This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Numerical Method for Highly Non-linear Mean-reverting Asset Price Model with CEV-type Process

Emmanuel Coffie 111Email: [email protected]
Department of Mathematics and Statistics,
University of Strathclyde, Glasgow G1 1XH, U.K
Abstract

It is well documented from various empirical studies that the volatility process of an asset price dynamics is stochastic. This phenomenon called for a new approach to describing the random evolution of volatility through time with stochastic models. In this paper, we propose a mean-reverting theta-rho model for asset price dynamics where the volatility diffusion factor of this model follows a highly non-linear CEV-type process. Since this model lacks a closed-form formula, we construct a new truncated EM method to study it numerically under the Khasminskii-type condition. We justify that the truncated EM solutions can be used to evaluate a path-dependent financial product.

Key words: Asset price model, stochastic volatility, truncated EM scheme, strong convergence, financial product, Monte Carlo scheme.

1 Introduction

Several stochastic differential equations (SDEs) have been developed to describe random evolution of financial variables in time. The Black-Scholes model in [1] is widely used to describe time-series evolution of asset price dynamics under one of the assumptions that the asset price is log-normally distributed. However, as supported by many empirical evidence, the log-normality assumption does not hold exactly in reality. Various alternative stochastic models have since been proposed as modified versions of the Black-Scholes model. In 1977, Vasicek in [2] developed the well-known mean-reverting model as an alternative model for capturing short-term interest rate dynamics through time. This model is governed by

dx(t)=α1(μ1x(t))dt+σ1dB1(t)dx(t)=\alpha_{1}(\mu_{1}-x(t))dt+\sigma_{1}dB_{1}(t) (1)

with initial data x(0)=x0x(0)=x_{0}, where α1,μ1,σ1>0\alpha_{1},\mu_{1},\sigma_{1}>0 and B1(t)B_{1}(t) is a scalar Brownian motion. One main unique feature of SDE (1) is that the expectation of x(t)x(t) converges to the long-term value μ1\mu_{1} with the speed α1\alpha_{1}. However, in practice, this model yields negative values . Cox, ingersoll and Ross (CIR) in [3] addressed this drawback by extending SDE (1) to an alternative model often called the mean-reverting square root process which is driven by

dx(t)=α1(μ1x(t))dt+σ1x(t)dB1(t).dx(t)=\alpha_{1}(\mu_{1}-x(t))dt+\sigma_{1}\sqrt{x(t)}dB_{1}(t). (2)

The square root diffusion factor avoids possible negative values. Later, Lewis in [4] generalised SDE (2) to the mean-reverting-theta process governed by

dx(t)=α1(μ1x(t))dt+σ1x(t)θdB1(t),dx(t)=\alpha_{1}(\mu_{1}-x(t))dt+\sigma_{1}x(t)^{\theta}dB_{1}(t), (3)

where θ1/2\theta\geq 1/2. The SDE (3) has been found a useful tool for modelling interest rate, asset price and other financial variables. However, by applying χ2\chi^{2} tests to US treasury bill data, it has been shown that θ>1\theta>1. For instance, Chan et al. in [5] applied the Generalised Moment method to the treasury bill data to estimate θ=1.449\theta=1.449. Similarly, with the same data, Nowman in [6] also estimated θ=1.361\theta=1.361 using the Gaussian Estimation method.

There are many literature where several classes of SDE (3) with parametric restrictions have been studied. For instance, Higham and Mao in [10] studied strong convergence of Monte Carlo simulations involving SDE (3) for θ=1/2\theta=1/2. Mao in [20] studied strong convergence of EM method for SDE (3) when θ[1/2,1]\theta\in[1/2,1]. Wu et al. in [11] established weak convergence of EM method for θ>1\theta>1. Dong-Hyun et. al. documented a unique type of SDE (3) in [7] which admits closed-form solutions for bond prices and a concave relationship between interest rates and yields. Further discussions relating to SDE (3) could also be found in [8], [9], among others.

The original Black-Scholes model assumes constant volatility for asset price and even for options with different maturities and strikes over a trading period. This assumption makes the Black-Scholes model reproduce flat volatility surface in option pricing. However, in practice, volatility has been observed empirically to change as asset price changes. Essentially, this means that volatility is characterised by a smile or skew surface instead of a flat surface. This characteristic is important for pricing and evaluating complex financial derivatives. As a result, several authors have proposed a variety of volatility models to explain the volatility surface curve adequately. For instance, Dupire (1994) developed the local volatility model in [12] to precisely match the observed smile or skew surface of market volatility data. Subsequently, stochastic volatility models have also been introduced as alternative models for modelling the random nature of volatility through time. One of the most notable stochastic volatility models is the diffusion class of Constant Elasticity of Variance (CEV) model driven by

dφ(t)=μ2φ(t)dt+σ2φ(t)ϕdB2(t),d\varphi(t)=\mu_{2}\varphi(t)dt+\sigma_{2}\varphi(t)^{\phi}dB_{2}(t), (4)

with initial data φ(0)=φ0\varphi(0)=\varphi_{0}, μ2,σ2>0\mu_{2},\sigma_{2}>0, ϕ>1\phi>1 and B2(t)B_{2}(t) is a scalar Brownian motion. SDE (4) is widely used by researchers and market practitioners for modelling volatility and other financial quantities (see, e.g., [13, 14]). In 2012, the authors in [21] established the weak convergence result of the Hull and White type model where the instantaneous volatility follows

dφ(t)=α2(μ2φ(t))dt+σ2φ(t)ϕdB2(t),d\varphi(t)=\alpha_{2}(\mu_{2}-\varphi(t))dt+\sigma_{2}\varphi(t)^{\phi}dB_{2}(t), (5)

for ϕ>1\phi>1. The reader is referred, for example, to [15, 16, 17] for further coverage of stochastic volatility models in finance.

From the empirical viewpoint, it would be more desirable in modelling context to generalise SDE (3) as a highly non-linear SDE of the form

dx(t)=α1(μ1x(t)ρ)dt+σ1φ(t)x(t)θdB1(t)dx(t)=\alpha_{1}(\mu_{1}-x(t)^{\rho})dt+\sigma_{1}\sqrt{\varphi(t)}x(t)^{\theta}dB_{1}(t) (6)

for asset price dynamics, where ρ>1\rho>1. Here, the variance function φ(t)\varphi(t) is driven by a highly non-linear type of SDE (5) of the form

dφ(t)=α2(μ2φ(t)r)dt+σ2φ(t)ϕdB2(t),d\varphi(t)=\alpha_{2}(\mu_{2}-\varphi(t)^{r})dt+\sigma_{2}\varphi(t)^{\phi}dB_{2}(t), (7)

where r>1r>1 and B1(t)B_{1}(t) is independent of B2(t)B_{2}(t).

The highly non-linear component of SDE (6) makes it well-suited for explaining non-linearity in asset price. On the other hand, the inherent super-linear CEV dynamics may capture extreme non-linearity in market volatility to reproduce volatility surface curve adequately. Obviously, SDE (6) is not analytically tractable. The drift and diffusion terms are of super-linear growth. In this case, we recognise the need to develop an implementable numerical method to estimate the exact solution. However, to the best of our knowledge, there exists no relevant literature devoted to the convergent approximation of the system of SDE (6) in the strong sense. In this paper, we aim to close this gap by constructing several new numerical tools to study this model from viewpoint of financial applications.

The rest of the paper is organised as follows: In Section 2, we introduce some useful mathematical notations. In Section 3, we study the existence of a unique positive solution of SDE (6) and establish the finite moment of the solution. We construct a new truncated EM method to approximate SDE (6) in Section 4. In Section 5, we study numerical properties such as the finite moment and the finite time strong convergence of the numerical solutions. We implement numerical examples to validate the theoretical findings and conclude the paper with a financial application in Section 6.

2 Preliminaries

Throughout this paper unless specified otherwise, we employ the following notation. Let {Ω,,}\{\Omega,\mathcal{F},\mathbb{P}\} be a complete probability space with a filtration {t}t0\{\mathcal{F}_{t}\}_{t\geq 0} satisfying the usual conditions (i.e., it is increasing and right continuous while 0\mathcal{F}_{0} contains all \mathbb{P} null sets), and let 𝔼\mathbb{E} denote the expectation corresponding to \mathbb{P}. Let B1(t)B_{1}(t) and B2(t)B_{2}(t), t0t\geq 0, be scalar Brownian motions defined on the above probability space and are independent of each other. If x,yx,y are real numbers, then we denote xyx\vee y as the maximum of xx and yy, and xyx\wedge y as the minimum of xx and yy. Let =(,)\mathbb{R}=(-\infty,\infty) and +=(0,)\mathbb{R}_{+}=(0,\infty). For an empty set \emptyset, we set inf=\inf\emptyset=\infty. For a set AA, we denote its indicator function by 1A1_{A}. Moreover, we let TT be an arbitrary positive number. Now consider the following scalar dynamics

dx(t)\displaystyle dx(t) =f1(x(t))dt+φ(t)g1(x(t))dB1(t)\displaystyle=f_{1}(x(t))dt+\sqrt{\varphi(t)}g_{1}(x(t))dB_{1}(t) (8)
dφ(t)\displaystyle d\varphi(t) =f2(φ(t))dt+g2(φ(t))dB2(t),\displaystyle=f_{2}(\varphi(t))dt+g_{2}(\varphi(t))dB_{2}(t), (9)

as equations of SDEs (6) and (7), where f1(x)=α1(μ1xρ)f_{1}(x)=\alpha_{1}(\mu_{1}-x^{\rho}), g1(x)=σ1xθg_{1}(x)=\sigma_{1}x^{\theta}, f2(φ)=α2(μ2φr)f_{2}(\varphi)=\alpha_{2}(\mu_{2}-\varphi^{r}) and g2(φ)=σ2φϕg_{2}(\varphi)=\sigma_{2}\varphi^{\phi}. Let HC2,1(×+;)H\in C^{2,1}(\mathbb{R}\times\mathbb{R}_{+};\mathbb{R}), where C2,1(×+;)C^{2,1}(\mathbb{R}\times\mathbb{R}_{+};\mathbb{R}) is the family of all real-valued functions H(,)H(\cdot,\cdot) defined on ×+\mathbb{R}\times\mathbb{R}_{+}. Also let LH:×+LH:\mathbb{R}\times\mathbb{R}_{+}\rightarrow\mathbb{R} be the Itô diffusion operator such that

LH(x,φ,t)\displaystyle LH(x,\varphi,t) =Ht(x,t)+Hx(x,t)f1(x)+φ12Hxx(x,t)g1(x)2\displaystyle=H_{t}(x,t)+H_{x}(x,t)f_{1}(x)+\varphi\frac{1}{2}H_{xx}(x,t)g_{1}(x)^{2} (10)
LH(φ,t)\displaystyle LH(\varphi,t) =Ht(φ,t)+Hφ(φ,t)f2(φ)+12Hφφ(φ,t)g2(φ)2,\displaystyle=H_{t}(\varphi,t)+H_{\varphi}(\varphi,t)f_{2}(\varphi)+\frac{1}{2}H_{\varphi\varphi}(\varphi,t)g_{2}(\varphi)^{2}, (11)

where Ht(x,t)H_{t}(x,t), Ht(φ,t)H_{t}(\varphi,t), Hx(x,t)H_{x}(x,t) and Hφ(φ,t)H_{\varphi}(\varphi,t) are first-order partial derivatives with respect to tt, xx and φ\varphi, and, Hxx(x,t)H_{xx}(x,t) and Hφφ(φ,t)H_{\varphi\varphi}(\varphi,t) are second-order partial derivatives with respect to xx and φ\varphi respectively. Given the diffusion operator, we can now write the Itô formula as

dH(x(t),t)\displaystyle dH(x(t),t) =LH(x(t),φ(t),t)dt+φ(t)Hx(x(t),t)g1(x(t))dB1(t)\displaystyle=LH(x(t),\varphi(t),t)dt+\sqrt{\varphi(t)}H_{x}(x(t),t)g_{1}(x(t))dB_{1}(t) (12)
dH(φ(t),t)\displaystyle dH(\varphi(t),t) =LH(φ(t),t)dt+Hφ(φ(t),t)g2(φ(t))dB2(t) a.s.\displaystyle=LH(\varphi(t),t)dt+H_{\varphi}(\varphi(t),t)g_{2}(\varphi(t))dB_{2}(t)\quad\text{ a.s. } (13)

The reader may refer to [20] for further details about the Itô formula.

3 Theoretical properties

In this section, we discuss pathwise existence of unique positive solutions and finite moments of the solutions to SDEs (8) and (9). The following assumption on the parameters is crucial to obtain the results.

Assumption 3.1.

The parameters of SDEs (8) and (9) satisfy

1+ρ\displaystyle 1+\rho >2θ,\displaystyle>2\theta, (14)
1+r\displaystyle 1+r >2ϕ,\displaystyle>2\phi, (15)

for ρ,θ,ϕ,r>1\rho,\theta,\phi,r>1.

3.1 Existence and uniqueness of solution

Lemma 3.2.

Let equation (15) hold. Then there exists a unique global solution φ(t)\varphi(t) to SDE (9) on t[0,T]t\in[0,T] for any given initial data φ0>0\varphi_{0}>0 and φ(t)>0\varphi(t)>0 a.s.

Proof.

Apparently, the coefficients of SDE (9) are locally Lipschitz continuous in \mathbb{R}. Hence there exists a unique positive maximal local solution φ(t)\varphi(t) on t[0,τe)t\in[0,\tau_{e}), where τe\tau_{e} is the explosion time (e.g., see [20, 21]). Let us extend the domain of SDE (9) from +\mathbb{R}_{+} to \mathbb{R} by setting the coefficients to 0 for φ(t)<0\varphi(t)<0. Then for every sufficiently large integer n>0n>0, such that φ(0)(1/n,n)\varphi(0)\in(1/n,n), define the stopping time as

τn=inf{t[0,τe):|φ(t)|(1/n,n)}\tau_{n}=\inf\{t\in[0,\tau_{e}):|\varphi(t)|\notin(1/n,n)\} (16)

and set τ=limnτn\tau_{\infty}=\lim_{n\rightarrow\infty}\tau_{n}. To complete the proof, we need to show that τ=\tau_{\infty}=\infty a.s. That is, it is enough to prove that (τnT)0\mathbb{P}(\tau_{n}\leq T)\rightarrow 0 as nn\rightarrow\infty for any given T>0T>0 and hence, (τ=)=1\mathbb{P}(\tau_{\infty}=\infty)=1. For γ(0,1)\gamma\in(0,1), define a C2C^{2}-function H:++H:\mathbb{R}_{+}\rightarrow\mathbb{R}_{+} by

H(φ)=φγ1γlog(φ).H(\varphi)=\varphi^{\gamma}-1-\gamma\log(\varphi). (17)

Apparently, H(φ)H(\varphi)\rightarrow\infty as φ0\varphi\rightarrow 0 or φ\varphi\rightarrow\infty. By (11), we compute

LH(φ)\displaystyle LH(\varphi) =γ(φγ11/φ)f2(φ)+12(γ(γ1)φγ2+γφ2)g2(φ)2\displaystyle=\gamma(\varphi^{\gamma-1}-1/\varphi)f_{2}(\varphi)+\frac{1}{2}(\gamma(\gamma-1)\varphi^{\gamma-2}+\gamma\varphi^{-2})g_{2}(\varphi)^{2}
=α2μ2γφγ1α2γφγ+r1α2μ2γφ1+α2γφr1\displaystyle=\alpha_{2}\mu_{2}\gamma\varphi^{\gamma-1}-\alpha_{2}\gamma\varphi^{\gamma+r-1}-\alpha_{2}\mu_{2}\gamma\varphi^{-1}+\alpha_{2}\gamma\varphi^{r-1}
+σ22γ(γ1)φγ+2ϕ2+σ22γφ2ϕ2.\displaystyle+\frac{\sigma_{2}}{2}\gamma(\gamma-1)\varphi^{\gamma+2\phi-2}+\frac{\sigma_{2}}{2}\gamma\varphi^{2\phi-2}.

So clearly, for γ(0,1)\gamma\in(0,1) and by (15), we infer α2μ2γφ1-\alpha_{2}\mu_{2}\gamma\varphi^{-1} leads and tends to -\infty for small φ\varphi. Similarly, we infer α2γφγ+r1-\alpha_{2}\gamma\varphi^{\gamma+r-1} leads and also tends to -\infty for large φ\varphi. So there exists a constant K0K_{0} such that

LH(φ)K0.LH(\varphi)\leq K_{0}. (18)

By the Itô formula, we have

𝔼[H(φ(Tτn))]H(φ0)+K0T.\mathbb{E}[H(\varphi(T\wedge\tau_{n}))]\leq H(\varphi_{0})+K_{0}T. (19)

It then follows that,

(τnT)H(φ0)+K0TH(1/n)H(n).\mathbb{P}(\tau_{n}\leq T)\leq\frac{H(\varphi_{0})+K_{0}T}{H(1/n)\wedge H(n)}. (20)

This implies that limn(τnT)0\lim_{n\rightarrow\infty}\mathbb{P}(\tau_{n}\leq T)\rightarrow 0 as required. ∎

Lemma 3.3.

Let Assumption 3.1 hold. Then for any given initial data x0>0x_{0}>0 and φ0>0\varphi_{0}>0, there exists a unique global solution x(t)x(t) to SDE (8) on t[0,T]t\in[0,T] and x(t)>0x(t)>0 a.s.

Proof.

Similarly, we treat SDE (8) as an SDE in 2\mathbb{R}^{2} by setting its coefficients to 0 whenever x(t)<0x(t)<0 or φ(t)<0\varphi(t)<0. Obviously, the coefficients are locally Lipschitzian. Thus there exists a unique positive maximal local solution (x(t),φ(t))(x(t),\varphi(t)) on t[0,τe)t\in[0,\tau_{e}), where τe\tau_{e} is the explosion time (e.g., see [21]). So for any sufficiently large integer n>0n>0, define the stopping times

ςn\displaystyle\varsigma_{n} =τeinf{t[0,τe):|x(t)|(1/n,n)},\displaystyle=\tau_{e}\wedge\inf\{t\in[0,\tau_{e}):|x(t)|\notin(1/n,n)\},
τm\displaystyle\tau_{m} =τeinf{t[0,τe):|φ(t)|(1/m,m)}.\displaystyle=\tau_{e}\wedge\inf\{t\in[0,\tau_{e}):|\varphi(t)|\notin(1/m,m)\}.

Now let

ϱmn=ςnτm.\varrho_{mn}=\varsigma_{n}\wedge\tau_{m}. (21)

Set ς=limnςn\varsigma_{\infty}=\lim_{n\rightarrow\infty}\varsigma_{n} and τ=limmτm\tau_{\infty}=\lim_{m\rightarrow\infty}\tau_{m}. Define a C2C^{2}-function by

H(x)=xγ1γlog(x).H(x)=x^{\gamma}-1-\gamma\log(x). (22)

for γ(0,1)\gamma\in(0,1). Then for s[0,Tϱmn]s\in[0,T\wedge\varrho_{mn}], we apply (10) to compute

LH(x(s),φ(s))\displaystyle LH(x(s),\varphi(s))
=γ(x(s)γ11/x(s))f1(x(s))+12(γ(γ1)x(s)γ2+γx(s)2)φ(s)g1(x(s))2\displaystyle=\gamma(x(s)^{\gamma-1}-1/x(s))f_{1}(x(s))+\frac{1}{2}(\gamma(\gamma-1)x(s)^{\gamma-2}+\gamma x(s)^{-2})\varphi(s)g_{1}(x(s))^{2}
α1μ1γx(s)γ1α1γx(s)γ+ρ1α1μ1γx(s)1+α1γx(s)ρ1\displaystyle\leq\alpha_{1}\mu_{1}\gamma x(s)^{\gamma-1}-\alpha_{1}\gamma x(s)^{\gamma+\rho-1}-\alpha_{1}\mu_{1}\gamma x(s)^{-1}+\alpha_{1}\gamma x(s)^{\rho-1}
+σ12γ(γ1)x(s)γ+2θ2+mσ12γx(s)2θ2,\displaystyle+\frac{\sigma_{1}}{2}\gamma(\gamma-1)x(s)^{\gamma+2\theta-2}+\frac{m\sigma_{1}}{2}\gamma x(s)^{2\theta-2},

Moreover, we can derive that

𝔼[H(x(Tϱmn))]\displaystyle\mathbb{E}[H(x(T\wedge\varrho_{mn}))] =𝔼[H(x(Tςnτm))]𝔼[H(x(ςn))1(ςnTτm)]\displaystyle=\mathbb{E}[H(x(T\wedge\varsigma_{n}\wedge\tau_{m}))]\geq\mathbb{E}[H(x(\varsigma_{n}))1_{(\varsigma_{n}\leq T\wedge\tau_{m})}]
[H(1/n)H(n)](ςnTτm).\displaystyle\geq[H(1/n)\wedge H(n)]\mathbb{P}(\varsigma_{n}\leq T\wedge\tau_{m}).

By the Itô formula, we derive that

𝔼[H(x(Tϱmn))]H(x0)+𝔼0TϱmnLH(x(s),φ(s))𝑑s.\displaystyle\mathbb{E}[H(x(T\wedge\varrho_{mn}))]\leq H(x_{0})+\mathbb{E}\int_{0}^{T\wedge\varrho_{mn}}LH(x(s),\varphi(s))ds.

This implies

[H(1/n)H(n)](ςnTτm)H(x0)+𝔼0TϱmnLH(x(s),φ(s))𝑑s.\displaystyle[H(1/n)\wedge H(n)]\mathbb{P}(\varsigma_{n}\leq T\wedge\tau_{m})\leq H(x_{0})+\mathbb{E}\int_{0}^{T\wedge\varrho_{mn}}LH(x(s),\varphi(s))ds.

Meanwhile, for γ(0,1)\gamma\in(0,1) and by (15), we can find a constant K1K_{1} such that

[H(1/n)H(n)](ςnTτm)H(x0)+K1T.[H(1/n)\wedge H(n)]\mathbb{P}(\varsigma_{n}\leq T\wedge\tau_{m})\leq H(x_{0})+K_{1}T. (23)

This means we have

(ςnTτm)H(x0)+K1TH(1/n)H(n).\mathbb{P}(\varsigma_{n}\leq T\wedge\tau_{m})\leq\frac{H(x_{0})+K_{1}T}{H(1/n)\wedge H(n)}. (24)

So, by letting nn\rightarrow\infty, we obtain (ςnTτm)0\mathbb{P}(\varsigma_{n}\leq T\wedge\tau_{m})\rightarrow 0. By setting mm\rightarrow\infty and using Lemma 3.2, we have (ςT)=0\mathbb{P}(\varsigma_{\infty}\leq T)=0. This implies (ς>T)=1\mathbb{P}(\varsigma_{\infty}>T)=1. ∎

3.2 Finite moments

In the sequel, we show that the moments of SDEs (8) and (9) are finite.

Lemma 3.4.

Let equation (15) hold. Then for any p2p\geq 2, the solution φ(t)\varphi(t) to SDE (9) satisfies

sup0t<(𝔼|φ(t)|p)c1,\sup_{0\leq t<\infty}(\mathbb{E}|\varphi(t)|^{p})\leq c_{1}, (25)

where c1c_{1} is a constant.

See [18] for the proof.

Lemma 3.5.

Let Assumption 3.1 hold. Then for any p2p\geq 2, the solution x(t)x(t) to SDE (9) obeys

sup0t<(𝔼|x(t)|p1(tτm))c2,\sup_{0\leq t<\infty}\big{(}\mathbb{E}|x(t)|^{p}1_{(t\leq\tau^{*}_{m})}\big{)}\leq c_{2}, (26)

where for any sufficiently large integer m>0m>0,

τm\displaystyle\tau_{m}^{*} =inf{t0:φ(t)(1/m,m)}\displaystyle=\inf\{t\geq 0:\varphi(t)\notin(1/m,m)\}

and c2c_{2} is a constant dependent on mm.

Proof.

For any sufficiently large integer n>0n>0, define the stopping times

ςn\displaystyle\varsigma^{*}_{n} =inf{t0:x(t)(1/n,n)}.\displaystyle=\inf\{t\geq 0:x(t)\notin(1/n,n)\}.

Then set ϱmn=ςnτn\varrho^{*}_{mn}=\varsigma^{*}_{n}\wedge\tau_{n}^{*}. For s[0,tϱmn]s\in[0,t\wedge\varrho^{*}_{mn}], we apply (11) to H(x,t)=etxpH(x,t)=e^{t}x^{p} to compute

LH(x(s),φ(s))\displaystyle LH(x(s),\varphi(s))
=esx(s)p+pesx(s)p1f1(x(s))+12p(p1)esx(s)p2φ(s)g1(x(s))2\displaystyle=e^{s}x(s)^{p}+pe^{s}x(s)^{p-1}f_{1}(x(s))+\frac{1}{2}p(p-1)e^{s}x(s)^{p-2}\varphi(s)g_{1}(x(s))^{2}
=es(x(s)p+α1μ1px(s)p1α1px(s)ρ+p1+σ12p(p1)φ(s)x(s)2θ+p2)\displaystyle=e^{s}\big{(}x(s)^{p}+\alpha_{1}\mu_{1}px(s)^{p-1}-\alpha_{1}px(s)^{\rho+p-1}+\frac{\sigma_{1}}{2}p(p-1)\varphi(s)x(s)^{2\theta+p-2}\big{)}
es(x(s)p+α1μ1px(s)p1α1px(s)ρ+p1+mσ12p(p1)x(s)2θ+p2),\displaystyle\leq e^{s}\big{(}x(s)^{p}+\alpha_{1}\mu_{1}px(s)^{p-1}-\alpha_{1}px(s)^{\rho+p-1}+\frac{m\sigma_{1}}{2}p(p-1)x(s)^{2\theta+p-2}\big{)},

By the Itô formula, we get

𝔼[etϱmn|x(tϱmn)|p]\displaystyle\mathbb{E}[e^{t\wedge\varrho^{*}_{mn}}|x(t\wedge\varrho^{*}_{mn})|^{p}] x0p+𝔼0tϱmnLH(x(s),φ(s))𝑑s.\displaystyle\leq x_{0}^{p}+\mathbb{E}\int_{0}^{t\wedge\varrho^{*}_{mn}}LH(x(s),\varphi(s))ds.

Noting that

𝔼[etϱmn|x(tϱmn)|p]\displaystyle\mathbb{E}[e^{t\wedge\varrho^{*}_{mn}}|x(t\wedge\varrho^{*}_{mn})|^{p}] =𝔼[etςnτn|x(tςnτn)|p]\displaystyle=\mathbb{E}[e^{t\wedge\varsigma^{*}_{n}\wedge\tau_{n}^{*}}|x(t\wedge\varsigma^{*}_{n}\wedge\tau_{n}^{*})|^{p}]
𝔼[etςn|x(tςn)|p1(tςnτm)],\displaystyle\geq\mathbb{E}[e^{t\wedge\varsigma^{*}_{n}}|x(t\wedge\varsigma^{*}_{n})|^{p}1_{(t\wedge\varsigma^{*}_{n}\leq\tau^{*}_{m})}],

we obtain

𝔼[etςn|x(tςn)|p1(tςnτm)]\displaystyle\mathbb{E}[e^{t\wedge\varsigma^{*}_{n}}|x(t\wedge\varsigma^{*}_{n})|^{p}1_{(t\wedge\varsigma^{*}_{n}\leq\tau^{*}_{m})}] x0p+𝔼0tϱmnLH(x(s),φ(s))𝑑s.\displaystyle\leq x_{0}^{p}+\mathbb{E}\int_{0}^{t\wedge\varrho^{*}_{mn}}LH(x(s),\varphi(s))ds.

So, by Assumption 3.1, we can find a constant K3K_{3} such that

𝔼[etςn|x(tςn)|p1(tςnτm)]x0p+etK3\mathbb{E}[e^{t\wedge\varsigma^{*}_{n}}|x(t\wedge\varsigma^{*}_{n})|^{p}1_{(t\wedge\varsigma^{*}_{n}\leq\tau^{*}_{m})}]\leq x_{0}^{p}+e^{t}K_{3}

By letting nn\rightarrow\infty, we can apply the Fatou lemma to have

𝔼|x(t)|p1(tτm)x0pet+K3,\mathbb{E}|x(t)|^{p}1_{(t\leq\tau^{*}_{m})}\leq x_{0}^{p}e^{-t}+K_{3},

and consequently,

sup0t<(𝔼|x(t)|p1(tτm))c2\sup_{0\leq t<\infty}\big{(}\mathbb{E}|x(t)|^{p}1_{(t\leq\tau^{*}_{m})}\big{)}\leq c_{2}

as the desired assertion. The proof is thus complete. ∎

4 Numerical method

In this section, we construct the truncated EM method to approximate SDEs (8) and (9). But before then, we need to introduce the following lemmas which are needed to perform the convergence analysis (see [19]).

Lemma 4.1.

For any R>0R>0, there exist positive constants KRK_{R} and LRL_{R} such that the coefficients of SDE (8) and SDE (9) satisfy

|f1(x)f1(x¯)||g1(x)g1(x¯)|\displaystyle|f_{1}(x)-f_{1}(\bar{x})|\vee|g_{1}(x)-g_{1}(\bar{x})| KR|xx¯|,\displaystyle\leq K_{R}|x-\bar{x}|, (27)
|f2(φ)f2(φ¯)||g2(φ)g2(φ¯)|\displaystyle|f_{2}(\varphi)-f_{2}(\bar{\varphi})|\vee|g_{2}(\varphi)-g_{2}(\bar{\varphi})| LR|φφ¯|\displaystyle\leq L_{R}|\varphi-\bar{\varphi}| (28)

for all φ,φ¯\varphi,\bar{\varphi}\in\mathbb{R} and x,x¯2x,\bar{x}\in\mathbb{R}^{2} with |x||x¯||φ||φ¯|R|x|\vee|\bar{x}|\vee|\varphi|\vee|\bar{\varphi}|\leq R.

Lemma 4.2.

Let Assumption 3.1 hold. Then for any p2p\geq 2, there exist K4=K(p)>0K_{4}=K(p)>0 and K5=K(p)>0K_{5}=K(p)>0 such that the coefficients terms of SDE (8) and (9) fulfil

xf1(x)+p12|φg1(x)|2\displaystyle xf_{1}(x)+\frac{p-1}{2}|\sqrt{\varphi}g_{1}(x)|^{2} K4(1+φ|x|2)\displaystyle\leq K_{4}(1+\varphi|x|^{2}) (29)
φf2(φ)+p12|g2(φ)|2\displaystyle\varphi f_{2}(\varphi)+\frac{p-1}{2}|g_{2}(\varphi)|^{2} K5(1+|φ|2)\displaystyle\leq K_{5}(1+|\varphi|^{2}) (30)

φ+\forall\varphi\in\mathbb{R}_{+}, x+2\forall x\in\mathbb{R}^{2}_{+}. See [19] for the proof.

4.1 Numerical schemes

To begin with, let us extend the domain of SDE (9) from +\mathbb{R}_{+} to \mathbb{R} and SDE (8) from +2\mathbb{R}^{2}_{+} to 2\mathbb{R}^{2}. We should mention that these extensions do not affect the positivity of the solutions and the local Lipschitz conditions. We define the truncated scheme by first choosing a strictly increasing continuous function ν:++\nu:\mathbb{R}_{+}\rightarrow\mathbb{R}_{+} such that ν(r)\nu(r)\rightarrow\infty as rr\rightarrow\infty and

sup|x||φ|r(|f1(x)||f2(φ)|g1(x)g2(φ))ν(r),r0.\sup_{|x|\vee|\varphi|\leq r}\Big{(}|f_{1}(x)|\vee|f_{2}(\varphi)|\vee g_{1}(x)\vee g_{2}(\varphi)\Big{)}\leq\nu(r),\quad\forall r\geq 0. (31)

Denote by ν1\nu^{-1} the inverse function of ν\nu and we see that ν1\nu^{-1} is strictly increasing continuous function from [ν(0),)[\nu(0),\infty) to +\mathbb{R}_{+}. We also choose a number Δ(0,1]\Delta^{*}\in(0,1] and a strictly decreasing function h:(0,Δ](0,)h:(0,\Delta^{*}]\rightarrow(0,\infty) such that

h(Δ)ν(1),limΔ0h(Δ)= and Δ1/4h(Δ)1Δ(0,1].\quad h(\Delta^{*})\geq\nu(1),\lim_{\Delta\rightarrow 0}h(\Delta)=\infty\text{ and }\Delta^{1/4}h(\Delta)\leq 1\quad\forall\Delta\in(0,1]. (32)

For any given step size Δ(0,1)\Delta\in(0,1), we define the truncated functions by

f1Δ(x)={f1(xν1(h(Δ))),if x0 α1μ1,if x<0,f_{1}^{\Delta}(x)=\begin{cases}f_{1}\Big{(}x\wedge\nu^{-1}(h(\Delta))\Big{)},&\mbox{if $x\geq 0$ }\\ \alpha_{1}\mu_{1},&\mbox{if $x<0$},\end{cases}
g1Δ(x)={g1(xν1(h(Δ))),if x0 0,if x<0,g_{1}^{\Delta}(x)=\begin{cases}g_{1}\Big{(}x\wedge\nu^{-1}(h(\Delta))\Big{)},&\mbox{if $x\geq 0$ }\\ 0,&\mbox{if $x<0$},\end{cases}
f2Δ(φ)={f2(φν1(h(Δ))),if φ0 α2μ2,if φ<0.f_{2}^{\Delta}(\varphi)=\begin{cases}f_{2}\Big{(}\varphi\wedge\nu^{-1}(h(\Delta))\Big{)},&\mbox{if $\varphi\geq 0$ }\\ \alpha_{2}\mu_{2},&\mbox{if $\varphi<0$}.\end{cases}

and

g2Δ(φ)={g2(φν1(h(Δ))),if φ0 0,if φ<0,g_{2}^{\Delta}(\varphi)=\begin{cases}g_{2}\Big{(}\varphi\wedge\nu^{-1}(h(\Delta))\Big{)},&\mbox{if $\varphi\geq 0$ }\\ 0,&\mbox{if $\varphi<0$},\end{cases}

for φ\varphi\in\mathbb{R} and x2x\in\mathbb{R}^{2} . Clearly, we observe

|f1Δ(x)||f2Δ(φ)|g1Δ(x)g2Δ(φ)ν(ν1(h(Δ)))=h(Δ)\displaystyle|f_{1}^{\Delta}(x)|\vee|f_{2}^{\Delta}(\varphi)|\vee g_{1}^{\Delta}(x)\vee g_{2}^{\Delta}(\varphi)\leq\nu(\nu^{-1}(h(\Delta)))=h(\Delta) (33)

for φ\varphi\in\mathbb{R}, x2x\in\mathbb{R}^{2}. The truncated functions f1Δf_{1}^{\Delta} and g1Δ(x)g_{1}^{\Delta}(x), and f2Δf_{2}^{\Delta} and g2Δg_{2}^{\Delta} maintain (28) and (29) respectively as shown in the following lemma.

Lemma 4.3.

Let Assumption 3.1 hold. Then, for all Δ(0,Δ)\Delta\in(0,\Delta^{*}) and p2p\geq 2, the truncated functions satisfy

xf1Δ(x)+p12|φg1Δ(x)|2\displaystyle xf_{1}^{\Delta}(x)+\frac{p-1}{2}|\sqrt{\varphi}g_{1}^{\Delta}(x)|^{2} K6(1+φ|x|2),\displaystyle\leq K_{6}(1+\varphi|x|^{2}), (34)
φf2Δ(φ)+p12|g2Δ(φ)|2\displaystyle\varphi f_{2}^{\Delta}(\varphi)+\frac{p-1}{2}|g_{2}^{\Delta}(\varphi)|^{2} K7(1+|φ|2)\displaystyle\leq K_{7}(1+|\varphi|^{2}) (35)

φ+\forall\varphi\in\mathbb{R}_{+}, x+2\forall x\in\mathbb{R}^{2}_{+}, where K6K_{6} and K7K_{7} are independent of Δ\Delta.

Proof.

See [19] for the proof of (35). To prove (34), fix any Δ(0,Δ]\Delta\in(0,\Delta^{*}]. Then for φ\varphi\in\mathbb{R} and x2x\in\mathbb{R}^{2} with |x||φ|ν1(h(Δ))|x|\vee|\varphi|\leq\nu^{-1}(h(\Delta)), by (30), we obtain

xf1Δ(x)+p12|φg1Δ(x)|2\displaystyle xf_{1}^{\Delta}(x)+\frac{p-1}{2}|\sqrt{\varphi}g_{1}^{\Delta}(x)|^{2} xf1(x)+p12|φg1(x)|2\displaystyle\leq xf_{1}(x)+\frac{p-1}{2}|\sqrt{\varphi}g_{1}(x)|^{2}
K4(1+φ|x|2)\displaystyle\leq K_{4}(1+\varphi|x|^{2})

as required. For φ\varphi\in\mathbb{R} and x2x\in\mathbb{R}^{2} with |x||φ|>ν1(h(Δ))|x|\vee|\varphi|>\nu^{-1}(h(\Delta)), we get

xf1Δ(x)+p12|φg1Δ(x)|2\displaystyle xf_{1}^{\Delta}(x)+\frac{p-1}{2}|\sqrt{\varphi}g_{1}^{\Delta}(x)|^{2} xf1(ν1(h(Δ)))+p12|φg1(ν1(h(Δ)))|2\displaystyle\leq xf_{1}(\nu^{-1}(h(\Delta)))+\frac{p-1}{2}|\sqrt{\varphi}g_{1}(\nu^{-1}(h(\Delta)))|^{2}
ν1(h(Δ))f1(ν1(h(Δ)))\displaystyle\leq\nu^{-1}(h(\Delta))f_{1}(\nu^{-1}(h(\Delta)))
+p12|ν1(h(Δ))g1(ν1(h(Δ))|2\displaystyle+\frac{p-1}{2}|\sqrt{\nu^{-1}(h(\Delta))}g_{1}(\nu^{-1}(h(\Delta))|^{2}
+(xν1(h(Δ))1)ν1(h(Δ))f1(ν1(h(Δ)))\displaystyle+\Big{(}\frac{x}{\nu^{-1}(h(\Delta))}-1\Big{)}\nu^{-1}(h(\Delta))f_{1}(\nu^{-1}(h(\Delta)))
K4(1+ν1(h(Δ))[ν1(h(Δ))]2)\displaystyle\leq K_{4}(1+\nu^{-1}(h(\Delta))[\nu^{-1}(h(\Delta))]^{2})
+(xν1(h(Δ))1)ν1(h(Δ))f1(ν1(h(Δ))).\displaystyle+\Big{(}\frac{x}{\nu^{-1}(h(\Delta))}-1\Big{)}\nu^{-1}(h(\Delta))f_{1}(\nu^{-1}(h(\Delta))).

Again, we observe from (29) that xf1(x)K4(1+φ|x|2)xf_{1}(x)\leq K_{4}(1+\varphi|x|^{2}) for any φ\varphi\in\mathbb{R} and x2x\in\mathbb{R}^{2}, we obtain

xf1Δ(x)+p12|φg1Δ(x)|2\displaystyle xf_{1}^{\Delta}(x)+\frac{p-1}{2}|\sqrt{\varphi}g_{1}^{\Delta}(x)|^{2} K4(1+ν1(h(Δ))[ν1(h(Δ))]2)\displaystyle\leq K_{4}(1+\nu^{-1}(h(\Delta))[\nu^{-1}(h(\Delta))]^{2})
+(xν1(h(Δ))1)K4(1+ν1(h(Δ))[ν1(h(Δ))]2)\displaystyle+\Big{(}\frac{x}{\nu^{-1}(h(\Delta))}-1\Big{)}K_{4}(1+\nu^{-1}(h(\Delta))[\nu^{-1}(h(\Delta))]^{2})
xν1(h(Δ))K4(1+ν1(h(Δ))[ν1(h(Δ))]2)\displaystyle\leq\frac{x}{\nu^{-1}(h(\Delta))}K_{4}(1+\nu^{-1}(h(\Delta))[\nu^{-1}(h(\Delta))]^{2})
xK4(1+ν1(h(Δ))[ν1(h(Δ))])\displaystyle\leq x\cdot K_{4}(1+\nu^{-1}(h(\Delta))[\nu^{-1}(h(\Delta))])
xK5(1+φx)K7(1+φ|x|2),\displaystyle\leq x\cdot K_{5}(1+\varphi\cdot x)\leq K_{7}(1+\varphi|x|^{2}),

where K7=2K4K_{7}=2K_{4} as the required assertion in (34). We should mention that using these proofs, we could similarly establish the case when φ\varphi\in\mathbb{R} and x2x\in\mathbb{R}^{2} with |x|>ν1(h(Δ))|x|>\nu^{-1}(h(\Delta)) and |φ|ν1(h(Δ))|\varphi|\leq\nu^{-1}(h(\Delta)) and the case when φ\varphi\in\mathbb{R} and x2x\in\mathbb{R}^{2} with |x|ν1(h(Δ))|x|\leq\nu^{-1}(h(\Delta)) and |φ|>ν1(h(Δ))|\varphi|>\nu^{-1}(h(\Delta)). ∎

Let us now form the discrete-time truncated EM solutions YΔ(tk)φ(tk)Y_{\Delta}(t_{k})\approx\varphi(t_{k}) and XΔ(tk)x(tk)X_{\Delta}(t_{k})\approx x(t_{k}) to SDEs (8) and (9) for tk=kΔt_{k}=k\Delta respectively, by setting YΔ(0)=φ0Y_{\Delta}(0)=\varphi_{0}, XΔ(0)=x0X_{\Delta}(0)=x_{0} and computing

YΔ(tk+1)\displaystyle Y_{\Delta}(t_{k+1}) =YΔ(tk)+f2Δ(YΔ(tk))Δ+g2Δ(YΔ(tk))ΔB2k\displaystyle=Y_{\Delta}(t_{k})+f_{2}^{\Delta}(Y_{\Delta}(t_{k}))\Delta+g_{2}^{\Delta}(Y_{\Delta}(t_{k}))\Delta B_{2k} (36)
XΔ(tk+1)\displaystyle X_{\Delta}(t_{k+1}) =XΔ(tk)+f1Δ(XΔ(tk))Δ+|YΔ(tk)|g1Δ(XΔ(tk))ΔB1k\displaystyle=X_{\Delta}(t_{k})+f_{1}^{\Delta}(X_{\Delta}(t_{k}))\Delta+\sqrt{|Y_{\Delta}(t_{k})|}g_{1}^{\Delta}(X_{\Delta}(t_{k}))\Delta B_{1k} (37)

for k=0,1,2,,k=0,1,2,\cdots, where Δ=tk+1tk\Delta=t_{k+1}-t_{k}, ΔB1k=(B1(tk+1)B1(tk))\Delta B_{1k}=(B_{1}(t_{k+1})-B_{1}(t_{k})) and ΔB2k=(B2(tk+1)B2(tk))\Delta B_{2k}=(B_{2}(t_{k+1})-B_{2}(t_{k})). Let us now form corresponding versions of the continuous-time truncated EM solutions. The first versions are defined by

φ¯Δ(t)\displaystyle\bar{\varphi}_{\Delta}(t) =k=0YΔ(tk)1[tk,tk+1)(t)\displaystyle=\sum_{k=0}^{\infty}Y_{\Delta}(t_{k})1_{[t_{k},t_{k+1})}(t) (38)
x¯Δ(t)\displaystyle\bar{x}_{\Delta}(t) =k=0XΔ(tk)1[tk,tk+1)(t).\displaystyle=\sum_{k=0}^{\infty}X_{\Delta}(t_{k})1_{[t_{k},t_{k+1})}(t). (39)

on t0t\geq 0. These are the continuous-time step processes. The other versions are the continuous-time continuous processes defined on t0t\geq 0 by

φΔ(t)=φ(0)+0tf2Δ(φ¯Δ(s))𝑑s+0tg2Δ(φ¯Δ(s))𝑑B2(s)\displaystyle\varphi_{\Delta}(t)=\varphi(0)+\int_{0}^{t}f_{2}^{\Delta}(\bar{\varphi}_{\Delta}(s))ds+\int_{0}^{t}g_{2}^{\Delta}(\bar{\varphi}_{\Delta}(s))dB_{2}(s) (40)
xΔ(t)=x(0)+0tf1Δ(x¯Δ(s))𝑑s+0t|φ¯(s)|g1Δ(x¯Δ(s))𝑑B1(s).\displaystyle x_{\Delta}(t)=x(0)+\int_{0}^{t}f_{1}^{\Delta}(\bar{x}_{\Delta}(s))ds+\int_{0}^{t}\sqrt{|\bar{\varphi}(s)|}g_{1}^{\Delta}(\bar{x}_{\Delta}(s))dB_{1}(s). (41)

Obviously φΔ(t)\varphi_{\Delta}(t) and xΔ(t)x_{\Delta}(t) are Itô processes on t0t\geq 0 respectively satisfying Itô differentials

dφΔ(t)=f2Δ(φ¯Δ(t))dt+g2Δ(φ¯Δ(t))dB2(t)\displaystyle d\varphi_{\Delta}(t)=f_{2}^{\Delta}(\bar{\varphi}_{\Delta}(t))dt+g_{2}^{\Delta}(\bar{\varphi}_{\Delta}(t))dB_{2}(t)
dxΔ(t)=f1Δ(x¯Δ(t))dt+|φ¯Δ(t)|g1Δ(x¯Δ(t))dB1(t).\displaystyle dx_{\Delta}(t)=f_{1}^{\Delta}(\bar{x}_{\Delta}(t))dt+\sqrt{|\bar{\varphi}_{\Delta}(t)|}g_{1}^{\Delta}(\bar{x}_{\Delta}(t))dB_{1}(t).

For all k0k\geq 0, we clearly observe that φΔ(tk)=φ¯Δ(tk)=YΔ(tk)\varphi_{\Delta}(t_{k})=\bar{\varphi}_{\Delta}(t_{k})=Y_{\Delta}(t_{k}) and xΔ(tk)=x¯Δ(tk)=XΔ(tk)x_{\Delta}(t_{k})=\bar{x}_{\Delta}(t_{k})=X_{\Delta}(t_{k}).

5 Numerical properties

In this section, we establish the moment bounds and finite time strong convergence results for the truncated EM solutions.

5.1 Finite moments

In the sequel, let us recall the following useful lemmas. The proofs of these lemmas are in [19] and therefore omitted.

Lemma 5.1.

Let equation (15) hold. Then for any p2p\geq 2, the solution of (40) satisfies

sup0<ΔΔsup0tT(𝔼|φΔ(t)|p)c4,\sup_{0<\Delta\leq\Delta^{*}}\sup_{0\leq t\leq T}\big{(}\mathbb{E}|\varphi_{\Delta}(t)|^{p}\big{)}\leq c_{4}, (42)

T0\forall T\geq 0 where c4:=c4(φ0,p,T,K7)c_{4}:=c_{4}(\varphi_{0},p,T,K_{7}) may change between occurrences.

It is important to note that (42) also holds for φ¯Δ(t)\bar{\varphi}_{\Delta}(t) because φΔ(tk)\varphi_{\Delta}(t_{k}) and φ¯Δ(tk)\bar{\varphi}_{\Delta}(t_{k}) coincide at discrete time tkt_{k} for all k0k\geq 0.

Lemma 5.2.

For any Δ(0,Δ]\Delta\in(0,\Delta^{*}] and t0\forall t\geq 0, we have

𝔼|φΔ(t)φ¯Δ(t)|pcpΔp/2(h(Δ))p\mathbb{E}|\varphi_{\Delta}(t)-\bar{\varphi}_{\Delta}(t)|^{p}\leq c_{p}\Delta^{p/2}(h(\Delta))^{p} (43)

and consequently,

limΔ0𝔼|φΔ(t)φ¯Δ(t)|p=0,\lim_{\Delta\rightarrow 0}\mathbb{E}|\varphi_{\Delta}(t)-\bar{\varphi}_{\Delta}(t)|^{p}=0, (44)

where cpc_{p} is a positive constant which depends only on pp.

In addition to the above lemmas, we also need the following lemmas.

Lemma 5.3.

For any Δ(0,Δ]\Delta\in(0,\Delta^{*}] and t0\forall t\geq 0, we have

𝔼|xΔ(t)x¯Δ(t)|pCpΔp/2(h(Δ))p\mathbb{E}|x_{\Delta}(t)-\bar{x}_{\Delta}(t)|^{p}\leq C_{p}\Delta^{p/2}(h(\Delta))^{p} (45)

and consequently,

limΔ0𝔼|xΔ(t)x¯Δ(t)|p=0,\lim_{\Delta\rightarrow 0}\mathbb{E}|x_{\Delta}(t)-\bar{x}_{\Delta}(t)|^{p}=0, (46)

where CpC_{p} is a positive constant which depends only on pp.

Proof.

Fix any Δ(0,Δ]\Delta\in(0,\Delta^{*}] and t0t\geq 0. Then there is a unique integer k0k\geq 0 such that tkttk+1t_{k}\leq t\leq t_{k+1}. By elementary inequality, we derive

𝔼|xΔ(t)x¯Δ(t)|p=𝔼|xΔ(t)x¯Δ(tk)|p\displaystyle\mathbb{E}|x_{\Delta}(t)-\bar{x}_{\Delta}(t)|^{p}=\mathbb{E}|x_{\Delta}(t)-\bar{x}_{\Delta}(t_{k})|^{p}
c(p)(𝔼|tktf1Δ(x¯Δ(s))𝑑s|p+𝔼|tkt|φ¯(s)|g1Δ(x¯Δ(s))𝑑B(s)|p)\displaystyle\leq c(p)\Big{(}\mathbb{E}\big{|}\int_{t_{k}}^{t}f_{1}^{\Delta}(\bar{x}_{\Delta}(s))ds\big{|}^{p}+\mathbb{E}\big{|}\int_{t_{k}}^{t}\sqrt{|\bar{\varphi}(s)|}g_{1}^{\Delta}(\bar{x}_{\Delta}(s))dB(s)\big{|}^{p}\Big{)}
c(p)(Δp1𝔼tkt|f1Δ(x¯Δ(s))|p𝑑s+Δ(p2)/2𝔼tkt||φ¯(s)|g1Δ(x¯Δ(s))|p𝑑s).\displaystyle\leq c(p)\Big{(}\Delta^{p-1}\mathbb{E}\int_{t_{k}}^{t}|f_{1}^{\Delta}(\bar{x}_{\Delta}(s))|^{p}ds+\Delta^{(p-2)/2}\mathbb{E}\int_{t_{k}}^{t}|\sqrt{|\bar{\varphi}(s)|}g_{1}^{\Delta}(\bar{x}_{\Delta}(s))|^{p}ds\Big{)}.

So by Lemma (5.1) and (33), we have

𝔼|xΔ(t)x¯Δ(t)|p\displaystyle\mathbb{E}|x_{\Delta}(t)-\bar{x}_{\Delta}(t)|^{p} c(p)(Δp1(h(Δ))pΔ+|c4|p/2Δ(p2)/2(h(Δ))pΔ)\displaystyle\leq c(p)\Big{(}\Delta^{p-1}(h(\Delta))^{p}\Delta+|c_{4}|^{p/2}\Delta^{(p-2)/2}(h(\Delta))^{p}\Delta\Big{)}
c(p)(Δp(h(Δ))p+|c4|p/2Δp/2(h(Δ))p)\displaystyle\leq c(p)\Big{(}\Delta^{p}(h(\Delta))^{p}+|c_{4}|^{p/2}\Delta^{p/2}(h(\Delta))^{p}\Big{)}
CpΔp/2(h(Δ))p,\displaystyle\leq C_{p}\Delta^{p/2}(h(\Delta))^{p},

where Cp=c(p)(1|c4|p/2)C_{p}=c(p)(1\vee|c_{4}|^{p/2}). Nothing that Δp/2(h(Δ))pΔp/4\Delta^{p/2}(h(\Delta))^{p}\leq\Delta^{p/4} from (32), we obtain (47) from (46) by letting Δ0\Delta\rightarrow 0. ∎

Lemma 5.4.

Let Assumption 3.1 hold. Then for any p2p\geq 2, the truncated EM solution of (42) satisfies

sup0t<(𝔼|xΔ(t)|p1(tm))c5,\sup_{0\leq t<\infty}\big{(}\mathbb{E}|x_{\Delta}(t)|^{p}1_{(t\leq\hbar^{*}_{m})}\big{)}\leq c_{5}, (47)

where for any sufficiently large integer m>0m>0,

m\displaystyle\hbar_{m} =inf{t0:φ¯(t)(1/m,m)}\displaystyle=\inf\{t\geq 0:\bar{\varphi}(t)\notin(1/m,m)\}

and c5:=c5(x0,φ0,p,T,K6,m)c_{5}:=c_{5}(x_{0},\varphi_{0},p,T,K_{6},m) may change value between occurrences.

Proof.

Fix any Δ(0,Δ)\Delta\in(0,\Delta^{*}) and for every sufficiently large integer n>0n>0, define

n\displaystyle\hbar^{*}_{n} =inf{t0:xΔ(t)(1/n,n)}.\displaystyle=\inf\{t\geq 0:x_{\Delta}(t)\notin(1/n,n)\}.

Now set ðmn=mn\eth_{mn}=\hbar_{m}\wedge\hbar^{*}_{n}. By the Itô formula, we derive from (41) that

𝔼|xΔ(tðmn)|p|x0|p\displaystyle\mathbb{E}|x_{\Delta}(t\wedge\eth_{mn})|^{p}-|x_{0}|^{p}
𝔼0tmnp|xΔ(s)|p2(xΔ(s)f1Δ(x¯Δ(s))+p12||φ¯(s)|g1Δ(x¯Δ(s))|2)𝑑s\displaystyle\leq\mathbb{E}\int_{0}^{t\wedge\hbar_{mn}}p|x_{\Delta}(s)|^{p-2}\Big{(}x_{\Delta}(s)f_{1}^{\Delta}(\bar{x}_{\Delta}(s))+\frac{p-1}{2}|\sqrt{|\bar{\varphi}(s)|}g_{1}^{\Delta}(\bar{x}_{\Delta}(s))|^{2}\Big{)}ds
=𝒥1+𝒥2,\displaystyle=\mathcal{J}_{1}+\mathcal{J}_{2},

where

𝒥1\displaystyle\mathcal{J}_{1} =𝔼0tðmnp|xΔ(s)|p2(x¯Δ(s)f1Δ(x¯Δ(s))+p12||φ¯(s)|g1Δ(x¯Δ(s))|2)𝑑s\displaystyle=\mathbb{E}\int_{0}^{t\wedge\eth_{mn}}p|x_{\Delta}(s)|^{p-2}\Big{(}\bar{x}_{\Delta}(s)f_{1}^{\Delta}(\bar{x}_{\Delta}(s))+\frac{p-1}{2}|\sqrt{|\bar{\varphi}(s)|}g_{1}^{\Delta}(\bar{x}_{\Delta}(s))|^{2}\Big{)}ds
𝒥2\displaystyle\mathcal{J}_{2} =𝔼0tðmnp|xΔ(s)|p2(xΔ(s)x¯Δ(s))f1Δ(x¯Δ(s))𝑑s.\displaystyle=\mathbb{E}\int_{0}^{t\wedge\eth_{mn}}p|x_{\Delta}(s)|^{p-2}(x_{\Delta}(s)-\bar{x}_{\Delta}(s))f_{1}^{\Delta}(\bar{x}_{\Delta}(s))ds.

By the Young inequality, we have

𝒥1\displaystyle\mathcal{J}_{1} =K6𝔼0tðmn|xΔ(s)|p2(1+φ¯Δ(s)|x¯Δ(s)|2)𝑑s\displaystyle=K_{6}\mathbb{E}\int_{0}^{t\wedge\eth_{mn}}|x_{\Delta}(s)|^{p-2}(1+\bar{\varphi}_{\Delta}(s)|\bar{x}_{\Delta}(s)|^{2})ds
K6𝔼0tðmnp(|xΔ(s)|(p2)pp2)p2p((1+|φ¯Δ(s)|p2|x¯Δ(s)|)p)2p𝑑s\displaystyle\leq K_{6}\mathbb{E}\int_{0}^{t\wedge\eth_{mn}}p\Big{(}|x_{\Delta}(s)|^{(p-2)\frac{p}{p-2}}\Big{)}^{\frac{p-2}{p}}\Big{(}(1+|\bar{\varphi}_{\Delta}(s)|^{\frac{p}{2}}|\bar{x}_{\Delta}(s)|)^{p}\Big{)}^{\frac{2}{p}}ds
K6𝔼0tðmn((p2)|xΔ(s)|p+2(1+|φ¯Δ(s)|p2|x¯Δ(s)|p))𝑑s\displaystyle\leq K_{6}\mathbb{E}\int_{0}^{t\wedge\eth_{mn}}\Big{(}(p-2)|x_{\Delta}(s)|^{p}+2(1+|\bar{\varphi}_{\Delta}(s)|^{\frac{p}{2}}|\bar{x}_{\Delta}(s)|^{p})\Big{)}ds
K6𝔼0tðmn((p2)|xΔ(s)|p+2+2mp2|x¯Δ(s)|p))ds\displaystyle\leq K_{6}\mathbb{E}\int_{0}^{t\wedge\eth_{mn}}\Big{(}(p-2)|x_{\Delta}(s)|^{p}+2+2m^{\frac{p}{2}}|\bar{x}_{\Delta}(s)|^{p})\Big{)}ds
r1𝔼0tðmn(|xΔ(s)|p+x¯Δ(s)|p)ds,\displaystyle\leq r_{1}\mathbb{E}\int_{0}^{t\wedge\eth_{mn}}(|x_{\Delta}(s)|^{p}+\bar{x}_{\Delta}(s)|^{p})ds,

where r1=K6[2T+((p2)2mp2)]r_{1}=K_{6}[2T+((p-2)\vee 2m^{\frac{p}{2}})]. Also, by Lemma 5.1, we have

𝒥2\displaystyle\mathcal{J}_{2} 𝔼0tðmnp|xΔ(s)|p2(xΔ(s)x¯Δ(s))f1Δ(x¯Δ(s))𝑑s\displaystyle\leq\mathbb{E}\int_{0}^{t\wedge\eth_{mn}}p|x_{\Delta}(s)|^{p-2}(x_{\Delta}(s)-\bar{x}_{\Delta}(s))f_{1}^{\Delta}(\bar{x}_{\Delta}(s))ds
p𝔼(0tðmn|xΔ(s)|(p2)×p(p2)𝑑s)(p2)p(0tðmn(xΔ(s)x¯Δ(s))1×p2f1Δ(x¯Δ(s))1×p2𝑑s)2p\displaystyle\leq p\mathbb{E}\Big{(}\int_{0}^{t\wedge\eth_{mn}}|x_{\Delta}(s)|^{(p-2)\times\frac{p}{(p-2)}}ds\Big{)}^{\frac{(p-2)}{p}}\Big{(}\int_{0}^{t\wedge\eth_{mn}}(x_{\Delta}(s)-\bar{x}_{\Delta}(s))^{1\times\frac{p}{2}}f_{1}^{\Delta}(\bar{x}_{\Delta}(s))^{1\times\frac{p}{2}}ds\Big{)}^{\frac{2}{p}}
p𝔼(0tðmn|xΔ(s)|pds)(p2)p(0tðmn(xΔ(s)x¯Δ(s))p2(f1Δ(x¯Δ(s))p2ds)2p.\displaystyle\leq p\mathbb{E}\Big{(}\int_{0}^{t\wedge\eth_{mn}}|x_{\Delta}(s)|^{p}ds\Big{)}^{\frac{(p-2)}{p}}\Big{(}\int_{0}^{t\wedge\eth_{mn}}(x_{\Delta}(s)-\bar{x}_{\Delta}(s))^{\frac{p}{2}}(f_{1}^{\Delta}(\bar{x}_{\Delta}(s))^{\frac{p}{2}}ds\Big{)}^{\frac{2}{p}}.
(p2)𝔼0tðmn|xΔ(s)|p𝑑s+20T(𝔼|xΔ(s)x¯Δ(s)|f1Δ(x¯Δ(s)))p2𝑑s\displaystyle\leq(p-2)\mathbb{E}\int_{0}^{t\wedge\eth_{mn}}|x_{\Delta}(s)|^{p}ds+2\int_{0}^{T}\Big{(}\mathbb{E}|x_{\Delta}(s)-\bar{x}_{\Delta}(s)|f_{1}^{\Delta}(\bar{x}_{\Delta}(s))\Big{)}^{\frac{p}{2}}ds
(p2)𝔼0tðmn|xΔ(s)|p𝑑s+2cp1/2TΔp/4(h(Δ))p.\displaystyle\leq(p-2)\mathbb{E}\int_{0}^{t\wedge\eth_{mn}}|x_{\Delta}(s)|^{p}ds+2c_{p}^{1/2}T\Delta^{p/4}(h(\Delta))^{p}.

Noting from (32) that [Δ1/4(h(Δ))]p1[\Delta^{1/4}(h(\Delta))]^{p}\leq 1, we have

𝒥2\displaystyle\mathcal{J}_{2} r2𝔼0tðmn|xΔ(s)|p𝑑s,\displaystyle\leq r_{2}\mathbb{E}\int_{0}^{t\wedge\eth_{mn}}|x_{\Delta}(s)|^{p}ds,

where r2=(2cp1/2T)(p2)r_{2}=(2c_{p}^{1/2}T)\vee(p-2). We now combine 𝒥1\mathcal{J}_{1} and 𝒥2\mathcal{J}_{2} to get

𝔼|xΔ(tðmn)|p\displaystyle\mathbb{E}|x_{\Delta}(t\wedge\eth_{mn})|^{p} |x0|p+𝔼0tðmn(r1|xΔ(s)|p+(r1+r2)|x¯Δ(s)|p)𝑑s\displaystyle\leq|x_{0}|^{p}+\mathbb{E}\int_{0}^{t\wedge\eth_{mn}}(r_{1}|x_{\Delta}(s)|^{p}+(r_{1}+r_{2})|\bar{x}_{\Delta}(s)|^{p})ds
|x0|p+(2r1+r2)0tsup0ts(𝔼|xΔ(tðmn)|p)ds.\displaystyle\leq|x_{0}|^{p}+(2r_{1}+r_{2})\int_{0}^{t}\sup_{0\leq t\leq s}\Big{(}\mathbb{E}|x_{\Delta}(t\wedge\eth_{mn})|^{p}\Big{)}ds.

The Gronwall inequality yields

sup0t<(𝔼|xΔ(tðmn)|p)c5\sup_{0\leq t<\infty}(\mathbb{E}|x_{\Delta}(t\wedge\eth_{mn})|^{p})\leq c_{5}

where c5=|x0|pe(2r1+r2)c_{5}=|x_{0}|^{p}e^{(2r_{1}+r_{2})} is independent of Δ\Delta. Noting that

sup0t<(𝔼|xΔ(tðmn)|p)\displaystyle\sup_{0\leq t<\infty}(\mathbb{E}|x_{\Delta}(t\wedge\eth_{mn})|^{p}) sup0t<(𝔼|xΔ(tn)|p1(tnm)),\displaystyle\geq\sup_{0\leq t<\infty}(\mathbb{E}|x_{\Delta}(t\wedge\hbar^{*}_{n})|^{p}1_{(t\wedge\hbar_{n}\leq\hbar^{*}_{m})}),

we can set nn\rightarrow\infty to obtain

sup0t<(𝔼|xΔ(t)|p1(tm))c5\sup_{0\leq t<\infty}\big{(}\mathbb{E}|x_{\Delta}(t)|^{p}1_{(t\leq\hbar^{*}_{m})}\big{)}\leq c_{5}

as the desired result. The proof is now complete. ∎

5.2 Strong convergence

Before we establish the main result in this section, we need the following lemmas. The proofs of these lemmas could be found in [18].

Lemma 5.5.

Let equation (15) hold and T>0T>0 be fixed. Then for any ϵ(0,1)\epsilon\in(0,1), there exists a pair of positive constants n=n(ϵ)n=n(\epsilon) and Δ1=Δ1(ϵ)\Delta^{1}=\Delta^{1}(\epsilon) such that for each Δ(0,Δ1]\Delta\in(0,\Delta^{1}], we have

(ϑnT)ϵ,\mathbb{P}(\vartheta_{n}\leq T)\leq\epsilon, (48)

where

ϑn=ϑ(Δ,n)=inf{t[0,T]:φΔ(t)(1/n,n)}.\vartheta_{n}=\vartheta(\Delta,n)=\inf\{t\in[0,T]:\varphi_{\Delta}(t)\notin(1/n,n)\}. (49)

is a stopping time.

Lemma 5.6.

Let equation (15) hold. Then for any p2p\geq 2, T>0T>0, we have

𝔼(sup0tT|φΔ(tυn)φ(tυn)|p)𝒦1Δp/4\mathbb{E}\Big{(}\sup_{0\leq t\leq T}|\varphi_{\Delta}(t\wedge\upsilon_{n})-\varphi(t\wedge\upsilon_{n})|^{p}\Big{)}\leq\mathcal{K}_{1}\Delta^{p/4} (50)

for any sufficiently large nn and any Δ(0,Δ]\Delta\in(0,\Delta^{*}], where 𝒦1\mathcal{K}_{1} is a constant independent of Δ\Delta and υn\upsilon_{n} is a stopping time. Consequently, we have

limΔ0𝔼(sup0tT|φΔ(tυn)φ(tυn)|p)=0.\lim_{\Delta\rightarrow 0}\mathbb{E}\Big{(}\sup_{0\leq t\leq T}|\varphi_{\Delta}(t\wedge\upsilon_{n})-\varphi(t\wedge\upsilon_{n})|^{p}\Big{)}=0. (51)

Let us proceed to establish the following useful lemmas.

Lemma 5.7.

Let Assumption 3.1 hold and T>0T>0 be fixed. Define a stopping time by

ϑn=ϑ(Δ,n)=inf{t[0,T]:xΔ(t)(1/n,n)}.\vartheta^{*}_{n}=\vartheta^{*}(\Delta,n)=\inf\{t\in[0,T]:x_{\Delta}(t)\notin(1/n,n)\}. (52)

Then for any ϵ(0,1)\epsilon\in(0,1), there exists a pair of positive constants n=n(ϵ)n=n(\epsilon) and Δ1=Δ1(ϵ)\Delta^{1}=\Delta^{1}(\epsilon) such that for each Δ(0,Δ1]\Delta\in(0,\Delta^{1}], we have

(ϑnT)ϵ.\mathbb{P}(\vartheta^{*}_{n}\leq T)\leq\epsilon. (53)
Proof.

We apply the Itô formula to (22) to compute

𝔼(H(xΔ(tϑn)))H(x(0))\displaystyle\mathbb{E}(H(x_{\Delta}(t\wedge\vartheta^{*}_{n})))-H(x(0))
=𝔼0tϑn(Hx(xΔ(s))f1Δ(x¯Δ(s))+12Hxx(xΔ(s))φ¯Δ(s)g1Δ(x¯Δ(s))2)𝑑s\displaystyle=\mathbb{E}\int_{0}^{t\wedge\vartheta^{*}_{n}}\Big{(}H_{x}(x_{\Delta}(s))f_{1}^{\Delta}(\bar{x}_{\Delta}(s))+\frac{1}{2}H_{xx}(x_{\Delta}(s))\bar{\varphi}_{\Delta}(s)g_{1}^{\Delta}(\bar{x}_{\Delta}(s))^{2}\Big{)}ds
𝒥3+𝒥4+𝒥5\displaystyle\leq\mathcal{J}_{3}+\mathcal{J}_{4}+\mathcal{J}_{5}

where,

𝒥3\displaystyle\mathcal{J}_{3} =𝔼0tϑn(Hx(xΔ(s))f1Δ(xΔ(s))+12Hxx(xΔ(s))φΔ(s)g1Δ(xΔ(s))2)\displaystyle=\mathbb{E}\int_{0}^{t\wedge\vartheta^{*}_{n}}\Big{(}H_{x}(x_{\Delta}(s))f_{1}^{\Delta}(x_{\Delta}(s))+\frac{1}{2}H_{xx}(x_{\Delta}(s))\varphi_{\Delta}(s)g_{1}^{\Delta}(x_{\Delta}(s))^{2}\Big{)}
𝒥4\displaystyle\mathcal{J}_{4} =𝔼0tϑnHx(xΔ(s))(f1Δ(x¯Δ(s))f1Δ(xΔ(s)))𝑑s\displaystyle=\mathbb{E}\int_{0}^{t\wedge\vartheta^{*}_{n}}H_{x}(x_{\Delta}(s))\Big{(}f_{1}^{\Delta}(\bar{x}_{\Delta}(s))-f_{1}^{\Delta}(x_{\Delta}(s))\Big{)}ds
𝒥5\displaystyle\mathcal{J}_{5} =𝔼0tϑn12Hxx(xΔ(s))(φ¯Δ(s)g1Δ(x¯Δ(s))2φΔ(s)g1Δ(xΔ(s))2)𝑑s.\displaystyle=\mathbb{E}\int_{0}^{t\wedge\vartheta^{*}_{n}}\frac{1}{2}H_{xx}(x_{\Delta}(s))\Big{(}\bar{\varphi}_{\Delta}(s)g_{1}^{\Delta}(\bar{x}_{\Delta}(s))^{2}-\varphi_{\Delta}(s)g_{1}^{\Delta}(x_{\Delta}(s))^{2}\Big{)}ds.

So, By (10) and (14), we can find a constant K9K_{9} such that

𝒥3\displaystyle\mathcal{J}_{3} 𝔼0tϑnLH(xΔ(s),φΔ(s))𝑑s\displaystyle\leq\mathbb{E}\int_{0}^{t\wedge\vartheta^{*}_{n}}LH(x_{\Delta}(s),\varphi_{\Delta}(s))ds
K9T.\displaystyle\leq K_{9}T.

By the definition of the truncated functions, we note for s[0,tϑn]s\in[0,t\wedge\vartheta^{*}_{n}],

f1Δ(xΔ(s))=f1(xΔ(s)) and g1Δ(xΔ(s))=g1(xΔ(s)).f_{1}^{\Delta}(x_{\Delta}(s))=f_{1}(x_{\Delta}(s))\text{ and }g_{1}^{\Delta}(x_{\Delta}(s))=g_{1}(x_{\Delta}(s)). (54)

So by Lemma 4.1, we have where,

𝒥4\displaystyle\mathcal{J}_{4} 𝔼0tϑnHx(xΔ(s))|f1(x¯Δ(s))f1(xΔ(s))|𝑑s\displaystyle\leq\mathbb{E}\int_{0}^{t\wedge\vartheta^{*}_{n}}H_{x}(x_{\Delta}(s))|f_{1}(\bar{x}_{\Delta}(s))-f_{1}(x_{\Delta}(s))|ds
𝔼0tϑnKnHx(xΔ(s))|x¯Δ(s)xΔ(s)|𝑑s.\displaystyle\leq\mathbb{E}\int_{0}^{t\wedge\vartheta^{*}_{n}}K_{n}H_{x}(x_{\Delta}(s))|\bar{x}_{\Delta}(s)-x_{\Delta}(s)|ds.

Similarly,

𝒥5\displaystyle\mathcal{J}_{5} =𝔼0tϑn12Hxx(xΔ(s))(φ¯Δ(s)g1(x¯Δ(s))2φ(s)g1(xΔ(s))2)𝑑s\displaystyle=\mathbb{E}\int_{0}^{t\wedge\vartheta^{*}_{n}}\frac{1}{2}H_{xx}(x_{\Delta}(s))\Big{(}\bar{\varphi}_{\Delta}(s)g_{1}(\bar{x}_{\Delta}(s))^{2}-\varphi(s)g_{1}(x_{\Delta}(s))^{2}\Big{)}ds
=𝔼0tϑn12Hxx(xΔ(s))(φ¯Δ(s)g1(x¯Δ(s))2φ¯Δ(s)g1(x(s))2)𝑑s\displaystyle=\mathbb{E}\int_{0}^{t\wedge\vartheta^{*}_{n}}\frac{1}{2}H_{xx}(x_{\Delta}(s))\Big{(}\bar{\varphi}_{\Delta}(s)g_{1}(\bar{x}_{\Delta}(s))^{2}-\bar{\varphi}_{\Delta}(s)g_{1}(x(s))^{2}\Big{)}ds
+𝔼0tϑn12Hxx(xΔ(s))(φ¯Δ(s)g1(x(s))2φ(s)g1(xΔ(s))2)𝑑s\displaystyle+\mathbb{E}\int_{0}^{t\wedge\vartheta^{*}_{n}}\frac{1}{2}H_{xx}(x_{\Delta}(s))\Big{(}\bar{\varphi}_{\Delta}(s)g_{1}(x(s))^{2}-\varphi(s)g_{1}(x_{\Delta}(s))^{2}\Big{)}ds
𝔼0tϑnφ¯Δ(s)2Hxx(xΔ(s))|g1(x¯Δ(s))g1(xΔ(s))||g1(x¯Δ(s))+g1(xΔ(s))|𝑑s\displaystyle\leq\mathbb{E}\int_{0}^{t\wedge\vartheta^{*}_{n}}\frac{\bar{\varphi}_{\Delta}(s)}{2}H_{xx}(x_{\Delta}(s))|g_{1}(\bar{x}_{\Delta}(s))-g_{1}(x_{\Delta}(s))||g_{1}(\bar{x}_{\Delta}(s))+g_{1}(x_{\Delta}(s))|ds
+𝔼0tϑn12Hxx(xΔ(s))g1(x(s))2|φ¯Δ(s)φ(s)|𝑑s.\displaystyle+\mathbb{E}\int_{0}^{t\wedge\vartheta^{*}_{n}}\frac{1}{2}H_{xx}(x_{\Delta}(s))g_{1}(x(s))^{2}|\bar{\varphi}_{\Delta}(s)-\varphi(s)|ds.

Noting from (31) that xΔ(s),x¯Δ(s)[1/n,n]x_{\Delta}(s),\bar{x}_{\Delta}(s)\in[1/n,n] for s[0,tϑn]s\in[0,t\wedge\vartheta^{*}_{n}], we have g1(x¯Δ(s))g1(xΔ(s))ν(n)g_{1}(\bar{x}_{\Delta}(s))\vee g_{1}(x_{\Delta}(s))\leq\nu(n). So by Lemma 4.1, we obtain

𝒥5\displaystyle\mathcal{J}_{5} 𝔼0tϑnφ¯Δ(s)Hxx(xΔ(s))|g1(x¯Δ(s))g1(xΔ(s))|𝑑s\displaystyle\leq\mathbb{E}\int_{0}^{t\wedge\vartheta^{*}_{n}}\bar{\varphi}_{\Delta}(s)H_{xx}(x_{\Delta}(s))|g_{1}(\bar{x}_{\Delta}(s))-g_{1}(x_{\Delta}(s))|ds
+𝔼0tϑnν(n)22Hxx(xΔ(s))|φ¯Δ(s)φ(s)|𝑑s\displaystyle+\mathbb{E}\int_{0}^{t\wedge\vartheta^{*}_{n}}\frac{\nu(n)^{2}}{2}H_{xx}(x_{\Delta}(s))|\bar{\varphi}_{\Delta}(s)-\varphi(s)|ds
𝔼0tϑnKnφ¯Δ(s)Hxx(xΔ(s))|x¯Δ(s)xΔ(s)|𝑑s\displaystyle\leq\mathbb{E}\int_{0}^{t\wedge\vartheta^{*}_{n}}K_{n}\bar{\varphi}_{\Delta}(s)H_{xx}(x_{\Delta}(s))|\bar{x}_{\Delta}(s)-x_{\Delta}(s)|ds
+𝔼0tϑnν(n)22Hxx(xΔ(s))|φ¯Δ(s)φ(s)|𝑑s.\displaystyle+\mathbb{E}\int_{0}^{t\wedge\vartheta^{*}_{n}}\frac{\nu(n)^{2}}{2}H_{xx}(x_{\Delta}(s))|\bar{\varphi}_{\Delta}(s)-\varphi(s)|ds.

Combining 𝒥3\mathcal{J}_{3}, 𝒥4\mathcal{J}_{4} and 𝒥5\mathcal{J}_{5}, we then have

𝔼(H(xΔ(tϑn)))\displaystyle\mathbb{E}(H(x_{\Delta}(t\wedge\vartheta^{*}_{n})))
H(x(0))+K9T+𝔼0tϑnKnHx(xΔ(s))|x¯Δ(s)xΔ(s)|𝑑s\displaystyle\leq H(x(0))+K_{9}T+\mathbb{E}\int_{0}^{t\wedge\vartheta^{*}_{n}}K_{n}H_{x}(x_{\Delta}(s))|\bar{x}_{\Delta}(s)-x_{\Delta}(s)|ds
+𝔼0tϑnν(n)22Hxx(xΔ(s))|φ¯Δ(s)φ(s)|𝑑s\displaystyle+\mathbb{E}\int_{0}^{t\wedge\vartheta^{*}_{n}}\frac{\nu(n)^{2}}{2}H_{xx}(x_{\Delta}(s))|\bar{\varphi}_{\Delta}(s)-\varphi(s)|ds
+𝔼0tϑnKnφ¯Δ(s)Hxx(xΔ(s))|x¯Δ(s)xΔ(s)|𝑑s\displaystyle+\mathbb{E}\int_{0}^{t\wedge\vartheta^{*}_{n}}K_{n}\bar{\varphi}_{\Delta}(s)H_{xx}(x_{\Delta}(s))|\bar{x}_{\Delta}(s)-x_{\Delta}(s)|ds
H(x(0))+K9T+ι20T𝔼|φ¯Δ(s)φ(s)|𝑑s\displaystyle\leq H(x(0))+K_{9}T+\iota_{2}\int_{0}^{T}\mathbb{E}|\bar{\varphi}_{\Delta}(s)-\varphi(s)|ds
+ι30T𝔼(|φ¯Δ(s)||x¯Δ(s)xΔ(s)|)𝑑s\displaystyle+\iota_{3}\int_{0}^{T}\mathbb{E}(|\bar{\varphi}_{\Delta}(s)||\bar{x}_{\Delta}(s)-x_{\Delta}(s)|)ds

where

ι2=max1/nxn(ν(n)22Hxx(x))\iota_{2}=\max_{1/n\leq x\leq n}\Big{(}\frac{\nu(n)^{2}}{2}H_{xx}(x)\Big{)}

and

ι3=max1/nxn(KnHx(x)+KnHxx(x)).\iota_{3}=\max_{1/n\leq x\leq n}\Big{(}K_{n}H_{x}(x)+K_{n}H_{xx}(x)\Big{)}.

So by the Young inequality and Lemmas 5.1, 5.2 and 5.3, we now have

𝔼(H(xΔ(tϑn)))\displaystyle\mathbb{E}(H(x_{\Delta}(t\wedge\vartheta^{*}_{n}))) H(x(0))+K9T+ι20T𝔼|φ¯Δ(s)φ(s)|𝑑s\displaystyle\leq H(x(0))+K_{9}T+\iota_{2}\int_{0}^{T}\mathbb{E}|\bar{\varphi}_{\Delta}(s)-\varphi(s)|ds
+ι30T𝔼(|φ¯Δ(s)|2)12(|x¯Δ(s)xΔ(s)|2)12𝑑s\displaystyle+\iota_{3}\int_{0}^{T}\mathbb{E}(|\bar{\varphi}_{\Delta}(s)|^{2})^{\frac{1}{2}}(|\bar{x}_{\Delta}(s)-x_{\Delta}(s)|^{2})^{\frac{1}{2}}ds
H(x(0))+K9T+ι20T𝔼|φ¯Δ(s)φ(s)|𝑑s\displaystyle\leq H(x(0))+K_{9}T+\iota_{2}\int_{0}^{T}\mathbb{E}|\bar{\varphi}_{\Delta}(s)-\varphi(s)|ds
+ι320T𝔼|φ¯Δ(s)|2𝑑s+ι320T(𝔼|x¯Δ(s)xΔ(s)|p)2p𝑑s\displaystyle+\frac{\iota_{3}}{2}\int_{0}^{T}\mathbb{E}|\bar{\varphi}_{\Delta}(s)|^{2}ds+\frac{\iota_{3}}{2}\int_{0}^{T}(\mathbb{E}|\bar{x}_{\Delta}(s)-x_{\Delta}(s)|^{p})^{\frac{2}{p}}ds
H(x(0))+K9T+ι2cpTΔp/2(h(Δ))p\displaystyle\leq H(x(0))+K_{9}T+\iota_{2}c_{p}T\Delta^{p/2}(h(\Delta))^{p}
+ι32(CpΔp/2(h(Δ))p)2pT+ι320T𝔼|φ¯Δ(s)|p𝑑s\displaystyle+\frac{\iota_{3}}{2}\big{(}C_{p}\Delta^{p/2}(h(\Delta))^{p})^{\frac{2}{p}}T+\frac{\iota_{3}}{2}\int_{0}^{T}\mathbb{E}|\bar{\varphi}_{\Delta}(s)|^{p}ds
H(x(0))+K9T+ι2cpTΔp/2(h(Δ))p\displaystyle\leq H(x(0))+K_{9}T+\iota_{2}c_{p}T\Delta^{p/2}(h(\Delta))^{p}
+ι32CpΔ(h(Δ))2T+ι320T(sup0us𝔼|φ¯Δ(u)|p)2p𝑑s\displaystyle+\frac{\iota_{3}}{2}C_{p}\Delta(h(\Delta))^{2}T+\frac{\iota_{3}}{2}\int_{0}^{T}\big{(}\sup_{0\leq u\leq s}\mathbb{E}|\bar{\varphi}_{\Delta}(u)|^{p}\big{)}^{\frac{2}{p}}ds
H(x(0))+K9T+ι2cpTΔp/2(h(Δ))p\displaystyle\leq H(x(0))+K_{9}T+\iota_{2}c_{p}T\Delta^{p/2}(h(\Delta))^{p}
+ι32CpΔ(h(Δ))2T+ι32c42pT.\displaystyle+\frac{\iota_{3}}{2}C_{p}\Delta(h(\Delta))^{2}T+\frac{\iota_{3}}{2}c_{4}^{\frac{2}{p}}T.

This implies

(ϑnT)H(x(0))+K9T+ι2cpTΔp/2(h(Δ))p+ι32CpΔ(h(Δ))2T+ι32c42pTH(1/n)H(n).\mathbb{P}(\vartheta^{*}_{n}\leq T)\leq\frac{H(x(0))+K_{9}T+\iota_{2}c_{p}T\Delta^{p/2}(h(\Delta))^{p}+\frac{\iota_{3}}{2}C_{p}\Delta(h(\Delta))^{2}T+\frac{\iota_{3}}{2}c_{4}^{\frac{2}{p}}T}{H(1/n)\wedge H(n)}. (55)

For any ϵ(0,1)\epsilon\in(0,1), we may select sufficiently large nn such that

H(x(0))+K9T+ι32c42pTH(1/n)H(n)ϵ2\frac{H(x(0))+K_{9}T+\frac{\iota_{3}}{2}c_{4}^{\frac{2}{p}}T}{H(1/n)\wedge H(n)}\leq\frac{\epsilon}{2} (56)

and sufficiently small of each step size Δ(0,Δ1]\Delta\in(0,\Delta^{1}] such that

ι2cpTΔp/2(h(Δ))p+ι32CpΔ(h(Δ))2TH(1/n)H(n)ϵ2.\frac{\iota_{2}c_{p}T\Delta^{p/2}(h(\Delta))^{p}+\frac{\iota_{3}}{2}C_{p}\Delta(h(\Delta))^{2}T}{H(1/n)\wedge H(n)}\leq\frac{\epsilon}{2}. (57)

We now combine (56) and (57) to get the required assertion. ∎

Lemma 5.8.

Let Assumption 3.1 hold. Set

υn=ϱmnϑnϑn,\upsilon^{*}_{n}=\varrho_{mn}\wedge\vartheta_{n}\wedge\vartheta^{*}_{n},

where ϱmn\varrho_{mn}, ϑn\vartheta_{n} and ϑn\vartheta^{*}_{n} are (21), (49) and (52) respectively. Then for any p2p\geq 2, T>0T>0, we have

𝔼(sup0tT|xΔ(tυn)x(tυn)|p)𝒦2Δp(1/21/41/8)(h(Δ))p(1/21)\mathbb{E}\Big{(}\sup_{0\leq t\leq T}|x_{\Delta}(t\wedge\upsilon^{*}_{n})-x(t\wedge\upsilon^{*}_{n})|^{p}\Big{)}\leq\mathcal{K}_{2}\Delta^{p(1/2\wedge 1/4\wedge 1/8)}(h(\Delta))^{p(1/2\wedge 1)} (58)

for any sufficiently large nn and any Δ(0,Δ]\Delta\in(0,\Delta^{*}], where 𝒦2\mathcal{K}_{2} is a constant independent of Δ\Delta. Consequently, we have

limΔ0𝔼(sup0tT|xΔ(tυn)x(tυn)|p)=0.\lim_{\Delta\rightarrow 0}\mathbb{E}\Big{(}\sup_{0\leq t\leq T}|x_{\Delta}(t\wedge\upsilon^{*}_{n})-x(t\wedge\upsilon^{*}_{n})|^{p}\Big{)}=0. (59)
Proof.

It follows from (8) and (41) that

𝔼(sup0tt1|xΔ(tυn)x(tυn)|p)𝒥6+𝒥7,\displaystyle\mathbb{E}\Big{(}\sup_{0\leq t\leq t_{1}}|x_{\Delta}(t\wedge\upsilon^{*}_{n})-x(t\wedge\upsilon^{*}_{n})|^{p}\Big{)}\leq\mathcal{J}_{6}+\mathcal{J}_{7},

where

𝒥6\displaystyle\mathcal{J}_{6} =2p1(𝔼|0t1υn(f1Δ(x¯Δ(s))f1(x(s)))𝑑s|p)\displaystyle=2^{p-1}\Big{(}\mathbb{E}\Big{|}\int_{0}^{t_{1}\wedge\upsilon^{*}_{n}}(f_{1}^{\Delta}(\bar{x}_{\Delta}(s))-f_{1}(x(s)))ds\Big{|}^{p}\Big{)}
𝒥7\displaystyle\mathcal{J}_{7} =2p1(𝔼(sup0tt1|0t1υn(|φ¯Δ(s)|g1Δ(x¯Δ(s))|φ(s)|g1(x(s)))𝑑B(s)|p)).\displaystyle=2^{p-1}\Big{(}\mathbb{E}(\sup_{0\leq t\leq t_{1}}\Big{|}\int_{0}^{t_{1}\wedge\upsilon^{*}_{n}}(\sqrt{|\bar{\varphi}_{\Delta}(s)|}g_{1}^{\Delta}(\bar{x}_{\Delta}(s))-\sqrt{|\varphi(s)|}g_{1}(x(s)))dB(s)\Big{|}^{p})\Big{)}.

So by the Hölder inequality, (27) and (54), we have

𝒥6\displaystyle\mathcal{J}_{6} 2p1Tp1(𝔼0t1υn|f1Δ(x¯Δ(s))f1(x(s))|p𝑑s)\displaystyle\leq 2^{p-1}T^{p-1}\Big{(}\mathbb{E}\int_{0}^{t_{1}\wedge\upsilon^{*}_{n}}|f_{1}^{\Delta}(\bar{x}_{\Delta}(s))-f_{1}(x(s))|^{p}ds\Big{)}
2p1Tp1(𝔼0t1υn|f1(x¯Δ(s))f1(x(s))|p𝑑s)\displaystyle\leq 2^{p-1}T^{p-1}\Big{(}\mathbb{E}\int_{0}^{t_{1}\wedge\upsilon^{*}_{n}}|f_{1}(\bar{x}_{\Delta}(s))-f_{1}(x(s))|^{p}ds\Big{)}
2p1Tp1Kn𝔼0t1υn|x¯Δ(s)x(s)|p𝑑s\displaystyle\leq 2^{p-1}T^{p-1}K_{n}\mathbb{E}\int_{0}^{t_{1}\wedge\upsilon^{*}_{n}}|\bar{x}_{\Delta}(s)-x(s)|^{p}ds
22(p1)Tp1Kn𝔼0t1υn|x¯Δ(s)xΔ(s)|p𝑑s\displaystyle\leq 2^{2(p-1)}T^{p-1}K_{n}\mathbb{E}\int_{0}^{t_{1}\wedge\upsilon^{*}_{n}}|\bar{x}_{\Delta}(s)-x_{\Delta}(s)|^{p}ds
+22(p1)Tp1Kn𝔼0t1υn|xΔ(s)x(s)|p𝑑s\displaystyle+2^{2(p-1)}T^{p-1}K_{n}\mathbb{E}\int_{0}^{t_{1}\wedge\upsilon^{*}_{n}}|x_{\Delta}(s)-x(s)|^{p}ds
22(p1)Tp1Kn0T𝔼|x¯Δ(s)xΔ(s)|p𝑑s\displaystyle\leq 2^{2(p-1)}T^{p-1}K_{n}\int_{0}^{T}\mathbb{E}|\bar{x}_{\Delta}(s)-x_{\Delta}(s)|^{p}ds
+22(p1)Tp1Kn0t1sup0ts𝔼|xΔ(tυn)x(tυn)|pds.\displaystyle+2^{2(p-1)}T^{p-1}K_{n}\int_{0}^{t_{1}}\sup_{0\leq t\leq s}\mathbb{E}|x_{\Delta}(t\wedge\upsilon^{*}_{n})-x(t\wedge\upsilon^{*}_{n})|^{p}ds.

By the Burkholder-Davis-Gundy inequality and (54), we also have

𝒥7\displaystyle\mathcal{J}_{7} 2p1Tp22C¯p(𝔼0t1υn||φ¯Δ(s)|g1Δ(x¯Δ(s))|φ(s)|g1(x(s))|p𝑑s)\displaystyle\leq 2^{p-1}T^{\frac{p-2}{2}}\bar{C}_{p}\Big{(}\mathbb{E}\int_{0}^{t_{1}\wedge\upsilon^{*}_{n}}|\sqrt{|\bar{\varphi}_{\Delta}(s)|}g_{1}^{\Delta}(\bar{x}_{\Delta}(s))-\sqrt{|\varphi(s)|}g_{1}(x(s))|^{p}ds\Big{)}
2p1Tp22C¯p(𝔼0t1υn||φ¯Δ(s)|g1(x¯Δ(s))|φ(s)|g1(x(s))|p𝑑s),\displaystyle\leq 2^{p-1}T^{\frac{p-2}{2}}\bar{C}_{p}\Big{(}\mathbb{E}\int_{0}^{t_{1}\wedge\upsilon^{*}_{n}}|\sqrt{|\bar{\varphi}_{\Delta}(s)|}g_{1}(\bar{x}_{\Delta}(s))-\sqrt{|\varphi(s)|}g_{1}(x(s))|^{p}ds\Big{)},

where C¯p\bar{C}_{p} is a positive constant. By elementary inequality, we now have

𝒥7\displaystyle\mathcal{J}_{7} 22(p1)Tp22C¯p(𝔼0t1υn||φ¯Δ(s)|g1(x¯Δ(s))|φ¯Δ(s)|g1(xΔ(s))|p𝑑s)\displaystyle\leq 2^{2(p-1)}T^{\frac{p-2}{2}}\bar{C}_{p}\Big{(}\mathbb{E}\int_{0}^{t_{1}\wedge\upsilon^{*}_{n}}|\sqrt{|\bar{\varphi}_{\Delta}(s)|}g_{1}(\bar{x}_{\Delta}(s))-\sqrt{|\bar{\varphi}_{\Delta}(s)|}g_{1}(x_{\Delta}(s))|^{p}ds\Big{)}
+22(p1)Tp22C¯p(𝔼0t1υn||φ¯Δ(s)|g1(xΔ(s))|φ(s)|g1(x(s))|p𝑑s)\displaystyle+2^{2(p-1)}T^{\frac{p-2}{2}}\bar{C}_{p}\Big{(}\mathbb{E}\int_{0}^{t_{1}\wedge\upsilon^{*}_{n}}|\sqrt{|\bar{\varphi}_{\Delta}(s)|}g_{1}(x_{\Delta}(s))-\sqrt{|\varphi(s)|}g_{1}(x(s))|^{p}ds\Big{)}
22(p1)Tp22C¯p(𝔼0t1υn||φ¯Δ(s)|g1(x¯Δ(s))φ(s)g1(x¯Δ(s))|p𝑑s)\displaystyle\leq 2^{2(p-1)}T^{\frac{p-2}{2}}\bar{C}_{p}\Big{(}\mathbb{E}\int_{0}^{t_{1}\wedge\upsilon^{*}_{n}}|\sqrt{|\bar{\varphi}_{\Delta}(s)|}g_{1}(\bar{x}_{\Delta}(s))-\sqrt{\varphi(s)}g_{1}(\bar{x}_{\Delta}(s))|^{p}ds\Big{)}
+22(p1)Tp22C¯p(𝔼0t1υn||φ(s)|g1(x¯Δ(s))|φ(s)|g1(x(s))|p𝑑s)\displaystyle+2^{2(p-1)}T^{\frac{p-2}{2}}\bar{C}_{p}\Big{(}\mathbb{E}\int_{0}^{t_{1}\wedge\upsilon^{*}_{n}}|\sqrt{|\varphi(s)|}g_{1}(\bar{x}_{\Delta}(s))-\sqrt{|\varphi(s)|}g_{1}(x(s))|^{p}ds\Big{)}
22(p1)Tp22C¯p(𝔼0t1υng1(x¯Δ(s))p||φ¯Δ(s)||φ(s)||p𝑑s)\displaystyle\leq 2^{2(p-1)}T^{\frac{p-2}{2}}\bar{C}_{p}\Big{(}\mathbb{E}\int_{0}^{t_{1}\wedge\upsilon^{*}_{n}}g_{1}(\bar{x}_{\Delta}(s))^{p}|\sqrt{|\bar{\varphi}_{\Delta}(s)|}-\sqrt{|\varphi(s)|}|^{p}ds\Big{)}
+22(p1)Tp22C¯p(𝔼0t1υn|φ(s)|p2|g1(x¯Δ(s))g1(x(s))|p𝑑s).\displaystyle+2^{2(p-1)}T^{\frac{p-2}{2}}\bar{C}_{p}\Big{(}\mathbb{E}\int_{0}^{t_{1}\wedge\upsilon^{*}_{n}}|\varphi(s)|^{\frac{p}{2}}|g_{1}(\bar{x}_{\Delta}(s))-g_{1}(x(s))|^{p}ds\Big{)}.

It follows from (16) and (31) that

𝒥7\displaystyle\mathcal{J}_{7} 22(p1)Tp22C¯pν(n)p(𝔼0t1υn||φ¯Δ(s)||φ(s)||p𝑑s)\displaystyle\leq 2^{2(p-1)}T^{\frac{p-2}{2}}\bar{C}_{p}\nu(n)^{p}\Big{(}\mathbb{E}\int_{0}^{t_{1}\wedge\upsilon^{*}_{n}}|\sqrt{|\bar{\varphi}_{\Delta}(s)|}-\sqrt{|\varphi(s)|}|^{p}ds\Big{)}
+22(p1)Tp22C¯pnp2(𝔼0t1υn|g1(x¯Δ(s))g1(x(s))|p𝑑s)\displaystyle+2^{2(p-1)}T^{\frac{p-2}{2}}\bar{C}_{p}n^{\frac{p}{2}}\Big{(}\mathbb{E}\int_{0}^{t_{1}\wedge\upsilon^{*}_{n}}|g_{1}(\bar{x}_{\Delta}(s))-g_{1}(x(s))|^{p}ds\Big{)}
22(p1)Tp22C¯pν(n)p(𝔼0t1υn|φ¯Δ(s)φ(s)|p2𝑑s)\displaystyle\leq 2^{2(p-1)}T^{\frac{p-2}{2}}\bar{C}_{p}\nu(n)^{p}\Big{(}\mathbb{E}\int_{0}^{t_{1}\wedge\upsilon^{*}_{n}}|\bar{\varphi}_{\Delta}(s)-\varphi(s)|^{\frac{p}{2}}ds\Big{)}
+22(p1)Tp22C¯pnp2(𝔼0t1υn|g1(x¯Δ(s))g1(x(s))|p𝑑s).\displaystyle+2^{2(p-1)}T^{\frac{p-2}{2}}\bar{C}_{p}n^{\frac{p}{2}}\Big{(}\mathbb{E}\int_{0}^{t_{1}\wedge\upsilon^{*}_{n}}|g_{1}(\bar{x}_{\Delta}(s))-g_{1}(x(s))|^{p}ds\Big{)}.

Then, by elementary inequality and (27), we have

𝒥7\displaystyle\mathcal{J}_{7} 22(p1)2p21Tp22C¯pν(n)p(𝔼0t1υn|φ¯Δ(s)φΔ(s)|p2𝑑s)\displaystyle\leq 2^{2(p-1)}2^{\frac{p}{2}-1}T^{\frac{p-2}{2}}\bar{C}_{p}\nu(n)^{p}\Big{(}\mathbb{E}\int_{0}^{t_{1}\wedge\upsilon^{*}_{n}}|\bar{\varphi}_{\Delta}(s)-\varphi_{\Delta}(s)|^{\frac{p}{2}}ds\Big{)}
+22(p1)2p21Tp22C¯pν(n)p(𝔼0t1υn|φΔ(s)φ(s)|p2𝑑s)\displaystyle+2^{2(p-1)}2^{\frac{p}{2}-1}T^{\frac{p-2}{2}}\bar{C}_{p}\nu(n)^{p}\Big{(}\mathbb{E}\int_{0}^{t_{1}\wedge\upsilon^{*}_{n}}|\varphi_{\Delta}(s)-\varphi(s)|^{\frac{p}{2}}ds\Big{)}
+23(p1)Tp22C¯pnp2Kn(𝔼0t1υn|x¯Δ(s)xΔ(s)|p𝑑s)\displaystyle+2^{3(p-1)}T^{\frac{p-2}{2}}\bar{C}_{p}n^{\frac{p}{2}}K_{n}\Big{(}\mathbb{E}\int_{0}^{t_{1}\wedge\upsilon^{*}_{n}}|\bar{x}_{\Delta}(s)-x_{\Delta}(s)|^{p}ds\Big{)}
+23(p1)Tp22C¯pnp2Kn(𝔼0t1υn|xΔ(s)x(s)|p𝑑s)\displaystyle+2^{3(p-1)}T^{\frac{p-2}{2}}\bar{C}_{p}n^{\frac{p}{2}}K_{n}\Big{(}\mathbb{E}\int_{0}^{t_{1}\wedge\upsilon^{*}_{n}}|x_{\Delta}(s)-x(s)|^{p}ds\Big{)}
22(p1)2p21Tp22C¯pν(n)p0T(𝔼|φ¯Δ(s)φΔ(s)|p)12𝑑s\displaystyle\leq 2^{2(p-1)}2^{\frac{p}{2}-1}T^{\frac{p-2}{2}}\bar{C}_{p}\nu(n)^{p}\int_{0}^{T}\Big{(}\mathbb{E}|\bar{\varphi}_{\Delta}(s)-\varphi_{\Delta}(s)|^{p}\Big{)}^{\frac{1}{2}}ds
+22(p1)2p21Tp22C¯pν(n)p0t1(sup0ts𝔼|φΔ(tυn)φ(tυn)|p)12𝑑s\displaystyle+2^{2(p-1)}2^{\frac{p}{2}-1}T^{\frac{p-2}{2}}\bar{C}_{p}\nu(n)^{p}\int_{0}^{t_{1}}\Big{(}\sup_{0\leq t\leq s}\mathbb{E}|\varphi_{\Delta}(t\wedge\upsilon^{*}_{n})-\varphi(t\wedge\upsilon^{*}_{n})|^{p}\Big{)}^{\frac{1}{2}}ds
+23(p1)Tp22C¯pnp2Kn0T𝔼|x¯Δ(s)xΔ(s)|p𝑑s\displaystyle+2^{3(p-1)}T^{\frac{p-2}{2}}\bar{C}_{p}n^{\frac{p}{2}}K_{n}\int_{0}^{T}\mathbb{E}|\bar{x}_{\Delta}(s)-x_{\Delta}(s)|^{p}ds
+23(p1)Tp22C¯pnp2Kn0t1sup0ts𝔼|xΔ(tυn)x(tυn)|pds.\displaystyle+2^{3(p-1)}T^{\frac{p-2}{2}}\bar{C}_{p}n^{\frac{p}{2}}K_{n}\int_{0}^{t_{1}}\sup_{0\leq t\leq s}\mathbb{E}|x_{\Delta}(t\wedge\upsilon^{*}_{n})-x(t\wedge\upsilon^{*}_{n})|^{p}ds.

So by combining 𝒥6\mathcal{J}_{6} and 𝒥7\mathcal{J}_{7}, we now get

𝔼(sup0tt1|xΔ(tυn)x(tυn)|p)22(p1)Tp1Kn0T𝔼|x¯Δ(s)xΔ(s)|p𝑑s\displaystyle\mathbb{E}\Big{(}\sup_{0\leq t\leq t_{1}}|x_{\Delta}(t\wedge\upsilon^{*}_{n})-x(t\wedge\upsilon^{*}_{n})|^{p}\Big{)}\leq 2^{2(p-1)}T^{p-1}K_{n}\int_{0}^{T}\mathbb{E}|\bar{x}_{\Delta}(s)-x_{\Delta}(s)|^{p}ds
+22(p1)Tp1Kn0t1sup0ts𝔼|xΔ(tυn)x(tυn)|pds\displaystyle+2^{2(p-1)}T^{p-1}K_{n}\int_{0}^{t_{1}}\sup_{0\leq t\leq s}\mathbb{E}|x_{\Delta}(t\wedge\upsilon^{*}_{n})-x(t\wedge\upsilon^{*}_{n})|^{p}ds
+22(p1)2p21Tp22C¯pν(n)p0T(𝔼|φ¯Δ(s)φΔ(s)|p)12𝑑s\displaystyle+2^{2(p-1)}2^{\frac{p}{2}-1}T^{\frac{p-2}{2}}\bar{C}_{p}\nu(n)^{p}\int_{0}^{T}\Big{(}\mathbb{E}|\bar{\varphi}_{\Delta}(s)-\varphi_{\Delta}(s)|^{p}\Big{)}^{\frac{1}{2}}ds
+22(p1)2p21Tp22C¯pν(n)p0t1(sup0ts𝔼|φΔ(tυn)φ(tυn)|p)12𝑑s\displaystyle+2^{2(p-1)}2^{\frac{p}{2}-1}T^{\frac{p-2}{2}}\bar{C}_{p}\nu(n)^{p}\int_{0}^{t_{1}}\Big{(}\sup_{0\leq t\leq s}\mathbb{E}|\varphi_{\Delta}(t\wedge\upsilon^{*}_{n})-\varphi(t\wedge\upsilon^{*}_{n})|^{p}\Big{)}^{\frac{1}{2}}ds
+23(p1)Tp22C¯pnp2Kn0T𝔼|x¯Δ(s)xΔ(s)|p𝑑s\displaystyle+2^{3(p-1)}T^{\frac{p-2}{2}}\bar{C}_{p}n^{\frac{p}{2}}K_{n}\int_{0}^{T}\mathbb{E}|\bar{x}_{\Delta}(s)-x_{\Delta}(s)|^{p}ds
+23(p1)Tp22C¯pnp2Kn0t1sup0ts𝔼|xΔ(tυn)x(tυn)|pds.\displaystyle+2^{3(p-1)}T^{\frac{p-2}{2}}\bar{C}_{p}n^{\frac{p}{2}}K_{n}\int_{0}^{t_{1}}\sup_{0\leq t\leq s}\mathbb{E}|x_{\Delta}(t\wedge\upsilon^{*}_{n})-x(t\wedge\upsilon^{*}_{n})|^{p}ds.

So, by Lemmas 5.2, 5.2 and 5.7, we hence have

𝔼(sup0tt1|xΔ(tυn)x(tυn)|p)\displaystyle\mathbb{E}\Big{(}\sup_{0\leq t\leq t_{1}}|x_{\Delta}(t\wedge\upsilon^{*}_{n})-x(t\wedge\upsilon^{*}_{n})|^{p}\Big{)}
22(p1)2p21Tp22C¯pν(n)pT(cpΔp/2(h(Δ))p)12\displaystyle\leq 2^{2(p-1)}2^{\frac{p}{2}-1}T^{\frac{p-2}{2}}\bar{C}_{p}\nu(n)^{p}T(c_{p}\Delta^{p/2}(h(\Delta))^{p})^{\frac{1}{2}}
+22(p1)2p21Tp22C¯pν(n)pT(𝒦1Δp/4)12\displaystyle+2^{2(p-1)}2^{\frac{p}{2}-1}T^{\frac{p-2}{2}}\bar{C}_{p}\nu(n)^{p}T(\mathcal{K}_{1}\Delta^{p/4})^{\frac{1}{2}}
+(22(p1)Tp1Kn+23(p1)Tp22C¯pnp2Kn)CpΔp/2(h(Δ))p\displaystyle+(2^{2(p-1)}T^{p-1}K_{n}+2^{3(p-1)}T^{\frac{p-2}{2}}\bar{C}_{p}n^{\frac{p}{2}}K_{n})C_{p}\Delta^{p/2}(h(\Delta))^{p}
+(22(p1)Tp1Kn+23(p1)Tp22C¯pnp2Kn)0t1sup0ts𝔼|xΔ(tυn)x(tυn)|pds.\displaystyle+(2^{2(p-1)}T^{p-1}K_{n}+2^{3(p-1)}T^{\frac{p-2}{2}}\bar{C}_{p}n^{\frac{p}{2}}K_{n})\int_{0}^{t_{1}}\sup_{0\leq t\leq s}\mathbb{E}|x_{\Delta}(t\wedge\upsilon^{*}_{n})-x(t\wedge\upsilon^{*}_{n})|^{p}ds.

In particular, we have

𝔼(sup0tt1|xΔ(tυn)x(tυn)|p)\displaystyle\mathbb{E}\Big{(}\sup_{0\leq t\leq t_{1}}|x_{\Delta}(t\wedge\upsilon^{*}_{n})-x(t\wedge\upsilon^{*}_{n})|^{p}\Big{)} (ϖ3+ϖ4+ϖ5)Δp(1/21/41/8)(h(Δ))p(1/21)\displaystyle\leq(\varpi_{3}+\varpi_{4}+\varpi_{5})\Delta^{p(1/2\wedge 1/4\wedge 1/8)}(h(\Delta))^{p(1/2\wedge 1)}
+ϖ60t1sup0ts𝔼|xΔ(tυn)x(tυn)|pds\displaystyle+\varpi_{6}\int_{0}^{t_{1}}\sup_{0\leq t\leq s}\mathbb{E}|x_{\Delta}(t\wedge\upsilon^{*}_{n})-x(t\wedge\upsilon^{*}_{n})|^{p}ds

where

ϖ3\displaystyle\varpi_{3} =22(p1)2p21Tp22C¯pν(n)pTcp12\displaystyle=2^{2(p-1)}2^{\frac{p}{2}-1}T^{\frac{p-2}{2}}\bar{C}_{p}\nu(n)^{p}Tc_{p}^{\frac{1}{2}}
ϖ4\displaystyle\varpi_{4} =22(p1)2p21Tp22C¯pν(n)pT𝒦112\displaystyle=2^{2(p-1)}2^{\frac{p}{2}-1}T^{\frac{p-2}{2}}\bar{C}_{p}\nu(n)^{p}T\mathcal{K}_{1}^{\frac{1}{2}}
ϖ5\displaystyle\varpi_{5} =(22(p1)Tp1Kn+23(p1)Tp22C¯pnp2Kn)CpΔp/2(h(Δ))p\displaystyle=(2^{2(p-1)}T^{p-1}K_{n}+2^{3(p-1)}T^{\frac{p-2}{2}}\bar{C}_{p}n^{\frac{p}{2}}K_{n})C_{p}\Delta^{p/2}(h(\Delta))^{p}
ϖ6\displaystyle\varpi_{6} =22(p1)Tp1Kn+23(p1)Tp22C¯pnp2Kn.\displaystyle=2^{2(p-1)}T^{p-1}K_{n}+2^{3(p-1)}T^{\frac{p-2}{2}}\bar{C}_{p}n^{\frac{p}{2}}K_{n}.

The Gronwall inequality shows

𝔼(sup0tt1|xΔ(tυn)x(tυn)|p)𝒦2Δp(1/21/41/8)(h(Δ))p(1/21)\displaystyle\mathbb{E}\Big{(}\sup_{0\leq t\leq t_{1}}|x_{\Delta}(t\wedge\upsilon^{*}_{n})-x(t\wedge\upsilon^{*}_{n})|^{p}\Big{)}\leq\mathcal{K}_{2}\Delta^{p(1/2\wedge 1/4\wedge 1/8)}(h(\Delta))^{p(1/2\wedge 1)}

as the required assertion, where

𝒦2=(ϖ1+ϖ2+ϖ3)eϖ4.\mathcal{K}_{2}=(\varpi_{1}+\varpi_{2}+\varpi_{3})e^{\varpi_{4}}.

The following lemma shows that the truncated EM solutions converge strongly to the exact solution without the stopping time.

Theorem 5.9.

Let Assumptions 3.1 hold. Then for any p2p\geq 2, we have

limΔ0𝔼(sup0tT|xΔ(t)x(t)|p)=0\lim_{\Delta\rightarrow 0}\mathbb{E}\Big{(}\sup_{0\leq t\leq T}|x_{\Delta}(t)-x(t)|^{p}\Big{)}=0 (60)

and consequently

limΔ0𝔼(sup0tT|x¯Δ(t)x(t)|p)=0.\lim_{\Delta\rightarrow 0}\mathbb{E}\Big{(}\sup_{0\leq t\leq T}|\bar{x}_{\Delta}(t)-x(t)|^{p}\Big{)}=0. (61)
Proof.

Let ϱmn\varrho_{mn}, ϑn\vartheta^{*}_{n} and υn\upsilon^{*}_{n} be the same as before. Now set

eΔ(t)=xΔ(t)x(t).e_{\Delta}(t)=x_{\Delta}(t)-x(t).

For any arbitrarily δ>0\delta>0, we derive from the Young inequality that

𝔼(sup0tT|eΔ(t)|p)\displaystyle\mathbb{E}\Big{(}\sup_{0\leq t\leq T}|e_{\Delta}(t)|^{p}\Big{)} =𝔼(sup0tT|eΔ(t)|p1{ϱmn>T and ϑn>T})\displaystyle=\mathbb{E}\Big{(}\sup_{0\leq t\leq T}|e_{\Delta}(t)|^{p}1_{\{\varrho_{mn}>T\text{ and }\vartheta^{*}_{n}>T\}}\Big{)} (62)
+𝔼(sup0tT|eΔ(t)|p1{ϱmnT or ϑnT})\displaystyle+\mathbb{E}\Big{(}\sup_{0\leq t\leq T}|e_{\Delta}(t)|^{p}1_{\{\varrho_{mn}\leq T\text{ or }\vartheta^{*}_{n}\leq T\}}\Big{)}
𝔼(sup0tT|eΔ(t)|p1{υn>T})+δ2𝔼(sup0tT|eΔ(t)|2p)\displaystyle\leq\mathbb{E}\Big{(}\sup_{0\leq t\leq T}|e_{\Delta}(t)|^{p}1_{\{\upsilon^{*}_{n}>T\}}\Big{)}+\frac{\delta}{2}\mathbb{E}\Big{(}\sup_{0\leq t\leq T}|e_{\Delta}(t)|^{2p}\Big{)}
+12δ(ϱmnT or ϑnT).\displaystyle+\frac{1}{2\delta}\mathbb{P}(\varrho_{mn}\leq T\text{ or }\vartheta^{*}_{n}\leq T). (63)

Then for p2p\geq 2, Lemmas 3.5 and 5.4 give us

𝔼(sup0tT|eΔ(t)|2p)\displaystyle\mathbb{E}\Big{(}\sup_{0\leq t\leq T}|e_{\Delta}(t)|^{2p}\Big{)} 22p𝔼(sup0tT|x(t)|psup0tT|xΔ(t)|p)2\displaystyle\leq 2^{2p}\mathbb{E}\Big{(}\sup_{0\leq t\leq T}|x(t)|^{p}\vee\sup_{0\leq t\leq T}|x_{\Delta}(t)|^{p}\Big{)}^{2}
22p(c2c5)2.\displaystyle\leq 2^{2p}(c_{2}\vee c_{5})^{2}. (64)

By Lemmas 3.3 and 5.7, we have

(υnT)(ϱmnT)+(ϑnT).\mathbb{P}(\upsilon^{*}_{n}\leq T)\leq\mathbb{P}(\varrho_{mn}\leq T)+\mathbb{P}(\vartheta^{*}_{n}\leq T). (65)

Also, by Lemma 5.8, we get

𝔼(sup0tT|eΔ(t)|p1{ςΔ,n>T})𝒦2Δp(1/21/41/8)(h(Δ))p(1/21).\mathbb{E}\Big{(}\sup_{0\leq t\leq T}|e_{\Delta}(t)|^{p}1_{\{\varsigma_{\Delta,n}>T\}}\Big{)}\leq\mathcal{K}_{2}\Delta^{p(1/2\wedge 1/4\wedge 1/8)}(h(\Delta))^{p(1/2\wedge 1)}. (66)

Therefore, we substitute (5.2), (65) and (66) into (62) to have

𝔼(sup0tT|eΔ(t)|p)\displaystyle\mathbb{E}\Big{(}\sup_{0\leq t\leq T}|e_{\Delta}(t)|^{p}\Big{)} 22p(c2c5)2δ2+𝒦2Δp(1/21/41/8)(h(Δ))p(1/21)\displaystyle\leq\frac{2^{2p}(c_{2}\vee c_{5})^{2}\delta}{2}+\mathcal{K}_{2}\Delta^{p(1/2\wedge 1/4\wedge 1/8)}(h(\Delta))^{p(1/2\wedge 1)}
+(ϱmnT)+(ϑnT).\displaystyle+\mathbb{P}(\varrho_{mn}\leq T)+\mathbb{P}(\vartheta^{*}_{n}\leq T).

Given ϵ(0,1)\epsilon\in(0,1), we can choose δ\delta so that

22p(c2c5)2δ2ϵ4.\frac{2^{2p}(c_{2}\vee c_{5})^{2}\delta}{2}\leq\frac{\epsilon}{4}. (67)

Furthermore, for any given ϵ(0,1)\epsilon\in(0,1), there exists non_{o} such that for nnon\geq n_{o}, we may choose δ\delta to obtain

12δ(ϱmnT)ϵ4\frac{1}{2\delta}\mathbb{P}(\varrho_{mn}\leq T)\leq\frac{\epsilon}{4} (68)

and then choose n(ϵ)non(\epsilon)\leq n_{o} such that for Δ(0,Δ1]\Delta\in(0,\Delta^{1}], we have

12δ(ϑnT)ϵ4.\frac{1}{2\delta}\mathbb{P}(\vartheta^{*}_{n}\leq T)\leq\frac{\epsilon}{4}. (69)

Lastly, we may choose Δ(0,Δ1]\Delta\in(0,\Delta^{1}] sufficiently small for ϵ(0,1)\epsilon\in(0,1) such that

𝒦2Δp(1/21/41/8)(h(Δ))p(1/21)ϵ4.\mathcal{K}_{2}\Delta^{p(1/2\wedge 1/4\wedge 1/8)}(h(\Delta))^{p(1/2\wedge 1)}\leq\frac{\epsilon}{4}. (70)

We then (67), (68), (69) and (70), to have

𝔼(sup0tT|xΔ(t)x(t)|p)ϵ.\displaystyle\mathbb{E}\Big{(}\sup_{0\leq t\leq T}|x_{\Delta}(t)-x(t)|^{p}\Big{)}\leq\epsilon.

as desired. By Lemma 5.3, we also obtain (61) by letting Δ0\Delta\rightarrow 0. ∎

6 Numerical application

We now provide numerical demonstrations to support the theoretical result.

6.1 Simulation

In what follows, let us consider the following form of SDE (6)

dx(t)=2(1x(t)5)dt+3|φ(t)|x(t)5/4dB1(t),dx(t)=2(1-x(t)^{5})dt+3\sqrt{|\varphi(t)|}x(t)^{5/4}dB_{1}(t), (71)

with initial data x0=0.2x_{0}=0.2, where φ(t)\varphi(t) is driven by SDE (7) of the form

dφ(t)=2(2φ(t)2)dt+0.5φ(t)3/2dB2(t)d\varphi(t)=2(2-\varphi(t)^{2})dt+0.5\varphi(t)^{3/2}dB_{2}(t) (72)

with initial data φ0=2\varphi_{0}=2. Apparently, the coefficient terms f1(x)=2(1x5)f_{1}(x)=2(1-x^{5}), g1(x)=3x5/4g_{1}(x)=3x^{5/4}, f2(x)=2(2x2)f_{2}(x)=2(2-x^{2}) and g2(φ)=0.5φ3/2g_{2}(\varphi)=0.5\varphi^{3/2} of SDE (71) and SDE (72) are locally Lipschitz continuous. Moreover, we observe that

sup|x||φ|u(|f1(x)||f2(φ)|g1(x)g2(φ))10.5ν5,ν0,\sup_{|x|\vee|\varphi|\leq u}\Big{(}|f_{1}(x)|\vee|f_{2}(\varphi)|\vee g_{1}(x)\vee g_{2}(\varphi)\Big{)}\leq 10.5\nu^{5},\quad\nu\geq 0,

If we choose h(Δ)=Δ1/2h(\Delta)=\Delta^{-1/2}, then ν1(h(Δ))=(Δ/10.5)1/10\nu^{-1}(h(\Delta))=(\Delta/10.5)^{-1/10}. Using a step size of 10310^{-3}, we get Monte Carlo simulated sample trajectories of SDE (72) and SDE (71) in Figure 1 and Figure 2 respectively.

Refer to caption

Figure 1: Simulated sample path of φ(t)\varphi(t) using Δ=0.001\Delta=0.001

Refer to caption

Figure 2: Simulated sample path of x(t)x(t) using Δ=0.001\Delta=0.001

6.2 Evaluation

In this session, we justify that the truncated EM solutions can be used to compute a barrier option with a European payoff 𝒫\mathcal{P}. Let the asset price be the exact solution x(T)x(T) to SDE (6), 𝔹\mathbb{B} be a fixed barrier, TT be an expiry date and Λ\Lambda a strike price. Then the exact payoff of a barrier option is

𝒫(T)=𝔼[(x(T)Λ)+1sup0tTx(t)<𝔹)].\mathcal{P}(T)=\mathbb{E}\Big{[}(x(T)-\Lambda)^{+}1_{\sup_{0\leq t\leq T}}x(t)<\mathbb{B})\Big{]}.

Using the step process (39), we could compute the approximate payoff by

𝒫Δ(T)=𝔼[(x¯Δ(T)Λ)+1sup0tTx¯Δ(t)<𝔹)].\mathcal{P}^{\Delta}(T)=\mathbb{E}\Big{[}(\bar{x}_{\Delta}(T)-\Lambda)^{+}1_{\sup_{0\leq t\leq T}}\bar{x}_{\Delta}(t)<\mathbb{B})\Big{]}.

So, from Theorem 5.9, we have

limΔ0|𝒫(T)𝒫Δ(T)|=0.\lim_{\Delta\rightarrow 0}|\mathcal{P}(T)-\mathcal{P}^{\Delta}(T)|=0.

See [10, 20] for the detailed account.

References

  • [1] Black, F. and Scholes, M., 1973. The pricing of options and corporate liabilities. Journal of political economy, 81(3), pp.637-654.
  • [2] Vasicek, O., 1977. An equilibrium characterization of the term structure. Journal of financial economics, 5(2), pp.177-188.
  • [3] Cox, J.C., Ingersoll Jr, J.E. and Ross, S.A., 1985. A Theory of the Term Structure of Interest Rates. Econometrica: Journal of the Econometric Society, pp.385-407.
  • [4] Lewis, A.L., 2000. Option Valuation Under Stochastic Volatility. Finance Press, California.
  • [5] Chan, K.C., Karolyi, G.A., Longstaff, F.A. and Sanders, A.B., 1992. An empirical comparison of alternative models of the short‐term interest rate. The journal of finance, 47(3), pp.1209-1227.
  • [6] Nowman, K.B., 1997. Gaussian estimation of single‐factor continuous time models of the term structure of interest rates. The journal of Finance, 52(4), pp.1695-1706.
  • [7] Ahn, D.H. and Gao, B., 1999. A parametric nonlinear model of term structure dynamics. The Review of Financial Studies, 12(4), pp.721-762.
  • [8] Yang, H., Wu, F., Kloeden, P.E. and Mao, X., 2020. The truncated Euler–Maruyama method for stochastic differential equations with Hölder diffusion coefficients. Journal of Computational and Applied Mathematics, 366, p.112379.
  • [9] Mao, X. and Szpruch, L., 2013. Strong convergence and stability of implicit numerical methods for stochastic differential equations with non-globally Lipschitz continuous coefficients. Journal of Computational and Applied Mathematics, 238, pp.14-28.
  • [10] Higham, D.J. and Mao, X., 2005. Convergence of Monte Carlo simulations involving the mean-reverting square root process. Journal of Computational Finance, 8(3), pp.35-61.
  • [11] Wu, F., Mao, X. and Chen, K., 2008. A highly sensitive mean-reverting process in finance and the Euler–Maruyama approximations. Journal of Mathematical Analysis and Applications, 348(1), pp.540-554.
  • [12] Dupire, B., 1994. Pricing with a smile. Risk, 7(1), pp.18-20.
  • [13] Cox, J.C., 1975. Constant elasticity of variance diffusions. Standford University, Graduate School of Business.
  • [14] Cox, J.C., 1996. The constant elasticity of variance option pricing model. Journal of Portfolio Management, p.15.
  • [15] Hull, J. and White, A., 1987. The pricing of options on assets with stochastic volatilities. The journal of finance, 42(2), pp.281-300.
  • [16] Hagan, Patrick S, Deep Kumar, Andrew S Lesniewski, and Diana E Woodward. 2002. Managing Smile Risk. The Best of Wilmott 1: 249–96.
  • [17] Heston, S.L., 1993. A closed-form solution for options with stochastic volatility with applications to bond and currency options. The review of financial studies, 6(2), pp.327-343.
  • [18] Coffie, E. and Mao, X., 2021. Truncated EM numerical method for generalised Ait-Sahalia-type interest rate model with delay. Journal of Computational and Applied Mathematics, 383, p.113137.
  • [19] Mao, X., 2015. The truncated Euler–Maruyama method for stochastic differential equations. Journal of Computational and Applied Mathematics, 290, pp.370-384.
  • [20] Mao, X., 2007. Stochastic differential equations and applications. 2nd ed. Chichester: Horwood Publishing Limited.
  • [21] Baduraliya, C.H. and Mao, X., 2012. The Euler–Maruyama approximation for the asset price in the mean-reverting-theta stochastic volatility model. Computers & Mathematics with Applications, 64(7), pp.2209-2223.