This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Numerical dynamics of integrodifference equations:
Hierarchies of invariant bundles in Lp(Ω)L^{p}(\Omega)

\nameChristian Pötzsche Email: [email protected] Institut für Mathematik, Universität Klagenfurt, 9020 Klagenfurt, Austria
Abstract

We study how the ”full hierarchy” of invariant manifolds for nonautonomous integrodifference equations on the Banach spaces of pp-integrable functions behaves under spatial discretization of Galerkin type. These manifolds include the classical stable, center-stable, center, center-unstable and unstable ones, and can be represented as graphs of CmC^{m}-functions. For kernels with a smoothing property, our main result establishes closeness of these graphs in the Cm1C^{m-1}-topology under numerical discretizations preserving the convergence order of the method. It is formulated in a quantitative fashion and technically results from a general perturbation theorem on the existence of invariant bundles (i.e. nonautonomous invariant manifolds).

keywords:
Integrodifference equation, numerical dynamics, dichotomy spectrum, nonautonomous invariant manifolds, Galerkin method
articletype: ARTICLE TEMPLATE
{amscode}

65P99, 37J15, 37L25, 47H30, 45M10

1 Introduction

Over the last years, integrodifference equations (abbreviated IDEs)

ut+1=Ωkt(,y)gt(y,ut(y))dyu_{t+1}=\int_{\Omega}k_{t}(\cdot,y)g_{t}(y,u_{t}(y))\,{\mathrm{d}}y (I0I_{0})

became popular and widely used models in theoretical ecology for the temporal evolution and spatial dispersal of populations having non-overlapping generations [14]. They constitute an interesting class of infinite-dimensional dynamical systems and can be seen as a discrete-time counterpart to reaction-diffusion equations, with whom they share various dynamical features. IDEs also arise in other fields, such as time-11-maps of evolutionary differential equations or as iterative schemes to solve nonlinear boundary value problems via an equivalent fixed point formulation (cf. [15, pp. 168–169]). Due to their origin in ecology, a periodic tt-dependence in (I0I_{0}) is well-motivated, but recently also applications requiring more general temporal forcing became relevant [11].

The long term behavior of IDEs is often illustrated using numerical simulations, which require to discretize their state space XX. For this reason it is a well-motivated question to relate the dynamics of the original and of the numerically approximated problem. This is a key issue in Numerical Dynamics [23]. Among the various aspects of this field, we tackle invariant manifolds. These sets provide the skeleton of the state space for a dynamical system, since stable manifolds WsW_{s} might serve as boundary between different domains of attraction, unstable manifolds WuW_{u} constitute global attractors and center manifolds Wcs,Wc,WcuW_{cs},W_{c},W_{cu} capture the essential dynamics near non-hyperbolic solutions. These sets fulfill the classical hierarchy (a notion from [5])

WsWcsXWcWcuWu.\begin{array}[]{ccccc}W_{s}&\subset&W_{cs}&\subset&X\\ &&\cup&&\cup\\ &&W_{c}&\subset&W_{cu}\\ &&&&\cup\\ &&&&W_{u}.\end{array} (1)

In continuous time, early contributions for autonomous ODEs in d{\mathbb{R}}^{d} were [6] (stable and unstable manifolds) and [7] (center manifolds). Generalizations to infinite-dimensional problems appeared in [1] (evolutionary PDEs), [9] (delay equations) and [12] (full discretizations of evolutionary PDEs). The effect of time-discretizations to invariant manifolds for nonautonomous ODEs in Banach spaces was studied in [13].

Throughout the literature the state space of IDEs typically consists of continuous or integrable functions [14]. It is all the more important to understand the behavior of their invariant manifolds in the classical hierarchy (1) when such equations are spatially discretized. Accordingly the paper at hand further explores the numerical dynamics of nonautonomous equations. For related work we refer to [19] on the classical situation of local stable and unstable manifolds for hyperbolic periodic solutions to Urysohn IDEs in the space of (Hölder) continuous functions over a compact habitat. The present approach complements and extends [19] in various aspects: First, we tackle Hammerstein IDEs (I0I_{0}) in LpL^{p}-spaces rather than over the continuous functions. Second, we address the complete hierarchy of invariant manifolds containing also strongly stable, the three types of center, as well as strongly unstable manifolds and establish convergence including their derivatives preserving the order of the discretization method. Third, dealing with general nonautonomous equations requires various alternative tools such as the dichotomy spectrum [22] (instead of the Floquet spectrum) and a flexible perturbation theorem for invariant bundles replacing the Lipschitz inverse function theorem used in [19], whose applicability is restricted to the hyperbolic situation. We finally point out that such extended hierarchies of invariant manifolds date back to [5] in the framework of autonomous ODEs.

The crucial assumption in our analysis are ambient smoothing properties of the kernels ktk_{t} paving the way to corresponding error estimates. In order to minimize technicalities, we deal with globally defined semilinear IDEs having the trivial solution and therefore obtain global results. By means of well-known translation and cut-off methods more general and real-life problems under local assumptions can be adapted to the present setting and then yield results valid in the vicinity of a given reference solution (cf. Sect. 3.3 or [18, pp. 256ff, Sect. 4.6]).

This paper is structured as follows: In Sect. 2 we provide the basic assumptions on nonautonomous Hammerstein IDEs such that they are well-defined on LpL^{p}-spaces and generate a completely continuous process. In order to circumvent the pathological smoothness properties of Nemytskii operators on LpL^{p}-spaces this requires them to satisfy suitable mapping properties into a larger LqL^{q}-space, q<pq<p, being balanced by Hille-Tamarkin conditions on the kernel (cf. Sect. 2.1). In short, dealing with an IDE (I0I_{0}) of class CmC^{m} requires exponents p>mp>m. The starting point of our actual analysis are nonautonomous linear IDEs. Based on exponential dichotomies and the dichotomy spectrum we present the ’linear algebra’ necessary for our analysis, where spectral intervals and bundles extend eigenvalue moduli respectively generalized eigenspaces (cf. [22]) to a time-variant setting. The following Sect. 3 contains our main results (Thms. 3.3 and 3.6) describing how nonautonomous invariant manifolds (bundles) and their derivatives up to order m1m-1 behave under discretization using projection methods. Concrete examples of projection methods and their applicability in Thms. 3.3 and 3.6 are discussed in Sect. 4. Finally, for the reader’s convenience, we conclude the paper with two appendices. App. A contains the central perturbation result from [17] in a formulation suitable for those not familiar with the calculus on measure chains. App. B quotes a well-definedness criterion for linear Fredholm integral operators and (due to the lack of a suitable reference) provides well-definedness and smoothness properties for Nemytskii operators between Lebesgue spaces.

Notation

Let 𝕂{\mathbb{K}} be one of the fields {\mathbb{R}} or {\mathbb{C}}. A discrete interval 𝕀{\mathbb{I}} is the intersection of a real interval with the integers {\mathbb{Z}} and 𝕀:={t𝕀:t+1𝕀}{\mathbb{I}}^{\prime}:=\left\{t\in{\mathbb{I}}:\,t+1\in{\mathbb{I}}\right\}. Given \ell\in{\mathbb{N}} and normed spaces X,YX,Y, we write L(X,Y)L_{\ell}(X,Y) for the space of bounded \ell-linear operators T:XYT:X^{\ell}\to Y and moreover L0(X,Y):=YL_{0}(X,Y):=Y, as well as L(X,Y):=L1(X,Y)L(X,Y):=L_{1}(X,Y). It is handy to abbreviate L(X):=L(X,X)L_{\ell}(X):=L_{\ell}(X,X) and L(X):=L(X,X)L(X):=L(X,X). We write N(S):=S1(0)XN(S):=S^{-1}(0)\subseteq X for the kernel, R(S):=SXYR(S):=SX\subseteq Y for the range of SL(X,Y)S\in L(X,Y). Moreover, idX\operatorname{id}_{X} is the identity map on XX, σ(T)\sigma(T) the spectrum of TL(X)T\in L(X) and ||\left|\cdot\right| denotes norms on finite-dimensional spaces. Finally, we write lipf\operatorname{lip}f for the (smallest) Lipschitz constant of a mapping ff.

Throughout, let Ωκ\Omega\subset{\mathbb{R}}^{\kappa} be an open, bounded (and hence Lebesgue measurable) set and diamΩ:=supx,yΩ|xy|\operatorname{diam}\Omega:=\sup_{x,y\in\Omega}\left|x-y\right| is its diameter. For p[1,)p\in[1,\infty) we introduce the space of 𝕂d{\mathbb{K}}^{d}-valued pp-integrable functions

Ldp(Ω)\displaystyle L_{d}^{p}(\Omega) :={u:Ω𝕂d|u is Lebesgue measurable with Ω|u(y)|pdy<},\displaystyle:=\biggl{\{}u:\Omega\to{\mathbb{K}}^{d}\biggl{|}u\text{ is Lebesgue measurable with }\int_{\Omega}\left|u(y)\right|^{p}\,{\mathrm{d}}y<\infty\biggr{\}},
Ld(Ω)\displaystyle L_{d}^{\infty}(\Omega) :={u:Ω𝕂d|u is Lebesgue measurable with esssupxΩ|u(y)|<}\displaystyle:=\biggl{\{}u:\Omega\to{\mathbb{K}}^{d}\biggl{|}u\text{ is Lebesgue measurable with }\operatorname*{ess\,sup}_{x\in\Omega}\left|u(y)\right|<\infty\biggr{\}}

and equip it with up:=(j=1dΩ|uj(y)|pdy)1/p\left\|u\right\|_{p}:=\left(\sum_{j=1}^{d}\int_{\Omega}|u_{j}(y)|^{p}\,{\mathrm{d}}y\right)^{1/p} resp. u:=esssupxΩ|u(x)|\left\|u\right\|_{\infty}:=\operatorname*{ess\,sup}_{x\in\Omega}\left|u(x)\right| as canonical norms. This yields a strictly decreasing scale (Ldp(Ω))p1(L_{d}^{p}(\Omega))_{p\geq 1} of Banach spaces. In particular, Ld2(Ω)L_{d}^{2}(\Omega) is a Hilbert space with inner product u,v=j=1dΩuj(y)vj(y)¯dy\left\langle u,v\right\rangle=\sum_{j=1}^{d}\int_{\Omega}u_{j}(y)\overline{v_{j}(y)}\,{\mathrm{d}}y. Finally, we write Lp(Ω):=L1p(Ω)L^{p}(\Omega):=L_{1}^{p}(\Omega).

2 Nonautonomous difference equations

Let 𝕀{\mathbb{I}} be an unbounded discrete interval.

2.1 Hammerstein integrodifference equations

We investigate nonautonomous integrodifference equations

ut+1\displaystyle u_{t+1} =t(ut),\displaystyle={\mathscr{F}}_{t}(u_{t}), t(u)\displaystyle{\mathscr{F}}_{t}(u) :=Ωkt(,y)gt(y,u(y))dyfor all t𝕀,\displaystyle:=\int_{\Omega}k_{t}(\cdot,y)g_{t}(y,u(y))\,{\mathrm{d}}y\quad\text{for all }t\in{\mathbb{I}}^{\prime}, (I0I_{0})

whose right-hand sides are Hammerstein integral operators satisfying the assumptions:

The kernels kt:Ω×Ω𝕂d×nk_{t}:\Omega\times\Omega\to{\mathbb{K}}^{d\times n}, t𝕀t\in{\mathbb{I}}^{\prime}, in (I0I_{0}) fulfill Hille-Tamarkin conditions with exponents p,q(1,)p,q\in(1,\infty):

  1. (Hq,p)(H_{q,p})

    ktk_{t} is Lebesgue measurable and with q>1q^{\prime}>1 determined by 1q+1q=1\tfrac{1}{q}+\tfrac{1}{q^{\prime}}=1, we assume Ω(Ω|kt(x,y)|qdy)p/qdx<for all t𝕀.\int_{\Omega}\biggl{(}\int_{\Omega}\left|k_{t}(x,y)\right|^{q^{\prime}}\,{\mathrm{d}}y\biggr{)}^{p/q^{\prime}}\,{\mathrm{d}}x<\infty\quad\text{for all }t\in{\mathbb{I}}^{\prime}.

Then Prop. B.1 guarantees that the linear integral operators

𝒦t\displaystyle{\mathscr{K}}_{t} L(Lnq(Ω),Ldp(Ω)),\displaystyle\in L(L_{n}^{q}(\Omega),L_{d}^{p}(\Omega)), 𝒦tv\displaystyle{\mathscr{K}}_{t}v :=Ωkt(,y)v(y)dyfor all t𝕀\displaystyle:=\int_{\Omega}k_{t}(\cdot,y)v(y)\,{\mathrm{d}}y\quad\text{for all }t\in{\mathbb{I}}^{\prime} (2)

are well-defined and compact.

Concerning the growth functions gt:Ω×𝕂d𝕂ng_{t}:\Omega\times{\mathbb{K}}^{d}\to{\mathbb{K}}^{n}, t𝕀t\in{\mathbb{I}}^{\prime}, in (I0I_{0}), for given m0m\in{\mathbb{N}}_{0} and exponents p,q(1,)p,q\in(1,\infty) we assume Carathéodory conditions for all 0m0\leq\ell\leq m:

  1. (Cp,qm)(C_{p,q}^{m})

    D2gt(x,):𝕂dL(𝕂d,𝕂n)D_{2}^{\ell}g_{t}(x,\cdot):{\mathbb{K}}^{d}\to L_{\ell}({\mathbb{K}}^{d},{\mathbb{K}}^{n}) exists and is continuous for a.a. xΩx\in\Omega, while D2gt(,z):ΩL(𝕂d,𝕂n)D_{2}^{\ell}g_{t}(\cdot,z):\Omega\to L_{\ell}({\mathbb{K}}^{d},{\mathbb{K}}^{n}) is measurable on Ω\Omega and with mq<pmq<p there exist functions cLpqpmq(Ω)c\in L^{\tfrac{pq}{p-mq}}(\Omega) and reals c0,,cm0c_{0},\ldots,c_{m}\geq 0 so that for a.a. xΩx\in\Omega one has

    |D2gt(x,z)|L(𝕂d,𝕂n)c(x)+c|z|pqqfor all t𝕀,z𝕂d.\left|D_{2}^{\ell}g_{t}(x,z)\right|_{L_{\ell}({\mathbb{K}}^{d},{\mathbb{K}}^{n})}\leq c(x)+c_{\ell}\left|z\right|^{\tfrac{p-\ell q}{q}}\quad\text{for all }t\in{\mathbb{I}}^{\prime},\,z\in{\mathbb{K}}^{d}.

Given this, Prop. B.2 and B.4 ensure that the Nemytskii operators

𝒢t:Ldp(Ω)\displaystyle{\mathscr{G}}_{t}:L_{d}^{p}(\Omega) Lnq(Ω),\displaystyle\to L_{n}^{q}(\Omega), [𝒢t(u)](x)\displaystyle[{\mathscr{G}}_{t}(u)](x) :=gt(x,u(x))for all t𝕀,xΩ\displaystyle:=g_{t}(x,u(x))\quad\text{for all }t\in{\mathbb{I}}^{\prime},\,x\in\Omega (3)

are well-defined and in case mq<pmq<p also mm-times continuously differentiable. In a nutshell, the right-hand sides of (I0I_{0}) satisfy

Proposition 2.1 (properties of t{\mathscr{F}}_{t}).

Let p,q(1,)p,q\in(1,\infty) and mm\in{\mathbb{N}}. If Hypotheses (Hq,p)(H_{q,p}) and (Cp,qm)(C_{p,q}^{m}) hold with mq<pmq<p, then the right-hand sides t:=𝒦t𝒢t:Ldp(Ω)Ldp(Ω){\mathscr{F}}_{t}:={\mathscr{K}}_{t}{\mathscr{G}}_{t}:L_{d}^{p}(\Omega)\to L_{d}^{p}(\Omega) of (I0I_{0}) are well-defined, completely continuous and of class CmC^{m} with derivatives D(𝒦t𝒢t)(u)=𝒦tD𝒢t(u)D^{\ell}({\mathscr{K}}_{t}{\mathscr{G}}_{t})(u)={\mathscr{K}}_{t}D^{\ell}{\mathscr{G}}_{t}(u) for all t𝕀t\in{\mathbb{I}}^{\prime}, 0m0\leq\ell\leq m and uLdp(Ω)u\in L_{d}^{p}(\Omega).

Proof.

Let t𝕀t\in{\mathbb{I}}^{\prime}. The Fredholm operators (2) are well-defined and compact due to Prop. B.1, while the Nemytskii operators (3) are well-defined, bounded and continuous by Prop. B.2. Then [20, pp. 25–26, Thm. 2.1] implies that 𝒦t𝒢t{\mathscr{K}}_{t}{\mathscr{G}}_{t} is completely continuous. Finally, Prop. B.4 and the Chain Rule applied to the 𝒦t𝒢t{\mathscr{K}}_{t}{\mathscr{G}}_{t} yield the claimed smoothness assertion. ∎

Under the assumptions of Prop. 2.1 an IDE (I0I_{0}) is well-posed. This means that for arbitrary initial times τ𝕀\tau\in{\mathbb{I}} and initial states uτLdp(Ω)u_{\tau}\in L_{d}^{p}(\Omega), there are unique forward solutions, i.e. sequences (ϕt)τt(\phi_{t})_{\tau\leq t} in Ldp(Ω)L_{d}^{p}(\Omega) satisfying the solution identity ϕt+1=t(ϕt)\phi_{t+1}={\mathscr{F}}_{t}(\phi_{t}) for τt\tau\leq t, t𝕀t\in{\mathbb{I}}^{\prime}. A backward solution fulfills the solution identity for t<τt<\tau and entire solutions (ϕt)t𝕀(\phi_{t})_{t\in{\mathbb{I}}} satisfy ϕt+1t(ϕt)\phi_{t+1}\equiv{\mathscr{F}}_{t}(\phi_{t}) on 𝕀{\mathbb{I}}^{\prime}. The general solution to (I0I_{0}) is given by φ0:{(t,τ,uτ)𝕀2×Ldp(Ω):τt}Ldp(Ω)\varphi^{0}:\left\{(t,\tau,u_{\tau})\in{\mathbb{I}}^{2}\times L_{d}^{p}(\Omega):\,\tau\leq t\right\}\to L_{d}^{p}(\Omega) via the compositions

φ0(t;τ,uτ)\displaystyle\varphi^{0}(t;\tau,u_{\tau}) :={t1τ(uτ),τ<t,uτ,t=τ.\displaystyle:=\begin{cases}{\mathscr{F}}_{t-1}\circ\ldots\circ{\mathscr{F}}_{\tau}(u_{\tau}),&\tau<t,\\ u_{\tau},&t=\tau.\end{cases}

A subset 𝒲𝕀×Ldp(Ω){\mathscr{W}}\subseteq{\mathbb{I}}\times L_{d}^{p}(\Omega) is called a nonautonomous set and 𝒲(t):={uLdp(Ω):(t,u)𝒲}{\mathscr{W}}(t):=\{u\in L_{d}^{p}(\Omega):\,(t,u)\in{\mathscr{W}}\}, t𝕀t\in{\mathbb{I}}, its tt-fiber. We say 𝒲{\mathscr{W}} is forward invariant resp. invariant, provided

t(𝒲(t))𝒲(t+1)resp.t(𝒲(t))=𝒲(t+1)for all t𝕀{\mathscr{F}}_{t}({\mathscr{W}}(t))\subseteq{\mathscr{W}}(t+1)\quad\text{resp.}\quad{\mathscr{F}}_{t}({\mathscr{W}}(t))={\mathscr{W}}(t+1)\quad\text{for all }t\in{\mathbb{I}}^{\prime}

holds. In case all fibers 𝒲(t){\mathscr{W}}(t) are linear spaces one speaks of a linear bundle and it is convenient to write 𝒪:=𝕀×{0}{\mathscr{O}}:={\mathbb{I}}\times\left\{0\right\}.

2.2 Linear integrodifference equations

This section outlines the nonautonomous ’linear algebra’ required to understand the dynamics of (I0I_{0}) based on linearization [22]. Here, if a kernel lt:Ω×Ω𝕂d×dl_{t}:\Omega\times\Omega\to{\mathbb{K}}^{d\times d} satisfies the Hille-Tamarkin conditions (Hp,p)(H_{p,p}) with n=dn=d, then a linear IDE

ut+1\displaystyle u_{t+1} =tut,\displaystyle={\mathscr{L}}_{t}u_{t}, tu\displaystyle{\mathscr{L}}_{t}u :=Ωlt(,y)u(y)dy\displaystyle:=\int_{\Omega}l_{t}(\cdot,y)u(y)\,{\mathrm{d}}y (LL)

is well-defined with compact tL(Ldp(Ω)){\mathscr{L}}_{t}\in L(L_{d}^{p}(\Omega)), t𝕀t\in{\mathbb{I}}^{\prime}. This yields the evolution operator

Φ:{(t,τ)𝕀2:τt}\displaystyle\Phi:\left\{(t,\tau)\in{\mathbb{I}}^{2}:\,\tau\leq t\right\} L(Ldp(Ω)),\displaystyle\to L(L_{d}^{p}(\Omega)), Φ(t,τ)\displaystyle\Phi(t,\tau) :={t1τ,τ<t,idLdp(Ω),τ=t.\displaystyle:=\begin{cases}{\mathscr{L}}_{t-1}\cdots{\mathscr{L}}_{\tau},&\tau<t,\\ \operatorname{id}_{L_{d}^{p}(\Omega)},&\tau=t.\end{cases}

A linear IDE (LL) has an exponential dichotomy on 𝕀{\mathbb{I}} [10, p. 229, Def. 7.6.4], if there exists a projection-valued sequence (Pt)t𝕀(P_{t})_{t\in{\mathbb{I}}} in L(Ldp(Ω))L(L_{d}^{p}(\Omega)) and K1K\geq 1, α(0,1)\alpha\in(0,1) so that Pt+1t=tPtP_{t+1}{\mathscr{L}}_{t}={\mathscr{L}}_{t}P_{t} and t|N(Pt):N(Pt)N(Pt+1){\mathscr{L}}_{t}|_{N(P_{t})}:N(P_{t})\to N(P_{t+1}) is an isomorphism for all t𝕀t\in{\mathbb{I}}^{\prime} with

Φ(t,s)PsL(Ldp(Ω))\displaystyle\left\|\Phi(t,s)P_{s}\right\|_{L(L_{d}^{p}(\Omega))} Kαts\displaystyle\leq K\alpha^{t-s}\, Φ(s,t)[idLdp(Ω)Pt]Ldp(Ω)\displaystyle\left\|\Phi(s,t)[\operatorname{id}_{L_{d}^{p}(\Omega)}-P_{t}]\right\|_{L_{d}^{p}(\Omega)} Kαtsfor all st.\displaystyle\leq K\alpha^{t-s}\quad\text{for all }s\leq t.

This allows us to introduce nonautonomous counterparts to eigenvalue moduli in terms of the components of the dichotomy spectrum

Σ𝕀():={γ>0:ut+1=1γtut does not have an exponential dichotomy on 𝕀}\Sigma_{\mathbb{I}}({\mathscr{L}}):=\left\{\gamma>0:\,u_{t+1}=\tfrac{1}{\gamma}{\mathscr{L}}_{t}u_{t}\text{ does not have an exponential dichotomy on }{\mathbb{I}}\right\}

for (LL). The spectrum Σ𝕀()\Sigma_{\mathbb{I}}({\mathscr{L}}) depends on the interval 𝕀{\mathbb{I}} such that Σ𝕀()Σ()\Sigma_{\mathbb{I}}({\mathscr{L}})\subseteq\Sigma_{\mathbb{Z}}({\mathscr{L}}). Under the bounded growth assumption

a0:=supt𝕀(Ω(Ω|lt(x,y)|qdy)pqdx)1p<a_{0}:=\sup_{t\in{\mathbb{I}}^{\prime}}\biggl{(}\int_{\Omega}\biggl{(}\int_{\Omega}\left|l_{t}(x,y)\right|^{q^{\prime}}\,{\mathrm{d}}y\biggr{)}^{\tfrac{p}{q^{\prime}}}\,{\mathrm{d}}x\biggr{)}^{\tfrac{1}{p}}<\infty (4)

it is contained in (0,a0](0,a_{0}] and there exists a γ0>0\gamma_{0}>0 with (γ0,)(0,)Σ𝕀()(\gamma_{0},\infty)\subseteq(0,\infty)\setminus\Sigma_{\mathbb{I}}({\mathscr{L}}). As shown in [22, Cor. 4.13], Σ𝕀()\Sigma_{\mathbb{I}}({\mathscr{L}})\neq\emptyset is a union of at most countably many intervals which can only accumulate at some b0b_{\infty}\geq 0. One of the cases holds:

  1. (S1)(S_{1})

    Σ𝕀()\Sigma_{\mathbb{I}}({\mathscr{L}}) consists of finitely many closed intervals:

    1. Refer to caption
      Figure 1: Case (S11)(S_{1}^{1}) with JJ compact spectral intervals (top) and (S12)(S_{1}^{2}) with J+1J+1 spectral intervals (bottom)
    2. (S11)(S_{1}^{1})

      There exists a JJ\in{\mathbb{N}} and reals 0<aJbJ<<a1b1<a00<a_{J}\leq b_{J}<\ldots<a_{1}\leq b_{1}<a_{0} with Σ𝕀()=j=1J[aj,bj]\Sigma_{\mathbb{I}}({\mathscr{L}})=\bigcup_{j=1}^{J}[a_{j},b_{j}]. In this case we choose the JJ rates γj(bj+1,aj)\gamma_{j}\in(b_{j+1},a_{j}), 1j<J1\leq j<J, and γJ(0,aJ)\gamma_{J}\in(0,a_{J}) (see Fig. 1 (top)).

    3. (S12)(S_{1}^{2})

      There exists a J0J\in{\mathbb{N}}_{0} and reals 0<bJ+1<aJbJ<<a1b1<a00<b_{J+1}<a_{J}\leq b_{J}<\ldots<a_{1}\leq b_{1}<a_{0} with Σ𝕀()=(0,bJ+1]j=1J[aj,bj]\Sigma_{\mathbb{I}}({\mathscr{L}})=(0,b_{J+1}]\cup\bigcup_{j=1}^{J}[a_{j},b_{j}]. Here we choose JJ rates γj(bj+1,aj)\gamma_{j}\in(b_{j+1},a_{j}), 1jJ1\leq j\leq J (see Fig. 1 (bottom)).

    Refer to caption
    Figure 2: Case (S2)(S_{2}) with infinitely many spectral intervals [aj,bj][a_{j},b_{j}] accumulating at b=0b_{\infty}=0 i.e. σ=\sigma_{\infty}=\emptyset (top) and accumulating at b>0b_{\infty}>0 (bottom)
  2. (S2)(S_{2})

    Σ𝕀()\Sigma_{\mathbb{I}}({\mathscr{L}}) consists of countably infinitely many intervals: There are strictly decreasing sequences (aj)j(a_{j})_{j\in{\mathbb{N}}}, (bj)j(b_{j})_{j\in{\mathbb{N}}} in (0,)(0,\infty) such that Σ𝕀()=σj=1[aj,bj],\Sigma_{\mathbb{I}}({\mathscr{L}})=\sigma_{\infty}\cup\bigcup_{j=1}^{\infty}[a_{j},b_{j}], where b<ajbjb_{\infty}<a_{j}\leq b_{j} for all jj\in{\mathbb{N}}, limjaj=b\lim_{j\to\infty}a_{j}=b_{\infty}. Here, σ=\sigma_{\infty}=\emptyset for b=0b_{\infty}=0 (see Fig. 2 (top)) and otherwise σ=(0,b]\sigma_{\infty}=(0,b_{\infty}] (see Fig. 2 (bottom)). We choose countably many rates γj(bj+1,aj)\gamma_{j}\in(b_{j+1},a_{j}) for jj\in{\mathbb{N}}.

Concerning nonautonomous counterparts to generalized eigenspaces, for each γ>0\gamma>0 we define the linear bundles

𝒱¯γ+\displaystyle\bar{\mathscr{V}}_{\gamma}^{+} :={(τ,u)𝕀×Ldp(Ω):supτtΦ(t,τ)upγτt<},\displaystyle:=\left\{(\tau,u)\in{\mathbb{I}}\times L_{d}^{p}(\Omega):\,\sup_{\tau\leq t}\left\|\Phi(t,\tau)u\right\|_{p}\gamma^{\tau-t}<\infty\right\},
𝒱¯γ\displaystyle\bar{\mathscr{V}}_{\gamma}^{-} :={(τ,u)𝕀×Ldp(Ω):there exists a solution (ϕt)t𝕀 of (L) sothat supτtϕtpγτt< and ϕτ=u};\displaystyle:=\left\{(\tau,u)\in{\mathbb{I}}\times L_{d}^{p}(\Omega):\,\begin{array}[]{r}\text{there exists a solution $(\phi_{t})_{t\in{\mathbb{I}}}$ of \eqref{lin} so}\\ \text{that $\sup_{\tau\leq t}\left\|\phi_{t}\right\|_{p}\gamma^{\tau-t}<\infty$ and $\phi_{\tau}=u$}\end{array}\right\};

in case γ(0,)Σ𝕀()\gamma\in(0,\infty)\setminus\Sigma_{\mathbb{I}}({\mathscr{L}}), one denotes 𝒱¯γ+\bar{\mathscr{V}}_{\gamma}^{+} as a γ\gamma-stable and 𝒱¯γ\bar{\mathscr{V}}_{\gamma}^{-} as a γ\gamma-unstable bundle of (LL). With rates γj\gamma_{j} chosen as in (S1)(S_{1}) or (S2)(S_{2}) above, we set

𝒱0+\displaystyle{\mathscr{V}}_{0}^{+} :=𝕀×Ldp(Ω),\displaystyle:={\mathbb{I}}\times L_{d}^{p}(\Omega), 𝒱0\displaystyle{\mathscr{V}}_{0}^{-} :=𝒪,\displaystyle:={\mathscr{O}},
𝒱j+\displaystyle{\mathscr{V}}_{j}^{+} :=𝒱¯γj+,\displaystyle:=\bar{\mathscr{V}}_{\gamma_{j}}^{+}, 𝒱j\displaystyle{\mathscr{V}}_{j}^{-} :=𝒱¯γjfor j>0.\displaystyle:=\bar{\mathscr{V}}_{\gamma_{j}}^{-}\quad\text{for }j>0.

Thanks to [22, Cor. 4.13] the γ\gamma-unstable bundles 𝒱¯γ\bar{\mathscr{V}}_{\gamma}^{-} are finite-dimensional and:

  1. (S1)(S_{1})

    In both subcases the spectral bundles

    𝒱0\displaystyle{\mathscr{V}}_{0} :=𝒱0,\displaystyle:={\mathscr{V}}_{0}^{-}, 𝒱j\displaystyle{\mathscr{V}}_{j} :=𝒱j1+𝒱j𝒪for all 1jJ\displaystyle:={\mathscr{V}}_{j-1}^{+}\cap{\mathscr{V}}_{j}^{-}\neq{\mathscr{O}}\quad\text{for all }1\leq j\leq J

    are finite-dimensional invariant linear bundles of (LL) allowing the Whitney sum

    𝕀×Ldp(Ω)=j=0J𝒱j𝒱J+.{\mathbb{I}}\times L_{d}^{p}(\Omega)=\bigoplus_{j=0}^{J}{\mathscr{V}}_{j}\oplus{\mathscr{V}}_{J}^{+}.
  2. (S2)(S_{2})

    The spectral bundles

    𝒱0\displaystyle{\mathscr{V}}_{0} :=𝒱0,\displaystyle:={\mathscr{V}}_{0}^{-}, 𝒱j\displaystyle{\mathscr{V}}_{j} :=𝒱j1+𝒱j𝒪for all j\displaystyle:={\mathscr{V}}_{j-1}^{+}\cap{\mathscr{V}}_{j}^{-}\neq{\mathscr{O}}\quad\text{for all }j\in{\mathbb{N}}

    are finite-dimensional invariant linear bundles of (LL) with the Whitney sum

    𝕀×Ldp(Ω)=j=0J𝒱j𝒱J+for all J.{\mathbb{I}}\times L_{d}^{p}(\Omega)=\bigoplus_{j=0}^{J}{\mathscr{V}}_{j}\oplus{\mathscr{V}}_{J}^{+}\quad\text{for all }J\in{\mathbb{N}}.

The bundle 𝒱J=j=0J𝒱j{\mathscr{V}}_{J}^{-}=\bigoplus_{j=0}^{J}{\mathscr{V}}_{j} satisfies Jdim𝒱J=j=0Jdim𝒱jJ\leq\dim{\mathscr{V}}_{J}^{-}=\sum_{j=0}^{J}\dim{\mathscr{V}}_{j}.

3 Invariant bundles under projection methods

Among the various numerical techniques to solve integral equations and thus to computationally simulate IDEs, we focus on projection methods [3], [4, pp. 446ff]. They are based on a sequence Πn:Ldp(Ω)Xnd\Pi_{n}:L_{d}^{p}(\Omega)\to X_{n}^{d}, nn\in{\mathbb{N}}, of bounded projections onto finite-dimensional subspaces Xnd=Xn××XnLdp(Ω)X_{n}^{d}=X_{n}\times\ldots\times X_{n}\subseteq L_{d}^{p}(\Omega). Here each subspace XnX_{n} is the span of dnd_{n}\in{\mathbb{N}} linearly independent functions χ1,,χdn:Ω\chi_{1},\ldots,\chi_{d_{n}}:\Omega\to{\mathbb{R}} and it is advantageous to set X0:=Lp(Ω)X_{0}:=L^{p}(\Omega). Under interpolation conditions (for collocation methods) or orthogonality conditions (for Galerkin methods), these functions determine projections πn:Lp(Ω)Xn\pi_{n}:L^{p}(\Omega)\to X_{n}. Given this, we set Πn:=diag(πn,,πn)L(Xnd)\Pi_{n}:=\operatorname{diag}(\pi_{n},\ldots,\pi_{n})\in L(X_{n}^{d}) and refer to Sect. 4 for concrete examples of suitable spaces XnX_{n} and related projections πn\pi_{n}.

The resulting spatial discretizations of (I0I_{0}) are difference equations

ut+1\displaystyle u_{t+1} =tn(ut),\displaystyle={\mathscr{F}}_{t}^{n}(u_{t}), tn(u)\displaystyle{\mathscr{F}}_{t}^{n}(u) :=Πnt(u)\displaystyle:=\Pi_{n}{\mathscr{F}}_{t}(u) (InI_{n})

being well-defined due to Prop. 2.1. and φn:{(t,τ,u)𝕀2×Ldp(Ω):τt}Ldp(Ω)\varphi^{n}:\left\{(t,\tau,u)\in{\mathbb{I}}^{2}\times L_{d}^{p}(\Omega):\,\tau\leq t\right\}\to L_{d}^{p}(\Omega) denotes their general solutions.

Throughout the section, we suppose

Hypothesis.

Let mm\in{\mathbb{N}} and p,q(1,)p,q\in(1,\infty) with mq<pmq<p. Suppose that

  • (i)

    (Hq,p)(H_{q,p}) with a X(Ω)X(\Omega)-smoothing kernel, that is, given a subset X(Ω)Ldp(Ω)X(\Omega)\subseteq L_{d}^{p}(\Omega) for all t𝕀t\in{\mathbb{I}}^{\prime} the inclusions 𝒦tLdq(Ω)X(Ω){\mathscr{K}}_{t}L_{d}^{q}(\Omega)\subseteq X(\Omega) hold and there exist Ct0C_{t}\geq 0 such that

    𝒦tuX(Ω)Ctuqfor all uLnq(Ω),\left\|{\mathscr{K}}_{t}u\right\|_{X(\Omega)}\leq C_{t}\left\|u\right\|_{q}\quad\text{for all }u\in L_{n}^{q}(\Omega), (5)
  • (ii)

    (Cp,qm)(C_{p,q}^{m}) with c2==cm=0c_{2}=\ldots=c_{m}=0, gt(x,0)=0g_{t}(x,0)=0 for all t𝕀t\in{\mathbb{I}}^{\prime}, a.a. xΩx\in\Omega and there exist measurable functions λt,λ¯t:Ω+\lambda_{t},\bar{\lambda}_{t}:\Omega\to{\mathbb{R}}_{+} with

    |D2gt(x,z)D2gt(x,0)|\displaystyle\left|D_{2}g_{t}(x,z)-D_{2}g_{t}(x,0)\right| λt(x)for a.a. xΩ and all z𝕂d,\displaystyle\leq\lambda_{t}(x)\quad\text{for a.a.\ }x\in\Omega\text{ and all }z\in{\mathbb{K}}^{d}, (6)
    |gt(x,z)gt(x,z¯)|\displaystyle\left|g_{t}(x,z)-g_{t}(x,\bar{z})\right| λ¯t(x)|zz¯|for a.a. xΩ and all z,z¯𝕂d\displaystyle\leq\bar{\lambda}_{t}(x)\left|z-\bar{z}\right|\quad\text{for a.a.\ }x\in\Omega\text{ and all }z,\bar{z}\in{\mathbb{K}}^{d} (7)

    such that supt𝕀Ct(Ωλ¯t(y)ppqdy)pqp<\sup_{t\in{\mathbb{I}}^{\prime}}C_{t}\biggl{(}\int_{\Omega}\bar{\lambda}_{t}(y)^{\tfrac{p}{p-q}}\,{\mathrm{d}}y\biggr{)}^{\tfrac{p-q}{p}}<\infty and

    L:=\displaystyle L:= supt𝕀(Ω(Ω|kt(x,y)|qdy)pqdx)1p(Ωλt(y)ppqdy)pqp<,\displaystyle\sup_{t\in{\mathbb{I}}^{\prime}}\biggl{(}\int_{\Omega}\biggl{(}\int_{\Omega}\left|k_{t}(x,y)\right|^{q^{\prime}}\,{\mathrm{d}}y\biggr{)}^{\tfrac{p}{q^{\prime}}}\,{\mathrm{d}}x\biggr{)}^{\tfrac{1}{p}}\biggl{(}\int_{\Omega}\lambda_{t}(y)^{\tfrac{p}{p-q}}\,{\mathrm{d}}y\biggr{)}^{\tfrac{p-q}{p}}<\infty, (8)
    supt𝕀(Ω(Ω|kt(x,y)|qdy)pqdx)1p(Ωλ¯t(y)ppqdy)pqp<,\displaystyle\sup_{t\in{\mathbb{I}}^{\prime}}\biggl{(}\int_{\Omega}\biggl{(}\int_{\Omega}\left|k_{t}(x,y)\right|^{q^{\prime}}\,{\mathrm{d}}y\biggr{)}^{\tfrac{p}{q^{\prime}}}\,{\mathrm{d}}x\biggr{)}^{\tfrac{1}{p}}\biggl{(}\int_{\Omega}\bar{\lambda}_{t}(y)^{\tfrac{p}{p-q}}\,{\mathrm{d}}y\biggr{)}^{\tfrac{p-q}{p}}<\infty, (9)
  • (iii)

    there exists a function Γ:+(0,)\Gamma:{\mathbb{R}}_{+}\to(0,\infty) with limϱ0Γ(ϱ)=0\lim_{\varrho\searrow 0}\Gamma(\varrho)=0 such that the discretization error satisfies

    uΠnupΓ(1n)uX(Ω)for all n,uX(Ω).\left\|u-\Pi_{n}u\right\|_{p}\leq\Gamma(\tfrac{1}{n})\left\|u\right\|_{X(\Omega)}\quad\text{for all }n\in{\mathbb{N}},\,u\in X(\Omega). (10)

The subsequent Sect. 4 is devoted to specific error estimates (10) for various function spaces X(Ω)X(\Omega). Moreover, in order to illustrate the smoothing property (i) we consider two nonsmooth kernels depending on dispersal rates δt>0\delta_{t}>0, t𝕀t\in{\mathbb{I}}^{\prime}:

Example 3.1 (Laplace kernel).

Consider the Laplace kernel (see [14, pp. 18ff])

kt:Ω2\displaystyle k_{t}:\Omega^{2} (0,),\displaystyle\to(0,\infty), kt(x,y):=δt2eδt|xy|\displaystyle k_{t}(x,y):=\tfrac{\delta_{t}}{2}e^{-\delta_{t}\left|x-y\right|}

acting on a habitat Ω=(l2,l2)\Omega=(-\tfrac{l}{2},\tfrac{l}{2}), l>0l>0. As a continuous, globally bounded function it satisfies (Hq,p)(H_{q,p}) with arbitrary exponents p,q(1,)p,q\in(1,\infty) and d=n=1d=n=1. In particular,

Ω(Ω|kt(x,y)|qdy)p/qdxΩ(Ω(δt2)qdy)p/qdx=l1+p1/q(δt2)p\displaystyle\int_{\Omega}\left(\int_{\Omega}\left|k_{t}(x,y)\right|^{q^{\prime}}\,{\mathrm{d}}y\right)^{p/q^{\prime}}\,{\mathrm{d}}x\leq\int_{\Omega}\left(\int_{\Omega}\left(\tfrac{\delta_{t}}{2}\right)^{q^{\prime}}\,{\mathrm{d}}y\right)^{p/q^{\prime}}\,{\mathrm{d}}x=l^{1+p-1/q}\left(\tfrac{\delta_{t}}{2}\right)^{p}

and therefore 𝒦tL(Lq(Ω),Lp(Ω))l1+p1/q(δt2)p\left\|{\mathscr{K}}_{t}\right\|_{L(L^{q}(\Omega),L^{p}(\Omega))}\leq l^{1+p-1/q}\left(\tfrac{\delta_{t}}{2}\right)^{p} for all t𝕀t\in{\mathbb{I}}^{\prime}. In addition,

(𝒦tu)=𝒦t(1)uwith(𝒦t(1)u)(x):=δt22Ωsgn(xy)eδt|xy|u(y)dy({\mathscr{K}}_{t}u)^{\prime}={\mathscr{K}}_{t}^{(1)}u\quad\text{with}\quad({\mathscr{K}}_{t}^{(1)}u)(x):=-\frac{\delta_{t}^{2}}{2}\int_{\Omega}\operatorname{sgn}(x-y)e^{-\delta_{t}\left|x-y\right|}u(y)\,{\mathrm{d}}y

for all xΩx\in\Omega and uLq(Ω)u\in L^{q}(\Omega), as well as 𝒦t(1)L(Lq(Ω),Lp(Ω))l1+p1/q(δt22)p\|{\mathscr{K}}_{t}^{(1)}\|_{L(L^{q}(\Omega),L^{p}(\Omega))}\leq l^{1+p-1/q}\left(\tfrac{\delta_{t}^{2}}{2}\right)^{p}. Hence, we can choose the smaller space X(Ω):=W1,p(Ω)X(\Omega):=W^{1,p}(\Omega) and obtain

𝒦tuW1,p(Ω)\displaystyle\left\|{\mathscr{K}}_{t}u\right\|_{W^{1,p}(\Omega)} =(𝒦tupp+𝒦t(1)upp)1/pCtuqfor all uLq(Ω),\displaystyle=\left(\left\|{\mathscr{K}}_{t}u\right\|_{p}^{p}+\|{\mathscr{K}}_{t}^{(1)}u\|_{p}^{p}\right)^{1/p}\leq C_{t}\left\|u\right\|_{q}\quad\text{for all }u\in L^{q}(\Omega),

with the constants Ct:=l1+1/p1/(pq)δt2(1+(δt2)p)1/pC_{t}:=l^{1+1/p-1/(pq)}\tfrac{\delta_{t}}{2}(1+(\tfrac{\delta_{t}}{2})^{p})^{1/p}. In conclusion, the Laplace kernel is W1,p(Ω)W^{1,p}(\Omega)-smoothing and the estimate (5) holds.

Example 3.2 (root kernel).

The exponential root kernel (see [14, p. 72 for α=12\alpha=\tfrac{1}{2}])

kt:Ω2\displaystyle k_{t}:\Omega^{2} (0,),\displaystyle\to(0,\infty), kt(x,y):=δt22eδt|xy|α\displaystyle k_{t}(x,y):=\tfrac{\delta_{t}^{2}}{2}e^{-\delta_{t}\left|x-y\right|^{\alpha}}

with exponent α(0,1]\alpha\in(0,1] may be defined on an open, bounded habitat Ωκ\Omega\subset{\mathbb{R}}^{\kappa}. Being continuous and globally bounded, it again fulfills (Hq,p)(H_{q,p}) with arbitrary p,q(1,)p,q\in(1,\infty) and d=n=1d=n=1. Given uLq(Ω)u\in L^{q}(\Omega) the Hölder inequality implies

|𝒦tu(x)|=(2)|Ωkt(x,y)u(y)dy|(Ω|kt(x,y)|qdy)1/quqδt22λκ(Ω)1/quq\left|{\mathscr{K}}_{t}u(x)\right|\stackrel{{\scriptstyle\eqref{defK}}}{{=}}\left|\int_{\Omega}k_{t}(x,y)u(y)\,{\mathrm{d}}y\right|\leq\left(\int_{\Omega}\left|k_{t}(x,y)\right|^{q^{\prime}}\,{\mathrm{d}}y\right)^{1/q^{\prime}}\left\|u\right\|_{q}\leq\frac{\delta_{t}^{2}}{2}\lambda_{\kappa}(\Omega)^{1/q^{\prime}}\left\|u\right\|_{q}

for all xΩx\in\Omega, as well as using the Mean Value Estimate (applied to xexx\mapsto e^{-x})

|𝒦tu(x)𝒦tu(x¯)|\displaystyle\left|{\mathscr{K}}_{t}u(x)-{\mathscr{K}}_{t}u(\bar{x})\right| =(2)|Ω[kt(x,y)kt(x¯,y)]u(y)dy|\displaystyle\stackrel{{\scriptstyle\eqref{defK}}}{{=}}\left|\int_{\Omega}[k_{t}(x,y)-k_{t}(\bar{x},y)]u(y)\,{\mathrm{d}}y\right|
(Ω|kt(x,y)kt(x¯,y)|qdy)1/quq\displaystyle\leq\left(\int_{\Omega}\left|k_{t}(x,y)-k_{t}(\bar{x},y)\right|^{q^{\prime}}\,{\mathrm{d}}y\right)^{1/q^{\prime}}\left\|u\right\|_{q}
δt22(Ω|eδt|xy|αeδt|x¯y|α|qdy)1/quq\displaystyle\leq\frac{\delta_{t}^{2}}{2}\left(\int_{\Omega}\left|e^{-\delta_{t}\left|x-y\right|^{\alpha}}-e^{-\delta_{t}\left|\bar{x}-y\right|^{\alpha}}\right|^{q^{\prime}}\,{\mathrm{d}}y\right)^{1/q^{\prime}}\left\|u\right\|_{q}
δt32(Ω||xy|α|x¯y|α|qdy)1/quq\displaystyle\leq\frac{\delta_{t}^{3}}{2}\left(\int_{\Omega}\left|\left|x-y\right|^{\alpha}-\left|\bar{x}-y\right|^{\alpha}\right|^{q^{\prime}}\,{\mathrm{d}}y\right)^{1/q^{\prime}}\left\|u\right\|_{q}
δt32(Ω||xy||x¯y||αqdy)1/quq\displaystyle\leq\frac{\delta_{t}^{3}}{2}\left(\int_{\Omega}\left|\left|x-y\right|-\left|\bar{x}-y\right|\right|^{\alpha q^{\prime}}\,{\mathrm{d}}y\right)^{1/q^{\prime}}\left\|u\right\|_{q}
δt32(Ω|xx¯|αqdy)1/quq\displaystyle\leq\frac{\delta_{t}^{3}}{2}\left(\int_{\Omega}\left|x-\bar{x}\right|^{\alpha q^{\prime}}\,{\mathrm{d}}y\right)^{1/q^{\prime}}\left\|u\right\|_{q}
=δt32λκ(Ω)1/q|xx¯|αuqfor all x,x¯Ω.\displaystyle=\frac{\delta_{t}^{3}}{2}\lambda_{\kappa}(\Omega)^{1/q^{\prime}}\left|x-\bar{x}\right|^{\alpha}\left\|u\right\|_{q}\quad\text{for all }x,\bar{x}\in\Omega.

Thus, 𝒦tu{\mathscr{K}}_{t}u is Hölder with exponent α\alpha and we can choose X(Ω)=Cα(Ω¯)X(\Omega)=C^{\alpha}(\overline{\Omega}) with

𝒦tuCα(Ω¯)δt22λκ(Ω)1/qmax{1,δt}uqfor all uLq(Ω).\left\|{\mathscr{K}}_{t}u\right\|_{C^{\alpha}(\overline{\Omega})}\leq\tfrac{\delta_{t}^{2}}{2}\lambda_{\kappa}(\Omega)^{1/q^{\prime}}\max\left\{1,\delta_{t}\right\}\left\|u\right\|_{q}\quad\text{for all }u\in L^{q}(\Omega).

In summary, the exponential root kernel is Cα(Ω¯)C^{\alpha}(\overline{\Omega})-smoothing and the estimate (5) holds with the constant Ct:=δt22λκ(Ω)1/qmax{1,δt}C_{t}:=\tfrac{\delta_{t}^{2}}{2}\lambda_{\kappa}(\Omega)^{1/q^{\prime}}\max\left\{1,\delta_{t}\right\} for all t𝕀t\in{\mathbb{I}}^{\prime}.

3.1 Pseudo-stable and -unstable bundles

Under the above Hypotheses (i–iii), the right-hand side of (I0I_{0}) is at least continuously differentiable (cf. Prop. 2.1). Its variational equation along the trivial solution

vt+1\displaystyle v_{t+1} =Dt(0)vt,\displaystyle=D{\mathscr{F}}_{t}(0)v_{t}, Dt(0)v\displaystyle D{\mathscr{F}}_{t}(0)v :=Ωkt(,y)D2gt(y,0)v(y)dy\displaystyle:=\int_{\Omega}k_{t}(\cdot,y)D_{2}g_{t}(y,0)v(y)\,{\mathrm{d}}y (V0V_{0})

is a linear IDE of the form (LL) with kernel lt(x,y):=kt(x,y)D2gt(y,0)𝕂d×dl_{t}(x,y):=k_{t}(x,y)D_{2}g_{t}(y,0)\in{\mathbb{K}}^{d\times d}, whose dichotomy spectrum will be denoted by Σ𝕀\Sigma_{\mathbb{I}}.

Refer to caption
Figure 3: The pseudo-stable bundle 𝒲j,+0{\mathscr{W}}_{j,+}^{0} and the pseudo-unstable bundle 𝒲j,0{\mathscr{W}}_{j,-}^{0} (black) of (I0I_{0}) intersect along the trivial solution and perturb as bundles 𝒲j,+n{\mathscr{W}}_{j,+}^{n} and 𝒲j,n{\mathscr{W}}_{j,-}^{n}, nNn\geq N (grey) for the spatial discretizations (InI_{n}). Both consist of tt-fibers being graphs over 𝒱j+{\mathscr{V}}_{j}^{+} resp. 𝒱j{\mathscr{V}}_{j}^{-}.
Theorem 3.3 (pseudo-stable and -unstable bundles under discretization).

Let Hypotheses (i–iii) hold, γj>0\gamma_{j}>0, j0j\in{\mathbb{N}}_{0}, be as in (S1)(S_{1}) or (S2)(S_{2}), choose αj<βj\alpha_{j}<\beta_{j} so that

αj\displaystyle\alpha_{j} <γj<βj,\displaystyle<\gamma_{j}<\beta_{j}, (αj,βj)Σ𝕀\displaystyle(\alpha_{j},\beta_{j})\cap\Sigma_{\mathbb{I}} =\displaystyle=\emptyset

and let 𝒱j+,𝒱j{\mathscr{V}}_{j}^{+},{\mathscr{V}}_{j}^{-} denote the associated linear bundles of the variational equation (V0V_{0}). Then there exists a K1K\geq 1 depending only on (V0V_{0}), so that if

L\displaystyle L <δmax4K,\displaystyle<\frac{\delta_{\max}}{4K}, δmax\displaystyle\delta_{\max} :=βjαj2,\displaystyle:=\frac{\beta_{j}-\alpha_{j}}{2}, (11)

δ(4KL,δmax]\delta\in(4KL,\delta_{\max}] is fixed and Γj:=[αj+δ,βjδ]\Gamma_{j}:=[\alpha_{j}+\delta,\beta_{j}-\delta], then there exists a NN\in{\mathbb{N}} such that the following statements are true for n=0n=0 and nNn\geq N (see Fig. 3):

  1. (a)

    In case 𝕀{\mathbb{I}} is unbounded above, then the pseudo-stable bundle

    𝒲j,+n:={(τ,u)𝕀×Ldp(Ω):supτtγτtφn(t;τ,u)p<}{\mathscr{W}}_{j,+}^{n}:=\left\{(\tau,u)\in{\mathbb{I}}\times L_{d}^{p}(\Omega):\,\sup_{\tau\leq t}\gamma^{\tau-t}\left\|\varphi^{n}(t;\tau,u)\right\|_{p}<\infty\right\}

    is a forward invariant bundle of (InI_{n}), which is independent of γΓj\gamma\in\Gamma_{j} and allows the representation

    𝒲j,+n={(τ,v+wj,+n(τ,v))𝕀×Ldp(Ω):(τ,v)𝒱j+}{\mathscr{W}}_{j,+}^{n}=\left\{(\tau,v+w_{j,+}^{n}(\tau,v))\in{\mathbb{I}}\times L_{d}^{p}(\Omega):\,(\tau,v)\in{\mathscr{V}}_{j}^{+}\right\}

    with continuous mappings wj,+n:𝒱j+Ldp(Ω)w_{j,+}^{n}:{\mathscr{V}}_{j}^{+}\to L_{d}^{p}(\Omega) satisfying wj,+n(τ,0)=0w_{j,+}^{n}(\tau,0)=0 and

    • (a1)(a_{1})

      there exist C0+(n),N0+>0C_{0}^{+}(n),N_{0}^{+}>0 with limnC0+(n)=K2Lδ2KL=:C0+(0)\lim_{n\to\infty}C_{0}^{+}(n)=\tfrac{K^{2}L}{\delta-2KL}=:C_{0}^{+}(0) and for all (τ,v)𝒱j+(\tau,v)\in{\mathscr{V}}_{j}^{+} holds

      lipwj,+n(τ,)\displaystyle\operatorname{lip}w_{j,+}^{n}(\tau,\cdot) C0+(n),\displaystyle\leq C_{0}^{+}(n), wj,+n(τ,v)wj,+0(τ,v)p\displaystyle\left\|w_{j,+}^{n}(\tau,v)-w_{j,+}^{0}(\tau,v)\right\|_{p} N0+Γ(1n)vp,\displaystyle\leq N_{0}^{+}\Gamma(\tfrac{1}{n})\left\|v\right\|_{p},
    • (a2)(a_{2})

      if αjm+<βj\alpha_{j}^{m_{+}}<\beta_{j} and δmax:=min{βjαj2,αj(αj+βjαj+αjm+m+1)}\delta_{\max}:=\min\Bigl{\{}\tfrac{\beta_{j}-\alpha_{j}}{2},\alpha_{j}\bigl{(}\sqrt[m_{+}]{\frac{\alpha_{j}+\beta_{j}}{\alpha_{j}+\alpha_{j}^{m_{+}}}}-1\bigr{)}\Bigr{\}}, then the derivatives D2wj,+n:𝒱j+L(Ldp(Ω))D_{2}^{\ell}w_{j,+}^{n}:{\mathscr{V}}_{j}^{+}\to L_{\ell}(L_{d}^{p}(\Omega)) exist up to order m+m\ell\leq m_{+}\leq m as continuous maps and for 1<m+1\leq\ell<m_{+} there are N+>0N_{\ell}^{+}>0 such that

      D2wj,+n(τ,v)D2wj,+0(τ,v)L(Ldp(Ω))\displaystyle\left\|D_{2}^{\ell}w_{j,+}^{n}(\tau,v)-D_{2}^{\ell}w_{j,+}^{0}(\tau,v)\right\|_{L_{\ell}(L_{d}^{p}(\Omega))} N+Γ(1n)vpfor all (τ,v)𝒱j+.\displaystyle\leq N_{\ell}^{+}\Gamma(\tfrac{1}{n})\left\|v\right\|_{p}\quad\text{for all }(\tau,v)\in{\mathscr{V}}_{j}^{+}.
  2. (b)

    In case 𝕀{\mathbb{I}} is unbounded below, then the pseudo-unstable bundle

    𝒲j,n:={(τ,u)𝕀×Ldp(Ω):there exists a solution (ϕt)t𝕀 of (In) sothat suptτγτtϕtp< and ϕτ=u}{\mathscr{W}}_{j,-}^{n}:=\left\{(\tau,u)\in{\mathbb{I}}\times L_{d}^{p}(\Omega):\begin{array}[]{l}\text{there exists a solution }(\phi_{t})_{t\in{\mathbb{I}}}\text{ of \eqref{iden} so}\\ \text{that }\sup_{t\leq\tau}\gamma^{\tau-t}\left\|\phi_{t}\right\|_{p}<\infty\text{ and }\phi_{\tau}=u\end{array}\right\}

    is a finite-dimensional (unless for spectra (S11)(S_{1}^{1}) and j=Jj=J) invariant bundle of (InI_{n}), which is independent of γΓj\gamma\in\Gamma_{j} and allows the representation

    𝒲j,n={(τ,v+wj,n(τ,v))𝕀×Ldp(Ω):(τ,v)𝒱j}{𝕀×X(Ω),n=0,𝕀×Xnd,nN{\mathscr{W}}_{j,-}^{n}=\left\{(\tau,v+w_{j,-}^{n}(\tau,v))\in{\mathbb{I}}\times L_{d}^{p}(\Omega):\,(\tau,v)\in{\mathscr{V}}_{j}^{-}\right\}\subseteq\begin{cases}{\mathbb{I}}\times X(\Omega),&n=0,\\ {\mathbb{I}}\times X_{n}^{d},&n\geq N\end{cases}

    with continuous mappings wj,n:𝒱jLdp(Ω)w_{j,-}^{n}:{\mathscr{V}}_{j}^{-}\to L_{d}^{p}(\Omega) satisfying wj,n(τ,0)=0w_{j,-}^{n}(\tau,0)=0 and

    • (b1)(b_{1})

      there exist C0(n),N0>0C_{0}^{-}(n),N_{0}^{-}>0 with limnC0(n)=K2Lδ2KL=:C0(0)\lim_{n\to\infty}C_{0}^{-}(n)=\tfrac{K^{2}L}{\delta-2KL}=:C_{0}^{-}(0) and for all (τ,v)𝒱j(\tau,v)\in{\mathscr{V}}_{j}^{-} holds

      lipwj,n(τ,)\displaystyle\operatorname{lip}w_{j,-}^{n}(\tau,\cdot) C0(n),\displaystyle\leq C_{0}^{-}(n), wj,n(τ,v)wj,0(τ,v)p\displaystyle\left\|w_{j,-}^{n}(\tau,v)-w_{j,-}^{0}(\tau,v)\right\|_{p} N0Γ(1n)vp,\displaystyle\leq N_{0}^{-}\Gamma(\tfrac{1}{n})\left\|v\right\|_{p},
    • (b2)(b_{2})

      if αj<βjm\alpha_{j}<\beta_{j}^{m_{-}} and δmax:=min{βjαj2,βj(1αj+βjβj+βjmm)}\delta_{\max}:=\min\Bigl{\{}\tfrac{\beta_{j}-\alpha_{j}}{2},\beta_{j}\bigl{(}1-\sqrt[m_{-}]{\frac{\alpha_{j}+\beta_{j}}{\beta_{j}+\beta_{j}^{m_{-}}}}\bigr{)}\Bigr{\}}, then the derivatives D2wj,n:𝒱jL(Ldp(Ω))D_{2}^{\ell}w_{j,-}^{n}:{\mathscr{V}}_{j}^{-}\to L_{\ell}(L_{d}^{p}(\Omega)) exist up to order mm\ell\leq m_{-}\leq m as continuous maps and for 1<m1\leq\ell<m_{-} there are N>0N_{\ell}^{-}>0 such that

      D2wj,n(τ,v)D2wj,0(τ,v)L(Ldp(Ω))\displaystyle\left\|D_{2}^{\ell}w_{j,-}^{n}(\tau,v)-D_{2}^{\ell}w_{j,-}^{0}(\tau,v)\right\|_{L_{\ell}(L_{d}^{p}(\Omega))} NΓ(1n)vpfor all (τ,v)𝒱j.\displaystyle\leq N_{\ell}^{-}\Gamma(\tfrac{1}{n})\left\|v\right\|_{p}\quad\text{for all }(\tau,v)\in{\mathscr{V}}_{j}^{-}.
  3. (c)

    If 𝕀={\mathbb{I}}={\mathbb{Z}} and L<δ6KL<\frac{\delta}{6K}, then 𝒲j,+n𝒲j,n=𝒪{\mathscr{W}}_{j,+}^{n}\cap{\mathscr{W}}_{j,-}^{n}={\mathscr{O}} and the zero solution is the only entire solution ϕ\phi to (InI_{n}) satisfying suptγtϕtp<\sup_{t\in{\mathbb{Z}}}\gamma^{-t}\left\|\phi_{t}\right\|_{p}<\infty for all γΓj\gamma\in\Gamma_{j}.

The discretization bound NN\in{\mathbb{N}} under which the bundles 𝒲j,+0,𝒲j,0{\mathscr{W}}_{j,+}^{0},{\mathscr{W}}_{j,-}^{0} of (I0I_{0}) persist for nNn\geq N is large, provided the spectral gap βjαj\beta_{j}-\alpha_{j} is small, the habitat Ωκ\Omega\subset{\mathbb{R}}^{\kappa} is large (in terms of its diameter), the Lipschitz constants λ¯t\bar{\lambda}_{t} or the ‘operator norms’ in (8) are large, or the convergence rate via Γ\Gamma is small.

In case j=0j=0 the bundles constructed in Thm. 3.3 reduce to 𝒲0,+n=𝕀×Ldp(Ω){\mathscr{W}}_{0,+}^{n}={\mathbb{I}}\times L_{d}^{p}(\Omega) and 𝒲0,n=𝒪{\mathscr{W}}_{0,-}^{n}={\mathscr{O}}. Further specific mention deserves a dichotomy spectrum of the form (S11)(S_{1}^{1}) and j=Jj=J, where we have 𝒲J,+n=𝒪{\mathscr{W}}_{J,+}^{n}={\mathscr{O}} and 𝒲J,n=𝕀×Xnd{\mathscr{W}}_{J,-}^{n}={\mathbb{I}}\times X_{n}^{d} (nNn\geq N) or X(Ω)X(\Omega) (n=0n=0).

Refer to caption
Figure 4: Hyperbolic situation 1Σ1\not\in\Sigma_{\mathbb{Z}} yielding the stable bundles 𝒲j,+n{\mathscr{W}}_{j,+}^{n} and the unstable bundles 𝒲j,n{\mathscr{W}}_{j,-}^{n}
Remark 3.4 (hyperbolic case).

The trivial solution of (I0I_{0}) is called hyperbolic, if 1Σ1\not\in\Sigma_{\mathbb{Z}}. In this case we assume 1(bj+1,aj)1\in(b_{j+1},a_{j}) for some jj\in{\mathbb{N}} (see Fig. 4).

(1) Then 𝒲s:=𝒲j,+0{\mathscr{W}}_{s}:={\mathscr{W}}_{j,+}^{0} is called stable and 𝒲u:=𝒲j,0{\mathscr{W}}_{u}:={\mathscr{W}}_{j,-}^{0} unstable bundle for (I0I_{0}). The stable bundle contains the strongly stable bundles 𝒲i,+0{\mathscr{W}}_{i,+}^{0}, i>ji>j, while the unstable bundle contains the finitely many strongly unstable bundles 𝒲i,0{\mathscr{W}}_{i,-}^{0}, 0<i<j0<i<j, of (I0I_{0}).

(2) The dichotomy spectrum Σ\Sigma_{\mathbb{Z}} of (V0V_{0}) behaves upper-semicontinuously under discretization, that is, if Σn\Sigma_{\mathbb{Z}}^{n} denotes the spectrum of the discretized variational equation

vt+1=ΠnDt(0)vt,v_{t+1}=\Pi_{n}D{\mathscr{F}}_{t}(0)v_{t}, (VnV_{n})

then for each ε>0\varepsilon>0 there exists a N¯\bar{N}\in{\mathbb{N}} such that ΣnBε(Σ0)\Sigma_{\mathbb{Z}}^{n}\subseteq B_{\varepsilon}(\Sigma_{\mathbb{Z}}^{0}) for all nN¯n\geq\bar{N}. This guarantees that hyperbolicity is preserved under discretization. In particular, 𝒲i,+0{\mathscr{W}}_{i,+}^{0} persist as (strongly) stable bundles 𝒲i,+n{\mathscr{W}}_{i,+}^{n}, jij\leq i, and 𝒲j,0{\mathscr{W}}_{j,-}^{0} persists as (strongly) unstable bundles 𝒲j,n{\mathscr{W}}_{j,-}^{n}, 0<ij0<i\leq j, of the discretizations (InI_{n}) for nmax{N,N¯}n\geq\max\left\{N,\bar{N}\right\}.

Remark 3.5 (periodic IDEs).

The periodic situation kt=kt+θ:Ω×Ω𝕂d×nk_{t}=k_{t+\theta}:\Omega\times\Omega\to{\mathbb{K}}^{d\times n} and gt=gt+θ:Ω×𝕂d𝕂ng_{t}=g_{t+\theta}:\Omega\times{\mathbb{K}}^{d}\to{\mathbb{K}}^{n} for all tt\in{\mathbb{Z}} with some θ\theta\in{\mathbb{N}} is a relevant special case of general nonautonomous problems (I0I_{0}). Here the dichotomy spectrum is

Σ=|σ(Dθ(0)D1(0))|θ{0}\Sigma_{{\mathbb{Z}}}=\sqrt[\theta]{\left|\sigma(D{\mathscr{F}}_{\theta}(0)\cdots D{\mathscr{F}}_{1}(0))\right|}\setminus\left\{0\right\}

and the θ\theta-periodicity of (I0I_{0}) extends to the spatial discretizations (InI_{n}), as well as to the bundles 𝒲j,+n{\mathscr{W}}_{j,+}^{n}, 𝒲j,n{\mathscr{W}}_{j,-}^{n} for n=0n=0 and nNn\geq N. For the fibers this means 𝒲j,+n(t+θ)=𝒲j,+n(t){\mathscr{W}}_{j,+}^{n}(t+\theta)={\mathscr{W}}_{j,+}^{n}(t) and 𝒲j,n(t+θ)=𝒲j,n(t){\mathscr{W}}_{j,-}^{n}(t+\theta)={\mathscr{W}}_{j,-}^{n}(t) for all tt\in{\mathbb{Z}}.

Proof of Thm. 3.3.

Due to Prop. 2.1 the right-hand side of (I0I_{0}) is of class CmC^{m} with

tv:=Dt(0)v=Ωkt(,y)D2gt(y,0)v(y)dyfor all t𝕀,vLdp(Ω){\mathscr{L}}_{t}v:=D{\mathscr{F}}_{t}(0)v=\int_{\Omega}k_{t}(\cdot,y)D_{2}g_{t}(y,0)v(y)\,{\mathrm{d}}y\quad\text{for all }t\in{\mathbb{I}}^{\prime},\,v\in L_{d}^{p}(\Omega)

as derivative along the trivial solution. It results from the Lipschitz condition (7) and [18, p. 363, Prop. C.1.1] that |D2gt(y,0)|λ¯t(y)\left|D_{2}g_{t}(y,0)\right|\leq\bar{\lambda}_{t}(y) for all t𝕀t\in{\mathbb{I}}^{\prime} and a.a. yΩy\in\Omega. We derive from (9) that the variational equation (V0V_{0}) satisfies (4) (with kernel lt(x,y):=kt(x,y)D2gt(y,0)l_{t}(x,y):=k_{t}(x,y)D_{2}g_{t}(y,0)) and Σ𝕀(0,a0]\Sigma_{\mathbb{I}}\subseteq(0,a_{0}]; so the spectrum is of the form required in Sect. 2.2.

In order to apply the perturbation Thm. A.1 in X=Ldp(Ω)X=L_{d}^{p}(\Omega) we first specify the general difference equation (Δθ\Delta_{\theta}) as

ut+1=t(ut)+θΓ(1n)[tn(ut)t(ut)]=tut+𝒩t(ut)+θ𝒩¯t(ut)u_{t+1}={\mathscr{F}}_{t}(u_{t})+\tfrac{\theta}{\Gamma(\tfrac{1}{n})}\left[{\mathscr{F}}_{t}^{n}(u_{t})-{\mathscr{F}}_{t}(u_{t})\right]={\mathscr{L}}_{t}u_{t}+{\mathscr{N}}_{t}(u_{t})+\theta\bar{\mathscr{N}}_{t}(u_{t}) (12)

depending on a real parameter θ\theta and with the functions 𝒩t,𝒩¯t:Ldp(Ω)Ldp(Ω){\mathscr{N}}_{t},\bar{\mathscr{N}}_{t}:L_{d}^{p}(\Omega)\to L_{d}^{p}(\Omega),

𝒩t(u)\displaystyle{\mathscr{N}}_{t}(u) :=t(u)Dt(0)u=Ωkt(,y)ht(y,u(y))dy,\displaystyle:={\mathscr{F}}_{t}(u)-D{\mathscr{F}}_{t}(0)u=\int_{\Omega}k_{t}(\cdot,y)h_{t}(y,u(y))\,{\mathrm{d}}y,
𝒩¯t(u)\displaystyle\bar{\mathscr{N}}_{t}(u) :=1Γ(1n)[ΠnidLdp(Ω)]t(u)=1Γ(1n)[ΠnidLdp(Ω)]Ωkt(,y)gt(y,u(y))dy,\displaystyle:=\frac{1}{\Gamma(\tfrac{1}{n})}[\Pi_{n}-\operatorname{id}_{L_{d}^{p}(\Omega)}]{\mathscr{F}}_{t}(u)=\frac{1}{\Gamma(\tfrac{1}{n})}\left[\Pi_{n}-\operatorname{id}_{L_{d}^{p}(\Omega)}\right]\int_{\Omega}k_{t}(\cdot,y)g_{t}(y,u(y))\,{\mathrm{d}}y,

where ht(y,z):=gt(y,z)D2gt(y,0)zh_{t}(y,z):=g_{t}(y,z)-D_{2}g_{t}(y,0)z. For θ=0\theta=0 the semilinear difference equation (12) reduces to the original problem (I0I_{0}), while for θ=Γ(1n)\theta=\Gamma(\tfrac{1}{n}) one obtains the spatial discretization (InI_{n}). We next verify the assumptions of Thm. A.1.

ad (H1)(H1): According to the choice of αj<βj\alpha_{j}<\beta_{j}, we obtain that the variational equation (V0V_{0}) along the trivial solution satisfies the dichotomy estimates (24) with real constants K1K\geq 1, α=αj\alpha=\alpha_{j}, β=βj\beta=\beta_{j} and an invariant projector PtL(Ldp(Ω))P_{t}\in L(L_{d}^{p}(\Omega)), t𝕀t\in{\mathbb{I}}. By the choice of γΓj\gamma\in\Gamma_{j} one has R(Pt)=𝒱j+(t)R(P_{t})={\mathscr{V}}_{j}^{+}(t) (if 𝕀{\mathbb{I}} is unbounded above) and N(Pt)=𝒱j(t)N(P_{t})={\mathscr{V}}_{j}^{-}(t) (if 𝕀{\mathbb{I}} is unbounded below) for all t𝕀t\in{\mathbb{I}}.

ad (H2)(H2): From Hypothesis (ii) it immediately results that both 𝒩t{\mathscr{N}}_{t} and 𝒩¯t\bar{\mathscr{N}}_{t} vanish identically in 0. Using the Mean Value Theorem we have for all t𝕀t\in{\mathbb{I}}^{\prime} that

|ht(x,z)ht(x,z¯)|\displaystyle\left|h_{t}(x,z)-h_{t}(x,\bar{z})\right| =|gt(x,z)gt(x,z¯)D2gt(x,0)(zz¯)|\displaystyle=\left|g_{t}(x,z)-g_{t}(x,\bar{z})-D_{2}g_{t}(x,0)(z-\bar{z})\right|
=|01D2gt(x,z¯+ϑ(zz¯))D2gt(x,0)dϑ(zz¯)|\displaystyle=\left|\int_{0}^{1}D_{2}g_{t}(x,\bar{z}+\vartheta(z-\bar{z}))-D_{2}g_{t}(x,0)\,{\mathrm{d}}\vartheta(z-\bar{z})\right|
01|D2gt(x,z¯+ϑ(zz¯))D2gt(x,0)|dϑ|zz¯|(6)λt(x)|zz¯|\displaystyle\leq\int_{0}^{1}\left|D_{2}g_{t}(x,\bar{z}+\vartheta(z-\bar{z}))-D_{2}g_{t}(x,0)\right|\,{\mathrm{d}}\vartheta\left|z-\bar{z}\right|\stackrel{{\scriptstyle\eqref{no7s}}}{{\leq}}\lambda_{t}(x)\left|z-\bar{z}\right|

for a.a. xΩx\in\Omega and z,z¯𝕂dz,\bar{z}\in{\mathbb{K}}^{d}. Hence, if t:Ldp(Ω)Lnq(Ω){\mathscr{H}}_{t}:L_{d}^{p}(\Omega)\to L_{n}^{q}(\Omega) denotes the Nemytskii operator induced by hth_{t}, then Cor. B.3 implies for t𝕀t\in{\mathbb{I}}^{\prime} that 𝒩t=𝒦tt{\mathscr{N}}_{t}={\mathscr{K}}_{t}{\mathscr{H}}_{t} and then

𝒩t(u)𝒩t(u¯)p\displaystyle\left\|{\mathscr{N}}_{t}(u)-{\mathscr{N}}_{t}(\bar{u})\right\|_{p} 𝒦tL(Lnq(Ω),Ldp(Ω))t(u)t(u¯)q\displaystyle\leq\left\|{\mathscr{K}}_{t}\right\|_{L(L_{n}^{q}(\Omega),L_{d}^{p}(\Omega))}\left\|{\mathscr{H}}_{t}(u)-{\mathscr{H}}_{t}(\bar{u})\right\|_{q}
(34)(Ω(Ω|kt(x,y)|qdy)pqdx)1pt(u)t(u¯)q\displaystyle\stackrel{{\scriptstyle\eqref{propmak1}}}{{\leq}}\biggl{(}\int_{\Omega}\biggl{(}\int_{\Omega}\left|k_{t}(x,y)\right|^{q^{\prime}}\,{\mathrm{d}}y\biggr{)}^{\tfrac{p}{q^{\prime}}}\,{\mathrm{d}}x\biggr{)}^{\tfrac{1}{p}}\left\|{\mathscr{H}}_{t}(u)-{\mathscr{H}}_{t}(\bar{u})\right\|_{q}
(35)(Ω(Ω|kt(x,y)|qdy)pqdx)1p(Ωλt(y)ppqdy)pqpuu¯p\displaystyle\stackrel{{\scriptstyle\eqref{cormag2}}}{{\leq}}\biggl{(}\int_{\Omega}\biggl{(}\int_{\Omega}\left|k_{t}(x,y)\right|^{q^{\prime}}\,{\mathrm{d}}y\biggr{)}^{\tfrac{p}{q^{\prime}}}\,{\mathrm{d}}x\biggr{)}^{\tfrac{1}{p}}\biggl{(}\int_{\Omega}\lambda_{t}(y)^{\tfrac{p}{p-q}}\,{\mathrm{d}}y\biggr{)}^{\tfrac{p-q}{p}}\left\|u-\bar{u}\right\|_{p}
(8)Luu¯pfor all u,u¯Ldp(Ω).\displaystyle\stackrel{{\scriptstyle\eqref{no63}}}{{\leq}}L\left\|u-\bar{u}\right\|_{p}\quad\text{for all }u,\bar{u}\in L_{d}^{p}(\Omega).

Concerning the nonlinearities 𝒩¯t\bar{\mathscr{N}}_{t} we obtain from the X(Ω)X(\Omega)-smoothing property assumed in Hypothesis (i) that t=𝒦t𝒢t{\mathscr{F}}_{t}={\mathscr{K}}_{t}{\mathscr{G}}_{t} maps into X(Ω)X(\Omega) and thus for t𝕀t\in{\mathbb{I}}^{\prime} that

𝒩¯t(u)𝒩¯t(u¯)p\displaystyle\left\|\bar{\mathscr{N}}_{t}(u)-\bar{\mathscr{N}}_{t}(\bar{u})\right\|_{p} =1Γ(1n)[ΠnidLdp(Ω)][t(u)t(u¯)]p(10)t(u)t(u¯)X(Ω)\displaystyle=\tfrac{1}{\Gamma(\tfrac{1}{n})}\left\|[\Pi_{n}-\operatorname{id}_{L_{d}^{p}(\Omega)}][{\mathscr{F}}_{t}(u)-{\mathscr{F}}_{t}(\bar{u})]\right\|_{p}\stackrel{{\scriptstyle\eqref{thmpifb4}}}{{\leq}}\left\|{\mathscr{F}}_{t}(u)-{\mathscr{F}}_{t}(\bar{u})\right\|_{X(\Omega)}
(5)Ct𝒢t(u)𝒢t(u¯)q(35)Ct(Ωλ¯t(y)ppqdy)pqpuu¯p\displaystyle\stackrel{{\scriptstyle\eqref{nosmooth}}}{{\leq}}C_{t}\left\|{\mathscr{G}}_{t}(u)-{\mathscr{G}}_{t}(\bar{u})\right\|_{q}\stackrel{{\scriptstyle\eqref{cormag2}}}{{\leq}}C_{t}\biggl{(}\int_{\Omega}\bar{\lambda}_{t}(y)^{\tfrac{p}{p-q}}\,{\mathrm{d}}y\biggr{)}^{\tfrac{p-q}{p}}\left\|u-\bar{u}\right\|_{p}

for all u,u¯Ldp(Ω)u,\bar{u}\in L_{d}^{p}(\Omega), yielding (H2)(H2) with L¯:=supt𝕀Ct(Ωλ¯t(y)ppqdy)pqp<\bar{L}:=\sup_{t\in{\mathbb{I}}^{\prime}}C_{t}\biggl{(}\int_{\Omega}\bar{\lambda}_{t}(y)^{\tfrac{p}{p-q}}\,{\mathrm{d}}y\biggr{)}^{\tfrac{p-q}{p}}<\infty. We now choose NN\in{\mathbb{N}} so large that L¯Γ(1n)L\bar{L}\Gamma(\tfrac{1}{n})\leq L holds for all nNn\geq N, which ensures the inclusion Γ(1n)Θ:={θ:L¯|θ|L}\Gamma(\tfrac{1}{n})\in\Theta:=\left\{\theta\in{\mathbb{R}}:\,\bar{L}\left|\theta\right|\leq L\right\}.

ad (H3)(H3): From the Chain Rule, for 1<m1<\ell\leq m we directly conclude the derivatives

D𝒩t(u)\displaystyle D^{\ell}{\mathscr{N}}_{t}(u) =𝒦tD𝒢t(u),\displaystyle={\mathscr{K}}_{t}D^{\ell}{\mathscr{G}}_{t}(u), D𝒩¯t(u)\displaystyle D^{\ell}\bar{\mathscr{N}}_{t}(u) =1Γ(1n)[ΠnidLdp(Ω)]𝒦tD𝒢t(u)for all t𝕀\displaystyle=\tfrac{1}{\Gamma(\tfrac{1}{n})}[\Pi_{n}-\operatorname{id}_{L_{d}^{p}(\Omega)}]{\mathscr{K}}_{t}D^{\ell}{\mathscr{G}}_{t}(u)\quad\text{for all }t\in{\mathbb{I}}^{\prime}

and uLdp(Ω)u\in L_{d}^{p}(\Omega). If q:=pqpqq_{\ell}:=\tfrac{pq}{p-\ell q}, then it is a consequence of Prop. B.4(b) and

D𝒩t(u)L(Ldp(Ω))\displaystyle\left\|D^{\ell}{\mathscr{N}}_{t}(u)\right\|_{L_{\ell}(L_{d}^{p}(\Omega))} 𝒦tL(Lnq(Ω),Ldp(Ω))D𝒢t(u)L(Ldp(Ω),Lnq(Ω))\displaystyle\leq\left\|{\mathscr{K}}_{t}\right\|_{L(L_{n}^{q}(\Omega),L_{d}^{p}(\Omega))}\left\|D^{\ell}{\mathscr{G}}_{t}(u)\right\|_{L_{\ell}(L_{d}^{p}(\Omega),L_{n}^{q}(\Omega))}
𝒦tL(Lnq(Ω),Ldp(Ω))(cq+cupq/q)\displaystyle\leq\left\|{\mathscr{K}}_{t}\right\|_{L(L_{n}^{q}(\Omega),L_{d}^{p}(\Omega))}\left(\left\|c\right\|_{q_{\ell}}+c_{\ell}\left\|u\right\|_{p}^{q/q_{\ell}}\right)

combined with c2==cm=0c_{2}=\ldots=c_{m}=0 that the derivatives D𝒩tD^{\ell}{\mathscr{N}}_{t} are globally bounded (uniformly in t𝕀t\in{\mathbb{I}}^{\prime}). Similarly, for all t𝕀t\in{\mathbb{I}}^{\prime} and h1,,hLdp(Ω)h_{1},\ldots,h_{\ell}\in L_{d}^{p}(\Omega) one has

D𝒩¯t(u)h1hp\displaystyle\left\|D^{\ell}\bar{\mathscr{N}}_{t}(u)h_{1}\cdots h_{\ell}\right\|_{p} =1Γ(1n)[ΠnidLdp(Ω)]Dt(u)h1hp\displaystyle=\tfrac{1}{\Gamma(\tfrac{1}{n})}\left\|[\Pi_{n}-\operatorname{id}_{L_{d}^{p}(\Omega)}]D^{\ell}{\mathscr{F}}_{t}(u)h_{1}\cdots h_{\ell}\right\|_{p}
(10)𝒦tD𝒢t(u)h1hX(Ω)(5)CtD𝒢t(u)h1hq\displaystyle\stackrel{{\scriptstyle\eqref{thmpifb4}}}{{\leq}}\left\|{\mathscr{K}}_{t}D^{\ell}{\mathscr{G}}_{t}(u)h_{1}\cdots h_{\ell}\right\|_{X(\Omega)}\stackrel{{\scriptstyle\eqref{nosmooth}}}{{\leq}}C_{t}\left\|D^{\ell}{\mathscr{G}}_{t}(u)h_{1}\cdots h_{\ell}\right\|_{q}
Ct(cq+cupq/q)h1phpfor all 1<m\displaystyle\leq C_{t}\left(\left\|c\right\|_{q_{\ell}}+c_{\ell}\left\|u\right\|_{p}^{q/q_{\ell}}\right)\left\|h_{1}\right\|_{p}\cdots\left\|h_{\ell}\right\|_{p}\quad\text{for all }1<\ell\leq m

and uLdp(Ω)u\in L_{d}^{p}(\Omega), which also yields the global boundedness of D𝒩¯tD^{\ell}\bar{\mathscr{N}}_{t} (uniformly in t𝕀t\in{\mathbb{I}}^{\prime}). After these preparations we can address the proof of statements (a–c):

(a) From Thm. A.1(a) we obtain that (12) has a γ\gamma-stable bundle 𝒲+(θ)𝕀×Ldp(Ω){\mathscr{W}}^{+}(\theta)\subseteq{\mathbb{I}}\times L_{d}^{p}(\Omega) as graph of a continuous function w+(;θ):𝕀×Ldp(Ω)Ldp(Ω)w^{+}(\cdot;\theta):{\mathbb{I}}\times L_{d}^{p}(\Omega)\to L_{d}^{p}(\Omega) for all θΘ\theta\in\Theta. Then

𝒲j,+0\displaystyle{\mathscr{W}}_{j,+}^{0} :=𝒲+(0),\displaystyle:={\mathscr{W}}^{+}(0), wj,+0\displaystyle w_{j,+}^{0} :=w+(;0)|𝒱j+,\displaystyle:=w^{+}(\cdot;0)|_{{\mathscr{V}}_{j}^{+}},
𝒲j,+n\displaystyle{\mathscr{W}}_{j,+}^{n} :=𝒲+(Γ(1n)),\displaystyle:={\mathscr{W}}^{+}(\Gamma(\tfrac{1}{n})), wj,+n\displaystyle w_{j,+}^{n} :=w+(;Γ(1n))|𝒱j+for all nN,\displaystyle:=w^{+}(\cdot;\Gamma(\tfrac{1}{n}))|_{{\mathscr{V}}_{j}^{+}}\quad\text{for all }n\geq N,

yield the γ\gamma-stable bundles of (I0I_{0}) and (InI_{n}) resp. the mappings parametrizing them; in particular, wj,+n(τ,0)0w_{j,+}^{n}(\tau,0)\equiv 0 on 𝕀{\mathbb{I}}. Thm. A.1(a2)(a_{2}) guarantees the Lipschitz conditions

lipwj,+0(τ,)\displaystyle\operatorname{lip}w_{j,+}^{0}(\tau,\cdot) (26)K2Lδ2KL,\displaystyle\stackrel{{\scriptstyle\eqref{noA3}}}{{\leq}}\frac{K^{2}L}{\delta-2KL}, lipwj,+n(τ,)\displaystyle\operatorname{lip}w_{j,+}^{n}(\tau,\cdot) (26)K2(L+Γ(1n)L¯)δK(L+Γ(1n)L¯)for all τ𝕀,nN\displaystyle\stackrel{{\scriptstyle\eqref{noA3}}}{{\leq}}\frac{K^{2}(L+\Gamma(\tfrac{1}{n})\bar{L})}{\delta-K(L+\Gamma(\tfrac{1}{n})\bar{L})}\quad\text{for all }\tau\in{\mathbb{I}},\,n\geq N

and defining C0+(0):=K2Lδ2KLC_{0}^{+}(0):=\tfrac{K^{2}L}{\delta-2KL}, C0+(n):=K2(L+Γ(1n)L¯)δK(L+Γ(1n)L¯)C_{0}^{+}(n):=\tfrac{K^{2}(L+\Gamma(\tfrac{1}{n})\bar{L})}{\delta-K(L+\Gamma(\tfrac{1}{n})\bar{L})} yields limnC0+(n)=C0+(0)\lim_{n\to\infty}C_{0}^{+}(n)=C_{0}^{+}(0). Furthermore, the Lipschitz estimate (27) leads to

wj,+n(τ,v)wj,+0(τ,v)p\displaystyle\left\|w_{j,+}^{n}(\tau,v)-w_{j,+}^{0}(\tau,v)\right\|_{p} =w+(τ,v;Γ(1n))w+(τ,v;0)p\displaystyle=\left\|w^{+}(\tau,v;\Gamma(\tfrac{1}{n}))-w^{+}(\tau,v;0)\right\|_{p}
2δK3L¯(δ4KL¯)2Γ(1n)vpfor all (τ,v)𝒱j+,nN.\displaystyle\leq\frac{2\delta K^{3}\bar{L}}{(\delta-4K\bar{L})^{2}}\Gamma(\tfrac{1}{n})\left\|v\right\|_{p}\quad\text{for all }(\tau,v)\in{\mathscr{V}}_{j}^{+},\,n\geq N.

If we set N0+:=2δK3L¯(δ4KL¯)2N_{0}^{+}:=\tfrac{2\delta K^{3}\bar{L}}{(\delta-4K\bar{L})^{2}}, then this establishes the assertion (a1)(a_{1}). Under the additional assumptions imposed for (a2)(a_{2}) we obtain from Thm. A.1(a3)(a_{3}) that the partial derivatives D3D2w+D_{3}D_{2}^{\ell}w_{+} exist for 0<m+0\leq\ell<m_{+}. The Mean Value Estimate implies

D2wj,+n(τ,v)D2wj,+0(τ,v)p\displaystyle\left\|D_{2}^{\ell}w_{j,+}^{n}(\tau,v)-D_{2}^{\ell}w_{j,+}^{0}(\tau,v)\right\|_{p} =D2w+(τ,v;Γ(1n))D2w+(τ,v;0)p\displaystyle=\left\|D_{2}^{\ell}w^{+}(\tau,v;\Gamma(\tfrac{1}{n}))-D_{2}^{\ell}w^{+}(\tau,v;0)\right\|_{p}
supθΘD3D2w+(τ,v;θ)pΓ(1n)(29)N+vpΓ(1n)\displaystyle\leq\sup_{\theta\in\Theta}\left\|D_{3}D_{2}^{\ell}w^{+}(\tau,v;\theta)\right\|_{p}\Gamma(\tfrac{1}{n})\stackrel{{\scriptstyle\eqref{thmifb6}}}{{\leq}}N^{+}\left\|v\right\|_{p}\Gamma(\tfrac{1}{n})

for all (τ,v)𝒱j+(\tau,v)\in{\mathscr{V}}_{j}^{+} and nNn\geq N implying the error estimate in (a2)(a_{2}).

(b) This results parallel to (a) using Thm. A.1(b). In particular, 𝒲j,0:=𝒲(0){\mathscr{W}}_{j,-}^{0}:={\mathscr{W}}^{-}(0) and 𝒲j,n:=𝒲(Γ(1n)){\mathscr{W}}_{j,-}^{n}:={\mathscr{W}}^{-}(\Gamma(\tfrac{1}{n})) are graphs over the linear bundle 𝒱j{\mathscr{V}}_{j}^{-}. Since the right-hand sides of (I0I_{0}) are completely continuous due to Prop. 2.1, we obtain from [15, p. 89, Prop. 6.5] that the derivatives in the variational equation (V0V_{0}) are compact operators in L(Ldp(Ω))L(L_{d}^{p}(\Omega)). Therefore, [22, Cor. 4.13] implies that 𝒱j{\mathscr{V}}_{j}^{-} is finite-dimensional, which transfers to 𝒲j,n{\mathscr{W}}_{j,-}^{n} for n=0n=0 and nNn\geq N. Moreover, due to the invariance 𝒲j,n(t+1)=tn(𝒲j,n(t))Xnd{\mathscr{W}}_{j,-}^{n}(t+1)={\mathscr{F}}_{t}^{n}({\mathscr{W}}_{j,-}^{n}(t))\subseteq X_{n}^{d} for all t𝕀t\in{\mathbb{I}}^{\prime} one has 𝒲j,n𝕀×Xnd{\mathscr{W}}_{j,-}^{n}\subseteq{\mathbb{I}}\times X_{n}^{d} for nNn\geq N and similarly the smoothing property required in Hypothesis (i) implies 𝒲j,0𝕀×X(Ω){\mathscr{W}}_{j,-}^{0}\subseteq{\mathbb{I}}\times X(\Omega).

(c) is a direct consequence of Thm. A.1(c). ∎

3.2 Pseudo-center bundles

Complementing Thm. 3.3, we next establish that also the intersections

𝒱i,j:=𝒱i+𝒱jfor i<j{\mathscr{V}}_{i,j}:={\mathscr{V}}_{i}^{+}\cap{\mathscr{V}}_{j}^{-}\quad\text{for }i<j

and thus the spectral bundles 𝒱j=𝒱j1,1{\mathscr{V}}_{j}={\mathscr{V}}_{j-1,1} of (V0V_{0}) persist under nonlinear perturbations, as well as spatial discretization as invariant bundles.

Theorem 3.6 (pseudo-center bundles under discretization).

Let Hypotheses (i–iii) hold with 𝕀={\mathbb{I}}={\mathbb{Z}}, 0<γj<γi0<\gamma_{j}<\gamma_{i}, i,j0i,j\in{\mathbb{N}}_{0}, be as in (S1)(S_{1}) or (S2)(S_{2}), choose αk<βk\alpha_{k}<\beta_{k} so that

αk\displaystyle\alpha_{k} <γk<βk,\displaystyle<\gamma_{k}<\beta_{k}, (αk,βk)Σ\displaystyle(\alpha_{k},\beta_{k})\cap\Sigma_{\mathbb{Z}} = for k{i,j}\displaystyle=\emptyset\quad\text{ for }k\in\left\{i,j\right\}

and let 𝒱i+,𝒱j{\mathscr{V}}_{i}^{+},{\mathscr{V}}_{j}^{-} denote the associated linear bundles of the variational equation (V0V_{0}). Then there are Ki,Kj1K_{i},K_{j}\geq 1 depending only on (V0V_{0}), so that if Kmax:=maxk{i,j}(Kk2+2Kk)K_{\max}:=\!\displaystyle\max_{k\in\left\{i,j\right\}}(K_{k}^{2}+2K_{k}),

L\displaystyle L <δmax2Kmax,\displaystyle<\frac{\delta_{\max}}{2K_{\max}}, δmax\displaystyle\delta_{\max} :=mink{i,j}βkαk2,\displaystyle:=\min_{k\in\left\{i,j\right\}}\frac{\beta_{k}-\alpha_{k}}{2}, (13)

δ(4KmaxL,δmax]\delta\in(4K_{\max}L,\delta_{\max}] is fixed and Γk:=[αk+δ,βkδ]\Gamma_{k}:=[\alpha_{k}+\delta,\beta_{k}-\delta] for k{i,j}k\in\left\{i,j\right\}, then there exists a NN\in{\mathbb{N}} such that for n=0n=0 and nNn\geq N the pseudo-center bundle

𝒲i,jn\displaystyle{\mathscr{W}}_{i,j}^{n} :=𝒲i,+n𝒲j,n\displaystyle:={\mathscr{W}}_{i,+}^{n}\cap{\mathscr{W}}_{j,-}^{n}
={(τ,u)×Ldp(Ω):supτtγiτtφn(t;τ,u)p< and thereexists a solution (ϕt)t of (In) suchthat suptτγjτtϕtp< and ϕτ=u}\displaystyle=\left\{(\tau,u)\in{\mathbb{Z}}\times L_{d}^{p}(\Omega):\begin{array}[]{l}\sup_{\tau\leq t}\gamma_{i}^{\tau-t}\left\|\varphi^{n}(t;\tau,u)\right\|_{p}<\infty\text{ and there}\\ \text{exists a solution }(\phi_{t})_{t\in{\mathbb{Z}}}\text{ of \eqref{iden} such}\\ \text{that }\sup_{t\leq\tau}\gamma_{j}^{\tau-t}\left\|\phi_{t}\right\|_{p}<\infty\text{ and }\phi_{\tau}=u\end{array}\right\}

is a finite-dimensional (unless for spectra (S11)(S_{1}^{1}) and j=Jj=J) invariant bundle of (InI_{n}), which is independent of γiΓi\gamma_{i}\in\Gamma_{i}, γjΓj\gamma_{j}\in\Gamma_{j} and allows the representation

𝒲i,jn={(τ,v+wi,jn(τ,v))×Ldp(Ω):(τ,v)𝒱i,j}{×X(Ω),n=0,×Xnd,nN{\mathscr{W}}_{i,j}^{n}=\left\{(\tau,v+w_{i,j}^{n}(\tau,v))\in{\mathbb{Z}}\times L_{d}^{p}(\Omega):(\tau,v)\in{\mathscr{V}}_{i,j}\right\}\subseteq\begin{cases}{\mathbb{Z}}\times X(\Omega),&n=0,\\ {\mathbb{Z}}\times X_{n}^{d},&n\geq N\end{cases}

with continuous mappings wi,jn:𝒱i,jLdp(Ω)w_{i,j}^{n}:{\mathscr{V}}_{i,j}\to L_{d}^{p}(\Omega) satisfying wi,jn(τ,0)=0w_{i,j}^{n}(\tau,0)=0 and

  • (a)

    there exist C0(n),N0>0C_{0}(n),N_{0}>0 with limnC0(n)=maxk{i,j}Kk2Lδ(Kk2+2Kk)L=:C0(0)\lim_{n\to\infty}C_{0}(n)=\max_{k\in\left\{i,j\right\}}\frac{K_{k}^{2}L}{\delta-(K_{k}^{2}+2K_{k})L}=:C_{0}(0) and for all (τ,v)𝒱i,j(\tau,v)\in{\mathscr{V}}_{i,j} holds

    lipwi,jn(τ,)\displaystyle\operatorname{lip}w_{i,j}^{n}(\tau,\cdot) C0(n),\displaystyle\leq C_{0}(n), wi,jn(τ,v)wi,j0(τ,v)p\displaystyle\left\|w_{i,j}^{n}(\tau,v)-w_{i,j}^{0}(\tau,v)\right\|_{p} N0Γ(1n)vp,\displaystyle\leq N_{0}\Gamma(\tfrac{1}{n})\left\|v\right\|_{p}, (14)
  • (b)

    if αim<βi\alpha_{i}^{m}<\beta_{i}, αj<βjm\alpha_{j}<\beta_{j}^{m} and

    δmax:=min{βiαi2,βjαj2,αi(αi+βiαi+αimm1),βj(1αj+βjβj+βjmm)},\delta_{\max}:=\min\Bigl{\{}\tfrac{\beta_{i}-\alpha_{i}}{2},\tfrac{\beta_{j}-\alpha_{j}}{2},\alpha_{i}\bigl{(}\sqrt[m]{\tfrac{\alpha_{i}+\beta_{i}}{\alpha_{i}+\alpha_{i}^{m}}}-1\bigr{)},\beta_{j}\bigl{(}1-\sqrt[m]{\tfrac{\alpha_{j}+\beta_{j}}{\beta_{j}+\beta_{j}^{m}}}\bigr{)}\Bigr{\}},

    then the derivatives D2wi,jn:𝒱i,jL(Ldp(Ω))D_{2}^{\ell}w_{i,j}^{n}:{\mathscr{V}}_{i,j}\to L_{\ell}(L_{d}^{p}(\Omega)) exist up to order m\ell\leq m as continuous maps and for 1<m1\leq\ell<m there exist N>0N_{\ell}>0 such that

    D2wi,jn(τ,v)D2wi,j0(τ,v)L(Ldp(Ω))\displaystyle\left\|D_{2}^{\ell}w_{i,j}^{n}(\tau,v)-D_{2}^{\ell}w_{i,j}^{0}(\tau,v)\right\|_{L_{\ell}(L_{d}^{p}(\Omega))} NΓ(1n)vpfor all (τ,v)𝒱i,j.\displaystyle\leq N_{\ell}\Gamma(\tfrac{1}{n})\left\|v\right\|_{p}\quad\text{for all }(\tau,v)\in{\mathscr{V}}_{i,j}.

The magnitude of NN is determined by the same factors as in Thm. 3.3. We furthermore point out spectra (S11)(S_{1}^{1}) and j=Jj=J, in which 𝒲i,Jn=𝒲i,+n{\mathscr{W}}_{i,J}^{n}={\mathscr{W}}_{i,+}^{n} for all i<Ji<J.

Remark 3.7 (extended hierarchy).

For dichotomy spectra Σ\Sigma_{\mathbb{Z}} of the form (S1)(S_{1}) choose JJ\in{\mathbb{N}} as in Sect. 2.2, while for spectra (S2)(S_{2}) let JJ\in{\mathbb{N}} be arbitrary. Then it results from their dynamical characterization and (25) that the bundles constructed in Thms. 3.3 and 3.6 satisfy the following inclusions denoted as extended hierarchy

𝒲J,+n𝒲J1,+n𝒲2,+n𝒲1,+n×Ldp(Ω)𝒲J1,Jn𝒲2,Jn𝒲1,Jn𝒲J,n𝒲1,2n𝒲2,n𝒲1,n.\begin{array}[]{ccccccccccc}{\mathscr{W}}_{J,+}^{n}&\subset&{\mathscr{W}}_{J-1,+}^{n}&\subset&\ldots&\subset&{\mathscr{W}}_{2,+}^{n}&\subset&{\mathscr{W}}_{1,+}^{n}&\subset&{\mathbb{Z}}\times L_{d}^{p}(\Omega)\\ &&\cup&&&&\cup&&\cup&&\cup\\ &&{\mathscr{W}}_{J-1,J}^{n}&\subset&\ldots&\subset&{\mathscr{W}}_{2,J}^{n}&\subset&{\mathscr{W}}_{1,J}^{n}&\subset&{\mathscr{W}}_{J,-}^{n}\\ &&&&&&&&\cup&&\cup\\ &&&&&\ddots&&&\vdots&&\vdots\\ &&&&&&&&\cup&&\cup\\ &&&&&&&&{\mathscr{W}}_{1,2}^{n}&\subset&{\mathscr{W}}_{2,-}^{n}\\ &&&&&&&&&&\cup\\ &&&&&&&&&&{\mathscr{W}}_{1,-}^{n}.\end{array}
Refer to caption
Figure 5: Nonhyperbolic situation where 11 is contained in the spectral interval [aj,bj][a_{j},b_{j}]
Remark 3.8 (persistence and center bundles).

In a nonhyperbolic situation 1[aj,bj]1\in[a_{j},b_{j}] for some 1<j<J1<j<J (see Fig. 5), 𝒲s=𝒲j,+0{\mathscr{W}}_{s}={\mathscr{W}}_{j,+}^{0} is the stable, 𝒲cs:=𝒲j1,+0{\mathscr{W}}_{cs}:={\mathscr{W}}_{j-1,+}^{0} the center-stable, 𝒲cu:=𝒲j,0{\mathscr{W}}_{cu}:={\mathscr{W}}_{j,-}^{0} the center-unstable and 𝒲u=𝒲j1,0{\mathscr{W}}_{u}={\mathscr{W}}_{j-1,-}^{0} the unstable bundle of (I0I_{0}), while the center bundle 𝒲c:=𝒲j1,j0{\mathscr{W}}_{c}:={\mathscr{W}}_{j-1,j}^{0} completes the classical hierarchy (cf. (1)). Now a center bundle, by definition, is graph over the spectral bundle 𝒱j{\mathscr{V}}_{j} associated to the spectral interval containing 11. Although the center bundle 𝒲c{\mathscr{W}}_{c} of (I0I_{0}) persists as invariant bundles 𝒲j1,jn{\mathscr{W}}_{j-1,j}^{n} for all nNn\geq N, in general these sets 𝒲j1,jn{\mathscr{W}}_{j-1,j}^{n} fail to be center bundles of the discretizations (InI_{n}). This is due to the fact that 11 needs not to be contained in the dichotomy spectrum Σn\Sigma_{\mathbb{Z}}^{n} of the discretized variational equations (VnV_{n}). For instance, one can think of a singleton interval [aj,bj]={1}[a_{j},b_{j}]=\left\{1\right\} moving away from 11 under discretization or the fact that a solid spectral interval [aj,bj][a_{j},b_{j}] splits into subintervals, which is possible by the upper-semicontinuity of the spectrum Σ\Sigma_{\mathbb{Z}}.

Proof of Thm. 3.6.

Above all, choose i<ji<j fixed and we stay in the terminology established in the proof of Thm. 3.3.

(I) Our present assumptions yield that Thm. A.1 applies to IDEs (12) in X=Ldp(Ω)X=L_{d}^{p}(\Omega). Therefore, for each θΘ\theta\in\Theta there exists a γi\gamma_{i}-stable bundle 𝒲+(θ){\mathscr{W}}^{+}(\theta) being a graph of a mapping w+(;θ):𝒱i+Ldp(Ω)w^{+}(\cdot;\theta):{\mathscr{V}}_{i}^{+}\to L_{d}^{p}(\Omega) and a γj\gamma_{j}-unstable bundle 𝒲(θ){\mathscr{W}}^{-}(\theta) represented as graph of w(;θ):𝒱jLdp(Ω)w^{-}(\cdot;\theta):{\mathscr{V}}_{j}^{-}\to L_{d}^{p}(\Omega). The fact that their intersection can be represented as graph of a mapping w(;θ):𝕀×Ldp(Ω)Ldp(Ω)w(\cdot;\theta):{\mathbb{I}}\times L_{d}^{p}(\Omega)\to L_{d}^{p}(\Omega) over 𝒱:=𝒱i,j{\mathscr{V}}:={\mathscr{V}}_{i,j} is shown as in the proof of [18, p. 208, Prop. 4.2.17]. Hence, it remains to establish the convergence statements. For this purpose, we choose θΘ\theta\in\Theta and obtain from Thm. A.1 that

lipw+(τ,;θ)\displaystyle\operatorname{lip}w^{+}(\tau,\cdot;\theta) (26)2Ki2Lδ4KiL<1,\displaystyle\stackrel{{\scriptstyle\eqref{noA3}}}{{\leq}}\frac{2K_{i}^{2}L}{\delta-4K_{i}L}<1, lipw(τ,;θ)\displaystyle\operatorname{lip}w^{-}(\tau,\cdot;\theta) (30)2Kj2Lδ4KjL<1for all τ\displaystyle\stackrel{{\scriptstyle\eqref{noA7}}}{{\leq}}\frac{2K_{j}^{2}L}{\delta-4K_{j}L}<1\quad\text{for all }\tau\in{\mathbb{Z}}

due to our strengthened assumptions (13) (in comparison to (11)); for this note that |θ|L¯L\left|\theta\right|\bar{L}\leq L due to θΘ\theta\in\Theta. This implies that

Tτ:Ldp(Ω)2×Ldp(Ω)×Θ\displaystyle T_{\tau}:L_{d}^{p}(\Omega)^{2}\times L_{d}^{p}(\Omega)\times\Theta Ldp(Ω)2,\displaystyle\to L_{d}^{p}(\Omega)^{2}, Tτ(u,w,v,θ)\displaystyle T_{\tau}(u,w,v,\theta) :=(w+(τ,v+w;θ)w(τ,u+v;θ))\displaystyle:=\begin{pmatrix}w^{+}(\tau,v+w;\theta)\\ w^{-}(\tau,u+v;\theta)\end{pmatrix}

is a contraction in its first two arguments (u,w)Ldp(Ω)2(u,w)\in L_{d}^{p}(\Omega)^{2}, uniformly in the parameters (v,θ)Ldp(Ω)×Θ(v,\theta)\in L_{d}^{p}(\Omega)\times\Theta, with the Lipschitz constant maxk{i,j}2Kk2Lδ4KkL<1\max_{k\in\left\{i,j\right\}}\frac{2K_{k}^{2}L}{\delta-4K_{k}L}<1. Based on its unique fixed point (Υτ+,Υτ)(v,θ)Ldp(Ω)2(\Upsilon_{\tau}^{+},\Upsilon_{\tau}^{-})(v,\theta)\in L_{d}^{p}(\Omega)^{2} we define the mapping

w(τ,v;θ):=Υτ+(v,θ)+Υτ(v,θ)for all τ𝕀,vLdp(Ω),θΘ,w(\tau,v;\theta):=\Upsilon_{\tau}^{+}(v,\theta)+\Upsilon_{\tau}^{-}(v,\theta)\quad\text{for all }\tau\in{\mathbb{I}},\,v\in L_{d}^{p}(\Omega),\,\theta\in\Theta, (15)

depending only on the projection of vLdp(Ω)v\in L_{d}^{p}(\Omega) onto 𝒱(τ){\mathscr{V}}(\tau). Given θ,θ¯Θ\theta,\bar{\theta}\in\Theta and with Υτ:=(Υτ+,Υτ)\Upsilon_{\tau}:=(\Upsilon_{\tau}^{+},\Upsilon_{\tau}^{-}), using the Lipschitz estimates (27), (31) from Thm. A.1 we obtain as in the proof of [17, Thm. 4.2] that there exists a constant N~00\tilde{N}_{0}\geq 0 such that

Υτ(v,θ)Υτ(v,θ¯)N~0vp|θθ¯|for all (τ,v)𝒱.\left\|\Upsilon_{\tau}(v,\theta)-\Upsilon_{\tau}(v,\bar{\theta})\right\|\leq\tilde{N}_{0}\left\|v\right\|_{p}\left|\theta-\bar{\theta}\right|\quad\text{for all }(\tau,v)\in{\mathscr{V}}. (16)

Referring to (15) this guarantees

w(τ,v;θ)w(τ,v;θ¯)p2N~0vp|θθ¯|for all (τ,v)𝒱,θ,θ¯Θ.\left\|w(\tau,v;\theta)-w(\tau,v;\bar{\theta})\right\|_{p}\leq 2\tilde{N}_{0}\left\|v\right\|_{p}\left|\theta-\bar{\theta}\right|\quad\text{for all }(\tau,v)\in{\mathscr{V}},\,\theta,\bar{\theta}\in\Theta. (17)

(II) Now suppose that both spectral gap conditions αim<βi\alpha_{i}^{m}<\beta_{i}, αj<βjm\alpha_{j}<\beta_{j}^{m} hold yielding that w+(τ,)w^{+}(\tau,\cdot) and w(τ,)w^{-}(\tau,\cdot) are of class CmC^{m} with globally bounded partial derivatives of order 1m1\leq\ell\leq m w.r.t. vv due to (28) and (32). In order to establish that there exist constants N~0\tilde{N}_{\ell}\geq 0 such that

D2D1Υτ(v,θ)L(Ldp(Ω),Ldp(Ω)2)N~vpfor all (τ,v)𝒱,θΘ,\left\|D_{2}D_{1}^{\ell}\Upsilon_{\tau}(v,\theta)\right\|_{L_{\ell}(L_{d}^{p}(\Omega),L_{d}^{p}(\Omega)^{2})}\leq\tilde{N}_{\ell}\left\|v\right\|_{p}\quad\text{for all }(\tau,v)\in{\mathscr{V}},\,\theta\in\Theta, (18)

we proceed by mathematical induction. For =0\ell=0 the bound on D2ΥτD_{2}\Upsilon_{\tau} results from the Lipschitz condition (16) combined with [18, p. 363, Prop. C.1.1]. Differentiating the fixed-point identity Υτ(v,θ)Tτ(Υτ(v,θ),v,θ)\Upsilon_{\tau}(v,\theta)\equiv T_{\tau}(\Upsilon_{\tau}(v,\theta),v,\theta) on 𝒱×Θ{\mathscr{V}}\times\Theta w.r.t. θ\theta first implies

D2Υτ(v,θ)D(1,2)Tτ(Υτ(v,θ),v,θ)D2Υτ(v,θ)+D4Tτ(Υτ(v,θ),v,θ)D_{2}\Upsilon_{\tau}(v,\theta)\equiv D_{(1,2)}T_{\tau}(\Upsilon_{\tau}(v,\theta),v,\theta)D_{2}\Upsilon_{\tau}(v,\theta)+D_{4}T_{\tau}(\Upsilon_{\tau}(v,\theta),v,\theta) (19)

on 𝒱×Θ{\mathscr{V}}\times\Theta and then thanks to the Product and Chain Rule (with partially unfolded derivative tree) the derivatives of (19) w.r.t. vv of order 1<m1\leq\ell<m read as

D2D1Υτ(v,θ)\displaystyle D_{2}D_{1}^{\ell}\Upsilon_{\tau}(v,\theta)\equiv D(1,2)Tτ(Υτ(v,θ),v,θ)<1D2D1Υ(v,θ)\displaystyle\underbrace{D_{(1,2)}T_{\tau}(\Upsilon_{\tau}(v,\theta),v,\theta)}_{\left\|\cdot\right\|<1}D_{2}D_{1}^{\ell}\Upsilon(v,\theta)
+Dv(D(1,2)Tτ(Υτ(v,θ),v,θ)D2Υ(v,θ)+D4Tτ(Υτ(v,θ),v,θ))\displaystyle+D_{v}^{\ell}\left(D_{(1,2)}T_{\tau}(\Upsilon_{\tau}(v,\theta),v,\theta)D_{2}\Upsilon(v,\theta)+D_{4}T_{\tau}(\Upsilon_{\tau}(v,\theta),v,\theta)\right)

on 𝒱×Θ{\mathscr{V}}\times\Theta. Here, the norm bound on D(1,2)Tτ(Υτ(v,θ),v,θ)D_{(1,2)}T_{\tau}(\Upsilon_{\tau}(v,\theta),v,\theta) results from the contraction property of Tτ(,v,θ)T_{\tau}(\cdot,v,\theta) and again [18, p. 363, Prop. C.1.1]. Then the second term in the above sum is a sum of products. In each of them a derivative of Υτ\Upsilon_{\tau} w.r.t. θ\theta occurs exactly once, which yields a factor containing the term vp\left\|v\right\|_{p} (note (29) and (33)), while the remaining factors are derivatives of Υτ\Upsilon_{\tau} w.r.t. vv, being bounded due to our induction hypothesis (see (28) and (32)). This establishes (18) from which one has

D3D2w(τ,v;θ)L(Ldp(Ω),Ldp(Ω))2N~vpfor all (τ,v)𝒱,θΘ.\left\|D_{3}D_{2}^{\ell}w(\tau,v;\theta)\right\|_{L_{\ell}(L_{d}^{p}(\Omega),L_{d}^{p}(\Omega))}\leq 2\tilde{N}_{\ell}\left\|v\right\|_{p}\quad\text{for all }(\tau,v)\in{\mathscr{V}},\,\theta\in\Theta. (20)

(III) After the prelude in steps (I) and (II) we finally define

𝒲i,j0\displaystyle{\mathscr{W}}_{i,j}^{0} :=𝒲+(0)𝒲(0),\displaystyle:={\mathscr{W}}^{+}(0)\cap{\mathscr{W}}^{-}(0), wi,j0\displaystyle w_{i,j}^{0} :=w(,0)|𝒱,\displaystyle:=w(\cdot,0)|_{{\mathscr{V}}},
𝒲i,jn\displaystyle{\mathscr{W}}_{i,j}^{n} :=𝒲+(Γ(1n))𝒲(Γ(1n)),\displaystyle:={\mathscr{W}}^{+}(\Gamma(\tfrac{1}{n}))\cap{\mathscr{W}}^{-}(\Gamma(\tfrac{1}{n})), wi,jn\displaystyle w_{i,j}^{n} :=w(,Γ(1n))|𝒱for all nN\displaystyle:=w(\cdot,\Gamma(\tfrac{1}{n}))|_{{\mathscr{V}}}\quad\text{for all }n\geq N

and argue as above, i.e. by referring to [18, p. 208, Prop. 4.2.17] that it remains to establish the convergence estimates given in (a) and (b) for nNn\geq N:

(a) Then the error estimate in (14) results from step (I) as for (τ,v)𝒱i,j(\tau,v)\in{\mathscr{V}}_{i,j} one has

wi,jn(τ,v)wi,j0(τ,v)p=w(τ,v;Γ(1n))w(τ,v;0)p(17)2N~0Γ(1n)vp.\left\|w_{i,j}^{n}(\tau,v)-w_{i,j}^{0}(\tau,v)\right\|_{p}=\left\|w(\tau,v;\Gamma(\tfrac{1}{n}))-w(\tau,v;0)\right\|_{p}\stackrel{{\scriptstyle\eqref{susy}}}{{\leq}}2\tilde{N}_{0}\Gamma(\tfrac{1}{n})\left\|v\right\|_{p}.

(b) Using the Mean Value Estimate we derive from step (II) for 1<m1\leq\ell<m that

D2wi,jn(τ,v)D2wi,j0(τ,v)p\displaystyle\left\|D_{2}^{\ell}w_{i,j}^{n}(\tau,v)-D_{2}^{\ell}w_{i,j}^{0}(\tau,v)\right\|_{p} =D2w(τ,v;Γ(1n))D2w(τ,v;0)p\displaystyle=\left\|D_{2}^{\ell}w(\tau,v;\Gamma(\tfrac{1}{n}))-D_{2}^{\ell}w(\tau,v;0)\right\|_{p}
supθΘD3D2w(τ,v;θ)Γ(1n)(20)2N~Γ(1n)vp\displaystyle\leq\sup_{\theta\in\Theta}\left\|D_{3}D_{2}^{\ell}w(\tau,v;\theta)\right\|\Gamma(\tfrac{1}{n})\stackrel{{\scriptstyle\eqref{no22}}}{{\leq}}2\tilde{N}_{\ell}\Gamma(\tfrac{1}{n})\left\|v\right\|_{p}

for all (τ,v)𝒱i,j(\tau,v)\in{\mathscr{V}}_{i,j}. This establishes claim (b). ∎

3.3 Applicability

One cannot expect general IDEs

ut+1\displaystyle u_{t+1} =~t(ut),\displaystyle=\tilde{\mathscr{F}}_{t}(u_{t}), ~t(u)\displaystyle\tilde{\mathscr{F}}_{t}(u) :=Ωkt(,y)g~t(y,u(y))dy,\displaystyle:=\int_{\Omega}k_{t}(\cdot,y)\tilde{g}_{t}(y,u(y))\,{\mathrm{d}}y, (I~0\tilde{I}_{0})

arising in real-world applications [11, 14] to satisfy global assumption such as (6), (7), the global smallness condition (11), or that the trivial solution lies in the center of interest. Nonetheless, given any solution (ϕt)t𝕀(\phi_{t})_{t\in{\mathbb{I}}} of (I~0\tilde{I}_{0}) the equation of perturbed motion

ut+1=~t(ut+ϕt)~t(ϕt)=Ωkt(,y)g¯t(y,ut(y))dyu_{t+1}=\tilde{\mathscr{F}}_{t}(u_{t}+\phi_{t})-\tilde{\mathscr{F}}_{t}(\phi_{t})=\int_{\Omega}k_{t}(\cdot,y)\bar{g}_{t}(y,u_{t}(y))\,{\mathrm{d}}y

with growth function g¯t(x,z):=g~t(x,z+ϕt(x))g~t(x,ϕt(x))\bar{g}_{t}(x,z):=\tilde{g}_{t}(x,z+\phi_{t}(x))-\tilde{g}_{t}(x,\phi_{t}(x)) has the trivial solution. The dynamics in its vicinity is the same as that of (I~0\tilde{I}_{0}) near the reference solution ϕ\phi.

The solutions of (I~0\tilde{I}_{0}) being relevant in applications have (essentially) bounded values ϕt\phi_{t}. Under this premise a suitable modification of the growth function g¯t:Ω×𝕂d𝕂n\bar{g}_{t}:\Omega\times{\mathbb{K}}^{d}\to{\mathbb{K}}^{n} allows to apply Thm. 3.3 and 3.6. For this purpose assume that g¯t\bar{g}_{t} satisfies Hypothesis (ii) with the global conditions (6) and (7) weakened to

  • limz0esssupxΩ|D2g~t(x,z+ϕt(x))D2g~t(x,ϕt(x))|=0\lim_{z\to 0}\operatorname*{ess\,sup}_{x\in\Omega}\left|D_{2}\tilde{g}_{t}(x,z+\phi_{t}(x))-D_{2}\tilde{g}_{t}(x,\phi_{t}(x))\right|=0 for all t𝕀t\in{\mathbb{I}}^{\prime},

  • for each r>0r>0 and t𝕀t\in{\mathbb{I}}^{\prime} there exists a Λt(r)0\Lambda_{t}(r)\geq 0 such that

    |g~(x,z)g~(x,z¯)|Λt(r)|zz¯|for all z,z¯B¯r(ϕt(x)) and μ-a.a. xΩ.\left|\tilde{g}(x,z)-\tilde{g}(x,\bar{z})\right|\leq\Lambda_{t}(r)\left|z-\bar{z}\right|\quad\text{for all }z,\bar{z}\in\bar{B}_{r}(\phi_{t}(x))\text{ and $\mu$-a.a.\ }x\in\Omega.

Given ρ>0\rho>0, let χρ:𝕂d[0,1]\chi_{\rho}:{\mathbb{K}}^{d}\to[0,1] denote a cut-off function, i.e. a CC^{\infty}-function constant χρ(z)1\chi_{\rho}(z)\equiv 1 on B¯ρ(0)\bar{B}_{\rho}(0), χρ(z)(0,1)\chi_{\rho}(z)\in(0,1) for zB2ρ(0)B¯ρ(0)z\in B_{2\rho}(0)\setminus\bar{B}_{\rho}(0) and vanishing χρ(z)0\chi_{\rho}(z)\equiv 0 on the remaining set 𝕂dB2ρ(0){\mathbb{K}}^{d}\setminus B_{2\rho}(0) (cf. [18, p. 369, Prop. C.2.16]). First, thanks to this construction the growth functions g¯t\bar{g}_{t} and

gt(x,z):=g¯t(x,χρ(z)z)=g~t(x,χρ(z)z+ϕt(x))g~t(x,ϕt(x))g_{t}(x,z):=\bar{g}_{t}(x,\chi_{\rho}(z)z)=\tilde{g}_{t}(x,\chi_{\rho}(z)z+\phi_{t}(x))-\tilde{g}_{t}(x,\phi_{t}(x)) (21)

coincide for all zB¯ρ(0)z\in\bar{B}_{\rho}(0) and a.a. xΩx\in\Omega. Second, by [18, p. 370, Prop. C.2.17] the radius ρ>0\rho>0 can be chosen so small that under the balancing conditions (6), (7) the resulting nonlinearities 𝒩t,𝒩¯t:Ldp(Ω)Ldp(Ω){\mathscr{N}}_{t},\bar{\mathscr{N}}_{t}:L_{d}^{p}(\Omega)\to L_{d}^{p}(\Omega) in the proof of Thm. 3.3 satisfy the assumptions of Thm. A.1. This allows to obtain the particular fiber bundles 𝒲i,+n,𝒲j,n{\mathscr{W}}_{i,+}^{n},{\mathscr{W}}_{j,-}^{n} and 𝒲i,jn{\mathscr{W}}_{i,j}^{n} of the IDE (I0I_{0}), whose growth function gtg_{t} is given in (21).

In order to transfer this information back to the original IDE (I~0\tilde{I}_{0}) we note that the dynamics of (I~0\tilde{I}_{0}) in the vicinity {(t,u)𝕀×Ldp(Ω):uϕtρ}\{(t,u)\in{\mathbb{I}}\times L_{d}^{p}(\Omega):\,\left\|u-\phi_{t}\right\|_{\infty}\leq\rho\} of the reference solution ϕ\phi and the behavior of the modified problem (I0I_{0}) in the nonautonomous set {(t,u)𝕀×Ldp(Ω):uρ}\{(t,u)\in{\mathbb{I}}\times L_{d}^{p}(\Omega):\,\left\|u\right\|_{\infty}\leq\rho\} are related by a translation via the solution ϕ\phi.

4 Galerkin discretizations of integrodifference equations

This section demonstrates that the convergence assumption from Hypothesis (iii) holds for various Galerkin approximations. They are a special case of general projection methods (cf. [3, Sect. 2] or [4, pp. 448ff]) to discretize IDEs spatially. Here, let a<ba<b.

4.1 Galerkin methods on Ω=(a,b)\Omega=(a,b)

On the interval Ω:=(a,b)\Omega:=(a,b), choose n0n\in{\mathbb{N}}_{0}, the nodes

a\displaystyle a =x0n<x1n<<xmnn=b\displaystyle=x_{0}^{n}<x_{1}^{n}<\ldots<x_{m_{n}}^{n}=b (22)

and set m0:=1m_{0}:=1 (i.e. one obtains the entire interval (a,b)(a,b) for n=0n=0),

hn\displaystyle h_{n} :=maxi=1mn(xinxi1n),\displaystyle:=\max_{i=1}^{m_{n}}(x_{i}^{n}-x_{i-1}^{n}), Iin\displaystyle I_{i}^{n} :=[xi1n,xin]for all 1imn.\displaystyle:=[x_{i-1}^{n},x_{i}^{n}]\quad\text{for all }1\leq i\leq m_{n}.

We assume throughout that there exists a C>0C>0 such that

hnCnfor all n.\displaystyle h_{n}\leq\tfrac{C}{n}\quad\text{for all }n\in{\mathbb{N}}. (23)

Piecewise constant approximation

Let χIin:{0,1}\chi_{I_{i}^{n}}:{\mathbb{R}}\to\left\{0,1\right\}, 1imn1\leq i\leq m_{n}, be the characteristic functions over the partition (22). With Xn:=span{χI1n,,χImnn}X_{n}:=\operatorname{span}\bigl{\{}\chi_{I_{1}^{n}},\ldots,\chi_{I_{m_{n}}^{n}}\bigr{\}} one defines the projections (see [2, p. 305, 9.21])

Πnu:=i=1mnχIin()(1xinxi1nxi1nxinu(x)dx)for all uLdp(a,b)\Pi_{n}u:=\sum_{i=1}^{m_{n}}\chi_{I_{i}^{n}}(\cdot)\left(\frac{1}{x_{i}^{n}-x_{i-1}^{n}}\int_{x_{i-1}^{n}}^{x_{i}^{n}}u(x)\,{\mathrm{d}}x\right)\quad\text{for all }u\in L_{d}^{p}(a,b)

onto the piecewise constant functions XndX_{n}^{d} and has the error estimate

[idLdp(a,b)Πn]uphnupfor all n,uWd1,p(a,b).\left\|[\operatorname{id}_{L_{d}^{p}(a,b)}-\Pi_{n}]u\right\|_{p}\leq h_{n}\left\|u^{\prime}\right\|_{p}\quad\text{for all }n\in{\mathbb{N}},\,u\in W_{d}^{1,p}(a,b).

This yields a discretization error (10) with the space of weakly differentiable functions X(a,b)=Wd1,p(a,b)X(a,b)=W_{d}^{1,p}(a,b) having first order derivatives in Ldp(a,b)L_{d}^{p}(a,b) and Γ(ϱ)=Cϱ\Gamma(\varrho)=C\varrho.

Continuous piecewise linear approximation

Let χin:[0,1]\chi_{i}^{n}:{\mathbb{R}}\to[0,1], 0imn0\leq i\leq m_{n}, denote the hat functions over the partition (22). For Xn:=span{χ0n,,χmnn}X_{n}:=\operatorname{span}\bigl{\{}\chi_{0}^{n},\ldots,\chi_{m_{n}}^{n}\bigr{\}} and continuous functions u:(a,b)𝕂du:(a,b)\to{\mathbb{K}}^{d} one defines the projections

Πnu(x):=i=1mnχIin(x)(xinxxinnxi1nu(xi1n)+xxi1nxinnxi1nu(xin))for all uCd(a,b)\Pi_{n}u(x):=\sum_{i=1}^{m_{n}}\chi_{I_{i}^{n}}(x)\left(\frac{x_{i}^{n}-x}{x_{i^{n}}^{n}-x_{i-1}^{n}}u(x_{i-1}^{n})+\frac{x-x_{i-1}^{n}}{x_{i^{n}}^{n}-x_{i-1}^{n}}u(x_{i}^{n})\right)\quad\text{for all }u\in C_{d}(a,b)

onto XndX_{n}^{d}. First, for each l{1,2}l\in\left\{1,2\right\} one has the error estimate (cf. [2, p. 309, 9.22])

[idLdp(a,b)Πn]up2hnlu(l)pfor all n,uWdl,p(a,b).\left\|[\operatorname{id}_{L_{d}^{p}(a,b)}-\Pi_{n}]u\right\|_{p}\leq 2h_{n}^{l}\left\|u^{(l)}\right\|_{p}\quad\text{for all }n\in{\mathbb{N}},\,u\in W_{d}^{l,p}(a,b).

Hence, (10) holds with X(a,b)=Wdl,p(a,b)X(a,b)=W_{d}^{l,p}(a,b) being the space of functions whose weak derivatives exist up to order l2l\leq 2 in Ldp(a,b)L_{d}^{p}(a,b) and Γ(ϱ)=2Clϱl\Gamma(\varrho)=2C^{l}\varrho^{l}.

Second, for α(0,1]\alpha\in(0,1] and α\alpha-Hölder functions u:[a,b]𝕂du:[a,b]\to{\mathbb{K}}^{d} one establishes the error estimate (s. [4, p. 457, (12.2.4)])

[idLdp(a,b)Πn]up(ba)1/pd1/phnαuCdα[a,b]for all n,uCdα[a,b].\left\|[\operatorname{id}_{L_{d}^{p}(a,b)}-\Pi_{n}]u\right\|_{p}\leq(b-a)^{1/p}d^{1/p}h_{n}^{\alpha}\left\|u\right\|_{C_{d}^{\alpha}[a,b]}\quad\text{for all }n\in{\mathbb{N}},\,u\in C_{d}^{\alpha}[a,b].

The condition (10) is fulfilled with the 𝕂d{\mathbb{K}}^{d}-valued functions X(a,b)=Cdα[a,b]X(a,b)=C_{d}^{\alpha}[a,b] satisfying a Hölder condition with exponent α\alpha and Γ(ϱ)=(ba)1/pd1/pCαϱα\Gamma(\varrho)=(b-a)^{1/p}d^{1/p}C^{\alpha}\varrho^{\alpha}.

4.2 Galerkin methods on polygonal domains Ωκ\Omega\subset{\mathbb{R}}^{\kappa} with κ=2,3\kappa=2,3

Let κ=2,3\kappa=2,3 and Ωκ\Omega\subset{\mathbb{R}}^{\kappa} be a polygonal domain (open, bounded, connected). For a sequence (hn)n(h_{n})_{n\in{\mathbb{N}}} in (0,)(0,\infty) satisfying (23) suppose the representations

Ω=K𝔗nKfor all n\Omega=\bigcup_{K\in{\mathfrak{T}}_{n}}K\quad\text{for all }n\in{\mathbb{N}}

with a sequence of regular triangulations 𝔗n{\mathfrak{T}}_{n}, i.e. there exists a constant T>0T>0 such that each family 𝔗n{\mathfrak{T}}_{n} consists of finitely many polyhedra KΩK\subseteq\Omega and

maxK𝔗ndiamK\displaystyle\max_{K\in{\mathfrak{T}}_{n}}\operatorname{diam}K hn,\displaystyle\leq h_{n}, maxK𝔗ndiamKsup{diamS:S is a ball contained in K}T\displaystyle\max_{K\in{\mathfrak{T}}_{n}}\frac{\operatorname{diam}K}{\sup\left\{\operatorname{diam}S:\,S\text{ is a ball contained in }K\right\}}\leq T

for nn\in{\mathbb{N}}. Let Pk(K)P_{k}(K) be the space of polynomials of (maximal) degree kk\in{\mathbb{N}} in variables x1,,xκx_{1},\ldots,x_{\kappa}\in{\mathbb{R}} over KK and Xn:={vC(Ω):v|KPk(K) for all K𝔗n}X_{n}:=\{v\in C(\Omega):\,v|_{K}\in P_{k}(K)\text{ for all }K\in{\mathfrak{T}}_{n}\}. For 1<lk+11<l\leq k+1 it results from [21, p. 96, (3.5.9)] that there exists a C¯>0\bar{C}>0 with

[idLd2(Ω)Πn]u2C¯hnl|α|=lDαu22for all n,uHdl(Ω).\left\|[\operatorname{id}_{L_{d}^{2}(\Omega)}-\Pi_{n}]u\right\|_{2}\leq\bar{C}h_{n}^{l}\sqrt{\sum_{\left|\alpha\right|=l}\left\|D^{\alpha}u\right\|_{2}^{2}}\quad\text{for all }n\in{\mathbb{N}},\,u\in H_{d}^{l}(\Omega).

Consequently the error estimate (10) holds for functions X(Ω)=Hdl(Ω)X(\Omega)=H_{d}^{l}(\Omega) being weakly differentiable up to order lk+1l\leq k+1 with derivatives in Ld2(Ω)L_{d}^{2}(\Omega) and Γ(ϱ)=C¯Clϱl\Gamma(\varrho)=\bar{C}C^{l}\varrho^{l}.

4.3 Spectral Galerkin methods

For a Hammerstein IDE (I0I_{0}) let us suppose that the kernels and growth functions are of the form kt=kk_{t}=k and gt(x,z):=αtg(x,z)g_{t}(x,z):=\alpha_{t}g(x,z) for all t𝕀t\in{\mathbb{I}}^{\prime} with a sequence αt\alpha_{t}\in{\mathbb{R}} and functions k:Ω×Ω𝕂d×nk:\Omega\times\Omega\to{\mathbb{K}}^{d\times n}, g:Ω×𝕂d𝕂ng:\Omega\times{\mathbb{K}}^{d}\to{\mathbb{K}}^{n} such that Hypotheses (i–iii) are satisfied with p=2p=2. The linear operator L(Ld2(Ω)){\mathscr{L}}\in L(L_{d}^{2}(\Omega)), u:=Ωk(,y)D2g(y,0)u(y)dy{\mathscr{L}}u:=\int_{\Omega}k(\cdot,y)D_{2}g(y,0)u(y)\,{\mathrm{d}}y is compact and in case

k(x,y)D2g(y,0)=[k(y,x)D2g(x,0)]for a.a. x,yΩk(x,y)D_{2}g(y,0)=[k(y,x)D_{2}g(x,0)]^{\ast}\quad\text{for a.a.\ }x,y\in\Omega

also self-adjoint. Consequently there exists a complete orthonormal set consisting of eigenfunctions χi:Ω𝕂d\chi_{i}:\Omega\to{\mathbb{K}}^{d} for {\mathscr{L}}. Given this, we define the orthogonal projections

Πnu:=i=1nu,χiχifor all n\Pi_{n}u:=\sum_{i=1}^{n}\left\langle u,\chi_{i}\right\rangle\chi_{i}\quad\text{for all }n\in{\mathbb{N}}

onto Xnd:=span{χ1,,χn}X_{n}^{d}:=\operatorname{span}\left\{\chi_{1},\ldots,\chi_{n}\right\} and it is not difficult to arrive at

[idLd2(Ω)Πn]u2j=n+1|u,χj|2for all n.\left\|[\operatorname{id}_{L_{d}^{2}(\Omega)}-\Pi_{n}]u\right\|_{2}\leq\sqrt{\sum_{j=n+1}^{\infty}\left|\left\langle u,\chi_{j}\right\rangle\right|^{2}}\quad\text{for all }n\in{\mathbb{N}}.

Whence, the convergence function Γ\Gamma in the error estimate (10) depends on the decay of the Fourier coefficients u,χj\left\langle u,\chi_{j}\right\rangle. If the kernel comes from a Sturm-Liouville problem, then related results are treated in [8, pp. 275, Sect. 5.2].

5 Perspectives

An alternative to the LpL^{p}-setting we elaborated on in this paper, is to employ the strictly decreasing scale of Hölder spaces Cα(Ω,𝕂d)C^{\alpha}(\Omega,{\mathbb{K}}^{d}) over a compact habitat Ωκ\Omega\subset{\mathbb{R}}^{\kappa}. For this purpose and exponents 0<β<α10<\beta<\alpha\leq 1 one considers

  • Fredholm operators 𝒦tL(Cβ(Ω,𝕂n),Cα(Ω,𝕂d)){\mathscr{K}}_{t}\in L(C^{\beta}(\Omega,{\mathbb{K}}^{n}),C^{\alpha}(\Omega,{\mathbb{K}}^{d})) as defined in (2),

  • Nemytskii operators 𝒢t:Cα(Ω,𝕂d)Cβ(Ω,𝕂n){\mathscr{G}}_{t}:C^{\alpha}(\Omega,{\mathbb{K}}^{d})\to C^{\beta}(\Omega,{\mathbb{K}}^{n}) as given in (3).

The reason for working with different Hölder exponents are the pathological mapping properties of the Nemytskii operators 𝒢t{\mathscr{G}}_{t} in case α=β\alpha=\beta. Indeed, then any globally Lipschitz 𝒢t{\mathscr{G}}_{t} is already affine-linear, cf. [16]. A particular feature of such a Hölder setting is that persistence and convergence of invariant fibers can be shown for Nyström discretizations of (I0I_{0}) (see [3, 19]).

Appendix A Perturbation of invariant bundles

In this appendix, 𝕀{\mathbb{I}} is an unbounded discrete interval, while (X,)(X,\left\|\cdot\right\|) denotes a Banach space. We consider nonautonomous semilinear difference equations

ut+1=tut+𝒩t(ut)+θ𝒩¯t(ut)u_{t+1}={\mathscr{L}}_{t}u_{t}+{\mathscr{N}}_{t}(u_{t})+\theta\bar{\mathscr{N}}_{t}(u_{t}) (Δθ\Delta_{\theta})

in XX depending on a parameter θ\theta\in{\mathbb{R}} and having the general solution φ(;θ)\varphi(\cdot;\theta). Suppose that the following assumptions hold:

  • (H1)

    tL(X){\mathscr{L}}_{t}\in L(X), t𝕀t\in{\mathbb{I}}^{\prime}, there exists a projection-valued sequence (Pt)t𝕀(P_{t})_{t\in{\mathbb{I}}} in L(X)L(X) and reals K1K\geq 1, 0<α<β0<\alpha<\beta so that Pt+1t=tPtP_{t+1}{\mathscr{L}}_{t}={\mathscr{L}}_{t}P_{t} and t|N(Pt):N(Pt)N(Pt+1){\mathscr{L}}_{t}|_{N(P_{t})}:N(P_{t})\to N(P_{t+1}) is an isomorphism for all t𝕀t\in{\mathbb{I}}^{\prime}, as well as

    Φ(t,s)Ps\displaystyle\left\|\Phi(t,s)P_{s}\right\| Kαts,\displaystyle\leq K\alpha^{t-s}, Φ(s,t)[idXPt]\displaystyle\left\|\Phi(s,t)[\operatorname{id}_{X}-P_{t}]\right\| Kβstfor all st.\displaystyle\leq K\beta^{s-t}\quad\text{for all }s\leq t. (24)
  • (H2)

    The identities 𝒩t(0)𝒩¯t(0)0{\mathscr{N}}_{t}(0)\equiv\bar{\mathscr{N}}_{t}(0)\equiv 0 on 𝕀{\mathbb{I}}^{\prime} hold for mappings 𝒩t,𝒩¯t:XX{\mathscr{N}}_{t},\bar{\mathscr{N}}_{t}:X\to X, t𝕀t\in{\mathbb{I}}^{\prime}, satisfying the Lipschitz estimates

    L\displaystyle L :=supt𝕀lip𝒩t<,\displaystyle:=\sup_{t\in{\mathbb{I}}^{\prime}}\operatorname{lip}{\mathscr{N}}_{t}<\infty, L¯\displaystyle\bar{L} :=supt𝕀lip𝒩¯t<.\displaystyle:=\sup_{t\in{\mathbb{I}}^{\prime}}\operatorname{lip}\bar{\mathscr{N}}_{t}<\infty.
  • (H3)

    Let mm\in{\mathbb{N}} and 𝒩t,𝒩¯t{\mathscr{N}}_{t},\bar{\mathscr{N}}_{t} be mm-times continuously differentiable such that

    sup(t,u)𝕀×XD𝒩t(u)L(X)\displaystyle\sup_{(t,u)\in{\mathbb{I}}^{\prime}\times X}\left\|D^{\ell}{\mathscr{N}}_{t}(u)\right\|_{L_{\ell}(X)} <,\displaystyle<\infty, sup(t,u)𝕀×XD𝒩¯t(u)L(X)\displaystyle\sup_{(t,u)\in{\mathbb{I}}^{\prime}\times X}\left\|D^{\ell}\bar{\mathscr{N}}_{t}(u)\right\|_{L_{\ell}(X)} <for all 1<m.\displaystyle<\infty\quad\text{for all }1<\ell\leq m.

For our central perturbation result, given τ𝕀\tau\in{\mathbb{I}} and γ>0\gamma>0 the linear spaces

τ,γ+\displaystyle\ell_{\tau,\gamma}^{+} :={(ϕt)τt:ϕtX and supτtγτtϕt<},\displaystyle:=\left\{(\phi_{t})_{\tau\leq t}:\,\phi_{t}\in X\text{ and }\sup_{\tau\leq t}\gamma^{\tau-t}\left\|\phi_{t}\right\|<\infty\right\},
τ,γ\displaystyle\ell_{\tau,\gamma}^{-} :={(ϕt)tτ:ϕtX and suptτγτtϕt<}\displaystyle:=\left\{(\phi_{t})_{t\leq\tau}:\,\phi_{t}\in X\text{ and }\sup_{t\leq\tau}\gamma^{\tau-t}\left\|\phi_{t}\right\|<\infty\right\}

and γ:={(ϕt)t:ϕtX and suptγtϕt<}\ell_{\gamma}:=\left\{(\phi_{t})_{t\in{\mathbb{Z}}}:\,\phi_{t}\in X\text{ and }\sup_{t\in{\mathbb{Z}}}\gamma^{-t}\left\|\phi_{t}\right\|<\infty\right\} are due and satisfy

τ,γ+\displaystyle\ell_{\tau,\gamma}^{+} τ,γ¯+,\displaystyle\subseteq\ell_{\tau,\bar{\gamma}}^{+}, τ,γ¯\displaystyle\ell_{\tau,\bar{\gamma}}^{-} τ,γfor all 0<γγ¯.\displaystyle\subseteq\ell_{\tau,\gamma}^{-}\quad\text{for all }0<\gamma\leq\bar{\gamma}. (25)

These preparations allows us to establish existence, smoothness and θ\theta-dependence of invariant bundles for (Δθ\Delta_{\theta}) carrying most of the technical effort for the results above.

Theorem A.1 (existence and perturbation of invariant bundles).

Under the assumptions (H1–H2) with

L\displaystyle L <δmax4K,\displaystyle<\frac{\delta_{\max}}{4K}, δmax\displaystyle\delta_{\max} :=βα2\displaystyle:=\frac{\beta-\alpha}{2}

we choose a fixed δ(4KL,βα2]\delta\in(4KL,\tfrac{\beta-\alpha}{2}] and set Γ:=[α+δ,βδ]\Gamma:=[\alpha+\delta,\beta-\delta], Θ:={θ:L¯|θ|L}\Theta:=\left\{\theta\in{\mathbb{R}}:\,\bar{L}\left|\theta\right|\leq L\right\}. If γΓ\gamma\in\Gamma, then the following statements are true for all θΘ\theta\in\Theta:

  1. (a)

    In case 𝕀{\mathbb{I}} is unbounded above, then the γ\gamma-stable bundle

    𝒲+(θ):={(τ,u)𝕀×X:φ(;τ,u;θ)τ,γ+}{\mathscr{W}}^{+}(\theta):=\left\{(\tau,u)\in{\mathbb{I}}\times X:\,\varphi(\cdot;\tau,u;\theta)\in\ell_{\tau,\gamma}^{+}\right\}

    is a forward invariant bundle of (Δθ\Delta_{\theta}) independent of γΓ\gamma\in\Gamma having the representation 𝒲+(θ)={(τ,v+w+(τ,v;θ))𝕀×X:vR(Pτ)}{\mathscr{W}}^{+}(\theta)=\left\{(\tau,v+w^{+}(\tau,v;\theta))\in{\mathbb{I}}\times X:\,v\in R(P_{\tau})\right\} with a continuous mapping w+:𝕀×X×ΘXw^{+}:{\mathbb{I}}\times X\times\Theta\to X satisfying for all τ𝕀\tau\in{\mathbb{I}}, uXu\in X that

    • (a1)(a_{1})

      w+(τ,0;θ)=0w^{+}(\tau,0;\theta)=0 and w+(τ,u;θ)=w+(τ,Pτu;θ)N(Pτ)w^{+}(\tau,u;\theta)=w^{+}(\tau,P_{\tau}u;\theta)\in N(P_{\tau}),

    • (a2)(a_{2})

      w+:𝕀×X×ΘXw^{+}:{\mathbb{I}}\times X\times\Theta\to X fulfills the Lipschitz estimates

      lipw+(τ,;θ)\displaystyle\operatorname{lip}w^{+}(\tau,\cdot;\theta) K2(L+|θ|L¯)δ2K(L+|θ|L¯),\displaystyle\leq\frac{K^{2}(L+\left|\theta\right|\bar{L})}{\delta-2K(L+\left|\theta\right|\bar{L})}, (26)
      lipw+(τ,u;)\displaystyle\operatorname{lip}w^{+}(\tau,u;\cdot) 2δK3L¯(δ4KL¯)2u,\displaystyle\leq\frac{2\delta K^{3}\bar{L}}{(\delta-4K\bar{L})^{2}}\left\|u\right\|, (27)
    • (a3)(a_{3})

      if also (H3)(H3) holds, αm+<β\alpha^{m_{+}}<\beta and δmax:=min{βα2,α(α+βα+αm+m+1)}\delta_{\max}:=\min\Bigl{\{}\tfrac{\beta-\alpha}{2},\alpha\bigl{(}\sqrt[m_{+}]{\frac{\alpha+\beta}{\alpha+\alpha^{m_{+}}}}-1\bigr{)}\Bigr{\}}, then the derivatives D(2,3)w+:𝕀×X×ΘL(X×,X)D_{(2,3)}^{\ell}w^{+}:{\mathbb{I}}\times X\times\Theta\to L_{\ell}(X\times{\mathbb{R}},X) exist up to order m+m\ell\leq m_{+}\leq m as continuous functions and there are M+,N+>0M^{+},N^{+}>0 such that

      D2w+(τ,u;θ)L(X)\displaystyle\left\|D_{2}^{\ell}w^{+}(\tau,u;\theta)\right\|_{L_{\ell}(X)} M+for all 1m+,\displaystyle\leq M^{+}\quad\text{for all }1\leq\ell\leq m_{+}, (28)
      D3D2w+(τ,u;θ)L(X)\displaystyle\left\|D_{3}D_{2}^{\ell}w^{+}(\tau,u;\theta)\right\|_{L_{\ell}(X)} N+ufor all 0l<m+.\displaystyle\leq N^{+}\left\|u\right\|\quad\text{for all }0\leq l<m_{+}. (29)
  2. (b)

    In case 𝕀{\mathbb{I}} is unbounded below, then the γ\gamma-unstable bundle

    𝒲(θ):={(τ,u)𝕀×X:there exists a solution (ϕt)tττ,γof (Δθ) satisfying ϕτ=u}{\mathscr{W}}^{-}(\theta):=\left\{(\tau,u)\in{\mathbb{I}}\times X:\begin{array}[]{l}\text{there exists a solution }(\phi_{t})_{t\leq\tau}\in\ell_{\tau,\gamma}^{-}\\ \text{of \eqref{fbdeq} satisfying }\phi_{\tau}=u\end{array}\right\}

    is an invariant bundle of (Δθ\Delta_{\theta}) independent of γΓ\gamma\in\Gamma having the representation 𝒲(θ)={(τ,v+w(τ,v;θ))𝕀×X:vN(Pτ)}{\mathscr{W}}^{-}(\theta)=\left\{(\tau,v+w^{-}(\tau,v;\theta))\in{\mathbb{I}}\times X:\,v\in N(P_{\tau})\right\} with a continuous mapping w:𝕀×X×ΘXw^{-}:{\mathbb{I}}\times X\times\Theta\to X satisfying for all τ𝕀\tau\in{\mathbb{I}}, uXu\in X that

    • (b1)(b_{1})

      w(τ,0;θ)=0w^{-}(\tau,0;\theta)=0 and w(τ,u;θ)=w(τ,[idXPτ]u;θ)R(Pτ)w^{-}(\tau,u;\theta)=w^{-}(\tau,[\operatorname{id}_{X}-P_{\tau}]u;\theta)\in R(P_{\tau}),

    • (b2)(b_{2})

      w:𝕀×X×ΘXw^{-}:{\mathbb{I}}\times X\times\Theta\to X fulfills the Lipschitz estimates

      lipw(τ,;θ)\displaystyle\operatorname{lip}w^{-}(\tau,\cdot;\theta) K2(L+|θ|L¯)δ2K(L+|θ|L¯),\displaystyle\leq\frac{K^{2}(L+\left|\theta\right|\bar{L})}{\delta-2K(L+\left|\theta\right|\bar{L})}, (30)
      lipw(τ,u;)\displaystyle\operatorname{lip}w^{-}(\tau,u;\cdot) 2δK3L¯(δ4KL¯)2u,\displaystyle\leq\frac{2\delta K^{3}\bar{L}}{(\delta-4K\bar{L})^{2}}\left\|u\right\|, (31)
    • (b3)(b_{3})

      if also (H3)(H3) holds, α<βm\alpha<\beta^{m_{-}} and δmax:=min{βα2,β(1α+ββ+βmm)}\delta_{\max}:=\min\Bigl{\{}\tfrac{\beta-\alpha}{2},\beta\bigl{(}1-\sqrt[m_{-}]{\frac{\alpha+\beta}{\beta+\beta^{m_{-}}}}\bigr{)}\Bigr{\}}, then the derivatives D(2,3)w:𝕀×X×ΘL(X×,X)D_{(2,3)}^{\ell}w^{-}:{\mathbb{I}}\times X\times\Theta\to L_{\ell}(X\times{\mathbb{R}},X) exist up to order mm\ell\leq m_{-}\leq m as continuous functions and there are M,N>0M^{-},N^{-}>0 such that

      D2w(τ,u,θ)L(X)\displaystyle\left\|D_{2}^{\ell}w^{-}(\tau,u,\theta)\right\|_{L_{\ell}(X)} Mfor all 1m,\displaystyle\leq M^{-}\quad\text{for all }1\leq\ell\leq m_{-}, (32)
      D3D2w(τ,u,θ)L(X)\displaystyle\left\|D_{3}D_{2}^{\ell}w^{-}(\tau,u,\theta)\right\|_{L_{\ell}(X)} Nufor all 0l<m.\displaystyle\leq N^{-}\left\|u\right\|\quad\text{for all }0\leq l<m_{-}. (33)
  3. (c)

    If 𝕀={\mathbb{I}}={\mathbb{Z}} and L<δ6KL<\frac{\delta}{6K}, then 𝒲+(θ)𝒲(θ)=×{0}{\mathscr{W}}^{+}(\theta)\cap{\mathscr{W}}^{-}(\theta)={\mathbb{Z}}\times\left\{0\right\} for θΘ\theta\in\Theta and the zero solution is the only solution to (Δθ\Delta_{\theta}) in γ\ell_{\gamma} for any growth rate γΓ\gamma\in\Gamma.

Proof.

Apply [17, Thm. 3.3] on the measure chains 𝕋=𝕀{\mathbb{T}}={\mathbb{I}}\subseteq{\mathbb{Z}}. ∎

Appendix B Fredholm and Nemytskii operators on LpL^{p}-spaces

Let (Ω,𝔄,μ)(\Omega,{\mathfrak{A}},\mu) be a measure space with σ\sigma-algebra 𝔄{\mathfrak{A}} and a finite measure μ\mu, while (Z,||)(Z,\left|\cdot\right|) denotes a finite-dimensional Banach space over 𝕂{\mathbb{K}}. For p[1,)p\in[1,\infty) we define the space

Lp(Ω,Z)\displaystyle L^{p}(\Omega,Z) :={u:ΩZ|u is μ-measurable with Ω|u|pdμ<}\displaystyle:=\biggl{\{}u:\Omega\to Z\biggl{|}u\text{ is $\mu$-measurable with }\int_{\Omega}\left|u\right|^{p}\,{\mathrm{d}}\mu<\infty\biggr{\}}

of ZZ-valued pp-integrable functions and equip it with up:=(Ω|u|pdμ)1/p\left\|u\right\|_{p}:=\left(\int_{\Omega}\left|u\right|^{p}\,{\mathrm{d}}\mu\right)^{1/p} as norm.

Our analysis requires preparations on Fredholm integral operators

𝒦v:=Ωk(,y)v(y)dμ(y).{\mathscr{K}}v:=\int_{\Omega}k(\cdot,y)v(y)\,{\mathrm{d}}\mu(y).

First, for the kernel k:Ω×Ω𝕂d×nk:\Omega\times\Omega\to{\mathbb{K}}^{d\times n} we suppose Hille-Tamarkin conditions: There exist p,q(1,)p,q\in(1,\infty) such that

  1. (h1)

    kk is μμ\mu\otimes\mu-measurable,

  2. (h2)

    if q>1q^{\prime}>1 with 1q+1q=1\tfrac{1}{q}+\tfrac{1}{q^{\prime}}=1, then Ω(Ω|k(x,y)|qdμ(y))p/qdμ(x)<.\int_{\Omega}\biggl{(}\int_{\Omega}\left|k(x,y)\right|^{q^{\prime}}\,{\mathrm{d}}\mu(y)\biggr{)}^{p/q^{\prime}}\,{\mathrm{d}}\mu(x)<\infty.

Proposition B.1.

If (h1(h1h2)h2) hold with p,q>1p,q>1, then 𝒦L(Lq(Ω,𝕂n),Lp(Ω,𝕂d)){\mathscr{K}}\in L(L^{q}(\Omega,{\mathbb{K}}^{n}),L^{p}(\Omega,{\mathbb{K}}^{d})) is well-defined and compact with

𝒦L(Lq(Ω,𝕂n),Lp(Ω,𝕂d))(Ω(Ω|k(x,y)|qdμ(y))pqdμ(x))1p.\left\|{\mathscr{K}}\right\|_{L(L^{q}(\Omega,{\mathbb{K}}^{n}),L^{p}(\Omega,{\mathbb{K}}^{d}))}\leq\biggl{(}\int_{\Omega}\biggl{(}\int_{\Omega}\left|k(x,y)\right|^{q^{\prime}}\,{\mathrm{d}}\mu(y)\biggr{)}^{\tfrac{p}{q^{\prime}}}\,{\mathrm{d}}\mu(x)\biggr{)}^{\tfrac{1}{p}}. (34)
Proof.

See [2, pp. 149–150, 5.12] and [2, p. 340, 10.15] for compactness. ∎

Second, let us furthermore consider the Nemytskii operator

[𝒢(u)](x):=g(x,u(x))for μ-a.a. xΩ[{\mathscr{G}}(u)](x):=g(x,u(x))\quad\text{for $\mu$-a.a.\ }x\in\Omega

induced by a growth function g:Ω×𝕂d𝕂ng:\Omega\times{\mathbb{K}}^{d}\to{\mathbb{K}}^{n}. Given m0m\in{\mathbb{N}}_{0} we assume that for all 0m0\leq\ell\leq m one has the following Carathéodory conditions:

  1. (c1)

    D2g(x,):𝕂dL(𝕂d,𝕂n)D_{2}^{\ell}g(x,\cdot):{\mathbb{K}}^{d}\to L_{\ell}({\mathbb{K}}^{d},{\mathbb{K}}^{n}) exists and is continuous for μ\mu-a.a. xΩx\in\Omega,

  2. (c2)

    D2g(,z):ΩL(𝕂d,𝕂n)D_{2}^{\ell}g(\cdot,z):\Omega\to L_{\ell}({\mathbb{K}}^{d},{\mathbb{K}}^{n}) is μ\mu-measurable on Ω\Omega for all z𝕂dz\in{\mathbb{K}}^{d}.

Proposition B.2.

Let p,q1p,q\geq 1, cLq(Ω)c\in L^{q}(\Omega), c00c_{0}\geq 0 and suppose (c1(c1c2)c2) hold with m=0m=0. If the growth estimate

|g(x,z)|c(x)+c0|z|pqfor μ-a.a. xΩ and all z𝕂d\left|g(x,z)\right|\leq c(x)+c_{0}\left|z\right|^{\tfrac{p}{q}}\quad\text{for $\mu$-a.a.~{}$x\in\Omega$ and all }z\in{\mathbb{K}}^{d}

is satisfied, then 𝒢:Lp(Ω,𝕂d)Lq(Ω,𝕂n){\mathscr{G}}:L^{p}(\Omega,{\mathbb{K}}^{d})\to L^{q}(\Omega,{\mathbb{K}}^{n}) is well-defined, bounded and continuous.

Proof.

See [20, p. 63, Thm. 5.1]. ∎

Corollary B.3.

Let 1q<p1\leq q<p. If there exists a μ\mu-measurable function λ:Ω+\lambda:\Omega\to{\mathbb{R}}_{+} satisfying

|g(x,z)g(x,z¯)|λ(x)|zz¯|for μ-a.a. xΩ and all z,z¯𝕂d\left|g(x,z)-g(x,\bar{z})\right|\leq\lambda(x)\left|z-\bar{z}\right|\quad\text{for $\mu$-a.a.\ }x\in\Omega\text{ and all }z,\bar{z}\in{\mathbb{K}}^{d}

and Ωλ(y)ppqdμ(y)<\int_{\Omega}\lambda(y)^{\tfrac{p}{p-q}}\,{\mathrm{d}}\mu(y)<\infty, then 𝒢:Lq(Ω,𝕂d)Lq(Ω,𝕂n){\mathscr{G}}:L^{q}(\Omega,{\mathbb{K}}^{d})\to L^{q}(\Omega,{\mathbb{K}}^{n}) is globally Lipschitz with

lip𝒢(Ωλ(y)ppqdμ(y))pqp.\operatorname{lip}{\mathscr{G}}\leq\biggl{(}\int_{\Omega}\lambda(y)^{\tfrac{p}{p-q}}\,{\mathrm{d}}\mu(y)\biggr{)}^{\tfrac{p-q}{p}}. (35)
Proof.

Given u,u¯Lp(Ω,𝕂d)u,\bar{u}\in L^{p}(\Omega,{\mathbb{K}}^{d}), we obtain

𝒢(u)𝒢(u¯)qq=Ω|g(y,u(y))g(y,u¯(y))|qdμ(y)Ωλ(y)q|u(y)u¯(y)|qdμ(y)\left\|{\mathscr{G}}(u)-{\mathscr{G}}(\bar{u})\right\|_{q}^{q}=\int_{\Omega}\left|g(y,u(y))-g(y,\bar{u}(y))\right|^{q}\,{\mathrm{d}}\mu(y)\leq\int_{\Omega}\lambda(y)^{q}\left|u(y)-\bar{u}(y)\right|^{q}\,{\mathrm{d}}\mu(y)

and the Hölder inequality |Ωv1(y)v2(y)dμ(y)|v1rv2r|\int_{\Omega}v_{1}(y)v_{2}(y)\,{\mathrm{d}}\mu(y)|\leq\left\|v_{1}\right\|_{r^{\prime}}\left\|v_{2}\right\|_{r} for 1r+1r=1\tfrac{1}{r}+\tfrac{1}{r^{\prime}}=1 leads to

𝒢(u)𝒢(u¯)q\displaystyle\left\|{\mathscr{G}}(u)-{\mathscr{G}}(\bar{u})\right\|_{q} λqr1/q|u()u¯()|qr1/q\displaystyle\leq\left\|\lambda^{q}\right\|_{r^{\prime}}^{1/q}\left\|\left|u(\cdot)-\bar{u}(\cdot)\right|^{q}\right\|_{r}^{1/q}
=(Ωλ(y)qrdμ(y))1qr(Ω|u(y)u¯(y)|qrdμ(y))1qr.\displaystyle=\biggl{(}\int_{\Omega}\lambda(y)^{qr^{\prime}}\,{\mathrm{d}}\mu(y)\biggr{)}^{\tfrac{1}{qr^{\prime}}}\biggl{(}\int_{\Omega}\left|u(y)-\bar{u}(y)\right|^{qr}\,{\mathrm{d}}\mu(y)\biggr{)}^{\tfrac{1}{qr}}.

We now choose r>0r>0 such that p=rqp=rq (note that q<pq<p guarantees 1<r1<r) and obtain qr=ppqqr^{\prime}=\tfrac{p}{p-q}, as well as r=rr1r^{\prime}=\tfrac{r}{r-1}, thus

𝒢(u)𝒢(u¯)q(Ωλ(y)ppqdμ(y))pqpuu¯p,\left\|{\mathscr{G}}(u)-{\mathscr{G}}(\bar{u})\right\|_{q}\leq\biggl{(}\int_{\Omega}\lambda(y)^{\tfrac{p}{p-q}}\,{\mathrm{d}}\mu(y)\biggr{)}^{\tfrac{p-q}{p}}\left\|u-\bar{u}\right\|_{p},

which guarantees the Lipschitz condition (35). ∎

Proposition B.4.

Let mm\in{\mathbb{N}}, p,q1p,q\geq 1 with mq<pmq<p, cLpqpmq(Ω)c\in L^{\tfrac{pq}{p-mq}}(\Omega), c0,,cm0c_{0},\ldots,c_{m}\geq 0 and suppose (c1(c1c2)c2) hold. If for 0m0\leq\ell\leq m the growth conditions

|D2g(x,z)|L(𝕂d,𝕂n)c(x)+c|z|pqqfor μ-a.a. xΩ and all z𝕂d\left|D_{2}^{\ell}g(x,z)\right|_{L_{\ell}({\mathbb{K}}^{d},{\mathbb{K}}^{n})}\leq c(x)+c_{\ell}\left|z\right|^{\tfrac{p-\ell q}{q}}\quad\text{for $\mu$-a.a.\ }x\in\Omega\text{ and all }z\in{\mathbb{K}}^{d} (36)

are satisfied, then 𝒢:Lp(Ω,𝕂d)Lq(Ω,𝕂n){\mathscr{G}}:L^{p}(\Omega,{\mathbb{K}}^{d})\to L^{q}(\Omega,{\mathbb{K}}^{n}) is of class CmC^{m} and for each 0m0\leq\ell\leq m, uLp(Ω,𝕂d)u\in L^{p}(\Omega,{\mathbb{K}}^{d}) the following holds:

  1. (a)

    [D𝒢(u)v1v](x)=D2g(x,u(x))v1(x)v(x)[D^{\ell}{\mathscr{G}}(u)v_{1}\cdots v_{\ell}](x)=D_{2}^{\ell}g(x,u(x))v_{1}(x)\cdots v_{\ell}(x) for μ\mu-a.a. xΩx\in\Omega and functions v1,,vLq(Ω,𝕂d)v_{1},\ldots,v_{\ell}\in L^{q}(\Omega,{\mathbb{K}}^{d}),

  2. (b)

    D𝒢(u)L(Lp(Ω,𝕂d),Lq(Ω,𝕂n))cpqpq+cuppqq\left\|D^{\ell}{\mathscr{G}}(u)\right\|_{L_{\ell}(L^{p}(\Omega,{\mathbb{K}}^{d}),L^{q}(\Omega,{\mathbb{K}}^{n}))}\leq\left\|c\right\|_{\tfrac{pq}{p-\ell q}}+c_{\ell}\left\|u\right\|_{p}^{\tfrac{p-\ell q}{q}}.

Due to the lack of a suitable reference we provide an explicit proof.

Proof.

Throughout, let uLp(Ω,𝕂d)u\in L^{p}(\Omega,{\mathbb{K}}^{d}) and formally define for μ\mu-a.a. xΩx\in\Omega that

𝒢(u)(x)\displaystyle{\mathscr{G}}^{\ell}(u)(x) :=D2g(x,u(x))L(𝕂d,𝕂n)for all 0m,\displaystyle:=D_{2}^{\ell}g(x,u(x))\in L_{\ell}({\mathbb{K}}^{d},{\mathbb{K}}^{n})\quad\text{for all }0\leq\ell\leq m,
[𝒢¯(u)h](x)\displaystyle[\bar{\mathscr{G}}^{\ell}(u)h](x) :=D2g(x,u(x))h(x)L1(𝕂d,𝕂n)for all 0<m\displaystyle:=D_{2}^{\ell}g(x,u(x))h(x)\in L_{\ell-1}({\mathbb{K}}^{d},{\mathbb{K}}^{n})\quad\text{for all }0<\ell\leq m

and hLp(Ω,𝕂d)h\in L^{p}(\Omega,{\mathbb{K}}^{d}). First, being pp-integrable, uu is μ\mu-measurable on Ω\Omega. Since D2gD_{2}^{\ell}g satisfy Carathéodory conditions, because of [20, p. 62, Lemma 5.1] also xD2g(x,u(x))x\mapsto D_{2}^{\ell}g(x,u(x)) is μ\mu-measurable on Ω\Omega. Second, if we set q:=pqpq1q_{\ell}:=\tfrac{pq}{p-\ell q}\geq 1, then (36) become

|D2g(x,z)|c(x)+c|z|p/qfor all 0m,μ-a.a. xΩ and all z𝕂d.\left|D_{2}^{\ell}g(x,z)\right|\leq c(x)+c_{\ell}\left|z\right|^{p/q_{\ell}}\quad\text{for all }0\leq\ell\leq m,\text{$\mu$-a.a.~{}$x\in\Omega$ and all }z\in{\mathbb{K}}^{d}.

(I) Claim: 𝒢:Lp(Ω,𝕂d)Lq(Ω,L(𝕂d,𝕂n)){\mathscr{G}}^{\ell}:L^{p}(\Omega,{\mathbb{K}}^{d})\to L^{q_{\ell}}(\Omega,L_{\ell}({\mathbb{K}}^{d},{\mathbb{K}}^{n})) is well-defined and bounded for all 0m0\leq\ell\leq m.
Using the growth condition (36) and the LqL^{q_{\ell}}-triangle inequality we obtain

(Ω|D2g(y,u(y))|qdμ(y))1/q\displaystyle\left(\int_{\Omega}\left|D_{2}^{\ell}g(y,u(y))\right|^{q_{\ell}}\,{\mathrm{d}}\mu(y)\right)^{1/q_{\ell}} (Ω|c(y)+c|u(y)|p/q|qdμ(y))1/q\displaystyle\leq\left(\int_{\Omega}\left|c(y)+c_{\ell}\left|u(y)\right|^{p/q_{\ell}}\right|^{q_{\ell}}\,{\mathrm{d}}\mu(y)\right)^{1/q_{\ell}}
cq+cupp/q\displaystyle\leq\left\|c\right\|_{q_{\ell}}+c_{\ell}\left\|u\right\|_{p}^{p/q_{\ell}}

and consequently 𝒢(u)qcq+cupp/q\left\|{\mathscr{G}}^{\ell}(u)\right\|_{q_{\ell}}\leq\left\|c\right\|_{q_{\ell}}+c_{\ell}\left\|u\right\|_{p}^{p/q_{\ell}}.

(II) Claim: 𝒢:Lp(Ω,𝕂d)Lq(Ω,L(𝕂d,𝕂n)){\mathscr{G}}^{\ell}:L^{p}(\Omega,{\mathbb{K}}^{d})\to L^{q_{\ell}}(\Omega,L_{\ell}({\mathbb{K}}^{d},{\mathbb{K}}^{n})) is continuous for all 0m0\leq\ell\leq m.
Let (uj)j(u_{j})_{j\in{\mathbb{N}}} be a sequence in Lp(Ω,𝕂d)L^{p}(\Omega,{\mathbb{K}}^{d}) converging to uu w.r.t. p\left\|\cdot\right\|_{p}. Because of [2, p. 57, 3.22(1)] this implies pointwise convergence of a subsequence μ\mu-a.e., that is, w.l.o.g. we can suppose limjuj(x)=uj(x)\lim_{j\to\infty}u_{j}(x)=u_{j}(x) for μ\mu-a.a. xΩx\in\Omega, which shows

𝒢(uj)(x)=D2g(x,uj(x))jD2g(x,u(x))=𝒢(u)(x)for μ-a.a. xΩ.{\mathscr{G}}^{\ell}(u_{j})(x)=D_{2}^{\ell}g(x,u_{j}(x))\xrightarrow[j\to\infty]{}D_{2}^{\ell}g(x,u(x))={\mathscr{G}}^{\ell}(u)(x)\quad\text{for $\mu$-a.a.\ }x\in\Omega.

The necessity part of Vitali’s convergence theorem [2, p. 57, 3.23] applies to (uj)j(u_{j})_{j\in{\mathbb{N}}} and the growth assumptions on D2gD_{2}^{\ell}g guarantee that [2, p. 57, 3.23] can be applied to 𝒢(uj){\mathscr{G}}^{\ell}(u_{j}) with the exponent qq_{\ell} rather than pp. Thus, the sufficiency part of [2, p. 57, 3.23] shows that limj𝒢(uj)𝒢(u)q=0\lim_{j\to\infty}\left\|{\mathscr{G}}^{\ell}(u_{j})-{\mathscr{G}}^{\ell}(u)\right\|_{q_{\ell}}=0, i.e. 𝒢{\mathscr{G}}^{\ell} is continuous.

(III) Claim: 𝒢¯l+1:Lp(Ω,𝕂d)L(Lp(Ω,𝕂d),Lq(Ω,L(𝕂d,𝕂n)))\bar{\mathscr{G}}^{l+1}:L^{p}(\Omega,{\mathbb{K}}^{d})\to L\bigl{(}L^{p}(\Omega,{\mathbb{K}}^{d}),L^{q_{\ell}}(\Omega,L_{\ell}({\mathbb{K}}^{d},{\mathbb{K}}^{n}))\bigr{)} is well-defined and continuous for all 0<m0\leq\ell<m.
For hLp(Ω,𝕂d)h\in L^{p}(\Omega,{\mathbb{K}}^{d}) we obtain from Hölder’s inequality that

(Ω|D2+1g(y,u(y))h(y)|qdμ(y))1/q(Ω|D2+1g(y,u(y))|q|h(y)|qdμ(y))1/q\displaystyle\left(\int_{\Omega}\left|D_{2}^{\ell+1}g(y,u(y))h(y)\right|^{q_{\ell}}\,{\mathrm{d}}\mu(y)\right)^{1/q_{\ell}}\leq\left(\int_{\Omega}\left|D_{2}^{\ell+1}g(y,u(y))\right|^{q_{\ell}}\left|h(y)\right|^{q_{\ell}}\,{\mathrm{d}}\mu(y)\right)^{1/q_{\ell}}
\displaystyle\leq ((Ω|D2+1g(y,u(y))|q+1dμ(y))q/q+1hpq)1/q=𝒢+1(u)q+1hp\displaystyle\left(\left(\int_{\Omega}\left|D_{2}^{\ell+1}g(y,u(y))\right|^{q_{\ell+1}}\,{\mathrm{d}}\mu(y)\right)^{q_{\ell}/q_{\ell+1}}\left\|h\right\|_{p}^{q_{\ell}}\right)^{1/q_{\ell}}=\left\|{\mathscr{G}}^{\ell+1}(u)\right\|_{q_{\ell+1}}\left\|h\right\|_{p}

and consequently 𝒢¯+1(u)hLq(Ω,L(𝕂d,𝕂n))\bar{\mathscr{G}}^{\ell+1}(u)h\in L^{q_{\ell}}(\Omega,L_{\ell}({\mathbb{K}}^{d},{\mathbb{K}}^{n})) results. The assumptions on gg yield the inclusion 𝒢¯(+1)(u)L(Lp(Ω,𝕂d),Lq(Ω,L(𝕂d,𝕂n)))\bar{\mathscr{G}}^{(\ell+1)}(u)\in L\bigl{(}L^{p}(\Omega,{\mathbb{K}}^{d}),L^{q_{\ell}}(\Omega,L_{\ell}({\mathbb{K}}^{d},{\mathbb{K}}^{n}))\bigr{)}, while the continuity of 𝒢¯\bar{\mathscr{G}}^{\ell} is shown as in step (II).

(IV) Claim: 𝒢:Lp(Ω,𝕂d)Lq(Ω,L(𝕂d,𝕂n)){\mathscr{G}}^{\ell}:L^{p}(\Omega,{\mathbb{K}}^{d})\to L^{q_{\ell}}(\Omega,L_{\ell}({\mathbb{K}}^{d},{\mathbb{K}}^{n})) is continuously differentiable for all 0<m0\leq\ell<m.
Because D2gD_{2}^{\ell}g is assumed to be continuously differentiable in the second argument, the Mean Value Theorem and Jensen’s Inequality imply

𝒢(u+h)𝒢(u)𝒢¯+1(u)hq\displaystyle\left\|{\mathscr{G}}^{\ell}(u+h)-{\mathscr{G}}^{\ell}(u)-\bar{\mathscr{G}}^{\ell+1}(u)h\right\|_{q_{\ell}}
\displaystyle\leq (Ω|D2g(y,u(y)+h(y))D2g(y,u(y))D2+1g(x,u(y))h(y)|qdμ(y))1/q\displaystyle\left(\int_{\Omega}\left|D_{2}^{\ell}g(y,u(y)+h(y))-D_{2}^{\ell}g(y,u(y))-D_{2}^{\ell+1}g(x,u(y))h(y)\right|^{q_{\ell}}\,{\mathrm{d}}\mu(y)\right)^{1/{q_{\ell}}}
\displaystyle\leq (Ω(01|D2+1g(y,u(y)+ϑh(y))D2+1g(x,u(y))]h(y)|dϑ)qdμ(y))1/q\displaystyle\left(\int_{\Omega}\left(\int_{0}^{1}\left|D_{2}^{\ell+1}g(y,u(y)+\vartheta h(y))-D_{2}^{\ell+1}g(x,u(y))]h(y)\right|\,{\mathrm{d}}\vartheta\right)^{q_{\ell}}\,{\mathrm{d}}\mu(y)\right)^{1/{q_{\ell}}}
\displaystyle\leq (Ω01|D2+1g(y,u(y)+ϑh(y))D2+1g(x,u(y))]h(y)|qdϑdμ(y))1/q\displaystyle\left(\int_{\Omega}\int_{0}^{1}\left|D_{2}^{\ell+1}g(y,u(y)+\vartheta h(y))-D_{2}^{\ell+1}g(x,u(y))]h(y)\right|^{q_{\ell}}\,{\mathrm{d}}\vartheta\,{\mathrm{d}}\mu(y)\right)^{1/{q_{\ell}}}

and we obtain from Fubini’s theorem along with Hölder’s inequality

𝒢(u+h)𝒢(u)𝒢¯+1(u)hq\displaystyle\left\|{\mathscr{G}}^{\ell}(u+h)-{\mathscr{G}}^{\ell}(u)-\bar{\mathscr{G}}^{\ell+1}(u)h\right\|_{q_{\ell}}
\displaystyle\leq (01Ω|D2+1g(y,u(y)+ϑh(y))D2+1g(x,u(y))]h(y)|qdμ(y)dϑ)1/q\displaystyle\left(\int_{0}^{1}\int_{\Omega}\left|D_{2}^{\ell+1}g(y,u(y)+\vartheta h(y))-D_{2}^{\ell+1}g(x,u(y))]h(y)\right|^{q_{\ell}}\,{\mathrm{d}}\mu(y)\,{\mathrm{d}}\vartheta\right)^{1/{q_{\ell}}}
\displaystyle\leq (01Ω|D2+1g(y,u(y)+ϑh(y))D2+1g(x,u(y))|q|h(y)|qdμ(y)dϑ)1/q\displaystyle\left(\int_{0}^{1}\int_{\Omega}\left|D_{2}^{\ell+1}g(y,u(y)+\vartheta h(y))-D_{2}^{\ell+1}g(x,u(y))\right|^{q_{\ell}}\left|h(y)\right|^{q_{\ell}}\,{\mathrm{d}}\mu(y)\,{\mathrm{d}}\vartheta\right)^{1/{q_{\ell}}}
\displaystyle\leq (01(Ω|D2+1g(y,u(y)+ϑh(y))D2+1g(x,u(y))|q+1dμ(y))q/q+1hpqdϑ)1/q\displaystyle\left(\int_{0}^{1}\left(\int_{\Omega}\left|D_{2}^{\ell+1}g(y,u(y)+\vartheta h(y))-D_{2}^{\ell+1}g(x,u(y))\right|^{q_{\ell+1}}\,{\mathrm{d}}\mu(y)\right)^{q_{\ell}/{q_{\ell+1}}}\left\|h\right\|_{p}^{q_{\ell}}\,{\mathrm{d}}\vartheta\right)^{1/{q_{\ell}}}
\displaystyle\leq (01𝒢+1(u+ϑh)𝒢+1(u)Lq+1(Ω,L(𝕂d,𝕂n)))qdϑ)1/qhp\displaystyle\left(\int_{0}^{1}\left\|{\mathscr{G}}^{\ell+1}(u+\vartheta h)-{\mathscr{G}}^{\ell+1}(u)\right\|_{L^{q_{\ell+1}}(\Omega,L_{\ell}({\mathbb{K}}^{d},{\mathbb{K}}^{n})))}^{q_{\ell}}\,{\mathrm{d}}\vartheta\right)^{1/q_{\ell}}\left\|h\right\|_{p}

for hLp(Ω,𝕂d)h\in L^{p}(\Omega,{\mathbb{K}}^{d}). Due to the continuity of 𝒢+1:Lp(Ω,𝕂d)Lq+1(Ω,L+1(𝕂d,𝕂n)){\mathscr{G}}^{\ell+1}:L^{p}(\Omega,{\mathbb{K}}^{d})\to L^{q_{\ell+1}}(\Omega,L_{\ell+1}({\mathbb{K}}^{d},{\mathbb{K}}^{n})) the integral tends to zero in the limit hp0\left\|h\right\|_{p}\to 0, and hence 𝒢{\mathscr{G}}^{\ell} is Frechét differentiable in uu with derivative D𝒢(u)=𝒢¯+1(u)D{\mathscr{G}}^{\ell}(u)=\bar{\mathscr{G}}^{\ell+1}(u) by uniqueness of derivatives. Its continuity was already shown in step (III).

(V) In particular, this establishes that 𝒢:Lp(Ω,𝕂d)Lq(Ω,𝕂n){\mathscr{G}}:L^{p}(\Omega,{\mathbb{K}}^{d})\to L^{q}(\Omega,{\mathbb{K}}^{n}) is continuously differentiable with D𝒢(u)=𝒢¯1(u)D{\mathscr{G}}(u)=\bar{\mathscr{G}}^{1}(u) as derivative. Then mathematical induction yields that 𝒢{\mathscr{G}} is mm-times continuously differentiable with the derivatives

[D𝒢(u)v1v](x)=D2g(x,u(x))v1(x)v(x)for μ-a.a. xΩ[D^{\ell}{\mathscr{G}}(u)v_{1}\cdots v_{\ell}](x)=D_{2}^{\ell}g(x,u(x))v_{1}(x)\cdots v_{\ell}(x)\quad\text{for $\mu$-a.a.\ }x\in\Omega

and all v1,,vLp(Ω,𝕂d)v_{1},\ldots,v_{\ell}\in L^{p}(\Omega,{\mathbb{K}}^{d}), 1m1\leq\ell\leq m, which establishes claim (a). Moreover, the estimates stated in (b) are a consequence of step (I). ∎

References

  • [1] F. Alouges, A. Debussche. On the qualitative behavior of the orbits of a parabolic partial differential equation and its discretization in the neighborhood of a hyperbolic fixed point. Numer. Funct. Anal. Optimization 12(3–4), 253–269, 1991.
  • [2] H.W. Alt. Linear Functional Analysis: An Application-Oriented Introduction, Universitext, Springer, London, 2016.
  • [3] K.E. Atkinson. A survey of numerical methods for solving nonlinear integral equations, J. Integr. Equat. Appl. 4(1), 15–46 (1992).
  • [4] K. Atkinson, W. Han. Theoretical Numerical Analysis (2nd edition), Texts in Applied Mathematics 39, Springer, Heidelberg etc., 2000.
  • [5] B. Aulbach. Hierarchies of invariant manifolds, Journal of the Nigerian Mathematical Society, 6, 71–89 (1987).
  • [6] W.-J. Beyn. On the numerical approximation of phase portraits near stationary points. SIAM J. Numer. Anal. 24(5), 1095–1112, 1987.
  • [7] W.-J. Beyn, J. Lorenz. Center manifolds of dynamical systems under discretization. Numer. Funct. Anal. Optimization 9, 381–414, 1987.
  • [8] C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zhang. Spectral Methods. Fundamentals in Single Domains, Springer, Berlin etc., 2006
  • [9] G. Farkas. Unstable manifolds for RFDEs under discretization: The Euler method. Comput. Math. Appl. 42, 1069–1081, 2001.
  • [10] D. Henry. Geometric Theory of Semilinear Parabolic Equations, Lect. Notes Math. 840, Springer, Berlin etc., 1981.
  • [11] J. Jacobsen, Y. Jin, M. Lewis. Integrodifference models for persistence in temporally varying river environments, J. Math. Biol. 70:549–590, 2015.
  • [12] D. Jones, A. Stuart. Attractive invariant manifolds under approximation. Inertial manifolds. J. Differ. Equations 123, 588–637, 1995.
  • [13] S. Keller, C. Pötzsche. Integral manifolds under explicit variable time-step discretization. J. Difference Equ. Appl. 12(3–4), 321–342, 2005.
  • [14] F. Lutscher. Integrodifference Equations in Spatial Ecology, Interdisciplinary Applied Mathematics 49. Springer, Cham, 2019.
  • [15] R.H. Martin, Nonlinear operators and differential equations in Banach spaces, Pure and Applied Mathematics 11, John Wiley & Sons, Chichester etc., 1976.
  • [16] J. Matkowski. Uniformly continuous superposition operators in the Banach space of Hölder functions, J. Math. Anal. Appl. 359(1) (2009), 56–61.
  • [17] C. Pötzsche. Extended hierarchies of invariant fiber bundles for dynamic equations on measure chains. Differential Equations and Dynamical Systems 18(1–2), 105–133, 2010.
  • [18] C. Pötzsche. Geometric Theory of Discrete Nonautonomous Dynamical Systems, Lect. Notes Math. 2002, Springer, Berlin etc., 2010.
  • [19] C. Pötzsche. Numerical dynamics of integrodifference equations: Periodic solutions and invariant manifolds in Cα(Ω)C^{\alpha}(\Omega), submitted 2021.
  • [20] R. Precup. Methods in Nonlinear Integral Equations. Springer, Dordrecht, 2002.
  • [21] A. Quarteroni, A. Valli. Numerical Approximation of Partial Differential Equations, Series in Computational Mathematics 23, Springer, Berlin etc., 1994.
  • [22] E. Ruß. Dichotomy spectrum for difference equations in Banach spaces. J. Difference Equ. Appl. 23(3), 576–617, 2016.
  • [23] A. Stuart, A. Humphries. Dynamical Systems and Numerical Analysis, Monographs on Applied and Computational Mathematics 2, University Press, Cambridge, 1998.