This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Numerical calculation of dipolar quantum droplet stationary states

Au-Chen Lee    D. Baillie    P. B. Blakie The Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Physics, University of Otago, New Zealand
Abstract

We describe and benchmark a method to accurately calculate the quantum droplet states that can be produced from a dipolar Bose-Einstein condensate. Our approach also allows us to consider vortex states, where the atoms circulate around the long-axis of the filament shaped droplet. We apply our approach to determine a phase diagram showing where self-bound droplets are stable against evaporation, and to quantify the energetics related to the fission of a vortex droplet into two non-vortex droplets.

I Introduction

Dipolar condensates consist of highly magnetic atoms that interact with a long-ranged and anisotropic dipole-dipole interaction (DDI). Experiments with dipolar condensates of dysprosium Kadau et al. (2016); Ferrier-Barbut et al. (2016); Schmitt et al. (2016) and erbium Chomaz et al. (2016) atoms have prepared the system into one or several self-bound droplets that can preserve their form, even in the absence of any external confinement. These droplets occur in the dipole-dominated regime, where the short ranged ss-wave interactions are tuned to be weaker than the DDIs Baillie et al. (2016); Wächtler and Santos (2016a). In this regime the standard meanfield theory provided by the Gross-Pitaevskii equation is inadequate, as it predicts that the condensate is unstable to mechanical collapse. Here (beyond meanfield) quantum fluctuation corrections become important Lee et al. (1957); Lima and Pelster (2011, 2012) and stabilize the droplets against collapse Petrov (2015); Saito (2016); Wächtler and Santos (2016b); Bisset et al. (2016). Droplets have been produced with 10310^{3}10410^{4} atoms and peak densities roughly an order of magnitude higher than that of typical condensates. These droplets are still well within the dilute regime (i.e. na31na^{3}\ll 1, where nn is the density and aa is the interaction length scale). In this regime the extended Gross-Pitaevskii equation (EGPE) is expected to provide a good description, and indeed the EGPE has been successfully used to model the equilibrium and dynamical properties of droplets. The excitation spectrum of the droplets has been the subject of theoretical and experimental studies Wächtler and Santos (2016a); Chomaz et al. (2016); Baillie et al. (2017), and more recently the possibility of preparing a droplet in an excited vortex state has been considered Cidrim et al. (2018); Lee et al. (2018), although these have been found to be unstable.

So far little attention in the literature has been given to the details of EGPE calculations for stationary dipolar droplet states. The DDI needs to be treated with care since it is singular and long-ranged. Because the droplets are small, dense, and highly elongated (taking a filament-like shape), it becomes more difficult to treat the DDI accurately without taking large and dense numerical grids. Due to these technical challenges few groups outside of those already working on dipolar condensates have reported calculations for these droplets. In contrast we note that quantum droplets have also been realized in two component condensates Petrov (2015); Cabrera et al. (2018); Semeghini et al. (2018); D’Errico et al. (2019). The absence of DDIs in these droplets makes the calculations more straightforward, and a rather large number of theory groups have reported work on this system.

In this paper we aim to outline a numerical technique to calculate self-bound quantum droplet states, including the case where the droplet has a vortex. We demonstrate the importance of using a truncated interaction potential to accurately evaluate the DDI energy, and introduce a simple gradient flow technique for obtaining the stationary solutions of the EGPE. We present benchmark results for the energy and chemical potential for vortex and non-vortex droplet stationary states. As applications we calculate a phase diagram for the stability of the droplet states, and quantify the tendency for vortex droplets to undergo fission into a pair of non-vortex droplets.

The outline of the paper is as follows. In Sec. II we introduce the EGPE for describing quantum droplet states. We also rewrite the formalism in cylindrical coordinates and introduce our dimensionless units. In Sec. III we introduce the Bessel-cosine based method that we use to discretize the EGPE and to enforce states to have a particular value of angular momentum. A variational approach is also presented and used to test the accuracy of the discretization when evaluating the various energy terms related to the EGPE. The gradient flow (or imaginary time) method is introduced in Sec. IV to obtain energy minimising solutions of the EGPE. The main results are presented in Sec. V including: benchmark results for droplet energies and chemical potentials, a phase diagram indicating where the droplets are stable to evaporation, and results quantifying the energetic instability of vortex droplets to fission. We then conclude in Sec. VI.

II Formalism

II.1 Extended Gross-Pitaevskii Equation

II.1.1 General formulation

Several works Saito (2016); Ferrier-Barbut et al. (2016); Wächtler and Santos (2016b); Schmitt et al. (2016); Wächtler and Santos (2016a); Bisset et al. (2016); Baillie et al. (2016); Chomaz et al. (2016); Boudjemâa (2015, 2016, 2017); Ołdziejewski and Jachymski (2016); Macia et al. (2016) have established that the ground states and dynamics of a dipolar condensate in the droplet regime is well-described by the EGPE. In this formalism the time-independent stationary state wavefunction Ψ\Psi is a solution of μΨ=EGP[Ψ]\mu\Psi=\mathcal{L}_{\text{EGP}}[\Psi] where

EGP[Ψ]\displaystyle\mathcal{L}_{\text{EGP}}[\Psi]\! [222M+Vtr+gs|Ψ|2+gddΦ(𝐱)+γQF|Ψ|3]Ψ.\displaystyle\equiv\!\biggl{[}-\frac{\hbar^{2}\nabla^{2}}{2M}\!+\!V_{\text{tr}}\!+\!g_{s}|\Psi|^{2}\!+\!g_{dd}\Phi(\mathbf{x})\!+\!\gamma_{\mathrm{QF}}|\Psi|^{3}\biggr{]}\!\Psi. (1)

Here VtrV_{\text{tr}} describes any trapping potential, μ\mu is the chemical potential and gs=4πas2/Mg_{s}=4\pi a_{s}\hbar^{2}/M is the ss-wave coupling constant, with asa_{s} being the ss-wave scattering length. The potential

Φ(𝐱)=𝑑𝐱I(𝐱𝐱)|Ψ(𝐱)|2,\displaystyle\Phi(\mathbf{x})=\int d\mathbf{x}^{\prime}\,I(\mathbf{x}\!-\!\mathbf{x}^{\prime})|\Psi(\mathbf{x}^{\prime})|^{2}, (2)

describes the effects of the long-ranged DDIs where the kernel is

I(𝐫)\displaystyle I(\mathbf{r}) =34π13cos2θr3.\displaystyle=\frac{3}{4\pi}\frac{1-3\cos^{2}\theta}{r^{3}}. (3)

This is written for the case of dipoles polarized along the zz axis by an external field, where θ\theta is the angle between 𝐫\mathbf{r} and the zz axis. The dipole coupling constant is gdd=4πadd2/Mg_{dd}=4\pi a_{dd}\hbar^{2}/M, where add=Mμ0μm2/12π2a_{dd}=M\mu_{0}\mu_{m}^{2}/12\pi\hbar^{2} is the dipole length determined by the magnetic moment μm\mu_{m} of the particles. The leading-order quantum fluctuation correction to the chemical potential for a uniform system of density nn is Δμ=γQFn3/2\Delta\mu=\gamma_{\mathrm{QF}}n^{3/2}, where γQF=323gsas3π(1+32ϵdd2)\gamma_{\mathrm{QF}}\!=\!\frac{32}{3}g_{s}\sqrt{\frac{a_{s}^{3}}{\pi}}(1+\tfrac{3}{2}\epsilon_{dd}^{2}) and ϵddadd/as\epsilon_{dd}\equiv a_{dd}/a_{s} Lima and Pelster (2011); Ferrier-Barbut et al. (2016); Bisset et al. (2016). The effects of quantum fluctuations are included in Eq. (1) using the local density approximation n|Ψ(𝐱)|2n\rightarrow|\Psi(\mathbf{x})|^{2}. Stationary EGPE states are also local minima of the energy functional

E[Ψ]=Ekin+Etr+Eint+EQF,\displaystyle E[\Psi]=E_{\text{kin}}+E_{\text{tr}}+E_{\text{int}}+E_{\text{QF}}, (4)

where

Ekin\displaystyle E_{\text{kin}} =22M𝑑𝐱Ψ2Ψ,\displaystyle=-\frac{\hbar^{2}}{2M}\int d\mathbf{x}\Psi^{*}\nabla^{2}\Psi, (5)
Etr\displaystyle E_{\text{tr}} =𝑑𝐱ΨVtrΨ,\displaystyle=\int d\mathbf{x}\Psi^{*}V_{\text{tr}}\Psi, (6)
Eint\displaystyle E_{\text{int}} =12𝑑𝐱Ψ(gs|Ψ|2+gddΦ)Ψ,\displaystyle=\frac{1}{2}\int d\mathbf{x}\Psi^{*}\left(g_{s}|\Psi|^{2}+g_{dd}\Phi\right)\Psi, (7)
EQF\displaystyle E_{\text{QF}} =25γQF𝑑𝐱|Ψ|5,\displaystyle=\frac{2}{5}\gamma_{\text{QF}}\int d\mathbf{x}|\Psi|^{5}, (8)

represent the kinetic, trap potential, interaction and quantum fluctuation energies, respectively.

II.1.2 Dimensionless cylindrical formulation

We now write the problem in a form utilizing the cylindrical symmetry and introducing natural units. While we do not present any results here that include a trapping potential (we focus on self-bound states in the absence of confinement), for generality we include a cylindrically symmetric trapping potential in our formulation. We take this to be of the form Vtr=12M(ωρ2ρ2+ωz2z2)V_{\mathrm{tr}}=\frac{1}{2}M(\omega_{\rho}^{2}\rho^{2}+\omega_{z}^{2}z^{2}), where ρ=x2+y2\rho=\sqrt{x^{2}+y^{2}}, and {ωρ,ωz}\{\omega_{\rho},\omega_{z}\} are the trap frequencies. For this case the system is cylindrically symmetric (since we have also chosen the dipoles to be along zz) and we can choose to look for stationary solutions of the form

Ψ(𝐱)=ψ(ρ,z)eisϕ,\displaystyle\Psi(\mathbf{x})=\psi(\rho,z)e^{is\phi}, (9)

where ψ\psi is real, ϕ=arctan(y/x)\phi=\arctan(y/x) and ss is an integer specifying the zz-component angular momentum of the state. By separating variables, and introducing units of length x0=addx_{0}=a_{dd} and energy E0=2/Madd2E_{0}=\hbar^{2}/Ma_{dd}^{2}, we arrive at the effective cylindrical GPE

μψ\displaystyle\mu\psi =[ψ],\displaystyle=\mathcal{L}[\psi], (10)
[ψ]\displaystyle\mathcal{L}[\psi] hspψ+4π(ϵdd1ψ2+Φ)ψ+γQF|ψ|3ψ.\displaystyle\equiv h_{sp}\psi+4\pi\left({\epsilon_{dd}^{-1}}\psi^{2}+\Phi\right)\psi+\gamma_{\mathrm{QF}}|\psi|^{3}\psi. (11)

Here

hsp=12(Ds+2z2)+12(ω¯ρ2ρ2+ω¯z2z2),\displaystyle h_{sp}=-\frac{1}{2}\left(D_{s}+\frac{\partial^{2}}{\partial z^{2}}\right)+\frac{1}{2}({\bar{\omega}}_{\rho}^{2}\rho^{2}+{\bar{\omega}}_{z}^{2}z^{2}), (12)

is the single particle Hamiltonian, which features the Bessel differential operator

Ds2ρ2+1ρρs2ρ2,\displaystyle D_{s}\equiv\frac{\partial^{2}}{\partial\rho^{2}}+\frac{1}{\rho}\frac{\partial}{\partial\rho}-\frac{s^{2}}{\rho^{2}}, (13)

and ω¯ν=ων/E0\bar{\omega}_{\nu}=\hbar\omega_{\nu}/E_{0}, ν={ρ,z}\nu=\{\rho,z\}. We also note that for this choice of units the nonlinear coupling constants are gs4πϵdd1g_{s}\to 4\pi\epsilon_{dd}^{-1}, gdd4πg_{dd}\to 4\pi, and

γQF=43π2(4πϵdd)5/2(1+32ϵdd2),\displaystyle\gamma_{\mathrm{QF}}=\frac{4}{3\pi^{2}}\left(\frac{4\pi}{\epsilon_{dd}}\right)^{5/2}\left(1+\frac{3}{2}\epsilon_{dd}^{2}\right), (14)

thus all specified in terms of ϵdd\epsilon_{dd}.

The convolution used to evaluate Φ\Phi is performed in three-dimensions, but the resulting Φ\Phi is a cylindrically symmetric function:

Φ(ρ,z)\displaystyle\Phi(\rho,z) 𝑑𝐱I(𝐱𝐱)|ψ(ρ,z)|2,\displaystyle\equiv\int d\mathbf{x}^{\prime}\,I(\mathbf{x}-\mathbf{x}^{\prime})|\psi(\rho^{\prime},z^{\prime})|^{2}, (15)
=dkρdkz(2π)2eikzzkρJ0(kρρ)I~(kρ,kz)n~(kρ,kz),\displaystyle=\int\frac{dk_{\rho}\,dk_{z}}{(2\pi)^{2}}e^{ik_{z}z}k_{\rho}J_{0}(k_{\rho}\rho)\tilde{I}(k_{\rho},k_{z})\tilde{n}(k_{\rho},k_{z}), (16)

where the Fourier transformed density and DDI kernel are

n~(kρ,kz)\displaystyle\tilde{n}(k_{\rho},k_{z}) =2π𝑑ρ𝑑zρJ0(kρρ)eikzz|ψ(ρ,z)|2,\displaystyle=2\pi\int d\rho\,dz\,\rho J_{0}(k_{\rho}\rho)e^{-ik_{z}z}|\psi(\rho,z)|^{2}, (17)
I~(kρ,kz)\displaystyle\tilde{I}(k_{\rho},k_{z}) =3kz2kρ2+kz21,\displaystyle=\frac{3k_{z}^{2}}{k_{\rho}^{2}+k_{z}^{2}}-1, (18)

respectively. We also note that here we choose the condensate to be normalized to the number of atoms NN, i.e.

2π0𝑑ρ𝑑zρ|ψ|2=N.\displaystyle 2\pi\int_{0}^{\infty}d\rho\int_{-\infty}^{\infty}dz\,\rho|\psi|^{2}=N. (19)

III Bessel-cosine numerical representation

To accurately treat the terms appearing in the EGPE operator we use a different discretization for the radial and axial dimensions, and we discuss these separately in the next subsections.

III.1 Radial Bessel treatment

III.1.1 Bessel grid and quadrature

In the radial direction we consider NρN_{\rho} points, that non-uniformly span the interval (0,R)(0,R), given by

ρqi=αqiKq,i=1,,Nρ,\displaystyle\rho_{qi}=\frac{\alpha_{qi}}{K_{q}},\qquad i=1,\ldots,N_{\rho}, (20)

which we refer to as the qq-order Bessel grid. Here Kq=αqNρ+1/RK_{q}={\alpha_{q\,N_{\rho}+1}}/R , and {αqi}\{\alpha_{qi}\} are the ordered non-zero roots of the Bessel function Jq(x)J_{q}(x) of integer order qq. In this work we will need several such radial grids, each with the same number of points and range but of different orders. For this reason we need to adopt a notation that explicitly indicates the order. We also introduce the reciprocal space grid of the same order

kqi=αqiR,i=1,,Nρ,\displaystyle k_{qi}=\frac{\alpha_{qi}}{R},\qquad i=1,\ldots,N_{\rho}, (21)

that spans the interval (0,Kq)(0,K_{q}).

The radial grid points can be associated with a quadrature-like integration formula Lemoine (1994); Ben Ghanem and Frappier (1999)

I[g(ρ)]=0𝑑ρρg(ρ)i=1Nρwqigqi,\displaystyle I[g(\rho)]=\int_{0}^{\infty}d\rho\,\rho g(\rho)\approx\sum_{i=1}^{N_{\rho}}w_{qi}\,g_{qi}, (22)

where wqiw_{qi} are the real-space quadrature weights

wqi\displaystyle w_{qi} =2Kq2|Jq+1(αqi)|2,\displaystyle=\frac{2}{K_{q}^{2}|J_{q+1}(\alpha_{qi})|^{2}}, (23)

and we have used the notation gqi=g(ρqi)g_{qi}=g(\rho_{qi}) to denote the function g(ρ)g(\rho) sampled on the qq-order grid. This integration requires that the functions of interest have limited spatial range, i.e. g(ρ>R)=0g(\rho>R)=0.

Similarly, for the reciprocal kρk_{\rho}-space we have a quadrature-like integration formula for a function g~(kρ)\tilde{g}(k_{\rho})

I[g~(kρ)]=0𝑑kρkρg~(kρ)i=1Nρw~qig~qi,\displaystyle I[\tilde{g}(k_{\rho})]=\int_{0}^{\infty}dk_{\rho}\,k_{\rho}\tilde{g}(k_{\rho})\approx\sum_{i=1}^{N_{\rho}}\tilde{w}_{qi}\,\tilde{g}_{qi}, (24)

where w~qi\tilde{w}_{qi} are the kρk_{\rho}-space quadrature weights

w~qi\displaystyle\tilde{w}_{qi} =2R2|Jq+1(αqi)|2,\displaystyle=\frac{2}{R^{2}|J_{q+1}(\alpha_{qi})|^{2}}, (25)

and g~qi=g~(kqi)\tilde{g}_{qi}=\tilde{g}(k_{qi}). Result (24) is only valid on our grid if the function is bandwidth limited, i.e. g~(kρ>Kq)=0\tilde{g}(k_{\rho}>K_{q})=0.

III.1.2 Hankel transformation

The Bessel grid is useful because it allows an accurate two-dimensional (2D) Fourier transformation of functions of the form

F(𝝆)=f(ρ)eimϕ,\displaystyle F(\bm{\rho})=f(\rho)e^{im\phi}, (26)

where we have used 𝝆\bm{\rho} to denote the planar position vector with polar coordinates (ρ,ϕ)\rho,\phi). The 2D Fourier transform of FF is

F~(𝐤ρ)\displaystyle\tilde{F}(\mathbf{k}_{\rho}) =𝑑𝝆ei𝐤ρ𝝆F(𝝆)=2πimeimϕkf~(kρ),\displaystyle=\int d\bm{\rho}\,e^{-i\mathbf{k}_{\rho}\cdot\bm{\rho}}F(\bm{\rho})=2\pi i^{-m}e^{im\phi_{k}}\tilde{f}(k_{\rho}), (27)

where

f~(kρ)=\displaystyle\tilde{f}(k_{\rho})= 0𝑑ρρJm(kρρ)f(ρ),\displaystyle\int_{0}^{\infty}\!d\rho\,\rho J_{m}(k_{\rho}\rho)\,f(\rho), (28)

is the mm-th order Hankel transform, arising because the angular integral of eimϕi𝐤ρ𝝆e^{im\phi-i\mathbf{k}_{\rho}\cdot\bm{\rho}} yields the JmJ_{m} Bessel function. Here we have introduced 𝐤ρ\mathbf{k}_{\rho} to represent the 2D kk-space vector, with polar coordinates (kρ,ϕk)(k_{\rho},\phi_{k}).

For the case where the angular momentum of the function [i.e., mm from Eq. (26)] and the order of the grid used to sample the function are the same (i.e. q=mq=m) an accurate discrete Hankel transform can be implemented. For this case the transform yields f~\tilde{f} sampled on the kqik_{qi} grid from ff sampled on the ρqi\rho_{qi} grid (see Guizar-Sicairos and Gutiérrez-Vega (2004)). The explicit form of this discrete transform is obtained by evaluating (28) using the quadrature formula (22)

f~qi=jijfqj,\displaystyle\tilde{f}_{qi}=\sum_{j}\mathcal{H}_{ij}{f}_{qj}, (29)

where

ij=wqjJq(kqiρqj)=2Jq(αqiαqjαqNρ+1)Kq2|Jq+1(αqj)|2,\displaystyle\mathcal{H}_{ij}=w_{qj}J_{q}(k_{qi}\rho_{qj})=\frac{2J_{q}\left(\frac{\alpha_{qi}\alpha_{qj}}{\alpha_{qN_{\rho}+1}}\right)}{K_{q}^{2}|J_{q+1}(\alpha_{qj})|^{2}}, (30)

is the qq-order Hankel transformation matrix and fqj=f(ρqj){f}_{qj}={f}(\rho_{qj}) etc.

Similarly, the inverse 2D transform

F(𝝆)=𝑑𝐤ρei𝐤ρ𝝆(2π)2F~(𝐤ρ)=iqeiqϕ2πf(ρ),\displaystyle F(\bm{\rho})=\int d\mathbf{k}_{\rho}\frac{e^{i\mathbf{k}_{\rho}\cdot\bm{\rho}}}{(2\pi)^{2}}\tilde{F}(\mathbf{k}_{\rho})=\frac{i^{-q}e^{iq\phi}}{2\pi}{f}(\rho), (31)

is accomplished by the inverse Hankel transform

f(ρ)=0𝑑kρkρJq(kρρ)f~(kρ),\displaystyle f(\rho)=\int_{0}^{\infty}dk_{\rho}\,k_{\rho}J_{q}(k_{\rho}\rho)\tilde{f}(k_{\rho}), (32)

with discrete form fqi=jij1f~qj{f}_{qi}=\sum_{j}\mathcal{H}_{ij}^{-1}\tilde{f}_{qj}, with ij1=Kq2R2ij\mathcal{H}_{ij}^{-1}=\frac{K_{q}^{2}}{R^{2}}\mathcal{H}_{ij}. The Discrete Hankel transform matrices are not exact inverses of each other, but for typical grid sizes (Nρ102N_{\rho}\sim 10^{2}) we have that jijjk1δik+O(109)\sum_{j}\mathcal{H}_{ij}\mathcal{H}_{jk}^{-1}\approx\delta_{ik}+O(10^{-9}), which is adequate for our purposes.

III.1.3 Radial Laplacian operator

Hankel transforms are particularly useful for accurately evaluating the kinetic energy operator in radially symmetric cases (e.g. see Bisseling and Kosloff (1985)). To see this we note that by separating variable the 2D Laplacian 𝝆2\nabla^{2}_{\bm{\rho}} acting on the function f(ρ)eisϕf(\rho)e^{is\phi} is equivalent to the Bessel differential operator DsD_{s} (13) acting on f(ρ)f(\rho) [cf. Eq. (12)]. Using that JsJ_{s} are eigenfunctions of DsD_{s}, i.e. DsJs(kρρ)=kρ2Js(kρρ)D_{s}J_{s}(k_{\rho}\rho)=-k_{\rho}^{2}J_{s}(k_{\rho}\rho), we can utilize the Hankel transform to act on a radial function with DsD_{s}:

[Dsf]ijkij1ksj2jkfk.\displaystyle[D_{s}f]_{i}\approx-\sum_{jk}\mathcal{H}^{-1}_{ij}{k_{sj}^{2}}\mathcal{H}_{jk}f_{k}. (33)

Allowing us to implement a spectrally accurate radial kinetic energy matrix [i.e. discretized version of Tρ=12DsT_{\rho}=-\frac{1}{2}D_{s}, c.f. Eq. (12)]:

Tρ,ij=12jkil1ksl2lj.\displaystyle T_{\rho,ij}=\frac{1}{2}\sum_{jk}\mathcal{H}^{-1}_{il}k_{sl}^{2}\mathcal{H}_{lj}. (34)

III.2 Axial cosine treatment

III.2.1 Trigonometric grids and quadrature

Our system has reflection symmetry along zz so functions of interest will be of definite parity and here we will concern ourselves with the case of even parity. Utilizing this symmetry we use a half-grid on the interval (0,Z)(0,Z) spanned by NzN_{z} equally spaced points

zj=(j12)Δz,j=1,2,Nz,\displaystyle z_{j}=(j-\tfrac{1}{2})\Delta z,\qquad j=1,2,\ldots N_{z}, (35)

where Δz=Z/Nz\Delta z=Z/N_{z}. The corresponding reciprocal grid

kj=(j12)Δk,j=1,2,Nz,\displaystyle k_{j}=(j-\tfrac{1}{2})\Delta k,\qquad j=1,2,\ldots N_{z}, (36)

spans the interval (0,Kz)(0,K_{z}) where Δk=π/Z\Delta k=\pi/Z and Kz=π/ΔzK_{z}=\pi/\Delta z. The appropriate quadrature for this grid is the rectangular rule

I[g(z)]=𝑑zg(z)i=1Nzgi 2Δz,\displaystyle I[g(z)]=\int_{-\infty}^{\infty}dz\,g(z)\approx\sum_{i=1}^{N_{z}}g_{i}\,2\Delta z, (37)

where gi=g(zi)g_{i}=g(z_{i}).

III.2.2 Cosine transformations

The 1D Fourier transform for an even parity function is given by the cosine transform

f~(kz)\displaystyle\tilde{f}(k_{z}) =𝑑zeikzzf(z),\displaystyle=\int_{-\infty}^{\infty}dz\,e^{-ik_{z}z}{f}(z), (38)
=20𝑑zcos(kzz)f(z).\displaystyle=2\int_{0}^{\infty}dz\cos(k_{z}z){f}(z). (39)

We can discretize this transform onto our chosen grid as

f~i\displaystyle\tilde{f}_{i} =Λijfj,\displaystyle=\Lambda_{ij}f_{j}, (40)

where

Λij=2cos(kizj)Δz,\displaystyle{\Lambda}_{ij}=2\cos(k_{i}z_{j})\Delta z, (41)

is the transformation matrix, fj=f(zj)f_{j}=f(z_{j}), and f~i=f~(ki)\tilde{f}_{i}=\tilde{f}(k_{i}). This can be identified as the type-IV discrete cosine transformation (e.g. see Strang (1999)).

The inverse Fourier transformation f(z)=12π𝑑kzeikzzf~(kz){f}(z)=\frac{1}{2\pi}\int_{-\infty}^{\infty}dk_{z}e^{ik_{z}z}\tilde{f}(k_{z}) similarly can be mapped to the inverse discrete cosine transform fj=Λij1f~jf_{j}=\Lambda^{-1}_{ij}\tilde{f}_{j}, where Λij1=Kz2πZΛij{\Lambda}_{ij}^{-1}=\frac{K_{z}}{2\pi Z}{\Lambda}_{ij}, with jΛij1Λjk=δik\sum_{j}{\Lambda}_{ij}^{-1}{\Lambda}_{jk}=\delta_{ik}.

III.2.3 Axial Laplacian operator

Utilizing that the derivative operator is diagonal in kzk_{z}-space, we can implement a discrete second derivative operator as

[d2fdz2]i\displaystyle\left[\frac{d^{2}f}{dz^{2}}\right]_{i} jkΛij1kj2Λjkfk\displaystyle\approx-\sum_{jk}\Lambda_{ij}^{-1}k_{j}^{2}{\Lambda}_{jk}f_{k} (42)

This allows us to define a spectrally accurate axial kinetic energy matrix [i.e. discretized version of Tz=12d2dz2T_{z}=-\frac{1}{2}\frac{d^{2}}{dz^{2}}, c.f. Eq. (12)]:

Tz,ij=12jkΛij1kl2Λlj.\displaystyle T_{z,ij}=\frac{1}{2}\sum_{jk}\Lambda_{ij}^{-1}k_{l}^{2}{\Lambda}_{lj}. (43)

III.3 Treatment of EGPE operators

To find eigenstates of the effective cylindrical EGPE problem (10) we combine the radial and axial treatments described above to define a cylindrical (2D) mesh of points 𝝆ij(ρsi,zj)\bm{\rho}_{ij}\equiv(\rho_{si},z_{j}), choosing the radial order qq to match the stationary state circulation ss.

III.3.1 Single particle operators

The single particle operator (12) acting on the discretized field ψij=ψ(𝝆ij)\psi_{ij}=\psi(\bm{\rho}_{ij}) can be evaluated as

hij[ψ]=kTρ,ikψkj+kTz,jkψik+Vtr,ijψij,\displaystyle h_{ij}[\psi]=\sum_{k}T_{\rho,ik}\psi_{kj}+\sum_{k}T_{z,jk}\psi_{ik}+V_{\mathrm{tr},ij}\psi_{ij}, (44)

where Vtr,ij=12(ω¯ρ2ρsi2+ω¯z2zj2)V_{\mathrm{tr},ij}=\frac{1}{2}(\bar{\omega}_{\rho}^{2}\rho_{si}^{2}+\bar{\omega}_{z}^{2}z_{j}^{2}), and we have used the Bessel (34) and cosine (43) derivative operators.

III.3.2 Local interaction terms

The contact interaction term in Eq. (11) is a nonlinear term that is local in position space and is evaluated as

Cij[ψ]4πϵdd1ψij3,\displaystyle C_{ij}\left[\psi\right]\equiv 4\pi\epsilon_{dd}^{-1}\psi_{ij}^{3}, (45)

and similarly for the quantum fluctuation term

Qij[ψ]γQF|ψij|3ψij.\displaystyle Q_{ij}\left[\psi\right]\equiv\gamma_{\mathrm{QF}}\left|\psi_{ij}\right|^{3}\psi_{ij}. (46)

Note: we have assumed that ψij\psi_{ij} is real, but modulus sign is needed on the quantum fluctuation term to properly deal with any case where ψij\psi_{ij} is negative.

III.3.3 DDI term

The DDI potential Φ\Phi can be evaluated using the convolution theorem in cylindrical coordinates, as given in Eq. (16). To evaluate this expression we first need to Fourier transform the density (17), which we obtain by applying the cosine transform along zz and the quadrature rule to evaluate the radial transform

n~ij=2πklΛjlwskJ0(k0iρsk)ψkl2.\displaystyle\tilde{n}_{ij}^{\prime}=2\pi\sum_{kl}\Lambda_{jl}w_{sk}J_{0}(k_{0i}\rho_{sk})\psi_{kl}^{2}. (47)

Here we use the prime to indicate that the Fourier transformed density is evaluated on the cylindrical kk-space mesh of grid points 𝐤ij=(k0i,kj)\mathbf{k}_{ij}^{\prime}=(k_{0i},k_{j}), noting that the radial kk-space points are defined for the 0-order Bessel grid111The radial transform in Eq. (47) is identical to (29) if s=0s=0.. We then evaluate the potential Φ\Phi from Eq. (16) as

Φij\displaystyle\Phi_{ij} =12πklΛjl1w~0kJ0(k0kρsi)I~(𝐤kl)n~kl,\displaystyle=\frac{1}{2\pi}\sum_{kl}\Lambda^{-1}_{jl}\tilde{w}_{0k}J_{0}(k_{0k}\rho_{si})\tilde{I}(\mathbf{k}_{kl}^{\prime})\tilde{n}^{\prime}_{kl}, (48)

and thus the full DDI term

Dij[ψ]4πΦijψij.\displaystyle{D}_{ij}\left[\psi\right]\equiv 4\pi\Phi_{ij}\psi_{ij}. (49)

The function I~(𝐤)\tilde{I}(\mathbf{k}) is of critical importance for accurate numerical calculations of the DDIs. For clarity we hereon refer to the analytic form of this function introduced in Eq. (18) as the bare kk-space potential I~bare\tilde{I}_{\mathrm{bare}}. This result is singular since the k0k\to 0 limit does not exist, reflecting the long-ranged anisotropic character of the interaction. As such the quadrature in (48) will converge slowly as the density of kk-space points increases, or equivalently as the spatial ranges R,ZR,Z are made larger (also see discussion in Refs. Ronen et al. (2006); Jiang et al. (2014)). This slow convergence can be understood as the Φ\Phi having contributions from periodic copies (arising from using Fourier transforms on a finite interval) of the density distribution. These periodic copies, separated by twice the grid range, interact with each other causing a shift in the interaction energy. The unphysical influence of these copies decays with the cube of the grid range, making it impractical to calculate accurate results using I~bare\tilde{I}_{\mathrm{bare}}.

One approach to deal with this problem is to use spherical coordinates in which the Jacobian introduced by the coordinate transform removes the singularity of I~bare\tilde{I}_{\mathrm{bare}}, but this requires the use of a non-uniform Fourier transform Jiang et al. (2014); Bao et al. (2016) in the algorithm. An alternative approach, first proposed for dipolar BECs in Ref. Ronen et al. (2006) (also see Exl et al. (2016); Mennemann et al. (2019)), is to introduce a truncation of the DDI, i.e. restrict the range of the DDI to the physical extent of the grids used, so that interactions between periodic copies are formally zero (also see Antoine et al. (2018), and related treatments for the Coulomb case Jarvis et al. (1997); Rozzi et al. (2006)). We choose to follow this approach here since it allows us to work with the cylindrical grid and associated transforms that we have introduced. The issue now becomes how to obtain the appropriate truncated DDI potential in kk-space.

First let us consider a spherical truncation derived and applied to dipolar BECs in Ref. Ronen et al. (2006) (also see Wilson et al. (2009)). Here the truncated interaction in position space is

Isph(𝐫)={34πr3(13cos2θ),rrc0,otherwise,\displaystyle{I}_{\mathrm{sph}}({\mathbf{r}})=\begin{cases}\frac{3}{4\pi r^{3}}(1-3\cos^{2}\theta),&r\leq r_{c}\\ 0,&\mathrm{otherwise},\end{cases} (50)

i.e. a cutoff radius rcr_{c} such that the DDIs do not occur between any two points separated by a distance of more than 2rc2r_{c}. In practice choosing rc=min{R,Z}r_{c}=\min\{R,Z\} ensures that no interactions can occur between periodic copies of the density. Fortunately the Fourier transform of Isph{I}_{\mathrm{sph}} can be calculated analytically

I~sph(𝐤)=\displaystyle\tilde{I}_{\mathrm{sph}}(\mathbf{k})= [1+3cos(krc)(krc)23sin(krc)(krc)3]I~bare(𝐤),\displaystyle\left[1+3\frac{\cos(kr_{c})}{(kr_{c})^{2}}-3\frac{\sin(kr_{c})}{(kr_{c})^{3}}\right]\tilde{I}_{\mathrm{bare}}(\mathbf{k}), (51)

and is seen to regularize the behaviour of I~bare(𝐤)\tilde{I}_{\mathrm{bare}}(\mathbf{k}) near k=0k=0. The spherically truncated potential is most useful for situations where the condensate is nearly spherical so it is natural to choose RZR\approx Z.

For highly anisotropic cases the natural grid choice is RZR\ll Z or RZR\gg Z for cigar or pancake shaped condensates, respectively. Here the spherical truncation is impractical as the range of the narrow dimension would have to be extended to match the range of the other dimension, introducing many redundant grid points. In these situations it is natural to introduce a cylindrical truncation

Icyl(𝐫)={34πr3(13cos2θ),𝐫{ρ<R,|z|<Z}0,otherwise.\displaystyle I_{\mathrm{cyl}}({\mathbf{r}})=\begin{cases}\frac{3}{4\pi r^{3}}(1-3\cos^{2}\theta),&\mathbf{r}\in\{\rho<R,|z|<Z\}\\ 0,&\mathrm{otherwise}.\end{cases} (52)

The Fourier transform of this truncated kernel, I~cyl\tilde{I}_{\mathrm{cyl}}, does not have an analytic result and needs to be calculated numerically. We refer the interested reader to Ref. Lu et al. (2010) for details about the numerical calculation.

In the testing we perform we evaluate the DDI term (49) using Φij\Phi_{ij} evaluated according to (48) with I~\tilde{I} set to one of {I~bare,I~sph,I~cyl}\{\tilde{I}_{\mathrm{bare}},\,\tilde{I}_{\mathrm{sph}},\,\tilde{I}_{\mathrm{cyl}}\}. If not specified otherwise, we use I~cyl\tilde{I}_{\mathrm{cyl}}

III.4 EGPE operator and energy functional

We have now discussed all the operators needed to evaluate the EGPE operator i.e.

ij[ψ]=\displaystyle\mathcal{L}_{ij}\left[\psi\right]= hij[ψ]+Cij[ψ]+Dij[ψ]+Qij[ψ],\displaystyle h_{ij}\left[\psi\right]+{C}_{ij}\left[\psi\right]+{D}_{ij}\left[\psi\right]+{Q}_{ij}\left[\psi\right], (53)

The expectation of the EGPE operator, normalized by the field norm gives the expected value of the chemical potential. This is evaluated numerically as

μEGP[ψ]=\displaystyle\mu_{\mathrm{EGP}}\left[\psi\right]= 1N[ψ]ijψijij[ψ]dVi,\displaystyle\frac{1}{N[\psi]}\sum_{ij}\psi_{ij}\mathcal{L}_{ij}\left[\psi\right]dV_{i}, (54)

where dVi=4πΔzwsidV_{i}=4\pi\Delta zw_{si} denotes the combined quadrature weights, and N[ψ]=ijψij2dViN[\psi]=\sum_{ij}\psi_{ij}^{2}\,dV_{i} is the normalization. For a stationary state solution of the EGPE ψ\psi with eigenvalue μ\mu [see (10)] we have that μEGP[ψ]=μ\mu_{\mathrm{EGP}}\left[\psi\right]=\mu.

We can also evaluate the energy functional for the system [see Eq. (4)]

E[ψ]=\displaystyle E[\psi]= ijψij(hij[ψ]+12Cij[ψ])dViEC+\displaystyle\overbrace{\sum_{ij}\psi_{ij}\left(h_{ij}\left[\psi\right]+\frac{1}{2}{C}_{ij}\left[\psi\right]\right)dV_{i}}^{E_{C}}+
12ijψijDij[ψ]dViED+25ijψijQij[ψ]dViEQ,\displaystyle\underbrace{\frac{1}{2}\sum_{ij}\,\psi_{ij}{D}_{ij}\left[\psi\right]dV_{i}}_{E_{D}}+\underbrace{\frac{2}{5}\sum_{ij}\,\psi_{ij}{Q}_{ij}\left[\psi\right]dV_{i}}_{E_{Q}}, (55)

which will be a local minimum for stationary solutions of the EGPE. Here we have introduced the labels ECE_{C}, EDE_{D} and EQE_{Q} to refer to the standard GPE energy functional (including single particle and contact interactions), the dipole interaction energy and the quantum fluctuation energy, respectively.

III.5 Gaussian variational solution

It is useful to have a simple variational solution as an initial guess for the numerically calculated stationary state solutions and to validate the accuracy of our numerical methods. Here we consider a Gaussian state with angular circulation of ss

ΨG(𝐫)=ψG(ρ,z)eisϕ,\displaystyle\Psi_{\text{G}}(\mathbf{r})=\psi_{\text{G}}(\rho,z)e^{is\phi}, (56)

where the cylindrical amplitude is

ψG(ρ,z)=8Ns!π3/2σρ2σz(2ρσρ)se2(ρ2/σρ2+z2/σz2),\displaystyle\psi_{\text{G}}(\rho,z)=\sqrt{\frac{8N}{s!\pi^{3/2}\sigma_{\rho}^{2}\sigma_{z}}}\left(\frac{2\rho}{\sigma_{\rho}}\right)^{s}e^{-2(\rho^{2}/\sigma_{\rho}^{2}+z^{2}/\sigma_{z}^{2})}, (57)

with width parameters {σρ,σz}\{\sigma_{\rho},\sigma_{z}\}.

We can use this state to analytically evaluate the separate energy terms ECE_{C}, EDE_{D}, and EQE_{Q}, as identified in Eq. (55). We obtain (also see Baillie et al. (2016); Cidrim et al. (2018))

EC[ΨG]=\displaystyle E_{C}[\Psi_{\text{G}}]= N(2+2sσρ2+1σz2+ω¯ρ21+s8σρ2+ω¯z2σz216)\displaystyle N\left(\frac{2+2s}{\sigma_{\rho}^{2}}+\frac{1}{\sigma_{z}^{2}}+\bar{\omega}_{\rho}^{2}\frac{1+s}{8}\sigma_{\rho}^{2}+\bar{\omega}_{z}^{2}\frac{\sigma_{z}^{2}}{16}\right)
+N2(2π)32csgs2σρ2σz,\displaystyle+N^{2}\left(\frac{2}{\pi}\right)^{\frac{3}{2}}\frac{c_{s}g_{s}}{2\sigma_{\rho}^{2}\sigma_{z}}, (58)
ED[ΨG]=\displaystyle E_{D}[\Psi_{\text{G}}]= N2(2π)32csgdd2σρ2σzn=02sdnsf(n)(σρσz),\displaystyle-N^{2}\left(\frac{2}{\pi}\right)^{\!\frac{3}{2}}\frac{c_{s}g_{dd}}{2\sigma_{\rho}^{2}\sigma_{z}}\sum_{n=0}^{2s}d_{n}^{s}f^{(n)}(\tfrac{\sigma_{\rho}}{\sigma_{z}}), (59)
EQ[ΨG]=\displaystyle E_{Q}[\Psi_{\text{G}}]= N5227+5s/2Γ(1+5s/2)γQF(51+ss!)5/2π9/4σρ3σz3/2,\displaystyle N^{\frac{5}{2}}\frac{2^{7+5s/2}\Gamma(1+5s/2)\gamma_{\mathrm{QF}}}{(5^{1+s}s!)^{5/2}\pi^{9/4}\sigma_{\rho}^{3}\sigma_{z}^{3/2}}, (60)

where cs=(2s)!/4s(s!)2c_{s}=(2s)!/4^{s}(s!)^{2},

f(x)=1+2x21x23x2arctanh1x2(1x2)3/2,\displaystyle f(x)=\frac{1+2x^{2}}{1-x^{2}}-\frac{3x^{2}\mathrm{arctanh}\sqrt{1-x^{2}}}{(1-x^{2})^{3/2}}, (61)

f(n)f^{(n)} denotes the nn-th derivative of ff with respect to xx, and

dns={1,s=0,1,38,18,s=1,1,67128,119384,364,1384,s=2.\displaystyle d_{n}^{s}=\begin{cases}1,\quad&s=0,\\ 1,\frac{3}{8},\frac{1}{8},&s=1,\\ 1,\frac{67}{128},\frac{119}{384},\frac{3}{64},\frac{1}{384},&s=2.\end{cases} (62)

We have also used gsg_{s} and gddg_{dd} in place of their dimensionless values introduced earlier to make it easier to transform these results to other choices of units.

The ansatz (56) can be used to provide a variational solution to the GPE. This involves minimizing the nonlinear function

EG(σρ,σz)=EC[ΨG]+ED[ΨG]+EQ[ΨG],\displaystyle E_{\text{G}}(\sigma_{\rho},\sigma_{z})=E_{C}[\Psi_{\text{G}}]+E_{D}[\Psi_{\text{G}}]+E_{Q}[\Psi_{\text{G}}], (63)

to determine {σρ,σz}\{\sigma_{\rho},\sigma_{z}\}.

case ss (σρ,σz)(\sigma_{\rho},\sigma_{z}) (Nρ,Nz)(N_{\rho},N_{z}) (R,Z)(R,Z) ED(bare)E_{D}\,\,(\text{bare}) ED(sph)E_{D}\,\,(\text{sph}) ED(cyl)E_{D}\,\,(\text{cyl}) EQE_{Q}
log10\log_{10} absolute relative error.
(a) 0 (1,10) (25,25) (3,30) -1.8 -1.3 -9.3 -15
(b) 0 (1,10) (25,25) (4,40) -2.0 -1.7 -15 -15
(c) 0 (1,10) (250,25) (40,40) -5.1 -15 -13 -15
(d) 0 (2,1) (50,25) (12,4) -1.7 -4.8 -15 -15
(e) 1 (2,1) (50,25) (12,4) -1.5 -3.3 -15 -5.5
(f) 1 (1,10) (250,25) (40,40) -4.8 -15 -13 -4.4
(g) 1 (1,10) (256,25) (6,40) -2.0 -2.0 -15 -10
(h) 1 (1,10) (600,25) (6,40) -2.0 -2.0 -15 -13
(i) 1 (1,10) (40,25) (6,40) -2.0 -2.0 -15 -4.8
(j) 2 (1,10) (40,25) (6,40) -1.9 -1.8 -15 -13
Table 1: The log10\log_{10} of the absolute relative errors of the numerically calculated values of EDE_{D} and EQE_{Q} compared to the analytic results [Eqs. (59) and (60)] for the variational Gaussian state. For all cases considered here the ECE_{C} term has an absolute relative error below 101310^{-13} and is not given. For the dipole energy we give results for bare, spherically-truncated and cylindrically-truncated potentials.

III.6 Gaussian test of numerical representation

We use the analytic results (58)-(60) to benchmark the accuracy of our numerical evaluation of the various terms appearing in the GPE. To do this we sample the variational Gaussian solution on a cylindrical grid and numerically evaluate the terms corresponding to the individual energy contributions as specified in Eq. (55), and compute the absolute value of the relative error with respect to the analytic results.

We show the results in Table 1 for various values of ss, different grid choices and methods for evaluating the DDI term. For all our grid choices the single particle and contact interaction term (ECE_{C}) has an absolute relative error of less than 101310^{-13}, so we do not list it in the table. Instead we focus on the DDI and quantum fluctuation terms that tend to have larger errors.

For the DDI term we present results for the bare, spherically truncated, and cylindrically truncated interactions (see Sec. III.3.3). Evaluating EDE_{D} using the bare interaction is always inaccurate, and converges slowly to the exact result as the grid range increases [cf. cases (a) and (b)]. The spherically cutoff interaction works well when the grid has a similar radial and axial range [cf. cases (b) and (c)], and is thus most useful for states where the density distribution has a similar radial and axial extent. The cylindrically cutoff interaction is seen to work well in all cases including highly anisotropic situations.

The accuracy of the quantum fluctuation term is reduced in the s=1s=1 case relative to the s=0s=0 and s=2s=2 cases for similar numbers of points. This finding is consistent with the analysis presented by Ogata Ogata (2005) on the accuracy of numerical Bessel quadrature (22). Ogata shows that qq-order Bessel quadrature converges exponentially for an integrand of the form |x|2q+1h(x)dx|x|^{2q+1}h(x)dx, if h(x)h(x) is analytic on the real axis (,)(-\infty,\infty). For our Gaussian ansatz (57) the quantum fluctuation term (46) including the Jacobian (and neglecting zz-coordinates) is of the form ρ5s+1g(ρ)\rho^{5s+1}g(\rho), where g(ρ)g(\rho) represents the Gaussian part. Casting this integrand in the form Ogata analyses and taking s=qs=q we have |ρ|2s+1[|ρ3s|g(ρ)]|\rho|^{2s+1}[|\rho^{3s}|g(\rho)]. The term is square brackets is only analytic for ss even. We note that by choosing sqs\neq q (e.g. taking q=1/2q=1/2) this integration can be performed more accurately, although we do not pursue this further here.

IV Gradient flow solution of the GPE

Here we present a simple gradient flow solver based on our cylindrical discretization. This is an energy minimising scheme for finding ground states222Because we constrain our EGPE to particular ss-angular momentum spaces, a vortex can be regarded as a ground state of that space even though it will not be the ground state of the full 3D problem.. The gradient flow involves solving the time-dependent GPE in imaginary time, i.e. solving the flow ψ˙=[ψ]\dot{\psi}=-\mathcal{L}[\psi]. However, normalization of the field tends to decrease under this evolution, so it is necessary to renormalize during the evolution. We follow Ref. Bao et al. (2006) (also see Bao et al. (2010)) and discretize the evolution using a backwards-forwards Euler scheme. Here time is advanced in time steps Δtn\Delta t_{n}, as tn+1=Δtn+1+tnt_{n+1}=\Delta t_{n+1}+t_{n}, with n=0,1,2,n=0,1,2,\ldots and t0=0t_{0}=0. During such a step the updated wavefunction ψ+\psi^{+} is obtained from the current wavefunction ψ(tn)\psi(t_{n}) according to

ψ+ψ(tn)Δtn+1\displaystyle\frac{\psi^{+}-\psi(t_{n})}{\Delta t_{n+1}} =12(Ds+2z2)ψ+Veff[ψ(tn)]ψ(tn),\displaystyle=\frac{1}{2}\left(D_{s}+\frac{\partial^{2}}{\partial z^{2}}\right)\psi^{+}-V_{\mathrm{eff}}[\psi(t_{n})]\psi(t_{n}), (64)
ψ(tn+1)\displaystyle\psi(t_{n+1}) =Nψ+|ψ+|2𝑑𝐫,\displaystyle=\frac{\sqrt{N}\psi^{+}}{\sqrt{\int|\psi^{+}|^{2}d\mathbf{r}}}, (65)

where (65) is the renormalization (projection), and we have introduced

Veff[ψ(tn)]\displaystyle V_{\mathrm{eff}}[\psi(t_{n})]\equiv Vtr+4π{ϵdd1ψ(tn)2+Φ[ψ(tn)]}\displaystyle V_{\mathrm{tr}}+4\pi\left\{\epsilon_{dd}^{-1}\psi(t_{n})^{2}+\Phi[\psi(t_{n})]\right\}
+γQF|ψ(tn)|3μEGP[ψ(tn)].\displaystyle+\gamma_{\mathrm{QF}}|\psi(t_{n})|^{3}-\mu_{\mathrm{EGP}}[\psi(t_{n})]. (66)

Notice that the term involving the kinetic energy operator is implemented with a backwards-Euler step, giving us good stability for dense grids (where the kinetic energy operator is large). By subtracting μEGP\mu_{\mathrm{EGP}} in the VeffV_{\mathrm{eff}} term, we ensure that to O(Δt2)O(\Delta t^{2}) the field normalization is constant under the gradient flow (e.g. see Antoine et al. (2017)), which improves the performance of the algorithm. Hereon we suppress explicit notation of the position indices of the wavefunction for notational brevity, however terms appearing are to be evaluated as described in Secs. III.3 and III.4.

The semi-implicit equation (64) is formally solved by inverting the spatial differential operator. This can be done using Fourier transformation \mathcal{F}, yielding an explicit expression for ψ+\psi^{+}:

ψ+=1{{ψ(tn)Δtn+1Veff[ψ(tn)]ψ(tn)}1+12(kρ2+kz2)Δtn+1}.\displaystyle\psi^{+}=\mathcal{F}^{-1}\left\{\frac{\mathcal{F}\left\{\psi(t_{n})-\Delta t_{n+1}V_{\mathrm{eff}}[\psi(t_{n})]\psi(t_{n})\right\}}{1+\frac{1}{2}(k_{\rho}^{2}+k_{z}^{2})\Delta t_{n+1}}\right\}. (67)

This can be efficiently implemented numerically using the operators and transforms we introduced earlier333Note that ψ~ij={ψ}\tilde{\psi}_{ij}=\mathcal{F}\{\psi\} can be evaluated as ψ~ij=klikψklΛjl\tilde{\psi}_{ij}=\sum_{kl}\mathcal{H}_{ik}\psi_{kl}\Lambda_{jl}, and similarly we can define the inverse transform..

Using a forwards-Euler approach for the potential and nonlinear terms in Eq. (64) has the advantage that these terms are explicit, however care needs to be taken with the time-step to ensure that the algorithm is stable. In practice we choose the time step according to

Δtn+1\displaystyle\Delta t_{n+1} =aΔt|Vtr|+4πϵdd1ψ2+4π|Φ[ψ]|+γQF|ψ|3\displaystyle=\frac{a_{\Delta t}}{\mathinner{\!\left\lVert|V_{\text{tr}}|+4\pi\epsilon_{dd}^{-1}\psi^{2}+4\pi|\Phi[\psi]|+\gamma_{\text{QF}}|\psi|^{3}\right\rVert}_{\infty}} (68)

where ||||||\,||_{\infty} denotes the maximum (over all spatial points) of the absolute value of the argument evaluated with ψ(tn)\psi(t_{n}) and aΔt1a_{\Delta t}\lesssim 1 is a constant. For the results we present here we generally take aΔt=0.5a_{\Delta t}=0.5444We typically find that for aΔt1a_{\Delta t}\gtrsim 1 the gradient flow becomes unstable..

We are interested in obtaining the lowest energy stationary state subject to the imposed angular momentum ss. We can quantify the backwards error through the residual r[ψ]μψr\equiv\mathcal{L}[\psi]-\mu\psi. In particular we use the measure

r1N[ψ]μψ,\displaystyle r_{\infty}\equiv\frac{1}{\sqrt{N}}\mathinner{\!\left\lVert\mathcal{L}[\psi]-\mu\psi\right\rVert}_{\infty}, (69)

where the N1/2N^{-1/2} factor is to make the measure independent of normalization choice555E.g., choosing to unit normalize the wavefunction and include the NN factors in the interaction parameters leaves rr_{\infty} unchanged.. We terminate the gradient flow once rr_{\infty} decreases below a desired value (typically 101510^{-15}). We mention that rr_{\infty} has to be used with care. First, it depends on choice of units666E.g. add6.9×109a_{dd}\approx 6.9\times 10^{-9}\,m (for Dy), whereas another popular choice of units is harmonic oscillator length, with typical values of the order of xho106x_{\text{ho}}\approx 10^{-6}\,m. Transforming a solution from adda_{dd}-units to xhox_{\text{ho}}-units would increases rr_{\infty} by a factor of about 4×1074\times 10^{7}. , scaling as x07/2x_{0}^{-7/2}. Second, because μ\mu can be negative (i.e. self-bound), or even zero, the sensitivity of this measure is also dependent on the case under consideration. In practice we can evaluate (69) for a particular solution ψ\psi by applying the EGPE operator (53) and using (54) to obtain μ\mu. Alternatively, we can approximately evaluate this as

r1Nψ(tn)ψ(tn1)Δtn,\displaystyle r_{\infty}\approx\frac{1}{\sqrt{N}}\mathinner{\!\left\lVert\frac{\psi(t_{n})-\psi(t_{n-1})}{\Delta t_{n}}\right\rVert}_{\infty}, (70)

[see Eq. (64)].

As a second measure of solution quality we have developed a virial theorem for the EGPE. The virial relation is ΛV=0\Lambda_{V}=0, where

ΛV=EkinEtr+32Eint+94EQF,\displaystyle\Lambda_{V}=E_{\text{kin}}-E_{\text{tr}}+\frac{3}{2}E_{\text{int}}+\frac{9}{4}E_{\text{QF}}, (71)

with the terms being the components of energy [see Eq. (4)], and where we have assumed that any trap is harmonic in form. We have obtained this virial theorem by considering how the energy functional transforms under a scaling of coordinates (e.g. see Dalfovo et al. (1999)). The terms in Eq. (71) can be evaluated using the techniques described in Secs. III.3 and III.4. In general we find that |ΛV||\Lambda_{V}| is a useful quantity to assess our numerical solutions, as it is sensitive to the residual rr_{\infty} and the quality of the spatial discretisation.

ss (Nρ,Nz)N_{\rho},N_{z}) (R,Z)(R,Z) EE NμN\mu |ΛV||\Lambda_{V}|
(a) 0 (50, 120) (250, 1200) -14.268417108 -19.347035858 4.5×1034.5\times 10^{-3}
(b) 0 (80, 160) (400, 1600) -14.268780733 -19.351349996 2.3×1082.3\times 10^{-8}
(c) 0 (500, 1000) (500, 2000) -14.268780734 -19.351350017 1.2×10101.2\times 10^{-10}
(d) 1 (50, 120) (250, 1200) -2.8144049587 -9.5969313711 1.8×1061.8\times 10^{-6}
(e) 1 (80, 160) (400, 1600) -2.8144048901 -9.5969333804 3.6×1073.6\times 10^{-7}
(f) 1 (200, 480) (400, 1600) -2.8144047844 -9.5969330684 1.2×1091.2\times 10^{-9}
(g) 1 (500, 1000) (500, 2000) -2.8144047842 -9.5969330677 3.4×10103.4\times 10^{-10}
Table 2: Energy and chemical potential values for ϵdd1=0.5\epsilon_{dd}^{-1}=0.5 droplets with N=104N=10^{4} and (a)-(c) s=0s=0 or (d)-(g) s=1s=1 on various choices of numerical grid. All results are calculated with a cylindrically cutoff DDI, and the gradient flow is terminated when rr_{\infty} decreases below 3×10173\times 10^{-17}.
Refer to caption
Figure 1: Density profiles of (a) s=0s=0 and (b) s=1s=1 self-bound stationary states for a system with ϵdd1=0.5\epsilon_{dd}^{-1}=0.5 and N=104N=10^{4} atoms. (c)-(e) Gradient flow evolution for case (b) of Table 2 using aΔt=0.5a_{\Delta t}=0.5, showing (c) the error rr_{\infty}, (d) time step Δtn\Delta t_{n}, (e) energy error, and (f) the absolute virial expectation error. In the energy error ErefE_{\text{ref}} is a reference energy calculated from a state using a larger more dense grid.

V Results

In Table 2 we present results for the energy, chemical potential and |ΛV||\Lambda_{V}| of stationary self-bound states with s=0s=0 and s=1s=1 obtained by the gradient flow method. The density profiles of the states are shown in Figs. 1(a) and (b). We also show the gradient flow evolution for case (b) of Table 2 in Figs. 1(c)-(f). We use the variational solution ψG\psi_{\text{G}} as the initial condition for the gradient flow and the time step Δtn\Delta t_{n} quickly settles to a value of Δtn6.4\Delta t_{n}\approx 6.4 (for aΔt=0.5a_{\Delta t}=0.5) during the flow. The flow terminates at r=5×1017r_{\infty}=5\times 10^{-17} after 5591 steps, taking about 15 seconds to execute on a workstation computer. For this case the flow is stable for aΔt0.84a_{\Delta t}\lesssim 0.84, and takes a proportionately shorter amount of time to execute with a larger value of aΔta_{\Delta t}, but becomes unstable and does not converge when aΔt0.84a_{\Delta t}\gtrsim 0.84.

The results in Table 2 reveal how sensitive the energy and chemical potential are to the choice of grid [i.e. range (R,Z)(R,Z) and number of points (Nρ,Nz)(N_{\rho},N_{z})], showing that accurate results (greater than 9 significant figures) can be obtained when the grid ranges are approximately twice the spatial extent of this droplet and for sufficiently many points. This grid range dependence arises because the DDI term involves a convolution (e.g. see discussion in Ref. Greengard et al. (2018)). The s=1s=1 case typically requires more spatial points to have a similar level of accuracy as the s=0s=0 case. We expect that this arises from the poorer performance of the Bessel quadrature for the quantum fluctuation term when s=1s=1, as noted in Sec. III.6. The results in the table also show that the absolute virial expectation |ΛV||\Lambda_{V}| is qualitative similar to the magnitude to the energy error (i.e. number of converged digits in EE), suggesting that |ΛV||\Lambda_{V}| provides a useful additional method to characterize the solution accuracy.

We also consider the calculation of a phase diagram to predict where s=0s=0 and s=1s=1 self-bound droplets have a negative energy. This requirement ensures that the droplet is energetically stable against evaporating into the trivial E=0E=0 state where the atoms are dispersed over all space. This condition is adequate to ensure that s=0s=0 droplets are ground states that are dynamically stable. For the s=1s=1 case this requirement does not ensure dynamic stability as the droplet can decay by fission. We discuss this aspect later.

Our results for the regions where the droplet states have negative energy are shown in Fig. 2(a). Note by using coordinates of NN and ϵdd1\epsilon_{dd}^{-1} this phase diagram has no remaining dependence on other parameters, and is in this sense universal. In general the s=0s=0 and s=1s=1 regions have similar shapes, although the s=0s=0 region is larger (extends to higher ϵdd1\epsilon_{dd}^{-1}). This is because the s=0s=0 droplet has a considerably lower energy for the same parameters [e.g. see Fig. 2(b) and Table 2]. This difference is from the large energy cost associated with hosting a vortex in the droplet. This arises from the kinetic energy of the vortex, but also because the s=1s=1 droplet is wider than the s=0s=0 droplet [cf. Figs. 1(a) and (b)], making the DDI energy less negative.

The results in Fig. 2 also compare the stationary EGPE solutions and variational Gaussian approach. For example, the markers in Fig. 2(a) show the boundary to the negative energy region determined by the EGPE solutions, while the boundary of the shaded region is determined variationally. The EGPE results are obtained using the gradient flow method to solve for a state at an initial (low) value of ϵdd1\epsilon_{dd}^{-1} stating from a variational Gaussian solution. The resulting EGPE solution for that case is then used as the starting point for the gradient flow at a slightly higher value of ϵdd1\epsilon_{dd}^{-1}, and so on. This process is stopped once the localized state disperses (unbinds and spreads out over the range of the grid). In Fig. 2(b) we show the energy of a sequence of states obtained this way for a particular case of N=104N=10^{4}. We also indicate the point where E=0E=0, used to identify the boundary. The variational results are located as an energy minimum of the function given in Eq. (63). We follow this minimum as ϵdd1\epsilon_{dd}^{-1} increases, noting that eventually it becomes a local minimum (when E>0E>0) and then changes to a saddle point (causing the branch to terminate). We also mention that while the energy is positive near the end of the branches, the chemical potential remains negative [Fig. 2(c)].

The phase diagram in Fig. 2(a) collates the results of many analyses of the type in Fig. 2(b) for different atom numbers NN. In general the E=0E=0 boundary predicted by the variational Gaussian theory is close to that obtained from the EGPE solution. This is because the energies predicted by the two approaches are similar near the transition point. However, we note that the energy of the EGPE state tends to be significantly lower than the variational state for smaller values of ϵdd1\epsilon_{dd}^{-1} where the droplets are more deeply bound. In this regime [e.g.  s=0s=0 state in Fig. 1(a)] the droplet density profile has a relative flat-top axial density distribution, which is not well-captured by a Gaussian.

Refer to caption
Figure 2: (a) Phase diagram of self-bound s=0s=0 and s=1s=1 droplet solutions. Shaded regions bordered by black lines mark where EG<0E_{\text{G}}<0. Lines with circle markers show where the EGPE solution has E=0E=0. (b) The energy and (c) NμN\mu versus ϵdd1\epsilon_{dd}^{-1} for N=104N=10^{4} for the variational (lines) and GPE (lines with small circles) results for s=0s=0 (red) and s=1s=1 (blue). The dotted lines indicate where E=0E=0. The inset shows the data near E=0E=0. Subplots (d) and (e) show examples of metastable states with positive energies. (d) s=0s=0 droplet with ϵdd1=0.75\epsilon_{dd}^{-1}=0.75, E=1.7634×102E=1.7634\times 10^{-2}, μ=2.1742×105\mu=-2.1742\times 10^{-5}, and (e) s=1s=1, ϵdd1=0.56\epsilon_{dd}^{-1}=0.56, E=1.1746×101E=1.1746\times 10^{-1}, μ=2.6444×104\mu=-2.6444\times 10^{-4}.

In Figs. 2(d) and (e) we show examples of the droplet states for cases with slightly positive energy. We can compare these states to the more deeply bound states (differing only in the values of ϵdd1\epsilon_{dd}^{-1}) from Fig. 1. This comparison, particularly for the s=0s=0 case, emphasizes how much the droplet size can change with ϵdd1\epsilon_{dd}^{-1}. For example, over the range of ϵdd1\epsilon_{dd}^{-1} considered in Fig. 2(b) the axial length of the s=0s=0 state changes by approximately a factor of 5. This necessitates careful choice of numerical girds to ensure the states are calculated accurately as ϵdd1\epsilon_{dd}^{-1} changes.

Refer to caption
Figure 3: Vortex droplet fission. (a) A schematic of the fission process where a s=1s=1 vortex droplet (blue) decays into two s=0s=0 droplets (red). (b) Fission energy ΔEN\Delta E_{N} as a function of ϵdd1\epsilon_{dd}^{-1} for N=104N=10^{4} (black lines/markers) and N=105N=10^{5} (red lines/markers). The results are calculated from the variational (lines) and EGPE (markers) theories. The vertical dotted line indicates where the N=104N=10^{4} s=1s=1 droplet has zero-energy.

We can assess the stability of the s=1s=1 vortex droplet to undergoing fission, whereby it splits into two s=0s=0 droplets [see Fig. 3(a)]. This scenario has been observed in dynamical simulations of the s=1s=1 vortex droplet Cidrim et al. (2018). We can define a fission energy as

ΔEN=ENs=12EN2s=0,\displaystyle\Delta E_{N}=E^{s=1}_{N}-2E^{s=0}_{\frac{N}{2}}, (72)

where ENs=1E^{s=1}_{N} is the energy of a s=1s=1 vortex droplet with NN atoms, and EN2s=0E^{s=0}_{\frac{N}{2}} is the energy of a s=0s=0 droplet with N/2N/2 atoms. Thus ΔEN\Delta E_{N} represents the excess energy of the vortex droplet compared to two independent (i.e. well-separated) s=0s=0 droplets. When this energy is positive, then the vortex is potentially unstable to fission. The angular momentum of the vortex droplet would need to be carried by the motion of the separating s=0s=0 droplets, meaning that kinetic energy will also be important in determining if fission can occur. Thus ΔEN>0\Delta E_{N}>0 is a necessary but not sufficient condition for fission.

In Fig. 3(b) we show some results for the fission energy computed using the EGPE and variational solutions. For the results with N=104N=10^{4} both approaches predict that ΔEN>0\Delta E_{N}>0, and thus the vortex droplet is potentially unstable to fission. However, for the larger atom number of N=105N=10^{5} the two predictions are different: the EGPE results predict that ΔEN>0\Delta E_{N}>0 at all values of ϵdd1\epsilon_{dd}^{-1} considered, while the variational results suggest stability (i.e. ΔEN<0\Delta E_{N}<0) for ϵdd10.25\epsilon_{dd}^{-1}\lesssim 0.25. Here the variational approximation is failing because the droplets are not well described by the Gaussian ansatz. We note that this problem was originally considered in a preprint by Cidrim et al. Cidrim et al. (2017), who presented EGPE results that appeared to support the variational prediction that ΔEN<0\Delta E_{N}<0 for large NN and small ϵdd1\epsilon_{dd}^{-1}. Because ΔEN\Delta E_{N} is determined by a difference in two calculations, it can be quite sensitive to the accuracy of the EGPE calculations. This example emphasizes the need for high accuracy calculations of dipolar droplets.

VI Conclusions

In this paper we have presented a method to accurately solve for dipolar quantum droplets in a cylindrical geometry allowing for the inclusion of angular momentum. This work builds on the discretization introduced by Ronen et al. Ronen et al. (2006), extending it to include angular momentum in the stationary state, a cylindrical cutoff (truncation) of the DDI kernel, and the quantum fluctuation term. Using a simple gradient flow technique we demonstrate that this approach is able to obtain accurate results for the dense, highly elongated (filament shaped) quantum droplets that form in dipolar BECs in the regime where the DDIs dominate the contact interactions. We also show that without a careful treatment of the DDI term in this regime it may be difficult to obtain the droplet energy to better than \sim10% accuracy. Such errors would make calculations such as the fission energy (which depends in the difference of energies between two states) difficult to compute.

We have also presented benchmark energy and chemical potential calculations for self-bound droplets. There are very few such benchmark results in the literature and we expect these will be important for comparisons with different approaches that may be developed in the future. We present a generalization of the virial theorem for dipolar EGPE and find that this can be used to test the solution accuracy. As an application of our method we have also presented a phase diagram for the energetic stability of self-bound s=0s=0 and s=1s=1 droplets, and considered the stability of s=1s=1 droplets against fission.

There are many avenues for future development of this work. We note that the EGPE solutions we have presented were obtained using a simple but efficient backwards-forwards Euler gradient flow method. It would be of interest to consider other more efficient solvers such as conjugate gradient solvers (e.g. see Ronen et al. (2006); Antoine et al. (2017, 2018)) or a fully implicit backwards-Euler method. Such solvers will be useful in situations where efficiency becomes more important, such as fully three-dimensional (3D) cases that cannot be reduced to cylindrical symmetry. Typically, non-cylindrically symmetric ground states occur when the confinement is not symmetric about the dipole polarization axis (e.g. Blakie et al. (2020)), or when the system favours the formation of a droplet array (including supersolid) Baillie and Blakie (2018); Wenzel et al. (2017). This latter case is of significant interest in the community due to the recent observation of supersolid states Tanzi et al. (2019a); Chomaz et al. (2019); Tanzi et al. (2019b); Guo et al. (2019); Natale et al. (2019); Hertkorn et al. (2019). Another area requiring attention in the fully 3D case is an efficient and accurate truncation scheme for the DDI kernel, which is a critical tool to enable an efficient grid choice to represent the state.

VII Acknowledgements

We acknowledge support from the Marsden Fund of the Royal Society of New Zealand, and valuable discussions with Y. Cai and W. Bao.

References

  • Kadau et al. (2016) Holger Kadau, Matthias Schmitt, Matthias Wenzel, Clarissa Wink, Thomas Maier, Igor Ferrier-Barbut,  and Tilman Pfau, “Observing the Rosensweig instability of a quantum ferrofluid,” Nature 530, 194 (2016).
  • Ferrier-Barbut et al. (2016) Igor Ferrier-Barbut, Holger Kadau, Matthias Schmitt, Matthias Wenzel,  and Tilman Pfau, “Observation of quantum droplets in a strongly dipolar Bose gas,” Phys. Rev. Lett. 116, 215301 (2016).
  • Schmitt et al. (2016) Matthias Schmitt, Matthias Wenzel, Fabian Böttcher, Igor Ferrier-Barbut,  and Tilman Pfau, “Self-bound droplets of a dilute magnetic quantum liquid,” Nature 539, 259 (2016).
  • Chomaz et al. (2016) L. Chomaz, S. Baier, D. Petter, M. J. Mark, F. Wächtler, L. Santos,  and F. Ferlaino, “Quantum-fluctuation-driven crossover from a dilute Bose-Einstein condensate to a macrodroplet in a dipolar quantum fluid,” Phys. Rev. X 6, 041039 (2016).
  • Baillie et al. (2016) D. Baillie, R. M. Wilson, R. N. Bisset,  and P. B. Blakie, “Self-bound dipolar droplet: A localized matter wave in free space,” Phys. Rev. A 94, 021602(R) (2016).
  • Wächtler and Santos (2016a) F. Wächtler and L. Santos, “Ground-state properties and elementary excitations of quantum droplets in dipolar Bose-Einstein condensates,” Phys. Rev. A 94, 043618 (2016a).
  • Lee et al. (1957) T. D. Lee, Kerson Huang,  and C. N. Yang, “Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties,” Phys. Rev. 106, 1135 (1957).
  • Lima and Pelster (2011) Aristeu R. P. Lima and Axel Pelster, “Quantum fluctuations in dipolar Bose gases,” Phys. Rev. A 84, 041604 (2011).
  • Lima and Pelster (2012) A. R. P. Lima and A. Pelster, “Beyond mean-field low-lying excitations of dipolar Bose gases,” Phys. Rev. A 86, 063609 (2012).
  • Petrov (2015) D. S. Petrov, “Quantum mechanical stabilization of a collapsing Bose-Bose mixture,” Phys. Rev. Lett. 115, 155302 (2015).
  • Saito (2016) Hiroki Saito, “Path-integral Monte Carlo study on a droplet of a dipolar Bose-Einstein condensate stabilized by quantum fluctuation,” J. Phys. Soc. Jpn 85, 053001 (2016).
  • Wächtler and Santos (2016b) F. Wächtler and L. Santos, “Quantum filaments in dipolar Bose-Einstein condensates,” Phys. Rev. A 93, 061603 (2016b).
  • Bisset et al. (2016) R. N. Bisset, R. M. Wilson, D. Baillie,  and P. B. Blakie, “Ground-state phase diagram of a dipolar condensate with quantum fluctuations,” Phys. Rev. A 94, 033619 (2016).
  • Baillie et al. (2017) D. Baillie, R. M. Wilson,  and P. B. Blakie, “Collective excitations of self-bound droplets of a dipolar quantum fluid,” Phys. Rev. Lett. 119, 255302 (2017).
  • Cidrim et al. (2018) André Cidrim, Francisco E. A. dos Santos, Emanuel A. L. Henn,  and Tommaso Macrì, “Vortices in self-bound dipolar droplets,” Phys. Rev. A 98, 023618 (2018).
  • Lee et al. (2018) Au-Chen Lee, D. Baillie, R. N. Bisset,  and P. B. Blakie, “Excitations of a vortex line in an elongated dipolar condensate,” Phys. Rev. A 98, 063620 (2018).
  • Cabrera et al. (2018) C. R. Cabrera, L. Tanzi, J. Sanz, B. Naylor, P. Thomas, P. Cheiney,  and L. Tarruell, “Quantum liquid droplets in a mixture of Bose-Einstein condensates,” Science 359, 301 (2018).
  • Semeghini et al. (2018) G. Semeghini, G. Ferioli, L. Masi, C. Mazzinghi, L. Wolswijk, F. Minardi, M. Modugno, G. Modugno, M. Inguscio,  and M. Fattori, “Self-bound quantum droplets of atomic mixtures in free space,” Phys. Rev. Lett. 120, 235301 (2018).
  • D’Errico et al. (2019) C. D’Errico, A. Burchianti, M. Prevedelli, L. Salasnich, F. Ancilotto, M. Modugno, F. Minardi,  and C. Fort, “Observation of quantum droplets in a heteronuclear bosonic mixture,” Phys. Rev. Research 1, 033155 (2019).
  • Boudjemâa (2015) Abdelâali Boudjemâa, “Theory of excitations of dipolar Bose–Einstein condensate at finite temperature,” J. Phys. B 48, 035302 (2015).
  • Boudjemâa (2016) Abdelâali Boudjemâa, “Properties of dipolar bosonic quantum gases at finite temperatures,” J. Phys. A 49, 285005 (2016).
  • Boudjemâa (2017) Abdelâali Boudjemâa, “Quantum dilute droplets of dipolar bosons at finite temperature,” Ann. Phys. 381, 68 (2017).
  • Ołdziejewski and Jachymski (2016) Rafał Ołdziejewski and Krzysztof Jachymski, “Properties of strongly dipolar Bose gases beyond the Born approximation,” Phys. Rev. A 94, 063638 (2016).
  • Macia et al. (2016) A. Macia, J. Sánchez-Baena, J. Boronat,  and F. Mazzanti, “Droplets of trapped quantum dipolar bosons,” Phys. Rev. Lett. 117, 205301 (2016).
  • Lemoine (1994) Didier Lemoine, “The discrete Bessel transform algorithm,” J. Chem. Phys. 101, 3936 (1994).
  • Ben Ghanem and Frappier (1999) Riadh Ben Ghanem and Clément Frappier, “A general quadrature formula using zeros of spherical Bessel functions as nodes,” ESAIM Math. Model. Numer. Anal. 33, 879 (1999).
  • Guizar-Sicairos and Gutiérrez-Vega (2004) Manuel Guizar-Sicairos and Julio C. Gutiérrez-Vega, “Computation of quasi-discrete Hankel transforms of integer order for propagating optical wave fields,” J. Opt. Soc. Am. A 21, 53 (2004).
  • Bisseling and Kosloff (1985) Rob Bisseling and Ronnie Kosloff, “The fast Hankel transform as a tool in the solution of the time dependent Schrödinger equation,” J. Comput. Phys. 59, 136 (1985).
  • Strang (1999) G. Strang, “The discrete cosine transform,” SIAM Review 41, 135 (1999).
  • Ronen et al. (2006) Shai Ronen, Daniele C. E. Bortolotti,  and John L. Bohn, “Bogoliubov modes of a dipolar condensate in a cylindrical trap,” Phys. Rev. A 74, 013623 (2006).
  • Jiang et al. (2014) S. Jiang, L. Greengard,  and W. Bao, “Fast and accurate evaluation of nonlocal coulomb and dipole-dipole interactions via the nonuniform fft,” SIAM J. Sci. Comput. 36, B777 (2014).
  • Bao et al. (2016) Weizhu Bao, Qinglin Tang,  and Yong Zhang, “Accurate and efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates via the nonuniform FFT,” Commun. Comput. Phys. 19, 1141 (2016).
  • Exl et al. (2016) Lukas Exl, Norbert J. Mauser,  and Yong Zhang, “Accurate and efficient computation of nonlocal potentials based on gaussian-sum approximation,” J. Comput. Phys. 327, 629 (2016).
  • Mennemann et al. (2019) J.-F. Mennemann, T. Langen, L. Exl,  and N.J. Mauser, “Optimal control of the self-bound dipolar droplet formation process,” Comput. Phys. Commun. 244, 205 (2019).
  • Antoine et al. (2018) Xavier Antoine, Qinglin Tang,  and Yong Zhang, “A preconditioned conjugated gradient method for computing ground states of rotating dipolar Bose-Einstein condensates via kernel truncation method for dipole-dipole interaction evaluation,” Commun. Comput. Phys. 24, 966 (2018).
  • Jarvis et al. (1997) M. R. Jarvis, I. D. White, R. W. Godby,  and M. C. Payne, “Supercell technique for total-energy calculations of finite charged and polar systems,” Phys. Rev. B 56, 14972 (1997).
  • Rozzi et al. (2006) Carlo A. Rozzi, Daniele Varsano, Andrea Marini, Eberhard K. U. Gross,  and Angel Rubio, “Exact Coulomb cutoff technique for supercell calculations,” Phys. Rev. B 73, 205119 (2006).
  • Wilson et al. (2009) Ryan M. Wilson, Shai Ronen,  and John L. Bohn, “Stability and excitations of a dipolar Bose-Einstein condensate with a vortex,” Phys. Rev. A 79, 013621 (2009).
  • Lu et al. (2010) H.-Y. Lu, H. Lu, J.-N. Zhang, R.-Z. Qiu, H. Pu,  and S. Yi, “Spatial density oscillations in trapped dipolar condensates,” Phys. Rev. A 82, 023622 (2010).
  • Ogata (2005) Hidenori Ogata, “A numerical integration formula based on the Bessel functions,” Publ. RIMS, Kyoto Univ. 41, 949 (2005).
  • Bao et al. (2006) Weizhu Bao, I-Liang Chern,  and Fong Yin Lim, “Efficient and spectrally accurate numerical methods for computing ground and first excited states in Bose–Einstein condensates,” J. Comput. Phys. 219, 836 (2006).
  • Bao et al. (2010) Weizhu Bao, Yongyong Cai,  and Hanquan Wang, “Efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates,” J. Comput. Phys. 229, 7874 (2010).
  • Antoine et al. (2017) Xavier Antoine, Antoine Levitt,  and Qinglin Tang, “Efficient spectral computation of the stationary states of rotating Bose–Einstein condensates by preconditioned nonlinear conjugate gradient methods,” J. Comput. Phys. 343, 92 (2017).
  • Dalfovo et al. (1999) Franco Dalfovo, Stefano Giorgini, Lev Pitaevskii,  and Sandro Stringari, “Theory of Bose-Einstein condensation in trapped gases,” Rev. Mod. Phys. 71, 463 (1999).
  • Greengard et al. (2018) Leslie. Greengard, Shidong. Jiang,  and Yong. Zhang, “The anisotropic truncated kernel method for convolution with free-space green’s functions,” SIAM J. Sci. Comput. 40, A3733 (2018).
  • Cidrim et al. (2017) André Cidrim, Francisco E. A. dos Santos, Emanuel A. L. Henn,  and Tommaso Macrì, “Vortices in self-bound dipolar droplets,”  (2017), arXiv:1710.08725v1 .
  • Blakie et al. (2020) P Blair Blakie, D Baillie,  and Sukla Pal, “Variational theory for the ground state and collective excitations of an elongated dipolar condensate,” Commun. Theor. Phys. 72, 085501 (2020).
  • Baillie and Blakie (2018) D. Baillie and P. B. Blakie, “Droplet crystal ground states of a dipolar Bose gas,” Phys. Rev. Lett. 121, 195301 (2018).
  • Wenzel et al. (2017) Matthias Wenzel, Fabian Böttcher, Tim Langen, Igor Ferrier-Barbut,  and Tilman Pfau, “Striped states in a many-body system of tilted dipoles,” Phys. Rev. A 96, 053630 (2017).
  • Tanzi et al. (2019a) L. Tanzi, E. Lucioni, F. Famà, J. Catani, A. Fioretti, C. Gabbanini, R. N. Bisset, L. Santos,  and G. Modugno, “Observation of a dipolar quantum gas with metastable supersolid properties,” Phys. Rev. Lett. 122, 130405 (2019a).
  • Chomaz et al. (2019) L. Chomaz, D. Petter, P. Ilzhöfer, G. Natale, A. Trautmann, C. Politi, G. Durastante, R. M. W. van Bijnen, A. Patscheider, M. Sohmen, M. J. Mark,  and F. Ferlaino, “Long-lived and transient supersolid behaviors in dipolar quantum gases,” Phys. Rev. X 9, 021012 (2019).
  • Tanzi et al. (2019b) L. Tanzi, S. M. Roccuzzo, E. Lucioni, F. Famà, A. Fioretti, C. Gabbanini, G. Modugno, A. Recati,  and S. Stringari, “Supersolid symmetry breaking from compressional oscillations in a dipolar quantum gas,” Nature 574, 382 (2019b).
  • Guo et al. (2019) Mingyang Guo, Fabian Böttcher, Jens Hertkorn, Jan-Niklas Schmidt, Matthias Wenzel, Hans Peter Büchler, Tim Langen,  and Tilman Pfau, “The low-energy goldstone mode in a trapped dipolar supersolid,” Nature 564, 386 (2019).
  • Natale et al. (2019) G. Natale, R. M. W. van Bijnen, A. Patscheider, D. Petter, M. J. Mark, L. Chomaz,  and F. Ferlaino, “Excitation spectrum of a trapped dipolar supersolid and its experimental evidence,” Phys. Rev. Lett. 123, 050402 (2019).
  • Hertkorn et al. (2019) J. Hertkorn, F. Böttcher, M. Guo, J. N. Schmidt, T. Langen, H. P. Büchler,  and T. Pfau, “Fate of the amplitude mode in a trapped dipolar supersolid,” Phys. Rev. Lett. 123, 193002 (2019).