This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Numerical conservative solutions of the Hunter–Saxton equation

Katrin Grunert Department of Mathematical Sciences
Norwegian University of Science and Technology
Trondheim
Norway
Anders Nordli Department of Automation and Process Engineering
UiT - The Arctic University of Norway
Tromsø
Norway
 and  Susanne Solem
Abstract.

In the article a convergent numerical method for conservative solutions of the Hunter–Saxton equation is derived. The method is based on piecewise linear projections, followed by evolution along characteristics where the time step is chosen in order to prevent wave breaking. Convergence is obtained when the time step is proportional to the square root of the spatial step size, which is a milder restriction than the common CFL condition for conservation laws.

Key words and phrases:
Hunter–Saxton equation, conservative solution, numerical method
2010 Mathematics Subject Classification:
Primary: 35Q53, 65M25, 65M12; Secondary: 65M06
Research supported by the grants Waves and Nonlinear Phenomena (WaNP) and Wave Phenomena and Stability — a Shocking Combination (WaPheS) from the Research Council of Norway.

1. Introduction

The Hunter–Saxton (HS) equation is given by

(1.1) ut(t,x)+uux(t,x)=12xux2(t,y)dy14ux2(t,y)dy.u_{t}(t,x)+uu_{x}(t,x)=\frac{1}{2}\int_{-\infty}^{x}u_{x}^{2}(t,y)\>\mathrm{d}y-\frac{1}{4}\int_{-\infty}^{\infty}u_{x}^{2}(t,y)\>\mathrm{d}y.

It was derived, in differentiated form, from the nonlinear variational wave equation ψttc(ψ)(c(ψ)ψx)x=0\psi_{tt}-c(\psi)(c(\psi)\psi_{x})_{x}=0 as an asymptotic model of the director field of a nematic liquid crystal [13]. Furthermore, the Hunter–Saxton equation is the high frequency limit of the Camassa–Holm equation [6]. It is completely integrable [14] and can be interpreted as a geodesic flow [17].

Another main property is that weak solutions are not unique, see e.g. [15, 16]. The main reason being the following: Solutions of (1.1) may experience wave breaking in finite time, i.e., uxu_{x}\rightarrow-\infty pointwise while the energy ux(t,)2\|u_{x}(t,\cdot)\|_{2} remains uniformly bounded and the solution uu stays continuous. Furthermore, a finite amount of energy is concentrated on a set of measure zero.

We illustrate wave breaking with an example by considering a peakon solution — a soliton-like solution that is continuous and piecewise linear in space. It is not a classical solution. Indeed the function is not differentiable at the break points between the linear segments.

Example 1.1 (Wave breaking for peakons).

A particular peakon solution that illustrates wave breaking is given by

u(t,x)={112t,x<1+t14t2,1112tx,1+t14t2x1t+14t2,1+12t,1t+14t2<x,u(t,x)=\begin{cases}1-\frac{1}{2}t,\qquad&x<-1+t-\frac{1}{4}t^{2},\\ -\frac{1}{1-\frac{1}{2}t}x,\qquad&-1+t-\frac{1}{4}t^{2}\leq x\leq 1-t+\frac{1}{4}t^{2},\\ -1+\frac{1}{2}t,\qquad&1-t+\frac{1}{4}t^{2}<x,\end{cases}

with 0t<20\leq t<2. Note that for t<2t<2,

(ux(t,x)2)t+(u(t,x)ux(t,x)2)x=0,\left(u_{x}(t,x)^{2}\right)_{t}+\left(u(t,x)u_{x}(t,x)^{2}\right)_{x}=0,

that is ux(t,)2\|u_{x}(t,\cdot)\|_{2} is a conserved quantity. As t2t\rightarrow 2^{-}, we see that ux(t,0)u_{x}(t,0)\rightarrow-\infty while the interval [1+t14t2,1t+14t2][-1+t-\frac{1}{4}t^{2},1-t+\frac{1}{4}t^{2}] shrinks to a single point (see Figure 1). One can check that the function uu remains uniformly bounded and uniformly Hölder continuous with exponent 12\frac{1}{2} on [0,2]×[0,2]\times\mathbb{R}.

Refer to caption
Refer to caption
Figure 1. The solution in Example 1.1 as tt tends to 2 (left). The (characteristic) curves describing the position of the break points in Example 1.1 (right).

It is possible to extend weak solutions past wave breaking in various ways, see [1, 2, 3, 9, 19]. One could ignore the part of the solution that blows up. That amounts to continuing the solution in Example 1.1 as u(t,x)=0u(t,x)=0 for all t2t\geq 2. Such solutions are called (energy) dissipative and are unique [5, 7]. A different approach is to “reinsert” the energy after wave breaking to get (energy) conservative solutions. To extend the solution in Example 1.1 as a conservative solution we let the formula defining uu hold for t2t\geq 2 as well. Uniqueness of conservative solutions is only known in several special cases [25, 26]. The different solution concepts mimic the ones for some closely related equations: the Camassa–Holm equation [4], the nonlinear variational wave equation [21], and various generalizations of these equations.

From now on we focus on weak solutions that preserve the energy, that is conservative solutions. It has been shown in [2] that there exists a Lipschitz continuous semigroup of weak conservative solutions to (1.1). Existence of solutions is proved using Lagrangian coordinates and characteristics. Note that the curves describing the position of the break points in Example 1.1 are examples of characteristic curves.

To prolong the solution past wave breaking and to attempt to overcome the non-uniqueness of weak solutions past wave breaking, we include the cumulative energy FF as part of the solution. The HS equation is then reformulated as

(1.2a) ut+uux\displaystyle u_{t}+uu_{x} =12F14F,\displaystyle=\frac{1}{2}F-\frac{1}{4}F_{\infty},
(1.2b) Ft+uFx\displaystyle F_{t}+uF_{x} =0,\displaystyle=0,

with appropriate initial conditions and the conditions

(1.3a) F(t,x)=μ(t,(,x)) for some positive, finite Radon measure μ(t,),\displaystyle F(t,x)=\mu(t,(-\infty,x))\text{ for some positive, finite Radon measure }\mu(t,\cdot),
(1.3b) limxF(t,x)=F,\displaystyle\lim_{x\rightarrow\infty}F(t,x)=F_{\infty},
(1.3c) abux2(t,x)dx=μac(t,(a,b)),\displaystyle\int_{a}^{b}u_{x}^{2}(t,x)\>\mathrm{d}x=\mu_{ac}(t,(a,b)),

where μac(t,)\mu_{ac}(t,\cdot) is the absolutely continuous part of μ(t,)\mu(t,\cdot). A closer look at the imposed conditions reveals that one challenge is to find a numerical method that respects condition (1.3c). The key to overcome this difficulty is to consider (1.2) with the slightly more general conditions (1.3a), (1.3b), and

(1.4) abux2(t,x)dxF(t,b)F(t,a).\int_{a}^{b}u_{x}^{2}(t,x)\>\mathrm{d}x\leq F(t,b)-F(t,a).

This new system is a reformulation of the so-called two-component Hunter–Saxton (2HS) system, which not only generalizes the HS equation, but can also be studied using the same methods and ideas, see [9] and [19]. Moreover, every conservative solution to the HS equation can be approximated by smooth solutions of the 2HS system. Of particular interest for us is the fact that if uu and FF are piecewise linear and continuous on some interval [c,d][c,d] and

abux2(t,x)dx<F(t,b)F(t,a) for all ca<bd,\int_{a}^{b}u_{x}^{2}(t,x)\>\mathrm{d}x<F(t,b)-F(t,a)\quad\text{ for all }c\leq a<b\leq d,

then this property will be preserved along characteristics and no wave breaking takes place. Furthermore note that applying a piecewise linear projection operator to pairs (u,F)(u,F) satisfying (1.3c) yields pairs (u~,F~)(\tilde{u},\tilde{F}) satisfying (1.4). Thus using the method of characteristics and piecewise linear projection operators as building blocks for a numerical method seems to be a good choice.

1.1. Numerical methods for the Hunter–Saxton equation

Despite receiving a considerable amount of attention theoretically, relatively little numerical work has been done on the Hunter–Saxton equation. In [11] a finite difference method was constructed and proved to converge to dissipative solutions. In [22] and [23] discontinuous Galerkin methods were introduced, followed by a convergence proof in the dissipative case but not in the conservative case. More recently, a geometric numerical integrator, based on the complete integrability of (1.1), was introduced and studied in [18]. The method seems to converge to the conservative solutions, but no proof was presented. In [20] a difference method that converges for smooth solutions of a modified Hunter–Saxton equation in the periodic setting was introduced. The analysis in [20] does not apply to our setting since the method relies crucially on the modification of the equation, and even for (1.1) the periodic case and the real line case are essentially different [24].
In this paper, we contribute to this line of research by introducing a convergent numerical method for the conservative solutions of the Hunter–Saxton equation (1.2). The method, introduced at the beginning of Section 2, is inspired by Godunov-type methods for conservation laws and is based on piecewise linear projections, followed by evolution along characteristics forward in time. As for finite difference (and volume) schemes for conservation laws, where one limits the time step Δt{\Delta t} to prevent shocks from occurring, we limit the size of Δt{\Delta t} to prevent wave breaking (see (2.3)). In contrast to the situation for conservation laws, we get the improved bound ΔtCΔx{\Delta t}\leq C\sqrt{{\Delta x}} for some CC that depends on the initial data.

After establishing some a priori bounds of the numerical solutions in Section 2.1, we show in Section 2.2 that the numerical approximation converges with a rate of 𝒪(Δx)\mathcal{O}(\sqrt{{\Delta x}}) to the unique solution of (1.2) whenever the solution is Lipschitz continuous. We also prove the existence of a convergent subsequence of the proposed numerical method in the general case, which converges to a weak solution preserving FF. Unfortunately, the present lack of a satisfactory uniqueness theory for conservative solutions of (1.1) prevents us from guaranteeing that the sequence as a whole converges to the unique conservative solution. However, we perform numerical experiments towards the end of the paper, see Section 3, showing that the numerical approximations seem to converge towards the desired solutions also in the case of non-Lipschitz solutions.

2. Numerical conservative solutions of the Hunter–Saxton equation

For the (to be defined) numerical solutions to approximate conservative solutions of the HS equation, we will require that they mimic certain aspects of these solutions. In particular, we will design a method such that the numerical approximations are pairs (u,F)(u,F) in a suitable function space 𝒟\mathcal{D}, which resembles the one used for the 2HS system in [19]:

Definition 2.1.

Let the space 𝒟\mathcal{D} consist of pairs (u,F)(u,F) such that

u\displaystyle u L(),\displaystyle\in L^{\infty}(\mathbb{R}),
ux\displaystyle u_{x} L2(),\displaystyle\in L^{2}(\mathbb{R}),
F\displaystyle F L(),\displaystyle\in L^{\infty}(\mathbb{R}),
F\displaystyle F is monotonically increasing,\displaystyle\text{ is monotonically increasing},
F\displaystyle F is left continuous,\displaystyle\text{ is left continuous},
limxF(x)\displaystyle\lim_{x\rightarrow-\infty}F(x) =0,\displaystyle=0,
F\displaystyle\|F\|_{\infty} =F,\displaystyle=F_{\infty},
abux2(x)dx\displaystyle\int_{a}^{b}u_{x}^{2}(x)\>\mathrm{d}x F(b)F(a+).\displaystyle\leq F(b^{-})-F(a^{+}).
Remark 2.2.

Given a pair (u,F)𝒟(u,F)\in\mathcal{D}, there exists a positive finite Radon measure μ\mu, such that F(x)=μ((,x))F(x)=\mu((-\infty,x)).

Let TtT_{t} be the conservative solution operator associated to (1.2), as defined in [19], mapping every initial data (u,F)(u,F) to the corresponding solution at time tt. For continuous and piecewise linear initial data (u,F)(u,F), the conservative solution of (1.2) takes a particularly simple form as long as no wave breaking takes place: The solution is again continuous and piecewise linear and the breakpoints xj(t)x_{j}(t) travel along characteristics, i.e. along the curves xj(t)x_{j}(t) given by

(2.1) xj(t)=xj(0)+u(0,xj(0))t+14(F(0,xj(0))12F)t2,x_{j}(t)=x_{j}(0)+u(0,x_{j}(0))t+\frac{1}{4}\left(F(0,x_{j}(0))-\frac{1}{2}F_{\infty}\right)t^{2},

we get

(2.2a) u(t,xj(t))\displaystyle u(t,x_{j}(t)) =u(0,xj(0))+12(F(0,xj(0))12F)t,\displaystyle=u(0,x_{j}(0))+\frac{1}{2}\left(F(0,x_{j}(0))-\frac{1}{2}F_{\infty}\right)t,
(2.2b) F(t,xj(t))\displaystyle F(t,x_{j}(t)) =F(0,xj(0)),\displaystyle=F(0,x_{j}(0)),

with linear interpolation between the breakpoints. Thus the equations (2.2) implicitly define the solution operator TtT_{t} in the case of continuous and piecewise linear initial data (u,F)(u,F).

Turning our attention once more towards Example 1.1, we see that the two curves

x1(t)=1+t14t2 and x2(t)=1t+14t2x_{1}(t)=-1+t-\frac{1}{4}t^{2}\quad\text{ and }\quad x_{2}(t)=1-t+\frac{1}{4}t^{2}

describe the position of the breakpoints. Furthermore, at the breaking time t=2t=2 we have x1(t)=x2(t)x_{1}(t)=x_{2}(t). In the general case of a continuous and piecewise linear initial data (u,F)(u,F), wave breaking occurs at times tt where at least two break points coincide, i.e., xj(t)=xk(t)x_{j}(t)=x_{k}(t) for some jkj\not=k.

Using the above observations, we will now derive the numerical scheme. The idea is to use piecewise linear projection operators Δx\mathbb{P}_{\Delta x} to project the solution at each time step, and TΔtT_{\Delta t} to evolve the solution one time step Δt{\Delta t} ahead. To improve the readability, we define points in space and time

tn\displaystyle t^{n} =nΔt,n,\displaystyle=n\Delta t,\quad n\in\mathbb{N},
xj\displaystyle x_{j} =jΔx,j.\displaystyle=j\Delta x,\quad j\in\mathbb{Z}.
Definition 2.3.

Define the projection operator Δx:𝒟𝒟\mathbb{P}_{\Delta x}:\mathcal{D}\rightarrow\mathcal{D} so that (u¯,F¯)=Δx(u,F)(\bar{u},\bar{F})=\mathbb{P}_{\Delta x}(u,F) is given by

u¯(xj)\displaystyle\bar{u}(x_{j}) =u(xj),\displaystyle=u(x_{j}),
F¯(xj)\displaystyle\bar{F}(x_{j}) =F(xj),\displaystyle=F(x_{j}),

with linear interpolation in between grid points Δx\Delta x\mathbb{Z}.

Remark 2.4.

The operator Δx\mathbb{P}_{\Delta x} is well defined since it is assumed that FF is (left) continuous, and thus one can evaluate FF at any point.

Assume now that the time step Δt{\Delta t} is so small that no wave breaking occurs as the piecewise linear approximation is evolved from one time step to the next. Then the scheme is defined by (U0,F0)=Δx(u0,F0)(U^{0},F^{0})=\mathbb{P}_{\Delta x}(u_{0},F_{0}) and

(Un+1,Fn+1)=ΔxTΔt(Un,Fn) for n0.(U^{n+1},F^{n+1})=\mathbb{P}_{\Delta x}T_{\Delta t}(U^{n},F^{n})\quad\text{ for }n\geq 0.

We will need to interpret the numerical solution as a function from [0,)×[0,\infty)\times\mathbb{R} to ×+\mathbb{R}\times\mathbb{R}_{+}.

Definition 2.5.

We define the numerical solution (uΔx,FΔx)(u_{\Delta x},F_{\Delta x}) at a point (t,x)[0,T]×(t,x)\in[0,T]\times\mathbb{R} by

(uΔx,FΔx)(t,x)=ΔxTτ(Un,Fn)(x) for t=τ+tn,τ[0,Δt).(u_{\Delta x},F_{\Delta x})(t,x)=\mathbb{P}_{\Delta x}T_{\tau}(U^{n},F^{n})(x)\quad\text{ for }t=\tau+t^{n},\tau\in[0,\Delta t).

That is, we follow the solution along lines x=xjx=x_{j} from one time step to the next, and interpolate linearly in between.

After each evolution Δt{\Delta t} forward in time, the solution is projected onto the space of continuous piecewise linear functions. As multiple peakons can be glued together to form multipeakons, which solve (1.2), we can continue computing the solution forward in time after each projection.

Remark 2.6.

Note that as the numerical approximation consists of linear interpolations between grid points and solving exactly between time steps, FΔxF_{\Delta x} satisfies 0FΔx(t,x)F0\leq F_{\Delta x}(t,x)\leq F_{\infty}.

We introduce a CFL-like condition that ensures that characteristic curves xj(t)x_{j}(t) do not collide as long as we evolve the equations less than Δt\Delta t. In particular, the condition prevents wave breaking, which occurs when xj(t)=xj+1(t)x_{j}(t)=x_{j+1}(t) for some jj\in\mathbb{Z} and t>0t>0. We arrive at the following bound on Δt\Delta t in terms of the initial data and the grid length Δx\Delta x. The condition is not a true CFL condition in the sense that characteristics may travel past several cells [xj,xj+1][x_{j},x_{j+1}] during one time step.

Definition 2.7 (CFL-like condition).

We require that Δt\Delta t satisfies

(2.3) Δtα2FΔx,α(0,1].\Delta t\leq\frac{\alpha}{2\sqrt{F_{\infty}}}\sqrt{\Delta x},\quad\alpha\in(0,1].

Note that (2.3) is less restrictive than the CFL conditions used for conservation laws, which reads Δt<CΔx\Delta t<C\Delta x for some CC depending on the initial data and the particular flux function.

Remark 2.8.

In the upcoming proofs we will use

(2.4) Δt=12FΔx\Delta t=\frac{1}{2\sqrt{F_{\infty}}}\sqrt{\Delta x}

to prove convergence. From (2.1) we find that if condition (2.4) holds, the characteristics xj(t)x_{j}(t) and xj+1(t)x_{j+1}(t) starting from neighbouring grid points are at least a distance 12Δx\frac{1}{2}\Delta x apart for all 0tΔt0\leq t\leq\Delta t, i.e., xj(t)+12Δx<xj+1(t)x_{j}(t)+\frac{1}{2}\Delta x<x_{j+1}(t) for all t[0,Δt]t\in[0,\Delta t].

Remark 2.9.

Note that we could have chosen any fixed α(0,1]\alpha\in(0,1] to take the step from (2.3) to (2.4) (with 1 replaced by α\alpha). As a consequence the least distance between characteristics xj(t)x_{j}(t) and xj+1(t)x_{j+1}(t), starting from neighboring grid points, would be given by β(α)Δx\beta(\alpha){\Delta x} and could be computed using (2.1).

Similarly to the forward characteristics governed by (2.1), there are characteristics backwards in time. In particular, we can associate to any grid point (xj,τ)(x_{j},\tau) with tnτtn+1t^{n}\leq\tau\leq t^{n+1}, the unique point (tn,ξjn(τ))(t^{n},\xi_{j}^{n}(\tau)) given by

(2.5) ξjn(τ)=xju(tn,ξjn(τ))(τtn)+14(F(tn,ξjn(τ)))12F)(τtn)2\xi_{j}^{n}(\tau)=x_{j}-u(t^{n},\xi_{j}^{n}(\tau))(\tau-t^{n})+\frac{1}{4}\left(F(t^{n},\xi_{j}^{n}(\tau)))-\frac{1}{2}F_{\infty}\right)(\tau-t^{n})^{2}

and

u(τ,xj)\displaystyle u\left(\tau,x_{j}\right) =u(tn,ξjn(τ))12(F(tn,ξjn(τ))12F)(τtn),\displaystyle=u(t^{n},\xi_{j}^{n}(\tau))-\frac{1}{2}\left(F(t^{n},\xi_{j}^{n}(\tau))-\frac{1}{2}F_{\infty}\right)(\tau-t^{n}),
F(τ,xj)\displaystyle F\left(\tau,x_{j}\right) =F(tn,ξjn(τ)).\displaystyle=F(t^{n},\xi_{j}^{n}(\tau)).
Remark 2.10.

The numerical scheme can be written in the more familiar form

Uin+1\displaystyle U_{i}^{n+1} =Ujn+12(Fjn12F)Δt\displaystyle=U_{j}^{n}+\frac{1}{2}\left(F_{j}^{n}-\frac{1}{2}F_{\infty}\right){\Delta t}
Ujn+14(Fjn12F)Δt1+Uj+1nUjnΔxΔt+Fj+1nFjnΔxΔt2ΔtΔx(Uj+1n+12Fj+1nΔtUjn12FjnΔt),\displaystyle\quad-\frac{U_{j}^{n}+\frac{1}{4}(F_{j}^{n}-\frac{1}{2}F_{\infty}){\Delta t}}{1+\frac{U_{j+1}^{n}-U_{j}^{n}}{{\Delta x}}{\Delta t}+\frac{F_{j+1}^{n}-F_{j}^{n}}{{\Delta x}}{\Delta t}^{2}}\frac{{\Delta t}}{{\Delta x}}\left(U_{j+1}^{n}+\frac{1}{2}F_{j+1}^{n}{\Delta t}-U_{j}^{n}-\frac{1}{2}F_{j}^{n}{\Delta t}\right),
Fin+1\displaystyle F_{i}^{n+1} =FjnUjn+14(Fjn12F)Δt1+Uj+1nUjnΔxΔt+Fj+1nFjnΔxΔt2ΔtΔx(Fj+1nFjn),\displaystyle=F_{j}^{n}-\frac{U_{j}^{n}+\frac{1}{4}(F_{j}^{n}-\frac{1}{2}F_{\infty}){\Delta t}}{1+\frac{U_{j+1}^{n}-U_{j}^{n}}{{\Delta x}}{\Delta t}+\frac{F_{j+1}^{n}-F_{j}^{n}}{{\Delta x}}{\Delta t}^{2}}\frac{{\Delta t}}{{\Delta x}}\left(F_{j+1}^{n}-F_{j}^{n}\right),

where the backward characteristic from xix_{i} at tn+1t^{n+1} satisfies ξin(Δt)[xj,xj+1]\xi_{i}^{n}({\Delta t})\in[x_{j},x_{j+1}], see (2.5).

2.1. A priori bounds of the numerical solutions

In this section, we prove certain a priori bounds of the proposed method, which are needed to prove convergence. We begin with some preliminary results on the projection operator Δx\mathbb{P}_{{\Delta x}}.

Proposition 2.11.

For (u,F)(u,F) in 𝒟\mathcal{D}, let (up,Fp)=Δx(u,F)(u_{p},F_{p})=\mathbb{P}_{\Delta x}(u,F). Then we have the following estimates

uup\displaystyle\|u-u_{p}\|_{\infty} FΔx,\displaystyle\leq\sqrt{F_{\infty}}\sqrt{\Delta x},
uup2\displaystyle\|u-u_{p}\|_{2} FΔx,\displaystyle\leq\sqrt{F_{\infty}}\Delta x,
FFp1\displaystyle\|F-F_{p}\|_{1} FΔx,\displaystyle\leq F_{\infty}\Delta x,
FFp2\displaystyle\|F-F_{p}\|_{2} FΔx.\displaystyle\leq F_{\infty}\sqrt{\Delta x}.
Proof.

For any grid point xjx_{j} we have u(xj)=up(xj)u(x_{j})=u_{p}(x_{j}) and F(xj)=Fp(xj)F(x_{j})=F_{p}(x_{j}) by the definition of Δx\mathbb{P}_{\Delta x}. Hence, using the properties in Definition 2.1, for any x[xj,xj+1]x\in[x_{j},x_{j+1}] it holds that

|u(x)up(x)|\displaystyle|u(x)-u_{p}(x)| =|xj+1xΔx(u(x)u(xj))+xxjΔx(u(x)u(xj+1)|\displaystyle=\left|\frac{x_{j+1}-x}{\Delta x}(u(x)-u(x_{j}))+\frac{x-x_{j}}{\Delta x}(u(x)-u(x_{j+1})\right|
xj+1xΔxxxjF(x)F(xj)\displaystyle\leq\frac{x_{j+1}-x}{\Delta x}\sqrt{x-x_{j}}\sqrt{F(x)-F(x_{j})}
+xxjΔxxj+1xF(xj+1)F(x)\displaystyle\ +\frac{x-x_{j}}{\Delta x}\sqrt{x_{j+1}-x}\sqrt{F(x_{j+1})-F(x)}
FΔx,\displaystyle\leq\sqrt{F_{\infty}}\sqrt{\Delta x},

which proves the first inequality. Next, we have

uup22\displaystyle\|u-u_{p}\|_{2}^{2} =jxjxj+1(u(x)uΔx(x))2dx\displaystyle=\sum_{j\in\mathbb{Z}}\int_{x_{j}}^{x_{j+1}}\big{(}u(x)-u_{\Delta x}(x)\big{)}^{2}\>\mathrm{d}x
=jxjxj+1(xj+1xΔx(u(x)u(xj))+xxjΔx(u(x)u(xj+1)))2dx\displaystyle=\sum_{j\in\mathbb{Z}}\int_{x_{j}}^{x_{j+1}}\Bigg{(}\frac{x_{j+1}-x}{\Delta x}\big{(}u(x)-u(x_{j})\big{)}+\frac{x-x_{j}}{\Delta x}\big{(}u(x)-u(x_{j+1})\big{)}\Bigg{)}^{2}\mathrm{d}x
jxjxj+1(xj+1xΔxxxjF(x)F(xj)\displaystyle\leq\sum_{j\in\mathbb{Z}}\int_{x_{j}}^{x_{j+1}}\Bigg{(}\frac{x_{j+1}-x}{\Delta x}\sqrt{x-x_{j}}\sqrt{F(x)-F(x_{j})}
+xxjΔxxj+1xF(xj+1)F(x))2dx\displaystyle\qquad\qquad\qquad\qquad+\frac{x-x_{j}}{\Delta x}\sqrt{x_{j+1}-x}\sqrt{F(x_{j+1})-F(x)}\Bigg{)}^{2}\>\mathrm{d}x
jxjxj+1(F(xj+1)F(xj))Δxdx\displaystyle\leq\sum_{j\in\mathbb{Z}}\int_{x_{j}}^{x_{j+1}}\big{(}F(x_{j+1})-F(x_{j})\big{)}\Delta x\>\mathrm{d}x
FΔx2,\displaystyle\leq F_{\infty}\Delta x^{2},

and thus uup2FΔx\|u-u_{p}\|_{2}\leq\sqrt{F_{\infty}}\Delta x. The L1L^{1}-estimate for FF is proved as follows,

FFp1\displaystyle\|F-F_{p}\|_{1} =jxjxj+1|F(x)FΔx(x)|dx\displaystyle=\sum_{j\in\mathbb{Z}}\int_{x_{j}}^{x_{j+1}}\left|F(x)-F_{\Delta x}(x)\right|\>\mathrm{d}x
jxjxj+1F(xj+1)F(xj)dx\displaystyle\leq\sum_{j\in\mathbb{Z}}\int_{x_{j}}^{x_{j+1}}F(x_{j+1})-F(x_{j})\>\mathrm{d}x
j(F(xj+1)F(xj))Δx\displaystyle\leq\sum_{j\in\mathbb{Z}}\left(F(x_{j+1})-F(x_{j})\right)\Delta x
FΔx.\displaystyle\leq F_{\infty}\Delta x.

From the L1L^{1}-estimate one can obtain the L2L^{2}-estimate,

FFp22\displaystyle\|F-F_{p}\|_{2}^{2} =jxjxj+1|F(x)FΔx(x)|2dx\displaystyle=\sum_{j\in\mathbb{Z}}\int_{x_{j}}^{x_{j+1}}\left|F(x)-F_{\Delta x}(x)\right|^{2}\>\mathrm{d}x
jxjxj+1(F(xj+1)F(xj))2dx\displaystyle\leq\sum_{j\in\mathbb{Z}}\int_{x_{j}}^{x_{j+1}}\left(F(x_{j+1})-F(x_{j})\right)^{2}\>\mathrm{d}x
j(F(xj+1)F(xj))2Δx\displaystyle\leq\sum_{j\in\mathbb{Z}}\left(F(x_{j+1})-F(x_{j})\right)^{2}\Delta x
F2Δx.\displaystyle\leq F_{\infty}^{2}\Delta x.

To prove that the numerical approximation converges, we wish to employ the Arzelà–Ascoli theorem to ensure convergence of a subsequence of uΔxu_{\Delta x}, and subsequently a version of the Kolmogorov compactness theorem to get convergence of a subsequence of FΔxF_{\Delta x}. To invoke the Arzelà–Ascoli theorem, we need uΔxu_{\Delta x} to be uniformly equicontinuous and equibounded. For the Kolmogorov compactness theorem we need that FΔxF_{\Delta x} is of uniformly bounded total variation, that FΔx(t,)F_{\Delta x}(t,\cdot) is continuous in tt in the L1()L^{1}(\mathbb{R})-norm, and that FΔx(t,)F_{\Delta x}(t,\cdot) does not escape to infinity as Δx\Delta x tends to zero. First we establish some immediate properties of the solutions (uΔx,FΔx)(u_{\Delta x},F_{\Delta x}).

Lemma 2.12.

The numerical solution (uΔx,FΔx)(u_{\Delta x},F_{\Delta x}) satisfies

(2.7a) |uΔx(t,x)|\displaystyle|u_{\Delta x}(t,x)| u0L()+14Ft,\displaystyle\leq\|u_{0}\|_{L^{\infty}(\mathbb{R})}+\frac{1}{4}F_{\infty}t,
(2.7b) 0\displaystyle 0 FΔx(t,x)F\displaystyle\leq F_{\Delta x}(t,x)\leq F_{\infty}
(2.7c) abuΔx,x2(t,x)dx\displaystyle\int_{a}^{b}u_{\Delta x,x}^{2}(t,x)\>\mathrm{d}x FΔx(t,b)FΔx(t,a), for all ab.\displaystyle\leq F_{\Delta x}(t,b)-F_{\Delta x}(t,a),\quad\text{ for all }a\leq b.

Moreover, FΔx(t,)F_{\Delta x}(t,\cdot) is continuous and monotonically increasing. If suppμ0[a,b]\mathrm{supp}\>\mu_{0}\subseteq[a,b], then suppFΔx,x(t,)[a(t),b(t)]\mathrm{supp}\>F_{\Delta x,x}(t,\cdot)\subseteq[a(t),b(t)] for some smooth curves a(t),b(t)a(t),b(t). Finally, if T.V.(u0)<T.V.(u_{0})<\infty we have the estimate T.V.(uΔx(t))T.V.(u0)+12FtT.V.(u_{\Delta x}(t))\leq T.V.(u_{0})+\frac{1}{2}F_{\infty}t.

Proof.

The bounds on uΔx(t,x)u_{\Delta x}(t,x) and FΔx(t,x)F_{\Delta x}(t,x) follow from (2.2) and Definition 2.5. Since both (2.2) and the projection operator preserve the monotonicity of FF, we have that FΔxF_{\Delta x} is monotone increasing. Continuity follows from the fact that characteristics emanating from different grid points are at least 12Δx\frac{1}{2}\Delta x apart as long as the time step is controlled by (2.4).

We show abuΔx,x2(t,x)dxFΔx(t,b)FΔx(t,a)\int_{a}^{b}u^{2}_{\Delta x,x}(t,x)\>\mathrm{d}x\leq F_{\Delta x}(t,b)-F_{\Delta x}(t,a) for all aba\leq b. To begin with let t=0t=0. Since uΔx(0,)u_{\Delta x}(0,\cdot) and FΔx(0,)F_{\Delta x}(0,\cdot) are both piecewise linear and continuous it suffices to show the result for xjabxj+1x_{j}\leq a\leq b\leq x_{j+1}. By assumption one has that abux2(0,x)𝑑xF(0,b)F(0,a)\int_{a}^{b}u_{x}^{2}(0,x)dx\leq F(0,b)-F(0,a) and direct calculations yield

abuΔx,x2(0,x)dx\displaystyle\int_{a}^{b}u_{\Delta x,x}^{2}(0,x)\>\mathrm{d}x =(ba)(u(0,xj+1)u(0,xj)Δx)2\displaystyle=(b-a)\left(\frac{u(0,x_{j+1})-u(0,x_{j})}{\Delta x}\right)^{2}
baΔx(F(0,xj+1)F(0,xj))\displaystyle\leq\frac{b-a}{\Delta x}\big{(}F(0,x_{j+1})-F(0,x_{j})\big{)}
FΔx(0,b)FΔx(0,a).\displaystyle\leq F_{\Delta x}(0,b)-F_{\Delta x}(0,a).

Now, let t=tn+τt=t^{n}+\tau, and denote by τ(u~(τ),F~(τ))\tau\mapsto(\tilde{u}(\tau),\tilde{F}(\tau)) the conservative solution with initial data (uΔx(tn),FΔx(tn))(u_{\Delta x}(t^{n}),F_{\Delta x}(t^{n})). Furthermore, assume that (uΔx(tn),FΔx(tn))(u_{\Delta x}(t^{n}),F_{\Delta x}(t^{n})) satisfies (2.7c). Then we have for each spatial grid point xjx_{j} that u~(τ,xj)=uΔx(tn+τ,xj)\tilde{u}(\tau,x_{j})=u_{\Delta x}(t^{n}+\tau,x_{j}) and F~(τ,xj)=FΔx(tn+τ,xj)\tilde{F}(\tau,x_{j})=F_{\Delta x}(t^{n}+\tau,x_{j}). Moreover

abu~x2(τ,x)dxF~(τ,b)F~(τ,a),\int_{a}^{b}\tilde{u}_{x}^{2}(\tau,x)\>\mathrm{d}x\leq\tilde{F}(\tau,b)-\tilde{F}(\tau,a),

since this property is preserved along characteristics. Applying the projection operator, we can follow the same lines as in the case t=0t=0, to obtain that (2.7c) holds for all t[tn,tn+1]t\in[t^{n},t^{n+1}].

By assumption suppμ0[a,b]\mathrm{supp}\>\mu_{0}\subseteq[a,b]. Let xjx_{j-} be the closest gridpoint to aa from below, and let xj+x_{j+} be the closest gridpoint to bb from above. Then FΔx,x(0,)F_{\Delta x,x}(0,\cdot) is supported in [xj,xj+][aΔx,b+Δx][x_{j-},x_{j+}]\subseteq[a-\Delta x,b+\Delta x]. Furthermore, FΔx(0,xj)=0F_{\Delta x}(0,x_{j-})=0, FΔx(0,xj+)=FF_{\Delta x}(0,x_{j+})=F_{\infty}, uΔx(0,xj)=uleftu_{\Delta x}(0,x_{j-})=u_{\mathrm{left}}, and uΔx(0,xj+)=urightu_{\Delta x}(0,x_{j+})=u_{\mathrm{right}}.

Next we show that also FΔx,x(Δt,)F_{\Delta x,x}(\Delta t,\cdot) is compactly supported. By (2.1), we have xj(Δt)=xj+uleftΔt18FΔt2x_{j-}(\Delta t)=x_{j-}+u_{\mathrm{left}}\Delta t-\frac{1}{8}F_{\infty}\Delta t^{2} and xj+(Δt)=xj++urightΔt+18FΔt2x_{j+}(\Delta t)=x_{j+}+u_{\mathrm{right}}\Delta t+\frac{1}{8}F_{\infty}\Delta t^{2}. Thus FΔx,x(Δt)F_{\Delta x,x}(\Delta t) is supported in the interval [a+uleftΔt18FΔt22Δx,b+urightΔt+18FΔt2+2Δx][a+u_{\mathrm{left}}\Delta t-\frac{1}{8}F_{\infty}\Delta t^{2}-2\Delta x,b+u_{\mathrm{right}}\Delta t+\frac{1}{8}F_{\infty}\Delta t^{2}+2\Delta x]. Iteratively, we get that FΔx,x(kΔt)F_{\Delta x,x}(k\Delta t) is supported in

[a+uleftkΔt+18F(kΔt)2(k+1)Δx,b+urightkΔt+18F(kΔt)2+(k+1)Δx].\Big{[}a+u_{\mathrm{left}}k\Delta t+\frac{1}{8}F_{\infty}(k\Delta t)^{2}-(k+1)\Delta x,b+u_{\mathrm{right}}k\Delta t+\frac{1}{8}F_{\infty}(k\Delta t)^{2}+(k+1)\Delta x\Big{]}.

Here it is essential that

uleft(kΔt)=uleft14FkΔt.u_{\mathrm{left}}(k\Delta t)=u_{\mathrm{left}}-\frac{1}{4}F_{\infty}k\Delta t.

Since Δx=4FΔt2\Delta x=4F_{\infty}\Delta t^{2}, we have that (k+1)Δx=Δx+4F(kΔt)Δt(k+1)\Delta x=\Delta x+4F_{\infty}(k\Delta t)\Delta t. From the interpolation between temporal grid points we get

suppFΔx,x(t)\displaystyle\mathrm{supp}\,F_{\Delta x,x}(t) [a(t),b(t)],\displaystyle\subseteq[a(t),b(t)],
a(t)\displaystyle a(t) =a+uleftt(18t+4Δt)Ft2Δx,\displaystyle=a+u_{\mathrm{left}}t-\Big{(}\frac{1}{8}t+4{\Delta t}\Big{)}F_{\infty}t-2\Delta x,
b(t)\displaystyle b(t) =b+urightt+(18t+4Δt)Ft+2Δx.\displaystyle=b+u_{\mathrm{right}}t+\Big{(}\frac{1}{8}t+4{\Delta t}\Big{)}F_{\infty}t+2\Delta x.

The total variation estimate follows from the fact that it holds for conservative solutions, and that the projection operator can only reduce the total variation. ∎

Remark 2.13 (Spatial Hölder continuity).

An immediately derivable property of the numerical solution from (2.7c) is spatial Hölder continuity of uΔxu_{\Delta x}:

|uΔx(t,x)uΔx(t,y)|F|xy|.\displaystyle|u_{\Delta x}(t,x)-u_{\Delta x}(t,y)|\leq\sqrt{F_{\infty}}\sqrt{|x-y|}.

In order to obtain temporal Hölder continuity for uΔxu_{\Delta x} we will need to compare a numerical solution with itself several time steps ahead.

Lemma 2.14.

For each i,n,ki,n,k there are non-negative constants βjink\beta_{j}^{ink} such that

(2.8a) Fin+k\displaystyle F^{n+k}_{i} =j=kCΔxkCΔxβjinkFi+jn,\displaystyle=\sum_{j=-kC_{\Delta x}}^{kC_{\Delta x}}\beta_{j}^{ink}F_{i+j}^{n},
(2.8b) Uin+k\displaystyle U^{n+k}_{i} =j=kCΔxkCΔxβjink(Ui+jn+12Fi+jnkΔt)14FkΔt,\displaystyle=\sum_{j=-kC_{\Delta x}}^{kC_{\Delta x}}\beta_{j}^{ink}\left(U_{i+j}^{n}+\frac{1}{2}F_{i+j}^{n}k\Delta t\right)-\frac{1}{4}F_{\infty}k\Delta t,
(2.8c) j=kCΔxkCΔxβjink\displaystyle\sum_{j=-kC_{\Delta x}}^{kC_{\Delta x}}\beta_{j}^{ink} =1,\displaystyle=1,

where

CΔx=(u0+14Ftn+k)ΔtΔx.C_{\Delta x}=\left\lceil\left(\|u_{0}\|_{\infty}+\frac{1}{4}F_{\infty}t^{n+k}\right)\frac{\Delta t}{\Delta x}\right\rceil.
Proof.

We prove the lemma by induction on kk. First note that the statement is trivially true for k=0k=0. Then assume that it holds for k=lk=l. We show that it must then hold for k=l+1k=l+1 as well. We have that

|ξin+l(Δt)xi|supi|Uin+l+1|Δt+14FΔt2(u0+14Ftn+l+1)Δt,|\xi_{i}^{n+l}(\Delta t)-x_{i}|\leq\sup_{i}|U_{i}^{n+l+1}|\Delta t+\frac{1}{4}F_{\infty}\Delta t^{2}\leq\left(\|u_{0}\|_{\infty}+\frac{1}{4}F_{\infty}t^{n+l+1}\right)\Delta t,

where ξin+l(Δt)\xi_{i}^{n+l}(\Delta t) is a backwards characteristic, cf. (2.5). Hence, if we define C~Δx=(u0+14Ftn+l+1))ΔtΔx\tilde{C}_{\Delta x}=\left\lceil\left(\|u_{0}\|_{\infty}+\frac{1}{4}F_{\infty}t^{n+l+1})\right)\frac{\Delta t}{\Delta x}\right\rceil we have that xjξin+l(Δt)xj+1x_{j}\leq\xi_{i}^{n+l}(\Delta t)\leq x_{j+1} for some jj such that |ij|C~Δx|i-j|\leq\tilde{C}_{\Delta x} and |ij1|C~Δx|i-j-1|\leq\tilde{C}_{\Delta x}. Furthermore, we have

Fin+l+1=ξin+l(Δt)xjΔxFj+1n+l+xj+1ξin+l(Δt)ΔxFjn+l.F_{i}^{n+l+1}=\frac{\xi_{i}^{n+l}(\Delta t)-x_{j}}{\Delta x}F_{j+1}^{n+l}+\frac{x_{j+1}-\xi_{i}^{n+l}(\Delta t)}{\Delta x}F_{j}^{n+l}.

Let

s=ξin+l(Δt)xjΔx.\displaystyle s=\frac{\xi_{i}^{n+l}(\Delta t)-x_{j}}{\Delta x}.

Since C~Δx\tilde{C}_{\Delta x} is greater than the CΔxC_{\Delta x} in the inductive assumption, we get

Fin+l+1\displaystyle F_{i}^{n+l+1} =sj=lCΔxlCΔxβj(j+1)nlFj+1+jn+(1s)j=lCΔxlCΔxβjjnlFj+jn\displaystyle=s\sum_{j^{\prime}=-lC_{\Delta x}}^{lC_{\Delta x}}\beta_{j^{\prime}}^{(j+1)nl}F_{j+1+j^{\prime}}^{n}+(1-s)\sum_{j^{\prime}=-lC_{\Delta x}}^{lC_{\Delta x}}\beta_{j^{\prime}}^{jnl}F_{j+j^{\prime}}^{n}
=j=(l+1)C~Δx(l+1)C~Δxβjin(l+1)Fi+jn,\displaystyle=\sum_{j=-(l+1)\tilde{C}_{\Delta x}}^{(l+1)\tilde{C}_{\Delta x}}\beta_{j}^{in(l+1)}F_{i+j}^{n},

with

j=(l+1)C~Δx(l+1)C~Δxβjin(l+1)=j=lCΔxlCΔxsβj(j+1)nl+j=lCΔxlCΔx(1s)βjjnl=1.\displaystyle\sum_{j=-(l+1)\tilde{C}_{\Delta x}}^{(l+1)\tilde{C}_{\Delta x}}\beta_{j}^{in(l+1)}=\sum_{j^{\prime}=-lC_{\Delta x}}^{lC_{\Delta x}}s\beta_{j^{\prime}}^{(j+1)nl}+\sum_{j^{\prime}=-lC_{\Delta x}}^{lC_{\Delta x}}(1-s)\beta_{j^{\prime}}^{jnl}=1.

The computation for Uin+kU_{i}^{n+k} is analogous. Indeed, we have

Uin+l+1\displaystyle U_{i}^{n+l+1} =ξin+l(Δt)xjΔxUj+1n+l+xj+1ξin+l(Δt)ΔxUjn+l\displaystyle=\frac{\xi_{i}^{n+l}(\Delta t)-x_{j}}{\Delta x}U_{j+1}^{n+l}+\frac{x_{j+1}-\xi_{i}^{n+l}(\Delta t)}{\Delta x}U_{j}^{n+l}
+12(ξin+l(Δt)xjΔxFj+1n+l+xj+1ξin+l(Δt)ΔxFjn+l)Δt14FΔt\displaystyle\quad+\frac{1}{2}\Bigg{(}\frac{\xi_{i}^{n+l}(\Delta t)-x_{j}}{\Delta x}F_{j+1}^{n+l}+\frac{x_{j+1}-\xi_{i}^{n+l}(\Delta t)}{\Delta x}F_{j}^{n+l}\Bigg{)}\Delta t-\frac{1}{4}F_{\infty}\Delta t
=ξin+l(Δt)xjΔxj=lCΔxlCΔxβj(j+1)nl(Uj+1+jn+12Fj+1+jnlΔt)\displaystyle=\frac{\xi_{i}^{n+l}(\Delta t)-x_{j}}{\Delta x}\sum_{j^{\prime}=-lC_{\Delta x}}^{lC_{\Delta x}}\beta_{j^{\prime}}^{(j+1)nl}\big{(}U_{j+1+j^{\prime}}^{n}+\frac{1}{2}F_{j+1+j^{\prime}}^{n}l\Delta t\big{)}
+xj+1ξin+l(Δt)Δxj=lCΔxlCΔxβjjnl(Uj+jn+12Fj+jnlΔt)\displaystyle\quad+\frac{x_{j+1}-\xi_{i}^{n+l}(\Delta t)}{\Delta x}\sum_{j^{\prime}=-lC_{\Delta x}}^{lC_{\Delta x}}\beta_{j^{\prime}}^{jnl}\big{(}U_{j+j^{\prime}}^{n}+\frac{1}{2}F_{j+j^{\prime}}^{n}l\Delta t\big{)}
+12ξin+l(Δt)xjΔxj=lCΔxlCΔxβj(j+1)nlFj+1+jn\displaystyle\quad+\frac{1}{2}\frac{\xi_{i}^{n+l}(\Delta t)-x_{j}}{\Delta x}\sum_{j^{\prime}=-lC_{\Delta x}}^{lC_{\Delta x}}\beta_{j^{\prime}}^{(j+1)nl}F_{j+1+j^{\prime}}^{n}
+12xj+1ξin+l(Δt)Δxj=lCΔxlCΔxβjjnlFj+jn14F(l+1)Δt\displaystyle\quad+\frac{1}{2}\frac{x_{j+1}-\xi_{i}^{n+l}(\Delta t)}{\Delta x}\sum_{j^{\prime}=-lC_{\Delta x}}^{lC_{\Delta x}}\beta_{j^{\prime}}^{jnl}F_{j+j^{\prime}}^{n}-\frac{1}{4}F_{\infty}(l+1)\Delta t
=j=(l+1)C~Δx(l+1)C~Δxβjin(l+1)(Ui+jn+12Fi+jn(l+1)Δt)14F(l+1)Δt.\displaystyle=\sum_{j=-(l+1)\tilde{C}_{\Delta x}}^{(l+1)\tilde{C}_{\Delta x}}\beta_{j}^{in(l+1)}\Big{(}U_{i+j}^{n}+\frac{1}{2}F_{i+j}^{n}(l+1)\Delta t\Big{)}-\frac{1}{4}F_{\infty}(l+1)\Delta t.

Next is an important corollary which provides a discrete Hölder continuity estimate for the numerical solution uΔxu_{\Delta x}.

Corollary 2.15 (Discrete temporal Hölder continuity).

The numerical solution satisfies

|Uin+kUin|CkΔt,|U_{i}^{n+k}-U_{i}^{n}|\leq C\sqrt{k\Delta t},

with

C=F(u0+14Ftn+k)+2FΔx+14Ftn+k.C=\sqrt{F_{\infty}}\sqrt{\Bigg{(}\|u_{0}\|_{\infty}+\frac{1}{4}F_{\infty}t^{n+k}\Bigg{)}+2\sqrt{F_{\infty}}\sqrt{\Delta x}}+\frac{1}{4}F_{\infty}\sqrt{t^{n+k}}.
Proof.

Using Lemma 2.14, we compute

Uin+kUin\displaystyle U_{i}^{n+k}-U_{i}^{n} =j=kCΔxkCΔxβjink(Ui+jn+12Fi+jnkΔt)14FkΔtUin\displaystyle=\sum_{j=-kC_{\Delta x}}^{kC_{\Delta x}}\beta_{j}^{ink}\left(U_{i+j}^{n}+\frac{1}{2}F_{i+j}^{n}k\Delta t\right)-\frac{1}{4}F_{\infty}k\Delta t-U^{n}_{i}
=j=kCΔxkCΔxβjink(Ui+jnUin)+j=kCΔxkCΔxβjink(12Fi+jnkΔt)14FkΔt,\displaystyle=\sum_{j=-kC_{\Delta x}}^{kC_{\Delta x}}\beta_{j}^{ink}\left(U_{i+j}^{n}-U_{i}^{n}\right)+\sum_{j=-kC_{\Delta x}}^{kC_{\Delta x}}\beta_{j}^{ink}\left(\frac{1}{2}F_{i+j}^{n}k\Delta t\right)-\frac{1}{4}F_{\infty}k\Delta t,

and thus, remembering Remark 2.13, (2.8c), and (2.4),

|Uin+k\displaystyle\big{|}U_{i}^{n+k} Uin|\displaystyle-U_{i}^{n}\big{|}
j=kCΔxkCΔxβjink|Ui+jnUin|+14FkΔt\displaystyle\leq\sum_{j=-kC_{\Delta x}}^{kC_{\Delta x}}\beta_{j}^{ink}\left|U_{i+j}^{n}-U_{i}^{n}\right|+\frac{1}{4}F_{\infty}k\Delta t
FkCΔxΔx+14FkΔt\displaystyle\leq\sqrt{F_{\infty}}\sqrt{kC_{\Delta x}\Delta x}+\frac{1}{4}F_{\infty}k\Delta t
Fk(u0+14Ftn+k)Δt+kΔx+14FkΔt\displaystyle\leq\sqrt{F_{\infty}}\sqrt{k\left(\|u_{0}\|_{\infty}+\frac{1}{4}F_{\infty}t^{n+k}\right)\Delta t+k\Delta x}+\frac{1}{4}F_{\infty}k\Delta t
Fk(u0+14Ftn+k)Δt+2kΔxFΔt+14FkΔt\displaystyle\leq\sqrt{F_{\infty}}\sqrt{k\left(\|u_{0}\|_{\infty}+\frac{1}{4}F_{\infty}t^{n+k}\right)\Delta t+2k\sqrt{\Delta x}\sqrt{F_{\infty}}\Delta t}+\frac{1}{4}F_{\infty}k\Delta t
(F(u0+14Ftn+k)+2FΔx+14Ftn+k)kΔt.\displaystyle\leq\left(\sqrt{F_{\infty}}\sqrt{\Bigg{(}\|u_{0}\|_{\infty}+\frac{1}{4}F_{\infty}t^{n+k}\Bigg{)}+2\sqrt{F_{\infty}}\sqrt{\Delta x}}+\frac{1}{4}F_{\infty}\sqrt{t^{n+k}}\right)\sqrt{k\Delta t}.

We are now ready to prove that for each T>0T>0 the solutions uΔxu_{\Delta x} are uniformly Hölder continuous on [0,T]×[0,T]\times\mathbb{R}. Uniform Hölder continuity implies equicontinuity, which is necessary for the Arzelà–Ascoli theorem.

Lemma 2.16 (Hölder continuity).

Let 0t,sT0\leq t,s\leq T and x,yx,y\in\mathbb{R}, then

|uΔx(t,x)uΔx(s,y)|C|ts|+|xy|,|u_{\Delta x}(t,x)-u_{\Delta x}(s,y)|\leq C\sqrt{|t-s|+|x-y|},

where

C\displaystyle C =4max{4Fu0+14FT,2F,\displaystyle=4\max\Bigg{\{}4\sqrt{F_{\infty}}\sqrt{\|u_{0}\|_{\infty}+\frac{1}{4}F_{\infty}T},2\sqrt{F_{\infty}},
F(u0+14FT)+2FΔx+14FT}.\displaystyle\qquad\qquad\sqrt{F_{\infty}}\sqrt{(\|u_{0}\|_{\infty}+\frac{1}{4}F_{\infty}T)+2\sqrt{F_{\infty}}\sqrt{\Delta x}}+\frac{1}{4}F_{\infty}\sqrt{T}\Bigg{\}}.
Proof.

Assume first that tns<ttn+1t^{n}\leq s<t\leq t^{n+1} and xjxxj+1x_{j}\leq x\leq x_{j+1}. We start by adding and subtracting uΔx(s,x)u_{\Delta x}(s,x) and obtain

uΔx(t,x)uΔx(s,y)=uΔx(t,x)uΔx(s,x)+uΔx(s,x)uΔx(s,y).u_{\Delta x}(t,x)-u_{\Delta x}(s,y)=u_{\Delta x}(t,x)-u_{\Delta x}(s,x)+u_{\Delta x}(s,x)-u_{\Delta x}(s,y).

Then, we have by definition,

uΔx(t,x)uΔx(s,x)\displaystyle u_{\Delta x}(t,x)-u_{\Delta x}(s,x) =xxjΔx(uΔx(t,xj+1)uΔx(s,xj+1))\displaystyle=\frac{x-x_{j}}{\Delta x}\big{(}u_{\Delta x}(t,x_{j+1})-u_{\Delta x}(s,x_{j+1})\big{)}
+xj+1xΔx(uΔx(t,xj)uΔx(s,xj)).\displaystyle\qquad+\frac{x_{j+1}-x}{\Delta x}\big{(}u_{\Delta x}(t,x_{j})-u_{\Delta x}(s,x_{j})\big{)}.

Note that at the spatial grid points xlx_{l} the solution uΔx(t,xl)u_{\Delta x}(t,x_{l}) equals the conservative solution given by (2.2) with initial data (uΔx(tn,),FΔx(tn,))\left(u_{\Delta x}(t^{n},\cdot),F_{\Delta x}(t^{n},\cdot)\right) evolved ttn<Δtt-t^{n}<\Delta t forward in time. For conservative solutions given by (2.2) we do have Hölder continuity with the constant CC depending on FF_{\infty}, u0\|u_{0}\|_{\infty}, and TT only. To be more specific it has been shown in the proof of [9, Theorem 3.14] that

|uΔx(t,xj)uΔx(s,xj)|Fu0+14Ft|ts|+14F|ts|,|u_{{\Delta x}}(t,x_{j})-u_{{\Delta x}}(s,x_{j})|\leq\sqrt{F_{\infty}}\sqrt{\|u_{0}\|_{\infty}+\frac{1}{4}F_{\infty}t}\sqrt{|t-s|}+\frac{1}{4}F_{\infty}|t-s|,

for all jj\in\mathbb{Z}. Hence, we have

|uΔx\displaystyle\big{|}u_{\Delta x} (t,x)uΔx(s,y)|\displaystyle(t,x)-u_{\Delta x}(s,y)\big{|}
=|uΔx(t,x)uΔx(s,x)+uΔx(s,x)uΔx(s,y)|\displaystyle=\big{|}u_{\Delta x}(t,x)-u_{\Delta x}(s,x)+u_{\Delta x}(s,x)-u_{\Delta x}(s,y)\big{|}
|uΔx(t,x)uΔx(s,x)|+|uΔx(s,x)uΔx(s,y)|\displaystyle\leq\big{|}u_{\Delta x}(t,x)-u_{\Delta x}(s,x)\big{|}+\big{|}u_{\Delta x}(s,x)-u_{\Delta x}(s,y)\big{|}
xxjΔx|uΔx(t,xj+1)uΔx(s,xj+1)|+xj+1xΔx|uΔx(t,xj)uΔx(s,xj)|\displaystyle\leq\frac{x-x_{j}}{\Delta x}\big{|}u_{\Delta x}(t,x_{j+1})-u_{\Delta x}(s,x_{j+1})\big{|}+\frac{x_{j+1}-x}{\Delta x}\big{|}u_{\Delta x}(t,x_{j})-u_{\Delta x}(s,x_{j})\big{|}
+|uΔx(s,x)uΔx(s,y)|\displaystyle\quad+\big{|}u_{\Delta x}(s,x)-u_{\Delta x}(s,y)\big{|}
Fu0+14Ft|ts|+14F|ts|+F|xy|\displaystyle\leq\sqrt{F_{\infty}}\sqrt{\|u_{0}\|_{\infty}+\frac{1}{4}F_{\infty}t}\sqrt{|t-s|}+\frac{1}{4}F_{\infty}|t-s|+\sqrt{F_{\infty}}\sqrt{|x-y|}
K|ts|+|xy|,\displaystyle\leq K\sqrt{|t-s|+|x-y|},

for K=2max{2Fu0+14Ft,F}K=2\max\big{\{}2\sqrt{F_{\infty}}\sqrt{\|u_{0}\|_{\infty}+\frac{1}{4}F_{\infty}t},\sqrt{F_{\infty}}\big{\}}.

We look at the general case tn1stntn+kttn+k+1t^{n-1}\leq s\leq t^{n}\leq t^{n+k}\leq t\leq t^{n+k+1}, and xj1yxjxj+lxxj+l+1x_{j-1}\leq y\leq x_{j}\leq x_{j+l}\leq x\leq x_{j+l+1}. Then, by Corollary 2.15, we have,

|uΔx\displaystyle\big{|}u_{\Delta x} (t,x)uΔx(s,y)|\displaystyle(t,x)-u_{\Delta x}(s,y)\big{|}
|uΔx(t,x)Uj+ln+k|+|Uj+ln+kUjn|+|UjnuΔx(s,y)|\displaystyle\leq\left|u_{\Delta x}(t,x)-U^{n+k}_{j+l}\right|+\left|U^{n+k}_{j+l}-U^{n}_{j}\right|+\left|U^{n}_{j}-u_{\Delta x}(s,y)\right|
K|ttn+k|+|xxj+l|+|Uj+ln+kUj+ln|+|Uj+lnUjn|\displaystyle\leq K\sqrt{|t-t^{n+k}|+|x-x_{j+l}|}+\left|U^{n+k}_{j+l}-U^{n}_{j+l}\right|+\left|U^{n}_{j+l}-U^{n}_{j}\right|
+K|tns|+|xjy|\displaystyle\quad+K\sqrt{|t^{n}-s|+|x_{j}-y|}
K|ttn+k|+|xxj+l|\displaystyle\leq K\sqrt{|t-t^{n+k}|+|x-x_{j+l}|}
+(F(u0+14Ftn+k)+2FΔx+14Ftn+k)kΔt\displaystyle\quad+\Bigg{(}\sqrt{F_{\infty}}\sqrt{(\|u_{0}\|_{\infty}+\frac{1}{4}F_{\infty}t^{n+k})+2\sqrt{F_{\infty}}\sqrt{\Delta x}}+\frac{1}{4}F_{\infty}\sqrt{t^{n+k}}\Bigg{)}\sqrt{k\Delta t}
+FlΔx+K|tns|+|xjy|\displaystyle\quad+\sqrt{F_{\infty}}\sqrt{l\Delta x}+K\sqrt{|t^{n}-s|+|x_{j}-y|}
4max{K,F(u0+14Ftn+k)+2FΔx+14Ftn+k}\displaystyle\leq 4\max\Bigg{\{}K,\sqrt{F_{\infty}}\sqrt{(\|u_{0}\|_{\infty}+\frac{1}{4}F_{\infty}t^{n+k})+2\sqrt{F_{\infty}}\sqrt{\Delta x}}+\frac{1}{4}F_{\infty}\sqrt{t^{n+k}}\Bigg{\}}
×|ts|+|xy|.\displaystyle\qquad\times\sqrt{|t-s|+|x-y|}.

To use the Kolmogorov compactness theorem we need uniform regularity of FΔxF_{\Delta x} in tt.

Lemma 2.17.

Let 0t,sT0\leq t,s\leq T, then

FΔx(t)FΔx(s)1C|st|+DΔt+12FΔx,\|F_{\Delta x}(t)-F_{\Delta x}(s)\|_{1}\leq C|s-t|+D\Delta t+12F_{\infty}\Delta x,

where C=6(u0+14F(17Δt+T))FC=6\big{(}\|u_{0}\|_{\infty}+\frac{1}{4}F_{\infty}(17\Delta t+T)\big{)}F_{\infty} and D=8(u0+14F(Δt+T))FD=8\big{(}\|u_{0}\|_{\infty}+\frac{1}{4}F_{\infty}(\Delta t+T)\big{)}F_{\infty}.

Proof.

To begin with let tns<ttn+1t^{n}\leq s<t\leq t^{n+1}. Assume first that there exists jj^{\prime} such that xjξjn(t)<ξjn(s)xj+1x_{j^{\prime}}\leq\xi_{j}^{n}(t)<\xi_{j}^{n}(s)\leq x_{j^{\prime}+1}. Then

FΔx(t,xj)FΔx(s,xj)\displaystyle F_{\Delta x}(t,x_{j})-F_{\Delta x}(s,x_{j}) =xj+1ξjn(t)ΔxFΔx(tn,xj)+ξjn(t)xjΔxFΔx(tn,xj+1)\displaystyle=\frac{x_{j^{\prime}+1}-\xi_{j}^{n}(t)}{\Delta x}F_{\Delta x}(t^{n},x_{j^{\prime}})+\frac{\xi_{j}^{n}(t)-x_{j^{\prime}}}{\Delta x}F_{\Delta x}(t^{n},x_{j^{\prime}+1})
xj+1ξjn(s)ΔxFΔx(tn,xj)ξjn(s)xjΔxFΔx(tn,xj+1)\displaystyle\quad-\frac{x_{j^{\prime}+1}-\xi_{j}^{n}(s)}{\Delta x}F_{\Delta x}(t^{n},x_{j^{\prime}})-\frac{\xi_{j}^{n}(s)-x_{j^{\prime}}}{\Delta x}F_{\Delta x}(t^{n},x_{j^{\prime}+1})
=ξjn(t)ξjn(s)Δx(FΔx(tn,xj+1)FΔx(tn,xj)).\displaystyle=\frac{\xi_{j}^{n}(t)-\xi_{j}^{n}(s)}{\Delta x}\left(F_{\Delta x}(t^{n},x_{j^{\prime}+1})-F_{\Delta x}(t^{n},x_{j^{\prime}})\right).

Otherwise, we have that there exist jj^{-} and j+j^{+}, possibly equal, such that xj1<ξjn(t)xjxj+ξjn(s)<xj++1x_{j^{-}-1}<\xi_{j}^{n}(t)\leq x_{j^{-}}\leq x_{j^{+}}\leq\xi_{j}^{n}(s)<x_{j^{+}+1}. Then

FΔx(s,xj)FΔx(t,xj)\displaystyle F_{\Delta x}(s,x_{j})-F_{\Delta x}(t,x_{j}) =FΔx(tn,ξjn(s))FΔx(tn,ξjn(t))\displaystyle=F_{\Delta x}(t^{n},\xi_{j}^{n}(s))-F_{\Delta x}(t^{n},\xi_{j}^{n}(t))
=xjξjn(t)Δx(FΔx(tn,xj)FΔx(tn,xj1))\displaystyle=\frac{x_{j-}-\xi_{j}^{n}(t)}{\Delta x}\left(F_{\Delta x}(t^{n},x_{j^{-}})-F_{\Delta x}(t^{n},x_{j^{-}-1})\right)
+ξjn(s)xj+Δx(FΔx(tn,xj++1)FΔx(tn,xj+))\displaystyle\quad+\frac{\xi_{j}^{n}(s)-x_{j^{+}}}{\Delta x}\left(F_{\Delta x}(t^{n},x_{j^{+}+1})-F_{\Delta x}(t^{n},x_{j^{+}})\right)
+i=jj+1(FΔx(tn,xi+1)FΔx(tn,xi)).\displaystyle\quad+\sum_{i=j^{-}}^{j^{+}-1}\left(F_{\Delta x}(t^{n},x_{i+1})-F_{\Delta x}(t^{n},x_{i})\right).

The number of terms in the above sum is bounded from above by |ξjn(t)ξjn(s)||\xi_{j}^{n}(t)-\xi_{j}^{n}(s)|. Direct calculations yield

|ξjn(t)\displaystyle\big{|}\xi_{j}^{n}(t) ξjn(s)|\displaystyle-\xi_{j}^{n}(s)\big{|}
|uΔx(tn,ξjn(s))(stn)uΔx(tn,ξjn(t))(ttn)|\displaystyle\leq\big{|}u_{\Delta_{x}}(t^{n},\xi_{j}^{n}(s))(s-t^{n})-u_{\Delta x}(t^{n},\xi_{j}^{n}(t))(t-t^{n})\big{|}
+14|(FΔx(tn,ξjn(t))12F)(ttn)2(FΔx(tn,ξjn(s)12F)(stn)2|\displaystyle\quad+\frac{1}{4}\Big{|}\Big{(}F_{\Delta x}(t^{n},\xi_{j}^{n}(t))-\frac{1}{2}F_{\infty}\Big{)}(t-t^{n})^{2}-\Big{(}F_{\Delta_{x}}(t^{n},\xi_{j}^{n}(s)-\frac{1}{2}F_{\infty}\Big{)}(s-t^{n})^{2}\Big{|}
(|ts|+2Δt)uΔx(tn,)L+14F(|ts|+Δt)Δt\displaystyle\leq(|t-s|+2\Delta t)\|u_{\Delta x}(t^{n},\cdot)\|_{L^{\infty}}+\frac{1}{4}F_{\infty}(|t-s|+\Delta t)\Delta t
(u0L+14F(Δt+T))(|ts|+2Δt),\displaystyle\leq\big{(}\|u_{0}\|_{L^{\infty}}+\frac{1}{4}F_{\infty}(\Delta t+T)\big{)}(|t-s|+2\Delta t),

and therefore

|j+j|(u0+14F(Δt+T))|st|+2ΔtΔx.|j^{+}-j^{-}|\leq\bigg{\lfloor}\Big{(}\|u_{0}\|_{\infty}+\frac{1}{4}F_{\infty}(\Delta t+T)\Big{)}\frac{|s-t|+2\Delta t}{\Delta x}\bigg{\rfloor}.

Due to condition (2.4) characteristics (forward as well as backward) from neighbouring grid points have a minimum distance of 12Δx\frac{1}{2}\Delta x. Hence for each jj^{\prime}, the maximal number of backward characteristics ξjn(Δt)\xi_{j}^{n}(\Delta t) ending up in [xj,xj+1][x_{j^{\prime}},x_{j^{\prime}+1}] equals two. Hence we have the bound

|FΔx(t,x)FΔx\displaystyle\int_{\mathbb{R}}\big{|}F_{\Delta x}(t,x)-F_{\Delta x} (s,x)|dx\displaystyle(s,x)\big{|}\>\mathrm{d}x
=j|FΔx(t,xj)FΔx(s,xj)|Δx\displaystyle=\sum_{j\in\mathbb{Z}}\left|F_{\Delta x}(t,x_{j})-F_{\Delta x}(s,x_{j})\right|\Delta x
=j|FΔx(tn,ξjn(t))FΔx(tn,ξjn(s))|Δx\displaystyle=\sum_{j\in\mathbb{Z}}\big{|}F_{\Delta x}(t^{n},\xi_{j}^{n}(t))-F_{\Delta x}(t^{n},\xi_{j}^{n}(s))\big{|}\Delta x
2(u0+14F(Δt+T))|st|+2ΔtΔx\displaystyle\leq 2\left\lfloor(\|u_{0}\|_{\infty}+\frac{1}{4}F_{\infty}(\Delta t+T))\frac{|s-t|+2\Delta t}{\Delta x}\right\rfloor
×j(FΔx(tn,xj+1)FΔx(tn,xj))Δx\displaystyle\qquad\qquad\times\sum_{j\in\mathbb{Z}}\big{(}F_{\Delta x}(t^{n},x_{j+1})-F_{\Delta x}(t^{n},x_{j})\big{)}\Delta x
+6j(FΔx(tn,xj+1)FΔx(tn,xj))Δx\displaystyle\quad+6\sum_{j\in\mathbb{Z}}\left(F_{\Delta x}(t^{n},x_{j+1})-F_{\Delta x}(t^{n},x_{j})\right)\Delta x
2(u0+14F(Δt+T))F(|st|+2Δt)+6FΔx.\displaystyle\leq 2\Big{(}\|u_{0}\|_{\infty}+\frac{1}{4}F_{\infty}(\Delta t+T)\Big{)}F_{\infty}(|s-t|+2\Delta t)+6F_{\infty}\Delta x.

The general case 0s<tT0\leq s<t\leq T can now be found by iteration over time steps and using condition (2.4),

FΔx(t)FΔx(s)1\displaystyle\|F_{\Delta x}(t)-F_{\Delta x}(s)\|_{1} 6(u0+14F(17Δt+T))F|st|\displaystyle\leq 6\big{(}\|u_{0}\|_{\infty}+\frac{1}{4}F_{\infty}(17\Delta t+T)\big{)}F_{\infty}|s-t|
+8(u0+14F(Δt+T))FΔt+12FΔx.\displaystyle\quad+8\big{(}\|u_{0}\|_{\infty}+\frac{1}{4}F_{\infty}(\Delta t+T)\big{)}F_{\infty}\Delta t+12F_{\infty}\Delta x.

2.2. Convergence of the numerical solutions

In this section we prove that there exists a convergent subsequence of (uΔx,FΔx)(u_{\Delta x},F_{\Delta x}), and that the limit is a conservative weak solution of (1.2), which satisfies condition (1.4). First we rigorously define, as in [2, 9, 19], conservative weak solutions.

Definition 2.18.

A pair (u,F)(u,F) is a conservative solution of (1.2) with initial data (u0,F0)𝒟(u_{0},F_{0})\in\mathcal{D} if

u|t=0=u0\displaystyle u|_{t=0}=u_{0}\quad and F|t=0=F0\displaystyle\text{ and }\quad F|_{t=0}=F_{0}
u\displaystyle u C0,12([0,T]×), for all T0,\displaystyle\in C^{0,\frac{1}{2}}\left([0,T]\times\mathbb{R}\right),\text{ for all }T\geq 0,
(u(t),F(t))\displaystyle(u(t),F(t)) 𝒟 for all t0,\displaystyle\in\mathcal{D}\text{ for all }t\geq 0,
F(t)\displaystyle\|F(t)\|_{\infty} =F for all t0,\displaystyle=F_{\infty}\text{ for all }t\geq 0,

and for all test functions ϕCc([0,)×)\phi\in C_{c}^{\infty}([0,\infty)\times\mathbb{R}) we have

0ϕt(t,x)u(t,x)+ϕx(t,x)12u(t,x)2+ϕ(t,x)(12F(t,x)14F)dxdt\displaystyle\int_{0}^{\infty}\int_{\mathbb{R}}\phi_{t}(t,x)u(t,x)+\phi_{x}(t,x)\frac{1}{2}u(t,x)^{2}+\phi(t,x)\left(\frac{1}{2}F(t,x)-\frac{1}{4}F_{\infty}\right)\>\mathrm{d}x\mathrm{d}t
(2.9) +ϕ0(x)u0(x)dx\displaystyle\quad+\int_{\mathbb{R}}\phi_{0}(x)u_{0}(x)\>\mathrm{d}x =0,\displaystyle=0,
(2.10) 0ϕt(t,x)+u(t,x)ϕx(t,x)dμ(t)dt+ϕ0(x)dμ0\displaystyle\int_{0}^{\infty}\int_{\mathbb{R}}\phi_{t}(t,x)+u(t,x)\phi_{x}(t,x)\mathrm{d}\mu(t)\mathrm{d}t+\int_{\mathbb{R}}\phi_{0}(x)\mathrm{d}\mu_{0} =0,\displaystyle=0,

where μ(t)\mu(t) is the finite positive Radon measure with F(t,)F(t,\cdot) as its distribution function, see Definition 2.1.

We prove the existence of a convergent subsequence of (uΔx,FΔx)(u_{\Delta x},F_{\Delta x}).

Theorem 2.19.

To any initial data (u0,F0)𝒟(u_{0},F_{0})\in\mathcal{D} such that μ0\mu_{0} has compact support, there exists a convergent subsequence of (uΔx,FΔx)\left(u_{\Delta x},F_{\Delta x}\right). The convergence is in C([0,T],L1())C\left([0,T],L^{1}(\mathbb{R})\right), pointwise a.e. in xx for FΔxF_{\Delta x}, and uniform on [0,T]×[0,T]\times\mathbb{R} for uΔxu_{\Delta x}. Moreover, the limit (u,F)(u,F) satisfies

u|t=0=u0\displaystyle u|_{t=0}=u_{0}\quad and F|t=0=F0\displaystyle\text{ and }\quad F|_{t=0}=F_{0}
u\displaystyle u C0,12([0,T]×),\displaystyle\in C^{0,\frac{1}{2}}\left([0,T]\times\mathbb{R}\right),
(u(t),F(t))\displaystyle(u(t),F(t)) 𝒟 for all t0,\displaystyle\in\mathcal{D}\text{ for all }t\geq 0,
F(t)\displaystyle\|F(t)\|_{\infty} =F.\displaystyle=F_{\infty}.

Here the relation between the positive Radon measure μ0\mu_{0} and F0F_{0} is given by F0(x)=μ0((,x))F_{0}(x)=\mu_{0}((-\infty,x)).

Proof.

We have from Lemma 2.12 that the family uΔxu_{\Delta x} is uniformly bounded on [0,T]×[0,T]\times\mathbb{R} and that uΔx,x(t,)u_{\Delta x,x}(t,\cdot) has compact support for all t[0,T]t\in[0,T]. Furthermore, by Lemma 2.16 uΔxu_{\Delta x} is uniformly equicontinuous. Hence the conditions for the Arzelà–Ascoli theorem are satisfied and there exists a convergent subsequence (uΔx,i,FΔx,i)(u_{{\Delta x},i},F_{{\Delta x},i}) of (uΔx,FΔx)(u_{\Delta x},F_{\Delta x}) such that uΔx,iu_{{\Delta x},i} converges to some uL([0,T]×)u\in L^{\infty}([0,T]\times\mathbb{R}) for each T>0T>0. The limit of uΔx,iu_{{\Delta x},i} is bounded and Hölder continuous with the same constants as the individual uΔx,iu_{\Delta x,i}.

Next we show that the limit uu satisfies ux(t,)L2()u_{x}(t,\cdot)\in L^{2}(\mathbb{R}) for all t[0,T]t\in[0,T]. By construction we have that uΔx,x(t,)L2F\|u_{{\Delta x},x}(t,\cdot)\|_{L^{2}}\leq\sqrt{F_{\infty}} for all t[0,T]t\in[0,T]. Thus there exists a subsequence (uΔx,ik(t,),FΔx,ik(t,))(u_{{\Delta x},i_{k}}(t,\cdot),F_{{\Delta x},i_{k}}(t,\cdot)) of (uΔx,i(t,),FΔx,i(t,))(u_{{\Delta x},i}(t,\cdot),F_{{\Delta x},i}(t,\cdot)), so that uΔx,x,ik(t,)u_{{\Delta x},x,i_{k}}(t,\cdot) converges weakly to vv in L2()L^{2}(\mathbb{R}). Thus for any ϕCc()\phi\in C_{c}^{\infty}(\mathbb{R}) we have

(v(x)ux(t,x))ϕ(x)dx\displaystyle\int_{\mathbb{R}}\big{(}v(x)-u_{x}(t,x)\big{)}\phi(x)\>\mathrm{d}x =limΔx0(uΔx,x,ik(t,x)ux(t,x))ϕ(x)dx\displaystyle=\lim_{\Delta x\rightarrow 0}\int_{\mathbb{R}}\big{(}u_{\Delta x,x,i_{k}}(t,x)-u_{x}(t,x)\big{)}\phi(x)\>\mathrm{d}x
=limΔx0(uΔx,ik(t,x)u(t,x))ϕx(x)dx\displaystyle=-\lim_{\Delta x\rightarrow 0}\int_{\mathbb{R}}\big{(}u_{\Delta x,i_{k}}(t,x)-u(t,x)\big{)}\phi_{x}(x)\>\mathrm{d}x
=0,\displaystyle=0,

and v()=ux(t,)v(\cdot)=u_{x}(t,\cdot). Thus we have uΔx,x,ik(t,)ux(t,)u_{\Delta x,x,i_{k}}(t,\cdot)\rightharpoonup u_{x}(t,\cdot) in L2()L^{2}(\mathbb{R}). A closer look reveals that the above argument shows that every weakly convergent subsequence has the same limit and therefore uΔx,x,i(t,)ux(t,)u_{\Delta x,x,i}(t,\cdot)\rightharpoonup u_{x}(t,\cdot) in L2()L^{2}(\mathbb{R}) for all t[0,T]t\in[0,T].

Combining Lemma 2.12 and [10, Theorem 12], we obtain, that for each t[0,T]t\in[0,T], there exists a subsequence (uΔx,ij(t,),FΔx,ij(t,))(u_{{\Delta x},i_{j}}(t,\cdot),F_{{\Delta x},i_{j}}(t,\cdot)) of (uΔx,i(t,),FΔx,i(t,))(u_{{\Delta x},i}(t,\cdot),F_{{\Delta x},i}(t,\cdot)) such that FΔx,ij(t,)F_{{\Delta x},i_{j}}(t,\cdot) converges pointwise everywhere and in the L1L^{1}-norm to a function of bounded variation. Following the lines of the proof of [12, Theorem A.11] and taking into account Lemma 2.17, it then follows that there exists a subsequence of (uΔx,i,FΔx,i)(u_{{\Delta x},i},F_{{\Delta x},i}), for which the FΔxF_{{\Delta x}} converge in C([0,T],L1())C\left([0,T],L^{1}(\mathbb{R})\right). Furthermore, denoting the limit by FF, we even have pointwise almost everywhere convergence of a further subsequence to FF.

Last but not least, we have a look at the connection between uxu_{x} and FF. Denote by (u~Δx,F~Δx)(\tilde{u}_{{\Delta x}},\tilde{F}_{{\Delta x}}) the very last subsequence of (uΔx,FΔx)(u_{{\Delta x}},F_{{\Delta x}}), then we have that

abux2(t,x)dx\displaystyle\int_{a}^{b}u_{x}^{2}(t,x)\>\mathrm{d}x lim infΔx0abu~Δx,x2(t,x)dx\displaystyle\leq\liminf_{\Delta x\rightarrow 0}\int_{a}^{b}\tilde{u}_{\Delta x,x}^{2}(t,x)\>\mathrm{d}x
lim infΔx0(F~Δx(t,b)F~Δx(t,a)).\displaystyle\leq\liminf_{\Delta x\rightarrow 0}\left(\tilde{F}_{\Delta x}(t,b)-\tilde{F}_{\Delta x}(t,a)\right).

Since, we can find two sequences ajaa_{j}\downarrow a and bjbb_{j}\uparrow b such that limΔx0FΔx(t,aj)=F(t,aj)\lim_{\Delta x\rightarrow 0}F_{\Delta x}(t,a_{j})=F(t,a_{j}) and limΔx0FΔx(t,bj)=F(t,bj)\lim_{\Delta x\rightarrow 0}F_{\Delta x}(t,b_{j})=F(t,b_{j}), we end up with

abux2(t,x)dx\displaystyle\int_{a}^{b}u_{x}^{2}(t,x)\>\mathrm{d}x =limjajbjux2(t,x)dx\displaystyle=\lim_{j\rightarrow\infty}\int_{a_{j}}^{b_{j}}u_{x}^{2}(t,x)\>\mathrm{d}x
limjlim infΔx0ajbju~Δx,x2(t,x)dx\displaystyle\leq\lim_{j\rightarrow\infty}\liminf_{\Delta x\rightarrow 0}\int_{a_{j}}^{b_{j}}\tilde{u}_{\Delta x,x}^{2}(t,x)\>\mathrm{d}x
limjlimΔx0(F~Δx(t,bj)F~Δx(t,aj))\displaystyle\leq\lim_{j\rightarrow\infty}\lim_{\Delta x\rightarrow 0}\big{(}\tilde{F}_{\Delta x}(t,b_{j})-\tilde{F}_{\Delta x}(t,a_{j})\big{)}
=limj(F(t,bj)F(t,aj))\displaystyle=\lim_{j\rightarrow\infty}\left(F(t,b_{j})-F(t,a_{j})\right)
=F(t,b)F(t,a+).\displaystyle=F(t,b^{-})-F(t,a^{+}).

We still need to prove that the limit of the convergent subsequence is a conservative weak solution in the sense of Definition 2.18.

Theorem 2.20.

The limit (u,F)(u,F) from Theorem 2.19 is a conservative solution in the sense of Definition 2.18.

Proof.

It remains to show that the integrals (2.9) and (2.10) hold. We compute the integrals for (uΔx,FΔx)\left(u_{\Delta x},F_{\Delta x}\right) as follows

0ϕt(t,x)uΔx(t,x)+ϕx(t,x)12uΔx2(t,x)+ϕ(t,x)(12FΔx(t,x)14F)dxdt\displaystyle\int_{0}^{\infty}\int_{\mathbb{R}}\phi_{t}(t,x)u_{\Delta x}(t,x)+\phi_{x}(t,x)\frac{1}{2}u_{\Delta x}^{2}(t,x)+\phi(t,x)\left(\frac{1}{2}F_{\Delta x}(t,x)-\frac{1}{4}F_{\infty}\right)\>\mathrm{d}x\mathrm{d}t
=n00Δtϕt(tn+τ,x)uΔx(tn+τ,x)\displaystyle\quad=\sum_{n\in\mathbb{N}_{0}}\int_{0}^{\Delta t}\int_{\mathbb{R}}\phi_{t}(t^{n}+\tau,x)u_{\Delta x}(t^{n}+\tau,x)
+ϕx(tn+τ,x)12uΔx2(tn+τ,x)\displaystyle\qquad\qquad\qquad\qquad+\phi_{x}(t^{n}+\tau,x)\frac{1}{2}u_{\Delta x}^{2}(t^{n}+\tau,x)
+ϕ(tn+τ,x)(12FΔx(tn+τ,x)14F)dxdτ\displaystyle\qquad\qquad\qquad\qquad+\phi(t^{n}+\tau,x)\left(\frac{1}{2}F_{\Delta x}(t^{n}+\tau,x)-\frac{1}{4}F_{\infty}\right)\>\mathrm{d}x\mathrm{d}\tau
=n00Δtϕt(tn+τ,x)(uΔx(tn+τ,x)u~n(τ,x))\displaystyle=\sum_{n\in\mathbb{N}_{0}}\int_{0}^{\Delta t}\int_{\mathbb{R}}\phi_{t}(t^{n}+\tau,x)\big{(}u_{\Delta x}(t^{n}+\tau,x)-\tilde{u}_{n}(\tau,x)\big{)}
+ϕx(tn+τ,x)12(uΔx2(tn+τ,x)u~n2(τ,x))\displaystyle\qquad\qquad\qquad\qquad+\phi_{x}(t^{n}+\tau,x)\frac{1}{2}\left(u_{\Delta x}^{2}(t^{n}+\tau,x)-\tilde{u}_{n}^{2}(\tau,x)\right)
+ϕ(tn+τ,x)(12FΔx(tn+τ,x)12F~n(τ,x))dxdτ\displaystyle\qquad\qquad\qquad\qquad+\phi(t^{n}+\tau,x)\left(\frac{1}{2}F_{\Delta x}(t^{n}+\tau,x)-\frac{1}{2}\tilde{F}_{n}(\tau,x)\right)\>\mathrm{d}x\mathrm{d}\tau
+n00Δtϕt(tn+τ,x)u~n(τ,x)+ϕx(tn+τ,x)12u~n2(τ,x)\displaystyle\qquad+\sum_{n\in\mathbb{N}_{0}}\int_{0}^{\Delta t}\int_{\mathbb{R}}\phi_{t}(t^{n}+\tau,x)\tilde{u}_{n}(\tau,x)+\phi_{x}(t^{n}+\tau,x)\frac{1}{2}\tilde{u}_{n}^{2}(\tau,x)
+ϕ(tn+τ,x)(12F~n(τ,x)14F)dxdτ\displaystyle\qquad\qquad\qquad\qquad\qquad+\phi(t^{n}+\tau,x)\left(\frac{1}{2}\tilde{F}_{n}(\tau,x)-\frac{1}{4}F_{\infty}\right)\>\mathrm{d}x\mathrm{d}\tau
=n0In+n0IIn.\displaystyle=\sum_{n\in\mathbb{N}_{0}}\textup{I}_{n}+\sum_{n\in\mathbb{N}_{0}}\textup{II}_{n}.

Here (u~n(τ,x),F~n(τ,x))(\tilde{u}_{n}(\tau,x),\tilde{F}_{n}(\tau,x)) denotes the conservative solution given by (2.1) and (2.2) with initial data (uΔx(tn,x),FΔx(tn,x))(u_{\Delta x}(t^{n},x),F_{\Delta x}(t^{n},x)). Since the conservative solution is a weak solution we get

IIn\displaystyle\textup{II}_{n} =0Δtϕt(tn+τ,x)u~n(τ,x)\displaystyle=\int_{0}^{\Delta t}\int_{\mathbb{R}}\phi_{t}(t^{n}+\tau,x)\tilde{u}_{n}(\tau,x)
+ϕx(tn+τ,x)12u~n2(τ,x)+ϕ(tn+τ,x)(12F~n(τ,x)14F)dxdτ\displaystyle\quad+\phi_{x}(t^{n}+\tau,x)\frac{1}{2}\tilde{u}_{n}^{2}(\tau,x)+\phi(t^{n}+\tau,x)\left(\frac{1}{2}\tilde{F}_{n}(\tau,x)-\frac{1}{4}F_{\infty}\right)\>\mathrm{d}x\mathrm{d}\tau
=u~n(Δt,x)ϕ(tn+1,x)dxuΔx(tn,x)ϕ(tn,x)dx.\displaystyle=\int_{\mathbb{R}}\tilde{u}_{n}(\Delta t,x)\phi(t^{n+1},x)\>\mathrm{d}x-\int_{\mathbb{R}}u_{\Delta x}(t^{n},x)\phi(t^{n},x)\>\mathrm{d}x.

Recalling that uΔx(tn+τ)=Δxu~n(τ)u_{\Delta x}(t^{n}+\tau)=\mathbb{P}_{\Delta x}\tilde{u}_{n}(\tau) yields

n0IIn\displaystyle\sum_{n\in\mathbb{N}_{0}}\textup{II}_{n} =n0(u~n(Δt,x)ϕ(tn+1,x)dxuΔx(tn,x)ϕ(tn,x)dx)\displaystyle=\sum_{n\in\mathbb{N}_{0}}\Big{(}\int_{\mathbb{R}}\tilde{u}_{n}(\Delta t,x)\phi(t^{n+1},x)\>\mathrm{d}x-\int_{\mathbb{R}}u_{\Delta x}(t^{n},x)\phi(t^{n},x)\>\mathrm{d}x\Big{)}
=u0Δxϕ0(x)dx\displaystyle=-\int_{\mathbb{R}}u_{0\Delta x}\phi_{0}(x)\>\mathrm{d}x
+n=1(u~n1(Δt,x)Δxu~n1(Δt,x))ϕ(tn,x)dx\displaystyle\quad+\sum_{n=1}^{\infty}\int_{\mathbb{R}}\big{(}\tilde{u}_{n-1}(\Delta t,x)-\mathbb{P}_{\Delta x}\tilde{u}_{n-1}(\Delta t,x)\big{)}\phi(t^{n},x)\>\mathrm{d}x
=u0Δxϕ0(x)dx+𝒪(Δx)\displaystyle=-\int_{\mathbb{R}}u_{0\Delta x}\phi_{0}(x)\>\mathrm{d}x+\mathcal{O}(\sqrt{\Delta x})

where we applied Proposition 2.11 in the last step as follows

|n=1(u~n1(Δt,x)\displaystyle\bigg{|}\sum_{n=1}^{\infty}\int_{\mathbb{R}}\big{(}\tilde{u}_{n-1}(\Delta t,x)- Δxu~n1(Δt,x))ϕ(tn,x)dx|\displaystyle\mathbb{P}_{\Delta x}\tilde{u}_{n-1}(\Delta t,x)\big{)}\phi(t^{n},x)\>\mathrm{d}x\bigg{|}
n=1u~n1(Δt,)Δxu~n1(Δt,)2ϕ(tn,)2\displaystyle\leq\sum_{n=1}^{\infty}\big{\|}\tilde{u}_{n-1}(\Delta t,\cdot)-\mathbb{P}_{\Delta x}\tilde{u}_{n-1}(\Delta t,\cdot)\big{\|}_{2}\|\phi(t^{n},\cdot)\|_{2}
n=1ϕ(tn,)2FΔx\displaystyle\leq\sum_{n=1}^{\infty}\|\phi(t^{n},\cdot)\|_{2}\sqrt{F_{\infty}}\Delta x
n=1ϕ(tn,)22FΔtΔx\displaystyle\leq\sum_{n=1}^{\infty}\|\phi(t^{n},\cdot)\|_{2}2F_{\infty}\Delta t\sqrt{\Delta x}
2supt0ϕ(t,)2TϕFΔx.\displaystyle\leq 2\sup_{t\geq 0}\|\phi(t,\cdot)\|_{2}T_{\phi}F_{\infty}\sqrt{\Delta x}.

Here Tϕ=inf{t0ϕ(s,)2+ϕt(s,)2=0 for all st}T_{\phi}=\inf\{t\geq 0\mid\|\phi(s,\cdot)\|_{2}+\|\phi_{t}(s,\cdot)\|_{2}=0\text{ for all }s\geq t\}. Note that TϕT_{\phi} is finite since ϕ\phi has compact support.

We now turn our attention to the first sum. Recall that uΔx(tn+τ)=Δxu~n(τ)u_{\Delta x}(t^{n}+\tau)=\mathbb{P}_{\Delta x}\tilde{u}_{n}(\tau), FΔx(tn+τ)=ΔxF~n(τ)F_{\Delta x}(t^{n}+\tau)=\mathbb{P}_{\Delta x}\tilde{F}_{n}(\tau), and keep Proposition 2.11 and Lemma 2.12 in mind. Direct calculations then yield

|In|\displaystyle|\textup{I}_{n}| =|0Δtϕt(tn+τ,x)(uΔx(tn+τ,x)u~n(τ,x))\displaystyle=\bigg{|}\int_{0}^{\Delta t}\int_{\mathbb{R}}\phi_{t}(t^{n}+\tau,x)\big{(}u_{\Delta x}(t^{n}+\tau,x)-\tilde{u}_{n}(\tau,x)\big{)}
+ϕx(tn+τ,x)12(uΔx2(tn+τ,x)u~n2(τ,x))\displaystyle\qquad\qquad\qquad+\phi_{x}(t^{n}+\tau,x)\frac{1}{2}\left(u_{\Delta x}^{2}(t^{n}+\tau,x)-\tilde{u}_{n}^{2}(\tau,x)\right)
+ϕ(tn+τ,x)(12FΔx(tn+τ,x)12F~n(τ,x))dxdτ|\displaystyle\qquad\qquad\qquad+\phi(t^{n}+\tau,x)\left(\frac{1}{2}F_{\Delta x}(t^{n}+\tau,x)-\frac{1}{2}\tilde{F}_{n}(\tau,x)\right)\>\mathrm{d}x\mathrm{d}\tau\bigg{|}
supτ[0,Δt](ϕt(tn+τ,)1+ϕx(tn+τ,)1u~n(τ,))\displaystyle\leq\sup_{\tau\in[0,\Delta t]}\big{(}\|\phi_{t}(t^{n}+\tau,\cdot)\|_{1}+\|\phi_{x}(t^{n}+\tau,\cdot)\|_{1}\|\tilde{u}_{n}(\tau,\cdot)\|_{\infty}\big{)}
×uΔx(tn+τ,)u~n(τ,)Δt\displaystyle\qquad\qquad\qquad\times\|u_{\Delta x}(t^{n}+\tau,\cdot)-\tilde{u}_{n}(\tau,\cdot)\|_{\infty}\Delta t
+supτ[0,Δt]ϕ(tn+τ)12FΔt(tn+τ,)F~(τ,)1Δt\displaystyle\qquad+\sup_{\tau\in[0,\Delta t]}\|\phi(t^{n}+\tau)\|_{\infty}\frac{1}{2}\big{\|}F_{\Delta t}(t^{n}+\tau,\cdot)-\tilde{F}(\tau,\cdot)\big{\|}_{1}\Delta t
supτ[0,Δt]((ϕt(tn+τ,,)1+ϕx(tn+τ,)1)(u0()+14F(tn+τ)))\displaystyle\leq\sup_{\tau\in[0,\Delta t]}\left(\big{(}\|\phi_{t}(t^{n}+\tau,\cdot,\cdot)\|_{1}+\|\phi_{x}(t^{n}+\tau,\cdot)\|_{1}\big{)}\big{(}\|u_{0}(\cdot)\|_{\infty}+\frac{1}{4}F_{\infty}(t^{n}+\tau)\big{)}\right)
×FΔxΔt\displaystyle\qquad\qquad\qquad\times\sqrt{F_{\infty}}\sqrt{\Delta x}\Delta t
+supτ[0,Δt]ϕ(tn+τ,)12FΔxΔt.\displaystyle\qquad+\sup_{\tau\in[0,\Delta t]}\|\phi(t^{n}+\tau,\cdot)\|_{\infty}\frac{1}{2}F_{\infty}\Delta x\Delta t.

Since ϕ\phi has compact support we end up with

n0In=𝒪(Δx).\sum_{n\in\mathbb{N}_{0}}\textup{I}_{n}=\mathcal{O}(\sqrt{\Delta x}).

In particular, we have

0ϕt(t,x)uΔx(t,x)+ϕx(t,x)12uΔx(t,x)2\displaystyle\int_{0}^{\infty}\int_{\mathbb{R}}\phi_{t}(t,x)u_{\Delta x}(t,x)+\phi_{x}(t,x)\frac{1}{2}u_{\Delta x}(t,x)^{2}
+ϕ(t,x)(12FΔx(t,x)14F)dxdt+u0Δxϕ0(x)dx=𝒪(Δx).\displaystyle\qquad\qquad+\phi(t,x)\left(\frac{1}{2}F_{\Delta x}(t,x)-\frac{1}{4}F_{\infty}\right)\>\mathrm{d}x\mathrm{d}t+\int_{\mathbb{R}}u_{0\Delta x}\phi_{0}(x)\>\mathrm{d}x=\mathcal{O}(\sqrt{{\Delta x}}).

By letting Δx0{\Delta x}\to 0, we end up with (2.9) as the subsequence of (uΔx,FΔx)(u_{\Delta x},F_{\Delta x}), constructed in Theorem 2.19, converges to (u,F)(u,F) uniformly in [0,T]×[0,T]\times\mathbb{R} for uΔxu_{\Delta x} and in C([0,T],L1())C\left([0,T],L^{1}(\mathbb{R})\right) for FΔxF_{\Delta x}.

In a similar fashion we demonstrate that the second integral equation (2.10) must be satisfied as Δx0{\Delta x}\to 0 as well. We have

0ϕt(t,x)+uΔx(t,x)ϕx(t,x)dμΔx(t)dt\displaystyle\int_{0}^{\infty}\int_{\mathbb{R}}\phi_{t}(t,x)+u_{\Delta x}(t,x)\phi_{x}(t,x)\>\mathrm{d}\mu_{\Delta x}(t)\mathrm{d}t
=0(ϕt(t,x)+uΔx(t,x)ϕx(t,x))FΔx,x(t,x)dxdt\displaystyle=\int_{0}^{\infty}\int_{\mathbb{R}}\big{(}\phi_{t}(t,x)+u_{\Delta x}(t,x)\phi_{x}(t,x)\big{)}F_{\Delta x,x}(t,x)\>\mathrm{d}x\mathrm{d}t
=n00Δt(ϕt(tn+τ,x)+uΔx(tn+τ,x)ϕx(tn+τ,x))\displaystyle=\sum_{n\in\mathbb{N}_{0}}\int_{0}^{\Delta t}\int_{\mathbb{R}}\big{(}\phi_{t}(t^{n}+\tau,x)+u_{\Delta x}(t^{n}+\tau,x)\phi_{x}(t^{n}+\tau,x)\big{)}
×(FΔx,x(tn+τ,x)F~n,x(τ,x))dxdτ\displaystyle\qquad\qquad\qquad\times\left(F_{\Delta x,x}(t^{n}+\tau,x)-\tilde{F}_{n,x}(\tau,x)\right)\>\mathrm{d}x\mathrm{d}\tau
+n00Δt(uΔx(tn+τ,x)u~n(τ,x))ϕx(tn+τ,x)F~n,x(τ,x)dxdτ\displaystyle\quad+\sum_{n\in\mathbb{N}_{0}}\int_{0}^{\Delta t}\int_{\mathbb{R}}\big{(}u_{\Delta x}(t^{n}+\tau,x)-\tilde{u}_{n}(\tau,x)\big{)}\phi_{x}(t^{n}+\tau,x)\tilde{F}_{n,x}(\tau,x)\>\mathrm{d}x\mathrm{d}\tau
+n00Δt(ϕt(tn+τ,x)+u~n(τ,x)ϕx(tn+τ,x))F~n,x(τ,x)dxdτ\displaystyle\quad+\sum_{n\in\mathbb{N}_{0}}\int_{0}^{\Delta t}\int_{\mathbb{R}}\big{(}\phi_{t}(t^{n}+\tau,x)+\tilde{u}_{n}(\tau,x)\phi_{x}(t^{n}+\tau,x)\big{)}\tilde{F}_{n,x}(\tau,x)\>\mathrm{d}x\mathrm{d}\tau
=n0In+n0IIn+n0IIIn.\displaystyle=\sum_{n\in\mathbb{N}_{0}}\textup{I}_{n}+\sum_{n\in\mathbb{N}_{0}}\textup{II}_{n}+\sum_{n\in\mathbb{N}_{0}}\textup{III}_{n}.

Since conservative solutions are weak solutions we get

IIIn=0Δt\displaystyle\textup{III}_{n}=\int_{0}^{\Delta t}\int_{\mathbb{R}} (ϕt(tn+τ,x)+u~n(τ,x)ϕx(tn+τ,x))F~n,x(τ,x)dxdτ\displaystyle\left(\phi_{t}(t^{n}+\tau,x)+\tilde{u}_{n}(\tau,x)\phi_{x}(t^{n}+\tau,x)\right)\tilde{F}_{n,x}(\tau,x)\>\mathrm{d}x\mathrm{d}\tau
=ϕ(tn+1,x)F~n,x(Δt,x)dxϕ(tn,x)FΔx,x(tn,x)dx.\displaystyle=\int_{\mathbb{R}}\phi(t^{n+1},x)\tilde{F}_{n,x}(\Delta t,x)\>\mathrm{d}x-\int_{\mathbb{R}}\phi(t^{n},x)F_{\Delta x,x}(t^{n},x)\>\mathrm{d}x.

Summation over nn then yields

n0ϕ(tn+1,x)F~n,x(Δt,x)ϕ(tn,x)FΔx,x(tn,x)dx\displaystyle\sum_{n\in\mathbb{N}_{0}}\int_{\mathbb{R}}\phi(t^{n+1},x)\tilde{F}_{n,x}(\Delta t,x)-\phi(t^{n},x)F_{\Delta x,x}(t^{n},x)\>\mathrm{d}x
=ϕ0(x)F0Δx,x(x)dx+n=1(F~n1,x(Δt,x)FΔx,x(tn,x))ϕ(tn,x)dx.\displaystyle\quad=-\int_{\mathbb{R}}\phi_{0}(x)F_{0\Delta x,x}(x)\>\mathrm{d}x+\sum_{n=1}^{\infty}\int_{\mathbb{R}}\left(\tilde{F}_{n-1,x}(\Delta t,x)-F_{\Delta x,x}(t^{n},x)\right)\phi(t^{n},x)\>\mathrm{d}x.

From the estimates in Proposition 2.11 we get

n=1|(F~n1,x(Δt,x)\displaystyle\sum_{n=1}^{\infty}\Big{|}\int_{\mathbb{R}}\Big{(}\tilde{F}_{n-1,x}(\Delta t,x) FΔx,x(tn,x))ϕ(tn,x)dx|\displaystyle-F_{\Delta x,x}(t^{n},x)\Big{)}\phi(t^{n},x)\>\mathrm{d}x\Big{|}
=n=1|(F~n1(Δt,x)ΔxF~n1(Δt,x))ϕx(tn,x)dx|\displaystyle=\sum_{n=1}^{\infty}\Big{|}\int_{\mathbb{R}}\left(\tilde{F}_{n-1}(\Delta t,x)-\mathbb{P}_{\Delta x}\tilde{F}_{n-1}(\Delta t,x)\right)\phi_{x}(t^{n},x)\>\mathrm{d}x\Big{|}
TϕΔtsupn0F~n1(Δt,)ΔxF~n1(Δt,)1ϕx(tn,)\displaystyle\leq\frac{T_{\phi}}{\Delta t}\sup_{n\geq 0}\big{\|}\tilde{F}_{n-1}(\Delta t,\cdot)-\mathbb{P}_{\Delta x}\tilde{F}_{n-1}(\Delta t,\cdot)\big{\|}_{1}\|\phi_{x}(t^{n},\cdot)\|_{\infty}
Fsupt0ϕx(t,)ΔxTϕΔt\displaystyle\leq F_{\infty}\sup_{t\geq 0}\|\phi_{x}(t,\cdot)\|_{\infty}\Delta x\frac{T_{\phi}}{\Delta t}
2FFsupt0ϕx(t,)TϕΔx,\displaystyle\leq 2\sqrt{F_{\infty}}F_{\infty}\sup_{t\geq 0}\|\phi_{x}(t,\cdot)\|_{\infty}T_{\phi}\sqrt{\Delta x},

and hence

n0IIIn=ϕ0(x)F0Δx,x(x)dx+𝒪(Δx).\displaystyle\sum_{n\in\mathbb{N}_{0}}\textup{III}_{n}=-\int_{\mathbb{R}}\phi_{0}(x)F_{0\Delta x,x}(x)\>\mathrm{d}x+\mathcal{O}(\sqrt{\Delta x}).

The second term can be estimated as follows

|\displaystyle\Bigg{|} n0IIn|\displaystyle\sum_{n\in\mathbb{N}_{0}}\textup{II}_{n}\Bigg{|}
=|n00Δt(uΔx(tn+τ,x)u~n(τ,x))ϕx(tn+τ,x)F~n,x(τ,x)dxdτ|\displaystyle=\left|\sum_{n\in\mathbb{N}_{0}}\int_{0}^{\Delta t}\int_{\mathbb{R}}\big{(}u_{\Delta x}(t^{n}+\tau,x)-\tilde{u}_{n}(\tau,x)\big{)}\phi_{x}(t^{n}+\tau,x)\tilde{F}_{n,x}(\tau,x)\>\mathrm{d}x\mathrm{d}\tau\right|
n00Δt|ϕx(tn+τ,x)|F~n,x(tn+τ,x)dxuΔx(tn+τ,)u~n(τ,)dτ\displaystyle\leq\sum_{n\in\mathbb{N}_{0}}\int_{0}^{\Delta t}\int_{\mathbb{R}}\big{|}\phi_{x}(t^{n}+\tau,x)\big{|}\tilde{F}_{n,x}(t^{n}+\tau,x)\>\mathrm{d}x\|u_{\Delta x}(t^{n}+\tau,\cdot)-\tilde{u}_{n}(\tau,\cdot)\|_{\infty}\mathrm{d}\tau
FFsupt0ϕx(t,)xTϕΔx.\displaystyle\leq\sqrt{F_{\infty}}F_{\infty}\sup_{t\geq 0}\|\phi_{x}(t,\cdot)\|_{x}T_{\phi}\sqrt{\Delta x}.

It remains to prove that the first term tends to zero as Δx0\Delta x\rightarrow 0. We compute

|n0In|\displaystyle\Bigg{|}\sum_{n\in\mathbb{N}_{0}}\textup{I}_{n}\Bigg{|} =|n00Δt(ϕt(tn+τ,x)+uΔx(tn+τ,x)ϕ(tn+τ,x))\displaystyle=\Bigg{|}\sum_{n\in\mathbb{N}_{0}}\int_{0}^{\Delta t}\int_{\mathbb{R}}\big{(}\phi_{t}(t^{n}+\tau,x)+u_{\Delta x}(t^{n}+\tau,x)\phi_{\infty}(t^{n}+\tau,x)\big{)}
×(FΔx,x(tn+τ,x)F~n,x(τ,x))dxdτ|\displaystyle\qquad\qquad\qquad\qquad\qquad\times\left(F_{\Delta x,x}(t^{n}+\tau,x)-\tilde{F}_{n,x}(\tau,x)\right)\>\mathrm{d}x\mathrm{d}\tau\Bigg{|}
=|n00Δt(ϕtx(tn+τ,x)+(uΔx(tn+τ,x)ϕx(tn+τ,x))x)\displaystyle=\Bigg{|}\sum_{n\in\mathbb{N}_{0}}\int_{0}^{\Delta t}\int_{\mathbb{R}}\left(\phi_{tx}(t^{n}+\tau,x)+\big{(}u_{\Delta x}(t^{n}+\tau,x)\phi_{x}(t^{n}+\tau,x)\right)_{x}\big{)}
×(FΔx(tn+τ,x)F~n(τ,x))dxdτ|\displaystyle\qquad\qquad\qquad\qquad\qquad\qquad\quad\times\left(F_{\Delta x}(t^{n}+\tau,x)-\tilde{F}_{n}(\tau,x)\right)\>\mathrm{d}x\mathrm{d}\tau\Bigg{|}
Tϕsupt0ϕtx(t,)xFΔx\displaystyle\leq T_{\phi}\sup_{t\geq 0}\|\phi_{tx}(t,\cdot)\|_{x}F_{\infty}\Delta x
+Tϕsup0tTϕuΔx(t,)ϕxx(t,)ΔxF\displaystyle\quad+T_{\phi}\sup_{0\leq t\leq T_{\phi}}\|u_{\Delta x}(t,\cdot)\|_{\infty}\|\phi_{xx}(t,\cdot)\|_{\infty}\Delta xF_{\infty}
+Tϕsup0tTϕuΔx,x(t,)2ϕx(t,)FΔx\displaystyle\quad+T_{\phi}\sup_{0\leq t\leq T_{\phi}}\|u_{\Delta x,x}(t,\cdot)\|_{2}\|\phi_{x}(t,\cdot)\|_{\infty}F_{\infty}\sqrt{\Delta x}
=𝒪(Δx).\displaystyle=\mathcal{O}(\sqrt{\Delta x}).

Finally, we end up with

(2.12) 0ϕt(t,x)+uΔx(t,x)ϕx(t,x)dμΔx(t)dt+ϕ0(x)F0Δx,x(x)dx=𝒪(Δx).\displaystyle\int_{0}^{\infty}\int_{\mathbb{R}}\phi_{t}(t,x)+u_{\Delta x}(t,x)\phi_{x}(t,x)\>\mathrm{d}\mu_{\Delta x}(t)\mathrm{d}t+\int_{\mathbb{R}}\phi_{0}(x)F_{0\Delta x,x}(x)\>\mathrm{d}x=\mathcal{O}(\sqrt{\Delta x}).

Since for every tt we have that FΔx(t,)F(t,)F_{\Delta x}(t,\cdot)\to F(t,\cdot) almost everywhere, the convergence of (2.12) to (2.10) as Δx0{\Delta x}\to 0 follows from the proof of Proposition 7.19 in [8] and the fact that uΔxuu_{\Delta x}\to u in C([0,T]×)C([0,T]\times\mathbb{R}). ∎

A satisfactory uniqueness theory for conservative weak solutions of the Hunter–Saxton equation would have ensured that all limits in Theorem 2.19 are equal, and thus that the sequence as a whole converges. Unfortunately, uniqueness of conservative solutions is unknown at the present time. On the other hand it is known that if the initial data (u0,F0)(u_{0},F_{0}) is Lipschitz continuous, also the solution (u(t,),F(t,))(u(t,\cdot),F(t,\cdot)) will be Lipschitz continuous for all t[0,2min(u0,x))t\in[0,-\frac{2}{\min(u_{0,x})}), at least. In particular, as Example 1.1 and 3.2 indicate, when wave breaking occurs u(t,)u(t,\cdot) may be Hölder, but not Lipschitz continuous and FF may even be discontinuous.

In the next theorem, we consider the special case of weak conservative solutions (u,F)(u,F) such that (u(t,),F(t,))(u(t,\cdot),F(t,\cdot)) are Lipschitz continuous for all t[0,T]t\in[0,T].

Theorem 2.21.

Let (u,F)[W1,([0,T]×)]2(u,F)\in[W^{1,\infty}([0,T]\times\mathbb{R})]^{2} be a conservative solution in the sense of Definition 2.18. Then the conservative solution is unique and there exists a constant C>0C>0, dependent on TT, FF_{\infty}, and supt[0,T](ux(t,)+Fx(t,))\sup_{t\in[0,T]}\big{(}\|u_{x}(t,\cdot)\|_{\infty}+\|F_{x}(t,\cdot)\|_{\infty}\big{)}, such that

(2.13) supt[0,T]((uΔxu)(t,)+(FΔxF)(t,))C(Δx+Δx).\sup_{t\in[0,T]}\big{(}\|(u_{\Delta x}-u)(t,\cdot)\|_{\infty}+\|(F_{\Delta x}-F)(t,\cdot)\|_{\infty}\big{)}\leq C\left(\sqrt{{\Delta x}}+{\Delta x}\right).
Proof.

For any conservative solution (u,F)[W1,([0,T]×)]2(u,F)\in[W^{1,\infty}([0,T]\times\mathbb{R})]^{2} with initial data (u0,F0)(u_{0},F_{0}), the characteristic equation

ddtx(t)=u(t,x(t)),x(0)=x0,\frac{\mathrm{d}}{\mathrm{d}t}x(t)=u(t,x(t)),\qquad x(0)=x_{0},

is uniquely solvable. Furthermore, the classical method of characteristics implies that the solution is unique and given by

u(t,x(t))\displaystyle u(t,x(t)) =u0(x0)+12(F0(x0)12F)t,\displaystyle=u_{0}(x_{0})+\frac{1}{2}(F_{0}(x_{0})-\frac{1}{2}F_{\infty})t,
F(t,x(t))\displaystyle F(t,x(t)) =F0(x0).\displaystyle=F_{0}(x_{0}).

Introduce (u~0,F~0)(t)=TtΔx(u0,F0)(\tilde{u}^{0},\tilde{F}^{0})(t)=T_{t}\mathbb{P}_{\Delta x}(u_{0},F_{0}) and recall that xj(t)x_{j}(t) denotes the characteristic starting at the grid point xjx_{j}, then

(u~0(t,xj(t)),F~0(t,xj(t)))=(u(t,xj(t)),F(t,xj(t))) for all j.(\tilde{u}^{0}(t,x_{j}(t)),\tilde{F}^{0}(t,x_{j}(t)))=(u(t,x_{j}(t)),F(t,x_{j}(t)))\quad\text{ for all }j\in\mathbb{N}.

Moreover, for all t[0,T]t\in[0,T],

u~x0(t,)ux(t,) and F~x0(t,)Fx(t,).\|\tilde{u}_{x}^{0}(t,\cdot)\|_{\infty}\leq\|u_{x}(t,\cdot)\|_{\infty}\quad\text{ and }\quad\|\tilde{F}_{x}^{0}(t,\cdot)\|_{\infty}\leq\|F_{x}(t,\cdot)\|_{\infty}.

For n1n\geq 1, define (u~n,F~n)(\tilde{u}^{n},\tilde{F}^{n}) by

(u~n,F~n)(t)={T(ttn)Δx(u~n1,F~n1)(tn),ttn,(u~n1,F~n1)(t),t<tn.(\tilde{u}^{n},\tilde{F}^{n})(t)=\begin{cases}T_{(t-t^{n})}\mathbb{P}_{\Delta x}(\tilde{u}^{n-1},\tilde{F}^{n-1})(t^{n}),&\qquad t\geq t^{n},\\ (\tilde{u}^{n-1},\tilde{F}^{n-1})(t),&\qquad t<t^{n}.\end{cases}

Then, following the same lines, one has

u~xn(t,)u~xn1(t,)ux(t,)\|\tilde{u}^{n}_{x}(t,\cdot)\|_{\infty}\leq\|\tilde{u}^{n-1}_{x}(t,\cdot)\|_{\infty}\leq\|u_{x}(t,\cdot)\|_{\infty}

and

F~xn(t,)F~xn1(t,)Fx(t,).\|\tilde{F}^{n}_{x}(t,\cdot)\|_{\infty}\leq\|\tilde{F}^{n-1}_{x}(t,\cdot)\|_{\infty}\leq\|F_{x}(t,\cdot)\|_{\infty}.

Since (uΔx(t,),FΔx(t,))=Δx(u~n(t,),F~n(t,))(u_{{\Delta x}}(t,\cdot),F_{{\Delta x}}(t,\cdot))=\mathbb{P}_{\Delta x}(\tilde{u}^{n}(t,\cdot),\tilde{F}^{n}(t,\cdot)) for all ttnt\leq t^{n}, we end up with

supt[0,T](uΔx,x(t,)+FΔx,x(t,))supt[0,T](ux(t,)+Fx(t,)).\sup_{t\in[0,T]}\big{(}\|u_{{\Delta x},x}(t,\cdot)\|_{\infty}+\|F_{{\Delta x},x}(t,\cdot)\|_{\infty}\big{)}\leq\sup_{t\in[0,T]}\big{(}\|u_{x}(t,\cdot)\|_{\infty}+\|F_{x}(t,\cdot)\|_{\infty}\big{)}.

It is left to show (2.13). We start by comparing (u,F)(u,F) with (u~0,F~0)(\tilde{u}^{0},\tilde{F}^{0}). To that end let (t,x)[0,T]×(t,x)\in[0,T]\times\mathbb{R} such that xj(t)xxj+1(t)x_{j}(t)\leq x\leq x_{j+1}(t). Then there exists x0x^{0} and x~0\tilde{x}^{0} in [xj,xj+1][x_{j},x_{j+1}] such that

u(t,x)\displaystyle u(t,x) =u0(x0)+12(F0(x0)12F)t,\displaystyle=u_{0}(x^{0})+\frac{1}{2}(F_{0}(x^{0})-\frac{1}{2}F_{\infty})t,
F(t,x)\displaystyle F(t,x) =F0(x0),\displaystyle=F_{0}(x^{0}),

and

u~0(t,x)\displaystyle\tilde{u}^{0}(t,x) =u~0(0,x~0)+12(F~0(0,x~0)12F)t\displaystyle=\tilde{u}^{0}(0,\tilde{x}^{0})+\frac{1}{2}(\tilde{F}^{0}(0,\tilde{x}^{0})-\frac{1}{2}F_{\infty})t
F~0(t,x)\displaystyle\tilde{F}^{0}(t,x) =F~0(0,x~0).\displaystyle=\tilde{F}^{0}(0,\tilde{x}^{0}).

Using (u~0(0,x),F~0(0,x))=Δx(u0(x),F0(x))(\tilde{u}^{0}(0,x),\tilde{F}^{0}(0,x))=\mathbb{P}_{\Delta x}(u_{0}(x),F_{0}(x)), we have,

|u(t,x)u~0(t,x)|\displaystyle|u(t,x)-\tilde{u}^{0}(t,x)| |u0(x0)u~0(0,x0)|+|u~0(0,x0)u~0(0,x~0)|\displaystyle\leq|u_{0}(x^{0})-\tilde{u}^{0}(0,x^{0})|+|\tilde{u}^{0}(0,x^{0})-\tilde{u}^{0}(0,\tilde{x}^{0})|
+12t(|F0(x0)F~0(0,x0)|+|F~0(0,x0)F~0(0,x~0)|)\displaystyle\quad+\frac{1}{2}t\left(|F_{0}(x^{0})-\tilde{F}^{0}(0,x^{0})|+|\tilde{F}^{0}(0,x^{0})-\tilde{F}^{0}(0,\tilde{x}^{0})|\right)
2(u0,x+12tF0,x)Δx,\displaystyle\leq 2(\|u_{0,x}\|_{\infty}+\frac{1}{2}t\|F_{0,x}\|_{\infty}){\Delta x},

and

|F(t,x)F~0(t,x)|\displaystyle|F(t,x)-\tilde{F}^{0}(t,x)| |F0(x0)F~0(0,x0)|+|F~0(0,x0)F~0(0,x~0)|\displaystyle\leq|F_{0}(x^{0})-\tilde{F}^{0}(0,x^{0})|+|\tilde{F}^{0}(0,x^{0})-\tilde{F}^{0}(0,\tilde{x}^{0})|
2F0,xΔx.\displaystyle\leq 2\|F_{0,x}\|_{\infty}{\Delta x}.

Combining the last two inequalities, we have

supt[0,T](u(t,)u~0(t,)+F(t,)F~0(t,))2L(1+12t)Δx,\sup_{t\in[0,T]}\big{(}\|u(t,\cdot)-\tilde{u}^{0}(t,\cdot)\|_{\infty}+\|F(t,\cdot)-\tilde{F}^{0}(t,\cdot)\|_{\infty}\big{)}\leq 2L(1+\frac{1}{2}t){\Delta x},

where L=supt[0,T](ux(t,)+Fx(t,))L=\sup_{t\in[0,T]}\big{(}\|u_{x}(t,\cdot)\|_{\infty}+\|F_{x}(t,\cdot)\|_{\infty}\big{)}. Moreover, we have by the same argument for ttnt\geq t^{n} that

u~n(t,)u~n1(t,)\displaystyle\|\tilde{u}^{n}(t,\cdot)-\tilde{u}^{n-1}(t,\cdot)\|_{\infty} +F~n(t,)F~n1(t,)\displaystyle+\|\tilde{F}^{n}(t,\cdot)-\tilde{F}^{n-1}(t,\cdot)\|_{\infty}
2(u~xn1(tn,)+F~xn1(tn,))(1+12(ttn))Δx\displaystyle\leq 2(\|\tilde{u}^{n-1}_{x}(t^{n},\cdot)\|_{\infty}+\|\tilde{F}^{n-1}_{x}(t^{n},\cdot)\|_{\infty})(1+\frac{1}{2}(t-t^{n})){\Delta x}
2L(1+12(ttn))Δx.\displaystyle\leq 2L(1+\frac{1}{2}(t-t^{n})){\Delta x}.

Since (uΔx(t,),FΔx(t,))=Δx(u~n(t,),F~n(t,))(u_{{\Delta x}}(t,\cdot),F_{{\Delta x}}(t,\cdot))=\mathbb{P}_{\Delta x}(\tilde{u}^{n}(t,\cdot),\tilde{F}^{n}(t,\cdot)) for all ttnt\leq t^{n}, we have for all tnttn+1t^{n}\leq t\leq t^{n+1} that

u(t,)uΔx(t,)+F(t,)FΔx(t,)\displaystyle\quad\|u(t,\cdot)-u_{\Delta x}(t,\cdot)\|_{\infty}+\|F(t,\cdot)-F_{\Delta x}(t,\cdot)\|_{\infty}
u(t,)u~0(t,)+F(t,)F~0(t,)\displaystyle\leq\|u(t,\cdot)-\tilde{u}_{0}(t,\cdot)\|_{\infty}+\|F(t,\cdot)-\tilde{F}^{0}(t,\cdot)\|_{\infty}
+l=1n(u~l(t,)u~l1(t,)+F~l(t,)F~l1(t,))\displaystyle\quad+\sum_{l=1}^{n}\left(\|\tilde{u}^{l}(t,\cdot)-\tilde{u}^{l-1}(t,\cdot)\|_{\infty}+\|\tilde{F}^{l}(t,\cdot)-\tilde{F}^{l-1}(t,\cdot)\|_{\infty}\right)
+u~n(t,)uΔx(t,)+F~n(t,)FΔx(t,)\displaystyle\quad+\|\tilde{u}^{n}(t,\cdot)-u_{\Delta x}(t,\cdot)\|_{\infty}+\|\tilde{F}^{n}(t,\cdot)-F_{\Delta x}(t,\cdot)\|_{\infty}
2L(1+12t)Δx+l=1n2L(1+12(ttl))Δx+2LΔx\displaystyle\leq 2L(1+\frac{1}{2}t){\Delta x}+\sum_{l=1}^{n}2L(1+\frac{1}{2}(t-t^{l})){\Delta x}+2L{\Delta x}
C(Δx+Δx),\displaystyle\leq C(\sqrt{{\Delta x}}+{\Delta x}),

where we have used (2.4). ∎

3. Numerical examples

In this section we perform two experiments to see whether the scheme in Definition 2.5 converges to the desired conservative solution. We compare the numerical solutions with known, exact solutions in two cases, namely a peakon and a cusp. These two have been selected since the exact solutions represent two distinct challenges for the numerical solver. The peakon solution experiences wave breaking at t=2t=2 and all energy is concentrated in a single point. Thus FF becomes discontinuous while uu becomes a constant function. The cusp solution, on the other hand, experiences wave breaking at each time tt with t[0,3]t\in[0,3], but only an infinitesimal amount of energy concentrates at any given time.

In our examples we assume that the initial data u0u_{0} is constant outside some finite interval [a,b][a,b]. By (2.2) and Lemma 2.12, we then obtain that at each time tt, both u(t,)u(t,\cdot) and uΔx(t,)u_{{\Delta x}}(t,\cdot) will be constant outside some finite interval [a(t),b(t)][a(t),b(t)]. Thus for any T>0T>0, by choosing the computational domain accordingly, we can ensure that u(t,)u(t,\cdot) and uΔx(t,)u_{{\Delta x}}(t,\cdot) are constant outside the computational domain for all t[0,T]t\in[0,T]. We look at the peakon example first.

Example 3.1 (Peakon solution).

We have initial data

u0(x)\displaystyle u_{0}(x) ={1,x<0,1x,0x1,0,1<x,\displaystyle=\begin{cases}1,&x<0,\\ 1-x,&0\leq x\leq 1,\\ 0,&1<x,\end{cases}
F0(x)\displaystyle F_{0}(x) ={0,x<0,x,0x1,1,1<x,\displaystyle=\begin{cases}0,&x<0,\\ x,&0\leq x\leq 1,\\ 1,&1<x,\end{cases}

with the exact solution

u(t,x)\displaystyle u(t,x) ={114t,x<t18t2,1112t(xt+18t2)+114t,t18t2x1+18t2<x,14t,1+18t2<x,\displaystyle=\begin{cases}1-\frac{1}{4}t,&x<t-\frac{1}{8}t^{2},\\ -\frac{1}{1-\frac{1}{2}t}\left(x-t+\frac{1}{8}t^{2}\right)+1-\frac{1}{4}t,&t-\frac{1}{8}t^{2}\leq x\leq 1+\frac{1}{8}t^{2}<x,\\ \frac{1}{4}t,&1+\frac{1}{8}t^{2}<x,\end{cases}
F(t,x)\displaystyle F(t,x) ={0,x<t18t2,1(112t)2(xt+18t2),t18t2x1+18t2,1,1+18t2<x.\displaystyle=\begin{cases}0,&x<t-\frac{1}{8}t^{2},\\ \frac{1}{(1-\frac{1}{2}t)^{2}}\left(x-t+\frac{1}{8}t^{2}\right),&t-\frac{1}{8}t^{2}\leq x\leq 1+\frac{1}{8}t^{2},\\ 1,&1+\frac{1}{8}t^{2}<x.\end{cases}

In Figure 2 the numerical solution (uΔx,FΔx)(u_{\Delta x},F_{\Delta x}) is computed and compared with the exact solution at t=0t=0, t=2t=2, and t=4t=4. Figure 3 shows the error, when compared to the exact solution, and we see that the method captures the wave breaking phenomena in this example.

Refer to caption
Refer to caption
Figure 2. The functions uΔxu_{{\Delta x}} (left) and FΔxF_{{\Delta x}} (right) in the case of peakon initial data, plotted at t=0t=0, t=2t=2, and t=4t=4. Here Δx=14{\Delta x}=\frac{1}{4} and Δt=14{\Delta t}=\frac{1}{4}.
Refer to caption
Refer to caption
Figure 3. The LL^{\infty}-error of the numerical solution uΔxu_{\Delta x} plotted against the spatial grid size Δx\Delta x (left), and the L1L^{1}-error of the numerical solution FΔxF_{\Delta x} plotted against the spatial grid size Δx\Delta x (right).
Example 3.2 (Cusp solution).

We have initial data

u0(x)\displaystyle u_{0}(x) ={1,x<1,|x|23,1x1,1,1<x,\displaystyle=\begin{cases}1,&x<-1,\\ |x|^{\frac{2}{3}},&-1\leq x\leq 1,\\ 1,&1<x,\end{cases}
F0(x)\displaystyle F_{0}(x) ={0,x<1,43(x13+1),1x1,83,1<x,\displaystyle=\begin{cases}0,&x<-1,\\ \frac{4}{3}\left(x^{\frac{1}{3}}+1\right),&-1\leq x\leq 1,\\ \frac{8}{3},&1<x,\end{cases}

with the exact solution

u(t,x)\displaystyle u(t,x) ={123t,x<1+t13t2,(x+(t3)3)23t29,1+t13t2x1+t+13t2,1+23t,1+t+13t2<x,\displaystyle=\begin{cases}1-\frac{2}{3}t,&x<-1+t-\frac{1}{3}t^{2},\\ \left(x+\left(\frac{t}{3}\right)^{3}\right)^{\frac{2}{3}}-\frac{t^{2}}{9},&-1+t-\frac{1}{3}t^{2}\leq x\leq 1+t+\frac{1}{3}t^{2},\\ 1+\frac{2}{3}t,&1+t+\frac{1}{3}t^{2}<x,\end{cases}
F(t,x)\displaystyle F(t,x) ={0,x<1+t13t2,43(x+(t3)3)13+43(1t3),1+t13t2x1+t+13t2,83,1+t+13t2<x.\displaystyle=\begin{cases}0,&x<-1+t-\frac{1}{3}t^{2},\\ \frac{4}{3}\left(x+\left(\frac{t}{3}\right)^{3}\right)^{\frac{1}{3}}+\frac{4}{3}\left(1-\frac{t}{3}\right),&-1+t-\frac{1}{3}t^{2}\leq x\leq 1+t+\frac{1}{3}t^{2},\\ \frac{8}{3},&1+t+\frac{1}{3}t^{2}<x.\end{cases}

In Figure 4 the numerical solution (uΔx,FΔx)(u_{\Delta x},F_{\Delta x}) is computed and compared with the exact solution at t=0t=0, t=2t=2, and t=4t=4. Figure 5 shows the error when compared to the exact solution.

From Figure 3 and 5, we see that the best we can hope for in terms of convergence rates in LL^{\infty} for uu and L1L^{1} for FF in the general case is 𝒪(Δx)\mathcal{O}\big{(}\sqrt{{\Delta x}}\big{)}. As uniqueness of conservative solutions is still an open problem, proving any form of convergence rate of the numerical method seems to be extremely challenging.

Remark 3.3.

Clearly we cannot expect a better convergence order than one half in the LL^{\infty}-norm for uu, since there exists u0𝒟u_{0}\in\mathcal{D} such that u0u0Δx=FΔx\|u_{0}-u_{0\Delta x}\|_{\infty}=\sqrt{F_{\infty}}\sqrt{{\Delta x}}, see Proposition 2.11.

Refer to caption
Refer to caption
Figure 4. The functions uΔxu_{{\Delta x}} (left) and FΔxF_{{\Delta x}}, (right) in the case of cusp initial data, plotted at t=0t=0, t=1.93t=1.93, and t=4t=4. Here Δx=1/4{\Delta x}=1/4 and Δt0.148{\Delta t}\approx 0.148. Note the slight discrepancy between the numerical solution and the exact solution in the variable FF already at t=0t=0 due to the projection operator being applied to the numerical initial data.
Refer to caption
Refer to caption
Figure 5. The LL^{\infty}-error of the numerical solution uΔxu_{\Delta x} plotted against the spatial grid size Δx{\Delta x} (left) and the L1L^{1}-error of the numerical solution FΔxF_{\Delta x} plotted against the spatial grid size Δx{\Delta x} (right).

References

  • [1] A. Bressan and A. Constantin, Global solutions of the Hunter–Saxton equation, SIAM J. Math. Anal., 37,996–1026 (2005).
  • [2] A. Bressan, H. Holden, and X. Raynaud, Lipschitz metric for the Hunter–Saxton equation, J. Math. Pures Appl., 94, 68–92 (2010).
  • [3] A. Bressan, P. Zhang, and Y. Zheng, Asymptotic variational wave equations, Arch. Ration. Mech. Anal., 183, 163–185 (2007).
  • [4] R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71, 1661–1664 (1993).
  • [5] T. Cieślak and G. Jamróz, Maximal dissipation in Hunter–Saxton equation for bounded energy initial data, Adv. Math., 290, 590–613 (2016).
  • [6] H.-H. Dai and M. V. Pavlov, Transformations for the Camassa–Holm equation, its high-frequency limit and the Sinh–Gordon equation, J. Phys. Soc. Japan, 67 3655–3657 (1998).
  • [7] C. M. Dafermos, Generalized characteristics and the Hunter–Saxton equation, J. Hyperbolic Differ. Equ., 8, 159–168, (2011).
  • [8] G. B. Folland, Real Analysis. Modern techniques and their applications. Second edition, Pure and Applied Mathematics. A Wiley- Interscience Publication, John Wiley & Sons, Inc., New York (1999).
  • [9] K. Grunert and A. Nordli, Existence and Lipschitz stability for α\alpha-dissipative solutions of the two-component Hunter–Saxton system, J. Hyperbolic Differ. Equ., 15, 559–597 (2018).
  • [10] H. Hanche-Olsen and H. Holden, The Kolmogorov-Riesz compactness theorem, Expo. Math., 28, 385–394 (2010).
  • [11] H. Holden, K. H. Karlsen, and N. H. Risebro, Convergent difference schemes for the Hunter–Saxton equation, Math. Comp., 76, 699–744 (2007).
  • [12] H. Holden and N.H. Risebro, Front tracking for hyperbolic conservation laws, Second edition, Applied Mathematical Sciences, 152, Springer, Heidelberg (2015).
  • [13] J. K. Hunter and R. Saxton, Dynamics of director fields, SIAM J. Appl. Math., 56, 1498–1521 (1991).
  • [14] J. K. Hunter and Y. Zheng, On a completely integrable nonlinear hyperbolic variational equation, Phys. D., 79, 361–386 (1994).
  • [15] J. K. Hunter and Y. Zheng, On a nonlinear hyperbolic variational equation. I. Global existence of weak solutions, Arch. Ration. Mech. Anal., 129, 305–353 (1995).
  • [16] J. K. Hunter and Y. Zheng, On a nonlinear hyperbolic variational equation. II. The zero-viscosity and dispersion limits, Arch. Ration. Mech. Anal., 129, 355–383 (1995).
  • [17] B. Khesin and G. Misiołek, Euler equations on homogeneous spaces and Virasoro orbits, Adv. Math., 176, 116–144 (2003).
  • [18] Y. Miyatake, D. Cohen, D. Furihata, and T. Matsuo, Geometrical numerical integrator for Hunter–Saxton-like equations, Japan J. Indust. Appl. Math., 34, 441–472 (2017).
  • [19] A. Nordli, A Lipschitz metric for conservative solutions of the two-component Hunter–Saxton system, Methods Appl. Anal., 23, 215–232 (2016).
  • [20] S. Sato, Stability and convergence of a conservative finite difference scheme for the modified Hunter-Saxton equation, BIT, 59, 213–241 (2019).
  • [21] R. Saxton, Dynamic instability of the liquid crystal director, In W. B. Lindquist (ed.), Current Progress in Hyperbolic Systems, 100, 325–330 (1989).
  • [22] Y. Xu and C.-W. Shu, Local discontinuous Galerkin method for the Hunter-Saxton equation and its zero-viscosity and zero-dispersion limits, SIAM J. Sc. Comput., 31, 1249–1268 (2009).
  • [23] Y. Xu and C.-W. Shu, Dissipative numerical methods for the Hunter–Saxton equation, J. Comput. Math., 28, 606–620 (2010).
  • [24] Z. Yin, On the structure of solutions to the periodic Hunter–Saxton equation, SIAM J. Math. Anal., 36, 272–283 (2004).
  • [25] P. Zhang and Y. Zheng, On the existence and uniqueness of solutions to an asymptotic equation of a variational wave equation, Acta Math. Sin. (Engl. Ser.), 15, 115–130 (1999).
  • [26] P. Zhang and Y. Zheng, Existence and uniqueness of solutions of an asymptotic equation arising from a variational wave equation with general data, Arch. Ration. Mech. Anal., 155, 49–83 (2000).