Table 1.

nσ,2n_{\sigma,-2} nσ,8n_{\sigma,-8} nδ,1n_{\delta,1} nδ,7n_{\delta,7} nτ,2n_{\tau,-2} nhn_{h} nun_{u} ndn_{d} nln_{l} nmassesn_{\mathrm{masses}} nmixingsn_{\mathrm{mixings}} ntotaln_{\mathrm{total}}
0 0 1 0 0 1 1 0 0 2 0 2
0 0 0 1 0 0 1 1 0 2 0 2
0 0 0 0 1 0 1 1 1 3 0 3
1 0 1 0 0 1 1 1 0 3 0 3
0 1 1 0 0 1 1 0 1 3 0 3
0 1 0 1 0 0 1 1 1 3 0 3
1 0 0 1 0 0 1 2 0 3 1 4
2 0 1 0 0 1 1 2 0 4 0 4
0 2 1 0 0 1 1 0 2 4 0 4
1 1 1 0 0 1 1 1 1 4 0 4
0 2 0 1 0 0 1 1 2 4 0 4
0 1 0 0 1 0 1 1 2 4 1 5
1 0 0 0 1 0 1 2 1 4 1 5
0 0 1 1 0 1 2 1 0 4 1 5
1 1 0 1 0 0 1 2 1 4 1 5
0 0 2 0 0 2 2 0 0 4 1 5
0 0 0 2 0 0 2 2 0 4 1 5
3 0 1 0 0 1 1 3 0 5 0 5
0 3 1 0 0 1 1 0 3 5 0 5
2 1 1 0 0 1 1 2 1 5 0 5
1 2 1 0 0 1 1 1 2 5 0 5
0 3 0 1 0 0 1 1 3 5 0 5
Table 1: The leptoquark models with the smallest numbers of parameters. Models with ntotal>5n_{\mathrm{total}}>5 and (trivial) models with nδ,1=nδ,7=nτ,2=0n_{\delta,1}=n_{\delta,7}=n_{\tau,-2}=0 are not included.

Appendix B Parameterization of the mixing

One may choose to parameterize the mixing matrices in the following way:

  1. 1.

    One sets H1=𝟙nδ,7H_{1}=\mathbbm{1}_{n_{\delta,7}}.

  2. 2.

    One leaves the matrix

    (U1U2U3)\left(\begin{array}[]{c}U_{1}\\ U_{2}\\ U_{3}\end{array}\right) (B4)

    fully free, i.e. with all its parameters.

  3. 3.

    One parameterizes the matrix

    (L1L2)\left(\begin{array}[]{c}L_{1}\\ L_{2}\end{array}\right) (B7)

    through nτ,2(nτ,21)/2\left.n_{\tau,-2}\left(n_{\tau,-2}-1\right)\right/2 rotations among the rows of L2L_{2} followed by nσ,8nτ,2n_{\sigma,-8}n_{\tau,-2} rotations between the rows of L1L_{1} and the ones of L2L_{2}. For instance, if nσ,8=nτ,2=2n_{\sigma,-8}=n_{\tau,-2}=2, one parameterizes the matrix (B7) as O34O13O14O23O24O_{34}O_{13}O_{14}O_{23}O_{24}.

  4. 4.

    One parameterizes the matrix

    (D1D2D3)\left(\begin{array}[]{c}D_{1}\\ D_{2}\\ D_{3}\end{array}\right) (B11)

    through nσ,2nδ,1n_{\sigma,-2}n_{\delta,1} rotations between the rows of D1D_{1} and the ones of D2D_{2}, followed by nσ,2nτ,2n_{\sigma,-2}n_{\tau,-2} rotations between the rows of D1D_{1} and the ones of D3D_{3} and by nδ,1nτ,2n_{\delta,1}n_{\tau,-2} rotations between the rows of D2D_{2} and the ones of D3D_{3}. For instance, if nσ,2=nδ,1=2n_{\sigma,-2}=n_{\delta,1}=2 and nτ,2=1n_{\tau,-2}=1, one parameterizes the matrix (B11) as O13O14O23O24O15O25O35O45O_{13}O_{14}O_{23}O_{24}O_{15}O_{25}O_{35}O_{45}.

Appendix C Cancellation of the divergences in SS^{\prime} and UU^{\prime}

Because of Eqs. (14),

nh\displaystyle n_{h} =\displaystyle= nδ,7,\displaystyle n_{\delta,7}, (C1a)
tr(U1U1)\displaystyle\mathrm{tr}\left(U_{1}^{\dagger}U_{1}\right) =\displaystyle= nδ,7,\displaystyle n_{\delta,7}, (C1b)
tr(U2U2)\displaystyle\mathrm{tr}\left(U_{2}^{\dagger}U_{2}\right) =\displaystyle= nδ,1,\displaystyle n_{\delta,1}, (C1c)
tr(U3U3)\displaystyle\mathrm{tr}\left(U_{3}^{\dagger}U_{3}\right) =\displaystyle= nτ,2,\displaystyle n_{\tau,-2}, (C1d)
tr(D2D2)\displaystyle\mathrm{tr}\left(D_{2}^{\dagger}D_{2}\right) =\displaystyle= nδ,1,\displaystyle n_{\delta,1}, (C1e)
tr(D3D3)\displaystyle\mathrm{tr}\left(D_{3}^{\dagger}D_{3}\right) =\displaystyle= nτ,2,\displaystyle n_{\tau,-2}, (C1f)
tr(L2L2)\displaystyle\mathrm{tr}\left(L_{2}^{\dagger}L_{2}\right) =\displaystyle= nτ,2.\displaystyle n_{\tau,-2}. (C1g)

Using Eqs. (16) and the unitarity of the matrices in Eq. (15), the matrices (18) may be rewritten

\displaystyle\mathcal{H} =\displaystyle= 𝟙nh,\displaystyle\mathbbm{1}_{n_{h}}, (C2a)
𝒰\displaystyle\mathcal{U} =\displaystyle= U1U1+U2U2+2U3U3,\displaystyle-U_{1}^{\dagger}U_{1}+U_{2}^{\dagger}U_{2}+2\,U_{3}^{\dagger}U_{3}, (C2b)
𝒟\displaystyle\mathcal{D} =\displaystyle= D2D2,\displaystyle D_{2}^{\dagger}D_{2}, (C2c)
\displaystyle\mathcal{L} =\displaystyle= 2L2L2.\displaystyle 2\,L_{2}^{\dagger}L_{2}. (C2d)

Divergences:

When ϵ0+\epsilon\to 0^{+}, the quantity

div2ϵγ+ln((4π))\mathrm{div}\equiv\frac{2}{\epsilon}-\gamma+\ln{\left(4\pi\right)} (C3)

diverges. In Eq. (C3), γ\gamma is Euler’s constant. The PV function

B00(q2,m12,m22)=(m12+m224q212)div+convergentterms.B_{00}\left(q^{2},m_{1}^{2},m_{2}^{2}\right)=\left(\frac{m_{1}^{2}+m_{2}^{2}}{4}-\frac{q^{2}}{12}\right)\mathrm{div}+\mathrm{convergent\ terms}. (C4)

Therefore,

B00(q2,m12,m22)\displaystyle B_{00}^{\prime}\left(q^{2},m_{1}^{2},m_{2}^{2}\right) =\displaystyle= div12+convergentterms,\displaystyle-\frac{\mathrm{div}}{12}+\mathrm{convergent\ terms}, (C5a)
B¯00(q2,m12,m22)\displaystyle\bar{B}_{00}\left(q^{2},m_{1}^{2},m_{2}^{2}\right) =\displaystyle= div12+convergentterms.\displaystyle-\frac{\mathrm{div}}{12}+\mathrm{convergent\ terms}. (C5b)

SS^{\prime} divergence:

Taking into account Eqs. (C5), the divergent part of SS^{\prime} in Eq. (32ana) is proportional to

tr22Qhtr+tr𝒰22Qutr𝒰+tr𝒟2+2Qdtr𝒟+tr2+2Qltr\displaystyle\mathrm{tr}\,\mathcal{H}^{2}-2Q_{h}\,\mathrm{tr}\,\mathcal{H}+\mathrm{tr}\,\mathcal{U}^{2}-2Q_{u}\,\mathrm{tr}\,\mathcal{U}+\mathrm{tr}\,\mathcal{D}^{2}+2Q_{d}\,\mathrm{tr}\,\mathcal{D}+\mathrm{tr}\,\mathcal{L}^{2}+2Q_{l}\,\mathrm{tr}\,\mathcal{L} (C6)
=\displaystyle= tr(𝟙nh)2Qhtr(𝟙nh)\displaystyle\mathrm{tr}\left(\mathbbm{1}_{n_{h}}\right)-2Q_{h}\,\mathrm{tr}\left(\mathbbm{1}_{n_{h}}\right)
+tr(U1U1+U2U2+4U3U3)2Qutr(U1U1+U2U2+2U3U3)\displaystyle+\mathrm{tr}\left(U_{1}^{\dagger}U_{1}+U_{2}^{\dagger}U_{2}+4U_{3}^{\dagger}U_{3}\right)-2Q_{u}\,\mathrm{tr}\left(-U_{1}^{\dagger}U_{1}+U_{2}^{\dagger}U_{2}+2U_{3}^{\dagger}U_{3}\right)
+tr(D2D2)+2Qdtr(D2D2)\displaystyle+\mathrm{tr}\left(D_{2}^{\dagger}D_{2}\right)+2Q_{d}\,\mathrm{tr}\left(D_{2}^{\dagger}D_{2}\right)
+4tr(L2L2)+4Qltr(L2L2)\displaystyle+4\,\mathrm{tr}\left(L_{2}^{\dagger}L_{2}\right)+4Q_{l}\,\mathrm{tr}\left(L_{2}^{\dagger}L_{2}\right)
=\displaystyle= nδ,72Qhnδ,7\displaystyle n_{\delta,7}-2Q_{h}n_{\delta,7}
+nδ,7+nδ,1+4nτ,22Qu(nδ,7+nδ,1+2nτ,2)\displaystyle+n_{\delta,7}+n_{\delta,1}+4n_{\tau,-2}-2Q_{u}\left(-n_{\delta,7}+n_{\delta,1}+2n_{\tau,-2}\right)
+nδ,1+2Qdnδ,1\displaystyle+n_{\delta,1}+2Q_{d}n_{\delta,1}
+4nτ,2+4Qlnτ,2\displaystyle+4n_{\tau,-2}+4Q_{l}n_{\tau,-2}
=\displaystyle= nδ,7(22Qh+2Qu)+nδ,1(22Qu+2Qd)+nτ,2(84Qu+4Ql)\displaystyle n_{\delta,7}\left(2-2Q_{h}+2Q_{u}\right)+n_{\delta,1}\left(2-2Q_{u}+2Q_{d}\right)+n_{\tau,-2}\left(8-4Q_{u}+4Q_{l}\right)
=\displaystyle= 0,\displaystyle 0,

where we have used Eqs. (C1). Thus, the parameter SS^{\prime} is finite.

S+US^{\prime}+U^{\prime} divergence:

The divergent part of S+US^{\prime}+U^{\prime} in Eq. (32anb) is proportional to

tr(𝒩𝒩+𝒱𝒱+𝒬𝒬)(Qhtr+Qutr𝒰)+(Qdtr𝒟+Qltr)\displaystyle\mathrm{tr}\left(\mathcal{N}\mathcal{N}^{\dagger}+\mathcal{V}\mathcal{V}^{\dagger}+\mathcal{Q}\mathcal{Q}^{\dagger}\right)-\left(Q_{h}\,\mathrm{tr}\,\mathcal{H}+Q_{u}\,\mathrm{tr}\,\mathcal{U}\right)+\left(Q_{d}\,\mathrm{tr}\,\mathcal{D}+Q_{l}\,\mathrm{tr}\,\mathcal{L}\right) (C7)
=\displaystyle= tr(𝒩𝒩+𝒱𝒱+𝒬𝒬)Qhtr(𝒩𝒩)Qutr(𝒱𝒱𝒩𝒩)\displaystyle\mathrm{tr}\left(\mathcal{N}\mathcal{N}^{\dagger}+\mathcal{V}\mathcal{V}^{\dagger}+\mathcal{Q}\mathcal{Q}^{\dagger}\right)-Q_{h}\,\mathrm{tr}\left(\mathcal{N}\mathcal{N}^{\dagger}\right)-Q_{u}\,\mathrm{tr}\left(\mathcal{V}\mathcal{V}^{\dagger}-\mathcal{N}\mathcal{N}^{\dagger}\right)
+Qdtr(𝒱𝒱𝒬𝒬)+Qltr(𝒬𝒬)\displaystyle+Q_{d}\,\mathrm{tr}\left(\mathcal{V}\mathcal{V}^{\dagger}-\mathcal{Q}\mathcal{Q}^{\dagger}\right)+Q_{l}\,\mathrm{tr}\left(\mathcal{Q}\mathcal{Q}^{\dagger}\right)
=\displaystyle= (1Qh+Qu)tr(𝒩𝒩)+(1Qu+Qd)tr(𝒱𝒱)+(1Qd+Ql)tr(𝒬𝒬)\displaystyle\left(1-Q_{h}+Q_{u}\right)\mathrm{tr}\left(\mathcal{N}\mathcal{N}^{\dagger}\right)+\left(1-Q_{u}+Q_{d}\right)\mathrm{tr}\left(\mathcal{V}\mathcal{V}^{\dagger}\right)+\left(1-Q_{d}+Q_{l}\right)\mathrm{tr}\left(\mathcal{Q}\mathcal{Q}^{\dagger}\right)
=\displaystyle= 0,\displaystyle 0,

where we have used QhQu=QuQd=QdQl=1Q_{h}-Q_{u}=Q_{u}-Q_{d}=Q_{d}-Q_{l}=1. Thus, S+US^{\prime}+U^{\prime} is finite.

References

  • [1] A. Crivellin and L. Schnell, Complete Lagragian and set of Feynman rules for scalar leptoquarks. Comput. Phys. Commun. 271, 108188 (2022).
  • [2] W. Buchmüller, R. Rückl, and D. Wyler, Leptoquarks in lepton–quark collisions. Phys. Lett. B 191, 442 (1987) [Erratum: Phys. Lett. B 448, 320 (1999)].
  • [3] A. Angelescu, D. Bečirević, D. A. Faroughy, and O. Sumensari, Single leptoquark solutions to the BB-physics anomalies. J. High Energ. Phys. 2018, 183 (2018). A. Angelescu, D. Bečirević, D. A. Faroughy, F. Jaffredo, and O. Sumensari, Closing the window on single leptoquark solutions to the BB-physics anomalies. Phys. Rev. D 104, 055017 (2021).
  • [4] D. Bečirević, I. Doršner, S. Fajfer, N. Košnik, and D. A. Faroughy, Scalar leptoquarks from grand unified theories to accommodate the BB-physics anomalies. Phys. Rev. D 98, 055003 (2018).
  • [5] J. Kumar, D. London, and R. Watanabe, Combined explanations of the bsμ+μb\to s\mu^{+}\mu^{-} and bcτν¯b\to c\tau^{-}\bar{\nu} anomalies: A general model analysis. Phys. Rev. D 99, 015007 (2019).
  • [6] R.-X. Shi, L.-S. Geng, B. Grinstein, S. Jäger, and J. M. Camalich, Revisiting the new-physics interpretation of the bcτνb\to c\tau\nu data. J. High Energ. Phys. 2019, 65 (2019).
  • [7] A. Crivellin, D. Müller, and F. Saturnino, Flavor phenomenology of the leptoquark singlet–triplet model. J. High Energ. Phys. 2020, 20 (2020).
  • [8] P. Athron, C. Balázs, D. H. J. Jacob, W. Kotlarski, D. Stöckinger, and H. Stöckinger-Kim, New physics explanations of aμa_{\mu} in light of the FNAL muon g2g-2 measurement. J. High Energ. Phys. 2021, 80 (2021).
  • [9] A. Bhaskar, A. A. Madathil, T. Mandal, and S. Mitra, Combined explanation of WW-mass, muon g2g-2, RK()R_{K^{(\ast)}} and RD()R_{D^{(\ast)}} anomalies in a singlet–triplet scalar leptoquark model. Phys. Rev. D 106, 015009 (2022).
  • [10] P. Athron, A. Fowlie, C.-T. Lu, L. Wu, and Y. Wu, Hadronic uncertainties versus new physics for the WW boson mass and Muon g2g-2 anomalies. Nature Commun. 14, 659 (2023).
  • [11] I. Maksymyk, C. P. Burgess, and D. London, Beyond SS, TT, and UU. Phys. Rev. D 50, 529 (1994).
  • [12] G. C. Branco, L. Lavoura, and J. P. Silva, CP Violation (Clarendon Press, Oxford, 1999).
  • [13] J. C. Romão and J. P. Silva, A resource for signs and Feynman diagrams of the Standard Model. Int. J. Mod. Phys. A 27, 1230025 (2012).
  • [14] M. E. Peskin and T. Takeuchi, New constraint on a strongly interacting Higgs sector. Phys. Rev. Lett. 65, 964 (1990). M. E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381 (1992).
  • [15] G. Altarelli and R. Barbieri, Vacuum polarization effects of new physics on electroweak processes. Phys. Lett. B 253, 161 (1991). G. Altarelli, R. Barbieri, and S. Jadach, Toward a model-independent analysis of electroweak data. Nucl. Phys. B 369, 3 (1992) [Erratum: Nucl. Phys. B 376, 444 (1992)].
  • [16] G. Bhattacharyya, S. Banerjee, and P. Roy, Oblique electroweak corrections and new physics. Phys. Rev. D 45, R729 (1992) [Erratum: Phys. Rev. D 46, 3215 (1992)].
  • [17] E. Keith and E. Ma, Oblique SS and TT Parameters and Leptoquark Models of the HERA Events. Phys. Rev. Lett. 79, 4318 (1997).
  • [18] P. H. Frampton and M. Harada, Constraints from precision electroweak data on leptoquarks and bileptons. Phys. Rev. D 58, 095013 (1998).
  • [19] A. Crivellin, D. Müller, and F. Saturnino, Leptoquarks in oblique corrections and Higgs signal strength: status and prospects. J. High Energ. Phys. 2020, 94 (2020).
  • [20] V. Gherardi, New Physics hints from flavour. E-print 2111.00285 [hep-ph].
  • [21] S.-P. He, A leptoquark and vector-like quark extended model for the simultaneous explanation of the WW boson mass and muon g2g-2 anomalies. Chin. Phys. C 47, 043102 (2023).
  • [22] J. Wu, D. Huang, and C.-Q. Geng, WW-boson mass anomaly from a general SU(2)LSU(2)_{L} scalar multiplet. E-print 2212.14553 [hep-ph].
  • [23] G. Passarino and M. J. G. Veltman, One-loop corrections for e+ee^{+}e^{-} annihilation into μ+μ\mu^{+}\mu^{-} in the Weinberg model. Nucl. Phys. B 160, 151 (1979).
  • [24] T. Hahn, Automatic loop calculations with FeynArts, FormCalc, and LoopTools. Nucl. Phys. B Proc. Suppl. 89, 231 (2000). T. Hahn and M. Rauch, News from FormCalc and LoopTools. Nucl. Phys. B Proc. Suppl. 157, 236 (2006).
  • [25] L. Hofer, A. Denner, and S. Dittmaier, COLLIER — A fortran-library for one-loop integrals. PoS LL2014, 071 (2014). A. Denner, S. Dittmaier, and L. Hofer, COLLIER: A fortran-based complex one-loop library in extended regularizations. Comput. Phys. Commun. 212, 220 (2017).
  • [26] F. Albergaria, L. Lavoura, and J. C. Romão, Oblique corrections from triplet quarks. J. High Energ. Phys. 2023, 031 (2023).
  • [27] L. Lavoura and J. P. Silva, Oblique corrections from vectorlike singlet and doublet quarks. Phys. Rev. D 47, 2046 (1993).