This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Numerical analysis of American option pricing in a two-asset jump-diffusion model

Hao Zhou School of Mathematics and Physics, The University of Queensland, St Lucia, Brisbane 4072, Australia, email: [email protected]    Duy-Minh Dang School of Mathematics and Physics, The University of Queensland, St Lucia, Brisbane 4072, Australia, email: [email protected]
Abstract

This paper addresses an important gap in rigorous numerical treatments for pricing American options under correlated two-asset jump-diffusion models using the viscosity solution framework, with a particular focus on the Merton model. The pricing of these options is governed by complex two-dimensional (2-D) variational inequalities that incorporate cross-derivative terms and nonlocal integro-differential terms due to the presence of jumps. Existing numerical methods, primarily based on finite differences, often struggle with preserving monotonicity in the approximation of cross-derivatives-a key requirement for ensuring convergence to the viscosity solution. In addition, these methods face challenges in accurately discretizing 2-D jump integrals.

We introduce a novel approach to effectively tackle the aforementioned variational inequalities while seamlessly handling cross-derivative terms and nonlocal integro-differential terms through an efficient and straightforward-to-implement monotone integration scheme. Within each timestep, our approach explicitly enforces the inequality constraint, resulting in a 2-D Partial Integro-Differential Equation (PIDE) to solve. Its solution is then expressed as a 2-D convolution integral involving the Green’s function of the PIDE. We derive an infinite series representation of this Green’s function, where each term is strictly positive and computable. This series facilitates the numerical approximation of the PIDE solution through a monotone integration method, such as the composite quadrature rule. To further enhance efficiency, we develop an efficient implementation of this monotone integration scheme via Fast Fourier Transforms, exploiting the Toeplitz matrix structure.

The proposed method is proved to be both \ell_{\infty}-stable and consistent in the viscosity sense, ensuring its convergence to the viscosity solution of the variational inequality. Extensive numerical results validate the effectiveness and robustness of our approach, highlighting its practical applicability and theoretical soundness.

Keywords: American option pricing, two-asset Merton jump-diffusion model, variational inequality, viscosity solution, monotone scheme, numerical integration

AMS Subject Classification: 65D30, 65M12, 90C39, 49L25, 93E20, 91G20

1 Introduction

In stochastic control problems, such as those arising in financial mathematics, value functions are often non-smooth, prompting the use of viscosity solutions [20, 22, 31, 59]. The framework for provable convergence numerical methods, established by Barles and Souganidis in [9], requires them to be (i) \ell_{\infty}-stable, (ii) consistent, and (iii) monotone in the viscosity sense, assuming a strong comparison principle holds. Achieving monotonicity is often the most difficult criterion, and non-monotone schemes can fail to converge to viscosity solutions, leading to violations of the fundamental no-arbitrage principle in finance [57, 61].

While monotonicity is a well-established sufficient condition for convergence to the viscosity solution [9], its necessity remains an open question. In some specialized settings (see, for example, [68, 14]), non-monotone schemes can still converge, yet no general result analogous to Barles–Souganidis [9] exists for such methods. Determining whether monotonicity is strictly required for convergence remains an important open problem in viscosity-solution-based numerical analysis. Nonetheless, monotone schemes remain the most reliable approach for ensuring convergence in complex settings.

Monotone finite difference schemes are typically constructed using positive coefficient discretization techniques [67], and rigorous convergence results exist for one-dimensional (1D) models, both with and without jumps [27, 33]. However, extending these results to multi-dimensional settings presents significant challenges, particularly when the underlying assets are correlated. In such cases, the local coordinate rotation of the computational stencil improves stability and accuracy, but this technique is fairly complex and introduces significant computational overhead [53, 17, 15]. Moreover, accurate discretization of the nonlocal integro-differential terms arising from jumps remains a difficult task.

Fourier-based integration methods often rely on an analytical expression for the Fourier transform of the underlying transition density function or of an associated Green’s function, as demonstrated in various studies [65, 2, 39, 32, 51, 30, 62, 63]. Among these, the Fourier-cosine (COS) method [30, 63, 62] is particularly notable for achieving high-order convergence in piecewise smooth problems. However, for general stochastic optimal control problems, such as asset allocation [69, 25], which often involve complex and non-smooth structures, this high-order convergence is generally unattainable [32, 51].

When applicable, Fourier-based integration methods offer advantages such as eliminating timestepping errors between intervention dates (e.g. rebalancing dates in asset allocation) and naturally handling complex dynamics like jump-diffusion and regime-switching. However, a key drawback is their potential loss of monotonicity, which can lead to violations of the no-arbitrage principle in numerical value functions. This poses significant challenges in stochastic optimal control, where accuracy is crucial for optimal decision-making [32]. In the same vein of research, recent works on ϵ\epsilon-monotone Fourier methods for control problems in finance merit attention [32, 52, 51, 50].

These challenges have motivated the development of strictly monotone numerical integration methods, such as the approach in [69] for asset allocation under jump-diffusion models within an impulse control framework with discrete rebalancing. Here, the stock index follows the 1D Merton [55] or Kou [48] jump-diffusion dynamics, while the bond index evolves deterministically with a constant drift rate. Since the bond index dynamics lack a diffusion or jump operator, the asset allocation problem reduces to a weakly coupled system of one-dimensional (1D) equations linked through impulse control.

Akin to other Fourier-based integration methods, the approach in [69] leverages a known closed-form expression for the Fourier transform of an associated 1D conditional density function. However, a key feature of this method is the derivation of an infinite series representation of this density function, in which each term is nonnegative and explicitly computable. This representation is used to advance each 1D equation in time, ensuring strict monotonicity. However, the method remains primarily suited for 1D problems within a discrete rebalancing setting where the other dimension is weakly coupled.

This work generalizes the strictly monotone integration methodology of [69] to a fully 2-D jump-diffusion setting, addressing the key challenge of cross-derivative terms and 2-D jumps. Furthermore, we establish its convergence to the viscosity solution in continuous time. We apply this framework to American option pricing under a correlated two-asset jump-diffusion model—an important yet computationally demanding problem in financial mathematics. While American options exhibit relatively weak nonlinearity, they provide a suitable setting to develop and assess strictly monotone numerical integration techniques in a fully 2-D framework, without the added complexity of more advanced financial applications, such as that of fully 2-D asset allocation.

1.1 American options

American options play a crucial role in financial markets and are widely traded for both hedging and speculative purposes. Unlike European options, which can only be exercised at expiration, American options allow exercise at any time before expiration. While this flexibility enhances their appeal across equities, commodities, and bonds, it also introduces substantial mathematical and computational challenges due to the absence of closed-form solutions in most cases.

From a mathematical perspective, American option pricing is formulated as a variational inequality due to its optimal stopping feature. The problem becomes particularly challenging when incorporating jumps, as the governing equations involve nonlocal integro-differential terms [70, 60]. These complexities necessitate advanced numerical methods to achieve accurate valuations.

A common approach to tackling the variational inequality in American option pricing is to reformulate it as a partial (integro-)differential complementarity problem [16, 71, 17, 33, 13]. This reformulation captures the early exercise feature through time-dependent complementarity conditions, effectively handling the boundary between the exercise and continuation regions. Finite difference techniques are widely used to solve these problems, resulting in nonlinear discretized equations that require iterative solvers such as the projected successive over-relaxation method (PSOR) [23] and penalty methods [71]. For models incorporating jumps, fixed-point iterations can be used to address the integral terms, as shown in [17] for two-asset jump-diffusion models. Additionally, efficient operator splitting schemes—including implicit-explicit and alternating direction implicit types—have recently been proposed for American options under the two-asset Merton jump-diffusion model [13], while the method of lines has been applied to the same problem under the two-asset Kou model [37].

An alternative approach to pricing American options is to approximate them using Bermudan options, a discrete-time counterpart, and analyze the convergence of the solution as the early exercise intervals shrink to zero. In this context, Fourier-based COS methods [62] have been applied to 2-D Bermudan options. However, for this application, the COS method requires particularly careful boundary tracking despite its high-order convergence for piecewise smooth problems. Notably, as observed in [32, 28], the COS method may produce negative option prices for short maturities, akin to cases where early exercise opportunities become more frequent. This phenomenon is closely tied to its potential loss of monotonicity, a limitation highlighted in previous discussions. Consequently, this approach may struggle to ensure convergence from Bermudan to American options.

1.2 Main contributions

This paper bridges the gap in existing numerical methods by introducing an efficient, straightforward-to-implement monotone integration scheme for the variational inequalities governing American options under the two-asset Merton jump-diffusion model. Our approach simultaneously handles cross-derivative terms and nonlocal integro-differential terms, simplifying the design of monotone schemes and ensuring convergence to the viscosity solution. In doing so, we address key computational challenges in current numerical techniques.

The main contributions of our paper are outlined below.

  • (i)

    We present the localized variational inequality for pricing American options under the two-asset Merton jump-diffusion model, formulated on an infinite domain in log-price variables with a finite interior and artificial boundary conditions. Using a probabilistic technique, we demonstrate that the difference between the solutions of the localized and full-domain variational inequalities decreases exponentially with respect to the log-price domain size. In addition, we establish that the localized variational inequality satisfies a comparison result.

  • (ii)

    We develop a monotone scheme for the variational inequality that explicitly enforces the inequality constraint. We solve a 2-D Partial Integro-Differential Equation (PIDE) at each timestep to approximate the continuation value, followed by an intervention action applied at the end of the timestep. Using the closed-form Fourier transform of the Green’s function, we derive an infinite series representation where each term is non-negative. This enables the direct approximation of the PIDE’s solutions via 2-D convolution integrals, using a monotone numerical integration method.

  • (iii)

    We implement the monotone integration scheme efficiently by exploiting the Toeplitz matrix structure and using Fast Fourier Transforms (FFTs) combined with circulant convolution. The implementation process includes expanding the inner summation’s convolution kernel into a circulant matrix, followed by transforming the double summation kernel into a circulant block structure. This allows the circulant matrix-vector product to be efficiently computed as a circulant convolution using 2-D FFTs.

  • (iv)

    We prove that the proposed monotone scheme is both \ell_{\infty}-stable and consistent in the viscosity sense, ensuring pointwise convergence to the viscosity solution of the variational inequality as the discretization parameter approaches zero.

  • (v)

    Extensive numerical results demonstrate strong agreement with benchmark solutions from published test cases, including those obtained via operator splitting methods, establishing our method as a reference for validating numerical techniques.

While this work focuses on American option pricing under a correlated two-asset Merton jump-diffusion model, the core methodology—particularly the infinite series representation of the Green’s function, where each term is non-negative—can be extended to other stochastic control problems. One such application is asset allocation with a stock index and a bond index. For discrete rebalancing, the 2-D extension is straightforward, as time advancement can be handled using a similar infinite series representation. For continuous rebalancing, a natural approach is to start from the discrete setting and leverage insights from [69] to analyze the limit as the rebalancing interval approaches zero.

The extension to the 2-D Kou model presents significant additional challenges due to its piecewise-exponential structure, leading to complex multi-region double integrals. We leave this extension for future work and refer the reader to Subsection 3.2, where we discuss these difficulties and outline a potential neural network-based approach.

The remainder of the paper is organized as follows. In Section 2, we provide an overview of the two-asset Merton jump-diffusion model and present the corresponding variational inequality. We then define a localized version of this problem, incorporating boundary conditions for the sub-domains. Section 3 introduces the associated Green’s function and its infinite series representation. In Section 4, we describe a simple, yet effective, monotone integration scheme based on a composite 2-D quadrature rule. Section 5 establishes the mathematical convergence of the proposed scheme to the viscosity solution of the localized variational inequality. Numerical results are discussed in Section 6, and finally, Section 7 concludes the paper and outlines directions for future research.

2 Variational inequalities and viscosity solution

We consider a complete filtered probability space (𝔖,𝔉,𝔉0tT,𝔔)(\mathfrak{S},\mathfrak{F},\mathfrak{F}_{0\leq t\leq T},\mathfrak{Q}), which includes a sample space 𝔖\mathfrak{S}, a sigma-algebra 𝔉\mathfrak{F}, a filtration 𝔉0tT\mathfrak{F}_{0\leq t\leq T} for a finite time horizon T>0T>0, and a risk-neutral measure 𝔔\mathfrak{Q}. For each t[0,T]t\in[0,T], XtX_{t} and YtY_{t} represent the prices of two distinct underlying assets. These price processes are modeled under the risk-neutral measure to follow jump-diffusion dynamics given by

dXtXt=(rλκx)dt+σxdWtx+d(ι=1πt(ξx(ι)1)),\displaystyle\frac{dX_{t}}{X_{t}}=\left(r-\lambda\kappa_{\scalebox{0.6}{$x$}}\right)dt+\sigma_{\scalebox{0.6}{$x$}}dW^{\scalebox{0.6}{$x$}}_{t}+d\left(\sum_{\iota=1}^{\pi_{t}}(\xi^{(\iota)}_{\scalebox{0.6}{$x$}}-1)\right), X0=x0>0,\displaystyle\qquad~{}X_{0}=x_{0}>0, (2.1a)
dYtYt=(rλκy)dt+σydWty+d(ι=1πt(ξy(ι)1)),\displaystyle\frac{dY_{t}}{Y_{t}}=\left(r-\lambda\kappa_{\scalebox{0.6}{$y$}}\right)dt+\sigma_{\scalebox{0.6}{$y$}}dW^{\scalebox{0.6}{$y$}}_{t}+d\left(\sum_{\iota=1}^{\pi_{t}}(\xi^{(\iota)}_{\scalebox{0.6}{$y$}}-1)\right), Y0=y0>0.\displaystyle\qquad Y_{0}=y_{0}>0. (2.1b)

Here, r>0r>0 denotes the risk-free interest rate, and σx>0\sigma_{x}>0 and σy>0\sigma_{y}>0 represent the instantaneous volatility of the respective underlying asset. The processes {Wtx}t[0,T]\{W_{t}^{x}\}_{t\in[0,T]} and {Wty}t[0,T]\{W_{t}^{y}\}_{t\in[0,T]} are two correlated Brownian motions, with dWtxdWty=ρdtdW^{x}_{t}dW^{y}_{t}=\rho dt, where 1<ρ<1-1<\rho<1 is the correlation parameter. The process {πt}0tT\{\pi_{t}\}_{0\leq t\leq T} is a Poisson process with a constant finite intensity rate λ0\lambda\geq 0. The random variables ξx\xi_{\scalebox{0.6}{$x$}} and ξy\xi_{\scalebox{0.6}{$y$}}, representing the jump multipliers, are two correlated positive random variables with correlation coefficient ρ^(1,1)\hat{\rho}\in(-1,1). In (2.1), {ξx(ι)}ι=1\{\xi_{\scalebox{0.6}{$x$}}^{(\iota)}\}_{\iota=1}^{\infty} and {ξy(ι)}ι=1\{\xi_{\scalebox{0.6}{$y$}}^{(\iota)}\}_{\iota=1}^{\infty} are independent and identically distributed (i.i.d.) random variables having the same distribution as ξx\xi_{\scalebox{0.6}{$x$}} and ξy\xi_{\scalebox{0.6}{$y$}}, respectively; the quantities κx=𝔼[ξx1]\kappa_{\scalebox{0.6}{$x$}}=\mathbb{E}\left[\xi_{\scalebox{0.6}{$x$}}-1\right] and κy=𝔼[ξy1]\kappa_{\scalebox{0.6}{$y$}}=\mathbb{E}\left[\xi_{\scalebox{0.6}{$y$}}-1\right], where 𝔼[]\mathbb{E}[\cdot] is the expectation operator taken under the risk-neutral measure 𝔔\mathfrak{Q}.

In this paper, we focus our attention on the Merton jump-diffusion model [55], where the jump multiplier ξx\xi_{\scalebox{0.6}{$x$}} and ξy\xi_{\scalebox{0.6}{$y$}} subject to log-normal distribution, respectively. Specifically, we denote by f(sx,sy)f(s_{x},s_{y}) the joint density function of the random variable ln(ξx)Normal(μ~x,σ~x2)\ln(\xi_{\scalebox{0.6}{$x$}})\sim\text{Normal}\left({\widetilde{\mu}}_{\scalebox{0.6}{$x$}},{\widetilde{\sigma}}_{\scalebox{0.6}{$x$}}^{2}\right) and ln(ξy)Normal(μ~y,σ~y2)\ln(\xi_{\scalebox{0.6}{$y$}})\sim\text{Normal}\left({\widetilde{\mu}}_{\scalebox{0.6}{$y$}},{\widetilde{\sigma}}_{\scalebox{0.6}{$y$}}^{2}\right) with correlation ρ^\hat{\rho}. Consequently, the joint probability density function (PDF) is given by

f(sx,sy)=12πσ~xσ~y1ρ^2exp(12(1ρ^2)[(sxμ~xσ~x)22ρ^((sxμ~x)(syμ~y)σ~xσ~y)+(syμ~yσ~y)2]).\displaystyle f(s_{x},s_{y})\!=\!\frac{1}{2\pi{\widetilde{\sigma}}_{\scalebox{0.6}{$x$}}{\widetilde{\sigma}}_{\scalebox{0.6}{$y$}}\sqrt{1-\hat{\rho}^{2}}}\exp\bigg{(}\frac{-1}{2(1-\hat{\rho}^{2})}\bigg{[}\bigg{(}\frac{s_{x}-{\widetilde{\mu}}_{\scalebox{0.6}{$x$}}}{{\widetilde{\sigma}}_{\scalebox{0.6}{$x$}}}\bigg{)}^{2}\!\!\!\!-\!2\hat{\rho}\bigg{(}\frac{(s_{x}-{\widetilde{\mu}}_{\scalebox{0.6}{$x$}})(s_{y}-{\widetilde{\mu}}_{\scalebox{0.6}{$y$}})}{{\widetilde{\sigma}}_{\scalebox{0.6}{$x$}}{\widetilde{\sigma}}_{\scalebox{0.6}{$y$}}}\bigg{)}\!\!+\!\!\bigg{(}\frac{s_{y}-{\widetilde{\mu}}_{\scalebox{0.6}{$y$}}}{{\widetilde{\sigma}}_{\scalebox{0.6}{$y$}}}\bigg{)}^{2}\bigg{]}\bigg{)}. (2.2)

2.1 Formulation

For the underlying process (Xt,Yt),t[0,T](X_{t},Y_{t}),~{}t\in[0,T], let (a,b)(a,b) be the state of the system. We denoted by v′′(a,b,t)v^{\prime\prime}(a,b,t) the time-tt no-arbitrage price of a two-asset American option contract with maturity TT and payoff v^(a,b)\hat{v}(a,b). It is established that v′′()v^{\prime\prime}(\cdot) is given by the optimal stopping problem [41, 45, 54, 59, 42, 70]

v′′(a,b,t)=suptγT𝔼ta,b[er(γt)v^(Xγ,Yγ)],(a,b,t)+2×[0,T].\displaystyle v^{\prime\prime}(a,b,t)=\sup_{t\leq\gamma\leq T}\mathbb{E}^{a,b}_{t}\left[e^{-r(\gamma-t)}\hat{v}^{\prime}(X_{\gamma},Y_{\gamma})\right],\qquad(a,b,t)\in\mathbb{R}_{+}^{2}\times[0,T]. (2.3)

Here, γ\gamma represents a stopping time; 𝔼tx,y\mathbb{E}^{x,y}_{t} denotes the conditional expectation under the risk-neutral measure 𝔔\mathfrak{Q}, conditioned on (Xt,Yt)=(a,b)(X_{t},Y_{t})=(a,b). We focus on the put option case, where the payoff function v^()\hat{v}^{\prime}(\cdot) is bounded and continuous.

The methods of variational inequalities, originally developed in [11], are widely used for pricing American options, as evidenced by [70, 42, 60, 59], among many other publications. The value function v′′()v^{\prime\prime}(\cdot), defined in (2.3), is known to be non-smooth, which prompts the use of the notion of viscosity solutions. This approach provides a powerful means for characterizing the value functions in stochastic control problems [20, 22, 21, 31, 59].

It is well-established that the value function v′′()v^{\prime\prime}(\cdot), defined in (2.3), is the unique viscosity solution of a variational inequality as noted in [58, 60, 59]. While the original references describe the variational inequality using the spatial variables (a,b)(a,b), our approach employs a logarithmic transformation for theoretical analysis and numerical method development. Specifically, with τ=Tt\tau=T-t, and given positive values for aa and bb, we apply the transformation x=ln(a)(,)x=\ln(a)\in(-\infty,\infty) and y=ln(b)(,)y=\ln(b)\in(-\infty,\infty). With 𝐱=(x,y,τ){\bf{x}}=(x,y,\tau), we define v(𝐱)v(x,y,τ)=v′′(ex,ey,Tt)v^{\prime}({\bf{x}})\equiv v^{\prime}(x,y,\tau)=v^{\prime\prime}(e^{x},e^{y},T-t) and v^(x,y)=v^(ex,ey)\hat{v}(x,y)=\hat{v}^{\prime}(e^{x},e^{y}). Consequently, v()v^{\prime}(\cdot) is the unique viscosity solution of the variational inequality given by

min{v/τv𝒥v,vv^}=0,\displaystyle\min\left\{\partial v^{\prime}/\partial\tau-\mathcal{L}v^{\prime}-\mathcal{J}v^{\prime},v^{\prime}-\hat{v}\right\}=0, 𝐱2×(0,T],\displaystyle\qquad{\bf{x}}\in\mathbb{R}^{2}\times(0,T], (2.4a)
vv^=0,\displaystyle v^{\prime}-\hat{v}=0, 𝐱2×{0}.\displaystyle\qquad{\bf{x}}\in\mathbb{R}^{2}\times\{0\}. (2.4b)

Here, the differential and jump operators ()\mathcal{L}(\cdot) and 𝒥()\mathcal{J}(\cdot) are defined as follows

ψ\displaystyle\mathcal{L}\psi =\displaystyle= σx222ψx2+(rλκxσx22)ψx+σy222ψy2+(rλκyσy22)ψy+ρσxσy2ψxy(r+λ)ψ,\displaystyle\frac{\sigma_{\scalebox{0.6}{$x$}}^{2}}{2}\frac{\partial^{2}\psi}{\partial x^{2}}+\bigg{(}r-\lambda\kappa_{\scalebox{0.6}{$x$}}-\frac{\sigma_{\scalebox{0.6}{$x$}}^{2}}{2}\bigg{)}\frac{\partial\psi}{\partial x}+\frac{\sigma_{\scalebox{0.6}{$y$}}^{2}}{2}\frac{\partial^{2}\psi}{\partial y^{2}}+\bigg{(}r-\lambda\kappa_{\scalebox{0.6}{$y$}}-\frac{\sigma_{\scalebox{0.6}{$y$}}^{2}}{2}\bigg{)}\frac{\partial\psi}{\partial y}+\rho\sigma_{\scalebox{0.6}{$x$}}\sigma_{\scalebox{0.6}{$y$}}\frac{\partial^{2}\psi}{\partial x\partial y}-(r+\lambda)\psi,
𝒥ψ\displaystyle\mathcal{J}\psi =\displaystyle= λ2ψ(x+sx,y+sy,τ)f(sx,sy)𝑑sx𝑑sy,\displaystyle\lambda\iint_{\mathbb{R}^{2}}\psi(x+s_{x},y+s_{y},\tau)~{}f(s_{x},s_{y})~{}ds_{x}ds_{y}, (2.5)

where f(sx,sy)f(s_{x},s_{y}) is the joint probability density function of (ln(ξx),ln(ξy))\left(\ln(\xi_{\scalebox{0.6}{$x$}}),\ln(\xi_{\scalebox{0.6}{$y$}})\right).

2.2 Localization

Under the log transformation, the formulation (2.4) is posed on an infinite spatial domain 2\mathbb{R}^{2}. For problem statement and convergence analysis of numerical schemes, we define a localized pricing problem with a finitem, open, spatial interior sub-domain, denoted by 𝔻in2\mathbb{D}_{\scalebox{0.7}{\text{in}}}\subset\mathbb{R}^{2}. More specifically, with xmin<0<xmaxx_{\scalebox{0.55}{$\min$}}<0<x_{\scalebox{0.55}{$\max$}} and ymin<0<ymaxy_{\scalebox{0.55}{$\min$}}<0<y_{\scalebox{0.55}{$\max$}}, where xminx_{\scalebox{0.55}{$\min$}}, xmaxx_{\scalebox{0.55}{$\max$}}, |ymin||y_{\scalebox{0.55}{$\min$}}|, and ymaxy_{\scalebox{0.55}{$\max$}} are sufficiently large, 𝔻in\mathbb{D}_{\scalebox{0.7}{\text{in}}} and its complement 𝔻out\mathbb{D}_{\scalebox{0.7}{\text{out}}}^{\scalebox{0.6}{$\infty$}} are respectively defined as follows

𝔻in(xmin,xmax)×(ymin,ymax), and 𝔻out=2𝔻in.\mathbb{D}_{\scalebox{0.7}{\text{in}}}\equiv(x_{\scalebox{0.55}{$\min$}},~{}x_{\scalebox{0.55}{$\max$}})\times(y_{\scalebox{0.55}{$\min$}},y_{\scalebox{0.55}{$\max$}}),\quad\text{ and }\quad\mathbb{D}_{\scalebox{0.7}{\text{out}}}^{\scalebox{0.6}{$\infty$}}=\mathbb{R}^{2}\setminus\mathbb{D}_{\scalebox{0.7}{\text{in}}}. (2.6)

Since the jump operator 𝒥()\mathcal{J}(\cdot) is non-local, computing the integral (2.5) for (x,y)𝔻in(x,y)\in\mathbb{D}_{\scalebox{0.7}{\text{in}}} typically requires knowledge of v()v(\cdot) within the infinite outer boundary sub-domain 𝔻out\mathbb{D}_{\scalebox{0.7}{\text{out}}}^{\scalebox{0.6}{$\infty$}}. Therefor, appropriate boundary conditions must be established for 𝔻out\mathbb{D}_{\scalebox{0.7}{\text{out}}}^{\scalebox{0.6}{$\infty$}}. In the following, we define the definition domain and its sub-domains, discuss boundary conditions, and investigate the impact of artificial boundary conditions on v()v(\cdot).

The definition domain comprises a finite sub-domain and an infinite boundary sub-domain, defined as follows.

Ω\displaystyle\Omega^{\scalebox{0.5}{$\infty$}} =(,)×(,)×[0,T],\displaystyle=(-\infty,\infty)\times(-\infty,\infty)\times[0,T],
Ωτ0\displaystyle\Omega^{\scalebox{0.5}{$\infty$}}_{\tau_{0}} =(,)×(,)×{0},\displaystyle=(-\infty,\infty)\times(-\infty,\infty)\times\{0\}, (2.7)
Ωin\displaystyle\Omega_{\scalebox{0.7}{\text{in}}} =(xmin,xmax)×(ymin,ymax)×(0,T]𝔻in×(0,T],\displaystyle=(x_{\scalebox{0.55}{$\min$}},x_{\scalebox{0.55}{$\max$}})\times(y_{\scalebox{0.55}{$\min$}},y_{\scalebox{0.55}{$\max$}})\times(0,T]\equiv\mathbb{D}_{\scalebox{0.7}{\text{in}}}\times(0,T],
Ωout\displaystyle\Omega^{\scalebox{0.5}{$\infty$}}_{\scalebox{0.7}{\text{out}}} =ΩΩτ0Ωin𝔻out×(0,T].\displaystyle=\Omega^{\scalebox{0.5}{$\infty$}}\setminus\Omega^{\scalebox{0.5}{$\infty$}}_{\tau_{0}}\setminus\Omega_{\scalebox{0.7}{\text{in}}}\equiv\mathbb{D}_{\scalebox{0.7}{\text{out}}}^{\scalebox{0.6}{$\infty$}}\times(0,T].

For subsequent use, we also define the following region: Ωτ0in:=[xmin,xmax]×[ymin,ymax]×{0}\Omega_{\tau_{0}}^{\scalebox{0.7}{\text{in}}}:=[x_{\scalebox{0.55}{$\min$}},x_{\scalebox{0.55}{$\max$}}]\times[y_{\scalebox{0.55}{$\min$}},y_{\scalebox{0.55}{$\max$}}]\times\{0\}. An illustration of the sub-domains for the localized problem corresponding to a fixed τ(0,T]\tau\in(0,T] is given in Figure 2.1.

𝔻in\mathbb{D}_{\scalebox{0.7}{\text{in}}}

𝔻out\mathbb{D}_{\scalebox{0.7}{\text{out}}}^{\scalebox{0.6}{$\infty$}}

𝔻out\mathbb{D}_{\scalebox{0.7}{\text{out}}}^{\scalebox{0.6}{$\infty$}}

𝔻out\mathbb{D}_{\scalebox{0.7}{\text{out}}}^{\scalebox{0.6}{$\infty$}}

𝔻out\mathbb{D}_{\scalebox{0.7}{\text{out}}}^{\scalebox{0.6}{$\infty$}}

-\infty

\infty

-\infty

\infty

xminx_{\scalebox{0.55}{$\min$}}

xmaxx_{\scalebox{0.55}{$\max$}}

yminy_{\min}

ymaxy_{\scalebox{0.55}{$\max$}}

Figure 2.1: Spatial definition sub-domain at each τ[0,T]\tau\in[0,T].

For the outer boundary sub-domain Ωout\Omega^{\scalebox{0.5}{$\infty$}}_{\scalebox{0.7}{\text{out}}}, boundary conditions are generally informed by financial reasonings or derived from the asymptotic behavior of the solution. In this study, we implement a straightforward Dirichlet boundary condition using a known bounded function p^(𝐱)\hat{p}({\bf{x}}) for 𝐱Ωout{\bf{x}}\in\Omega^{\scalebox{0.5}{$\infty$}}_{\scalebox{0.7}{\text{out}}}. Specifically, p^(𝐱)\hat{p}({\bf{x}}) belongs to the space of bounded functions (Ω)\mathcal{B}(\Omega^{\scalebox{0.5}{$\infty$}}), which is defined as follows [7, 64]

(Ω)\displaystyle\mathcal{B}(\Omega^{\scalebox{0.5}{$\infty$}}) ={ψ:Ω,ψ()<}.\displaystyle=\big{\{}\psi:\Omega^{\scalebox{0.5}{$\infty$}}\to\mathbb{R},~{}~{}\|\psi(\cdot)\|_{\infty}<\infty\big{\}}. (2.8)

We denote by v()v(\cdot) the function that solves the localized problem on Ω\Omega^{\scalebox{0.5}{$\infty$}} with the initial and boundary condition given below

min{v/τv𝒥v,vv^}=0,\displaystyle\min\left\{\partial v/\partial\tau-\mathcal{L}v-\mathcal{J}v,v-\hat{v}\right\}=0, 𝐱Ωin,\displaystyle\qquad{\bf{x}}\in\Omega_{\scalebox{0.7}{\text{in}}}, (2.9a)
vp^=0,\displaystyle v-\hat{p}=0, 𝐱Ωout,\displaystyle\qquad{\bf{x}}\in\Omega^{\scalebox{0.5}{$\infty$}}_{\scalebox{0.7}{\text{out}}}, (2.9b)
vv^=0,\displaystyle v-\hat{v}=0, 𝐱Ωτ0.\displaystyle\qquad{\bf{x}}\in\Omega^{\scalebox{0.5}{$\infty$}}_{\tau_{0}}. (2.9c)

The impact of the artificial boundary condition in Ωout\Omega^{\scalebox{0.5}{$\infty$}}_{\scalebox{0.7}{\text{out}}}, as specified in (2.9b), on the solution within Ωin\Omega_{\scalebox{0.7}{\text{in}}} is established in Lemma 2.1 below. For simplicity, in the lemma, we assume that xmax=|xmin|=ymax=|ymin|x_{\scalebox{0.55}{$\max$}}=|x_{\scalebox{0.55}{$\min$}}|=y_{\scalebox{0.55}{$\max$}}=|y_{\scalebox{0.55}{$\min$}}|. The proof can be generalized in a straightforward manner to accommodate different values for xminx_{\scalebox{0.55}{$\min$}}, xmaxx_{\scalebox{0.55}{$\max$}}, yminy_{\scalebox{0.55}{$\min$}}, and ymaxy_{\scalebox{0.55}{$\max$}}.

Lemma 2.1.

Assume that v^()\hat{v}(\cdot) and p^()\hat{p}(\cdot) belong to (Ω)\mathcal{B}(\Omega^{\scalebox{0.5}{$\infty$}}), and that A:=xmax=|xmin|=ymax=|ymin|A:=x_{\scalebox{0.55}{$\max$}}=|x_{\scalebox{0.55}{$\min$}}|=y_{\scalebox{0.55}{$\max$}}=|y_{\scalebox{0.55}{$\min$}}|. Then, for 𝐱=(x,y,τ)Ωin{\bf{x}}=(x,y,\tau)\in\Omega_{\scalebox{0.7}{\text{in}}}, the difference between the solution v()v^{\prime}(\cdot) and v()v(\cdot) to their respective non-localized and localized variational inequalities (2.4) and (2.9) is bounded by

|v(𝐱)v(𝐱)|C(τ)(v^()+p^())(e(A|x|)+e(A|y|)).|v^{\prime}({\bf{x}})-v({\bf{x}})|\leq C(\tau)\left(\|\hat{v}(\cdot)\|_{\infty}+\|\hat{p}(\cdot)\|_{\infty}\right)\left(e^{-(A-|x|)}+e^{-(A-|y|)}\right).

Here, the constant C(τ)>0C(\tau)>0 is bounded independently of xminx_{\scalebox{0.55}{$\min$}}, xmaxx_{\scalebox{0.55}{$\max$}}, yminy_{\scalebox{0.55}{$\min$}}, and ymaxy_{\scalebox{0.55}{$\max$}}.

A proof of Lemma 2.1 is provided in Appendix A. This lemma establishes that, in log-price coordinates, the error between the localized and full-domain variational inequality solutions decays exponentially as the spatial interior domain size increases, i.e. the truncation error is of order 𝒪(eA)\mathcal{O}(e^{-A}) as AA\to\infty.111Equivalently, if AA^{\prime} represents the spatial domain size in the original price scale for both assets, the error is 𝒪(1/A)\mathcal{O}(1/A^{\prime}). The result is a local pointwise estimate, indicating that the localization error is more pronounced near the boundary. This rapid decay implies that smaller computational domains can be used, thereby significantly reducing computational costs.

The boundedness conditions v^()<\|\hat{v}(\cdot)\|_{\infty}<\infty and p^()<\|\hat{p}(\cdot)\|_{\infty}<\infty are satisfied for standard put options and Dirichlet boundary conditions. However, for payoffs that grow unbounded as x,y+x,y\to+\infty (e.g. standard calls), a more refined analysis is required. Large-deviation techniques have been employed in pure-diffusion models (see [10]) to estimate the probability of large excursions beyond the truncated domain. These techniques can also be adapted to certain (finite-activity) jump processes (see, for example, [44]). A rigorous extension of these ideas to jump-diffusion models with unbounded payoffs, while theoretically possible, is considerably more involved and lies beyond the scope of this work. We therefore concentrate on bounded-payoff options—such as puts—where v^()\|\hat{v}(\cdot)\|_{\infty} remains finite.

For the remainder of the analysis, we choose the Dirichlet condition based on discounted payoff as follows

p^(x,y,τ)=v^(x,y)erτ,(x,y,τ)Ωout.\displaystyle\hat{p}(x,y,\tau)=\hat{v}(x,y)e^{-r\tau},\quad(x,y,\tau)\in\Omega_{\scalebox{0.7}{\text{out}}}. (2.10)

While more sophisticated boundary conditions might involve the asymptotic properties of the variational inequality (2.4a) as x,yx,y\to-\infty or x,yx,y\to\infty, our observations indicate that these sophisticated boundary conditions do not significantly impact the accuracy of the numerical solution within Ωin\Omega_{\scalebox{0.7}{\text{in}}}. This will be illustrated through numerical experiments in Subsection 6.2.4.

2.3 Viscosity solution and a comparison result

We now write (2.1) in a compact form, which includes the terminal and boundary conditions in a single equation. We let Dv(𝐱)Dv({\mathbf{x}}) and D2v(𝐱)D^{2}v({\mathbf{x}}) represent the first-order and second-order partial derivatives of v(𝐱)v\left({\mathbf{x}}\right). The variational inequality (2.9) can be expressed compactly as

0=F(𝐱,v(𝐱),Dv(𝐱),D2v(𝐱),𝒥v(𝐱))F(𝐱,v),\displaystyle 0=F\left({\mathbf{x}},v({\mathbf{x}}),Dv({\mathbf{x}}),D^{2}v({\mathbf{x}}),\mathcal{J}v({\mathbf{x}})\right)\equiv F\left({\mathbf{x}},v\right), (2.11)

where

Fin(𝐱,v)\displaystyle~{}F_{\scalebox{0.7}{\text{in}}}\left({\mathbf{x}},v\right) =min{v/τv𝒥v,vv^},\displaystyle=\min\left\{\partial v/\partial\tau-\mathcal{L}v-\mathcal{J}v,v-\hat{v}\right\}, 𝐱Ωin,\displaystyle\qquad{\bf{x}}\in\Omega_{\scalebox{0.7}{\text{in}}}, (2.12a)
Fout(𝐱,v)\displaystyle~{}F_{\scalebox{0.7}{\text{out}}}\left({\mathbf{x}},v\right) =verτv^,\displaystyle=v-e^{-r\tau}\hat{v}, 𝐱Ωout,\displaystyle\qquad{\bf{x}}\in\Omega^{\scalebox{0.5}{$\infty$}}_{\scalebox{0.7}{\text{out}}}, (2.12b)
Fτ0(𝐱,v)\displaystyle~{}F_{\tau_{0}}\left({\mathbf{x}},v\right) =vv^,\displaystyle=v-\hat{v}, 𝐱Ωτ0.\displaystyle\qquad{\bf{x}}\in\Omega^{\scalebox{0.5}{$\infty$}}_{\tau_{0}}. (2.12c)

For a locally bounded function ψ:𝔻\psi:\mathbb{D}\rightarrow\mathbb{R}, where 𝔻\mathbb{D} is a closed subset of n\mathbb{R}^{n}, we recall its upper semicontinuous (u.s.c. in short) and the lower semicontinuous (l.s.c. in short) envelopes given by

ψ(𝐱^)=lim sup \Let@\restore@math@cr\default@tag x ^x x,^x X ψ(𝐱)(resp.ψ(𝐱^)=lim inf \Let@\restore@math@cr\default@tag x ^x x,^x X ψ(𝐱)).\displaystyle\psi^{*}({\bf{\hat{x}}})=\limsup_{\vbox{\Let@\restore@math@cr\default@tag\halign{\hfil$\m@th\scriptstyle#$&$\m@th\scriptstyle{}#$\cr{\bf{x}}&\to{\bf{\hat{x}}}\\ {\bf{x}},{\bf{\hat{x}}}&\in\mathbb{X}\crcr}}}\psi({\bf{x}})\quad(\text{resp.}\quad\psi_{*}({\bf{\hat{x}}})=\liminf_{\vbox{\Let@\restore@math@cr\default@tag\halign{\hfil$\m@th\scriptstyle#$&$\m@th\scriptstyle{}#$\cr{\bf{x}}&\to{\bf{\hat{x}}}\\ {\bf{x}},{\bf{\hat{x}}}&\in\mathbb{X}\crcr}}}\psi({\bf{x}})). (2.17)
Definition 2.1 (Viscosity solution of (2.11)).

(i) A locally bounded function v(Ω)v\in\mathcal{B}(\Omega^{\scalebox{0.5}{$\infty$}}) is a viscosity supersolution of (2.11) in Ω\Omega^{\scalebox{0.5}{$\infty$}} if and only if for all test function ϕ(Ω)𝒞(Ω)\phi\in\mathcal{B}(\Omega^{\scalebox{0.5}{$\infty$}})\cap\mathcal{C}^{\infty}(\Omega^{\scalebox{0.5}{$\infty$}}) and for all points 𝐱^Ω{\bf{\hat{x}}}\in\Omega^{\scalebox{0.5}{$\infty$}} such that (vϕ)(v_{*}-\phi) has a global minimum on Ω\Omega^{\scalebox{0.5}{$\infty$}} at 𝐱^{\bf{\hat{x}}} and v(𝐱^)=ϕ(𝐱^)v_{*}({\bf{\hat{x}}})=\phi({\bf{\hat{x}}}), we have

F(𝐱^,ϕ(𝐱^),Dϕ(𝐱^),D2ϕ(𝐱^),𝒥ϕ(𝐱^))0.\displaystyle F^{*}\left({\bf{\hat{x}}},\phi({\bf{\hat{x}}}),D\phi({\bf{\hat{x}}}),D^{2}\phi({\bf{\hat{x}}}),\mathcal{J}\phi({\bf{\hat{x}}})\right)\geq 0. (2.18)

Viscosity subsolutions are defined symmetrically.

(ii) A locally bounded function v(Ω)v\in\mathcal{B}(\Omega^{\scalebox{0.5}{$\infty$}}) is a viscosity solution of (2.11) in ΩinΩτ0in\Omega_{\scalebox{0.7}{\text{in}}}\cup\Omega_{\tau_{0}}^{\scalebox{0.7}{\text{in}}} if vv is a viscosity subsolution and a viscosity supersolution in ΩinΩτ0in\Omega_{\scalebox{0.7}{\text{in}}}\cup\Omega_{\tau_{0}}^{\scalebox{0.7}{\text{in}}}.

In the context of numerical solutions to degenerate parabolic equations in finance, the convergence to viscosity solutions is ensured when the scheme is stable, consistent, and monotone, provided that a comparison result holds [43, 8, 7, 9, 5, 6, 4]. Specifically, stability, consistency and monotonicity facilitate the identification of u.s.c. subsolutions and l.s.c. supersolutions through the respective use of lim sup\limsup and lim inf\liminf of the numerical solutions as the discretization parameter approaches zero.

Suppose v¯()\underline{v}(\cdot) and v¯()\overline{v}(\cdot) respectively denote such subsolution and supersolution within a region, referred to as 𝒮\mathcal{S}, where 𝒮=𝕊×[0,T]\mathcal{S}=\mathbb{S}\times[0,T] for an open set 𝕊2\mathbb{S}\subseteq\mathbb{R}^{2}. By construction using lim sup\limsup for v¯()\underline{v}(\cdot) and lim inf\liminf for v¯()\overline{v}(\cdot), and the nature of lim suplim inf\limsup\geq\liminf, we have v¯(𝐱)v¯(𝐱)\underline{v}({\mathbf{x}})\geq\overline{v}({\mathbf{x}}) for all 𝐱𝒮{\mathbf{x}}\in\mathcal{S}. If a comparison result holds in 𝒮\mathcal{S}, it means that v¯(𝐱)v¯(𝐱)\underline{v}({\mathbf{x}})\leq\overline{v}({\mathbf{x}}) for all 𝐱𝒮{\mathbf{x}}\in\mathcal{S}. Therefore, v(𝐱)=v¯(𝐱)=v¯(𝐱)v({\mathbf{x}})=\underline{v}({\mathbf{x}})=\overline{v}({\mathbf{x}}) is the unique, continuous viscosity solution within the region 𝒮\mathcal{S}.

It is established that the full-domain variational inequality defined in (2.4) satisfies a comparison result in [64, 59, 3, 40]. Similarly, the localized variational inequality (2.11) also satisfies a comparison result, as detailed in the lemma below. We recall Ωout\Omega^{\scalebox{0.5}{$\infty$}}_{\scalebox{0.7}{\text{out}}} defined in (2.1).

Lemma 2.2.

Suppose that a locally bounded and u.s.c. function v¯:Ω\underline{v}:\Omega^{\scalebox{0.5}{$\infty$}}\to\mathbb{R} and a locally bounded l.s.c. function v¯:Ω\overline{v}:\Omega^{\scalebox{0.5}{$\infty$}}\to\mathbb{R} are, respectively, a viscosity subsolution and supersolution of (2.11) in the sense of Definition 2.1. If v¯(𝐱)v¯(𝐱)\underline{v}({\bf{x}})\leq\overline{v}({\bf{x}}) for all 𝐱Ωτ0{\bf{x}}\in\Omega^{\scalebox{0.5}{$\infty$}}_{\tau_{0}}, and similarly for all 𝐱Ωout{\bf{x}}\in\Omega^{\scalebox{0.5}{$\infty$}}_{\scalebox{0.7}{\text{out}}}, then it follows that v¯(𝐱)v¯(𝐱)\underline{v}({\bf{x}})\leq\overline{v}({\bf{x}}) for all 𝐱Ωin{\bf{x}}\in\Omega_{\scalebox{0.7}{\text{in}}}.

The proof of the comparison result follows a similar approach to that in [51], and is therefore omitted here for brevity.

3 An associated Green’s function

Central to our numerical scheme for the variational inequality (2.11) is the Green’s function of an associated PIDE in the variables (x,y)(x,y), analyzed independently of the constraints dictated by the variational inequality. To facilitate this analysis, for a fixed Δτ>0\Delta\tau>0, let τ0\tau^{\prime}\geq 0 be such that τ+Δτ<T\tau^{\prime}+\Delta\tau<T, and proceed to consider the 2-D PIDE:

u/τu𝒥u=0,(x,y,τ)2×(τ,τ+Δτ],\partial u/\partial\tau-\mathcal{L}u-\mathcal{J}u=0,\qquad(x,y,\tau)\in\mathbb{R}^{2}\times(\tau^{\prime},\tau^{\prime}+\Delta\tau], (3.1)

subject to the time-τ\tau^{\prime} initial condition specified by a generic function u~(,τ)\tilde{u}(\cdot,\tau^{\prime}). We denote by the function g(,Δτ)g(x,x,y,y,Δτ)g(\cdot,\Delta\tau)\equiv g(x,x^{\prime},y,y^{\prime},\Delta\tau) the Green’s function associated with the PIDE (3.1). The stochastic system described in (2.1) exhibits spatial homogeneity, which leads to the spatial translation-invariance of both the differential operator ()\mathcal{L}(\cdot) and the jump operator 𝒥()\mathcal{J}(\cdot). As a result, the Green’s function g(x,x,y,y,Δτ)g(x,x^{\prime},y,y^{\prime},\Delta\tau) depends only on the relative displacement between starting and ending spatial points, thereby simplifying to g(xx,yy,Δτ)g(x-x^{\prime},y-y^{\prime},\Delta\tau).

3.1 An infinite series representation of 𝒈()\boldsymbol{g\left(\cdot\right)}

We let G(ηx,ηy,Δτ)G(\eta_{x},\eta_{y},\Delta\tau) be the Fourier transform of g(x,y,Δτ)g(x,y,\Delta\tau) with respect to the spatial variables, i.e.

{𝔉|g(x,y,)|(ηx,ηy)=G(ηx,ηy,)=2ei(ηxx+ηyy)g(x,y,)𝑑x𝑑y,𝔉1|G(ηx,ηy,)|(x,y)=g(x,y,)=1(2π)22ei(ηxx+ηyy)G(ηx,ηy,)𝑑ηx𝑑ηy.\left\{\begin{array}[]{lll}\mathfrak{F}|g(x,y,\cdot)|(\eta_{x},\eta_{y})&=G(\eta_{x},\eta_{y},\cdot)&=\displaystyle\iint_{\mathbb{R}^{2}}e^{-i(\eta_{x}x+\eta_{y}y)}g(x,y,\cdot)dxdy,\\ \mathfrak{F}^{-1}|G(\eta_{x},\eta_{y},\cdot)|(x,y)&=g(x,y,\cdot)&=\frac{1}{(2\pi)^{2}}\displaystyle\iint_{\mathbb{R}^{2}}e^{i(\eta_{x}x+\eta_{y}y)}G(\eta_{x},\eta_{y},\cdot)d\eta_{x}d\eta_{y}.\end{array}\right. (3.2)

A closed-form expression for G(ηx,ηy,)G(\eta_{x},\eta_{y},\cdot) is given as follows [62]

G(ηx,ηy,)=exp(Ψ(ηx,ηy)Δτ), where\displaystyle G(\eta_{x},\eta_{y},\cdot)=\exp\big{(}\Psi\big{(}\eta_{x},\eta_{y}\big{)}\Delta\tau\big{)},\text{ where } (3.3)
Ψ(ηx,ηy)=σx2ηx22σy2ηy22+(rλκxσx22)iηx+(rλκyσy22)iηyρσxσyηxηy(r+λ)+λΓ(ηx,ηy).\displaystyle\Psi(\eta_{x},\eta_{y})=-\frac{\sigma_{\scalebox{0.6}{$x$}}^{2}\eta_{x}^{2}}{2}-\frac{\sigma_{\scalebox{0.6}{$y$}}^{2}\eta_{y}^{2}}{2}\!+\!\big{(}r-\lambda\kappa_{x}-\frac{\sigma_{\scalebox{0.6}{$x$}}^{2}}{2}\big{)}i\eta_{x}\!+\!\big{(}r-\lambda\kappa_{y}\!-\!\frac{\sigma_{\scalebox{0.6}{$y$}}^{2}}{2}\big{)}i\eta_{y}-\rho\sigma_{\scalebox{0.6}{$x$}}\sigma_{\scalebox{0.6}{$y$}}\eta_{x}\eta_{y}-(r+\lambda)+\lambda\Gamma(\eta_{x},\eta_{y}).

Here, Γ(ηx,ηy)=2f(sx,sy)ei(ηxsx+ηysy)𝑑sx𝑑sy\Gamma(\eta_{x},\eta_{y})=\iint_{\mathbb{R}^{2}}f(s_{x},s_{y})~{}e^{i(\eta_{x}s_{x}+\eta_{y}s_{y})}~{}ds_{x}ds_{y}, where f(sx,sy)f(s_{x},s_{y}) is the joint probability density function of random variables ξx\xi_{x} and ξy\xi_{y} given in (2.2).

For convenience, we define 𝒛=[x,y]{\boldsymbol{z}}=[x,y], 𝜼=[ηx,ηy]{\boldsymbol{\eta}}=[\eta_{x},\eta_{y}] and 𝒔=[sx,sy]{\boldsymbol{s}}=[s_{x},s_{y}] are the column vectors, 𝒛𝜼{\boldsymbol{z}}\cdot{\boldsymbol{\eta}} is the dot product of vectors 𝒛{\boldsymbol{z}} and 𝜼{\boldsymbol{\eta}}, 𝒛{\boldsymbol{z}}^{\top} is the transpose of a vector 𝒛{\boldsymbol{z}}, and 𝑪~\tilde{\boldsymbol{C}} is the covariance matrix of xx and yy. The covariance matrix 𝑪~\tilde{\boldsymbol{C}} and its inverse 𝑪~1\tilde{\boldsymbol{C}}^{-1} are respectively given as follows

𝑪~=[σx2ρσxσyρσxσyσy2],𝑪~1=1det(𝑪~)[σy2ρσxσyρσxσyσx2],where det(𝑪~)=σx2σy2(1ρ2).\tilde{\boldsymbol{C}}=\begin{bmatrix}\sigma_{\scalebox{0.6}{$x$}}^{2}&\rho\sigma_{\scalebox{0.6}{$x$}}\sigma_{\scalebox{0.6}{$y$}}\\ \rho\sigma_{\scalebox{0.6}{$x$}}\sigma_{\scalebox{0.6}{$y$}}&\sigma_{\scalebox{0.6}{$y$}}^{2}\end{bmatrix},\quad\tilde{\boldsymbol{C}}^{-1}=\frac{1}{\det(\tilde{\boldsymbol{C}})}\begin{bmatrix}\sigma_{\scalebox{0.6}{$y$}}^{2}&-\rho\sigma_{\scalebox{0.6}{$x$}}\sigma_{\scalebox{0.6}{$y$}}\\ -\rho\sigma_{\scalebox{0.6}{$x$}}\sigma_{\scalebox{0.6}{$y$}}&\sigma_{\scalebox{0.6}{$x$}}^{2}\end{bmatrix},\quad\text{where }\det(\tilde{\boldsymbol{C}})=\sigma_{\scalebox{0.6}{$x$}}^{2}\sigma_{\scalebox{0.6}{$y$}}^{2}(1-\rho^{2}). (3.4)

For subsequent use, we express the function G(ηx,ηy,)G(\eta_{x},\eta_{y},\cdot) given in (3.3) in a compact matrix-vector form as follows

G(𝜼,)=exp(Ψ(𝜼)Δτ), with Ψ(𝜼)=(12𝜼𝑪~𝜼+i𝜷~𝜼(r+λ)+λΓ(𝜼)),\displaystyle G({\boldsymbol{\eta}},\cdot)=\exp(\Psi({\boldsymbol{\eta}})\Delta\tau),\quad\text{ with }{\Psi({\boldsymbol{\eta}})=\bigg{(}-\frac{1}{2}{\boldsymbol{\eta}}^{\top}\tilde{\boldsymbol{C}}{\boldsymbol{\eta}}+i\tilde{{\boldsymbol{\beta}}}\cdot{\boldsymbol{\eta}}-(r+\lambda)+\lambda\Gamma({\boldsymbol{\eta}})\bigg{)}}, (3.5)

where Γ(𝜼)=2f(𝒔)ei𝒔𝜼𝑑𝒔\Gamma({\boldsymbol{\eta}})=\int_{\mathbb{R}^{2}}f({\boldsymbol{s}})~{}e^{i{\boldsymbol{s}}\cdot{\boldsymbol{\eta}}}~{}d{\boldsymbol{s}}, and 𝜷~=[(rλκxσx22),(rλκyσy22)]\tilde{{\boldsymbol{\beta}}}=\left[(r-\lambda\kappa_{x}-\frac{\sigma_{\scalebox{0.6}{$x$}}^{2}}{2}),~{}(r-\lambda\kappa_{y}-\frac{\sigma_{\scalebox{0.6}{$y$}}^{2}}{2})\right] is the column vector. For brevity, we use 𝜼2()𝑑𝜼\int_{{\boldsymbol{\eta}}\in\mathbb{R}^{2}}(\cdot)~{}d{\boldsymbol{\eta}} to represent the 2-D integral 2()𝑑ηx𝑑ηy\iint_{\mathbb{R}^{2}}(\cdot)~{}d\eta_{x}d\eta_{y}.

Lemma 3.1.

Let g(𝐳,)g({\boldsymbol{z}},\cdot) and G(𝛈,)G({\boldsymbol{\eta}},\cdot) be a Fourier transform pair defined in (3.2) and G(𝛈,)G({\boldsymbol{\eta}},\cdot) is given in (3.5). Then, the Green’s function g(𝐳,Δτ)g({\boldsymbol{z}},\Delta\tau) can be expressed as

g(𝒛,Δτ)\displaystyle g({\boldsymbol{z}},\Delta\tau) =12πdet(𝑪)k=0gk(𝒛,Δτ), where\displaystyle=\frac{1}{2\pi\sqrt{\det(\boldsymbol{C})}}\sum_{k=0}^{\infty}g_{k}({\boldsymbol{z}},\Delta\tau),\text{ where } (3.6)
gk(𝒛,Δτ)\displaystyle g_{k}({\boldsymbol{z}},\Delta\tau) =(λΔτ)kk!22exp(θ(𝜷+𝒛+𝑺k)𝑪1(𝜷+𝒛+𝑺k)2)(=1kf(𝒔))𝑑𝒔1𝑑𝒔k.\displaystyle=\frac{\left(\lambda\Delta\tau\right)^{k}}{k!}\int_{\mathbb{R}^{2}}\ldots\int_{\mathbb{R}^{2}}\exp\left(\theta-\frac{\left({\boldsymbol{\beta}}+{\boldsymbol{z}}+{\boldsymbol{S}}_{k}\right)^{\top}\boldsymbol{C}^{-1}({\boldsymbol{\beta}}+{\boldsymbol{z}}+{\boldsymbol{S}}_{k})}{2}\right)\left(\prod_{\ell=1}^{k}f({\boldsymbol{s}}_{\ell})\right)d{\boldsymbol{s}}_{1}\ldots d{\boldsymbol{s}}_{k}.

Here, 𝐒k==1k𝐬==1k[sx,sy]{\boldsymbol{S}}_{k}=\sum_{\ell=1}^{k}{\boldsymbol{s}}_{\ell}=\sum_{\ell=1}^{k}[s_{x},s_{y}]_{\ell}, with 𝐒0=[0,0]{\boldsymbol{S}}_{0}=[0,0].

A proof of Lemma 3.1 is provided in Appendix B. We emphasize that the infinite series representation in Lemma 3.1 does not rely on the specific form of the joint probability density function f()f(\cdot), and thus it applies broadly to general two-asset jump-diffusion model. In the specific case of the two-asset Merton jump-diffusion model, where the joint probability density function f()f(\cdot) is given by (2.2), the terms of the series can be explicitly evaluated, as detailed in the corollary below.

Corollary 3.1.

Let 𝛏=[ξ1,ξ2]{\boldsymbol{\xi}}=[\xi_{1},\xi_{2}] and 𝛍~=[μ~1,μ~2]{\boldsymbol{\widetilde{\mu}}}=[{\widetilde{\mu}}_{1},{\widetilde{\mu}}_{2}]. For the case ln(𝛏)Normal(𝛍~,𝐂)\ln({\boldsymbol{\xi}})\sim\text{Normal}\left({\boldsymbol{\widetilde{\mu}}},\boldsymbol{C}_{\mathcal{M}}\right) whose joint PDF is given by (2.2), the infinite series representation of the conditional density g(𝐳,Δτ)g({\boldsymbol{z}},\Delta\tau) given in Lemma 3.1 is evaluated to g(𝐳,Δτ)=g0(𝐳,Δτ)+k=1gk(𝐳,Δτ)\displaystyle g({\boldsymbol{z}},\Delta\tau)=g_{0}({\boldsymbol{z}},\Delta\tau)+\sum_{k=1}^{\infty}g_{k}({\boldsymbol{z}},\Delta\tau), where

g0()=exp(θ(𝜷+𝒛)𝑪1(𝜷+𝒛)2)2πdet(𝑪), and gk()=(λΔτ)kk!exp(θ(𝜷+𝒛+k𝝁~)(𝑪+k𝑪)1(𝜷+𝒛+k𝝁~)2)2πdet(𝑪+k𝑪),\displaystyle g_{0}(\cdot)=\frac{\exp\big{(}\theta-\frac{\left({\boldsymbol{\beta}}+{\boldsymbol{z}}\right)^{\top}\boldsymbol{C}^{-1}({\boldsymbol{\beta}}+{\boldsymbol{z}})}{2}\big{)}}{2\pi\sqrt{\det(\boldsymbol{C})}},\text{ and }~{}g_{k}(\cdot)=\frac{\left(\lambda\Delta\tau\right)^{k}}{k!}\,\frac{\exp\big{(}\theta-\frac{\left({\boldsymbol{\beta}}+{\boldsymbol{z}}+k{\boldsymbol{\widetilde{\mu}}}\right)^{\top}(\boldsymbol{C}+k\boldsymbol{C}_{\mathcal{M}})^{-1}\big{(}{\boldsymbol{\beta}}+{\boldsymbol{z}}+k{\boldsymbol{\widetilde{\mu}}}\big{)}}{2}\big{)}}{2\pi\sqrt{\det(\boldsymbol{C}+k\boldsymbol{C}_{\mathcal{M}})}},

with 𝐂=Δτ𝐂~\boldsymbol{C}=\Delta\tau\,\tilde{\boldsymbol{C}}, 𝛃=Δτ𝛃~{\boldsymbol{\beta}}=\Delta\tau\,\tilde{{\boldsymbol{\beta}}}, and θ=(r+λ)Δτ\theta=-(r+\lambda)\Delta\tau.

A proof of Corollary 3.1 is given in Appendix C.

3.2 Extension to the 2-D Kou model

In the 2-D Merton model of Corollary 3.1, [log(ξx),log(ξy)][\log(\xi_{x}),\log(\xi_{y})] are assumed to follow a bivariate normal distribution. Consequently, the sum of kk i.i.d. random vectors, each following this bivariate normal distribution, is also bivariate normal. Convolution with the 2-D diffusion kernel exp(θ()𝑪1()2)\exp\left(\theta-\frac{(\cdots)^{\top}\boldsymbol{C}^{-1}(\cdots)}{2}\right), which is itself Gaussian, then reduces to a straightforward Gaussian–Gaussian double integral. Summing over all possible numbers of jumps according to the Poisson distribution gives an infinite series of tractable Gaussian double integrals, thus leading to the closed‐form solution presented in Corollary 3.1.

However, extending this approach to the 2-D Kou model is much more challenging—even in the simplest case where log(ξx)\log(\xi_{x}) and log(ξy)\log(\xi_{y}) are independent. In this setting, the joint PDF of log(ξx)\log(\xi_{x}) and log(ξy)\log(\xi_{y}) is simply the product of two 1-D Kou PDFs, resulting in a four‐region, piecewise‐exponential density on 2\mathbb{R}^{2}. Summing kk i.i.d. random vectors, each following this independent 2-D Kou jump distribution, leads to multi‐region double integrals, since each dimension can exhibit positive or negative jumps. As kk grows, the number of piecewise‐exponential components increases combinatorially. Moreover, these sums produce factors that often combine polynomial or gamma‐type terms with exponentials in two variables.

When convolved with the 2-D Gaussian diffusion kernel, the resulting integrals become exponential–Gaussian double integrals, which generally do not reduce to standard special functions (unlike the 1-D case, which sometimes admits the Hh()\mathrm{Hh}(\cdot) family from [1], as shown in [48]). Although one can still construct a series expansion over the Poisson‐distributed jumps, the individual terms would require intricate generalized special functions or numerous piecewise integrals, making the final expression far more cumbersome and less recognizable as a “closed‐form” solution.

A possible way forward is inspired by [28], where a single-hidden-layer neural network (NN) with Gaussian activation functions is used to approximate an unknown transition density or Green’s function via a closed-form expression of its Fourier transform. However, this approach can lead to potential loss of nonnegativity and requires retraining the neural network for different Δτ\Delta\tau.

For the general 2-D Kou model, an alternative approach is to instead approximate the joint PDF of log(ξx)\log(\xi_{x}) and log(ξy)\log(\xi_{y}) using a NN akin to that in [28], where Gaussian activation functions are employed. Once trained, the joint PDF is represented as a finite sum of 2-D Gaussians, effectively forming a Gaussian mixture model. Notably, the nonnegativity of this approximation can also be enforced, aligning with the monotonicity requirements of numerical schemes.222While we focus on the 2-D Kou model, this approach can, in principle, be applied to other 2-D jump-diffusion dynamics where the joint jump density can be effectively approximated by a Gaussian mixture.

This formulation transforms the convolution with the 2-D diffusion kernel into a tractable Gaussian–Gaussian double integral, allowing the same efficient techniques developed in this paper for the 2-D Merton model to be applied. Notably, because the NN does not depend on Δτ\Delta\tau, it can be trained only once and reused for all Δτ\Delta\tau, ensuring computational efficiency by eliminating the need for retraining at different time step sizes. We plan to explore this approach in future work in the context of fully 2-D asset allocation.

3.3 Truncated series and error

For subsequent analysis, we study the truncation error in the infinite series representation of the Green’s function g()g(\cdot) as given in (3.6). Notably, this truncation error bound is derived independently of the specific form of the joint probability density function f()f(\cdot), ensuring its applicability to a broad range of two-asset jump-diffusion models.

Specifically, for a fixed 𝒛=[x,y]2{\boldsymbol{z}}=[x,y]\in\mathbb{R}^{2}, we denote by g(𝒛,Δτ,K)g({\boldsymbol{z}},\Delta\tau,K) an approximation of the Green’s function g(𝒛,Δτ)g({\boldsymbol{z}},\Delta\tau) using the first (K+1)(K+1) terms from the series (3.6). As KK approaches \infty, the approximation g(𝒛,Δτ,K)g({\boldsymbol{z}},\Delta\tau,K) becomes exact with no loss of information. However, with a finite KK, the approximation incurs an error due to the truncation of the series. This truncation error can be bounded as follows:

|g(𝒛,Δτ)g(𝒛,Δτ,K)|\displaystyle|g({\boldsymbol{z}},\Delta\tau)-g({\boldsymbol{z}},\Delta\tau,K)| =|1(2π)2k=K+1(λΔτ)kk!2e12𝜼𝐂𝜼+i(𝜷+𝒛)𝜼+θ(Γ(𝜼))k𝑑𝜼|\displaystyle=\left|\frac{1}{(2\pi)^{2}}\sum_{k=K+1}^{\infty}\frac{\left(\lambda\Delta\tau\right)^{k}}{k!}\int_{\mathbb{R}^{2}}e^{-\frac{1}{2}{\boldsymbol{\eta}}^{\top}\mathbf{C}{\boldsymbol{\eta}}+i\left({\boldsymbol{\beta}}+{\boldsymbol{z}}\right)\cdot{\boldsymbol{\eta}}+\theta}\,\left(\Gamma\left({\boldsymbol{\eta}}\right)\right)^{k}~{}d{\boldsymbol{\eta}}\right|
1(2π)2k=K+1(λΔτ)kk!2|e12𝜼𝐂𝜼+i(𝜷+𝒛)𝜼+θ||(Γ(𝜼))k|𝑑𝜼\displaystyle\leq\frac{1}{(2\pi)^{2}}\sum_{k=K+1}^{\infty}\frac{\left(\lambda\Delta\tau\right)^{k}}{k!}\int_{\mathbb{R}^{2}}\left|e^{-\frac{1}{2}{\boldsymbol{\eta}}^{\top}\mathbf{C}{\boldsymbol{\eta}}+i\left({\boldsymbol{\beta}}+{\boldsymbol{z}}\right)\cdot{\boldsymbol{\eta}}+\theta}\right|\,\left|\left(\Gamma\left({\boldsymbol{\eta}}\right)\right)^{k}\right|~{}d{\boldsymbol{\eta}}
(i)1(2π)2k=K+1(λΔτ)kk!2e12𝜼𝐂𝜼+θ𝑑𝜼\displaystyle~{}{\buildrel(\text{i})\over{\leq}}~{}\frac{1}{(2\pi)^{2}}\sum_{k=K+1}^{\infty}\frac{\left(\lambda\Delta\tau\right)^{k}}{k!}\int_{\mathbb{R}^{2}}e^{-\frac{1}{2}{\boldsymbol{\eta}}^{\top}\mathbf{C}{\boldsymbol{\eta}}+\theta}~{}d{\boldsymbol{\eta}}
=k=K+1exp(θ)(λΔτ)k(k)!2πdet(𝑪)(ii)e(r+λ)Δτ2πdet(𝑪)(eλΔτ)K+1(K+1)K+1.\displaystyle=\sum_{k=K+1}^{\infty}\frac{\exp(\theta)(\lambda\Delta\tau)^{k}}{{(k)}!2\pi\sqrt{\det(\boldsymbol{C})}}~{}{\buildrel(\text{ii})\over{\leq}}~{}\frac{e^{-(r+\lambda)\Delta\tau}}{2\pi\sqrt{\det(\boldsymbol{C})}}\,\frac{(e\lambda\Delta\tau)^{K+1}}{(K+1)^{K+1}}. (3.7)

Here, in (i), we apply the following fact: if ω\omega denotes a complex number, then the modulus of the complex exponential is equivalent to the exponential of the real part of ω\omega, i.e |eω|=exp((ω))\left|e^{\omega}\right|=\exp(\Re(\omega)) and |(Γ(𝜼))K+1|(2f(𝒔)|ei𝒔𝜼|𝑑𝒔)K+11\left|\left(\Gamma\left({\boldsymbol{\eta}}\right)\right)^{K+1}\right|\leq\left(\int_{\mathbb{R}^{2}}f({\boldsymbol{s}})~{}\left|e^{i{\boldsymbol{s}}\cdot{\boldsymbol{\eta}}}\right|~{}d{\boldsymbol{s}}\right)^{K+1}\leq 1, (ii) is due to the Chernoff-Hoeffding bound for the tails of a Poisson distribution Poi(λΔτ)\mathrm{Poi}(\lambda\Delta\tau), which reads as (Poi(λΔτ)k)eλΔτ(eλΔτ)kkk\mathbb{P}\left(\mathrm{Poi}(\lambda\Delta\tau)\geq k\right)\leq\frac{e^{-\lambda\Delta\tau}(e\lambda\Delta\tau)^{k}}{k^{k}}, for k>λΔτk>\lambda\Delta\tau [56].

Therefore, from (3.7), as KK\rightarrow\infty, we have (eλΔτ)K+1(K+1)K+10\frac{\left(e\lambda\Delta\tau\right)^{K+1}}{(K+1)^{K+1}}\rightarrow 0, resulting in no loss of information. For a given ϵ>0\epsilon>0, we can choose KK such that the error |g(𝒛,Δτ)g(𝒛,Δτ,K)|<ϵ\left|g({\boldsymbol{z}},\Delta\tau)-g({\boldsymbol{z}},\Delta\tau,K)\right|<\epsilon. This can be achieved by enforcing

(eλΔτ)K+1(K+1)K+1ϵ2πσxσyΔτ1ρ2e(r+λ)Δτ.\displaystyle\frac{\left(e\lambda\Delta\tau\right)^{K+1}}{(K+1)^{K+1}}\leq\frac{\epsilon~{}{2\pi\sigma_{\scalebox{0.6}{$x$}}\sigma_{\scalebox{0.6}{$y$}}\Delta\tau\sqrt{1-\rho^{2}}}}{e^{-(r+\lambda)\Delta\tau}}. (3.8)

It is straightforward to see that, if ϵ=𝒪((Δτ)2)\epsilon=\mathcal{O}((\Delta\tau)^{2}), then K=𝒪(ln(1/Δτ))K=\mathcal{O}(\ln(1/\Delta\tau)), as Δτ0\Delta\tau\rightarrow 0. In summary, we can attain

0g(𝒛,Δτ)g(𝒛,Δτ,K)=𝒪((Δτ)2), if K=𝒪(ln(1/Δτ)).0\leq g({\boldsymbol{z}},\Delta\tau)-g({\boldsymbol{z}},\Delta\tau,K)=\mathcal{O}((\Delta\tau)^{2}),\quad\text{ if $K=\mathcal{O}(\ln(1/\Delta\tau))$}. (3.9)

4 Numerical methods

A common approach to handling the constraint posed by variational inequalities is to explicitly determine the optimal decision between immediate exercise and holding the contract for potential future exercise [66, 33, 47]. We define {τm}\{\tau_{m}\}, m=0,,Mm=0,\ldots,M, as an equally spaced partition of [0,T][0,T], where τm=mΔτ\tau_{m}=m\Delta\tau and Δτ=T/M\Delta\tau=T/M. We denote by u()u(x,y,τ)u(\cdot)\equiv u(x,y,\tau) the continuation value of the option. For a fixed τm+1<T\tau_{m+1}<T, the solution to the variational inequality (2.11) at (x,y,τm+1)Ωin(x,y,\tau_{m+1})\in\Omega_{\scalebox{0.7}{\text{in}}}, can be approximated by explicitly handling the constraint as follows

v(x,y,τm+1)max{u(x,y,τm+1),v^(x,y)},(x,y)𝔻in.\displaystyle v(x,y,\tau_{m+1})\simeq\max\{u(x,y,\tau_{m+1}),\hat{v}(x,y)\},\qquad(x,y)\in\mathbb{D}_{\scalebox{0.7}{\text{in}}}. (4.1)

Here, the continuation value u()u(\cdot) is given by the solution of the 2-D PIDE of the form (3.1), i.e.

u/τu𝒥u=0,(x,y,τ)2×(τm,τm+1],\partial u/\partial\tau-\mathcal{L}u-\mathcal{J}u=0,\qquad(x,y,\tau)\in\mathbb{R}^{2}\times(\tau_{m},\tau_{m+1}], (4.2)

subject to the initial condition at time τm\tau_{m} given by a function v~(x,y,τm)\tilde{v}(x,y,\tau_{m}), where

v~(x,y,τm)={v(x,y,τm) satisfies (2.9a(x,y)𝔻in,vout(x,y,τm) satisfies (2.9b(x,y)𝔻out.\tilde{v}(x,y,\tau_{m})=\left\{\begin{array}[]{lllll}v(x,y,\tau_{m})&\text{ satisfies \eqref{eq:VI_log} }&\quad(x,y)\in\mathbb{D}_{\scalebox{0.7}{\text{in}}},\\ v_{\scalebox{0.7}{\text{out}}}(x,y,\tau_{m})&\text{ satisfies \eqref{eq:inf_boundary_log} }&\quad(x,y)\in\mathbb{D}_{\scalebox{0.7}{\text{out}}}^{\scalebox{0.6}{$\infty$}}.\end{array}\right. (4.3)

The solution u(x,y,τm+1)u(x,y,\tau_{m+1}) for (x,y)𝔻in(x,y)\in\mathbb{D}_{\scalebox{0.7}{\text{in}}} can be represented as the convolution integral of the Green’s function g(,Δτ)g(\cdot,\Delta\tau) and the initial condition v~(,τm)\tilde{v}(\cdot,\tau_{m}) as follows [34, 29]

u(x,y,τm+1)=2g(xx,yy,Δτ)v~(x,y,τm)𝑑x𝑑y,(x,y)𝔻in.u(x,y,\tau_{m+1})=\iint_{\mathbb{R}^{2}}g\left(x-x^{\prime},y-y^{\prime},\Delta\tau\right)\tilde{v}(x^{\prime},y^{\prime},\tau_{m})dx^{\prime}dy^{\prime},\qquad(x,y)\in\mathbb{D}_{\scalebox{0.7}{\text{in}}}. (4.4)

The solution u(x,y,τm+1)u(x,y,\tau_{m+1}) for (x,y)𝔻out(x,y)\in\mathbb{D}_{\scalebox{0.7}{\text{out}}}^{\scalebox{0.6}{$\infty$}} is given by the boundary condition (2.9b). In the analysis below, we focus on the convolution integral (4.4).

4.1 Computational domain

For computational purposes, we truncate the infinite region of integration of (4.4) to the finite region 𝔻\mathbb{D}^{\dagger} defined as follows

𝔻[xmin,xmax]×[ymin,ymax].\mathbb{D}^{\dagger}\equiv[x_{\min}^{\dagger},x_{\max}^{\dagger}]\times[y_{\min}^{\dagger},y_{\max}^{\dagger}]. (4.5)

Here, where, for z{x,y}z\in\left\{x,y\right\}, zmin<zmin<0<zmax<zmaxz^{\dagger}_{\min}<z_{\min}<0<z_{\max}<z^{\dagger}_{\max} and |zmin||z^{\dagger}_{\min}| and zmaxz^{\dagger}_{\max} are sufficiently large. This results in the approximation for the continuation value

u(x,y,τm+1)𝔻g(xx,yy,Δτ)v~(x,y,τm)𝑑x𝑑y,(x,y)𝔻in.u(x,y,\tau_{m+1})\simeq\iint_{\mathbb{D}^{\dagger}}g\left(x-x^{\prime},y-y^{\prime},\Delta\tau\right)\tilde{v}(x^{\prime},y^{\prime},\tau_{m})dx^{\prime}dy^{\prime},\qquad(x,y)\in\mathbb{D}_{\scalebox{0.7}{\text{in}}}. (4.6)

We note that, in approximating the above truncated 2-D convolution integral (4.6) over the finite integration domain 𝔻\mathbb{D}^{\dagger}, it is also necessary to obtain values of the Green’s function g(,,Δτ)g(\cdot,\cdot,\Delta\tau) at spatial points (xx,yy)(x-x^{\prime},y-y^{\prime}) which fall outside 𝔻\mathbb{D}^{\dagger}. More specifically, it is straightforward to see that, with (x,y)𝔻(x,y)\in\mathbb{D} and (x,y)𝔻(x^{\prime},y^{\prime})\in\mathbb{D}^{\dagger}, the point (xx,yy)𝔻𝔻(x-x^{\prime},y-y^{\prime})\in\mathbb{D}^{\ddagger}\supset\mathbb{D}^{\dagger} defined as follows

𝔻=[xmin,xmax]×[ymin,ymax],zmin=zminzmax,zmax=zmaxzmin, for z{x,y}.\mathbb{D}^{\ddagger}=[x_{\scalebox{0.55}{$\min$}}^{\ddagger},x_{\scalebox{0.55}{$\max$}}^{\ddagger}]\times[y_{\scalebox{0.55}{$\min$}}^{\ddagger},y_{\scalebox{0.55}{$\max$}}^{\ddagger}],\qquad z_{\scalebox{0.55}{$\min$}}^{\ddagger}=z_{\scalebox{0.55}{$\min$}}-z_{\scalebox{0.55}{$\max$}}^{\dagger},~{}z_{\scalebox{0.55}{$\max$}}^{\ddagger}=z_{\scalebox{0.55}{$\max$}}-z_{\scalebox{0.55}{$\min$}}^{\dagger},~{}\text{ for }z\in\{x,y\}. (4.7)

We emphasize that computing the solutions for (x,y)𝔻out=𝔻𝔻in(x,y)\in\mathbb{D}_{\scalebox{0.7}{\text{out}}}^{\dagger}=\mathbb{D}^{\dagger}\setminus\mathbb{D}_{\scalebox{0.7}{\text{in}}} is not necessary, nor are they required for our convergence analysis. The primary purpose of 𝔻out\mathbb{D}_{\scalebox{0.7}{\text{out}}}^{\dagger} is to ensure the well-definedness of the Green’s function g()g(\cdot) used in the convolution integral (4.6).

We now have a finite computational domain, denoted by Ω\Omega, and its sub-domains defined as follows

Ω\displaystyle\Omega =[xmin,xmax]×[ymin,ymax]×[0,T]𝔻×[0,T],\displaystyle=[x_{\min}^{\dagger},x_{\max}^{\dagger}]\times[y_{\min}^{\dagger},y_{\max}^{\dagger}]\times[0,T]\equiv\mathbb{D}^{\dagger}\times[0,T],
Ωτ0\displaystyle\Omega_{\tau_{0}} =[xmin,xmax]×[ymin,ymax]×{0}𝔻×{0},\displaystyle=[x_{\min}^{\dagger},x_{\max}^{\dagger}]\times[y_{\min}^{\dagger},y_{\max}^{\dagger}]\times\{0\}\equiv\mathbb{D}^{\dagger}\times\{0\},
Ωin\displaystyle\Omega_{\scalebox{0.7}{\text{in}}} =(xmin,xmax)×(ymin,ymax)×(0,T]𝔻in×(0,T],\displaystyle=(x_{\scalebox{0.55}{$\min$}},x_{\scalebox{0.55}{$\max$}})\times(y_{\scalebox{0.55}{$\min$}},y_{\scalebox{0.55}{$\max$}})\times(0,T]\equiv\mathbb{D}_{\scalebox{0.7}{\text{in}}}\times(0,T], (4.8)
Ωout\displaystyle\Omega_{\scalebox{0.7}{\text{out}}} =ΩΩinΩτ0𝔻out×[0,T], where 𝔻out=𝔻𝔻in.\displaystyle=\Omega\setminus\Omega_{\scalebox{0.7}{\text{in}}}\setminus\Omega_{\tau_{0}}\equiv\mathbb{D}_{\scalebox{0.7}{\text{out}}}\times[0,T],\text{ where }\mathbb{D}_{\scalebox{0.7}{\text{out}}}=\mathbb{D}^{\dagger}\setminus\mathbb{D}_{\scalebox{0.7}{\text{in}}}.

Here, 𝔻in\mathbb{D}_{\scalebox{0.7}{\text{in}}} and 𝔻\mathbb{D}^{\dagger} are respectively defined in (2.6) and (4.5). An illustration of the spatial computational sub-domains corresponding each τ(0,T]\tau\in(0,T] is given in Figure 4.1. We note that 𝔻out=𝔻𝔻in\mathbb{D}_{\scalebox{0.7}{\text{out}}}=\mathbb{D}^{\dagger}\setminus\mathbb{D}_{\scalebox{0.7}{\text{in}}} and 𝔻out=𝔻𝔻\mathbb{D}_{\scalebox{0.7}{\text{out}}}^{\dagger}=\mathbb{D}^{\ddagger}\setminus\mathbb{D}^{\dagger}, where region 𝔻\mathbb{D}^{\ddagger} is defined in (4.7).


𝔻in\mathbb{D}_{\scalebox{0.7}{\text{in}}}

𝔻out\mathbb{D}_{\scalebox{0.7}{\text{out}}}^{\dagger}

𝔻out\mathbb{D}_{\scalebox{0.7}{\text{out}}}

xminx_{\scalebox{0.55}{$\min$}}

xminx_{\scalebox{0.55}{$\min$}}^{\dagger}

xminx_{\scalebox{0.55}{$\min$}}^{\ddagger}

xmaxx_{\scalebox{0.55}{$\max$}}

xmaxx_{\scalebox{0.55}{$\max$}}^{\dagger}

xmaxx_{\scalebox{0.55}{$\max$}}^{\ddagger}

yminy_{\min}

yminy_{\min}^{\dagger}

yminy_{\min}^{\ddagger}

ymaxy_{\scalebox{0.55}{$\max$}}

ymaxy_{\scalebox{0.55}{$\max$}}^{\dagger}

ymaxy_{\scalebox{0.55}{$\max$}}^{\ddagger}

Figure 4.1: Spatial computational sub-domain at each τ[0,T]\tau\in[0,T], 𝔻out=𝔻𝔻\mathbb{D}_{\scalebox{0.7}{\text{out}}}^{\dagger}=\mathbb{D}^{\ddagger}\setminus\mathbb{D}^{\dagger}.

Without loss of generality, for convenience, we assume that |zmin||z_{\min}| and zmaxz_{\max}, for z{x,y}z\in\left\{x,y\right\}, are chosen sufficiently large so that

zmin=zminzmaxzmin2,andzmax=zmax+zmaxzmin2.\displaystyle z^{\dagger}_{\min}=z_{\min}-\frac{z_{\max}-z_{\min}}{2},~{}~{}~{}\text{and}~{}~{}~{}z^{\dagger}_{\max}=z_{\max}+\frac{z_{\max}-z_{\min}}{2}. (4.9)

With (4.9) in mind, recalling zminz_{\min}^{\ddagger} and zmaxz_{\max}^{\ddagger}, for z{x,y}z\in\{x,y\} as defined in (4.7) gives

zmin=zminzmax=32(zmaxzmin),andzmax=zmaxzmin=32(zmaxzmin).z_{\min}^{\ddagger}=z^{\dagger}_{\min}-z_{\max}=-\frac{3}{2}\left(z_{\max}-z_{\min}\right),~{}~{}~{}\text{and}~{}~{}~{}z_{\max}^{\ddagger}=z^{\dagger}_{\max}-z_{\min}=\frac{3}{2}\left(z_{\max}-z_{\min}\right). (4.10)

4.2 Discretization

We denote by NN (resp. NN^{\dagger} and NN^{\ddagger} ) the number of intervals of a uniform partition of [xmin,xmax][x_{\scalebox{0.55}{$\min$}},x_{\scalebox{0.55}{$\max$}}] (resp. [xmin,xmax][x_{\scalebox{0.55}{$\min$}}^{\dagger},x_{\scalebox{0.55}{$\max$}}^{\dagger}] and [xmin,xmax][x_{\scalebox{0.55}{$\min$}}^{\ddagger},x_{\scalebox{0.55}{$\max$}}^{\ddagger}]). For convenience, we typically choose N=2NN^{\dagger}=2N and N=3NN^{\ddagger}=3N so that only one set of zz-coordinates is needed. Also, let P=xmaxxminP=x_{\scalebox{0.55}{$\max$}}-x_{\scalebox{0.55}{$\min$}}, Px=xmaxxminP_{x}^{\dagger}=x^{\dagger}_{\scalebox{0.55}{$\max$}}-x^{\dagger}_{\scalebox{0.55}{$\min$}}, and Px=xmaxxminP_{x}^{\ddagger}=x^{\ddagger}_{\scalebox{0.55}{$\max$}}-x^{\ddagger}_{\scalebox{0.55}{$\min$}}. We define Δx=PxN=PxN=PxN\Delta x=\frac{P_{x}}{N}=\frac{P_{x}^{\dagger}}{N^{\dagger}}=\frac{P_{x}^{\ddagger}}{N^{\ddagger}}. We use an equally spaced partition in the xx-direction, denoted by {xn}\{x_{n}\}, and is defined as follows

xn\displaystyle x_{n} =\displaystyle= x^0+nΔx,n=N/2,,N/2,where\displaystyle{\hat{x}}_{0}+n\Delta x,~{}~{}n=-N^{\ddagger}/2,\ldots,N^{\ddagger}/2,~{}~{}\text{where}~{}~{}
Δx\displaystyle\Delta x =\displaystyle= Px/N=Px/N=Px/N,and\displaystyle P_{x}/N~{}=~{}P_{x}^{\dagger}/N^{\dagger}=P_{x}^{\ddagger}/N^{\ddagger},~{}~{}\text{and}~{}~{} (4.11)
x^0\displaystyle\hat{x}_{0} =\displaystyle~{}=~{} (xmin+xmax)/2=(xmin+xmax)/2=(xmin+xmax)/2.\displaystyle(x_{\scalebox{0.55}{$\min$}}+x_{\scalebox{0.55}{$\max$}})/2~{}=~{}(x^{\dagger}_{\scalebox{0.55}{$\min$}}+x^{\dagger}_{\scalebox{0.55}{$\max$}})/2~{}=~{}(x^{\ddagger}_{\scalebox{0.55}{$\min$}}+x^{\ddagger}_{\scalebox{0.55}{$\max$}})/2.

Similarly, for the yy-dimension, with J=2JJ^{\dagger}=2J, J=3JJ^{\ddagger}=3J, Py=ymaxyminP_{y}=y_{\scalebox{0.55}{$\max$}}-y_{\scalebox{0.55}{$\min$}}, Py=ymaxyminP_{y}^{\dagger}=y^{\dagger}_{\scalebox{0.55}{$\max$}}-y^{\dagger}_{\scalebox{0.55}{$\min$}}, and Py=ymaxyminP_{y}^{\ddagger}=y^{\ddagger}_{\scalebox{0.55}{$\max$}}-y^{\ddagger}_{\scalebox{0.55}{$\min$}}, we denote by {yj}\{y_{j}\}, an equally spaced partition in the yy-direction defined as follows

yj\displaystyle y_{j} =\displaystyle= y^0+jΔy,j=J/2,,J/2,where\displaystyle{\hat{y}}_{0}+j\Delta y,~{}~{}j=-J^{\ddagger}/2,\ldots,J^{\ddagger}/2,~{}~{}\text{where}~{}~{}
Δy\displaystyle\Delta y =\displaystyle= Py/J=Py/J=Py/J,and\displaystyle P_{y}/J~{}=~{}P_{y}^{\dagger}/J^{\dagger}=P_{y}^{\ddagger}/J^{\ddagger},~{}~{}\text{and}~{}~{} (4.12)
y^0\displaystyle\hat{y}_{0} =\displaystyle~{}=~{} (ymin+ymax)/2=(ymin+ymax)/2=(ymin+ymax)/2.\displaystyle(y_{\scalebox{0.55}{$\min$}}+y_{\scalebox{0.55}{$\max$}})/2~{}=~{}(y^{\dagger}_{\scalebox{0.55}{$\min$}}+y^{\dagger}_{\scalebox{0.55}{$\max$}})/2~{}=~{}(y^{\ddagger}_{\scalebox{0.55}{$\min$}}+y^{\ddagger}_{\scalebox{0.55}{$\max$}})/2.

We use the previously defined uniform partition {τm}\{\tau_{m}\}, m=0,,Mm=0,\ldots,M, with τm=mΔτ=mT/M\tau_{m}=m\Delta\tau=mT/M.333While it is straightforward to generalize the numerical method to non-uniform partitioning of the τ\tau-dimension, to prove convergence, uniform partitioning suffices.

For convenience, we let 𝕄={0,M1}\mathbb{M}=\left\{0,\ldots M-1\right\} and we also define the following index sets:

\displaystyle\mathbb{N} ={N/2+1,N/21},\displaystyle=\left\{-N/2+1,\ldots N/2-1\right\},\quad \displaystyle\mathbb{N}^{\dagger} ={N,N},\displaystyle=\left\{-N,\ldots N\right\},\quad \displaystyle\mathbb{N}^{\ddagger} ={3N/2+1,3N/21},\displaystyle=\left\{-3N/2+1,\ldots 3N/2-1\right\},
𝕁\displaystyle\mathbb{J} ={J/2+1,J/21},\displaystyle=\left\{-J/2+1,\ldots J/2-1\right\},\quad 𝕁\displaystyle\mathbb{J}^{\dagger} ={J,J},\displaystyle=\left\{-J,\ldots J\right\},\quad 𝕁\displaystyle\mathbb{J}^{\ddagger} ={3J/2+1,,3J/21}.\displaystyle=\left\{-3J/2+1,\ldots,3J/2-1\right\}. (4.13)

With nn\in\mathbb{N}^{\dagger}, j𝕁j\in\mathbb{J}^{\dagger}, and m{0,,M}m\in\{0,\ldots,M\}, we denote by vn,jmv_{n,j}^{m} (resp. un,jmu_{n,j}^{m}) a numerical approximation to the exact solution v(xn,yj,τm)v(x_{n},y_{j},\tau_{m}) (resp. u(xn,yj,τm)u(x_{n},y_{j},\tau_{m})) at the reference node (xn,yj,τm)=𝐱n,jm(x_{n},y_{j},\tau_{m})={\bf{x}}_{n,j}^{m}. For m𝕄m\in\mathbb{M}, nodes 𝐱n,jm+1{\bf{x}}_{n,j}^{m+1} having n and j𝕁n\in\mathbb{N}\text{ and }j\in\mathbb{J} are in Ωin\Omega_{\scalebox{0.7}{\text{in}}}. Those with either nn\in\mathbb{N}^{\dagger}\setminus\mathbb{N} or j𝕁𝕁j\in\mathbb{J}^{\dagger}\setminus\mathbb{J} are in Ωout\Omega_{\scalebox{0.7}{\text{out}}}. For double summations, we adopt the short-hand notation: d𝔻q():=qd𝔻()\sideset{}{{}^{\boldsymbol{*}}}{\sum}_{d\in\mathbb{D}}^{q\in\mathbb{Q}}(\cdot):=\sum_{q\in\mathbb{Q}}\sum_{d\in\mathbb{D}}(\cdot), unless otherwise noted. Lastly, it’s important to note that references to indices nn\in\mathbb{N}^{\ddagger}\setminus\mathbb{N}^{\dagger} or j𝕁𝕁j\in\mathbb{J}^{\ddagger}\setminus\mathbb{J}^{\dagger} pertain to points within 𝔻out=𝔻𝔻\mathbb{D}^{\dagger}_{\scalebox{0.7}{\text{out}}}=\mathbb{D}^{\ddagger}-\mathbb{D}^{\dagger}. As noted earlier, no numerical solutions are required for these points.

4.3 Numerical schemes

For (xn,yj,τ0)Ωτ0(x_{n},y_{j},\tau_{0})\in\Omega_{\tau_{0}}, we impose the initial condition

vn,j0\displaystyle v_{n,j}^{0} =\displaystyle= v^n,j,n,j𝕁.\displaystyle\hat{v}_{n,j},\quad n\in\mathbb{N}^{\dagger},~{}j\in\mathbb{J}^{\dagger}. (4.14)

For (xn,yj,τm+1)Ωout(x_{n},y_{j},\tau_{m+1})\in\Omega_{{\scalebox{0.7}{\text{out}}}}, we impose the boundary condition (2.10) as follow

vn,jm+1=v^n,jerτm+1,n or j𝕁𝕁.\displaystyle v_{n,j}^{m+1}=\hat{v}_{n,j}e^{-r\tau_{m+1}},\quad n\in\mathbb{N}^{\dagger}\setminus\mathbb{N}\text{ or }j\in\mathbb{J}^{\dagger}\setminus\mathbb{J}. (4.15)

For subsequent use, we adopt the following notational convention: (i) xnlxnxl=(nl)Δxx_{n-l}\equiv x_{n}-x_{l}=(n-l)\Delta x, for nn\in\mathbb{N} and ll\in\mathbb{N}^{\dagger}, and (ii) yjdyjyd=(jd)Δyy_{j-d}\equiv y_{j}-y_{d}=(j-d)\Delta y, for j𝕁j\in\mathbb{J} and d𝕁d\in\mathbb{J}^{\dagger}. In addition, we denote by gnl,jdgnl,jd(Δτ,K)g_{n-l,j-d}\equiv g_{n-l,j-d}(\Delta\tau,K) an approximation to g(xnl,yjd,Δτ)g\left(x_{n-l},y_{j-d},\Delta\tau\right) using the first (K+1)(K+1) terms of the infinite series representation in Corollary 3.1. When the role of Δτ\Delta\tau is important, we explicitly write gnl,jd(Δτ)g_{n-l,j-d}(\Delta\tau), omitting KK for brevity.

The continuation value at node (xn,yj,τm+1)Ωin(x_{n},y_{j},\tau_{m+1})\in\Omega_{{\scalebox{0.7}{\text{in}}}} is approximated through the 2-D convolution integral (4.6) using a 2-D composite trapezoidal rule. This approximation, denoted by un,jm+1u_{n,j}^{m+1}, is computed as follows:

un,jm+1=ΔxΔyld𝕁φl,dgnl,jdvl,dm,n,j𝕁.u_{n,j}^{m+1}=\Delta x\Delta y\sideset{}{{}^{\boldsymbol{*}}}{\sum}_{l\in\mathbb{N}^{\dagger}}^{d\in\mathbb{J}^{\dagger}}\varphi_{l,d}~{}g_{n-l,j-d}~{}v^{m}_{l,d},\quad n\in\mathbb{N},~{}j\in\mathbb{J}. (4.16)

Here, the coefficients φl,d\varphi_{l,d} in (4.16), where ll\in\mathbb{N}^{\dagger} and d𝕁d\in\mathbb{J}^{\dagger}, are the weights of the 2-D composite trapezoidal rule. Finally, the discrete solution vn,jm+1v_{n,j}^{m+1} is computed as follow

vn,jm+1=max{un,jm+1,v^n,j}=max{ΔxΔyld𝕁φl,dgnl,jdvl,dm,v^n,j},n,j𝕁.v_{n,j}^{m+1}=\max\{u_{n,j}^{m+1},~{}\hat{v}_{n,j}\}=\max\bigg{\{}\Delta x\Delta y\sideset{}{{}^{\boldsymbol{*}}}{\sum}_{l\in\mathbb{N}^{\dagger}}^{d\in\mathbb{J}^{\dagger}}\varphi_{l,d}~{}g_{n-l,j-d}~{}v^{m}_{l,d},~{}\hat{v}_{n,j}\bigg{\}},\quad n\in\mathbb{N},~{}j\in\mathbb{J}. (4.17)
Remark 4.1 (Monotonicity).

We note that the Green’s function g(xnl,yjd,Δτ)g\left(x_{n-l},y_{j-d},\Delta\tau\right), as given by the infinite series in Corollary 3.1, is defined and non-negative for all nn\in\mathbb{N}, ll\in\mathbb{N}^{\dagger}, j𝕁j\in\mathbb{J}, d𝕁d\in\mathbb{J}^{\dagger}. Therefore, scheme (4.16)-(4.17) is monotone. We highlight that for computational purposes, g(xnl,yjd,Δτ)g\left(x_{n-l},y_{j-d},\Delta\tau\right) is truncated to gnl,jd(Δτ,K)g_{n-l,j-d}(\Delta\tau,K). However, since each term of the series is non-negative, this truncation ensures no loss of monotonicity, which is a key advantage of the proposed approach.

Remark 4.2 (Rescaled weights and convention).

In the scheme (4.16), the weights gnl,jd(Δτ)g_{n-l,j-d}(\Delta\tau) are multiplied by the grid area ΔxΔy\Delta x\,\Delta y. As Δτ0\Delta\tau\to 0, the Green’s function g(,Δτ)g(\cdot,\Delta\tau) approaches a Dirac delta function, becoming increasingly peaked and unbounded. However, as proved subsequently, with ΔxΔy\Delta x\,\Delta y absorbed into the numerators of the terms in the (truncated) series representation of gnl,jd(Δτ)g_{n-l,j-d}(\Delta\tau), the resulting rescaled weights remain bounded.

To formalize this, we define the rescaled weights of our scheme as follows:

g~nl,jd(Δτ):=ΔxΔygnl,jd(Δτ),n,l,j𝕁,and d𝕁.\widetilde{g}_{n-l,j-d}(\Delta\tau)\;:=\;\Delta x\,\Delta y\,\odot g_{n-l,j-d}(\Delta\tau),\quad n\in\mathbb{N},~{}l\in\mathbb{N}^{\dagger},~{}j\in\mathbb{J},\text{and }d\in\mathbb{J}^{\dagger}. (4.18)

Here, \odot indicates that ΔxΔy\Delta x\,\Delta y is effectively absorbed into the numerators of the terms in the (truncated) series representation of gnl,jd(Δτ)g_{n-l,j-d}(\Delta\tau), ensuring that g~nl,jd(Δτ)\widetilde{g}_{n-l,j-d}(\Delta\tau) remains bounded as Δτ0\Delta\tau\to 0.

For subsequent use, we also define the infinite series counterpart g~(xnl,yjd,Δτ)\widetilde{g}(x_{n-l},y_{j-d},\Delta\tau) as follows:

g~(xnl,yjd,Δτ):=ΔxΔyg(xnl,yjd,Δτ),n,l,j𝕁,and d𝕁.\widetilde{g}(x_{n-l},y_{j-d},\Delta\tau)\;:=\;\Delta x\,\Delta y\,\odot g(x_{n-l},y_{j-d},\Delta\tau),\quad n\in\mathbb{N},~{}l\in\mathbb{N}^{\dagger},~{}j\in\mathbb{J},\text{and }d\in\mathbb{J}^{\dagger}. (4.19)

A formal proof of the boundedness of both g~(xnl,yjd,Δτ)\widetilde{g}(x_{n-l},y_{j-d},\Delta\tau) and its truncated counterpart g~nl,jd(Δτ)\widetilde{g}_{n-l,j-d}(\Delta\tau) is provided in Lemma 5.1.

Convention: For the rest of the paper, we adopt the convention of continuing to write ΔxΔygnl,jd(Δτ)\Delta x\,\Delta y\,g_{n-l,j-d}(\Delta\tau) and ΔxΔyld𝕁()gnl,jd(Δτ)()\Delta x\,\Delta y\,\sideset{}{{}^{\boldsymbol{*}}}{\sum}_{l\in\mathbb{N}^{\dagger}}^{d\in\mathbb{J}^{\dagger}}(\cdot)~{}g_{n-l,j-d}(\Delta\tau)~{}(\cdot) in our scheme, implementation descriptions, and subsequent analysis. These expressions should respectively be understood as shorthand for g~nl,jd(Δτ)\widetilde{g}_{n-l,j-d}(\Delta\tau) and ld𝕁()g~nl,jd(Δτ)()\sideset{}{{}^{\boldsymbol{*}}}{\sum}_{l\in\mathbb{N}^{\dagger}}^{d\in\mathbb{J}^{\dagger}}(\cdot)~{}\widetilde{g}_{n-l,j-d}(\Delta\tau)~{}(\cdot), where g~nl,jd(Δτ)\widetilde{g}_{n-l,j-d}(\Delta\tau) is the rescaled weight defined in (4.18). The same convention applies to expressions involving g(xnl,yjd,Δτ)g(x_{n-l},y_{j-d},\Delta\tau).

We note that the scheme in (4.17) explicitly enforces the American option’s early exercise constraint by taking max{un,jm+1,v^n,j}\max\{u_{n,j}^{m+1},\hat{v}_{n,j}\} at each timestep. While this approach is standard in computational finance and preserves the monotonicity of the scheme, it limits the global accuracy in time to first order due to the non-smooth max{,}\max\{\cdot,\cdot\} operation.

A possible approach to achieving higher-order time accuracy is to adopt a penalty formulation (such as that in [33]), which leads to a system of nonlinear equations that must be solved iteratively at each timestep, typically using fixed-point or Newton-type methods [38]. Exploring these iterative methods in conjunction with the integral operator, while preserving the advantages of our convolution-based Green’s function framework in a fully 2-D jump-diffusion setting, is an interesting, but challenging, direction for future work. However, this lies beyond the scope of the present paper. We focus here on an explicit enforcement approach, which is simpler to implement and preserves the monotonicity of the scheme, thereby ensuring convergence to the viscosity solution.

4.4 Efficient implementation and complexity

In this section, we discuss an efficient implementation of the 2-D discrete convolution (4.16) using FFT. Initially developed for 1-D problems [69] and extended to 2-D cases [26], this technique enables efficient computation of the convolution as a circular product. Specifically, the goal of this technique is to represent (4.16) for nn\in\mathbb{N}, j𝕁j\in\mathbb{J}, ll\in\mathbb{N}^{\dagger} and d𝕁d\in\mathbb{J}^{\dagger} as a 2-D circular convolution product of the form

𝐮m+1=ΔxΔy𝐠𝐯m.\displaystyle{\bf{u}}^{m+1}=\Delta x\Delta y~{}{{\bf{g}}}\ast{\bf{v}}^{m}. (4.20)

Here, 𝐠:=𝐠(Δτ,Kϵ){\bf{g}}:={\bf{g}}(\Delta\tau,K_{\epsilon}) is the first column of an associated circulant block matrix constructed from gnl,jd(Δτ,Kϵ)g_{n-l,j-d}(\Delta\tau,K_{\epsilon}), where KϵK_{\epsilon} is sufficiently large, reshaped into a (3N1)×(3J1)(3N-1)\times(3J-1) matrix, while 𝐯m{\bf{v}}^{m} is reshaped from an associated augmented block vector into a (3N1)×(3J1)(3N-1)\times(3J-1) matrix. The notation \ast denotes the circular convolution product. Full details on constructing 𝐠{\bf{g}} and 𝐯m{\bf{v}}^{m} can be found in [26].

The resulting circular convolution product (4.20) can then be computed efficiently using FFT and inverse FFT (iFFT) as:

𝐮m+1=FFT1{FFT{𝐯m}FFT{ΔxΔy𝐠}}.\displaystyle{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}{{\bf{u}}^{m+1}={\text{FFT}}^{-1}\left\{\text{FFT}\left\{{\bf{v}}^{m}\right\}\circ\text{FFT}\left\{\Delta x\Delta y~{}{\bf{g}}\right\}\right\}}}. (4.21)

After computation, we discard components in 𝐮m+1{\bf{u}}^{m+1} for indices nn\in\mathbb{N}^{\ddagger}\setminus\mathbb{N} or j𝕁𝕁j\in\mathbb{J}^{\ddagger}\setminus\mathbb{J}, obtaining discrete solutions un,jm+1u_{n,j}^{m+1} for Ωin\Omega_{\scalebox{0.7}{\text{in}}}.

As explained in Remark 4.2, the factor Δx,Δy\Delta x,\Delta y is incorporated into gnl,jdg_{n-l,j-d}, yielding g~nl,jd\widetilde{g}_{n-l,j-d}. Following our convention, we continue to write ΔxΔy𝐠\Delta x\,\Delta y\,{\bf{g}} in (4.20)-(4.21) for simplicity.

The implementation outlined in (4.21) indicates that the rescaled weight array ΔxΔy𝐠\Delta x\,\Delta y\,\bf{g} needs to be computed only once using the infinite series expression from Corollary 3.1, after which they can be reused across all time intervals. Specifically, for a given user-defined tolerance ϵ\epsilon, we use (3.8) to determine a sufficiently large number of terms K=KϵK=K_{\epsilon} in the series representation (3.6) for these weights. The resulting rescaled weight array ΔxΔy𝐠:=ΔxΔy𝐠(Δτ,Kϵ)\Delta x\,\Delta y\,{\bf{g}}:=\Delta x\,\Delta y\,{\bf{g}}(\Delta\tau,K_{\epsilon}) is then calculated. For the two-asset Merton jump-diffusion model, the rescaled weight array ΔxΔy𝐠\Delta x\,\Delta y\,{\bf{g}} needs only be computed once as per (4.21), and can subsequently be reused across all time intervals. This step is detailed in Algorithm 4.1.

Algorithm 4.1 Computation of the rescaled weight array ΔxΔy𝐠:=ΔxΔy𝐠(Δτ,Kϵ)\Delta x\,\Delta y\,{\bf{g}}:=\Delta x\,\Delta y\,{\bf{g}}(\Delta\tau,K_{\epsilon}); ϵ>0\epsilon>0 is a user-defined tolerance.
1:  set k=Kϵ=0k=K_{\epsilon}=0;
2:  compute test=e(r+λ)Δτ2πdet(𝑪)(eλΔτ)k+1(k+1)k+1\texttt{test}=\frac{e^{-(r+\lambda)\Delta\tau}}{2\pi\sqrt{\det(\boldsymbol{C})}}\,\frac{(e\lambda\Delta\tau)^{k+1}}{(k+1)^{k+1}};
3:  set ΔxΔygnl,jd(Δτ,Kϵ)=ΔxΔyg0(xnl,yjd,Δτ)\Delta x\,\Delta y\,g_{n-l,j-d}(\Delta\tau,K_{\epsilon})=\Delta x\,\Delta y\,g_{0}\left(x_{n-l},y_{j-d},\Delta\tau\right), n,j𝕁,l,d𝕁n\in\mathbb{N},\,j\in\mathbb{J},\,l\in\mathbb{N}^{\dagger},\,d\in\mathbb{J}^{\dagger};
4:  while testϵ\texttt{test}\geq\epsilon do
5:     set k=k+1k=k+1, and Kϵ=kK_{\epsilon}=k;
6:     compute ΔxΔygk(xnl,yjd,Δτ)\Delta x\,\Delta y\,g_{k}(x_{n-l},y_{j-d},\Delta\tau), n,j𝕁,l,d𝕁n\in\mathbb{N},\,j\in\mathbb{J},\,l\in\mathbb{N}^{\dagger},\,d\in\mathbb{J}^{\dagger}, given in Corollary 3.1;
7:     set ΔxΔygnl,jd(Δτ,Kϵ)=ΔxΔygnl,jd(Δτ,Kϵ)+ΔxΔygk(xnl,yjd,Δτ)\Delta x\,\Delta y\,g_{n-l,j-d}(\Delta\tau,K_{\epsilon})=\Delta x\Delta y\,g_{n-l,j-d}(\Delta\tau,K_{\epsilon})+\Delta x\Delta y\,g_{k}(x_{n-l},y_{j-d},\Delta\tau), n,j𝕁,l,d𝕁n\in\mathbb{N},\,j\in\mathbb{J},\,l\in\mathbb{N}^{\dagger},\,d\in\mathbb{J}^{\dagger};
8:      compute test=e(r+λ)Δτ2πdet(𝑪)(eλΔτ)k+1(k+1)k+1\texttt{test}=\frac{e^{-(r+\lambda)\Delta\tau}}{2\pi\sqrt{\det(\boldsymbol{C})}}\,\frac{(e\lambda\Delta\tau)^{k+1}}{(k+1)^{k+1}};
9:  end while
10:  construct the weight array ΔxΔy𝐠=ΔxΔy𝐠(Δτ,Kϵ)\Delta x\,\Delta y\,{\bf{g}}=\Delta x\,\Delta y\,{\bf{g}}(\Delta\tau,K_{\epsilon}) using ΔxΔygnl,jd(Δτ,Kϵ)\Delta x\,\Delta y\,g_{n-l,j-d}(\Delta\tau,K_{\epsilon}), nn\in\mathbb{N}, j𝕁j\in\mathbb{J}, ll\in\mathbb{N}^{\dagger}, d𝕁d\in\mathbb{J}^{\dagger};
11:  output 𝐠{\bf{g}};

Putting everything together, the proposed numerical scheme for the American options under two-asset Merton jump-diffusion model is presented in Algorithm 4.2 below.

Algorithm 4.2 A monotone numerical integration algorithm for pricing American options under the two-asset Merton jump-diffusion model.
1:  compute the rescaled weight array ΔxΔy𝐠\Delta x\,\Delta y\,{\bf{g}} using Algorithm 4.1;
2:   initialize vn,j0=v^(xn,yj)v_{n,j}^{0}=\hat{v}(x_{n},y_{j}), nn\in\mathbb{N}^{\dagger}, j𝕁j\in\mathbb{J}^{\dagger};
3:  for m=0,,M1m=0,\ldots,M-1 do
4:      compute intermediate values 𝐮m+1{\bf{u}}^{m+1} using FFT as per (4.21);
5:      obtain discrete solutions [un,jm+1]n,j𝕁\left[u_{n,j}^{m+1}\right]_{n\in\mathbb{N},j\in\mathbb{J}} by discarding the components in 𝐮m+1{\bf{u}}^{m+1} corresponding to indices nn\in\mathbb{N}^{\ddagger}\setminus\mathbb{N} or j𝕁𝕁j\in\mathbb{J}^{\ddagger}\setminus\mathbb{J};
6:      set vn,jm+1=max{un,jm+1,vn,j0}v_{n,j}^{m+1}=\max\{u_{n,j}^{m+1},v_{n,j}^{0}\}, nn\in\mathbb{N} and j𝕁j\in\mathbb{J}, where un,jm+1u_{n,j}^{m+1} are from Line 5; Ωin\Omega_{\scalebox{0.7}{\text{in}}}
7:      compute vn,jm+1v_{n,j}^{m+1}, nn\in\mathbb{N}^{\dagger}\setminus\mathbb{N} or j𝕁𝕁j\in\mathbb{J}^{\dagger}\setminus\mathbb{J}, using (4.15); Ωout\Omega_{\scalebox{0.7}{\text{out}}}
8:  end for
Remark 4.3 (Complexity).

Our algorithm involves, for m=0,,M1m=0,\ldots,M-1, the following key steps:

  • Compute un,jm+1u_{n,j}^{m+1}, nn\in\mathbb{N}^{\dagger}, j𝕁j\in\mathbb{J}^{\dagger} via the proposed 2-D FFT algorithm. The complexity of this step is 𝒪(NJlog(NJ))=𝒪(NJlog(NJ))\mathcal{O}\left(N^{\dagger}J^{\dagger}\log(N^{\dagger}J^{\dagger})\right)=\mathcal{O}\left(NJ\log(NJ)\right), considering that N=2NN^{\dagger}=2N and J=2JJ^{\dagger}=2J.

  • Finding the optimal control for each node 𝐱n,jm+1{\bf{x}}_{n,j}^{m+1} by directly comparing un,jm+1u_{n,j}^{m+1} with the payoff requires 𝒪(1)\mathcal{O}(1) complexity. Thus, with a total of NJNJ interior nodes, this gives a complexity 𝒪(NJ)\mathcal{O}(NJ).

  • Therefore, the major cost of our algorithm is determined by the step of FFT algorithm. With MM timesteps, the total complexity is 𝒪(MNJlog(NJ))\mathcal{O}(MNJ\log(NJ)).

5 Convergence to viscosity solution

In this section, we demonstrate that, as a discretization paremeter approaches zero, our numerical scheme in the interior sub-domain Ωin\Omega_{\scalebox{0.7}{\text{in}}} converges to the viscosity solution of the variational inequality (2.11) in the sense of Definition 2.1. To achieve this, we examine three critical properties: \ell_{\infty}-stability, consistency, and monotonicity [20].

5.1 Error analysis

To commence, we shall identify errors arising in our numerical scheme and make assumptions needed for subsequent proofs. In the discussion below, ϕ()\phi(\cdot) is a test function in (𝒞)(2×[0,T])(\mathcal{B}\cap\mathcal{C}^{\infty})(\mathbb{R}^{2}\times[0,T]).

  • Truncating the infinite region of integration 2\mathbb{R}^{2} of the convolution integral (4.4) between the Green’s function g()g(\cdot) and ϕ()\phi(\cdot) to 𝔻\mathbb{D}^{\dagger} results in a boundary truncation error b\mathcal{E}_{b} , where

    b=2𝔻g(xx,yy,Δτ)ϕ(x,y,,τm)𝑑x𝑑y,(x,y)𝔻in.\displaystyle\scalebox{0.9}{$\mathcal{E}_{b}$}=\iint_{\mathbb{R}^{2}\setminus\mathbb{D}^{\dagger}}g(x-x^{\prime},y-y^{\prime},\Delta\tau)~{}\phi(x^{\prime},y^{\prime},\cdot,\tau_{m})~{}dx^{\prime}~{}dy^{\prime},\quad(x,y)\in\mathbb{D}_{\scalebox{0.7}{\text{in}}}. (5.1)

    It has been established that for general jump diffusion models, such as those considered in this paper, the error bound b\mathcal{E}_{b} is bounded by [19, 18]

    |b|C1ΔτeC2(PxPy),(x,y)𝔻in,C1,C2>0 independent of ΔτPx and Py,\left|\scalebox{0.9}{$\mathcal{E}_{b}$}\right|\leq C_{1}\Delta\tau e^{-C_{2}\left(P_{x}^{\dagger}\wedge P_{y}^{\dagger}\right)},\quad\text{$\forall(x,y)\in\mathbb{D}_{\scalebox{0.7}{\text{in}}}$},\quad\text{$C_{1},C_{2}>0$ independent of $\Delta\tau$, $P_{x}^{\dagger}$ and $P_{y}^{\dagger}$}, (5.2)

    where Px=xmaxxminP_{\scalebox{0.6}{$x$}}^{\dagger}=x^{\dagger}_{\scalebox{0.55}{$\max$}}-x^{\dagger}_{\scalebox{0.55}{$\min$}}, Py=ymaxyminP_{\scalebox{0.6}{$y$}}^{\dagger}=y^{\dagger}_{\scalebox{0.55}{$\max$}}-y^{\dagger}_{\scalebox{0.55}{$\min$}} and ab=min(a,b)a\wedge b=\min(a,b). For fixed PxP_{\scalebox{0.6}{$x$}}^{\dagger} and PyP_{\scalebox{0.6}{$y$}}^{\dagger}, (5.2) shows b0\scalebox{0.9}{$\mathcal{E}_{b}$}\to 0, as Δτ0\Delta\tau\to 0. However, as typical required for showing consistency, one would need to ensure bΔτ0\frac{\scalebox{0.9}{$\mathcal{E}_{b}$}}{\Delta\tau}\to 0 as Δτ0\Delta\tau\to 0. Therefore, from (5.2), we need PxP_{\scalebox{0.6}{$x$}}^{\dagger}\to\infty and PyP_{\scalebox{0.6}{$y$}}^{\dagger}\to\infty as Δτ0\Delta\tau\to 0, which can be achieved by letting Px=C1/ΔτP_{\scalebox{0.6}{$x$}}^{\dagger}=C_{1}^{\prime}/\Delta\tau and Py=C2/ΔτP_{\scalebox{0.6}{$y$}}^{\dagger}=C_{2}^{\prime}/\Delta\tau, for finite C1,C2>0C_{1}^{\prime},C_{2}^{\prime}>0 independent of Δτ\Delta\tau.

  • The next source of error is identified in approximating the truncated 2-D convolution integral

    𝔻g(xx,yy,Δτ)ϕ(x,y,,τm)𝑑x𝑑y,(x,y)𝔻in.\iint_{\mathbb{D}^{\dagger}}g(x-x^{\prime},y-y^{\prime},\Delta\tau)~{}\phi(x^{\prime},y^{\prime},\cdot,\tau_{m})~{}dx^{\prime}~{}dy^{\prime},\quad(x,y)\in\mathbb{D}_{\scalebox{0.7}{\text{in}}}.

    by the composite trapezoidal rule: ΔxΔyld𝕁φl,dg(xnl,yjd,Δτ)ϕ(xl,yd,τm),\Delta x\Delta y\sideset{}{{}^{\boldsymbol{*}}}{\sum}_{l\in\mathbb{N}^{\dagger}}^{d\in\mathbb{J}^{\dagger}}\varphi_{l,d}~{}g(x_{n-l},y_{j-d},\Delta\tau)~{}\phi(x_{l},y_{d},\tau_{m}), where g(xnl,yjd,Δτ)g(x_{n-l},y_{j-d},\Delta\tau) represents the exact Green’s function. We denote by c\mathcal{E}_{c} the numerical integration error associated with this approximation. For a fixed integration domain 𝔻\mathbb{D}^{\dagger}, due to the smoothness of the test function ϕ\phi, we have that c=𝒪(max(Δx,Δy)2)\scalebox{0.9}{$\mathcal{E}_{c}$}=\mathcal{O}\left(\max(\Delta x,\Delta y)^{2}\right) as Δx,Δy0\Delta x,\Delta y\to 0.

  • Truncating the Green’s function g(xnl,yjd,Δτ)g(x_{n-l},y_{j-d},\Delta\tau), which is expressed as an infinite series in (3.6), to gnl,jd(Δτ,K)g_{n-l,j-d}(\Delta\tau,K) using only the first (K+1)(K+1) terms introduces a series truncation error, denoted by f\mathcal{E}_{f} . As discussed previously in (3.9), with K=𝒪(ln((Δτ)1))K=\mathcal{O}(\ln((\Delta\tau)^{-1})), then f=𝒪((Δτ)2)\scalebox{0.9}{$\mathcal{E}_{f}$}=\mathcal{O}((\Delta\tau)^{2}) as Δτ0\Delta\tau\to 0.

Motivated by the above discussions, for convergence analysis, we make the assumption below about the discretization parameter.

Assumption 5.1.

We assume that there is a discretization parameter hh such that

Δx=C1h,Δy=C2h,Δτ=C3h,Px=C1/h,Py=C2/h,\displaystyle\Delta x=C_{1}h,\quad\Delta y=C_{2}h,\quad\Delta\tau=C_{3}h,\quad{P_{x}^{\dagger}=C^{\prime}_{1}/h,}\quad{P_{y}^{\dagger}=C^{\prime}_{2}/h,} (5.3)

where the positive constants C1C_{1}, C2C_{2}, C3C_{3}, C1C_{1}^{\prime} and C2C_{2}^{\prime} are independent of hh.

Under Assumption 5.1, and for a test function ϕ()(Ω)𝒞(Ω)\phi(\cdot)\in\mathcal{B}(\Omega^{\scalebox{0.5}{$\infty$}})\cap\mathcal{C}^{\infty}(\Omega^{\scalebox{0.5}{$\infty$}}), we have

b=𝒪(he1h),c=𝒪(h2),f=𝒪(h2).\scalebox{0.9}{$\mathcal{E}_{b}$}=\mathcal{O}(he^{-\frac{1}{h}}),\quad\scalebox{0.9}{$\mathcal{E}_{c}$}=\mathcal{O}(h^{2}),\quad\scalebox{0.9}{$\mathcal{E}_{f}$}=\mathcal{O}(h^{2}). (5.4)

It is also straightforward to ensure the theoretical requirement Px,PyP_{x}^{\dagger},P_{y}^{\dagger}\to\infty as h0h\to 0. For example, with C2=C2=1C^{\prime}_{2}=C^{\prime}_{2}=1 in (5.3), we can quadruple NN^{\dagger} and JJ^{\dagger} as we halve hh. We emphasize that, for practical purposes, if PxP_{x}^{\dagger} and PyP_{y}^{\dagger} are chosen sufficiently large, both can be kept constant for all Δτ\Delta\tau refinement levels (as we let Δτ0\Delta\tau\to 0). The effectiveness of this practical approach is demonstrated through numerical experiments in Section 6. Finally, we note that, the total complexity of the proposed algorithm, as outlined in Remark 4.3, is 𝒪(1/h3log(1/h))\mathcal{O}(1/h^{3}\cdot\log(1/h)).

We now present a lemma on the boundedness of the rescaled weights g~nl,jd(Δτ)\widetilde{g}_{n-l,j-d}(\Delta\tau) defined in (4.18).

Lemma 5.1 (Boundedness of the rescaled weights).

Let g(x,y,Δτ)g(x,y,\Delta\tau) be the two-asset Merton jump-diffusion Green’s function from Corollary 3.1, and recall the rescaled weights g~nl,jd(Δτ)\widetilde{g}_{n-l,j-d}(\Delta\tau) and its infinite series counterpart g~(xnl,yjd,Δτ)\widetilde{g}(x_{n-l},y_{j-d},\Delta\tau), respectively defined in (4.18) and (4.19).

Under Assumption 5.1, there exists a finite constant C>0C^{\prime}>0, independent of the discretization parameter hh, such that for all sufficiently small hh,

0g~(xnl,yjd,Δτ)C,for all n,l,j𝕁,and d𝕁.0\leq\widetilde{g}(x_{n-l},y_{j-d},\Delta\tau)\leq C^{\prime},\quad\text{for all }n\in\mathbb{N},~{}l\in\mathbb{N}^{\dagger},~{}j\in\mathbb{J},\text{and }d\in\mathbb{J}^{\dagger}.

Consequently, the rescaled weights g~nl,jd(Δτ)\widetilde{g}_{n-l,j-d}(\Delta\tau) satisfy

0g~nl,jd(Δτ)C.0\leq\widetilde{g}_{n-l,j-d}(\Delta\tau)\leq C^{\prime}.

A proof of Lemma 5.1 is provided in Appendix D. We reiterate that, as explained in Remark 4.2, we adopt the convention of writing ΔxΔygnl,jd(Δτ)\Delta x\,\Delta y\,g_{n-l,j-d}(\Delta\tau) and ΔxΔyld𝕁()gnl,jd(Δτ)()\Delta x\,\Delta y\,\sideset{}{{}^{\boldsymbol{*}}}{\sum}_{l\in\mathbb{N}^{\dagger}}^{d\in\mathbb{J}^{\dagger}}(\cdot)~{}g_{n-l,j-d}(\Delta\tau)~{}(\cdot) even though the factor ΔxΔy\Delta x\,\Delta y can be interpreted as folded into gnl,jd(Δτ)g_{n-l,j-d}(\Delta\tau). Under this convention, the discrete rescaled weights, as well as its full series counter parts, remain bounded as h0h\to 0 by Lemma 5.1.

For subsequent use, we present a result about g(xnl,yjd,Δτ)g(x_{n-l},y_{j-d},\Delta\tau) in the form of a lemma.

Lemma 5.2.

Suppose the discretization parameter hh satisfies (5.3). For sufficiently small hh, we have

ΔxΔyld𝕁φl,dgnl,jderΔτ+𝒪(h2)1+ϵgΔτTeϵgΔτT.n,j𝕁,\Delta x\Delta y\sideset{}{{}^{\boldsymbol{*}}}{\sum}_{l\in\mathbb{N}^{\dagger}}^{d\in\mathbb{J}^{\dagger}}~{}\varphi_{l,d}~{}g_{n-l,j-d}\leq e^{-r\Delta\tau}\!+\!\mathcal{O}(h^{2})\leq 1+\epsilon_{g}\frac{\Delta\tau}{T}\leq e^{\epsilon_{g}\frac{\Delta\tau}{T}}.\quad n\in\mathbb{N},~{}j\in\mathbb{J}, (5.5)

where ϵg=Ch\epsilon_{g}=Ch with C>0C>0 being a bounded constant independently of hh.

Proof of Lemma 5.2.

In this proof, we let CC be a generic positive constant independent of hh, which may take different values from line to line. We note that gnl,jdgnl,jd(Δτ,K)g_{n-l,j-d}\equiv g_{n-l,j-d}(\Delta\tau,K) is an approximation to g(xnl,yjd,Δτ)g\left(x_{n-l},y_{j-d},\Delta\tau\right) using the first (K+1)(K+1) terms of the infinite series. Recall that G(ηx,ηy,Δτ)=2ei(ηxx+ηyy)g(x,y,Δτ)𝑑x𝑑yG(\eta_{x},\eta_{y},\Delta\tau)=\iint_{\mathbb{R}^{2}}e^{-i(\eta_{x}x+\eta_{y}y)}g(x,y,\Delta\tau)~{}dxdy, and also, by (3.3), G(ηx,ηy,Δτ)=exp(Ψ(ηx,ηy)Δτ)G(\eta_{x},\eta_{y},\Delta\tau)=\exp(\Psi(\eta_{x},\eta_{y})\Delta\tau). Hence, setting ηx=ηy=0\eta_{x}=\eta_{y}=0 in the above gives

2g(x,y,Δτ)𝑑x𝑑y=exp(Ψ(0,0)Δτ)=erΔτ,(x,y)2\iint_{\mathbb{R}^{2}}g(x,y,\Delta\tau)~{}dxdy=\exp(\Psi(0,0)\Delta\tau)=e^{-r\Delta\tau},\quad\forall(x,y)\in\mathbb{R}^{2} (5.6)

As h0h\to 0, we have: 0ΔxΔyld𝕁φl,dgnl,jd(i)ΔxΔyld𝕁φl,dg(xnl,yjd,Δτ)=0\leq\Delta x\Delta y\sideset{}{{}^{\boldsymbol{*}}}{\sum}_{l\in\mathbb{N}^{\dagger}}^{d\in\mathbb{J}^{\dagger}}~{}\varphi_{l,d}~{}g_{n-l,j-d}\overset{\text{(i)}}{\leq}\Delta x\Delta y\sideset{}{{}^{\boldsymbol{*}}}{\sum}_{l\in\mathbb{N}^{\dagger}}^{d\in\mathbb{J}^{\dagger}}~{}\varphi_{l,d}~{}g(x_{n-l},y_{j-d},\Delta\tau)=\ldots

=(ii)2g(xnx,yjy,Δτ)𝑑x𝑑y+𝒪(he1h)+𝒪(h2)=(iii)erΔτ+𝒪(h2)(iv)1+ChΔτT(v)eϵgΔτT.\displaystyle\ldots\overset{\text{(ii)}}{=}\!\!\iint_{\mathbb{R}^{2}}\!\!g(x_{n}-x,y_{j}-y,\Delta\tau)dxdy+\mathcal{O}(he^{-\frac{1}{h}})+\mathcal{O}(h^{2})\overset{\text{(iii)}}{=}e^{-r\Delta\tau}\!+\!\mathcal{O}(h^{2})\!\overset{\text{(iv)}}{\leq}1\!+\!Ch\frac{\Delta\tau}{T}\overset{\text{(v)}}{\leq}e^{\epsilon_{g}\frac{\Delta\tau}{T}}.

Here, (i) is due to the fact that all terms of the infinite series are non-negative, so are the weights φl,d\varphi_{l,d} of the composite trapezoidal rule; in (ii), as previously discussed, the error 𝒪(he1h)\mathcal{O}(he^{-\frac{1}{h}}) is due to the boundary truncation error (5.2), together with Px,Py𝒪(1/h)P_{x}^{\dagger},P_{y}^{\dagger}\sim\mathcal{O}(1/h) as h0h\to 0, as in (5.3); the 𝒪(h2)\mathcal{O}(h^{2}) error arises from the trapezoidal rule approximation of the double integral, as noted in (5.4); (iii) follows from (5.6); (iv) is due to erΔτ1e^{-r\Delta\tau}\leq 1 and (5.3). Letting ϵg=Ch\epsilon_{g}=Ch gives (iv). This concludes the proof. ∎

5.2 Stability

Our scheme consists of the following equations: (4.14) for Ωτ0\Omega_{\tau_{0}}, (4.15) for Ωout\Omega_{\scalebox{0.7}{\text{out}}}, and finally (4.17) for Ωin\Omega_{\scalebox{0.7}{\text{in}}}. We start by verifying \ell_{\infty}-stability of our scheme.

Lemma 5.3 (\ell_{\infty}-stability).

Suppose the discretization parameter hh satisfies (5.3). The scheme (4.14), (4.15), and (4.17) satisfies the bound suph>0vm<\displaystyle\sup_{h>0}\left\|v^{m}\right\|_{\infty}<\infty for all m=0,,Mm=0,\ldots,M, as the discretization parameter h0h\to 0. Here, we have vm=maxn,j|vn,jm|\left\|v^{m}\right\|_{\infty}=\max_{n,j}|v_{n,j}^{m}|, nn\in\mathbb{N}^{\dagger} and j𝕁j\in\mathbb{J}^{\dagger}.

Proof of Lemma 5.3.

Since the function v^()\hat{v}(\cdot) is a bounded, for any fixed h>0h>0, we have

v0=maxn,j|vn,j0|=maxn,j|v^n,j|<,n,j𝕁\left\|v^{0}\right\|_{\infty}=\max_{n,j}|v_{n,j}^{0}|=\max_{n,j}|\hat{v}_{n,j}|<\infty,\quad n\in\mathbb{N}^{\dagger},~{}j\in\mathbb{J}^{\dagger} (5.7)

Hence, suph>0v0<\sup_{h>0}\left\|v^{0}\right\|_{\infty}<\infty. Motivated by this observation and Lemma 5.2, to demonstrate \ell_{\infty}-stability of our scheme, we will show that, for a fixed h>0h>0, at any (xn,yj,τm)(x_{n},y_{j},\tau_{m}), we have

|vn,jm|<emΔτTϵgv0, where ϵg=Ch from (5.5,|v_{n,j}^{m}|<e^{m\frac{\Delta\tau}{T}\epsilon_{g}}\left\|v^{0}\right\|_{\infty},\quad\text{ where $\epsilon_{g}=Ch$ from \eqref{eq:geps} }, (5.8)

from which, we obtain suph>0vm<\sup_{h>0}\left\|v^{m}\right\|_{\infty}<\infty for all m=0,,Mm=0,\ldots,M, as wanted, noting mΔτT1m\frac{\Delta\tau}{T}\leq 1.

For the rest of the proof, we will show the key inequality (5.8) when h>0h>0 is fixed. We will address \ell_{\infty}-stability for the boundary and interior sub-domains (together with their respective initial conditions) separately, starting with the boundary sub-domains Ωτ0\Omega_{\tau_{0}} and Ωout\Omega_{\scalebox{0.7}{\text{out}}}. It is straightforward to see that both (4.14) (for Ωτ0\Omega_{\tau_{0}}) and (4.15) (for Ωout\Omega_{\scalebox{0.7}{\text{out}}}) satisfy (5.8), respectively due to (5.7) and the following

maxn,j|vn,jm|=maxn,j|v^n,jerτm|maxn,j|v^n,j|=v0<,n or j𝕁𝕁.\displaystyle\max_{n,j}|v_{n,j}^{m}|=\max_{n,j}|\hat{v}_{n,j}e^{-r\tau_{m}}|\leq\max_{n,j}|\hat{v}_{n,j}|=\left\|v^{0}\right\|_{\infty}<\infty,\quad n\in\mathbb{N}^{\dagger}\setminus\mathbb{N}\text{ or }j\in\mathbb{J}^{\dagger}\setminus\mathbb{J}. (5.9)

We now demonstrate the bound (5.8) for Ωin\Omega_{\scalebox{0.7}{\text{in}}} using induction on mm, m=0,,Mm=0,\ldots,M. For the base case, m=0m=0, the bound (5.8) holds for all nn\in\mathbb{N} and j𝕁j\in\mathbb{J}, which follows from (5.7). Assume that (5.8) holds for nn\in\mathbb{N}, j𝕁j\in\mathbb{J}, and m=mM1m=m^{\prime}\leq M-1, i.e. |vn,jm|<emΔτTϵgv0|v_{n,j}^{m^{\prime}}|<e^{m^{\prime}\frac{\Delta\tau}{T}\epsilon_{g}}\left\|v^{0}\right\|_{\infty}, for nn\in\mathbb{N} and j𝕁j\in\mathbb{J}. We now show that (5.8) also holds for m=m+1m=m^{\prime}+1. The continuation value un,jm+1u_{n,j}^{m^{\prime}+1}, for nn\in\mathbb{N} and j𝕁j\in\mathbb{J}, satisfies |un,jm+1|ΔxΔyld𝕁φl,dgnl,jd|vl,dm||u_{n,j}^{m^{\prime}+1}|\leq\Delta x\Delta y\sideset{}{{}^{\boldsymbol{*}}}{\sum}_{l\in\mathbb{N}^{\dagger}}^{d\in\mathbb{J}^{\dagger}}\varphi_{l,d}~{}g_{n-l,j-d}~{}|v^{m^{\prime}}_{l,d}|\leq\ldots

(i)emΔτTϵgv0ΔxΔyld𝕁φl,dgnl,jd(ii)e(m+1)ΔτTϵgv0.\displaystyle\ldots\overset{(i)}{\leq}e^{m^{\prime}\frac{\Delta\tau}{T}\epsilon_{g}}\left\|v^{0}\right\|_{\infty}\Delta x\Delta y\sideset{}{{}^{\boldsymbol{*}}}{\sum}_{l\in\mathbb{N}^{\dagger}}^{d\in\mathbb{J}^{\dagger}}\varphi_{l,d}~{}g_{n-l,j-d}\,\overset{\text{(ii)}}{\leq}e^{(m^{\prime}+1)\frac{\Delta\tau}{T}\epsilon_{g}}\left\|v^{0}\right\|_{\infty}. (5.10)

Here, (i) is due to induction hypothesis, and (ii) is due to Lemma 5.2. Using (5.10) and (5.7), we have

|vn,jm+1|max{|un,jm+1|,|v^n,j|}e(m+1)ΔτTϵgv0.|v_{n,j}^{m^{\prime}+1}|\leq\max\{|u_{n,j}^{m^{\prime}+1}|,|\hat{v}_{n,j}|\}\leq e^{(m^{\prime}+1)\frac{\Delta\tau}{T}\epsilon_{g}}\left\|v^{0}\right\|_{\infty}.

This concludes the proof. ∎

5.3 Consistency

While equations (4.14), (4.15), and (4.17) are convenient for computation, they are not well-suited for analysis. To verify consistency in the viscosity sense, it is more convenient to rewrite them in a single equation that encompasses the interior and boundary sub-domains. To this end, for grid point (xn,yj,τm+1)Ωin(x_{n},y_{j},\tau_{m+1})\in\Omega_{\scalebox{0.7}{\text{in}}}, we define operator 𝒞n,jm+1()𝒞n,jm+1(h,vn,jm+1,{vl,dm} \Let@\restore@math@cr\default@tag lNdJ )=\mathcal{C}_{n,j}^{m+1}(\cdot)\equiv\mathcal{C}_{n,j}^{m+1}\bigg{(}h,v_{n,j}^{m+1},\left\{v_{l,d}^{m}\right\}_{\vbox{\Let@\restore@math@cr\default@tag\halign{\hfil$\m@th\scriptstyle#$&$\m@th\scriptstyle{}#$\cr l\in\mathbb{N}^{\dagger}\\ d\in\mathbb{J}^{\dagger}\crcr}}}\bigg{)}=\ldots

=min{1Δτ(vn,jm+1ΔxΔyld𝕁φl,dgnl,jdvl,dm),vn,jm+1v^n,j}.\displaystyle\ldots=\min\bigg{\{}\frac{1}{\Delta\tau}\bigg{(}v_{n,j}^{m+1}-\Delta x\Delta y\sideset{}{{}^{\boldsymbol{*}}}{\sum}_{l\in\mathbb{N}^{\dagger}}^{d\in\mathbb{J}^{\dagger}}\varphi_{l,d}~{}g_{n-l,j-d}~{}v^{m}_{l,d}\bigg{)},~{}v_{n,j}^{m+1}-\hat{v}_{n,j}\bigg{\}}. (5.11)

Using 𝒞n,jm+1()\mathcal{C}_{n,j}^{m+1}(\cdot) defined in (5.11), our numerical scheme at the reference node 𝐱=(xn,yj,τm+1)Ω{\bf{x}}=(x_{n},y_{j},\tau_{m+1})\in\Omega can be rewritten in an equivalent form as follows

0=n,jm+1(h,vn,jm+1,{vl,dm} \Let@\restore@math@cr\default@tag lN dJ ){𝒞n,jm+1()𝐱Ωin,vn,jm+1v^n,jerτm+1𝐱Ωout,vn,jm+1v^n,j𝐱Ωτ0,\displaystyle 0=\mathcal{H}_{n,j}^{m+1}\bigg{(}h,v_{n,j}^{m+1},\left\{v_{l,d}^{m}\right\}_{\vbox{\Let@\restore@math@cr\default@tag\halign{\hfil$\m@th\scriptstyle#$&$\m@th\scriptstyle{}#$\cr l\in\mathbb{N}^{\dagger}\\ d\in\mathbb{J}^{\dagger}\crcr}}}\bigg{)}\equiv\left\{\begin{array}[]{lllllllllllll}\mathcal{C}_{n,j}^{m+1}\left(\cdot\right)&\quad{\bf{x}}\in\Omega{\scalebox{0.7}{\text{in}}},\\ v_{n,j}^{m+1}-\hat{v}_{n,j}e^{-r\tau_{m+1}}&\quad{\bf{x}}\in\Omega_{\scalebox{0.7}{\text{out}}},\\ v_{n,j}^{m+1}-\hat{v}_{n,j}&\quad{\bf{x}}\in\Omega_{\tau_{0}},\end{array}\right. (5.17)

where the sub-domains Ωin\Omega{\scalebox{0.7}{\text{in}}}, Ωout\Omega_{\scalebox{0.7}{\text{out}}} and Ωτ0\Omega_{\tau_{0}} are defined in (4.1).

To establish convergence of the numerical scheme to the viscosity solution in Ωin\Omega_{\scalebox{0.7}{\text{in}}}, we first consider an intermediate result presented in Lemma 5.4 below.

Lemma 5.4.

Suppose the discretization parameter hh satisfies (5.3). Let ϕ\phi be a test function in (𝒞)(2×[0,T])(\mathcal{B}\cap\mathcal{C}^{\infty})(\mathbb{R}^{2}\times[0,T]). For 𝐱n,jm=(xn,yj,τm)Ωin{\bf{x}}_{n,j}^{m}=(x_{n},y_{j},\tau_{m})\in\Omega_{\scalebox{0.7}{\text{in}}}, where nn\in\mathbb{N}, j𝕁j\in\mathbb{J}, and m{0,,M}m\in\{0,\ldots,M\}, with ϕn,jm=ϕ(𝐱n,jm)\phi_{n,j}^{m}=\phi({\bf{x}}_{n,j}^{m}), and for sufficiently small hh, we have

ΔxΔyld𝕁gnl,jdϕl,dm\displaystyle\Delta x\Delta y\sideset{}{{}^{\boldsymbol{*}}}{\sum}_{l\in\mathbb{N}^{\dagger}}^{d\in\mathbb{J}^{\dagger}}g_{n-l,j-d}~{}\phi_{l,d}^{m} =ϕn,jm+Δτ[ϕ+𝒥ϕ]n,jm+𝒪(h2).\displaystyle=\phi_{n,j}^{m}+\Delta\tau\left[\mathcal{L}\phi+\mathcal{J}\phi\right]_{n,j}^{m}+\mathcal{O}(h^{2}). (5.18)

Here, [ϕ]n,jm=[ϕ](𝐱n,jm)\left[\mathcal{L}\phi\right]_{n,j}^{m}=[\mathcal{L}\phi]({\bf{x}}_{n,j}^{m}) and [𝒥ϕ]n,jm=[𝒥ϕ](𝐱n,jm)\left[\mathcal{J}\phi\right]_{n,j}^{m}=[\mathcal{J}\phi]({\bf{x}}_{n,j}^{m}).

Proof of Lemma 5.4.

Lemma 5.4 can be proved using similar techniques in [51][Lemmas 5.2]. Starting from the discrete convolution on the left-hand-side (lhs) of (5.18), we need to recover an associated convolution integral of the form (4.4) which is posed on an infinite integration region. Since for an arbitrary fixed τm\tau_{m}, ϕ(x,y,τm)\phi(x,y,\tau_{m}) is not necessarily in L1(2)L_{1}(\mathbb{R}^{2}), standard mollification techniques can be used to obtain a mollifier χ(x,y,τm)L1(2)\chi(x,y,\tau_{m})\in L_{1}(\mathbb{R}^{2}) which agrees with ϕ(x,y,τm)\phi(x,y,\tau_{m}) on 𝐃\mathbf{D}^{\dagger} [49], and has bounded derivatives up to second order across 2\mathbb{R}^{2}. For brevity, instead of χ(x,y,τm)\chi(x,y,\tau_{m}), we will write χ(x,y)\chi(x,y). Recalling different errors outlined in (5.4), we have

ΔxΔyldφl,dgnl,jdϕl,dm\displaystyle\Delta x\Delta y\sideset{}{{}^{\boldsymbol{*}}}{\sum}_{l\in\mathbb{N}^{\dagger}}^{d\in\mathbb{N}^{\dagger}}\varphi_{l,d}~{}g_{n-l,j-d}~{}\phi_{l,d}^{m}~{} =(i)ΔxΔyldφl,dg(xnl,yjd,Δτ)ϕl,dm+f\displaystyle\overset{\text{(i)}}{=}\Delta x\Delta y\sideset{}{{}^{\boldsymbol{*}}}{\sum}_{l\in\mathbb{N}^{\dagger}}^{d\in\mathbb{N}^{\dagger}}\varphi_{l,d}~{}g(x_{n-l},y_{j-d},\Delta\tau)~{}\phi_{l,d}^{m}~{}+\scalebox{0.9}{$\mathcal{E}_{f}$}
=(ii)2g(xnx,yjy,Δτ)χ(x,y)𝑑x𝑑y+f+b+c\displaystyle\overset{\text{(ii)}}{=}\iint_{\mathbb{R}^{2}}g(x_{n}-x,y_{j}-y,\Delta\tau)~{}\chi(x,y)~{}dx~{}dy+\scalebox{0.9}{$\mathcal{E}_{f}$}+\scalebox{0.9}{$\mathcal{E}_{b}$}+\scalebox{0.9}{$\mathcal{E}_{c}$}
=(iii)[χg](xn,yj)+𝒪(h2)+𝒪(he1/h)+𝒪(h2)\displaystyle\overset{\text{(iii)}}{=}[\chi*g](x_{n},y_{j})+\mathcal{O}(h^{2})+\mathcal{O}\big{(}he^{-1/h}\big{)}+\mathcal{O}(h^{2})
=1[[χ](ηx,ηy)G(ηx,ηy,Δτ)](xn,yj)+𝒪(h2).\displaystyle=\mathcal{F}^{-1}\left[\mathcal{F}\left[\chi\right](\eta_{x},\eta_{y})~{}G\left(\eta_{x},\eta_{y},\Delta\tau\right)\right](x_{n},y_{j})+\mathcal{O}(h^{2}). (5.19)

Here, in (i), the error f\mathcal{E}_{f} is the series truncation error; in (ii), two additional errors b\mathcal{E}_{b} and c\mathcal{E}_{c} are due to the boundary truncation error and the numerical integration error, respectively; in (iii) [χg][\chi*g] denotes the convolution of χ(x,y)\chi(x,y) and g(x,y,Δτ)g(x,y,\Delta\tau); in addition, f=𝒪(h2)\scalebox{0.9}{$\mathcal{E}_{f}$}=\mathcal{O}(h^{2}), b=𝒪(he1/h)\scalebox{0.9}{$\mathcal{E}_{b}$}=\mathcal{O}\big{(}he^{-1/h}\big{)} and c=𝒪(h2)\scalebox{0.9}{$\mathcal{E}_{c}$}=\mathcal{O}(h^{2}) as previously discussed in (5.4). In (5.3), with Ψ(ηx,ηy)\Psi(\eta_{\scalebox{0.6}{$x$}},\eta_{\scalebox{0.6}{$y$}}) given in (3.3), expanding G(ηx,ηy;Δτ)=eΨ(ηx,ηy)ΔτG(\eta_{\scalebox{0.6}{$x$}},\eta_{\scalebox{0.6}{$y$}};\Delta\tau)=e^{\Psi(\eta_{\scalebox{0.6}{$x$}},\eta_{\scalebox{0.6}{$y$}})\Delta\tau} using a Taylor series gives

G(ηx,ηy;Δτ)1+Ψ(ηx,ηy)Δτ+(ηx,ηy)Δτ2,(ηx,ηy)=Ψ(ηx,ηy)2eξΨ(ηx,ηy)2,ξ(0,Δτ).G(\eta_{\scalebox{0.6}{$x$}},\eta_{\scalebox{0.6}{$y$}};\Delta\tau)\approx 1+\Psi(\eta_{\scalebox{0.6}{$x$}},\eta_{\scalebox{0.6}{$y$}})\Delta\tau+\mathcal{R}(\eta_{\scalebox{0.6}{$x$}},\eta_{\scalebox{0.6}{$y$}})\Delta\tau^{2},\quad\mathcal{R}(\eta_{\scalebox{0.6}{$x$}},\eta_{\scalebox{0.6}{$y$}})=\frac{\Psi(\eta_{\scalebox{0.6}{$x$}},\eta_{\scalebox{0.6}{$y$}})^{2}e^{\xi\Psi(\eta_{\scalebox{0.6}{$x$}},\eta_{\scalebox{0.6}{$y$}})}}{2},\quad\xi\in(0,\Delta\tau). (5.20)

Therefore,

[χg](xn,yj)\displaystyle\left[\chi*g\right](x_{n},y_{j}) =\displaystyle= 1[[χ](ηx,ηy)(1+Ψ(ηx,ηy)Δτ+(ηx,ηy)Δτ2))](xn,yj)\displaystyle\mathcal{F}^{-1}\left[\mathcal{F}\left[\chi\right]\!(\eta_{\scalebox{0.6}{$x$}},\eta_{\scalebox{0.6}{$y$}})~{}\left(1+\Psi(\eta_{\scalebox{0.6}{$x$}},\eta_{\scalebox{0.6}{$y$}})\Delta\tau+\mathcal{R}(\eta_{\scalebox{0.6}{$x$}},\eta_{\scalebox{0.6}{$y$}})\Delta\tau^{2})\right)\right]\left(x_{n},y_{j}\right) (5.21)
=\displaystyle= χ(xn,yj)+Δτ1[[χ](ηx,ηy)Ψ(ηx,ηy)](xn,yj)\displaystyle\chi(x_{n},y_{j})+\Delta\tau\mathcal{F}^{-1}\left[\mathcal{F}\left[\chi\right]\!(\eta_{\scalebox{0.6}{$x$}},\eta_{\scalebox{0.6}{$y$}})~{}\Psi\left(\eta_{\scalebox{0.6}{$x$}},\eta_{\scalebox{0.6}{$y$}}\right)\right](x_{n},y_{j})
+Δτ21[[χ](ηx,ηy)(ηx,ηy)](xn,yj).\displaystyle\qquad+\Delta\tau^{2}\mathcal{F}^{-1}\left[\mathcal{F}\left[\chi\right]\!(\eta_{\scalebox{0.6}{$x$}},\eta_{\scalebox{0.6}{$y$}})~{}\mathcal{R}(\eta_{\scalebox{0.6}{$x$}},\eta_{\scalebox{0.6}{$y$}})\right](x_{n},y_{j}).

Here, the first term in (5.21), namely χ(xn,yj)χ(xn,yj,τm)\chi(x_{n},y_{j})\equiv\chi(x_{n},y_{j},\tau_{m}) is simply ϕn,jm\phi_{n,j}^{m} by construction of χ()\chi(\cdot). For the second term in (5.21), we focus on [χ](ηx,ηy)Ψ(ηx,ηy)\mathcal{F}\left[\chi\right]\!(\eta_{\scalebox{0.6}{$x$}},\eta_{\scalebox{0.6}{$y$}})~{}\Psi\left(\eta_{\scalebox{0.6}{$x$}},\eta_{\scalebox{0.6}{$y$}}\right). Recalling the closed-form expression for Ψ(ηx,ηy)\Psi(\eta_{\scalebox{0.6}{$x$}},\eta_{\scalebox{0.6}{$y$}}) in (3.3), we obtain [χ](ηx,ηy)Ψ(ηx,ηy)\mathcal{F}[\chi](\eta_{\scalebox{0.6}{$x$}},\eta_{\scalebox{0.6}{$y$}})\Psi(\eta_{\scalebox{0.6}{$x$}},\eta_{\scalebox{0.6}{$y$}})

[χ](ηx,ηy)Ψ(ηx,ηy)\displaystyle\mathcal{F}[\chi](\eta_{\scalebox{0.6}{$x$}},\eta_{\scalebox{0.6}{$y$}})\Psi(\eta_{\scalebox{0.6}{$x$}},\eta_{\scalebox{0.6}{$y$}}) =[σx22χxx+σy22χyy+(rλκxσx22)χx+(rλκyσy22)χy+ρσxσyχxy\displaystyle=\mathcal{F}\big{[}\frac{\sigma_{x}^{2}}{2}\chi_{xx}+\frac{\sigma_{y}^{2}}{2}\chi_{yy}+(r-\lambda\kappa_{x}-\frac{\sigma_{x}^{2}}{2})\chi_{x}+(r-\lambda\kappa_{y}-\frac{\sigma_{y}^{2}}{2})\chi_{y}+\rho\sigma_{x}\sigma_{y}\chi_{xy}-\ldots
(r+λ)χ+λ2χ(x+sx,y+sy)f(sx,sy)dsxdsy](ηx,ηy)\displaystyle\qquad\ldots-(r+\lambda)\chi+\lambda\int_{\mathbb{R}^{2}}\chi(x+s_{x},y+s_{y})f(s_{x},s_{y})ds_{x}ds_{y}\big{]}(\eta_{\scalebox{0.6}{$x$}},\eta_{\scalebox{0.6}{$y$}})
=[χ+𝒥χ](ηx,ηy).\displaystyle=\mathcal{F}\left[\mathcal{L}\chi+\mathcal{J}\chi\right](\eta_{\scalebox{0.6}{$x$}},\eta_{\scalebox{0.6}{$y$}}). (5.22)

Therefore, the second term in (5.21) becomes

Δτ1[[χ](ηx,ηy)Ψ(ηx,ηy)](xn,yj)=Δτ[χ+𝒥χ](𝐱n,jm)=Δτ[χ+𝒥χ]n,jm.\displaystyle\Delta\tau\mathcal{F}^{-1}\left[\mathcal{F}\left[\chi\right]\!(\eta_{\scalebox{0.6}{$x$}},\eta_{\scalebox{0.6}{$y$}})~{}\Psi\left(\eta_{\scalebox{0.6}{$x$}},\eta_{\scalebox{0.6}{$y$}}\right)\right](x_{n},y_{j})=\Delta\tau\left[\mathcal{L}\chi+\mathcal{J}\chi\right]({\bf{x}}_{n,j}^{m})=\Delta\tau\left[\mathcal{L}\chi+\mathcal{J}\chi\right]_{n,j}^{m}. (5.23)

For the third term Δτ21[[χ](ηx,ηy)(ηx,ηy)](xn,yj)\Delta\tau^{2}\mathcal{F}^{-1}\left[\mathcal{F}\left[\chi\right]\!(\eta_{\scalebox{0.6}{$x$}},\eta_{\scalebox{0.6}{$y$}})~{}\mathcal{R}(\eta_{\scalebox{0.6}{$x$}},\eta_{\scalebox{0.6}{$y$}})\right](x_{n},y_{j}) in (5.21), we have

Δτ2|1[[χ](ηx,ηy)(ηx,ηy)](xn,yj)|\displaystyle\Delta\tau^{2}\left|\mathcal{F}^{-1}\left[\mathcal{F}[\chi](\eta_{\scalebox{0.6}{$x$}},\eta_{\scalebox{0.6}{$y$}})~{}\mathcal{R}(\eta_{\scalebox{0.6}{$x$}},\eta_{\scalebox{0.6}{$y$}})\right]\!(x_{n},y_{j})\right|
=Δτ2(2π)2|2ei(ηxxn+ηyyj)(ηx,ηy)[2ei(ηxx+ηyy)χ(x,y)𝑑x𝑑y]𝑑ηx𝑑ηy|\displaystyle\qquad\qquad=\frac{\Delta\tau^{2}}{(2\pi)^{2}}\bigg{|}\iint_{\mathbb{R}^{2}}e^{i(\eta_{\scalebox{0.6}{$x$}}x_{n}+\eta_{\scalebox{0.6}{$y$}}y_{j})}\mathcal{R}(\eta_{\scalebox{0.6}{$x$}},\eta_{\scalebox{0.6}{$y$}})\bigg{[}\iint_{\mathbb{R}^{2}}e^{-i(\eta_{\scalebox{0.6}{$x$}}x+\eta_{\scalebox{0.6}{$y$}}y)}\chi(x,y)~{}dx~{}dy\bigg{]}d\eta_{\scalebox{0.6}{$x$}}d\eta_{\scalebox{0.6}{$y$}}\bigg{|}
Δτ22|χ(x,y)|𝑑x𝑑y2|(ηx,ηy)|𝑑ηx𝑑ηy.\displaystyle\qquad\qquad\leq\Delta\tau^{2}\iint_{\mathbb{R}^{2}}\left|\chi(x,y)\right|~{}dxdy~{}\iint_{\mathbb{R}^{2}}\left|\mathcal{R}(\eta_{\scalebox{0.6}{$x$}},\eta_{\scalebox{0.6}{$y$}})\right|~{}d\eta_{\scalebox{0.6}{$x$}}d\eta_{\scalebox{0.6}{$y$}}. (5.24)

Noting (ηx,ηy)=Ψ(ηx,ηy)2eξΨ(ηx,ηy)2\displaystyle\mathcal{R}(\eta_{\scalebox{0.6}{$x$}},\eta_{\scalebox{0.6}{$y$}})=\frac{\Psi(\eta_{\scalebox{0.6}{$x$}},\eta_{\scalebox{0.6}{$y$}})^{2}e^{\xi\Psi(\eta_{\scalebox{0.6}{$x$}},\eta_{\scalebox{0.6}{$y$}})}}{2}, as shown in (5.20), where a closed-form expression for Ψ(ηx,ηy)\Psi(\eta_{\scalebox{0.6}{$x$}},\eta_{\scalebox{0.6}{$y$}}) is given in (3.3), we obtain

|(ηx,ηy)|=|(Ψ(ηx,ηy))2|2exp(ξ(σx2ηx22σy2ηy22ρσxσyηxηy(r+λ))).|\mathcal{R}(\eta_{\scalebox{0.6}{$x$}},\eta_{\scalebox{0.6}{$y$}})|=\frac{|(\Psi(\eta_{\scalebox{0.6}{$x$}},\eta_{\scalebox{0.6}{$y$}}))^{2}|}{2}\exp\big{(}\xi\big{(}-\frac{\sigma_{x}^{2}\eta_{\scalebox{0.6}{$x$}}^{2}}{2}-\frac{\sigma_{y}^{2}\eta_{\scalebox{0.6}{$y$}}^{2}}{2}-\rho\sigma_{x}\sigma_{y}\eta_{\scalebox{0.6}{$x$}}\eta_{\scalebox{0.6}{$y$}}-(r+\lambda)\big{)}\big{)}.

The term |(Ψ(ηx,ηy))2||(\Psi(\eta_{\scalebox{0.6}{$x$}},\eta_{\scalebox{0.6}{$y$}}))^{2}| can be written in the form |Ψ|2=k+q=4k,q0Ckqηxkηyq|\Psi|^{2}=\sum_{\begin{subarray}{c}k+q=4\\ k,q\geq 0\end{subarray}}C_{kq}\eta_{\scalebox{0.6}{$x$}}^{k}\eta_{\scalebox{0.6}{$y$}}^{q}, where CkqC_{kq} are bounded coefficients. This is a quartic polynomial in ηx\eta_{\scalebox{0.6}{$x$}} and ηy\eta_{\scalebox{0.6}{$y$}}. Furthermore, the exponent of exponential term is bounded by

12σx2ηx212σy2ηy2ρσxσyηxηy(r+λ)12σx2ηx212σy2ηy2+|ρ|σxσy|ηxηy|-\frac{1}{2}\sigma_{\scalebox{0.6}{$x$}}^{2}\eta_{\scalebox{0.6}{$x$}}^{2}-\frac{1}{2}\sigma_{\scalebox{0.6}{$y$}}^{2}\eta_{\scalebox{0.6}{$y$}}^{2}-\rho\sigma_{\scalebox{0.6}{$x$}}\sigma_{\scalebox{0.6}{$y$}}\eta_{\scalebox{0.6}{$x$}}\eta_{\scalebox{0.6}{$y$}}-(r+\lambda)\leq-\frac{1}{2}\sigma_{\scalebox{0.6}{$x$}}^{2}\eta_{\scalebox{0.6}{$x$}}^{2}-\frac{1}{2}\sigma_{\scalebox{0.6}{$y$}}^{2}\eta_{\scalebox{0.6}{$y$}}^{2}+|\rho|\sigma_{\scalebox{0.6}{$x$}}\sigma_{\scalebox{0.6}{$y$}}|\eta_{\scalebox{0.6}{$x$}}\eta_{\scalebox{0.6}{$y$}}|

For |ρ|<1|\rho|<1, we have |ρ|σxσy|ηxηy|<12(σx2ηx2+σy2ηy2)|\rho|\sigma_{\scalebox{0.6}{$x$}}\sigma_{\scalebox{0.6}{$y$}}|\eta_{\scalebox{0.6}{$x$}}\eta_{\scalebox{0.6}{$y$}}|<\frac{1}{2}(\sigma_{\scalebox{0.6}{$x$}}^{2}\eta_{\scalebox{0.6}{$x$}}^{2}+\sigma_{\scalebox{0.6}{$y$}}^{2}\eta_{\scalebox{0.6}{$y$}}^{2}). Therefore, we conclude that for |ρ|<1|\rho|<1, the term 2|(ηx,ηy)|𝑑ηx𝑑ηy\iint_{\mathbb{R}^{2}}\left|\mathcal{R}(\eta_{\scalebox{0.6}{$x$}},\eta_{\scalebox{0.6}{$y$}})\right|~{}d\eta_{\scalebox{0.6}{$x$}}d\eta_{\scalebox{0.6}{$y$}} is bounded since

2|ηx|k|ηy|qe12σx2ηx212σy2ηy2ρσxσyηxηy𝑑ηx𝑑ηy,k+q=4,k,q0,\iint_{\mathbb{R}^{2}}|\eta_{\scalebox{0.6}{$x$}}|^{k}|\eta_{\scalebox{0.6}{$y$}}|^{q}~{}e^{-\frac{1}{2}\sigma_{\scalebox{0.6}{$x$}}^{2}\eta_{\scalebox{0.6}{$x$}}^{2}-\frac{1}{2}\sigma_{\scalebox{0.6}{$y$}}^{2}\eta_{\scalebox{0.6}{$y$}}^{2}-\rho\sigma_{\scalebox{0.6}{$x$}}\sigma_{\scalebox{0.6}{$y$}}\eta_{\scalebox{0.6}{$x$}}\eta_{\scalebox{0.6}{$y$}}}~{}d\eta_{\scalebox{0.6}{$x$}}~{}d\eta_{\scalebox{0.6}{$y$}},\quad k+q=4,~{}k,q\geq 0,

is also bounded. Together with χ(x,y)L1(2)\chi(x,y)\in L_{1}(\mathbb{R}^{2}), the rhs of (5.3) is 𝒪(Δτ2)\mathcal{O}(\Delta\tau^{2}), i.e.

Δτ2|1[[χ](ηx,ηy)(ηx,ηy)](xn,yj)|=𝒪(Δτ2)\displaystyle\Delta\tau^{2}\left|\mathcal{F}^{-1}\left[\mathcal{F}[\chi](\eta_{\scalebox{0.6}{$x$}},\eta_{\scalebox{0.6}{$y$}})~{}\mathcal{R}(\eta_{\scalebox{0.6}{$x$}},\eta_{\scalebox{0.6}{$y$}})\right]\!(x_{n},y_{j})\right|=\mathcal{O}(\Delta\tau^{2}) (5.25)

Substituting (5.23) and (5.25) back into (5.21), noting (5.3) and χ(x,y,τm)=ϕ(x,y,τm)\chi(x,y,\tau_{m})=\phi(x,y,\tau_{m}) for all (x,y)𝐃(x,y)\in\mathbf{D}^{\dagger}, we have

ΔxΔyldφl,dgnl,jdϕl,dm=ϕn,jm+Δτ[ϕ+𝒥ϕ]n,jm+𝒪(h2).\displaystyle\Delta x\Delta y\sideset{}{{}^{\boldsymbol{*}}}{\sum}_{l\in\mathbb{N}^{\dagger}}^{d\in\mathbb{N}^{\dagger}}\varphi_{l,d}~{}g_{n-l,j-d}~{}\phi_{l,d}^{m}~{}=~{}\phi_{n,j}^{m}+\Delta\tau\left[\mathcal{L}\phi+\mathcal{J}\phi\right]_{n,j}^{m}+\mathcal{O}(h^{2}).

This concludes the proof. ∎

Below, we state the key supporting lemma related to local consistency of our numerical scheme (5.17).

Lemma 5.5 (Local consistency).

Suppose that (i) the discretization parameter hh satisfies (5.3). Then, for any test function ϕ(Ω)𝒞(Ω)\phi\in\mathcal{B}(\Omega^{\scalebox{0.5}{$\infty$}})\cap\mathcal{C}^{\infty}(\Omega^{\scalebox{0.5}{$\infty$}}), with ϕn,jm=ϕ(𝐱n,jm)\phi_{n,j}^{m}=\phi\left({\bf{x}}_{n,j}^{m}\right) and 𝐱(xn,yj,τm+1)Ω{\bf{x}}\coloneqq(x_{n},y_{j},\tau_{m+1})\in\Omega, and for a sufficiently small hh, we have

n,jm+1(h,ϕn,jm+1+ξ,{ϕl,dm+ξ} \Let@\restore@math@cr\default@tag lN dJ )={Fin(,)+c(𝐱)ξ+𝒪(h)𝐱Ωin,Fout(,)𝐱Ωout;Fτ0(,)𝐱Ωτ0.\displaystyle\mathcal{H}_{n,j}^{m+1}\bigg{(}h,\phi_{n,j}^{m+1}+\xi,\left\{\phi_{l,d}^{m}+\xi\right\}_{\vbox{\Let@\restore@math@cr\default@tag\halign{\hfil$\m@th\scriptstyle#$&$\m@th\scriptstyle{}#$\cr l\in\mathbb{N}^{\dagger}\\ d\in\mathbb{J}^{\dagger}\crcr}}}\bigg{)}=\left\{\begin{array}[]{llllllllllr}F_{\scalebox{0.7}{\text{in}}}\left(\cdot,\cdot\right)&\!\!\!\!\!+~{}c({\bf{x}})\xi+\mathcal{O}(h)&&{\bf{x}}\in\Omega_{\scalebox{0.7}{\text{in}}},\\ F_{\scalebox{0.7}{\text{out}}}\left(\cdot,\cdot\right)&&&{\bf{x}}\in\Omega_{\scalebox{0.7}{\text{out}}};\\ F_{\tau_{0}}\left(\cdot,\cdot\right)&&&{\bf{x}}\in\Omega_{\tau_{0}}.\end{array}\right. (5.31)

Here, ξ\xi is a constant, and c()c(\cdot) is a bounded function satisfying |c(𝐱)|max(r,1)|c({\bf{x}})|\leq\max(r,1) for all 𝐱Ω{\bf{x}}~{}\in~{}\Omega. The operators Fin(,)F_{\scalebox{0.7}{\text{in}}}(\cdot,\cdot), Fout(,)F_{\scalebox{0.7}{\text{out}}}(\cdot,\cdot), and Fτ0(,)F_{\tau_{0}}(\cdot,\cdot), defined in (2.12), are functions of (𝐱,ϕ(𝐱))\left({\bf{x}},\phi\left({\bf{x}}\right)\right).

Proof of Lemma 5.5.

We now show that the first equation of (5.31) is true, that is,

n,jm+1()\displaystyle\mathcal{H}_{n,j}^{m+1}(\cdot) \displaystyle\equiv 𝒞n,jm+1()=Fin(𝐱,ϕ(𝐱))+c(𝐱)ξ+𝒪(h)\displaystyle\mathcal{C}_{n,j}^{m+1}\left(\cdot\right)=F_{\scalebox{0.7}{\text{in}}}\left({\bf{x}},\phi\left({\bf{x}}\right)\right)+c({\bf{x}})\xi+\mathcal{O}(h)
ifxmin<xn<xmax,ymin<yj<ymax,0<τm+1T.\displaystyle\qquad\qquad\text{if}~{}x_{\min}<x_{n}<x_{\max},~{}y_{\min}<y_{j}<y_{\max},~{}0<\tau_{m+1}\leq T.

where operators 𝒞n,jm+1()\mathcal{C}_{n,j}^{m+1}(\cdot) is defined in (5.11). In this case, the first argument of the min(,)\min(\cdot,\cdot) operator in 𝒞n,jm+1()\mathcal{C}_{n,j}^{m+1}(\cdot) is written as follows

1st1^{st} arg =1Δτ[ϕn,jm+1+ξΔxΔyld𝕁φl,dgnl,jd(ϕl,dm+ξ)]\displaystyle=\frac{1}{\Delta\tau}\bigg{[}\phi_{n,j}^{m+1}+\xi-\Delta x\Delta y\sideset{}{{}^{\boldsymbol{*}}}{\sum}_{l\in\mathbb{N}^{\dagger}}^{d\in\mathbb{J}^{\dagger}}\varphi_{l,d}~{}g_{n-l,j-d}~{}(\phi^{m}_{l,d}+\xi)\bigg{]}
=1Δτ[ϕn,jm+1(ΔxΔyld𝕁φl,dgnl,jdϕl,dm)+ξ(1ΔxΔyld𝕁φl,dgnl,jd)]\displaystyle=\frac{1}{\Delta\tau}\bigg{[}\phi_{n,j}^{m+1}-\bigg{(}\Delta x\Delta y\sideset{}{{}^{\boldsymbol{*}}}{\sum}_{l\in\mathbb{N}^{\dagger}}^{d\in\mathbb{J}^{\dagger}}\varphi_{l,d}~{}g_{n-l,j-d}~{}\phi^{m}_{l,d}\bigg{)}+\xi\bigg{(}1-\Delta x\Delta y\sideset{}{{}^{\boldsymbol{*}}}{\sum}_{l\in\mathbb{N}^{\dagger}}^{d\in\mathbb{J}^{\dagger}}\varphi_{l,d}~{}g_{n-l,j-d}\bigg{)}\bigg{]}
=(i)ϕn,jm+1ϕn,jmΔτ[ϕ+𝒥ϕ]n,jm+𝒪(h)+ξΔτ(1{ΔxΔyld𝕁φl,dgnl,jd}).\displaystyle\overset{\text{(i)}}{=}\frac{\phi_{n,j}^{m+1}-\phi_{n,j}^{m}}{\Delta\tau}-\left[\mathcal{L}\phi+\mathcal{J}\phi\right]_{n,j}^{m}+\mathcal{O}(h)+\frac{\xi}{\Delta\tau}\bigg{(}1-\bigg{\{}\Delta x\Delta y\sideset{}{{}^{\boldsymbol{*}}}{\sum}_{l\in\mathbb{N}^{\dagger}}^{d\in\mathbb{J}^{\dagger}}\varphi_{l,d}~{}g_{n-l,j-d}\bigg{\}}\bigg{)}. (5.32)

Here, (i) follows from Lemma 5.4, where the 𝒪(h2)\mathcal{O}(h^{2}) error term is divided by Δτ\Delta\tau, yielding 𝒪(h)\mathcal{O}(h). Regarding the second term of (5.3), we have 1ΔxΔyld𝕁φl,dgnl,jd=1-\Delta x\Delta y\sideset{}{{}^{\boldsymbol{*}}}{\sum}_{l\in\mathbb{N}^{\dagger}}^{d\in\mathbb{J}^{\dagger}}\varphi_{l,d}~{}g_{n-l,j-d}=\ldots

=(12g(xnx,yjy,Δτ)𝑑x𝑑y)+(2g(,,Δτ)𝑑x𝑑yΔxΔyld𝕁φl,dgnl,jd).\ldots=\bigg{(}1-\iint_{\mathbb{R}^{2}}g(x_{n}-x,y_{j}-y,\Delta\tau)dxdy\bigg{)}+\bigg{(}\iint_{\mathbb{R}^{2}}g(\cdot,\cdot,\Delta\tau)dxdy-\Delta x\Delta y\sideset{}{{}^{\boldsymbol{*}}}{\sum}_{l\in\mathbb{N}^{\dagger}}^{d\in\mathbb{J}^{\dagger}}\varphi_{l,d}~{}g_{n-l,j-d}\bigg{)}. (5.33)

The first term of (5.33) is simply 1erΔτ=rΔτ+𝒪(h2)1-e^{-r\Delta\tau}=r\Delta\tau+\mathcal{O}(h^{2}), due to (5.6). The second term of (5.33) is simply 𝒪(h2)+𝒪(he1/h)=𝒪(h2)\mathcal{O}(h^{2})+\mathcal{O}(he^{-1/h})=\mathcal{O}(h^{2}) due to infinite series truncation error, numerical integration error, and boundary truncation error, as noted earlier. Thus, the second term of (5.3) becomes

ξΔτ(1ΔxΔyld𝕁φl,dgnl,jd)=rξ+𝒪(h).\frac{\xi}{\Delta\tau}\bigg{(}1-\Delta x\Delta y\sideset{}{{}^{\boldsymbol{*}}}{\sum}_{l\in\mathbb{N}^{\dagger}}^{d\in\mathbb{J}^{\dagger}}\varphi_{l,d}~{}g_{n-l,j-d}\bigg{)}=r\xi+\mathcal{O}(h).

Substituting this result into (5.3) gives

1st1^{st} arg =ϕn,jm+1ϕn,jmΔτ[ϕ+𝒥ϕ]n,jm+rξ+𝒪(h)=(i)[ϕ/τϕ𝒥ϕ]n,jm+1+rξ+𝒪(h).\displaystyle=\frac{\phi_{n,j}^{m+1}-\phi_{n,j}^{m}}{\Delta\tau}-\left[\mathcal{L}\phi+\mathcal{J}\phi\right]_{n,j}^{m}+r\xi+\mathcal{O}(h)\overset{\text{(i)}}{=}\big{[}\partial\phi/\partial\tau-\mathcal{L}\phi-\mathcal{J}\phi\big{]}_{n,j}^{m+1}+r\xi+\mathcal{O}(h).

Here, in (i), we use (ϕ/τ)n,jm=(ϕ/τ)n,jm+1+𝒪(h)(\partial\phi/\partial\tau)_{n,j}^{m}=(\partial\phi/\partial\tau)_{n,j}^{m+1}+\mathcal{O}\left(h\right); for z{x,y}z\in\{x,y\}, (ϕ/z)n,jm=(ϕ/z)n,jm+1+𝒪(h)(\partial\phi/\partial z)_{n,j}^{m}=(\partial\phi/\partial z)_{n,j}^{m+1}+\mathcal{O}\left(h\right); and for the cross derivative term (2ϕ/xy)n,jm=(2ϕ/xy)n,jm+1+𝒪(h)(\partial^{2}\phi/\partial x\partial y)_{n,j}^{m}=(\partial^{2}\phi/\partial x\partial y)_{n,j}^{m+1}+\mathcal{O}\left(h\right).

The second argument of the min(,)\min(\cdot,\cdot) operator in 𝒞n,jm+1()\mathcal{C}_{n,j}^{m+1}(\cdot) is simply ϕn,jm+1+ξv^n,j\phi_{n,j}^{m+1}+\xi-\hat{v}_{n,j}. Thus,

𝒞n,jm+1()\displaystyle\mathcal{C}_{n,j}^{m+1}(\cdot) =min([ϕ/τϕ𝒥ϕ]n,jm+1+rξ+𝒪(h),ϕn,jm+1+ξv^n,j)\displaystyle=\min\left(\big{[}\partial\phi/\partial\tau-\mathcal{L}\phi-\mathcal{J}\phi\big{]}_{n,j}^{m+1}+r\xi+\mathcal{O}(h),~{}\phi_{n,j}^{m+1}+\xi-\hat{v}_{n,j}\right)
=min([ϕ/τϕ𝒥ϕ]n,jm+1,ϕn,jm+1v^n,j)+c(𝐱)ξ+𝒪(h),\displaystyle=\min\left(\big{[}\partial\phi/\partial\tau-\mathcal{L}\phi-\mathcal{J}\phi\big{]}_{n,j}^{m+1},~{}\phi_{n,j}^{m+1}-\hat{v}_{n,j}\right)+c({\bf{x}})\xi+\mathcal{O}(h),
=Fin(𝐱,ϕ(𝐱))+c(𝐱)ξ+𝒪(h).\displaystyle=F_{\scalebox{0.7}{\text{in}}}\left({\bf{x}},\phi\left({\bf{x}}\right)\right)+c({\bf{x}})\xi+\mathcal{O}(h).

Here, 𝐱=(xn,yj,τm+1)Ωin{\bf{x}}=(x_{n},y_{j},\tau_{m+1})\in\Omega_{\scalebox{0.7}{\text{in}}}, |c(𝐱)|max(r,1)|c({\bf{x}})|\leq\max(r,1). This proves the first equation in (5.31). The remaining equations in (5.31) can be proved using similar arguments with the first equation, and hence omitted for brevity. This concludes the proof. ∎

We now formally state a lemma regarding the consistency of scheme (5.17) in the viscosity sense.

Lemma 5.6.

Suppose that the discretization parameter hh satisfies (5.3). For all 𝐱^=(x^,y^,τ^)Ω{\bf{\hat{x}}}=(\hat{x},\hat{y},\hat{\tau})\in\Omega^{\scalebox{0.5}{$\infty$}}, and for any ϕ(Ω)𝒞(Ω)\phi\in\mathcal{B}(\Omega^{\scalebox{0.5}{$\infty$}})\cap\mathcal{C}^{\infty}(\Omega^{\scalebox{0.5}{$\infty$}}), with ϕn,jm=ϕ(𝐱n,jm)\phi_{n,j}^{m}=\phi\big{(}{\bf{x}}_{n,j}^{m}\big{)} and x = (xn,yj,τm+1)(x_{n},y_{j},\tau_{m+1}), the scheme (5.17) satisfies

lim sup \Let@\restore@math@cr\default@tag h0, x^x ξ 0 n,jm+1(h,ϕn,jm+1+ξ,{ϕl,dm+ξ} \Let@\restore@math@cr\default@tag lN dJ )F(𝐱^,ϕ(𝐱^),Dϕ(𝐱^),D2ϕ(𝐱^),𝒥ϕ(𝐱^)),\displaystyle\limsup_{\vbox{\Let@\restore@math@cr\default@tag\halign{\hfil$\m@th\scriptstyle#$&$\m@th\scriptstyle{}#$\cr h\to 0,&~{}{\bf{x}}\to{\bf{\hat{x}}}\\ \xi&\to 0\crcr}}}\mathcal{H}_{n,j}^{m+1}\bigg{(}h,\phi_{n,j}^{m+1}+\xi,\left\{\phi_{l,d}^{m}+\xi\right\}_{\vbox{\Let@\restore@math@cr\default@tag\halign{\hfil$\m@th\scriptstyle#$&$\m@th\scriptstyle{}#$\cr l\in\mathbb{N}^{\dagger}\\ d\in\mathbb{J}^{\dagger}\crcr}}}\bigg{)}\leq F^{*}\left({\bf{\hat{x}}},\phi({\bf{\hat{x}}}),D\phi({\bf{\hat{x}}}),D^{2}\phi({\bf{\hat{x}}}),\mathcal{J}\phi({\bf{\hat{x}}})\right), (5.38)
lim inf \Let@\restore@math@cr\default@tag h0, x^x ξ 0 n,jm+1(h,ϕn,jm+1+ξ,{ϕl,km+ξ} \Let@\restore@math@cr\default@tag lN dJ )F(𝐱^,ϕ(𝐱^),Dϕ(𝐱^),D2ϕ(𝐱^),𝒥ϕ(𝐱^)).\displaystyle\liminf_{\vbox{\Let@\restore@math@cr\default@tag\halign{\hfil$\m@th\scriptstyle#$&$\m@th\scriptstyle{}#$\cr h\to 0,&~{}{\bf{x}}\to{\bf{\hat{x}}}\\ \xi&\to 0\crcr}}}\mathcal{H}_{n,j}^{m+1}\bigg{(}h,\phi_{n,j}^{m+1}+\xi,\left\{\phi_{l,k}^{m}+\xi\right\}_{\vbox{\Let@\restore@math@cr\default@tag\halign{\hfil$\m@th\scriptstyle#$&$\m@th\scriptstyle{}#$\cr l\in\mathbb{N}^{\dagger}\\ d\in\mathbb{J}^{\dagger}\crcr}}}\bigg{)}\geq F_{*}\left({\bf{\hat{x}}},\phi({\bf{\hat{x}}}),D\phi({\bf{\hat{x}}}),D^{2}\phi({\bf{\hat{x}}}),\mathcal{J}\phi({\bf{\hat{x}}})\right). (5.43)

Here, F()F^{*}(\cdot) and F()F_{*}(\cdot) respectively are the u.s.c. and the l.s.c. envelop of the operator F()F(\cdot) defined in (2.11).

Proof of Lemma 5.6.

The proof is straightforward, deriving from Lemma 5.5 and the definitions of u.s.c. and l.s.c. envelopes given in (2.17). ∎

5.4 Monotonicity

Below, we present a result concerning the monotonicity of our scheme (5.17).

Lemma 5.7.

(Monotonicity) Scheme (5.17) satisfies

n,jm+1(h,vn,jm+1,{wl,dm})n,jm+1(h,vn,jm+1,{zl,dm})\displaystyle\mathcal{H}^{m+1}_{n,j}\left(h,v^{m+1}_{n,j},\left\{w^{m}_{l,d}\right\}\right)\leq\mathcal{H}^{m+1}_{n,j}\left(h,v^{m+1}_{n,j},\left\{z^{m}_{l,d}\right\}\right) (5.44)

for bounded {wl,dm}\left\{w^{m}_{l,d}\right\} and {zl,dm}\left\{z^{m}_{l,d}\right\} having {wl,dm}{zl,dm}\left\{w^{m}_{l,d}\right\}\geq\left\{z^{m}_{l,d}\right\}, where the inequality is understood in the component-wise sense.

Proof of Lemma 5.7.

Since scheme (5.17) is defined case-by-case, to establish (5.44), we show that each case satisfies (5.44). It is straightforward that the scheme satisfies (5.44) in Ωτ0{\Omega}_{\tau_{0}}) and Ωout{\Omega}_{{\scalebox{0.7}{\text{out}}}}. We now establish that 𝒞n,jm+1()\mathcal{C}_{n,j}^{m+1}\left(\cdot\right), as defined in (5.11) for Ωin\Omega_{\scalebox{0.7}{\text{in}}}, also satisfies (5.44). We have

𝒞n,jm+1(h,vn,jm+1,{wl,dm})𝒞n,jm+1(h,vn,jm+1,{zl,dm})\displaystyle\mathcal{C}^{m+1}_{n,j}\left(h,v^{m+1}_{n,j},\left\{w^{m}_{l,d}\right\}\right)-\mathcal{C}^{m+1}_{n,j}\left(h,v^{m+1}_{n,j},\left\{z^{m}_{l,d}\right\}\right)
=min{1Δτ(vn,jm+1ΔxΔyld𝕁φl,dgnl,jdwl,dm),vn,jm+1v^n,j}\displaystyle\quad=\min\bigg{\{}\frac{1}{\Delta\tau}\bigg{(}v_{n,j}^{m+1}-\Delta x\Delta y\sideset{}{{}^{\boldsymbol{*}}}{\sum}_{l\in\mathbb{N}^{\dagger}}^{d\in\mathbb{J}^{\dagger}}\varphi_{l,d}~{}g_{n-l,j-d}~{}w^{m}_{l,d}\bigg{)},~{}v_{n,j}^{m+1}-\hat{v}_{n,j}\bigg{\}}
min{1Δτ(vn,jm+1ΔxΔyld𝕁φl,dgnl,jdzl,dm),vn,jm+1v^n,j}\displaystyle\qquad\qquad-\min\bigg{\{}\frac{1}{\Delta\tau}\bigg{(}v_{n,j}^{m+1}-\Delta x\Delta y\sideset{}{{}^{\boldsymbol{*}}}{\sum}_{l\in\mathbb{N}^{\dagger}}^{d\in\mathbb{J}^{\dagger}}\varphi_{l,d}~{}g_{n-l,j-d}~{}z^{m}_{l,d}\bigg{)},~{}v_{n,j}^{m+1}-\hat{v}_{n,j}\bigg{\}}
(i)max{1ΔτΔxΔyld𝕁φl,dgnl,jd(zl,dm+1wl,dm+1),0}=(ii)0.\displaystyle\quad\overset{\text{(i)}}{\leq}\max\bigg{\{}\frac{1}{\Delta\tau}\Delta x\Delta y\sideset{}{{}^{\boldsymbol{*}}}{\sum}_{l\in\mathbb{N}^{\dagger}}^{d\in\mathbb{J}^{\dagger}}\varphi_{l,d}~{}g_{n-l,j-d}~{}(z_{l,d}^{m+1}-w_{l,d}^{m+1}),0\bigg{\}}\overset{\text{(ii)}}{=}0. (5.45)

Here, (i) is due to the fact that min(c1,c2)min(c3,c4)max(c1c3,c2c4)\min(c_{1},c_{2})-\min(c_{3},c_{4})\leq\max(c_{1}-c_{3},c_{2}-c_{4}) for real numbers c1,c2,c3,c4c_{1},c_{2},c_{3},c_{4}; (ii) follows from max(,0)=0\max(\cdot,0)=0, since zl,dm+1wl,dm+10z_{l,d}^{m+1}-w_{l,d}^{m+1}\leq 0 and gnl,jd0g_{n-l,j-d}\geq 0 for all nn\in\mathbb{N}, j𝕁j\in\mathbb{J}, ll\in\mathbb{N}^{\dagger}, and d𝕁d\in\mathbb{J}^{\dagger}. This concludes the proof. ∎

5.5 Main convergence result

We have demonstrated that the scheme 5.17 satisfies three key properties in Ω\Omega: (i) \ell_{\infty}-stability (Lemma 5.3), (ii) consistency in the viscosity sense (Lemma 5.6) and (iii) monotonicity (Lemma 5.7). With a provable strong comparison principle result for Ωin\Omega_{\scalebox{0.7}{\text{in}}} in Theorem 2.2, we now present the main convergence result of the paper.

Theorem 5.1 (Convergence to viscosity solution in Ωin\Omega_{\scalebox{0.7}{\text{in}}}).

Suppose that all the conditions for Lemmas 5.3), 5.6 and 5.7 are satisfied. As the parameter discretization h0h\to 0, the scheme (5.17) converges uniformly on Ωin\Omega_{\scalebox{0.7}{\text{in}}} to the unique continuous viscosity solution of the variational inequality (2.11) in the sense of Definition 2.1.

Proof of Theorem 5.1.

Our scheme is \ell_{\infty}-stable (Lemma 5.3), and consistent in the viscosity sense (Lemma 5.6) and monotone (Lemma 5.7). Since a comparison result holds in Ωin\Omega_{\scalebox{0.7}{\text{in}}} (Theorem 2.2), by [9, 4, 6], our scheme converges uniformly on Ωin\Omega_{\scalebox{0.7}{\text{in}}} to the unique continuous viscosity solution of the variational inequality (2.11). ∎

6 Numerical experiments

In this section, we present the selected numerical results of our monotone integration method (MI) applied to the American options under a two-asset Merton jump-diffusion model pricing problem.

6.1 Preliminary

For our numerical experiments, we evaluate three parameter sets for the two-asset Merton jump-diffusion model, labeled as Case I, Case II, and Case III. The modeling parameters for these tests, reproduced from [36][Table 1], are provided in Table 6.1. Notably, the parameters in Cases I, II, and III feature progressively larger jump intensity rates λ\lambda. As previously mentioned, we can choose P=PxPyP^{\dagger}=P^{\dagger}_{\scalebox{0.6}{$x$}}\wedge P^{\dagger}_{\scalebox{0.6}{$y$}} sufficiently large to remain constant across all refinement levels (as h0h\to 0). Due to the varying jump intensity rates, we select computational domains of appropriate size for each case, listed in Table 6.3, and confirm that these domains are sufficiently large through numerical validation in Subsection 6.2.3. Furthermore, values for xminx_{\scalebox{0.55}{$\min$}}^{\dagger}, xmaxx_{\scalebox{0.55}{$\max$}}^{\dagger}, yminy_{\scalebox{0.55}{$\min$}}^{\dagger}, and ymaxy_{\scalebox{0.55}{$\max$}}^{\dagger} were chosen according to (4.9). Unless specified otherwise, the details on mesh size and timestep refinement levels (“Refine. level”) used in all experiments are summarized in Table 6.2.


Case I Case II Case III
Diffusion parameters
σx\sigma_{\scalebox{0.6}{$x$}} 0.12 0.30 0.20
σy\sigma_{\scalebox{0.6}{$y$}} 0.15 0.30 0.30
ρ\rho 0.30 0.50 0.70
Jump parameters
λ\lambda 0.60 2 8
μ~x\tilde{\mu}_{\scalebox{0.6}{$x$}} -0.10 -0.50 -0.05
μ~y\tilde{\mu}_{\scalebox{0.6}{$y$}} 0.10 0.30 -0.20
ρ^\hat{\rho} -0.20 -0.60 0.50
σ~x\tilde{\sigma}_{\scalebox{0.6}{$x$}} 0.17 0.40 0.45
σ~y\tilde{\sigma}_{\scalebox{0.6}{$y$}} 0.13 0.10 0.06
KK 100 40 40
TT (years) 1 0.5 1
rr 0.05 0.05 0.05
Table 6.1: Model parameters used in numerical experiments for two-assets Merton jump-diffusion model reproduced from [36] Table 1.

Refine.  level NN JJ MM
(xx) (yy) (τ\tau)
0 282^{8} 282^{8} 50
1 292^{9} 292^{9} 100
2 2102^{10} 2102^{10} 200
3 2112^{11} 2112^{11} 400
4 2122^{12} 2122^{12} 800
Table 6.2: Grid and timestep refinement levels for numerical tests.
Case I Case II Case III
xminx_{\scalebox{0.55}{$\min$}} ln(X0)1.5\ln(X_{0})-1.5 ln(X0)3\ln(X_{0})-3 ln(X0)6\ln(X_{0})-6
xmaxx_{\scalebox{0.55}{$\max$}} ln(X0)+1.5\ln(X_{0})+1.5 ln(X0)+3\ln(X_{0})+3 ln(X0)+6\ln(X_{0})+6
yminy_{\scalebox{0.55}{$\min$}} ln(Y0)1.5\ln(Y_{0})-1.5 ln(Y0)3\ln(Y_{0})-3 ln(Y0)6\ln(Y_{0})-6
ymaxy_{\scalebox{0.55}{$\max$}} ln(Y0)+1.5\ln(Y_{0})+1.5 ln(Y0)+3\ln(Y_{0})+3 ln(Y0)+6\ln(Y_{0})+6
Table 6.3: Computational domains of numerical experiments for Cases I, II, and III.

6.2 Validation examples

For the numerical experiments, we analyze two types of options: an American put-on-the-min option and an American put-on-the-average option, each with a strike price KK, as described in [36, 13].

6.2.1 Put-on-the-min option

Our first test case examines an American put option on the minimum of two assets, as described in [36, 13]. The payoff function v^(x,y)\hat{v}(x,y) is defined as

v^(x,y)=max(Kmin(ex,ey),0),K>0.\displaystyle\hat{v}(x,y)=\max(K-\min(e^{x},e^{y}),0),\quad K>0. (6.1)

As a representative example, we utilize the parameters specified in Case I, with initial asset values X0=90X_{0}=90 and Y0=90Y_{0}=90, for the put-on-the-min option. Computed option prices for this test case are presented in Table LABEL:tab:result01. To estimate the convergence rate of the proposed method, we calculate the “Change” as the difference between computed option prices at successive refinement levels and the “Ratio” as the quotient of these changes between consecutive levels. As shown, these computed option prices exhibit first-order convergence and align closely with results obtained using the operator splitting method in [13]. In addition, Figure 6.1 displays the early exercise regions at T/2T/2 for this test case.

Tests conducted under Cases II and III demonstrate similar convergence behavior. Numerical results for American put-on-the-min options with various initial asset values and parameter sets are summarized in Section 6.2.5 [Table  LABEL:tab:result06].

Refer to caption
Figure 6.1: Early exercise regions for the American put-on-the-min at t=T/2t=T/2, corresponding to Refine. level 4 from Table LABEL:tab:result01.

6.2.2 Put-on-the-average option

For the second test case, we examine an American option based on the arithmetic average of two assets. The payoff function, v^(x,y)\hat{v}(x,y), is defined as:

v^(x,y)=max(K(ex+ey)/2,0),K>0.\displaystyle\hat{v}(x,y)=\max(K-(e^{x}+e^{y})/2,0),\quad K>0. (6.2)

As a representative example, we use the modeling parameters from Case I, with initial asset values set at X0=100X_{0}=100 and Y0=100Y_{0}=100 to illustrate the put-on-the-average option. The computed option prices, presented in Table LABEL:tab:result02, demonstrate a first order of convergence and show strong agreement with the results reported in [13]. In addition, the early exercise regions at T/2T/2 for this case are depicted in Figure 6.2. Similar experiments conducted for Cases II and III yield comparable results. Further numerical results for American put-on-the-average options, encompassing various initial asset values and parameter sets, are presented in Section 6.2.5 [Table 6.10].

Refer to caption
Figure 6.2: Early exercise regions for the American put-on-the-average at t=T/2t=T/2, corresponding to Refine. level 4 from Table LABEL:tab:result02.

It is important to note that the convergence rates in our numerical experiments are not directly comparable to those reported in [62]. As highlighted earlier, the method presented in this work is more general and can be extended in a straightforward manner to stochastic control problems, such as asset allocation, where no continuation boundary exists. Furthermore, our method directly converges to the viscosity solution of the true American option pricing problem, unlike [62], which focuses on Bermudan options and does not examine the limiting case as Δτ0\Delta\tau\to 0.

6.2.3 Impact of spatial domain sizes

In this subsection, we validate the adequacy of the chosen spatial domain for our experiments, focusing on Case I for brevity. Similar tests for Cases II and III yield consistent results and are omitted here.

To assess domain sufficiency, we revisit the setup from Table LABEL:tab:result01 and double the sizes of the interior sub-domain 𝔻in\mathbb{D}_{\scalebox{0.7}{\text{in}}}, extending xmin=ln(X0)1.5x_{\min}=\ln(X_{0})-1.5, xmax=ln(X0)+1.5x_{\max}=\ln(X_{0})+1.5, ymin=ln(Y0)1.5y_{\min}=\ln(Y_{0})-1.5, and ymax=ln(Y0)+1.5y_{\max}=\ln(Y_{0})+1.5 to xmin=ln(X0)3x_{\min}=\ln(X_{0})-3, xmax=ln(X0)+3x_{\max}=\ln(X_{0})+3, ymin=ln(Y0)3y_{\min}=\ln(Y_{0})-3, and ymax=ln(Y0)+3y_{\max}=\ln(Y_{0})+3. The boundary sub-domains are adjusted accordingly as in (4.9). We also double the intervals NN and JJ to preserve Δx\Delta x and Δy\Delta y as in the setup from Table LABEL:tab:result01.

The computed option prices for this larger domain, presented in Table 6.6 under “Larger 𝔻in\mathbb{D}_{\scalebox{0.7}{\text{in}}}” show minimal differences from the original results (shown under “Table LABEL:tab:result01), with discrepancies only appearing at the 8th decimal place. These differences are recorded in the “Diff.” column, which represents the absolute difference between the computed option prices from Table LABEL:tab:result01 and those obtained with either an extended or contracted interior sub-domain 𝔻in\mathbb{D}_{\scalebox{0.7}{\text{in}}}. This indicates that further enlarging the spatial computational domain has a negligible effect on accuracy.

Refine. Table LABEL:tab:result01 (Larger 𝔻in\mathbb{D}_{\scalebox{0.7}{\text{in}}}) (Smaller 𝔻in\mathbb{D}_{\scalebox{0.7}{\text{in}}})
level Price Price Diff. Price Diff.
0 16.374702 16.374702 1.64e-08 16.374210 4.92e-04
1 16.383298 16.383298 1.60e-08 16.382820 4.78e-04
2 16.387210 16.387210 1.60e-08 16.386736 4.74e-04
3 16.389079 16.389079 1.62e-08 16.388605 4.74e-04
4 16.389991 16.389991 1.62e-08 16.389515 4.76e-04
Table 6.6: Prices (put-on-min) obtained using different spatial computational domain: (i) a Larger 𝔻in\mathbb{D}_{\scalebox{0.7}{\text{in}}} with xmin=ln(X0)3x_{\min}=\ln(X_{0})-3, xmax=ln(X0)+3x_{\max}=\ln(X_{0})+3, ymin=ln(Y0)3y_{\min}=\ln(Y_{0})-3, ymax=ln(Y0)+3y_{\max}=\ln(Y_{0})+3, and (ii) a Smaller 𝔻in\mathbb{D}_{\scalebox{0.7}{\text{in}}} with xmin=ln(X0)0.75x_{\min}=\ln(X_{0})-0.75, xmax=ln(X0)+0.75x_{\max}=\ln(X_{0})+0.75, ymin=ln(Y0)0.75y_{\min}=\ln(Y_{0})-0.75, ymax=ln(Y0)+0.75y_{\max}=\ln(Y_{0})+0.75. These are to compare with prices in Table LABEL:tab:result01 obtained using the original 𝔻in\mathbb{D}_{\scalebox{0.7}{\text{in}}} with zmin=ln(Z0)1.5z_{\min}=\ln(Z_{0})-1.5, zmax=ln(Z0)+1.5z_{\max}=\ln(Z_{0})+1.5, for z{x,y}z\in\{x,y\} as in Table 6.3[Case 1].

In addition, we test a smaller interior domain 𝔻in\mathbb{D}_{\scalebox{0.7}{\text{in}}} with boundaries xmin=ln(X0)0.75x_{\min}=\ln(X_{0})-0.75, xmax=ln(X0)+0.75x_{\max}=\ln(X_{0})+0.75, ymin=ln(Y0)0.75y_{\min}=\ln(Y_{0})-0.75, and ymax=ln(Y0)+0.75y_{\max}=\ln(Y_{0})+0.75, while keeping Δx\Delta x and Δy\Delta y constant. The results, shown in Table 6.6 under “Smaller 𝔻in\mathbb{D}_{\scalebox{0.7}{\text{in}}}”, reveal differences starting at the third decimal place compared to the original setup. This indicates that the selected domain size is essential for achieving accurate results; further expansion of the domain size offers negligible benefit, whereas any reduction may introduce noticeable errors.

In Table 6.7, we present the test results for extending and contracting 𝔻in\mathbb{D}_{\scalebox{0.7}{\text{in}}} for the American put-on-average option, which yield similar conclusions to those observed previously.

Refine. Table LABEL:tab:result02 (Larger 𝔻in\mathbb{D}_{\scalebox{0.7}{\text{in}}}) (Smaller 𝔻in\mathbb{D}_{\scalebox{0.7}{\text{in}}})
level Price Price Diff. Price Diff.
0 3.431959 3.431959 2.91e-07 3.431348 6.12e-04
1 3.436727 3.436727 3.09e-07 3.436080 6.37e-04
2 3.439096 3.439096 3.21e-07 3.436080 6.69e-04
3 3.440278 3.440278 3.26e-07 3.438426 6.82e-04
4 3.440868 3.440868 3.29e-07 3.440178 6.91e-04
Table 6.7: Prices (put-on-average) obtained using different spatial computational domain: (i) a Larger 𝔻in\mathbb{D}_{\scalebox{0.7}{\text{in}}} with xmin=ln(X0)3x_{\min}=\ln(X_{0})-3, xmax=ln(X0)+3x_{\max}=\ln(X_{0})+3, ymin=ln(Y0)3y_{\min}=\ln(Y_{0})-3, ymax=ln(Y0)+3y_{\max}=\ln(Y_{0})+3, and (ii) a Smaller 𝔻in\mathbb{D}_{\scalebox{0.7}{\text{in}}} with xmin=ln(X0)0.75x_{\min}=\ln(X_{0})-0.75, xmax=ln(X0)+0.75x_{\max}=\ln(X_{0})+0.75, ymin=ln(Y0)0.75y_{\min}=\ln(Y_{0})-0.75, ymax=ln(Y0)+0.75y_{\max}=\ln(Y_{0})+0.75. These are to compare with prices in Table LABEL:tab:result02 obtained using the original 𝔻in\mathbb{D}_{\scalebox{0.7}{\text{in}}} with zmin=ln(Z0)1.5z_{\min}=\ln(Z_{0})-1.5, zmax=ln(Z0)+1.5z_{\max}=\ln(Z_{0})+1.5, for z{x,y}z\in\{x,y\}, as in Table 6.3[Case 1].

6.2.4 Impact of boundary conditions

In this subsection, we numerically demonstrate that our straightforward approach of employing discounted payoffs for boundary sub-domains is adequate. For brevity, we show the tests of impact of boundary conditions for Case I. Similar experiments for Cases II and III yield the same results.

We revisited previous experiments reported in Tables LABEL:tab:result01, introducing more sophisticated boundary conditions based on the asymptotic behavior of the PIDEs (3.1) as zz\to-\infty and zz\to\infty for z{x,y}z\in\{x,y\} as proposed in [17]. Specifically, the PIDEs (3.1) simplifies to the 1D PDEs shown in (6.3) when xx or yy tends to -\infty:

vτ(r(σy)2/2)vy+(σy)2/2vyy+rv\displaystyle v_{\tau}-\big{(}r-(\sigma_{y})^{2}/2\big{)}v_{y}+(\sigma_{y})^{2}/2v_{yy}+rv =0,x,\displaystyle=0,\quad x\to-\infty, (6.3)
vτ(r(σx)2/2)vx+(σx)2/2vxx+rv\displaystyle v_{\tau}-\big{(}r-(\sigma_{x})^{2}/2\big{)}v_{x}+(\sigma_{x})^{2}/2v_{xx}+rv =0,y.\displaystyle=0,\quad y\to-\infty.

That can be justified based on the properties of the Green’s function of the PIDE [35]. As x,yx,y\to-\infty, the PIDEs (3.1) simplifies to the ordinary differential equation vτ+rv=0v_{\tau}+rv=0.

To adhere to these asymptotic boundary conditions, we choose a much large spatial domain: xmin=ln(X0)12x_{\min}=\ln(X_{0})-12, xmax=ln(X0)+12x_{\max}=\ln(X_{0})+12, ymin=ln(Y0)12y_{\min}=\ln(Y_{0})-12, ymax=ln(Y0)+12y_{\max}=\ln(Y_{0})+12, and adjust the number of intervals NN and JJ accordingly to maintain the same grid resolution (Δx\Delta x and Δy\Delta y). Employing the monotone integration technique, tailored for the 1D case, we effectively solved the 1D PDEs in (6.3). The ordinary differential equation vτ+rv=0v_{\tau}+rv=0 is solved directly and efficiently. The scheme’s convergence to the viscosity solution can be rigorously established in the same fashion as the propose scheme.

Put-on-the-min Put-on-the-average
Refine. Price Price Price Price
level (Table LABEL:tab:result01) (Table LABEL:tab:result02)
0 16.374702 16.374702 3.431959 3.431959
1 16.383298 16.383298 3.436727 3.436727
2 16.387210 16.387210 3.439096 3.439096
3 16.389079 16.389079 3.440278 3.440278
4 16.389991 16.389991 3.440868 3.440868
Table 6.8: Results using sophisticated boundary conditions. Compare with computed prices in Table LABEL:tab:result01 and Table LABEL:tab:result02 where discounted payoff boundary conditions are used.

The computed option prices for the put-on-the-min option, as shown in Table 6.8, are virtually identical with those from the original setup (see column marked “Table. LABEL:tab:result01”). In addition, Table 6.8 presents results for the put-on-the-average option using the similar sophisticated boundary condition, with findings consistent with the put-on-the-min option. These results confirm that our simple boundary conditions are not only easy to implement but also sufficient to meet the theoretical and practical requirements of our numerical experiments.

6.2.5 Comprehensive tests

In the following, we present a detailed study of two types of options: an American put-on-the-min option and an American put-on-the-average option, tested with various strike prices KK and initial asset values. Across all three parameter cases, our computed prices closely align with the reference prices given in [13][Tables 5 and 6].

Put-on-average
Case I
Y0Y_{0} X0X_{0}
90 100 110
MI 90 10.000000 5.987037 3.440343
100 6.028929 3.440868 1.886527
110 3.490665 1.890874 0.992933
Ref. [13] 9090 10.003 5.989 3.441
100100 6.030 3.442 1.877
110110 3.491 1.891 0.993
Case II
36 40 44
MI 36 5.405825 4.363340 3.547399
40 4.213899 3.338840 2.669076
44 3.224979 2.506688 1.969401
Ref. [13] 3636 5.406 4.363 3.547
4040 4.214 3.339 2.669
4444 3.225 2.507 1.969
Case III
36 40 44
MI 36 12.472058 11.935904 11.446078
40 11.439979 10.948971 10.500581
44 10.499147 10.049777 9.639534
Ref. [13] 3636 12.466 11.930 11.440
4040 11.434 10.943 10.495
4444 10.493 10.043 9.633
Table 6.10: Results for an American put-on-average option under Cases I, II, III. Reference prices by FD method (operator splitting) from [13][Table 6].

7 Conclusion and future work

In this paper, we address an important gap in the numerical analysis of two-asset American options under the Merton jump-diffusion model by introducing an efficient and straightforward-to-implement monotone scheme based on numerical integration. The pricing of these options involves solving complex 2-D variational inequalities that include cross derivative and nonlocal integro-differential terms due to jumps. Traditional finite difference methods often struggle to maintain monotonicity in cross derivative approximations—crucial for ensuring convergence to the viscosity solution-and accurately discretize 2-D jump integrals. Our approach overcomes these challenges by leveraging an infinite series representation of the Green’s function, where each term is non-negative and computable, enabling efficient approximation of 2-D convolution integrals through a monotone integration method. In addition, we rigorously establish the stability and consistency of the proposed scheme in the viscosity sense and prove its convergence to the viscosity solution of the variational inequality. This overcomes several significant limitations associated with previous numerical techniques.

Extensive numerical results demonstrate strong agreement with benchmark solutions from published test cases, including those obtained via operator splitting methods, highlighting the utility of our approach as a valuable reference for verifying other numerical techniques.

Although our focus has been on American option pricing under a correlated two-asset Merton jump-diffusion model, the core methodology—particularly the infinite series representation of the Green’s function, where each term is non-negative—has broader applicability. One such application is asset allocation with a stock index and a bond index in both discrete and continuous rebalancing settings. Extending this approach to the 2-D Kou model introduces significant additional challenges, which could be addressed using a neural network-based approximation of the joint PDF of the jumps, along with a Gaussian activation function, as previously discussed. While we utilize the closed-form Fourier transform of the Green’s function for the Merton model, iterative techniques for differential-integral operators, such as those discussed in [34], could be employed to extend this framework to more general jump-diffusion models. Exploring such extensions and applying our framework to a wider range of financial models remains an exciting direction for future research.

Acknowledgments

The authors are grateful to the two anonymous referees for their constructive comments and suggestions, which have significantly improved the quality of this work.

References

  • [1] M. Abramowitz and I. A. Stegun. Handbook of mathematical functions. Dover, New York, 1972.
  • [2] J. Alonso-Garcca, O. Wood, and J. Ziveyi. Pricing and hedging Guaranteed Minimum Withdrawal Benefits under a general Lévy framework using the COS method. Quantitative Finance, 18:1049–1075, 2018.
  • [3] S. Awatif. Equqtions D’Hamilton-Jacobi Du Premier Ordre Avec Termes Intégro-Différentiels: Partie II: Unicité Des Solutions De Viscosité. Communications in Partial Differential Equations, 16(6-7):1075–1093, 1991.
  • [4] G. Barles. Convergence of numerical schemes for degenerate parabolic equations arising in finance. In L. C. G. Rogers and D. Talay, editors, Numerical Methods in Finance, pages 1–21. Cambridge University Press, Cambridge, 1997.
  • [5] G. Barles and J. Burdeau. The Dirichlet problem for semilinear second-order degenerate elliptic equations and applications to stochastic exit time control problems. Communications in Partial Differential Equations, 20:129–178, 1995.
  • [6] G. Barles, CH. Daher, and M. Romano. Convergence of numerical shemes for parabolic eqations arising in finance theory. Mathematical Models and Methods in Applied Sciences, 5:125–143, 1995.
  • [7] G. Barles and C. Imbert. Second-order elliptic integro-differential equations: viscosity solutions’ theory revisited. Ann. Inst. H. Poincaré Anal. Non Linéaire, 25(3):567–585, 2008.
  • [8] G. Barles and E. Rouy. A strong comparison result for the Bellman equation arising in stochastic exit time control problems and applications. Communications in Partial Differential Equations, 23:1945–2033, 1998.
  • [9] G. Barles and P.E. Souganidis. Convergence of approximation schemes for fully nonlinear equations. Asymptotic Analysis, 4:271–283, 1991.
  • [10] Guy Barles, C Daher, and Marc Romano. Convergence of numerical schemes for parabolic equations arising in finance theory. Mathematical Models and Methods in Applied Sciences, 5(01):125–143, 1995.
  • [11] Alain Bensoussan and Jacques-Louis Lions. Applications of Variational Inequalities in Stochastic Control, volume 12 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam, 1982.
  • [12] E. Berthe, D.M. Dang, and L. Ortiz-Gracia. A Shannon wavelet method for pricing foreign exchange options under the Heston multi-factor CIR model. Applied Numerical Mathematics, 136:1–22, 2019.
  • [13] Lynn Boen and Karel J In’t Hout. Operator splitting schemes for American options under the two-asset Merton jump-diffusion model. Applied Numerical Mathematics, 153:114–131, 2020.
  • [14] Olivier Bokanowski, Nadia Megdich, and Hasnaa Zidani. Convergence of a non-monotone scheme for Hamilton–Jacobi–Bellman equations with discontinous initial data. Numerische Mathematik, 115:1–44, 2010.
  • [15] J Frédéric Bonnans and Housnaa Zidani. Consistency of generalized finite difference schemes for the stochastic HJB equation. SIAM Journal on Numerical Analysis, 41(3):1008–1021, 2003.
  • [16] C. Christara and D.M. Dang. Adaptive and high-order methods for valuing American options. Journal of Computational Finance, 14(4):73–113, 2011.
  • [17] Simon S Clift and Peter A Forsyth. Numerical solution of two asset jump diffusion models for option valuation. Applied Numerical Mathematics, 58(6):743–782, 2008.
  • [18] R. Cont and P. Tankov. Financial Modelling with Jump Processes. Chapman and Hall/CRC Financial Mathematics Series. CRC Press, 2003.
  • [19] R. Cont and E. Voltchkova. A finite difference scheme for option pricing in jump diffusion and exponential Lévy models. SIAM Journal on Numerical Analysis, 43(4):1596–1626, 2005.
  • [20] M. G. Crandall, H. Ishii, and P. L. Lions. User’s guide to viscosity solutions of second order partial differential equations. Bulletin of the American Mathematical Society, 27:1–67, 1992.
  • [21] Michael G Crandall, Lawrence C Evans, and P-L Lions. Some properties of viscosity solutions of Hamilton-Jacobi equations. Transactions of the American Mathematical Society, 282(2):487–502, 1984.
  • [22] Michael G Crandall and Pierre-Louis Lions. Viscosity solutions of Hamilton-Jacobi equations. Transactions of the American mathematical society, 277(1):1–42, 1983.
  • [23] Colin W Cryer. The solution of a quadratic programming problem using systematic overrelaxation. SIAM Journal on Control, 9(3):385–392, 1971.
  • [24] D. M. Dang, K. R. Jackson, and S. Sues. A dimension and variance reduction Monte Carlo method for pricing and hedging options under jump-diffusion models. Applied Mathematical Finance, 24:175–215, 2017.
  • [25] D.M. Dang and P.A. Forsyth. Continuous time mean-variance optimal portfolio allocation under jump diffusion: A numerical impulse control approach. Numerical Methods for Partial Differential Equations, 30:664–698, 2014.
  • [26] D.M. Dang and H. Zhou. A monotone piecewise constant control integration approach for the two-factor uncertain volatility model. arXiv preprint arXiv:2402.06840, 2024.
  • [27] Y. d’Halluin, P.A. Forsyth, and G. Labahn. A penalty method for American options with jump diffusion. Numeriche Mathematik, 97(2):321–352, 2004.
  • [28] R. Du and D. M. Dang. Fourier neural network approximation of transition densities in finance. SIAM Journal on Scientific Computing, 2024. Accepted for publication, December 2024.
  • [29] Dean G. Duffy. Green’s Functions with Applications. Chapman and Hall/CRC, New York, 2nd edition, 2015.
  • [30] F. Fang and C.W. Oosterlee. A novel pricing method for European options based on Fourier-Cosine series expansions. SIAM Journal on Scientific Computing, 31:826–848, 2008.
  • [31] Wendell H Fleming and Halil Mete Soner. Controlled Markov processes and viscosity solutions, volume 25. Springer Science & Business Media, 2006.
  • [32] P. A. Forsyth and G. Labahn. ϵ\epsilon-monotone Fourier methods for optimal stochastic control in finance. Journal of Computational Finance, 22(4):25–71, 2019.
  • [33] P.A. Forsyth and K.R. Vetzal. Quadratic convergence of a penalty method for valuing American options. SIAM Journal on Scientific Computing, 23:2095–2122, 2002.
  • [34] M. G. Garroni and J. L. Menaldi. Green functions for second order parabolic integro-differential problems. Number 275 in Pitman Research Notes in Mathematics. Longman Scientific and Technical, Harlow, Essex, UK, 1992.
  • [35] Maria Giovanna Garroni and José Luis Menaldi. Green functions for second order parabolic integro-differential problems. (No Title), 1992.
  • [36] Abhijit Ghosh and Chittaranjan Mishra. High-performance computation of pricing two-asset American options under the Merton jump-diffusion model on a GPU. Computers & Mathematics with Applications, 105:29–40, 2022.
  • [37] Karel J Hout. An efficient numerical method for American options and their Greeks under the two-asset Kou jump-diffusion model. arXiv preprint arXiv:2410.10444, 2024.
  • [38] Y. Huang, P.A. Forsyth, and G. Labahn. Combined fixed point and policy iteration for HJB equations in finance. SIAM Journal on Numerical Analysis, 50:1861–1882, 2012.
  • [39] Y.T. Huang, P. Zeng, and Y.K. Kwok. Optimal initiation of Guaranteed Lifelong Withdrawal Benefit with dynamic withdrawals. SIAM Journal on Financial Mathematics, 8:804–840, 2017.
  • [40] H. Ishii. On uniqueness and existence of viscosity solutions of fully nonlinear second-order elliptic PDE’s. Communications on pure and applied mathematics, 42(1):15–45, 1989.
  • [41] S.D. Jacka. Optimal stopping and the American put. Mathematical Finance, 1(2):1–14, 1991.
  • [42] P. Jaillet, D. Lamberton, and B. Lapeyre. Variational inequalities and the pricing of American options. Acta Applicandae Mathematica, 21:263–289, 1990.
  • [43] Espen R Jakobsen and Kenneth H Karlsen. A “maximum principle for semicontinuous functions” applicable to integro-partial differential equations. Nonlinear Differential Equations and Applications NoDEA, 13:137–165, 2006.
  • [44] Adam Jakubowski and Marek Kobus. Lévy processes: Large deviations. Probability and Mathematical Statistics, 25:165–176, 2005.
  • [45] I. Karatzas. On the pricing of American options. Applied mathematics and optimization, 17(1):37–60, 1988.
  • [46] Sato Ken-Iti. Lévy processes and infinitely divisible distributions, volume 68. Cambridge University Press, 1999.
  • [47] I.J. Kim. The analytic valuation of American options. The Review of Financial Studies, 3(4):547–572, 1990.
  • [48] S.G. Kou. A jump diffusion model for option pricing. Management Science, 48:1086–1101, August 2002.
  • [49] J.M. Lee. Introduction to smooth manifolds. Springer-Verlag, New York, 2 edition, 2012.
  • [50] Y. Lu and D. M. Dang. A pointwise convergent numerical integration method for Guaranteed Lifelong Withdrawal Benefits under stochastic volatility. Technical report, School of Mathematics and Physics, The University of Queensland, August 2023. 34 pages.
  • [51] Y. Lu and D. M. Dang. A semi-Lagrangian ε\varepsilon-monotone Fourier method for continuous withdrawal GMWBs under jump-diffusion with stochastic interest rate. Numerical Methods for Partial Differential Equations, 40(3):e23075, 2024.
  • [52] Y. Lu, D. M. Dang, P. A. Forsyth, and G. Labahn. An ϵ\epsilon-monotone Fourier method for Guaranteed Minimum Withdrawal Benefit (GMWB) as a continuous impulse control problem. Technical report, School of Mathematics and Physics, The University of Queensland, June 2022. 45 pages.
  • [53] K. Ma and P.A. Forsyth. An unconditionally monotone numerical scheme for the two-factor uncertain volatility model. IMA Journal of Numerical Analysis, 37(2):905–944, 2017.
  • [54] C. Martini. American option prices as unique viscosity solutions to degenerated Hamilton-Jacobi-Bellman equations. PhD thesis, INRIA, 2000.
  • [55] R.C. Merton. Option pricing when underlying stock returns are discontinuous. Journal of Financial Economics, 3:125–144, 1976.
  • [56] M. Mitzenmacher and E. Upfal. Probability and computing: Randomization and probabilistic techniques in algorithms and data analysis. Cambridge university press, 2017.
  • [57] A.M. Oberman. Convergent difference schemes for degenerate elliptic and parabolic equations: Hamilton–Jacobi Equations and free boundary problems. SIAM Journal Numerical Analysis, 44(2):879–895, 2006.
  • [58] Bernt Øksendal and Kristin Reikvam. Viscosity solutions of optimal stopping problems. Preprint series: Pure mathematics http://urn. nb. no/URN: NBN: no-8076, 1997.
  • [59] H. Pham. Optimal stopping of controlled jump diffusion processes: a viscosity solution approach. Journal of Mathematical Systems Estimation and Control, 8(1):127–130, 1998.
  • [60] Huyên Pham. Optimal stopping, free boundary, and American option in a jump-diffusion model. Applied mathematics and optimization, 35:145–164, 1997.
  • [61] D.M. Pooley, P.A. Forsyth, and K.R. Vetzal. Numerical convergence properties of option pricing PDEs with uncertain volatility. IMA Journal of Numerical Analysis, 23:241–267, 2003.
  • [62] Marjon J Ruijter and Cornelis W Oosterlee. Two-dimensional Fourier cosine series expansion method for pricing financial options. SIAM Journal on Scientific Computing, 34(5):B642–B671, 2012.
  • [63] M.J. Ruijter, C.W. Oosterlee, and R.F.T. Aalbers. On the Fourier cosine series expansion (COS) method for stochastic control problems. Numerical Linear Algebra with Applications, 20:598–625, 2013.
  • [64] R.C. Seydel. Existence and uniqueness of viscosity solutions for QVI associated with impulse control of jump-diffusions. Stochastic Processes and Their Applications, 119:3719–3748, 2009.
  • [65] P.V. Shevchenko and X. Luo. A unified pricing of variable annuity guarantees under the optimal stochastic control framework. Risks, 4(3):1–31, 2016.
  • [66] D. Tavella and C. Randall. Pricing Financial Instruments: The Finite Difference Method. John Wiley & Sons, Inc, 2000.
  • [67] J. Wang and P.A. Forsyth. Maximal use of central differencing for Hamilton-Jacobi-Bellman PDEs in finance. SIAM Journal on Numerical Analysis, 46:1580–1601, 2008.
  • [68] Xavier Warin. Some non-monotone schemes for time dependent Hamilton-Jacobi-Bellman equations in stochastic control. Journal of Scientific Computing, 66(3):1122–1147, 2016.
  • [69] H. Zhang and D.M. Dang. A monotone numerical integration method for mean-variance portfolio optimization under jump-diffusion models. Mathematics and Computers in Simulation, 219:112–140, 2024.
  • [70] X. L. Zhang. Numerical analysis of American option pricing in a jump-diffusion model. Mathematics of Operations Research, 22(3):668–690, 1997.
  • [71] R. Zvan, P.A. Forsyth, and K.R. Vetzal. Penalty methods for American options with stochastic volatility. Journal of Computational and Applied Mathematics, 91:199–218, 1998.

Appendices

Appendix A Proof of Lemma 2.1

We extend the methods from [19], originally developed for 1-D European options, to address 2-D variational inequalities (2.4) and (2.9). For simplicity, we denote by d(τ)d(\tau) the discounting factor. The solution v(𝐱)v^{\prime}({\bf{x}}) to the full-domain variational inequality (2.4) is simply

v(𝐱)=supγ[0,τ]𝔼τx,y[d(τ)v^(Xγ,Yγ)],v^{\prime}({\bf{x}})=\sup_{\gamma\in[0,\tau]}\mathbb{E}_{\tau}^{\scalebox{0.6}{$x$},\scalebox{0.6}{$y$}}\left[d(\tau)\hat{v}({\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}{X}^{{}^{\prime}}_{\gamma}},{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}{Y}^{{}^{\prime}}_{\gamma}})\right],

which comes from (2.3) with a change of variables from (Xt,Yt)\left(X_{t},Y_{t}\right) to (Xt,Yt)=(ln(Xt),ln(Yt))(X^{\prime}_{t},Y^{\prime}_{t})=\left(\ln(X_{t}),\ln(Y_{t})\right) and from tt to τ\tau. To obtain a probabilistic representation of the solution v(𝐱)v({\bf{x}}) to the localized variational inequality (2.9), for fixed 𝐱=(x,y,τ){\bf{x}}=(x,y,\tau), we define the random variables Mτx=supς[0,τ]|Xς+x|M_{\tau}^{x}=\sup_{\varsigma\in[0,\tau]}|{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}{X}^{{}^{\prime}}_{\varsigma}}+x| and Mτy=supς[0,τ]|Yς+y|M_{\tau}^{y}=\sup_{\varsigma\in[0,\tau]}|{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}{Y}^{{}^{\prime}}_{\varsigma}}+y| to respectively represent the maximum deviation of processes {Xς}\{{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}{X}^{{}^{\prime}}_{\varsigma}}\} and {Yς}\{{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}{Y}^{{}^{\prime}}_{\varsigma}}\} from xx and yy over the interval [0,τ][0,\tau]. We also define the random variable θ(x)=inf{ς0,|Xς+x|A}\theta(x)=\inf\{\varsigma\geq 0,|{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}{X}^{{}^{\prime}}_{\varsigma}}+x|\geq A\} as the first exit time of the process {Xς+x}\{{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}{X}^{{}^{\prime}}_{\varsigma}}+x\} from [A,A][-A,A]. Similarly, the random variable θ(y)\theta(y) is defined for the process {Yς+y}\{{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}{Y}^{{}^{\prime}}_{\varsigma}}+y\}. Using these random variables, v(𝐱)v({\bf{x}}) can be expressed as

v(𝐱)=supγ[0,τ]𝔼τx,y[d(τ)(v^(Xγ,Yγ)𝕀{{Mτx<A}{Mτy<A}}+p^(Xγ,Yθ(y))𝕀{{Mτx<A}{MτyA}}\displaystyle v({\bf{x}})=\sup_{\gamma\in[0,\tau]}\mathbb{E}_{\tau}^{\scalebox{0.6}{$x$},\scalebox{0.6}{$y$}}\left[d(\tau)\left(\hat{v}({\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}{X}^{{}^{\prime}}_{\gamma}},{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}{Y}^{{}^{\prime}}_{\gamma}})\mathbb{I}_{\left\{\{M_{\tau}^{x}<A\}\cap\{M_{\tau}^{y}<A\}\right\}}+\hat{p}({\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}{X}^{{}^{\prime}}_{\gamma}},{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}{Y}^{{}^{\prime}}_{\theta(y)}})\mathbb{I}_{\left\{\{M_{\tau}^{x}<A\}\cap\{M_{\tau}^{y}\geq A\}\right\}}\right.\right.
+p^(Xθ(x),Yγ)𝕀{{MτxA}{Mτy<A}}+p^(Xθ(x),Yθ(y))𝕀{{MτxA}{MτyA}})].\displaystyle\qquad\qquad\left.\left.+\hat{p}({\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}{X}^{{}^{\prime}}_{\theta(x)}},{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}{Y}^{{}^{\prime}}_{\gamma}})\mathbb{I}_{\left\{\{M_{\tau}^{x}\geq A\}\cap\{M_{\tau}^{y}<A\}\right\}}+\hat{p}({\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}{X}^{{}^{\prime}}_{\theta(x)}},{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}{Y}^{{}^{\prime}}_{\theta(y)}})\mathbb{I}_{\left\{\{M_{\tau}^{x}\geq A\}\cap\{M_{\tau}^{y}\geq A\}\right\}}\right)\right].

Subtracting v()v(\cdot) from v()v^{\prime}(\cdot) gives |v(𝐱)v(𝐱)|\left|v^{\prime}({\bf{x}})-v({\bf{x}})\right|\leq\ldots

\displaystyle\ldots supγ[0,τ]|𝔼τx,y[d(τ)(v^(Xγ,Yγ)𝕀{{MτxA}{MτyA}}p^(Xγ,Yθ(y))𝕀{{Mτx<A}{MτyA}}\displaystyle\leq\sup_{\gamma\in[0,\tau]}\left|\mathbb{E}_{\tau}^{\scalebox{0.6}{$x$},\scalebox{0.6}{$y$}}\left[d(\tau)\left(\hat{v}({\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}{X}^{{}^{\prime}}_{\gamma}},{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}{Y}^{{}^{\prime}}_{\gamma}})\mathbb{I}_{\left\{\{M_{\tau}^{x}\geq A\}\cup\{M_{\tau}^{y}\geq A\}\right\}}-\hat{p}({\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}{X}^{{}^{\prime}}_{\gamma}},{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}{Y}^{{}^{\prime}}_{\theta(y)}})\mathbb{I}_{\left\{\{M_{\tau}^{x}<A\}\cap\{M_{\tau}^{y}\geq A\}\right\}}\right.\right.\right.
p^(Xθ(x),Yγ)𝕀{{MτxA}{Mτy<A}}p^(Xθ(x),Yθ(y))𝕀{{MτxA}{MτyA}})]|,\displaystyle\qquad\qquad\left.\left.\left.-\hat{p}({\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}{X}^{{}^{\prime}}_{\theta(x)}},{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}{Y}^{{}^{\prime}}_{\gamma}})\mathbb{I}_{\left\{\{M_{\tau}^{x}\geq A\}\cap\{M_{\tau}^{y}<A\}\right\}}-\hat{p}({\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}{X}^{{}^{\prime}}_{\theta(x)}},{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}{Y}^{{}^{\prime}}_{\theta(y)}})\mathbb{I}_{\left\{\{M_{\tau}^{x}\geq A\}\cap\{M_{\tau}^{y}\geq A\}\right\}}\right)\right]\right|,
\displaystyle\leq supγ[0,τ]d(τ)[𝔼τx,y|v^(Xγ,Yγ)𝕀{{MτxA}{MτyA}}|+𝔼τx,y|p^(Xγ,Yθ(y))𝕀{{Mτx<A}{MτyA}}|\displaystyle\sup_{\gamma\in[0,\tau]}d(\tau)\left[\mathbb{E}_{\tau}^{\scalebox{0.6}{$x$},\scalebox{0.6}{$y$}}\left|\hat{v}({\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}{X}^{{}^{\prime}}_{\gamma}},{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}{Y}^{{}^{\prime}}_{\gamma}})\mathbb{I}_{\left\{\{M_{\tau}^{x}\geq A\}\cup\{M_{\tau}^{y}\geq A\}\right\}}\right|+\mathbb{E}_{\tau}^{\scalebox{0.6}{$x$},\scalebox{0.6}{$y$}}\left|\hat{p}({\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}{X}^{{}^{\prime}}_{\gamma}},{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}{Y}^{{}^{\prime}}_{\theta(y)}})\mathbb{I}_{\left\{\{M_{\tau}^{x}<A\}\cap\{M_{\tau}^{y}\geq A\}\right\}}\right|\right.
+𝔼τx,y|p^(Xθ(x),Yγ)𝕀{{MτxA}{Mτy<A}}|+𝔼τx,y|p^(Xθ(x),Yθ(y))𝕀{{MτxA}{MτyA}}|],\displaystyle\qquad\qquad\left.+\mathbb{E}_{\tau}^{\scalebox{0.6}{$x$},\scalebox{0.6}{$y$}}\left|\hat{p}({\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}{X}^{{}^{\prime}}_{\theta(x)}},{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}{Y}^{{}^{\prime}}_{\gamma}})\mathbb{I}_{\left\{\{M_{\tau}^{x}\geq A\}\cap\{M_{\tau}^{y}<A\}\right\}}\right|+\mathbb{E}_{\tau}^{\scalebox{0.6}{$x$},\scalebox{0.6}{$y$}}\left|\hat{p}({\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}{X}^{{}^{\prime}}_{\theta(x)}},{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}{Y}^{{}^{\prime}}_{\theta(y)}})\mathbb{I}_{\left\{\{M_{\tau}^{x}\geq A\}\cap\{M_{\tau}^{y}\geq A\}\right\}}\right|\right],
\displaystyle\leq supγ[0,τ]d(τ)[v^𝔔({MτxA}{MτyA})+p^𝔔({MτxA}{MτyA})],\displaystyle\sup_{\gamma\in[0,\tau]}d(\tau)\left[\left\|\hat{v}\right\|_{\infty}\mathfrak{Q}\left(\{M_{\tau}^{x}\geq A\}\cup\{M_{\tau}^{y}\geq A\}\right)+\left\|\hat{p}\right\|_{\infty}\mathfrak{Q}\left(\{M_{\tau}^{x}\geq A\}\cup\{M_{\tau}^{y}\geq A\}\right)\right],
\displaystyle\leq supγ[0,τ]d(τ)[(v^+p^)(𝔔(MτxA)+𝔔(MτyA))],\displaystyle\sup_{\gamma\in[0,\tau]}d(\tau)\left[\left(\left\|\hat{v}\right\|_{\infty}+\left\|\hat{p}\right\|_{\infty}\right)\left(\mathfrak{Q}\left(M_{\tau}^{x}\geq A\right)+\mathfrak{Q}\left(M_{\tau}^{y}\geq A\right)\right)\right],
\displaystyle\leq supγ[0,τ]d(τ)[(v^+p^)(𝔔(Mτ0A|x|)+𝔔(Mτ0A|y|))],\displaystyle\sup_{\gamma\in[0,\tau]}d(\tau)\left[\left(\left\|\hat{v}\right\|_{\infty}+\left\|\hat{p}\right\|_{\infty}\right)\left(\mathfrak{Q}\left(M_{\tau}^{0}\geq A-|x|\right)+\mathfrak{Q}\left(M_{\tau}^{0}\geq A-|y|\right)\right)\right],
(i)\displaystyle{\buildrel(\text{i})\over{\leq}} supγ[0,τ]d(τ)[(v^+p^)C(τ)(e(A|x|)+e(A|y|))],\displaystyle\sup_{\gamma\in[0,\tau]}d(\tau)\left[\left(\left\|\hat{v}\right\|_{\infty}+\left\|\hat{p}\right\|_{\infty}\right)C^{\prime}(\tau)\left({\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}{e^{-(A-|x|)}+e^{-(A-|y|)}}}\right)\right],
=\displaystyle= C(τ)(v^+p^)(e(A|x|)+e(A|y|)).\displaystyle~{}C(\tau)\left(\left\|\hat{v}\right\|_{\infty}+\left\|\hat{p}\right\|_{\infty}\right)\left(e^{-(A-|x|)}+e^{-(A-|y|)}\right).

Here, (i) is due to Theorem 25.18 of [46] and Markov’s inequality; C(τ)C(\tau) is a positive bounded constant that does not depend on xminx_{\scalebox{0.55}{$\min$}}, xmaxx_{\scalebox{0.55}{$\max$}}, yminy_{\scalebox{0.55}{$\min$}}, and ymaxy_{\scalebox{0.55}{$\max$}}. This concludes the proof.

Appendix B Proof of Lemma 3.1

By the inverse Fourier transform 𝔉1[]\mathfrak{F}^{-1}[\cdot] in (3.2) and the closed-form expression for G(𝜼,Δτ)G({\boldsymbol{\eta}},\Delta\tau) in (3.5), we have

g(𝒛,Δτ)=\displaystyle g({\boldsymbol{z}},\Delta\tau)~{}=~{} 1(2π)22ei𝜼𝒛eΨ(𝜼)Δτ𝑑𝜼=1(2π)22e12𝜼𝑪𝜼+i(𝜷+𝒛)𝜼+θeλΓ(𝜼)Δτ𝑑𝜼,\displaystyle\frac{1}{(2\pi)^{2}}\,\int_{\mathbb{R}^{2}}e^{i{\boldsymbol{\eta}}\cdot{\boldsymbol{z}}}e^{\Psi({\boldsymbol{\eta}})\Delta\tau}~{}d{\boldsymbol{\eta}}~{}=~{}\frac{1}{(2\pi)^{2}}\,\int_{\mathbb{R}^{2}}e^{-\frac{1}{2}{\boldsymbol{\eta}}^{\top}\boldsymbol{C}{\boldsymbol{\eta}}+i\left({\boldsymbol{\beta}}+{\boldsymbol{z}}\right)\cdot{\boldsymbol{\eta}}+\theta}\,e^{\lambda\Gamma\left({\boldsymbol{\eta}}\right)\Delta\tau}~{}d{\boldsymbol{\eta}},
where 𝑪=Δτ𝑪~,𝜷=Δτ𝜷~,θ=(r+λ)Δτ.\displaystyle\boldsymbol{C}=\Delta\tau\,\tilde{\boldsymbol{C}},\quad{\boldsymbol{\beta}}=\Delta\tau\,\tilde{{\boldsymbol{\beta}}},\quad\theta=-(r+\lambda)\Delta\tau. (B.1)

Following the approach developed in [24, 69, 12], we expand the term eλΓ(𝜼)Δτe^{\lambda\Gamma({\boldsymbol{\eta}})\Delta\tau} in (B) in a Taylor series, noting that

(Γ(𝜼))k\displaystyle\left(\Gamma({\boldsymbol{\eta}})\right)^{k} =(2f(𝒔)exp(i𝜼𝒔)𝑑𝒔)k\displaystyle=\left(\int_{\mathbb{R}^{2}}f({\boldsymbol{s}})\exp(i{\boldsymbol{\eta}}\cdot{\boldsymbol{s}})d{\boldsymbol{s}}\right)^{k}
=(2f(𝒔1)exp(i𝜼𝒔1)𝑑𝒔1)(2f(𝒔2)exp(i𝜼𝒔2)𝑑𝒔2)(2f(𝒔k)exp(i𝜼𝒔k)𝑑𝒔k)\displaystyle=\left(\int_{\mathbb{R}^{2}}f({\boldsymbol{s}}_{1})\exp(i{\boldsymbol{\eta}}\cdot{\boldsymbol{s}}_{1})d{\boldsymbol{s}}_{1}\right)\left(\int_{\mathbb{R}^{2}}f({\boldsymbol{s}}_{2})\exp(i{\boldsymbol{\eta}}\cdot{\boldsymbol{s}}_{2})d{\boldsymbol{s}}_{2}\right)\ldots\left(\int_{\mathbb{R}^{2}}f({\boldsymbol{s}}_{k})\exp(i{\boldsymbol{\eta}}\cdot{\boldsymbol{s}}_{k})d{\boldsymbol{s}}_{k}\right)
=22f(𝒔1)f(𝒔2)f(𝒔k)exp(i𝜼𝒔1)exp(i𝜼𝒔2)exp(i𝜼𝒔k)𝑑𝒔1𝑑𝒔2𝑑𝒔k,\displaystyle=\int_{\mathbb{R}^{2}}\ldots\int_{\mathbb{R}^{2}}f({\boldsymbol{s}}_{1})f({\boldsymbol{s}}_{2})\ldots f({\boldsymbol{s}}_{k})\exp\left(i{\boldsymbol{\eta}}\cdot{\boldsymbol{s}}_{1}\right)\exp\left(i{\boldsymbol{\eta}}\cdot{\boldsymbol{s}}_{2}\right)\ldots\exp\left(i{\boldsymbol{\eta}}\cdot{\boldsymbol{s}}_{k}\right)d{\boldsymbol{s}}_{1}d{\boldsymbol{s}}_{2}\ldots d{\boldsymbol{s}}_{k},
=22=1kf(𝒔)exp(i𝜼𝑺k)d𝒔1d𝒔2d𝒔k.\displaystyle=\int_{\mathbb{R}^{2}}\ldots\int_{\mathbb{R}^{2}}\prod_{\ell=1}^{k}f({\boldsymbol{s}}_{\ell})\exp\left(i{\boldsymbol{\eta}}\cdot{\boldsymbol{S}}_{k}\right)d{\boldsymbol{s}}_{1}d{\boldsymbol{s}}_{2}\ldots d{\boldsymbol{s}}_{k}. (B.2)

Here, 𝒔=[s1,s2]{\boldsymbol{s}}_{\ell}=[s_{1},s_{2}]_{\ell} is the \ell-th column vector, and each pair of 𝒔i{\boldsymbol{s}}_{i} and 𝒔j{\boldsymbol{s}}_{j} being independent and identically distributed (i.i.d) for iji\neq j, 𝑺k==1k𝒔==1k[s1,s2]{\boldsymbol{S}}_{k}=\sum_{\ell=1}^{k}{\boldsymbol{s}}_{\ell}=\sum_{\ell=1}^{k}[s_{1},s_{2}]_{\ell}, with 𝑺0=[0,0]{{\boldsymbol{S}}}_{0}=[0,0], and for k=0k=0, (Γ(𝜼))0=1\left(\Gamma({\boldsymbol{\eta}})\right)^{0}=1. Then, we have the Taylor series for eλΓ(𝜼)Δτe^{\lambda\Gamma({\boldsymbol{\eta}})\Delta\tau} as follows

eλΓ(𝜼)Δτ=k=0(λΔτ)kk!(Γ(𝜼))k=k=0(λΔτ)kk!22=1kf(𝒔)exp(i𝜼𝑺k)d𝒔1d𝒔2d𝒔k.\displaystyle e^{\lambda\Gamma({\boldsymbol{\eta}})\Delta\tau}=\sum_{k=0}^{\infty}\frac{\left(\lambda\Delta\tau\right)^{k}}{k!}(\Gamma({\boldsymbol{\eta}}))^{k}=\sum_{k=0}^{\infty}\frac{\left(\lambda\Delta\tau\right)^{k}}{k!}\int_{\mathbb{R}^{2}}\ldots\int_{\mathbb{R}^{2}}\prod_{\ell=1}^{k}f({\boldsymbol{s}}_{\ell})\exp\left(i{\boldsymbol{\eta}}\cdot{\boldsymbol{S}}_{k}\right)d{\boldsymbol{s}}_{1}d{\boldsymbol{s}}_{2}\ldots d{\boldsymbol{s}}_{k}. (B.3)

We now substitute equation (B.3) into the Green’s function g(𝒛,Δτ)g({\boldsymbol{z}},\Delta\tau) in (B), which is expressed through substitutions as

g(𝒛,Δτ)=1(2π)2k=0(λΔτ)kk!2e12𝜼𝐂𝜼+i(𝜷+𝒛)𝜼+θ22=1kf(𝒔)exp(i𝜼𝑺k)d𝒔1d𝒔2d𝒔kd𝜼\displaystyle g({\boldsymbol{z}},\Delta\tau)=\frac{1}{(2\pi)^{2}}\sum_{k=0}^{\infty}\frac{\left(\lambda\Delta\tau\right)^{k}}{k!}\int_{\mathbb{R}^{2}}e^{-\frac{1}{2}{\boldsymbol{\eta}}^{\top}\mathbf{C}{\boldsymbol{\eta}}+i\left({\boldsymbol{\beta}}+{\boldsymbol{z}}\right)\cdot{\boldsymbol{\eta}}+\theta}\,\int_{\mathbb{R}^{2}}\ldots\int_{\mathbb{R}^{2}}\prod_{\ell=1}^{k}f({\boldsymbol{s}}_{\ell})\exp\left(i{\boldsymbol{\eta}}\cdot{\boldsymbol{S}}_{k}\right)d{\boldsymbol{s}}_{1}d{\boldsymbol{s}}_{2}\ldots d{\boldsymbol{s}}_{k}~{}d{\boldsymbol{\eta}}
=(i)1(2π)2k=0(λΔτ)kk!22=1kf(𝒔)2e12𝜼𝐂𝜼+i(𝜷+𝒛+𝑺k)𝜼+θ𝑑𝜼𝑑𝒔1𝑑𝒔2𝑑𝒔k=(ii)\displaystyle{\buildrel(\text{i})\over{=}}~{}\frac{1}{(2\pi)^{2}}\sum_{k=0}^{\infty}\frac{\left(\lambda\Delta\tau\right)^{k}}{k!}\,\int_{\mathbb{R}^{2}}\ldots\int_{\mathbb{R}^{2}}\prod_{\ell=1}^{k}f({\boldsymbol{s}}_{\ell})\int_{\mathbb{R}^{2}}e^{-\frac{1}{2}{\boldsymbol{\eta}}^{\top}\mathbf{C}{\boldsymbol{\eta}}+i\left({\boldsymbol{\beta}}+{\boldsymbol{z}}+{\boldsymbol{S}}_{k}\right)\cdot{\boldsymbol{\eta}}+\theta}~{}d{\boldsymbol{\eta}}\,d{\boldsymbol{s}}_{1}d{\boldsymbol{s}}_{2}\ldots d{\boldsymbol{s}}_{k}{\buildrel(\text{ii})\over{=}}\ldots
12πdet(𝑪)k=0(λΔτ)kk!22exp(θ(𝜷+𝒛+𝑺k)𝑪1(𝜷+𝒛+𝑺k)2)(=1kf(𝒔))𝑑𝒔1𝑑𝒔k.\displaystyle\frac{1}{2\pi\sqrt{\det(\boldsymbol{C})}}\sum_{k=0}^{\infty}\frac{\left(\lambda\Delta\tau\right)^{k}}{k!}\int_{\mathbb{R}^{2}}\ldots\int_{\mathbb{R}^{2}}\exp\left(\theta-\frac{\left({\boldsymbol{\beta}}+{\boldsymbol{z}}+{\boldsymbol{S}}_{k}\right)^{\top}\boldsymbol{C}^{-1}({\boldsymbol{\beta}}+{\boldsymbol{z}}+{\boldsymbol{S}}_{k})}{2}\right)\left(\prod_{\ell=1}^{k}f({\boldsymbol{s}}_{\ell})\right)d{\boldsymbol{s}}_{1}\ldots d{\boldsymbol{s}}_{k}.

Here, (i) is due to the Fubini’s theorem, in (ii), we apply the result for the multidimensional Gaussian-type integral, i.e nexp(12𝐱𝑨𝐱+𝒃𝐱+c)𝑑𝐱=det(2π𝑨1)e12𝒃𝑨1𝒃+c\int_{\mathbb{R}^{n}}\exp(-\frac{1}{2}{\bf{x}}^{\top}\boldsymbol{A}{\bf{x}}+\boldsymbol{b}^{\top}{\bf{x}}+c)~{}d{\bf{x}}=\sqrt{\det(2\pi\boldsymbol{A}^{-1})}e^{\frac{1}{2}\boldsymbol{b}^{\top}\boldsymbol{A}^{-1}\boldsymbol{b}+c}, and the determinant, det(𝑪)=det(Δτ𝑪~)=(Δτ)2det(𝑪~)=(Δτ)2σx2σy2(1ρ2)\det(\boldsymbol{C})=\det(\Delta\tau\,\tilde{\boldsymbol{C}})=(\Delta\tau)^{2}\det(\tilde{\boldsymbol{C}})=(\Delta\tau)^{2}\sigma_{\scalebox{0.6}{$x$}}^{2}\sigma_{\scalebox{0.6}{$y$}}^{2}(1-\rho^{2}).

Appendix C Proof of Corollary 3.1

Recalling (3.6), we have g(𝒛;Δt)=exp(θ(𝜷+𝒛)𝑪1(𝜷+𝒛)2)2πdet(𝑪)g({\boldsymbol{z}};\Delta t)=\frac{\exp\left(\theta-\frac{\left({\boldsymbol{\beta}}+{\boldsymbol{z}}\right)^{\top}\boldsymbol{C}^{-1}({\boldsymbol{\beta}}+{\boldsymbol{z}})}{2}\right)}{2\pi\sqrt{\det(\boldsymbol{C})}}\ldots

\displaystyle\ldots +eθ2πdet(𝑪)k=1(λΔτ)kk!22exp((𝜷+𝒛+𝑺k)𝑪1(𝜷+𝒛+𝑺k)2)(=1kf(𝒔))𝑑𝒔1𝑑𝒔kEk\displaystyle+\frac{e^{\theta}}{2\pi\sqrt{\det(\boldsymbol{C})}}\sum_{k=1}^{\infty}\frac{\left(\lambda\Delta\tau\right)^{k}}{k!}\underbrace{\int_{\mathbb{R}^{2}}\ldots\int_{\mathbb{R}^{2}}\exp\left(-\frac{\left({\boldsymbol{\beta}}+{\boldsymbol{z}}+{\boldsymbol{S}}_{k}\right)^{\top}\boldsymbol{C}^{-1}({\boldsymbol{\beta}}+{\boldsymbol{z}}+{\boldsymbol{S}}_{k})}{2}\right)\left(\prod_{\ell=1}^{k}f({\boldsymbol{s}}_{\ell})\right)d{\boldsymbol{s}}_{1}\ldots d{\boldsymbol{s}}_{k}}_{E_{k}}
=exp(θ(𝜷+𝒛)𝑪1(𝜷+𝒛)2)2πdet(𝑪)+eθ2πdet(𝑪)k=1(λΔτ)kk!Ek.\displaystyle=\frac{\exp\left(\theta-\frac{\left({\boldsymbol{\beta}}+{\boldsymbol{z}}\right)^{\top}\boldsymbol{C}^{-1}({\boldsymbol{\beta}}+{\boldsymbol{z}})}{2}\right)}{2\pi\sqrt{\det(\boldsymbol{C})}}+\frac{e^{\theta}}{2\pi\sqrt{\det(\boldsymbol{C})}}\sum_{k=1}^{\infty}\frac{\left(\lambda\Delta\tau\right)^{k}}{k!}~{}E_{k}. (C.1)

Here, the term EkE_{k} in (C) is clearly non-negative and can be computed as

Ek=2exp((𝜷+𝒛+𝒔)𝑪1(𝜷+𝒛+𝒔)2)f𝝃^k(𝒔)𝑑𝒔,\displaystyle E_{k}=\int_{\mathbb{R}^{2}}\exp\left(-\frac{\left({\boldsymbol{\beta}}+{\boldsymbol{z}}+{\boldsymbol{s}}\right)^{\top}\boldsymbol{C}^{-1}({\boldsymbol{\beta}}+{\boldsymbol{z}}+{\boldsymbol{s}})}{2}\right)f_{\hat{{\boldsymbol{\xi}}}_{k}}({\boldsymbol{s}})~{}d{\boldsymbol{s}}, (C.2)

where f𝝃^k(𝒔)f_{\hat{{\boldsymbol{\xi}}}_{k}}({\boldsymbol{s}}) is the PDF of the random variable 𝝃^k==1kln(𝝃)==1k[ln(ξx),ln(ξy)]\hat{{\boldsymbol{\xi}}}_{k}=\sum_{\ell=1}^{k}\ln({\boldsymbol{\xi}})_{\ell}=\sum_{\ell=1}^{k}[\ln(\xi_{\scalebox{0.6}{$x$}}),\ln(\xi_{\scalebox{0.6}{$y$}})]_{\ell} which is the sum of i.i.d random variables for fixed kk. For the Merton case, we have 𝝃^kNormal(k𝝁~,k𝑪M)\hat{{\boldsymbol{\xi}}}_{k}\sim\text{Normal}\left(k{\boldsymbol{\widetilde{\mu}}},k\boldsymbol{C}_{M}\right) with the PDF

f𝝃^k(𝒔)=exp((𝒔k𝝁~)(k𝑪)1(𝒔k𝝁~)2)2πdet(k𝑪).\displaystyle f_{\hat{{\boldsymbol{\xi}}}_{k}}({\boldsymbol{s}})=\frac{\exp\left(-\frac{\left({\boldsymbol{s}}-k{\boldsymbol{\widetilde{\mu}}}\right)^{\top}(k\boldsymbol{C}_{\mathcal{M}})^{-1}({\boldsymbol{s}}-k{\boldsymbol{\widetilde{\mu}}})}{2}\right)}{2\pi\sqrt{\det(k\boldsymbol{C}_{\mathcal{M}})}}. (C.3)

By substituting the equation (C.3) into (C.2), we have

Ek\displaystyle E_{k} =2exp((𝜷+𝒛+𝒔)𝑪1(𝜷+𝒛+𝒔)2)exp((𝒔k𝝁~)(k𝑪)1(𝒔k𝝁~)2)2πdet(k𝑪)𝑑𝒔\displaystyle=\int_{\mathbb{R}^{2}}\exp\left(-\frac{\left({\boldsymbol{\beta}}+{\boldsymbol{z}}+{\boldsymbol{s}}\right)^{\top}\boldsymbol{C}^{-1}({\boldsymbol{\beta}}+{\boldsymbol{z}}+{\boldsymbol{s}})}{2}\right)\frac{\exp\left(-\frac{\left({\boldsymbol{s}}-k{\boldsymbol{\widetilde{\mu}}}\right)^{\top}(k\boldsymbol{C}_{\mathcal{M}})^{-1}({\boldsymbol{s}}-k{\boldsymbol{\widetilde{\mu}}})}{2}\right)}{2\pi\sqrt{\det(k\boldsymbol{C}_{\mathcal{M}})}}~{}d{\boldsymbol{s}}
=12πdet(k𝑪)2exp((𝜷+𝒛+𝒔)𝑪1(𝜷+𝒛+𝒔)+(𝒔k𝝁~)(k𝑪)1(𝒔k𝝁~)2)𝑑𝒔\displaystyle=\frac{1}{2\pi\sqrt{\det(k\boldsymbol{C}_{\mathcal{M}})}}\int_{\mathbb{R}^{2}}\exp\left(-\frac{\left({\boldsymbol{\beta}}+{\boldsymbol{z}}+{\boldsymbol{s}}\right)^{\top}\boldsymbol{C}^{-1}({\boldsymbol{\beta}}+{\boldsymbol{z}}+{\boldsymbol{s}})+\left({\boldsymbol{s}}-k{\boldsymbol{\widetilde{\mu}}}\right)^{\top}(k\boldsymbol{C}_{\mathcal{M}})^{-1}({\boldsymbol{s}}-k{\boldsymbol{\widetilde{\mu}}})}{2}\right)~{}d{\boldsymbol{s}}
=(i)12πdet(k𝑪)2exp(𝒔(𝑪1+(k𝑪)1)𝒔2+((k𝝁~)(k𝑪)1(𝜷+𝒛)𝑪1)𝒔\displaystyle{\buildrel(\text{i})\over{=}}\frac{1}{2\pi\sqrt{\det(k\boldsymbol{C}_{\mathcal{M}})}}\int_{\mathbb{R}^{2}}\exp\left(-\frac{{\boldsymbol{s}}^{\top}\left(\boldsymbol{C}^{-1}+(k\boldsymbol{C}_{\mathcal{M}})^{-1}\right){\boldsymbol{s}}}{2}+\left((k{\boldsymbol{\widetilde{\mu}}})^{\top}(k\boldsymbol{C}_{\mathcal{M}})^{-1}-({\boldsymbol{\beta}}+{\boldsymbol{z}})^{\top}\boldsymbol{C}^{-1}\right){\boldsymbol{s}}\ldots\right.
(𝜷+𝒛)𝑪1(𝜷+𝒛)+(k𝝁~)(k𝑪)1(k𝝁~)2)d𝒔\displaystyle\qquad\left.\ldots-\frac{({\boldsymbol{\beta}}+{\boldsymbol{z}})^{\top}\boldsymbol{C}^{-1}({\boldsymbol{\beta}}+{\boldsymbol{z}})+(k{\boldsymbol{\widetilde{\mu}}})^{\top}(k\boldsymbol{C}_{\mathcal{M}})^{-1}(k{\boldsymbol{\widetilde{\mu}}})}{2}\right)~{}d{\boldsymbol{s}} (C.4)

Here, in (i), we use matrix multiplication distributive and associative properties. For simplicity, we adopt the following notational convention: 𝑨=𝑪1+(k𝑪)1\boldsymbol{A}=\boldsymbol{C}^{-1}+(k\boldsymbol{C}_{\mathcal{M}})^{-1}, which is positive semi-definite and symmetric, and 𝜶=𝜷+𝒛\boldsymbol{\alpha}={\boldsymbol{\beta}}+{\boldsymbol{z}}. Then, equation (C) becomes

Ek\displaystyle E_{k} =12πdet(k𝑪)2exp(𝒔𝑨𝒔2+((k𝝁~)(k𝑪)1𝜶𝑪1)𝒔\displaystyle=\frac{1}{2\pi\sqrt{\det(k\boldsymbol{C}_{\mathcal{M}})}}\int_{\mathbb{R}^{2}}\exp\left(-\frac{{\boldsymbol{s}}^{\top}\boldsymbol{A}{\boldsymbol{s}}}{2}+\left((k{\boldsymbol{\widetilde{\mu}}})^{\top}(k\boldsymbol{C}_{\mathcal{M}})^{-1}-\boldsymbol{\alpha}^{\top}\boldsymbol{C}^{-1}\right){\boldsymbol{s}}\ldots\right.
𝜶𝑪1𝜶+(k𝝁~)(k𝑪)1(k𝝁~)2)d𝒔\displaystyle\qquad\left.\ldots-\frac{\boldsymbol{\alpha}^{\top}\boldsymbol{C}^{-1}\boldsymbol{\alpha}+(k{\boldsymbol{\widetilde{\mu}}})^{\top}(k\boldsymbol{C}_{\mathcal{M}})^{-1}(k{\boldsymbol{\widetilde{\mu}}})}{2}\right)~{}d{\boldsymbol{s}}
=(i)det(𝑨1)det(k𝑪)exp(((k𝝁~)(k𝑪)1𝜶𝑪1)𝑨1((k𝝁~)(k𝑪)1𝜶𝑪1)2\displaystyle{\buildrel(\text{i})\over{=}}\frac{\sqrt{\det\left(\boldsymbol{A}^{-1}\right)}}{\sqrt{\det(k\boldsymbol{C}_{\mathcal{M}})}}\exp\left(\frac{\left((k{\boldsymbol{\widetilde{\mu}}})^{\top}(k\boldsymbol{C}_{\mathcal{M}})^{-1}-\boldsymbol{\alpha}^{\top}\boldsymbol{C}^{-1}\right)\boldsymbol{A}^{-1}\left((k{\boldsymbol{\widetilde{\mu}}})^{\top}(k\boldsymbol{C}_{\mathcal{M}})^{-1}-\boldsymbol{\alpha}^{\top}\boldsymbol{C}^{-1}\right)^{\top}}{2}\ldots\right.
𝜶𝑪1𝜶+(k𝝁~)(k𝑪)1(k𝝁~)2)\displaystyle\qquad\left.\ldots-\frac{\boldsymbol{\alpha}^{\top}\boldsymbol{C}^{-1}\boldsymbol{\alpha}+(k{\boldsymbol{\widetilde{\mu}}})^{\top}(k\boldsymbol{C}_{\mathcal{M}})^{-1}(k{\boldsymbol{\widetilde{\mu}}})}{2}\right)
=det(𝑨1)det(k𝑪)exp(((k𝝁~)(𝑨𝑪1)𝜶(𝑨(k𝑪)1))𝑨1((k𝝁~)(k𝑪)1𝜶𝑪1)2\displaystyle=\frac{\sqrt{\det\left(\boldsymbol{A}^{-1}\right)}}{\sqrt{\det(k\boldsymbol{C}_{\mathcal{M}})}}\exp\left(\frac{\left((k{\boldsymbol{\widetilde{\mu}}})^{\top}(\boldsymbol{A}-\boldsymbol{C}^{-1})-\boldsymbol{\alpha}^{\top}\left(\boldsymbol{A}-(k\boldsymbol{C}_{\mathcal{M}})^{-1}\right)\right)\boldsymbol{A}^{-1}\left((k{\boldsymbol{\widetilde{\mu}}})^{\top}(k\boldsymbol{C}_{\mathcal{M}})^{-1}-\boldsymbol{\alpha}^{\top}\boldsymbol{C}^{-1}\right)^{\top}}{2}\ldots\right.
𝜶𝑪1𝜶+(k𝝁~)(k𝑪)1(k𝝁~)2)\displaystyle\qquad\left.\ldots-\frac{\boldsymbol{\alpha}^{\top}\boldsymbol{C}^{-1}\boldsymbol{\alpha}+(k{\boldsymbol{\widetilde{\mu}}})^{\top}(k\boldsymbol{C}_{\mathcal{M}})^{-1}(k{\boldsymbol{\widetilde{\mu}}})}{2}\right)
=(ii)det(𝑨1)det(k𝑪)exp(12((k𝝁~)𝑨𝑨1(k𝑪)1(k𝝁~)(k𝝁~)𝑪1𝑨1(k𝑪)1(k𝝁~)\displaystyle{\buildrel(\text{ii})\over{=}}\frac{\sqrt{\det\left(\boldsymbol{A}^{-1}\right)}}{\sqrt{\det(k\boldsymbol{C}_{\mathcal{M}})}}\exp\left(\frac{1}{2}\left((k{\boldsymbol{\widetilde{\mu}}})^{\top}\boldsymbol{A}\boldsymbol{A}^{-1}(k\boldsymbol{C}_{\mathcal{M}})^{-1}(k{\boldsymbol{\widetilde{\mu}}})-(k{\boldsymbol{\widetilde{\mu}}})^{\top}\boldsymbol{C}^{-1}\boldsymbol{A}^{-1}(k\boldsymbol{C}_{\mathcal{M}})^{-1}(k{\boldsymbol{\widetilde{\mu}}})\ldots\right.\right.
+𝜶𝑨𝑨1𝑪1𝜶𝜶(k𝑪)1𝑨1𝑪1𝜶)𝜶𝑪1𝜶+(k𝝁~)(k𝑪)1(k𝝁~)2)\displaystyle\qquad\left.\left.\ldots+\boldsymbol{\alpha}^{\top}\boldsymbol{A}\boldsymbol{A}^{-1}\boldsymbol{C}^{-1}\boldsymbol{\alpha}-\boldsymbol{\alpha}^{\top}(k\boldsymbol{C}_{\mathcal{M}})^{-1}\boldsymbol{A}^{-1}\boldsymbol{C}^{-1}\boldsymbol{\alpha}\right)-\frac{\boldsymbol{\alpha}^{\top}\boldsymbol{C}^{-1}\boldsymbol{\alpha}+(k{\boldsymbol{\widetilde{\mu}}})^{\top}(k\boldsymbol{C}_{\mathcal{M}})^{-1}(k{\boldsymbol{\widetilde{\mu}}})}{2}\right)
=(iii)det(𝑪(𝑪+k𝑪)1(k𝑪))det(k𝑪)exp((𝜶+k𝝁~)(𝑪+k𝑪)1(𝜶+k𝝁~)2)\displaystyle{\buildrel(\text{iii})\over{=}}\frac{\sqrt{\det\left(\boldsymbol{C}(\boldsymbol{C}+k\boldsymbol{C}_{\mathcal{M}})^{-1}(k\boldsymbol{C}_{\mathcal{M}})\right)}}{\sqrt{\det(k\boldsymbol{C}_{\mathcal{M}})}}\exp\left(-\frac{(\boldsymbol{\alpha}+k{\boldsymbol{\widetilde{\mu}}})^{\top}(\boldsymbol{C}+k\boldsymbol{C}_{\mathcal{M}})^{-1}(\boldsymbol{\alpha}+k{\boldsymbol{\widetilde{\mu}}})}{2}\right)
=(iv)det(𝑪)exp((𝜷+𝒛+k𝝁~)(𝑪+k𝑪)1(𝜷+𝒛+k𝝁~)2)det(𝑪+k𝑪).\displaystyle{\buildrel(\text{iv})\over{=}}\frac{\sqrt{\det(\boldsymbol{C})}\exp\left(-\frac{({\boldsymbol{\beta}}+{\boldsymbol{z}}+k{\boldsymbol{\widetilde{\mu}}})^{\top}(\boldsymbol{C}+k\boldsymbol{C}_{\mathcal{M}})^{-1}({\boldsymbol{\beta}}+{\boldsymbol{z}}+k{\boldsymbol{\widetilde{\mu}}})}{2}\right)}{\sqrt{\det(\boldsymbol{C}+k\boldsymbol{C}_{\mathcal{M}})}}. (C.5)

Here, in (i), we apply the result nexp(12𝐱𝑨𝐱+𝒃𝐱+c)𝑑𝐱=det(2π𝑨1)e12𝒃𝑨1𝒃+c\int_{\mathbb{R}^{n}}\exp(-\frac{1}{2}{\bf{x}}^{\top}\boldsymbol{A}{\bf{x}}+\boldsymbol{b}^{\top}{\bf{x}}+c)~{}d{\bf{x}}=\sqrt{\det(2\pi\boldsymbol{A}^{-1})}e^{\frac{1}{2}\boldsymbol{b}^{\top}\boldsymbol{A}^{-1}\boldsymbol{b}+c}; (ii) is due to matrix multiplication distributive and associative properties; in (iii), we use the equality for inverse matrix: (𝑨1+𝑩1)1=𝑨(𝑨+𝑩)1𝑩(\boldsymbol{A}^{-1}+\boldsymbol{B}^{-1})^{-1}=\boldsymbol{A}(\boldsymbol{A}+\boldsymbol{B})^{-1}\boldsymbol{B}, and (iv) is due to the determinant of a product of matrices, i.e det(𝑨𝑩)=det(𝑨)det(𝑩)\det(\boldsymbol{A}\boldsymbol{B})=\det(\boldsymbol{A})\det(\boldsymbol{B}). Using (C) and (C) together with further simplifications gives us the desired result.

Appendix D Proof of Lemma 5.1

We inspect each term in the full series definition of g~(xnl,yjd,Δτ)=ΔxΔyg(xnl,yjd,Δτ)\widetilde{g}(x_{n-l},y_{j-d},\Delta\tau)=\Delta x\,\Delta y\,\odot g(x_{n-l},y_{j-d},\Delta\tau). Recall that g(xnl,yjd,Δτ)g(x_{n-l},y_{j-d},\Delta\tau), is given by the infinite series representation in Corollary 3.1. Thus, with the notation 𝐳nl,jd=[xnl,yjd]=[(nl)Δx,(jd)Δy]\mathbf{z}_{n-l,j-d}=[x_{n-l},y_{j-d}]=[(n-l)\Delta x,(j-d)\Delta y], folding ΔxΔy\Delta x\,\Delta y into the denominator of g(xnl,yjd,Δτ)g(x_{n-l},y_{j-d},\Delta\tau) yields: g~(xnl,yjd,Δτ)=k=0Kg~(k)(xnl,yjd,Δτ)=\widetilde{g}(x_{n-l},y_{j-d},\Delta\tau)=\sum_{k=0}^{K}\widetilde{g}^{(k)}(x_{n-l},y_{j-d},\Delta\tau)=\ldots

=k=0(λΔτ)kk!ΔxΔy2πdet(𝐂+k𝐂)Akexp(θ12(𝜷+𝐳nl,jd+k𝝁~)(𝐂+k𝐂)1(𝜷+𝐳nl,jd+k𝝁~)).\ldots\;=\;\sum_{k=0}^{\infty}\frac{(\lambda\,\Delta\tau)^{k}}{k!}\cdot\underbrace{\frac{\Delta x\Delta y}{2\pi\,\sqrt{\det(\mathbf{C}+k\,\mathbf{C}_{\mathcal{M}})}}}_{A_{k}}\exp\!\Bigl{(}\theta-\tfrac{1}{2}\bigl{(}\boldsymbol{\beta}+\mathbf{z}_{n-l,j-d}+k\,\boldsymbol{\tilde{\mu}}\bigr{)}^{\top}\bigl{(}\mathbf{C}+k\mathbf{C}_{\mathcal{M}}\bigr{)}^{-1}\bigl{(}\boldsymbol{\beta}+\mathbf{z}_{n-l,j-d}+k\,\boldsymbol{\tilde{\mu}}\bigr{)}\Bigr{)}.

For the rest of the proof, let C^\hat{C} be a generic non-negative bounded constant, which may take different values from line to line.

  • Case k=0k=0: we have 𝐂+0𝐂=𝐂=(C3h)𝐂~\mathbf{C}+0\,\mathbf{C}_{\mathcal{M}}=\mathbf{C}=(C_{3}\,h)\,\tilde{\mathbf{C}}. Its determinant det(𝐂)=(C3h)2det(𝐂~)\det(\mathbf{C})=(C_{3}\,h)^{2}\det(\tilde{\mathbf{C}}), with det(𝐂~)=σx2σy2(1ρ2)\det(\tilde{\mathbf{C}})=\sigma_{\scalebox{0.6}{$x$}}^{2}\sigma_{\scalebox{0.6}{$y$}}^{2}(1-\rho^{2}) as given in (3.4). Thus, det(𝐂)h2\det(\mathbf{C})\sim h^{2}, so det(𝐂)h\sqrt{\det(\mathbf{C})}\sim h. Hence, multiplying by ΔxΔyh2\Delta x\,\Delta y\sim h^{2} and dividing by det(𝐂)h\sqrt{\det(\mathbf{C})}\sim h yields the factor A0hA_{0}\sim h.

    Next, we consider the exponential term. Here, note that (𝐂)1=𝒪(1/h)\bigl{(}\mathbf{C}\bigr{)}^{-1}=\mathcal{O}(1/h) and 𝜷=𝒪(h)\boldsymbol{\beta}=\mathcal{O}(h). Regarding 𝐳nl,jd\mathbf{z}_{n-l,j-d}, under the Assumption 5.1, particularly, Px=C1/hP_{x}^{\dagger}=C^{\prime}_{1}/h and Py=C2/hP_{y}^{\dagger}=C^{\prime}_{2}/h, we have [nl,jd][n-l,j-d] ranging from 𝒪(1)\mathcal{O}(1) to 𝒪(1/h2)\mathcal{O}(1/h^{2}). Thus, the components of 𝐳nl,jd\mathbf{z}_{n-l,j-d} vary between 𝒪(h)\mathcal{O}(h) to 𝒪(1/h)\mathcal{O}(1/h).

    If 𝐳nl,jd=𝒪(h)\mathbf{z}_{n-l,j-d}=\mathcal{O}(h), the product (𝜷+𝐳nl,jd)(𝐂)1(𝜷+𝐳nl,jd)C^h(\boldsymbol{\beta}+\mathbf{z}_{n-l,j-d})^{\top}\bigl{(}\mathbf{C}\bigr{)}^{-1}(\boldsymbol{\beta}+\mathbf{z}_{n-l,j-d})\sim\hat{C}h, noting 𝐂\mathbf{C} is a positive semi-definite matrix. Recalling θh\theta\sim-h, it follows that the exponential term is of order 𝒪(eh)\mathcal{O}(e^{-h}).

    If 𝐳nl,jd=𝒪(1/h)\mathbf{z}_{n-l,j-d}=\mathcal{O}(1/h), the product ()𝐂1()C^/h3(\ldots)^{\top}\mathbf{C}^{-1}(\ldots)\sim\hat{C}/h^{3}, resulting in an overall exponential term of 𝒪(e1/h3)\mathcal{O}(e^{-1/h^{3}}).

    Therefore, for the case k=0k=0, the term g~(0)(xnl,yjd,Δτ)\widetilde{g}^{(0)}(x_{n-l},y_{j-d},\Delta\tau) varies between 𝒪(he1/h3)\mathcal{O}(he^{-1/h^{3}}) and 𝒪(heh)\mathcal{O}(he^{-h}).

  • Case k1k\geq 1: in 𝐂+k𝐂\mathbf{C}+k\mathbf{C}_{\mathcal{M}}, 𝐂=Δτ𝐂~\mathbf{C}=\Delta\tau\tilde{\mathbf{C}}, so 𝐂=𝒪(h)\mathbf{C}=\mathcal{O}(h); In addition, k𝐂k\mathbf{C}_{\mathcal{M}} is nonsingular for each k1k\geq 1 and k𝐂=𝒪(1)k\mathbf{C}_{\mathcal{M}}=\mathcal{O}(1). Hence det(𝐂+k𝐂)=𝒪(1)\sqrt{\det(\mathbf{C}+k\,\mathbf{C}_{\mathcal{M}})}=\mathcal{O}(1), leading to the factor Akh2A_{k}\sim h^{2}.

    In the exponent, (𝐂+k𝐂)1=𝒪(1)\bigl{(}\mathbf{C}+k\mathbf{C}_{\mathcal{M}}\bigr{)}^{-1}=\mathcal{O}(1); also 𝜷=𝒪(h)\boldsymbol{\beta}=\mathcal{O}(h) and k𝝁~k\,\boldsymbol{\tilde{\mu}} is a constant vector for each fixed kk.

    If 𝐳nl,jd=𝒪(h)\mathbf{z}_{n-l,j-d}=\mathcal{O}(h), (𝜷+𝐳nl,jd)(𝐂+k𝐂)1(𝜷+𝐳nl,jd)C^h2(\boldsymbol{\beta}+\mathbf{z}_{n-l,j-d})^{\top}\bigl{(}\mathbf{C}+k\mathbf{C}_{\mathcal{M}}\bigr{)}^{-1}(\boldsymbol{\beta}+\mathbf{z}_{n-l,j-d})\sim\hat{C}h^{2}, resulting in an overall exponential term of order 𝒪(eh)\mathcal{O}(e^{-h}), noting θh\theta\sim-h.

    If 𝐳nl,jd𝒪(1/h)\mathbf{z}_{n-l,j-d}\sim\mathcal{O}(1/h), ()(𝐂+k𝐂)1()C^/h2(\ldots)^{\top}\bigl{(}\mathbf{C}+k\mathbf{C}_{\mathcal{M}}\bigr{)}^{-1}(\ldots)\sim\hat{C}/h^{2}, so the exponential term is of order 𝒪(e1/h2)\mathcal{O}(e^{-1/h^{2}}).

    Meanwhile, (λΔτ)khk(\lambda\,\Delta\tau)^{k}\sim h^{k}. So for each k1k\geq 1, the term g~(k)(xnl,yjd,Δτ)\widetilde{g}^{(k)}(x_{n-l},y_{j-d},\Delta\tau) varies between 𝒪(h2+ke1/h2)\mathcal{O}\!\bigl{(}h^{2+k}e^{-1/h^{2}}\bigr{)} and 𝒪(h2+keh)\mathcal{O}\!\bigl{(}h^{2+k}e^{-h}\bigr{)}. Thus, the dominating term of k=1𝒪(h2+k)\sum_{k=1}^{\infty}\mathcal{O}\!\bigl{(}h^{2+k}\bigr{)} is 𝒪(h3e1/h2)\mathcal{O}(h^{3}e^{-1/h^{2}}) and 𝒪(h3eh)\mathcal{O}(h^{3}e^{-h}), respectively.

Combining the results yields g~nl,jd(Δτ)=𝒪(heh)\widetilde{g}_{n-l,j-d}(\Delta\tau)=\mathcal{O}(he^{-h}), which simplifies to 𝒪(h)\mathcal{O}(h). In conclusion, in any case, as h0h\to 0, g~(xnl,yjd,Δτ)0\widetilde{g}(x_{n-l},y_{j-d},\Delta\tau)\to 0, hence, it stays bounded. It is trivial that g~nl,jd(Δτ,K)\widetilde{g}_{n-l,j-d}(\Delta\tau,K) is also bounded.