This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Numerically Explicit Estimates for the Distribution of Rough Numbers

Kai (Steve) Fan Department of Mathematics, Dartmouth College, Hanover, NH 03755, USA [email protected]
Abstract.

For xy>1x\geq y>1 and u\colonequalslogx/logyu\colonequals\log x/\log y, let Φ(x,y)\Phi(x,y) denote the number of positive integers up to xx free of prime divisors less than or equal to yy. In 1950 de Bruijn [Br] studied the approximation of Φ(x,y)\Phi(x,y) by the quantity

μy(u)eγxlogypy(11p),\mu_{y}(u)e^{\gamma}x\log y\prod_{p\leq y}\left(1-\frac{1}{p}\right),

where γ=0.5772156\gamma=0.5772156... is Euler’s constant and

μy(u)\colonequals1uytuω(t)𝑑t.\mu_{y}(u)\colonequals\int_{1}^{u}y^{t-u}\omega(t)\,dt.

He showed that the asymptotic formula

Φ(x,y)=μy(u)eγxlogypy(11p)+O(xR(y)logy)\Phi(x,y)=\mu_{y}(u)e^{\gamma}x\log y\prod_{p\leq y}\left(1-\frac{1}{p}\right)+O\left(\frac{xR(y)}{\log y}\right)

holds uniformly for all xy2x\geq y\geq 2, where R(y)R(y) is a positive decreasing function related to the error estimates in the Prime Number Theorem. In this paper we obtain numerically explicit versions of de Bruijn’s result.

Key words and phrases:
Rough numbers, Buchstab’s function, the Prime Number Theorem
2020 Mathematics Subject Classification:
11N25

1. Introduction

Let xy>1x\geq y>1 be positive real numbers. Throughout the paper, we shall always write u\colonequalslogx/logyu\colonequals\log x/\log y, and the letters pp and qq will always denote primes. We say that a positive integer nn is yy-rough if all the prime divisors of nn are greater than yy. Let Φ(x,y)\Phi(x,y) denote the number of yy-rough numbers up to xx. Explicitly, we have

Φ(x,y)=nxP(n)>y1,\Phi(x,y)=\sum_{\begin{subarray}{c}n\leq x\\ P^{-}(n)>y\end{subarray}}1,

where P(n)P^{-}(n) denotes the least prime divisor of nn, with the convention that P(1)=P^{-}(1)=\infty. When 1u21\leq u\leq 2, or equivalently when xyx\sqrt{x}\leq y\leq x, we simply have Φ(x,y)=π(x)π(y)+1\Phi(x,y)=\pi(x)-\pi(y)+1, where π()\pi(\cdot) is the prime-counting function. The function Φ(x,y)\Phi(x,y) is closely related to the sieve of Eratosthenes, one of the most ancient algorithms for finding primes, and it has been extensively studied by mathematicians. A simple application of the inclusion-exclusion principle enables us to write

Φ(x,y)=dP(y)μ(d)xd,\Phi(x,y)=\sum_{d\mid P(y)}\mu(d)\left\lfloor\frac{x}{d}\right\rfloor, (1.1)

where a\lfloor a\rfloor is the integer part of aa for any aa\in\mathbb{R}, μ\mu is the Möbius function, and P(y)P(y) denotes the product of primes up to yy. If yy is relatively small in comparison with xx, say y=xo(1)y=x^{o(1)}, the above formula can be used to obtain Φ(x,y)eγx/logy\Phi(x,y)\sim e^{-\gamma}x/\log y as yy\to\infty, where γ=0.5772156\gamma=0.5772156... is Euler’s constant. However, it turns out that this nice asymptotic formula does not hold uniformly, as already exemplified by the base case 1u21\leq u\leq 2.

In 1937, Buchstab [Bu] showed that for any fixed u>1u>1, one has Φ(x,y)ω(u)x/logy\Phi(x,y)\sim\omega(u)x/\log y as xx\to\infty, where ω(u)\omega(u) is defined to be the unique continuous solution to the delay differential equation (uω(u))=ω(u1)(u\omega(u))^{\prime}=\omega(u-1) for u2u\geq 2, subject to the initial value condition ω(u)=1/u\omega(u)=1/u for u[1,2]u\in[1,2]. Comparing this result with the asymptotic formula obtained from (1.1), one would expect that ω(u)eγ\omega(u)\to e^{-\gamma} as uu\to\infty. Indeed, it can be shown [T, Corollary III.6.5] that ω(u)=eγ+O(uu/2)\omega(u)=e^{-\gamma}+O(u^{-u/2}) for u1u\geq 1. Moreover, it is known that ω(u)\omega(u) oscillates above and below eγe^{-\gamma} infinitely often. It is convenient to extend the definition of ω(u)\omega(u) by setting ω(u)=0\omega(u)=0 for all u<1u<1, so that ω(u)\omega(u) satisfies the same delay differential equation on {1,2}\mathbb{R}\setminus\{1,2\}. In the sequel, we shall write ω(1)\omega^{\prime}(1) and ω(2)\omega^{\prime}(2) for the right derivatives of ω(u)\omega(u) at u=1u=1 and u=2u=2, respectively. With this convention, we have (uω(u))=ω(u1)(u\omega(u))^{\prime}=\omega(u-1) for all uu\in\mathbb{R}.

Buchstab’s asymptotic formula can be proved easily based on the following identity [T, Theorem III.6.3] named after him:

Φ(x,y)=Φ(x,z)+y<pzv1Φ(x/pv,p)\Phi(x,y)=\Phi(x,z)+\sum_{y<p\leq z}\sum_{v\geq 1}\Phi(x/p^{v},p) (1.2)

for any z[y,x]z\in[y,x]. The Buchstab function ω(u)\omega(u) then appears naturally in the iteration process, starting with Φ(x,y)x/(ulogy)\Phi(x,y)\sim x/(u\log y) in the range 1<u21<u\leq 2. Since 1/2ω(u)11/2\leq\omega(u)\leq 1 for u[1,)u\in[1,\infty), Buchstab’s asymptotic formula suggests that the relation Φ(x,y)x/logy\Phi(x,y)\asymp x/\log y holds uniformly for xy>1x\geq y>1. Thus, it is of interest to seek numerically explicit estimates for Φ(x,y)\Phi(x,y) that are applicable in wide ranges. Confirming a conjecture of Ford, the author [F] showed that Φ(x,y)<x/logy\Phi(x,y)<x/\log y holds uniformly for xy>1x\geq y>1, which is essentially best possible when x1ϵyϵxx^{1-\epsilon}\leq y\leq\epsilon x, where ϵ(0,1)\epsilon\in(0,1) is fixed. On the other hand, the values of ω(u)\omega(u) indicate that improvements should be expected in the narrower range 2yx2\leq y\leq\sqrt{x}. In recent work jointly with Pomerance [FP], the author proved that Φ(x,y)<0.6x/logy\Phi(x,y)<0.6x/\log y holds uniformly for 3yx3\leq y\leq\sqrt{x}. This inequality provides a fairly good upper bound for Φ(x,y)\Phi(x,y), especially considering that the absolute maximum of ω(u)\omega(u) over [2,)[2,\infty) is given by M0=0.5671432M_{0}=0.5671432..., attained at the unique critical point u=2.7632228u=2.7632228... of the function (log(u1)+1)u1(\log(u-1)+1)u^{-1} on [2,3][2,3]. With a bit more effort, one can show, using the Buchstab identity (1.2), that

Φ(x,y)=xlogy(ω(u)+O(1logy))\Phi(x,y)=\frac{x}{\log y}\left(\omega(u)+O\left(\frac{1}{\log y}\right)\right) (1.3)

uniformly for 2yx2\leq y\leq\sqrt{x} (see [T, Theorem III.6.4]). In Section 2, we shall derive a numerically explicit lower bound of this type that suits our needs. Our method can also be modified with ease to obtain a numerically explicit upper bound of the same type.

In [Br] de Bruijn provided a more precise approximation for Φ(x,y)\Phi(x,y) than ω(u)x/logy\omega(u)x/\log y. Let us fix some y02y_{0}\geq 2 for the moment. Suppose that there exist a positive constant C0(y0)C_{0}(y_{0}) and a positive decreasing function R(z)R(z) defined on [y0,)[y_{0},\infty), such that R(z)z1R(z)\gg\,z^{-1}, that R(z)0R(z)\downarrow 0 as zz\to\infty and that for all zy0z\geq y_{0} we have

|π(z)li(z)|zlogzR(z)|\pi(z)-\operatorname{li}(z)|\leq\frac{z}{\log z}R(z) (1.4)

and

z|π(t)li(t)|t2𝑑tC0(y0)R(z),\int_{z}^{\infty}\frac{|\pi(t)-\operatorname{li}(t)|}{t^{2}}\,dt\leq C_{0}(y_{0})R(z), (1.5)

where li(z)\operatorname{li}(z) is the logarithmic integral defined by

li(z)\colonequals0zdtlogt.\operatorname{li}(z)\colonequals\int_{0}^{z}\frac{dt}{\log t}.

The classical version of the Prime Number Theorem allows us to take R(z)=exp(clogz)R(z)=\exp(-c\sqrt{\log z}) for some suitable constant c>0c>0. Using the zero-free region of Korobov and Vinogradov for the Riemann zeta-function, we obtain R(z)=exp(c(logz)3/5(loglogz)1/5)R(z)=\exp(-c^{\prime}(\log z)^{3/5}(\log\log z)^{-1/5}) for some absolute constant c>0c^{\prime}>0. If the Riemann Hypothesis holds, then one can take R(z)=c′′z1/2log2zR(z)=c^{\prime\prime}z^{-1/2}\log^{2}z, where c′′>0c^{\prime\prime}>0 is an absolute constant.

To state de Bruijn’s result, we define

μy(u)\colonequals1uytuω(t)𝑑t.\mu_{y}(u)\colonequals\int_{1}^{u}y^{t-u}\omega(t)\,dt.

It is easy to see that 0μy(u)logy1y1u0\leq\mu_{y}(u)\log y\leq 1-y^{1-u} and that for every fixed u1u\geq 1, we have μy(u)logyω(u)\mu_{y}(u)\log y\to\omega(u) as yy\to\infty. Precise expansions for μy(u)\mu_{y}(u) in terms of the powers of logy\log y can be found in [T, Theorem III.6.18]. When 1u21\leq u\leq 2, the change of variable t=logv/logyt=\log v/\log y shows that

μy(u)x=1ut1yt𝑑t=yxdvlogv=li(x)li(y).\mu_{y}(u)x=\int_{1}^{u}t^{-1}y^{t}\,dt=\int_{y}^{x}\frac{dv}{\log v}=\operatorname{li}(x)-\operatorname{li}(y).

Since Φ(x,y)=π(x)π(y)+1\Phi(x,y)=\pi(x)-\pi(y)+1 when 1u21\leq u\leq 2, (1.4) clearly implies that

Φ(x,y)=μy(u)x+(π(x)li(x))(π(y)li(y))+1=μy(u)x+O(xR(y)logy).\Phi(x,y)=\mu_{y}(u)x+(\pi(x)-\operatorname{li}(x))-(\pi(y)-\operatorname{li}(y))+1=\mu_{y}(u)x+O\left(\frac{xR(y)}{\log y}\right).

It can be shown using (1.4) and (1.5) that

py(11p)=eγlogy(1+O(R(y))).\prod_{p\leq y}\left(1-\frac{1}{p}\right)=\frac{e^{-\gamma}}{\log y}\left(1+O(R(y))\right).

Thus we have, equivalently,

Φ(x,y)=μy(u)eγxlogypy(11p)+O(xR(y)logy).\Phi(x,y)=\mu_{y}(u)e^{\gamma}x\log y\prod_{p\leq y}\left(1-\frac{1}{p}\right)+O\left(\frac{xR(y)}{\log y}\right). (1.6)

Essentially, de Bruijn [Br] showed that this formula holds uniformly for xyy0x\geq y\geq y_{0}. In Section 3 we shall derive an explicit version of (1.6), which will be applied in Section 4 to obtain numerically explicit estimates with suitable y0y_{0} and R(y)R(y). Our main results are summarized in the following theorem.

Theorem 1.1.

Uniformly for xy2x\geq y\geq 2, we have

|Φ(x,y)μy(u)eγxlogypy(11p)|<4.403611x(logy)3/4exp(logy6.315).\left|\Phi(x,y)-\mu_{y}(u)e^{\gamma}x\log y\prod_{p\leq y}\left(1-\frac{1}{p}\right)\right|<4.403611\frac{x}{(\log y)^{3/4}}\exp\left(-\sqrt{\frac{\log y}{6.315}}\right).

Conditionally on the Riemann Hypothesis, we have

|Φ(x,y)μy(u)eγxlogypy(11p)|<0.449774xlogyy\left|\Phi(x,y)-\mu_{y}(u)e^{\gamma}x\log y\prod_{p\leq y}\left(1-\frac{1}{p}\right)\right|<0.449774\frac{x\log y}{\sqrt{y}}

uniformly for xy11x\geq y\geq 11.

The following consequence of Theorem 1.1 is sometimes more convenient to use.

Corollary 1.2.

Uniformly for xy2x\geq y\geq 2, we have

|Φ(x,y)μy(u)x|<4.434084x(logy)3/4exp(logy6.315).|\Phi(x,y)-\mu_{y}(u)x|<4.434084\frac{x}{(\log y)^{3/4}}\exp\left(-\sqrt{\frac{\log y}{6.315}}\right).

Conditionally on the Riemann Hypothesis, we have

|Φ(x,y)μy(u)x|<0.460680xlogyy|\Phi(x,y)-\mu_{y}(u)x|<0.460680\frac{x\log y}{\sqrt{y}}

uniformly for xy11x\geq y\geq 11.

2. Lower Bounds for Φ(x,y)\Phi(x,y)

Before moving on to the derivation of Theorem 1.1, we prove a clean lower bound for Φ(x,y)\Phi(x,y) which is applicable in a wide range. This lower bound, which is interesting in itself, will be used in the proof of Theorem 1.1 and Corollary 1.2 in Section 4. We start by proving the following result, which provides a numerically explicit lower bound for the implicit constant in the error term in (1.3). As we already mentioned, our method can easily be adapted to yield a numerically explicit upper bound as well, though it will not be needed in the present paper.

Proposition 2.1.

Define Δ(x,y)\Delta(x,y) by

Φ(x,y)=xlogy(ω(u)+Δ(x,y)logy)\Phi(x,y)=\frac{x}{\log y}\left(\omega(u)+\frac{\Delta(x,y)}{\log y}\right)

for 2yx2\leq y\leq\sqrt{x}. Let y0=602y_{0}=602. For every positive integer k3k\geq 3, we define

Δk=Δk(y0)\colonequalsinf{min(Δ(x,y),0):yy0 and 2u<k}.\Delta_{k}^{-}=\Delta_{k}^{-}(y_{0})\colonequals\inf\left\{\min(\Delta(x,y),0)\colon y\geq y_{0}\emph{~{}and~{}}2\leq u<k\right\}.

Then Δ3>0.563528\Delta_{3}^{-}>-0.563528, Δ4>0.887161\Delta_{4}^{-}>-0.887161, and Δk>0.955421\Delta_{k}^{-}>-0.955421 for all k5k\geq 5.

Proof.

Let y1\colonequals2,278,383y_{1}\colonequals 2{,}278{,383}. Suppose first that yy1y\geq y_{1} and set

G(v)\colonequalsx1/v<px1pG(v)\colonequals\sum_{x^{1/v}<p\leq\sqrt{x}}\frac{1}{p}

for 2vu2\leq v\leq u. By [D, Theorem 5.6]111In [B] it is claimed that the proof of [D, Theorem 4.2] is incorrect due to the application of an incorrect zero density estimate of Ramaŕe [Rama, Theorem 1.1]. In a footnote on p. 2299 of the same paper, the authors state that the bounds asserted in [D] are likely affected for this reason. However, since they also give a correct proof of [D, Theorem 4.2] (see [B, Corollary 11.2]), one verifies easily that the proof of [D, Theorem 5.6], which relies only on [D, Theorem 4.2], partial summation, and numerical computation, remains valid., we have

|G(v)logv2|c1log2y\left|G(v)-\log\frac{v}{2}\right|\leq\frac{c_{1}}{\log^{2}y} (2.1)

for all yy1y\geq y_{1}, where c1=0.4/logy1c_{1}=0.4/\log y_{1}. We shall also make use of the following inequality [D, Corollary 5.2]222For the same reason mentioned above, it is reasonable to suspect that the bounds given in [D, Corollary 5.2] are also affected. However, one can verify these bounds without much difficulty. Indeed, (5.2) of [D, Corollary 5.2] is superseded by [RS, Corollary 1], while (5.3) and (5.4) of [D, Corollary 5.2] follow from [BD, Lemmas 3.2–3.4] and direct calculations.:

zlogz(1+c3logz)π(z)zlogz(1+c2logz),\frac{z}{\log z}\left(1+\frac{c_{3}}{\log z}\right)\leq\pi(z)\leq\frac{z}{\log z}\left(1+\frac{c_{2}}{\log z}\right), (2.2)

where c2=1+2.53816/logy1c_{2}=1+2.53816/\log y_{1} and c3=1+2/logy1c_{3}=1+2/\log y_{1}. We start with the range 2u32\leq u\leq 3. In this range, we have

Φ(x,y)\displaystyle\Phi(x,y) =#{nx:P(n)>y and Ω(n)2}\displaystyle=\#\{n\leq x\colon P^{-}(n)>y\text{~{}and~{}}\Omega(n)\leq 2\}
=π(x)π(y)+1+y<pxpqx/p1\displaystyle=\pi(x)-\pi(y)+1+\sum_{y<p\leq\sqrt{x}}\sum_{p\leq q\leq x/p}1
=π(x)π(y)+1+y<px(π(x/p)π(p)+1),\displaystyle=\pi(x)-\pi(y)+1+\sum_{y<p\leq\sqrt{x}}(\pi(x/p)-\pi(p)+1),

where Ω(n)\Omega(n) denotes the total number of prime factors of nn, with multiplicity counted. Since

y<px(π(p)1)=π(y)<jπ(x)(j1)=π(x)(π(x)1)2π(y)(π(y)1)2,\sum_{y<p\leq\sqrt{x}}(\pi(p)-1)=\sum_{\pi(y)<j\leq\pi(\sqrt{x})}(j-1)=\frac{\pi(\sqrt{x})(\pi(\sqrt{x})-1)}{2}-\frac{\pi(y)(\pi(y)-1)}{2},

we see that

π(x)π(y)+1y<px(π(p)1)>π(x)π(x)22+π(x)2.\pi(x)-\pi(y)+1-\sum_{y<p\leq\sqrt{x}}(\pi(p)-1)>\pi(x)-\frac{\pi(\sqrt{x})^{2}}{2}+\frac{\pi(\sqrt{x})}{2}.

It follows from (2.2) that

Φ(x,y)>xlogx(1+c3logx)x2log2x(1+c2logx)2+x2logx+y<pxπ(x/p).\Phi(x,y)>\frac{x}{\log x}\left(1+\frac{c_{3}}{\log x}\right)-\frac{x}{2\log^{2}\sqrt{x}}\left(1+\frac{c_{2}}{\log\sqrt{x}}\right)^{2}+\frac{\sqrt{x}}{2\log\sqrt{x}}+\sum_{y<p\leq\sqrt{x}}\pi(x/p). (2.3)

To handle the sum in (2.3), we appeal to (2.2) again to arrive at

y<pxπ(x/p)y<px(xplog(x/p)+c3xplog2(x/p)).\sum_{y<p\leq\sqrt{x}}\pi(x/p)\geq\sum_{y<p\leq\sqrt{x}}\left(\frac{x}{p\log(x/p)}+\frac{c_{3}x}{p\log^{2}(x/p)}\right).

By partial summation we see that

y<px1plog(x/p)=1logx2uvv1𝑑G(v)=1logy(G(u)u1+1u2uG(v)(v1)2𝑑v)\sum_{y<p\leq\sqrt{x}}\frac{1}{p\log(x/p)}=\frac{1}{\log x}\int_{2^{-}}^{u}\frac{v}{v-1}\,dG(v)=\frac{1}{\log y}\left(\frac{G(u)}{u-1}+\frac{1}{u}\int_{2^{-}}^{u}\frac{G(v)}{(v-1)^{2}}\,dv\right)

From (2.1) it follows that

G(u)u11u1(logu2c1log2y),\frac{G(u)}{u-1}\geq\frac{1}{u-1}\left(\log\frac{u}{2}-\frac{c_{1}}{\log^{2}y}\right),

and

2uG(v)(v1)2𝑑v\displaystyle\int_{2^{-}}^{u}\frac{G(v)}{(v-1)^{2}}\,dv 2u1(v1)2(logv2c1log2y)𝑑v\displaystyle\geq\int_{2}^{u}\frac{1}{(v-1)^{2}}\left(\log\frac{v}{2}-\frac{c_{1}}{\log^{2}y}\right)\,dv
=1u1logu2+2u1v(v1)𝑑vc1log2y(11u1)\displaystyle=-\frac{1}{u-1}\log\frac{u}{2}+\int_{2}^{u}\frac{1}{v(v-1)}\,dv-\frac{c_{1}}{\log^{2}y}\left(1-\frac{1}{u-1}\right)
=uu1logu2+log(u1)c1log2y(11u1).\displaystyle=-\frac{u}{u-1}\log\frac{u}{2}+\log(u-1)-\frac{c_{1}}{\log^{2}y}\left(1-\frac{1}{u-1}\right).

Hence

y<pxxplog(x/p)\displaystyle\sum_{y<p\leq\sqrt{x}}\frac{x}{p\log(x/p)} xlogy(log(u1)u2c1ulog2y)\displaystyle\geq\frac{x}{\log y}\left(\frac{\log(u-1)}{u}-\frac{2c_{1}}{u\log^{2}y}\right)
=xlogy(ω(u)2c1ulog2y)xlogx.\displaystyle=\frac{x}{\log y}\left(\omega(u)-\frac{2c_{1}}{u\log^{2}y}\right)-\frac{x}{\log x}. (2.4)

Similarly, we have

y<px1plog2(x/p)=1log2x2u(vv1)2𝑑G(v)=1log2x(G(u)u2(u1)2+22uvG(v)(v1)3𝑑v).\sum_{y<p\leq\sqrt{x}}\frac{1}{p\log^{2}(x/p)}=\frac{1}{\log^{2}x}\int_{2^{-}}^{u}\left(\frac{v}{v-1}\right)^{2}\,dG(v)=\frac{1}{\log^{2}x}\left(\frac{G(u)u^{2}}{(u-1)^{2}}+2\int_{2^{-}}^{u}\frac{vG(v)}{(v-1)^{3}}\,dv\right).

By (2.1) we have

G(u)u2(u1)2u2(u1)2(logu2c1log2y),\frac{G(u)u^{2}}{(u-1)^{2}}\geq\frac{u^{2}}{(u-1)^{2}}\left(\log\frac{u}{2}-\frac{c_{1}}{\log^{2}y}\right),

and

2uvG(v)(v1)3𝑑v2uv(v1)3(logv2c1log2y)𝑑v.\int_{2^{-}}^{u}\frac{vG(v)}{(v-1)^{3}}\,dv\geq\int_{2}^{u}\frac{v}{(v-1)^{3}}\left(\log\frac{v}{2}-\frac{c_{1}}{\log^{2}y}\right)\,dv.

Since

2uv(v1)3logv2dv\displaystyle\int_{2}^{u}\frac{v}{(v-1)^{3}}\log\frac{v}{2}\,dv =(1u1+12(u1)2)logu2+2u(1v1+12(v1)2)dvv\displaystyle=-\left(\frac{1}{u-1}+\frac{1}{2(u-1)^{2}}\right)\log\frac{u}{2}+\int_{2}^{u}\left(\frac{1}{v-1}+\frac{1}{2(v-1)^{2}}\right)\frac{dv}{v}
=2u12(u1)2logu2+122u(1(v1)2+1v(v1))𝑑v\displaystyle=-\frac{2u-1}{2(u-1)^{2}}\log\frac{u}{2}+\frac{1}{2}\int_{2}^{u}\left(\frac{1}{(v-1)^{2}}+\frac{1}{v(v-1)}\right)\,dv
=u22(u1)2logu2+12(log(u1)+11u1)\displaystyle=-\frac{u^{2}}{2(u-1)^{2}}\log\frac{u}{2}+\frac{1}{2}\left(\log(u-1)+1-\frac{1}{u-1}\right)

and

2uv(v1)3𝑑v=2u12(u1)2+32,\int_{2}^{u}\frac{v}{(v-1)^{3}}\,dv=-\frac{2u-1}{2(u-1)^{2}}+\frac{3}{2},

we have

y<pxxplog2(x/p)xlog2x(log(u1)+u2u14c1log2y).\sum_{y<p\leq\sqrt{x}}\frac{x}{p\log^{2}(x/p)}\geq\frac{x}{\log^{2}x}\left(\log(u-1)+\frac{u-2}{u-1}-\frac{4c_{1}}{\log^{2}y}\right). (2.5)

Inserting (2) and (2.5) into (2.3) yields

Δ(x,y)g(u)2c1ulogy+logyuy3/21u2(2c3+4c1c3log2y+8c2ulogy+8c22u2log2y),\Delta(x,y)\geq g(u)-\frac{2c_{1}}{u\log y}+\frac{\log y}{uy^{3/2}}-\frac{1}{u^{2}}\left(2-c_{3}+\frac{4c_{1}c_{3}}{\log^{2}y}+\frac{8c_{2}}{u\log y}+\frac{8c_{2}^{2}}{u^{2}\log^{2}y}\right),

where

g(u)\colonequalsc3u2(log(u1)+u2u1).g(u)\colonequals\frac{c_{3}}{u^{2}}\left(\log(u-1)+\frac{u-2}{u-1}\right).

Using Mathematica we find that Δ3>0.301223\Delta_{3}^{-}>-0.301223 when yy1y\geq y_{1}.

Now we proceed to bound Δk\Delta_{k}^{-} for k4k\geq 4 recursively when yy1y\geq y_{1}. Let k3k\geq 3 be arbitrary. It is easily seen that the following variant of Buchstab’s identity (1.2) holds for any z[y,x]z\in[y,x]:

Φ(x,y)=Φ(x,z)+y<pzΦ(x/p,p),\Phi(x,y)=\Phi(x,z)+\sum_{y<p\leq z}\Phi(x/p,p^{-}), (2.6)

where p<pp^{-}<p is any real number sufficiently close to pp. For 3ku<k+13\leq k\leq u<k+1 and yy1y\geq y_{1}, we obtain by taking z=x1/3z=x^{1/3} that

Φ(x,y)=Φ(x,x1/3)+y<px1/3Φ(x/p,p).\Phi(x,y)=\Phi\left(x,x^{1/3}\right)+\sum_{y<p\leq x^{1/3}}\Phi(x/p,p^{-}). (2.7)

We have already shown that

Φ(x,x1/3)xlogx1/3(ω(logxlogx1/3)+Δ3logx1/3)=3xlogy(ω(3)u+3Δ3u2logy).\Phi\left(x,x^{1/3}\right)\geq\frac{x}{\log x^{1/3}}\left(\omega\left(\frac{\log x}{\log x^{1/3}}\right)+\frac{\Delta_{3}^{-}}{\log x^{1/3}}\right)=\frac{3x}{\log y}\left(\frac{\omega(3)}{u}+\frac{3\Delta_{3}^{-}}{u^{2}\log y}\right). (2.8)

Note that 2<log(x/p)/log(p)<k2<\log(x/p)/\log(p^{-})<k. Thus, we have

Φ(x/p,p)xplog(p)(ω(log(x/p)log(p))+Δklog(p)).\Phi(x/p,p^{-})\geq\frac{x}{p\log(p^{-})}\left(\omega\left(\frac{\log(x/p)}{\log(p^{-})}\right)+\frac{\Delta_{k}^{-}}{\log(p^{-})}\right).

Since ω(u)\omega(u) is continuous on [1,)[1,\infty), it follows from (2.7) and (2.8) that

Φ(x,y)3xlogy(ω(3)u+3Δ3u2logy)+y<px1/3xplogp(ω(logxlogp1)+Δklogp).\Phi(x,y)\geq\frac{3x}{\log y}\left(\frac{\omega(3)}{u}+\frac{3\Delta_{3}^{-}}{u^{2}\log y}\right)+\sum_{y<p\leq x^{1/3}}\frac{x}{p\log p}\left(\omega\left(\frac{\log x}{\log p}-1\right)+\frac{\Delta_{k}^{-}}{\log p}\right). (2.9)

By partial summation we see that

y<px1/31plog2p<y1tlog2t𝑑π(t)=π(y)ylog2y+ylogt+2t2log3tπ(t)𝑑t,\sum_{y<p\leq x^{1/3}}\frac{1}{p\log^{2}p}<\int_{y}^{\infty}\frac{1}{t\log^{2}t}\,d\pi(t)=-\frac{\pi(y)}{y\log^{2}y}+\int_{y}^{\infty}\frac{\log t+2}{t^{2}\log^{3}t}\pi(t)\,dt,

which, by (2.2), is

<1log3y(1+c3logy)+ylogt+2tlog4t(1+c2logt)𝑑t\displaystyle<-\frac{1}{\log^{3}y}\left(1+\frac{c_{3}}{\log y}\right)+\int_{y}^{\infty}\frac{\log t+2}{t\log^{4}t}\left(1+\frac{c_{2}}{\log t}\right)\,dt
=1log3y(1+c3logy)+12log2y+c2+23log3y+c22log4y\displaystyle=-\frac{1}{\log^{3}y}\left(1+\frac{c_{3}}{\log y}\right)+\frac{1}{2\log^{2}y}+\frac{c_{2}+2}{3\log^{3}y}+\frac{c_{2}}{2\log^{4}y}
=1log2y(12+(c231)1logy+(c22c3)1log2y)\displaystyle=\frac{1}{\log^{2}y}\left(\frac{1}{2}+\left(\frac{c_{2}}{3}-1\right)\frac{1}{\log y}+\left(\frac{c_{2}}{2}-c_{3}\right)\frac{1}{\log^{2}y}\right)
<1log2y(12+(c231)1logy).\displaystyle<\frac{1}{\log^{2}y}\left(\frac{1}{2}+\left(\frac{c_{2}}{3}-1\right)\frac{1}{\log y}\right).

Hence

y<px1/3Δkxplog2pΔkxlog2y(12+(c231)1logy).\sum_{y<p\leq x^{1/3}}\frac{\Delta_{k}^{-}x}{p\log^{2}p}\geq\frac{\Delta_{k}^{-}x}{\log^{2}y}\left(\frac{1}{2}+\left(\frac{c_{2}}{3}-1\right)\frac{1}{\log y}\right). (2.10)

On the other hand, we have

y<px1/31plogpω(logxlogp1)\displaystyle\sum_{y<p\leq x^{1/3}}\frac{1}{p\log p}\omega\left(\frac{\log x}{\log p}-1\right) =1logx3uvω(v1)𝑑G(v)\displaystyle=\frac{1}{\log x}\int_{3^{-}}^{u}v\omega(v-1)\,dG(v)
=1logx(3uω(v1)𝑑v+3uvω(v1)d(G(v)logv2)).\displaystyle=\frac{1}{\log x}\left(\int_{3}^{u}\omega(v-1)\,dv+\int_{3^{-}}^{u}v\omega(v-1)\,d\left(G(v)-\log\frac{v}{2}\right)\right).

Observe that

3uω(v1)𝑑v=uω(u)3ω(3)\int_{3}^{u}\omega(v-1)\,dv=u\omega(u)-3\omega(3)

and that

3uvω(v1)d(G(v)logv2)\displaystyle\int_{3^{-}}^{u}v\omega(v-1)\,d\left(G(v)-\log\frac{v}{2}\right) =uω(u1)(G(v)logv2)3ω(2)(G(3)log32)\displaystyle=u\omega(u-1)\left(G(v)-\log\frac{v}{2}\right)-3\omega(2)\left(G(3)-\log\frac{3}{2}\right)
3u(G(v)logv2)d(vω(v1)).\displaystyle\hskip 8.53581pt-\int_{3^{-}}^{u}\left(G(v)-\log\frac{v}{2}\right)\,d(v\omega(v-1)).

By [T, (6.23), p. 562] and [T, Theorems III.5.7 & III.6.6], we have, for all v3v\geq 3, that

ddv(vω(v1))\displaystyle\frac{d}{dv}(v\omega(v-1)) =ω(v2)+ω(v1)12ρ(v1)12ρ(2)=log212,\displaystyle=\omega(v-2)+\omega^{\prime}(v-1)\geq\frac{1}{2}-\rho(v-1)\geq\frac{1}{2}-\rho(2)=\log 2-\frac{1}{2},
ddv(vω(v1))\displaystyle\frac{d}{dv}(v\omega(v-1)) 1+ρ(v1)1+ρ(2)=2log2,\displaystyle\leq 1+\rho(v-1)\leq 1+\rho(2)=2-\log 2,

where ρ\rho is the Dickman-de Bruijn function defined to be the unique continuous solution to the delay differential equation tρ(t)+ρ(t1)=0t\rho^{\prime}(t)+\rho(t-1)=0 for t1t\geq 1, subject to the initial value condition ρ(t)=1\rho(t)=1 for 0t10\leq t\leq 1. Moreover, we have

limv3ddv(vω(v1))=limv3(ω(v2)+ω(v1))=14.\lim\limits_{v\to 3^{-}}\frac{d}{dv}(v\omega(v-1))=\lim\limits_{v\to 3^{-}}\left(\omega(v-2)+\omega^{\prime}(v-1)\right)=-\frac{1}{4}.

It follows by (2.1) that

3u(G(v)logv2)d(vω(v1))c1log2y(uω(u1)3ω(2)).\int_{3^{-}}^{u}\left(G(v)-\log\frac{v}{2}\right)\,d(v\omega(v-1))\leq\frac{c_{1}}{\log^{2}y}\left(u\omega(u-1)-3\omega(2)\right).

Thus we have

3uvω(v1)d(G(v)logv2)2c1uω(u1)log2y2c1M0ulog2y,\int_{3^{-}}^{u}v\omega(v-1)\,d\left(G(v)-\log\frac{v}{2}\right)\geq-\frac{2c_{1}u\omega(u-1)}{\log^{2}y}\geq-\frac{2c_{1}M_{0}u}{\log^{2}y},

where M0=0.5671432M_{0}=0.5671432.... Hence we have shown that

y<px1/3xplogpω(logxlogp1)xlogy(ω(u)3ω(3)u2c1M0log2y).\sum_{y<p\leq x^{1/3}}\frac{x}{p\log p}\omega\left(\frac{\log x}{\log p}-1\right)\geq\frac{x}{\log y}\left(\omega(u)-\frac{3\omega(3)}{u}-\frac{2c_{1}M_{0}}{\log^{2}y}\right). (2.11)

Combining (2.9), (2.10) and (2.11), we deduce that

Δ(x,y)9Δ3u2+Δk21logy(2c1M0(c231)Δk)\Delta(x,y)\geq\frac{9\Delta_{3}^{-}}{u^{2}}+\frac{\Delta_{k}^{-}}{2}-\frac{1}{\log y}\left(2c_{1}M_{0}-\left(\frac{c_{2}}{3}-1\right)\Delta_{k}^{-}\right)

for ku<k+1k\leq u<k+1. Therefore, Δk+1min(Δk,ak)\Delta_{k+1}^{-}\geq\min(\Delta_{k}^{-},a_{k}^{-}) for all k3k\geq 3, where

ak\colonequals9Δ3k2+Δk21logy1max(2c1M0(c231)Δk,0).a_{k}^{-}\colonequals\frac{9\Delta_{3}^{-}}{k^{2}}+\frac{\Delta_{k}^{-}}{2}-\frac{1}{\log y_{1}}\cdot\max\left(2c_{1}M_{0}-\left(\frac{c_{2}}{3}-1\right)\Delta_{k}^{-},0\right).

Consequently, we have Δ4>0.451835\Delta_{4}^{-}>-0.451835 and Δk>0.480075\Delta_{k}^{-}>-0.480075 for all k5k\geq 5.

Suppose now that 602yy1602\leq y\leq y_{1}. By [RS, Theorem 20] we can replace (2.1) with

|G(v)logv2|d1ylogy,\left|G(v)-\log\frac{v}{2}\right|\leq\frac{d_{1}}{\sqrt{y}\log y},

where d1=2d_{1}=2. Moreover, (2.2) remains true if we replace c2c_{2} and c3c_{3} by d2=1.2762d_{2}=1.2762 and d3=1d_{3}=1, respectively, according to [D, Corollary 5.2]. With these changes, we run the same argument used to handle the case yy1y\geq y_{1} and get

Δ(x,y)>g(u)2d1uy+logyuy3/21u2(2d3+4d1d3ylogy+8d2ulogy+8d22u2log2y).\Delta(x,y)>g(u)-\frac{2d_{1}}{u\sqrt{y}}+\frac{\log y}{uy^{3/2}}-\frac{1}{u^{2}}\left(2-d_{3}+\frac{4d_{1}d_{3}}{\sqrt{y}\log y}+\frac{8d_{2}}{u\log y}+\frac{8d_{2}^{2}}{u^{2}\log^{2}y}\right).

when 2u32\leq u\leq 3 and

Δ(x,y)9Δ3u2+Δk21logy(2d1M0logyy(d231)Δk)\Delta(x,y)\geq\frac{9\Delta_{3}^{-}}{u^{2}}+\frac{\Delta_{k}^{-}}{2}-\frac{1}{\log y}\left(\frac{2d_{1}M_{0}\log y}{\sqrt{y}}-\left(\frac{d_{2}}{3}-1\right)\Delta_{k}^{-}\right)

when 3ku<k+13\leq k\leq u<k+1, so that we can take

ak=9Δ3k2+Δk21logy0max(2d1M0logy0y0(d231)Δk,0).a_{k}^{-}=\frac{9\Delta_{3}^{-}}{k^{2}}+\frac{\Delta_{k}^{-}}{2}-\frac{1}{\log y_{0}}\cdot\max\left(\frac{2d_{1}M_{0}\log y_{0}}{\sqrt{y_{0}}}-\left(\frac{d_{2}}{3}-1\right)\Delta_{k}^{-},0\right).

As a consequence, we have Δ3>0.563528\Delta_{3}^{-}>-0.563528, Δ4>0.887161\Delta_{4}^{-}>-0.887161 and Δk>0.955421\Delta_{k}^{-}>-0.955421 for all k5k\geq 5. This completes the proof of the proposition. ∎

The next result provides a numerical lower bound for ω(u)\omega(u) on [3,)[3,\infty).

Lemma 2.2.

We have ω(u)>0.549307\omega(u)>0.549307 for all u3u\geq 3.

Proof.

Consider first the case u[3,4]u\in[3,4]. Since (tω(t))=ω(t1)(t\omega(t))^{\prime}=\omega(t-1) for t2t\geq 2 and ω(t)=(log(t1)+1)/t\omega(t)=(\log(t-1)+1)/t for t[2,3]t\in[2,3], we have

ω(u)=1u(log2+1+3ulog(t2)+1t1𝑑t)\omega(u)=\frac{1}{u}\left(\log 2+1+\int_{3}^{u}\frac{\log(t-2)+1}{t-1}\,dt\right)

for u[3,4]u\in[3,4]. Note that uω(u)=ω(u1)ω(u)=S(u)/uu\omega^{\prime}(u)=\omega(u-1)-\omega(u)=S(u)/u, where

S(u)\colonequalsu(log(u2)+1)u1log213ulog(t2)+1t1𝑑t.S(u)\colonequals\frac{u(\log(u-2)+1)}{u-1}-\log 2-1-\int_{3}^{u}\frac{\log(t-2)+1}{t-1}\,dt.

Since

S(u)\displaystyle S^{\prime}(u) =1u1(log(u2)+1+uu2u(log(u2)+1)u1(log(u2)+1))\displaystyle=\frac{1}{u-1}\left(\log(u-2)+1+\frac{u}{u-2}-\frac{u(\log(u-2)+1)}{u-1}-(\log(u-2)+1)\right)
=u(1(u2)log(u2))(u2)(u1)2,\displaystyle=\frac{u(1-(u-2)\log(u-2))}{(u-2)(u-1)^{2}},

we know that S(u)S(u) is strictly increasing on [3,u1][3,u_{1}] and strictly decreasing on [u1,4][u_{1},4], where u1=3.7632228u_{1}=3.7632228... is the unique solution to the equation (u2)log(u2)=1(u-2)\log(u-2)=1. But S(3)=1/2log2<0S(3)=1/2-\log 2<0 and

S(4)=log2+1334log(t2)+1t1𝑑t>0.S(4)=\frac{\log 2+1}{3}-\int_{3}^{4}\frac{\log(t-2)+1}{t-1}\,dt>0.

It follows that S(u)S(u) has a unique zero u2[3,4]u_{2}\in[3,4]. The numerical value of u2u_{2} is given by u2=3.4697488u_{2}=3.4697488..., according to Mathematica. Hence S(u)<0S(u)<0 for u[3,u2)u\in[3,u_{2}) and S(u)>0S(u)>0 for u(u2,4]u\in(u_{2},4]. The same is true for ω(u)\omega^{\prime}(u), which implies that ω(u)\omega(u) is strictly decreasing on [3,u2][3,u_{2}] and strictly increasing on [u2,4][u_{2},4]. Thus, ω(u)ω(u2)=0.5608228\omega(u)\geq\omega(u_{2})=0.5608228... for u[3,4]u\in[3,4].

Consider now the case u[4,)u\in[4,\infty). It is known [JR] that ω(t)\omega(t) satisfies

|ω(t)eγ|ρ(t1)t|\omega(t)-e^{-\gamma}|\leq\frac{\rho(t-1)}{t}

for all t1t\geq 1. Since ρ(t)\rho(t) is strictly decreasing on [4,)[4,\infty), we have ω(u)eγρ(3)/4\omega(u)\geq e^{-\gamma}-\rho(3)/4 for all u4u\geq 4. To find the value of ρ(3)\rho(3), we use tρ(t)+ρ(t1)=0t\rho^{\prime}(t)+\rho(t-1)=0 for t1t\geq 1 and ρ(t)=1logt\rho(t)=1-\log t for t[1,2]t\in[1,2] to obtain

ρ(u)=1log22u1log(t1)t𝑑t\rho(u)=1-\log 2-\int_{2}^{u}\frac{1-\log(t-1)}{t}\,dt

for u[2,3]u\in[2,3]. It follows that

ω(u)eγ14(1log2231log(t1)t𝑑t)=0.5493073\omega(u)\geq e^{-\gamma}-\frac{1}{4}\left(1-\log 2-\int_{2}^{3}\frac{1-\log(t-1)}{t}\,dt\right)=0.5493073...

for all u4u\geq 4. We have therefore shown that ω(u)>0.549307\omega(u)>0.549307 for all u3u\geq 3. ∎

We are now ready to prove the following clean lower bound for Φ(x,y)\Phi(x,y) that we alluded to.

Theorem 2.3.

We have Φ(x,y)>0.4x/logy\Phi(x,y)>0.4x/\log y uniformly for all 7yx2/37\leq y\leq x^{2/3}.

Proof.

In the range max(7,x2/5)yx2/3\max(7,x^{2/5})\leq y\leq x^{2/3}, we have trivially Φ(x,y)π(x)π(y)+1\Phi(x,y)\geq\pi(x)-\pi(y)+1. By [D, Corollary 5.2] we have

π(x)π(y)\displaystyle\pi(x)-\pi(y) xlogx(1+1logx)ylogy(1+1.2762logy)\displaystyle\geq\frac{x}{\log x}\left(1+\frac{1}{\log x}\right)-\frac{y}{\log y}\left(1+\frac{1.2762}{\log y}\right)
=(1u(1+1logx)yx(1+1.2762ulogx))xlogy\displaystyle=\left(\frac{1}{u}\left(1+\frac{1}{\log x}\right)-\frac{y}{x}\left(1+\frac{1.2762u}{\log x}\right)\right)\frac{x}{\log y}
>(25(1+1logx)1x1/3(1+3.1905logx))xlogy>0.4xlogy\displaystyle>\left(\frac{2}{5}\left(1+\frac{1}{\log x}\right)-\frac{1}{x^{1/3}}\left(1+\frac{3.1905}{\log x}\right)\right)\frac{x}{\log y}>0.4\frac{x}{\log y}

whenever x41,217x\geq 41{,}217. Furthermore, we have verified Φ(x,y)>0.4x/logy\Phi(x,y)>0.4x/\log y for max(7,x2/5)yx2/3\max(7,x^{2/5})\leq y\leq x^{2/3} with x41,217x\leq 41{,}217 using Mathematica. Hence, Φ(x,y)>0.4x/logy\Phi(x,y)>0.4x/\log y holds in the range max(7,x2/5)yx2/3\max(7,x^{2/5})\leq y\leq x^{2/3}.

Consider now the case max(x1/3,7)yx2/5\max(x^{1/3},7)\leq y\leq x^{2/5}. Following the proof of Proposition 2.1, we have

Φ(x,y)\displaystyle\Phi(x,y) =π(x)π(y)+1+y<px(π(x/p)π(p)+1)\displaystyle=\pi(x)-\pi(y)+1+\sum_{y<p\leq\sqrt{x}}(\pi(x/p)-\pi(p)+1)
=π(x)M(x,y)+y<px1/2π(x/p),\displaystyle=\pi(x)-M(x,y)+\sum_{y<p\leq x^{1/2}}\pi(x/p), (2.12)

where

M(x,y)\colonequals12π(x)212π(x)12π(y)2+32π(y)1.M(x,y)\colonequals\frac{1}{2}\pi\left(\sqrt{x}\right)^{2}-\frac{1}{2}\pi\left(\sqrt{x}\right)-\frac{1}{2}\pi(y)^{2}+\frac{3}{2}\pi(y)-1.

To handle the sum in (2), we appeal to Theorem 5 and its corollary from [RS] to arrive at

G(v)logv2>12log2x1log2y3325log2yG(v)-\log\frac{v}{2}>-\frac{1}{2\log^{2}\sqrt{x}}-\frac{1}{\log^{2}y}\geq-\frac{33}{25\log^{2}y}

in the range max(x1/3,7)yx2/5\max(x^{1/3},7)\leq y\leq x^{2/5}. By [RS, Corollary 1] we have

y<px1/2π(x/p)>xy<px1/21plog(x/p)=xlogx2uvv1𝑑G(v),\sum_{y<p\leq x^{1/2}}\pi(x/p)>x\sum_{y<p\leq x^{1/2}}\frac{1}{p\log(x/p)}=\frac{x}{\log x}\int_{2^{-}}^{u}\frac{v}{v-1}\,dG(v),

provided that x289x\geq 289. The right-hand side of the above can be estimated in the same way as in the proof of Proposition 2.1, so we obtain

y<pxπ(x/p)>xlogy(ω(u)6625ulog2y)xlogx.\sum_{y<p\leq\sqrt{x}}\pi(x/p)>\frac{x}{\log y}\left(\omega(u)-\frac{66}{25u\log^{2}y}\right)-\frac{x}{\log x}.

On the other hand, we see by [D, Corollary 5.2] and [RS, Corollary 2] that

π(x)M(x,y)>π(x)12π(x)2xlogx(1+1logx)25x8log2x=xlogx17x8log2x.\pi(x)-M(x,y)>\pi(x)-\frac{1}{2}\pi\left(\sqrt{x}\right)^{2}\geq\frac{x}{\log x}\left(1+\frac{1}{\log x}\right)-\frac{25x}{8\log^{2}x}=\frac{x}{\log x}-\frac{17x}{8\log^{2}x}.

for x1142x\geq 114^{2}. Collecting the estimates above and using the inequality ω(u)ω(5/2)=2(ln(3/2)+1)/5\omega(u)\geq\omega(5/2)=2(\ln(3/2)+1)/5 for u[5/2,3]u\in[5/2,3], we find that

Φ(x,y)>ω(5/2)xlogy17x8log2x66x25ulog3yω(5/2)xlogy17x50log2y132x125log3y>0.4xlogy\Phi(x,y)>\frac{\omega(5/2)x}{\log y}-\frac{17x}{8\log^{2}x}-\frac{66x}{25u\log^{3}y}\geq\frac{\omega(5/2)x}{\log y}-\frac{17x}{50\log^{2}y}-\frac{132x}{125\log^{3}y}>0.4\frac{x}{\log y}

for all max(46,x1/3)yx2/5\max(46,x^{1/3})\leq y\leq x^{2/5}. For x1/3yx2/5x^{1/3}\leq y\leq x^{2/5} with 7y467\leq y\leq 46, we have verified the inequality Φ(x,y)>0.4x/logy\Phi(x,y)>0.4x/\log y directly through numerical computation.

Next, we consider the range 7y<x1/37\leq y<x^{1/3}. By Proposition 2.1 and Lemma 2.2 we have

Φ(x,y)>xlogy(0.5493070.955421logy)>0.4xlogy,\Phi(x,y)>\frac{x}{\log y}\left(0.549307-\frac{0.955421}{\log y}\right)>0.4\frac{x}{\log y},

provided that y602y\geq 602. To deal with the range 7ymin(x1/3,602)7\leq y\leq\min(x^{1/3},602), we follow the inclusion-exclusion technique used in [FP, Section 3]. For any integer n1n\geq 1, let ν(n)\nu(n) denote the number of distinct prime factors of nn. We start by “pre-sieving” with the primes 2, 3, and 5: for any x1x\geq 1 the number of integers nxn\leq x with gcd(n,30)=1\gcd(n,30)=1 is (4/15)x+rx(4/15)x+r_{x}, where |rx|14/15|r_{x}|\leq 14/15. Let P5(y)P_{5}(y) be the product of the primes in (5,y](5,y]. Then we have by the Bonferroni inequalities that

Φ(x,y)dP5(y)ν(d)3μ(d)(415xd+rx/d)a(y)xb(y),\Phi(x,y)\geq\sum_{\begin{subarray}{c}d\mid P_{5}(y)\\ \nu(d)\leq 3\end{subarray}}\mu(d)\left(\frac{4}{15}\cdot\frac{x}{d}+r_{x/d}\right)\geq a(y)x-b(y),

where

a(y)\displaystyle a(y) \colonequals415dP5(y)ν(d)3μ(d)d=415j=03(1)jdP5(y)ν(d)=j1d,\displaystyle\colonequals\frac{4}{15}\sum_{\begin{subarray}{c}d\mid P_{5}(y)\\ \nu(d)\leq 3\end{subarray}}\frac{\mu(d)}{d}=\frac{4}{15}\sum_{j=0}^{3}(-1)^{j}\sum_{\begin{subarray}{c}d\mid P_{5}(y)\\ \nu(d)=j\end{subarray}}\frac{1}{d},
b(y)\displaystyle b(y) \colonequals1415j=03(π(y)3j).\displaystyle\colonequals\frac{14}{15}\sum_{j=0}^{3}\binom{\pi(y)-3}{j}.

By Newton’s identities, the inner sum in the definition of a(y)a(y) can be represented in terms of the power sums of 1/p1/p over all primes 5<py5<p\leq y. Thus, we have Φ(x,y)>0.4x/logy\Phi(x,y)>0.4x/\log y whenever a(y)>0.4/logya(y)>0.4/\log y and x>b(y)/(a(y)0.4/logy)x>b(y)/(a(y)-0.4/\log y). Using Mathematica, we find that the inequality Φ(x,y)>0.4x/logy\Phi(x,y)>0.4x/\log y holds for 7y6027\leq y\leq 602 and x13,160,748x\geq 13{,}160{,}748. Finally, we have verified the inequality Φ(x,y)>0.4x/logy\Phi(x,y)>0.4x/\log y directly for 7yx1/37\leq y\leq x^{1/3} with x13,160,748x\leq 13{,}160{,}748 by numerical calculations, completing the proof of our theorem. ∎

Remark 2.1.

Note that for y[5,7)y\in[5,7) we have

Φ(x,y)415x1415>0.4xlog50.4xlogy,\Phi(x,y)\geq\frac{4}{15}x-\frac{14}{15}>0.4\frac{x}{\log 5}\geq 0.4\frac{x}{\log y},

provided that x52x\geq 52. Combined with Theorem 2.3 and numerical examination of the case 11x5211\leq x\leq 52, this implies that the inequality Φ(x,y)>0.4x/logy\Phi(x,y)>0.4x/\log y holds in the slightly larger range 5yx2/35\leq y\leq x^{2/3} if one assumes x41x\geq 41.

3. An Explicit Version of de Bruijn’s Estimate

To prove Theorem 1.1, we shall first develop an explicit version of (1.6) with a general R(y)R(y), following [Br], where R(y)R(y) is a positive decreasing function satisfying the same conditions described in the introduction. Suppose that y03y_{0}\geq 3. For each z2z\geq 2, put

Q(z)\colonequalspz(11p).Q(z)\colonequals\prod_{p\leq z}\left(1-\frac{1}{p}\right).

We start by estimating Q(y)Q(y) for yy0y\geq y_{0}. Using a Stieltjes integral, we may write

logQ(z)Q(y)=yzlog(1t1)dli(y)+yzlog(1t1)d(π(y)li(t)),\log\frac{Q(z)}{Q(y)}=\int_{y}^{z}\log\left(1-t^{-1}\right)\,d\operatorname{li}(y)+\int_{y}^{z}\log\left(1-t^{-1}\right)\,d(\pi(y)-\operatorname{li}(t)), (3.1)

where zyy0z\geq y\geq y_{0}. The first integral on the right-hand side of the above is equal to

yzlog(1t1)dtlogt=loglogzlogy+yz(t1+log(1t1))dtlogt.\displaystyle\int_{y}^{z}\log\left(1-t^{-1}\right)\frac{dt}{\log t}=-\log\frac{\log z}{\log y}+\int_{y}^{z}\left(t^{-1}+\log\left(1-t^{-1}\right)\right)\frac{dt}{\log t}.

Since

12t(t1)<t1+log(1t1)<0-\frac{1}{2t(t-1)}<t^{-1}+\log\left(1-t^{-1}\right)<0

for all ty0t\geq y_{0}, we have

12ydtt(t1)logt<yz(t1+log(1t1))dtlogt<0.-\frac{1}{2}\int_{y}^{\infty}\frac{dt}{t(t-1)\log t}<\int_{y}^{z}\left(t^{-1}+\log\left(1-t^{-1}\right)\right)\frac{dt}{\log t}<0.

But a change of variable shows that

ydtt(t1)logt=1dtt(yt1)1y11dtt2=1y1,\int_{y}^{\infty}\frac{dt}{t(t-1)\log t}=\int_{1}^{\infty}\frac{dt}{t(y^{t}-1)}\leq\frac{1}{y-1}\int_{1}^{\infty}\frac{dt}{t^{2}}=\frac{1}{y-1},

where we have used the inequality yt1(y1)ty^{t}-1\geq(y-1)t for t1t\geq 1 and yy0y\geq y_{0}. It follows that

12(y1)yzlog(1t1)dli(y)+loglogzlogy<0.-\frac{1}{2(y-1)}\leq\int_{y}^{z}\log\left(1-t^{-1}\right)\,d\operatorname{li}(y)+\log\frac{\log z}{\log y}<0. (3.2)

Now we estimate the second integral on the right-hand side of (3.1). By (1.4) and partial integration we have

|yzlog(1t1)d(π(y)li(t))|\displaystyle\left|\int_{y}^{z}\log\left(1-t^{-1}\right)\,d(\pi(y)-\operatorname{li}(t))\right| log(1y1)1ylogyR(y)+log(1z1)1zlogzR(z)\displaystyle\leq\log\left(1-y^{-1}\right)^{-1}\frac{y}{\log y}R(y)+\log\left(1-z^{-1}\right)^{-1}\frac{z}{\log z}R(z)
+yz|π(t)li(t)|t(t1)𝑑t.\displaystyle\hskip 5.69054pt+\int_{y}^{z}\frac{|\pi(t)-\operatorname{li}(t)|}{t(t-1)}\,dt.

Using (1.5) we see that

yz|π(t)li(t)|t(t1)𝑑tC0(y0)y0y01R(y).\int_{y}^{z}\frac{|\pi(t)-\operatorname{li}(t)|}{t(t-1)}\,dt\leq\frac{C_{0}(y_{0})y_{0}}{y_{0}-1}R(y).

It is clear that the function

log(1t1)1tlogt=1logtn=0tnn+1\log\left(1-t^{-1}\right)^{-1}\frac{t}{\log t}=\frac{1}{\log t}\sum_{n=0}^{\infty}\frac{t^{-n}}{n+1}

is strictly decreasing for t(1,)t\in(1,\infty). Since R(t)R(t) is decreasing on [y0,)[y_{0},\infty), we find that

|yzlog(1t1)d(π(y)li(t))|(2log(1y01)1y0logy0+C0(y0)y0y01)R(y).\left|\int_{y}^{z}\log\left(1-t^{-1}\right)\,d(\pi(y)-\operatorname{li}(t))\right|\leq\left(2\log\left(1-y_{0}^{-1}\right)^{-1}\frac{y_{0}}{\log y_{0}}+\frac{C_{0}(y_{0})y_{0}}{y_{0}-1}\right)R(y).

Combining this inequality with (3.1) and (3.2) yields

C2(y0)R(y)logQ(z)Q(y)+loglogzlogyC1(y0)R(y)-C_{2}(y_{0})R(y)\leq\log\frac{Q(z)}{Q(y)}+\log\frac{\log z}{\log y}\leq C_{1}(y_{0})R(y) (3.3)

for zyy0z\geq y\geq y_{0}, where

C1(y0)\displaystyle C_{1}(y_{0}) =2log(1y01)1y0logy0+C0(y0)y0y01,\displaystyle=2\log\left(1-y_{0}^{-1}\right)^{-1}\frac{y_{0}}{\log y_{0}}+\frac{C_{0}(y_{0})y_{0}}{y_{0}-1},
C2(y0)\displaystyle C_{2}(y_{0}) =C1(y0)+supty012(t1)R(t).\displaystyle=C_{1}(y_{0})+\sup_{t\geq y_{0}}\frac{1}{2(t-1)R(t)}.

Exponentiating (3.3) we obtain

C4(y0)R(y)Q(z)logzQ(y)logy1C3(y0)R(y)-C_{4}(y_{0})R(y)\leq\frac{Q(z)\log z}{Q(y)\log y}-1\leq C_{3}(y_{0})R(y) (3.4)

for zyy0z\geq y\geq y_{0}, where

C3(y0)\displaystyle C_{3}(y_{0}) =supty0exp(C1(y0)R(t))1R(t)=exp(C1(y0)R(y0))1R(y0),\displaystyle=\sup_{t\geq y_{0}}\frac{\exp(C_{1}(y_{0})R(t))-1}{R(t)}=\frac{\exp(C_{1}(y_{0})R(y_{0}))-1}{R(y_{0})},
C4(y0)\displaystyle C_{4}(y_{0}) =supty01exp(C2(y0)R(t))R(t)=C2(y0).\displaystyle=\sup_{t\geq y_{0}}\frac{1-\exp(-C_{2}(y_{0})R(t))}{R(t)}=C_{2}(y_{0}).

As a consequence, we have by letting zz\to\infty in (3.4) and using the fact that Q(z)logzeγQ(z)\log z\to e^{-\gamma} as zz\to\infty, that

eγlogy(1C4(y0)R(y))1Q(y)eγlogy(1+C3(y0)R(y)).e^{\gamma}\log y(1-C_{4}(y_{0})R(y))\leq\frac{1}{Q(y)}\leq e^{\gamma}\log y(1+C_{3}(y_{0})R(y)). (3.5)

Similarly, we derive from (3.3) that

eγlogy(1C6(y0)R(y))Q(y)eγlogy(1+C5(y0)R(y))\frac{e^{-\gamma}}{\log y}(1-C_{6}(y_{0})R(y))\leq Q(y)\leq\frac{e^{-\gamma}}{\log y}(1+C_{5}(y_{0})R(y)) (3.6)

for yy0y\geq y_{0}, where

C5(y0)\displaystyle C_{5}(y_{0}) =supty0exp(C2(y0)R(t))1R(t)=exp(C2(y0)R(y0))1R(y0),\displaystyle=\sup_{t\geq y_{0}}\frac{\exp(C_{2}(y_{0})R(t))-1}{R(t)}=\frac{\exp(C_{2}(y_{0})R(y_{0}))-1}{R(y_{0})},
C6(y0)\displaystyle C_{6}(y_{0}) =supty01exp(C1(y0)R(t))R(t)=C1(y0).\displaystyle=\sup_{t\geq y_{0}}\frac{1-\exp(-C_{1}(y_{0})R(t))}{R(t)}=C_{1}(y_{0}).

For xy2x\geq y\geq 2, we define

ψ(x,y)\colonequalsΦ(x,y)xQ(y).\psi(x,y)\colonequals\frac{\Phi(x,y)}{xQ(y)}.

We then need to estimate η(x,y)=ψ(x,y)λ(x,y)\eta(x,y)=\psi(x,y)-\lambda(x,y), where λ(x,y)\colonequalseγμy(u)logy\lambda(x,y)\colonequals e^{\gamma}\mu_{y}(u)\log y. For 1u21\leq u\leq 2 this can be done straightforward. Indeed, we have Φ(x,y)=π(x)π(y)+1\Phi(x,y)=\pi(x)-\pi(y)+1 and ω(u)=1/u\omega(u)=1/u when 1u21\leq u\leq 2, so that

η(x,y)=π(x)π(y)+1xQ(y)eγlogy1ut1ytu𝑑t.\eta(x,y)=\frac{\pi(x)-\pi(y)+1}{xQ(y)}-e^{\gamma}\log y\int_{1}^{u}t^{-1}y^{t-u}\,dt.

Note that

|π(x)π(y)x1ut1ytu𝑑t|=|π(x)π(y)yxdtlogt|(xlogx+ylogy)R(y).\left|\pi(x)-\pi(y)-x\int_{1}^{u}t^{-1}y^{t-u}\,dt\right|=\left|\pi(x)-\pi(y)-\int_{y}^{x}\frac{dt}{\log t}\right|\leq\left(\frac{x}{\log x}+\frac{y}{\log y}\right)R(y).

From (3.5) it follows that |η(x,y)|eγαy(u)R(y)|\eta(x,y)|\leq e^{\gamma}\alpha_{y}(u)R(y) for yy0y\geq y_{0} and u[1,2]u\in[1,2], where

αy(u)\colonequalslogyyuR(y)+C3(y0)(logyyu+logy1ut1ytu𝑑t)+(1+C3(y0)R(y))(1u+y1u).\alpha_{y}(u)\colonequals\frac{\log y}{y^{u}R(y)}+C_{3}(y_{0})\left(\frac{\log y}{y^{u}}+\log y\int_{1}^{u}t^{-1}y^{t-u}\,dt\right)+(1+C_{3}(y_{0})R(y))\left(\frac{1}{u}+y^{1-u}\right).

Integration by parts enables us to write

logy1ut1ytu𝑑t=1uy1u+1ut2ytu𝑑t\log y\int_{1}^{u}t^{-1}y^{t-u}\,dt=\frac{1}{u}-y^{1-u}+\int_{1}^{u}t^{-2}y^{t-u}\,dt

for yy0y\geq y_{0}. Hence |η(x,y)|eγη1(y)R(y)|\eta(x,y)|\leq e^{\gamma}\eta_{1}(y)R(y) for yy0y\geq y_{0} and u[1,2]u\in[1,2], where

η1(y)\colonequalssuptylogttR(t)+maxu[1,2](C3(y0)Iy(u)+(1+C3(y0)R(y))(1u+y1u))\eta_{1}(y)\colonequals\sup_{t\geq y}\frac{\log t}{tR(t)}+\max_{u\in[1,2]}\left(C_{3}(y_{0})I_{y}(u)+(1+C_{3}(y_{0})R(y))\left(\frac{1}{u}+y^{1-u}\right)\right) (3.7)

with

Iy(u)\colonequals1u+1ut2ytu𝑑t.I_{y}(u)\colonequals\frac{1}{u}+\int_{1}^{u}t^{-2}y^{t-u}\,dt.

We remark that Iy(u)I_{y}(u) is strictly decreasing on [1,2][1,2] and hence satisfies Iy(u)<1I_{y}(u)<1 for u(1,2]u\in(1,2], since its derivative is

Iy(u)=1ut2ytulogydt<0.I_{y}^{\prime}(u)=-\int_{1}^{u}t^{-2}y^{t-u}\log y\,dt<0.

Thus, (3.7) simplifies to

η1(y)=suptylogttR(t)+C3(y0)+2(1+C3(y0)R(y)).\eta_{1}(y)=\sup_{t\geq y}\frac{\log t}{tR(t)}+C_{3}(y_{0})+2(1+C_{3}(y_{0})R(y)). (3.8)

Suppose now that yy0y\geq y_{0} and u2u\geq 2. From (2.6) it follows that

ψ(x,y)=ψ(x,z)Q(z)Q(y)+y<pzψ(x/p,p)1py<q<p(11q),\psi(x,y)=\psi(x,z)\frac{Q(z)}{Q(y)}+\sum_{y<p\leq z}\psi(x/p,p^{-})\cdot\frac{1}{p}\prod_{y<q<p}\left(1-\frac{1}{q}\right), (3.9)

where zyy0z\geq y\geq y_{0}. Put h\colonequalslogz/logy1h\colonequals\log z/\log y\geq 1 and

Hy(v)\colonequalsy<pyv1py<q<p(11q)H_{y}(v)\colonequals\sum_{y<p\leq y^{v}}\frac{1}{p}\prod_{y<q<p}\left(1-\frac{1}{q}\right) (3.10)

for v1v\geq 1. Then we have Hy(v)=1Q(yv)/Q(y)H_{y}(v)=1-Q(y^{v})/Q(y). By partial summation, we see that (3.9) becomes

ψ(x,y)=ψ(yu,yh)(1Hy(h))+1hψ(yuv,(yv))𝑑Hy(v).\psi(x,y)=\psi(y^{u},y^{h})(1-H_{y}(h))+\int_{1}^{h}\psi(y^{u-v},(y^{v})^{-})\,dH_{y}(v). (3.11)

By (3.4) we have

|Hy(v)1+v1|C7(y0)R(y),|H_{y}(v)-1+v^{-1}|\leq C_{7}(y_{0})R(y),

where C7(y0)\colonequalsmax(C3(y0),C4(y0))C_{7}(y_{0})\colonequals\max(C_{3}(y_{0}),C_{4}(y_{0})). Thus, one can think of 1v11-v^{-1} as a smooth approximation to Hy(v)H_{y}(v). Since we also expect λ(x,y)\lambda(x,y) to be a smooth approximation to ψ(x,y)\psi(x,y), in view of (3.11) it is reasonable to expect

E1(h;y,u)\colonequalsλ(yu,y)λ(yu,yh)h11hλ(yuv,yv)v2𝑑vE_{1}(h;y,u)\colonequals\lambda(y^{u},y)-\lambda(y^{u},y^{h})h^{-1}-\int_{1}^{h}\lambda(y^{u-v},y^{v})v^{-2}\,dv

to be small in size as a function of yy. This can be easily verified when 1hu/21\leq h\leq u/2. Following de Bruijn [Br], we have

hE1(h;y,u)=h1hλ(yu,yh)+h2λ(yu,y)h2λ(yuh,yh).\frac{\partial}{\partial h}E_{1}(h;y,u)=-h^{-1}\cdot\frac{\partial}{\partial h}\lambda(y^{u},y^{h})+h^{-2}\lambda(y^{u},y)-h^{-2}\lambda(y^{u-h},y^{h}). (3.12)

Since

λ(yu,yh)eγlogy=h1u/hyhtuω(t)𝑑t,\frac{\lambda(y^{u},y^{h})}{e^{\gamma}\log y}=h\int_{1}^{u/h}y^{ht-u}\omega(t)\,dt,

we find

h(λ(yu,yh)eγlogy)=1u/hyhtuω(t)𝑑t+h(logy1u/hyhtu(tω(t))𝑑tuh2ω(uh1)).\frac{\partial}{\partial h}\left(\frac{\lambda(y^{u},y^{h})}{e^{\gamma}\log y}\right)=\int_{1}^{u/h}y^{ht-u}\omega(t)\,dt+h\left(\log y\int_{1}^{u/h}y^{ht-u}(t\omega(t))\,dt-uh^{-2}\omega(uh^{-1})\right).

Recall that (tω(t))=ω(t1)(t\omega(t))^{\prime}=\omega(t-1) for tt\in\mathbb{R} with the obvious extension ω(t)=0\omega(t)=0 for t<1t<1. It follows that

logy1u/hyhtu(tω(t))𝑑t\displaystyle\log y\int_{1}^{u/h}y^{ht-u}(t\omega(t))\,dt =h1yhtu(tω(t))|1u/hh11u/hyhtuω(t1)𝑑t\displaystyle=h^{-1}y^{ht-u}(t\omega(t))\bigg{|}_{1}^{u/h}-h^{-1}\int_{1}^{u/h}y^{ht-u}\omega(t-1)\,dt
=uh2ω(uh1)h1yhuh1yh1u/h1yhtuω(t)𝑑t\displaystyle=uh^{-2}\omega(uh^{-1})-h^{-1}y^{h-u}-h^{-1}y^{h}\int_{1}^{u/h-1}y^{ht-u}\omega(t)\,dt
=uh2ω(uh1)h1yhu(h2eγlogy)1λ(yuh,yh).\displaystyle=uh^{-2}\omega(uh^{-1})-h^{-1}y^{h-u}-\left(h^{2}e^{\gamma}\log y\right)^{-1}\lambda(y^{u-h},y^{h}).

Hence we have

hλ(yu,yh)\displaystyle\frac{\partial}{\partial h}\lambda(y^{u},y^{h}) =eγlogy(1u/hyhtuω(t)𝑑tyhu)h1λ(yuh,yh)\displaystyle=e^{\gamma}\log y\left(\int_{1}^{u/h}y^{ht-u}\omega(t)\,dt-y^{h-u}\right)-h^{-1}\lambda(y^{u-h},y^{h})
=h1λ(yu,yh)eγyhulogyh1λ(yuh,yh).\displaystyle=h^{-1}\lambda(y^{u},y^{h})-e^{\gamma}y^{h-u}\log y-h^{-1}\lambda(y^{u-h},y^{h}).

Inserting this in (3.12) yields

hE1(h;y,u)=h1eγyhulogy.\frac{\partial}{\partial h}E_{1}(h;y,u)=h^{-1}e^{\gamma}y^{h-u}\log y.

Integrating both sides with respect to hh and using the initial value condition E1(1;y,u)=0E_{1}(1;y,u)=0, we obtain

E1(h;y,u)=eγlogy1ht1ytu𝑑t<eγyhu.E_{1}(h;y,u)=e^{\gamma}\log y\int_{1}^{h}t^{-1}y^{t-u}\,dt<e^{\gamma}y^{h-u}. (3.13)

In what follows, we shall always suppose that 1hu/21\leq h\leq u/2. Following de Bruijn [Br], we proceed to show that

E3(h;y,u)\colonequalsλ(yu,y)λ(yu,yh)(1H(h))1hλ(yuv,yv)𝑑H(h)E_{3}(h;y,u)\colonequals\lambda(y^{u},y)-\lambda(y^{u},y^{h})(1-H(h))-\int_{1}^{h}\lambda(y^{u-v},y^{v})\,dH(h)

is small in size as a function of yy. This is intuitive, because

λ(yu,yh)h11hλ(yuv,yv)v2𝑑v,\lambda(y^{u},y^{h})h^{-1}-\int_{1}^{h}\lambda(y^{u-v},y^{v})v^{-2}\,dv,

which is a good approximation to λ(yu,y)\lambda(y^{u},y) as we have already demonstrated, can be thought of as a smooth approximation to

λ(yu,yh)(1H(h))1hλ(yuv,yv)𝑑H(h).\lambda(y^{u},y^{h})(1-H(h))-\int_{1}^{h}\lambda(y^{u-v},y^{v})\,dH(h).

Moreover, we have by (3.11) that

η(x,y)=η(yu,yh)(1Hy(h))+1hη(yuv,(yv))𝑑Hy(v)E3(h;y,u),\eta(x,y)=\eta(y^{u},y^{h})(1-H_{y}(h))+\int_{1}^{h}\eta(y^{u-v},(y^{v})^{-})\,dH_{y}(v)-E_{3}(h;y,u), (3.14)

which will later be used to estimate η(x,y)\eta(x,y). To estimate E3(h;y,u)E_{3}(h;y,u), let us write E3(h;y,u)=E1(h;y,u)+E2(h;y,u)E_{3}(h;y,u)=E_{1}(h;y,u)+E_{2}(h;y,u), where

E2(h;y,u)\colonequals1hλ(yuv,yv)d(H(v)1+v1)+(H(h)1+h1)λ(yu,yh).E_{2}(h;y,u)\colonequals-\int_{1}^{h}\lambda(y^{u-v},y^{v})\,d\left(H(v)-1+v^{-1}\right)+(H(h)-1+h^{-1})\lambda(y^{u},y^{h}).

Then we expect E2(h;y,u)E_{2}(h;y,u) to be small in size as a function of yy. Using (3.10) and the observation that H(1)=0H(1)=0, we have

|E2(h;y,u)|(|λ(yu,yh)λ(yuh,yh)|+1h|vλ(yuv,yv)|𝑑v)C7(y0)R(y).|E_{2}(h;y,u)|\leq\left(\left|\lambda(y^{u},y^{h})-\lambda(y^{u-h},y^{h})\right|+\int_{1}^{h}\left|\frac{\partial}{\partial v}\lambda(y^{u-v},y^{v})\right|\,dv\right)C_{7}(y_{0})R(y). (3.15)

Note that

λ(yu,yh)λ(yuh,yh)heγlogy\displaystyle\frac{\lambda(y^{u},y^{h})-\lambda(y^{u-h},y^{h})}{he^{\gamma}\log y} =1u/hyhtuω(t)𝑑t2u/hyhtuω(t1)𝑑t\displaystyle=\int_{1}^{u/h}y^{ht-u}\omega(t)\,dt-\int_{2}^{u/h}y^{ht-u}\omega(t-1)\,dt
=12yhtuω(t)𝑑t+2u/hyhtu(ω(t)ω(t1))𝑑t\displaystyle=\int_{1}^{2}y^{ht-u}\omega(t)\,dt+\int_{2}^{u/h}y^{ht-u}(\omega(t)-\omega(t-1))\,dt
=12t1yhtu𝑑t2u/hyhtutω(t)𝑑t.\displaystyle=\int_{1}^{2}t^{-1}y^{ht-u}\,dt-\int_{2}^{u/h}y^{ht-u}t\omega^{\prime}(t)\,dt.

By Theorems III.5.7 and III.6.6 in [T] we have

|ω(t)|ρ(t)1Γ(t+1)|\omega^{\prime}(t)|\leq\rho(t)\leq\frac{1}{\Gamma(t+1)} (3.16)

for all t1t\geq 1. It follows that

|λ(yu,yh)λ(yuh,yh)|heγlogy(12t1yhtu𝑑t+2u/hyhtutρ(t)𝑑t).\left|\lambda(y^{u},y^{h})-\lambda(y^{u-h},y^{h})\right|\leq he^{\gamma}\log y\left(\int_{1}^{2}t^{-1}y^{ht-u}\,dt+\int_{2}^{u/h}y^{ht-u}t\rho(t)\,dt\right). (3.17)

This inequality will later be used in conjunction with the formulas

hlogy12t1yhtu𝑑t=y2hu2yhu+12t2yhtu𝑑th\log y\int_{1}^{2}t^{-1}y^{ht-u}\,dt=\frac{y^{2h-u}}{2}-y^{h-u}+\int_{1}^{2}t^{-2}y^{ht-u}\,dt (3.18)

and

hlogy2u/hyhtutρ(t)𝑑t\displaystyle h\log y\int_{2}^{u/h}y^{ht-u}t\rho(t)\,dt =uh1ρ(uh1)2ρ(2)y2hu2u/hyhtu(tρ(t))𝑑t\displaystyle=uh^{-1}\rho(uh^{-1})-2\rho(2)y^{2h-u}-\int_{2}^{u/h}y^{ht-u}(t\rho(t))^{\prime}\,dt
uh1ρ(uh1)2ρ(2)y2hu+2u/hyhtuρ(t1)𝑑t.\displaystyle\leq uh^{-1}\rho(uh^{-1})-2\rho(2)y^{2h-u}+\int_{2}^{u/h}y^{ht-u}\rho(t-1)\,dt. (3.19)

On the other hand, we have

λ(yuv,yv)eγlogy=v2u/vyvtuω(t1)𝑑t,\frac{\lambda(y^{u-v},y^{v})}{e^{\gamma}\log y}=v\int_{2}^{u/v}y^{vt-u}\omega(t-1)\,dt,

which implies that

v(λ(yuv,yv)eγlogy)=2u/vyvtu(1+tvlogy)ω(t1)𝑑tuv1ω(uv11).\frac{\partial}{\partial v}\left(\frac{\lambda(y^{u-v},y^{v})}{e^{\gamma}\log y}\right)=\int_{2}^{u/v}y^{vt-u}(1+tv\log y)\omega(t-1)\,dt-uv^{-1}\omega(uv^{-1}-1).

By partial integration, the right side of the above is easily seen to be

2y2vu2u/vyvtutω(t1)𝑑t.-2y^{2v-u}-\int_{2}^{u/v}y^{vt-u}t\omega^{\prime}(t-1)\,dt.

Hence, we arrive at

1h|vλ(yuv,yv)|𝑑veγlogy(21hy2vu𝑑v+1h2u/vyvtut|ω(t1)|𝑑t𝑑v).\int_{1}^{h}\left|\frac{\partial}{\partial v}\lambda(y^{u-v},y^{v})\right|\,dv\leq e^{\gamma}\log y\left(2\int_{1}^{h}y^{2v-u}\,dv+\int_{1}^{h}\int_{2}^{u/v}y^{vt-u}t|\omega^{\prime}(t-1)|\,dtdv\right).

Furthermore, we have by Fubini’s theorem that

1h2u/vyvtut|ω(t1)|𝑑t𝑑v=2u/h1hyvtut|ω(t1)|𝑑v𝑑t+u/hu1u/tyvtut|ω(t1)|𝑑v𝑑t,\int_{1}^{h}\int_{2}^{u/v}y^{vt-u}t|\omega^{\prime}(t-1)|\,dtdv=\int_{2}^{u/h}\int_{1}^{h}y^{vt-u}t|\omega^{\prime}(t-1)|\,dv\,dt+\int_{u/h}^{u}\int_{1}^{u/t}y^{vt-u}t|\omega^{\prime}(t-1)|\,dv\,dt,

the right side of which is easily seen to be

1logy(2u/hyhtu|ω(t1)|𝑑t+u/hu|ω(t1)|𝑑t2uytu|ω(t1)|𝑑t).\frac{1}{\log y}\left(\int_{2}^{u/h}y^{ht-u}|\omega^{\prime}(t-1)|\,dt+\int_{u/h}^{u}|\omega^{\prime}(t-1)|\,dt-\int_{2}^{u}y^{t-u}|\omega^{\prime}(t-1)|\,dt\right).

It follows that

1h|vλ(yuv,yv)|𝑑v<eγ(y2hu+2u/hyhtu|ω(t1)|𝑑t+u/hu|ω(t1)|𝑑t).\int_{1}^{h}\left|\frac{\partial}{\partial v}\lambda(y^{u-v},y^{v})\right|\,dv<e^{\gamma}\left(y^{2h-u}+\int_{2}^{u/h}y^{ht-u}|\omega^{\prime}(t-1)|\,dt+\int_{u/h}^{u}|\omega^{\prime}(t-1)|\,dt\right). (3.20)

This estimate together with (3.17) will lead us to a good estimate for E2(h;y,u)E_{2}(h;y,u).

Now we derive estimates for E3(h;y,u)E_{3}(h;y,u) that suit our needs. Suppose that ku<k+1k\leq u<k+1 and take h=hk=u/kh=h_{k}=u/k, where k2k\geq 2 is a positive integer. We first consider the case k=2k=2. In view of (3.18), we see that (3.17) simplifies to

|λ(yu,yh2)λ(yuh2,yh2)|<eγ(12+12t2y0t2𝑑t)=eγIy0(2)\left|\lambda\left(y^{u},y^{h_{2}}\right)-\lambda\left(y^{u-h_{2}},y^{h_{2}}\right)\right|<e^{\gamma}\left(\frac{1}{2}+\int_{1}^{2}t^{-2}y_{0}^{t-2}\,dt\right)=e^{\gamma}I_{y_{0}}(2)

for yy0y\geq y_{0}. By (3.20) we have

1h2|vλ(yuv,yv)|𝑑veγ(1+23|ω(t1)|𝑑t)=3eγ2,\int_{1}^{h_{2}}\left|\frac{\partial}{\partial v}\lambda(y^{u-v},y^{v})\right|\,dv\leq e^{\gamma}\left(1+\int_{2}^{3}|\omega^{\prime}(t-1)|\,dt\right)=\frac{3e^{\gamma}}{2},

since ω(t)=1/t2\omega^{\prime}(t)=-1/t^{2} for t[1,2)t\in[1,2). Combining these estimates with (3.13) and (3.15), we obtain E3(h2;y,u)eγξ2(y0)R(y)E_{3}(h_{2};y,u)\leq e^{\gamma}\xi_{2}(y_{0})R(y) for yy0y\geq y_{0} and 2u<32\leq u<3, where

ξ2(y0)\colonequalsmaxty01tR(t)+C7(y0)(Iy0(2)+32).\xi_{2}(y_{0})\colonequals\max_{t\geq y_{0}}\frac{1}{tR(t)}+C_{7}(y_{0})\left(I_{y_{0}}(2)+\frac{3}{2}\right).

Now we handle the case k3k\geq 3. From (3.16)–(3.19) it follows that

|λ(yu,yhk)λ(yuhk,yhk)|<eγ(1Γ(k)+(2log232)y2k+12t2ytk𝑑t+23ytk(1log(t1))𝑑t+3kytkdtΓ(t)),\left|\lambda\left(y^{u},y^{h_{k}}\right)-\lambda\left(y^{u-h_{k}},y^{h_{k}}\right)\right|<e^{\gamma}\left(\frac{1}{\Gamma(k)}+\left(2\log 2-\frac{3}{2}\right)y^{2-k}+\int_{1}^{2}t^{-2}y^{t-k}\,dt+\int_{2}^{3}y^{t-k}(1-\log(t-1))\,dt+\int_{3}^{k}y^{t-k}\frac{dt}{\Gamma(t)}\right),

where we have used the fact that ρ(t)=1logt\rho(t)=1-\log t for t[1,2]t\in[1,2]. By (3.16) and (3.20) we have

1hk|vλ(yuv,yv)|𝑑veγ(y2k+23ytkdt(t1)2+3kytkdtΓ(t)+kk+1dtΓ(t)).\int_{1}^{h_{k}}\left|\frac{\partial}{\partial v}\lambda(y^{u-v},y^{v})\right|\,dv\leq e^{\gamma}\left(y^{2-k}+\int_{2}^{3}y^{t-k}\frac{dt}{(t-1)^{2}}+\int_{3}^{k}y^{t-k}\frac{dt}{\Gamma(t)}+\int_{k}^{k+1}\frac{dt}{\Gamma(t)}\right).

Together with (3.13) and (3.15), these inequalities imply that E3(hk;y,u)eγξk(y0)R(y)E_{3}(h_{k};y,u)\leq e^{\gamma}\xi_{k}(y_{0})R(y) for yy0y\geq y_{0} and 3ku<k+13\leq k\leq u<k+1, where

ξk(y0)\colonequals(maxty01tR(t))y02k+C7(y0)(1(k1)!+kk+1dtΓ(t)+(2log212)y02k+12t2y0tk𝑑t+23y0tk(1log(t1)+1(t1)2)𝑑t+23ky0tkdtΓ(t)).\xi_{k}(y_{0})\colonequals\left(\max_{t\geq y_{0}}\frac{1}{tR(t)}\right)y_{0}^{2-k}+C_{7}(y_{0})\left(\frac{1}{(k-1)!}+\int_{k}^{k+1}\frac{dt}{\Gamma(t)}+\left(2\log 2-\frac{1}{2}\right)y_{0}^{2-k}+\int_{1}^{2}t^{-2}y_{0}^{t-k}\,dt+\int_{2}^{3}y_{0}^{t-k}\left(1-\log(t-1)+\frac{1}{(t-1)^{2}}\right)\,dt+2\int_{3}^{k}y_{0}^{t-k}\frac{dt}{\Gamma(t)}\right).

As a direct corollary, we obtain

k=2ξk(y0)=y0y01maxty01tR(t)+C7(y0)(e12+3dtΓ(t)+1y01(2log21+y0Iy0(2)+23y0t2(1log(t1)+1(t1)2)𝑑t+23y0{t}dtΓ(t))),\sum_{k=2}^{\infty}\xi_{k}(y_{0})=\frac{y_{0}}{y_{0}-1}\max_{t\geq y_{0}}\frac{1}{tR(t)}+C_{7}(y_{0})\left(e-\frac{1}{2}+\int_{3}^{\infty}\frac{dt}{\Gamma(t)}+\frac{1}{y_{0}-1}\left(2\log 2-1+y_{0}I_{y_{0}}(2)+\int_{2}^{3}y_{0}^{t-2}\left(1-\log(t-1)+\frac{1}{(t-1)^{2}}\right)\,dt+2\int_{3}^{\infty}y_{0}^{\{t\}}\frac{dt}{\Gamma(t)}\right)\right),

where we have applied partial summation to derive

k=33ky0tkdtΓ(t)\displaystyle\sum_{k=3}^{\infty}\int_{3}^{k}y_{0}^{t-k}\frac{dt}{\Gamma(t)} =(k=3y0k)3y0tdtΓ(t)3(3kty0k)y0tdtΓ(t)\displaystyle=\left(\sum_{k=3}^{\infty}y_{0}^{-k}\right)\int_{3}^{\infty}y_{0}^{t}\frac{dt}{\Gamma(t)}-\int_{3}^{\infty}\left(\sum_{3\leq k\leq t}y_{0}^{-k}\right)y_{0}^{t}\frac{dt}{\Gamma(t)}
=y031y013y0tdtΓ(t)3y0t3(1y0t+2)1y01dtΓ(t)\displaystyle=\frac{y_{0}^{-3}}{1-y_{0}^{-1}}\int_{3}^{\infty}y_{0}^{t}\frac{dt}{\Gamma(t)}-\int_{3}^{\infty}\frac{y_{0}^{t-3}(1-y_{0}^{-\lfloor t\rfloor+2})}{1-y_{0}^{-1}}\cdot\frac{dt}{\Gamma(t)}
=1y013y0{t}dtΓ(t).\displaystyle=\frac{1}{y_{0}-1}\int_{3}^{\infty}y_{0}^{\{t\}}\frac{dt}{\Gamma(t)}.

For computational purposes, we can transform the last integral above by observing that

3y0{t}dtΓ(t)=01(n=01(t+2)(t+2+n))y0tdtΓ(t+2).\int_{3}^{\infty}y_{0}^{\{t\}}\frac{dt}{\Gamma(t)}=\int_{0}^{1}\left(\sum_{n=0}^{\infty}\frac{1}{(t+2)\cdots(t+2+n)}\right)y_{0}^{t}\frac{dt}{\Gamma(t+2)}.

Let

γ(s,z)\colonequals0zvs1ev𝑑v\gamma(s,z)\colonequals\int_{0}^{z}v^{s-1}e^{-v}\,dv

be the lower incomplete gamma function, where ss\in\mathbb{C} with (s)>0\Re(s)>0 and z0z\geq 0. It is well known that

γ(s,z)=zsezn=0zns(s+1)(s+n),\gamma(s,z)=z^{s}e^{-z}\sum_{n=0}^{\infty}\frac{z^{n}}{s(s+1)\cdots(s+n)},

from which it follows that

n=01(t+2)(t+2+n)=γ(t+2,1)e.\sum_{n=0}^{\infty}\frac{1}{(t+2)\cdots(t+2+n)}=\gamma(t+2,1)e.

Thus we obtain

k=2ξk(y0)=y0y01maxty01tR(t)+C7(y0)(e12+3dtΓ(t)+1y01(2log21+y0Iy0(2)+23y0t2(1log(t1)+1(t1)2)𝑑t+2e01y0tγ(t+2,1)Γ(t+2)𝑑t)).\sum_{k=2}^{\infty}\xi_{k}(y_{0})=\frac{y_{0}}{y_{0}-1}\max_{t\geq y_{0}}\frac{1}{tR(t)}+C_{7}(y_{0})\left(e-\frac{1}{2}+\int_{3}^{\infty}\frac{dt}{\Gamma(t)}+\frac{1}{y_{0}-1}\left(2\log 2-1+y_{0}I_{y_{0}}(2)+\int_{2}^{3}y_{0}^{t-2}\left(1-\log(t-1)+\frac{1}{(t-1)^{2}}\right)\,dt+2e\int_{0}^{1}y_{0}^{t}\frac{\gamma(t+2,1)}{\Gamma(t+2)}\,dt\right)\right). (3.21)

In Mathematica, the function γ(t+2,1)\gamma(t+2,1) can be evaluated by “Gamma[t+2,0,1]”.

Finally, we are ready to estimate η(x,y)\eta(x,y). Let

ηk(y)\colonequals1eγR(y)supu[k,k+1)ty|η(tu,t)|\eta_{k}(y)\colonequals\frac{1}{e^{\gamma}R(y)}\sup_{\begin{subarray}{c}u\in[k,k+1)\\ t\geq y\end{subarray}}|\eta(t^{u},t)|

for k1k\geq 1 and yy0y\geq y_{0}, where the value of η1(y)\eta_{1}(y) is provided by (3.8). Using (3.14) and the estimates for E3(hk;y,u)E_{3}(h_{k};y,u) with yy0y\geq y_{0} and 2ku<k+12\leq k\leq u<k+1, we find

ηk(y)ηk1(y)+ξk(y0)\eta_{k}(y)\leq\eta_{k-1}(y)+\xi_{k}(y_{0})

for all k2k\geq 2 and yy0y\geq y_{0}, from which we derive

ηk(y)η1(y)+=2kξ(y0)\eta_{k}(y)\leq\eta_{1}(y)+\sum_{\ell=2}^{k}\xi_{\ell}(y_{0})

for all k1k\geq 1 and yy0y\geq y_{0}. Since η1(y)\eta_{1}(y) is decreasing on [y0,)[y_{0},\infty), we have therefore shown that

|η(x,y)|eγ(η1(y0)+k=2ξk(y0))R(y)|\eta(x,y)|\leq e^{\gamma}\left(\eta_{1}(y_{0})+\sum_{k=2}^{\infty}\xi_{k}(y_{0})\right)R(y) (3.22)

for all yy0y\geq y_{0}, where the infinite sum can be evaluated using (3.21). To derive an explicit version of de Bruijn’s result (1.6), we observe that (3.6), (3.22) and [RS, Theorem 23] imply that Q(y)|η(x,y)|C8(y0)R(y)/logyQ(y)|\eta(x,y)|\leq C_{8}(y_{0})R(y)/\log y for all yy0y\geq y_{0}, where

C8(y0)\colonequalsβ(y0)(η1(y0)+k=2ξk(y0))C_{8}(y_{0})\colonequals\beta(y_{0})\left(\eta_{1}(y_{0})+\sum_{k=2}^{\infty}\xi_{k}(y_{0})\right)

with

β(y0)\colonequals{1, if 3y0<108,exp(C2(y0)R(y0)), if y0108.\beta(y_{0})\colonequals\begin{cases}~{}1,&\text{\hskip 5.69054ptif~{}}3\leq y_{0}<10^{8},\\ ~{}\exp(C_{2}(y_{0})R(y_{0})),&\text{\hskip 5.69054ptif~{}}y_{0}\geq 10^{8}.\end{cases}

Hence, it follows that

|Φ(x,y)μy(u)eγxlogypy(11p)|<C8(y0)xR(y)logy\left|\Phi(x,y)-\mu_{y}(u)e^{\gamma}x\log y\prod_{p\leq y}\left(1-\frac{1}{p}\right)\right|<\frac{C_{8}(y_{0})xR(y)}{\log y} (3.23)

for all yy0y\geq y_{0}.

4. Deduction of Theorem 1.1 and Corollary 1.2

Now we apply (3.23) to obtain explicit estimates for Φ(x,y)\Phi(x,y) with specific choices of R(y)R(y). Unconditionally, it has been shown [MT, Corollary 2] that

|π(z)li(z)|0.2593z(logz)3/4exp(logz6.315)|\pi(z)-\operatorname{li}(z)|\leq 0.2593\frac{z}{(\log z)^{3/4}}\exp\left(-\sqrt{\frac{\log z}{6.315}}\right)

for all z229z\geq 229. With y0229y_{0}\geq 229, the function

R(z)=0.2593(logz)1/4exp(logz6.315)R(z)=0.2593(\log z)^{1/4}\exp\left(-\sqrt{\frac{\log z}{6.315}}\right)

is strictly decreasing on [y0,)[y_{0},\infty) and satisfies (1.4) and (1.5) with

C0(y0)=26.315logy0,C_{0}(y_{0})=2\sqrt{\frac{6.315}{\log y_{0}}},

since

z1t(logt)3/4exp(logt6.315)𝑑t\displaystyle\int_{z}^{\infty}\frac{1}{t(\log t)^{3/4}}\exp\left(-\sqrt{\frac{\log t}{6.315}}\right)\,dt =2logz1texp(t6.315)𝑑t\displaystyle=2\int_{\sqrt{\log z}}^{\infty}\frac{1}{\sqrt{t}}\exp\left(-\frac{t}{\sqrt{6.315}}\right)\,dt
<2(logz)1/4logzexp(t6.315)𝑑t\displaystyle<\frac{2}{(\log z)^{1/4}}\int_{\sqrt{\log z}}^{\infty}\exp\left(-\frac{t}{\sqrt{6.315}}\right)\,dt
=26.315(logz)1/4exp(logz6.315)\displaystyle=\frac{2\sqrt{6.315}}{(\log z)^{1/4}}\exp\left(-\sqrt{\frac{\log z}{6.315}}\right)

for zy0z\geq y_{0}. Numerical computation using Mathematica allows us to conclude that

|Φ(x,y)μy(u)eγxlogypy(11p)|<4.403611x(logy)3/4exp(logy6.315)\left|\Phi(x,y)-\mu_{y}(u)e^{\gamma}x\log y\prod_{p\leq y}\left(1-\frac{1}{p}\right)\right|<4.403611\frac{x}{(\log y)^{3/4}}\exp\left(-\sqrt{\frac{\log y}{6.315}}\right) (4.1)

for all xy229x\geq y\geq 229. Suppose now that 2y<2292\leq y<229. Using the inequalities Φ(x,y)<x/logy\Phi(x,y)<x/\log y [F, Theorem], py(11/p)<eγ/logy\prod_{p\leq y}(1-1/p)<e^{-\gamma}/\log y [RS, Theorem 23] and 0μy(u)<1/logy0\leq\mu_{y}(u)<1/\log y, we have

|Φ(x,y)μy(u)eγxlogypy(11p)|<2xlogy<4.403611x(logy)3/4exp(logy6.315)\left|\Phi(x,y)-\mu_{y}(u)e^{\gamma}x\log y\prod_{p\leq y}\left(1-\frac{1}{p}\right)\right|<\frac{2x}{\log y}<4.403611\frac{x}{(\log y)^{3/4}}\exp\left(-\sqrt{\frac{\log y}{6.315}}\right)

for all 2y<2292\leq y<229. Combining this with (4.1) proves the first half of Theorem 1.1.

Under the assumption of the Riemann Hypothesis, it is known [S, Corollary 1] that

|π(z)li(z)|<18πzlogz|\pi(z)-\operatorname{li}(z)|<\frac{1}{8\pi}\sqrt{z}\log z

for all z2,657z\geq 2{,}657. With y0=2,657y_{0}=2{,}657 and

R(z)=log2z8πz,R(z)=\frac{\log^{2}z}{8\pi\sqrt{z}},

we have

z|π(t)li(t)|t2𝑑t18πzlogtt3/2𝑑t=logz+24πzC0(y0)R(z)\int_{z}^{\infty}\frac{|\pi(t)-\operatorname{li}(t)|}{t^{2}}\,dt\leq\frac{1}{8\pi}\int_{z}^{\infty}\frac{\log t}{t^{3/2}}\,dt=\frac{\log z+2}{4\pi\sqrt{z}}\leq C_{0}(y_{0})R(z)

for zy0z\geq y_{0}, where

C0(y0)=2(logy0+2)log2y0.C_{0}(y_{0})=\frac{2(\log y_{0}+2)}{\log^{2}y_{0}}.

Therefore, we conclude by (3.23) and numerical calculations that

|Φ(x,y)μy(u)eγxlogypy(11p)|<0.184563xlogyy\left|\Phi(x,y)-\mu_{y}(u)e^{\gamma}x\log y\prod_{p\leq y}\left(1-\frac{1}{p}\right)\right|<0.184563\frac{x\log y}{\sqrt{y}} (4.2)

for all xy2,657x\geq y\geq 2{,}657. The values of relevant constants are recorded in the table below.

Table: Numerical Constants
constants unconditional estimates conditional estimates
 y0y_{0}  229  10810^{8}  2,657  10810^{8}
 R(y0)R(y_{0})  .156576   .097363  .047992  .001351
 C0(y0)C_{0}(y_{0})  2.156096  1.171019  .317985  .120362
 C1(y0)C_{1}(y_{0})  2.534430  1.279593  .571800  .228936
 C2(y0)C_{2}(y_{0})  2.548436  1.279593  .575723  .228940
 C3(y0)C_{3}(y_{0})  3.110976  1.362717  .579718  .228971
 C4(y0)C_{4}(y_{0})  2.548436  1.279593  .575723  .228940
 C5(y0)C_{5}(y_{0})  3.131827  1.362717  .583750  .228975
 C6(y0)C_{6}(y_{0})  2.534430  1.279593  .571800  .228936
 C7(y0)C_{7}(y_{0})  3.110976  1.362717  .579718  .228971
 C8(y0)C_{8}(y_{0})  16.982691  9.079975  4.638553  2.967998
 η1(y0)\eta_{1}(y_{0})  6.236726  3.628074  2.697198  2.229726
 k=2ξk(y0)\sum_{k=2}^{\infty}\xi_{k}(y_{0})  10.745960  4.388310  1.941356  .737355

To complete the proof of the second half of Theorem 1.1, it remains to deal with the case 11y2,65711\leq y\leq 2{,}657. For simplicity of notation we set

D(x,y)\colonequalsΦ(x,y)μy(u)eγxlogypy(11p).D(x,y)\colonequals\Phi(x,y)-\mu_{y}(u)e^{\gamma}x\log y\prod_{p\leq y}\left(1-\frac{1}{p}\right).

Using Mathematica we find that

M\displaystyle M \colonequalsmax11z2,657li(z)π(z)zlogz<0.259141,\displaystyle\colonequals\max\limits_{11\leq z\leq 2{,}657}\frac{\operatorname{li}(z)-\pi(z)}{\sqrt{z}\log z}<0.259141,
m\displaystyle m \colonequalsmin11z2,657eγlogzpz(11p)>0.876248.\displaystyle\colonequals\min\limits_{11\leq z\leq 2{,}657}e^{\gamma}\log z\prod_{p\leq z}\left(1-\frac{1}{p}\right)>0.876248.

If xy<x\sqrt{x}\leq y<x, then

Φ(x,y)=μy(u)x+(π(x)li(x))(π(y)li(y))+1.\Phi(x,y)=\mu_{y}(u)x+(\pi(x)-\operatorname{li}(x))-(\pi(y)-\operatorname{li}(y))+1.

Note that xy2<108x\leq y^{2}<10^{8}. Since π(z)<li(z)\pi(z)<\operatorname{li}(z) for 2z1082\leq z\leq 10^{8} by [RS, Theorem 16] and

pz(11p)<eγlogz\prod_{p\leq z}\left(1-\frac{1}{p}\right)<\frac{e^{-\gamma}}{\log z}

for 0<z1080<z\leq 10^{8} by [RS, Theorem 23], we have

|D(x,y)|\displaystyle|D(x,y)| <(1m)(1y1)xlogy+Mxlogx+1\displaystyle<(1-m)\left(1-y^{-1}\right)\frac{x}{\log y}+M\sqrt{x}\log x+1
((1m)(1y1)+Mlog2yy+logyy)xlogy,\displaystyle\leq\left((1-m)\left(1-y^{-1}\right)+M\frac{\log^{2}y}{\sqrt{y}}+\frac{\log y}{y}\right)\frac{x}{\log y}, (4.3)

where we have used the fact that logx/x\log x/\sqrt{x} is strictly decreasing on [e2,)[e^{2},\infty). Numerical computation shows that the right side of (4.3) is <0.449774xlogy/y<0.449774x\log y/\sqrt{y} for 11y2,65711\leq y\leq 2{,}657. Suppose now that 11yx11\leq y\leq\sqrt{x}. By [FP, Theorem 1], Theorem 2.3 and [RS, Theorem 23] we have, for 11y2,65711\leq y\leq 2{,}657,

D(x,y)\displaystyle D(x,y) (0.6m2(1y1))xlogy<0.449774xlogyy,\displaystyle\leq\left(0.6-\frac{m}{2}\left(1-y^{-1}\right)\right)\frac{x}{\log y}<0.449774\frac{x\log y}{\sqrt{y}},
D(x,y)\displaystyle D(x,y) >(0.4M0)xlogy>0.449774xlogyy.\displaystyle>(0.4-M_{0})\frac{x}{\log y}>-0.449774\frac{x\log y}{\sqrt{y}}.

This settles the case 11y2,65711\leq y\leq 2{,}657 and completes the proof of Theorem 1.1.

The proof of Corollary 1.2 is similar, and we shall only sketch it. When yy0y\geq y_{0}, where y0=229y_{0}=229 for the unconditional estimate and y0=2,657y_{0}=2{,}657 for the conditional estimate, we have by the triangle inequality that

|Φ(x,y)μy(u)x|<|D(x,y)|+|1eγlogypy(11p)|xlogy.|\Phi(x,y)-\mu_{y}(u)x|<|D(x,y)|+\left|1-e^{\gamma}\log y\prod_{p\leq y}\left(1-\frac{1}{p}\right)\right|\frac{x}{\log y}.

Then we bound |D(x,y)||D(x,y)| using the values of C8(y0)C_{8}(y_{0}) listed in the table above. To estimate the second term, we use (3.6) when y108y\geq 10^{8} and the inequality

m(y)<eγlogypy(11p)<1m(y)<e^{\gamma}\log y\prod_{p\leq y}\left(1-\frac{1}{p}\right)<1

when y0y108y_{0}\leq y\leq 10^{8}, where m(y)m(y) is given by

m(y)\colonequals{0.983296, if 229y2,657,0.996426, if 2,657y<210,000,0.999643, if 210,000y108,m(y)\colonequals\begin{cases}~{}0.983296,&\text{\hskip 5.69054ptif~{}}229\leq y\leq 2{,}657,\\ ~{}0.996426,&\text{\hskip 5.69054ptif~{}}2{,}657\leq y<210{,}000,\\ ~{}0.999643,&\text{\hskip 5.69054ptif~{}}210{,}000\leq y\leq 10^{8},\end{cases}

according to [RS, Theorem 23] and Mathematica. This leads to the asserted bounds for yy0y\geq y_{0}. Suppose now that yy0y\leq y_{0}. In this case, the proof of the unconditional bound is exactly the same as that of the unconditional bound in Theorem 1.1. As for the conditional bound, we argue in the same way as in the proof of Theorem 1.1 to get

|Φ(x,y)μy(u)x|(Mlog2yy+logyy)xlogy|\Phi(x,y)-\mu_{y}(u)x|\leq\left(M\frac{\log^{2}y}{\sqrt{y}}+\frac{\log y}{y}\right)\frac{x}{\log y}

when xy<x\sqrt{x}\leq y<x and

|Φ(x,y)μy(u)x|\displaystyle|\Phi(x,y)-\mu_{y}(u)x| (0.612(1y1))xlogy,\displaystyle\leq\left(0.6-\frac{1}{2}\left(1-y^{-1}\right)\right)\frac{x}{\log y},
|Φ(x,y)μy(u)x|\displaystyle|\Phi(x,y)-\mu_{y}(u)x| >(0.4M0)xlogy,\displaystyle>(0.4-M_{0})\frac{x}{\log y},

when 11yx11\leq y\leq\sqrt{x}. Together, these inequalities yield the asserted conditional bound.

Remark 4.1.

The bounds in Theorem 1.1 and its corrollary may be improved. For example, the numerical values of the sum k=2ξk(y0)\sum_{k=2}^{\infty}\xi_{k}(y_{0}) may be reduced by keeping ρ\rho (or even |ω||\omega^{\prime}|) in all of the relevant integrals, but of course the computational complexity is expected to increase as a cost. In addition, our method would allow an extension of the range xy11x\geq y\geq 11 in the second half of Theorem 1.1 to the entire range xy2x\geq y\geq 2 if we argue with y0=2,657y_{0}=2{,}657 replaced by some smaller value and enlarge the constant 0.449774.

Acknowledgment. The author would like to thank his advisor C. Pomerance for his helpful comments and suggestions.

References