This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

thanks: These authors contributed equally to this work.thanks: These authors contributed equally to this work.thanks: [email protected] (Corresponding author)thanks: [email protected] (Corresponding author)thanks: [email protected] (Corresponding author)

Novel method for identifying the heaviest QED atom

Jing-Hang Fu School of Physics, Beihang University, Beijing 100083, China    Sen Jia School of Physics, Southeast University, Nanjing 211189, China    Xing-Yu Zhou School of Physics and Electronic Technology, Liaoning Normal University, Dalian 116029, China    Yu-Jie Zhang School of Physics, Beihang University, Beijing 100083, China Peng Huanwu Collaborative Center for Research and Education, Beihang University, Beijing 100191, China    Cheng-Ping Shen Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443, China School of Physics, Henan Normal University, Xinxiang 453007, China    Chang-Zheng Yuan Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China University of Chinese Academy of Sciences, Beijing 100049, China
Abstract

QED atoms are composed of unstructured and point-like lepton pairs bound together by the electromagnetic force. The smallest and heaviest QED atom is formed by a τ+τ\tau^{+}\tau^{-} pair. Currently, the only known atoms of this type are the e+ee^{+}e^{-} and μ+e\mu^{+}e^{-} atoms, which were discovered 64 years ago and remain the sole examples found thus far. We demonstrate that the JτJ_{\tau} (τ+τ\tau^{+}\tau^{-} atom with JPC=1J^{PC}=1^{--}) atom signal can be observed with a significance larger than 5σ5\sigma including both statistical and systematic uncertainties, via the process e+eX+Ye^{+}e^{-}\to X^{+}Y^{-}\not{E} (X,Y=eX,\,Y=e, μ\mu, π\pi, KK, or ρ\rho, and \not{E} is the missing energy due to unobserved neutrinos) with 1.5ab11.5~{}{\rm ab^{-1}} data taken around the τ\tau pair production threshold. The τ\tau lepton mass can be measured with a precision of 1 keV with the same data sample. This is within one year’s running time of the proposed super tau-charm facility in China or super charm-tau factory in Russia.

KeywordsQED atom, Tau lepton, e+ee^{+}e^{-} annihilation, STCF, SCTF

1. Introduction

Quantum electrodynamics (QED) atoms are formed of lepton pairs (e+ee^{+}e^{-}, μ+e\mu^{+}e^{-}, τ+e\tau^{+}e^{-}, μ+μ\mu^{+}\mu^{-}, τ+μ\tau^{+}\mu^{-}, and τ+τ\tau^{+}\tau^{-}) by electromagnetic interactions, similar to hydrogen formed of a proton and an electron. Their properties have been studied to test QED theory Karshenboim:2005iy ; Safronova:2017xyt , fundamental symmetries Hughes:2001yk ; Yamazaki:2009hp , gravity MAGE:2018wxk ; Soter:2021xuf , and search for physics beyond the Standard Model Bernreuther:1988tt ; Yamazaki:2009hp ; Adkins:2022omi ; Ellis:2017kzh , and so on. The first QED atom was discovered in 1951, which is the e+ee^{+}e^{-} bound state and named positronium Deutsch:1951zza ; the second one was discovered in 1960, which is the μ+e\mu^{+}e^{-} bound state and named muonium Hughes:1960zz . No other QED atom was found in the past 64 years. New colliders are proposed to discover the true muonium Fox:2021mdn ; Gargiulo:2023tci which decays into final states with electrons and photons jentschura:1997bound ; Brodsky:2009gx . The heaviest and smallest QED atom, a bound state of τ+τ\tau^{+}\tau^{-} Moffat:1975uw , is named tauonium Avilez:1977ai ; Avilez:1978sa , ditauonium dEnterria:2022alo ; Yu:2022hdt , or true tauonium dEnterria:2022ysg . We classify the bound states of τ+τ\tau^{+}\tau^{-} following the charmonium spectroscopy ParticleDataGroup:2022pth simply as Jτ(nS)J_{\tau}(nS), ητ(nS)\eta_{\tau}(nS), and χτJ(nP)\chi_{\tau J}(nP) for the states with quantum numbers of n3S1n^{3}S_{1}, n1S0n^{1}S_{0}, and (n+1)3PJ(n+1)^{3}P_{J}, respectively. Here, nn is the radial quantum number, and SS and PP denote the orbital angular momentum of 0 and 1, respectively. There were many theoretical studies in the literature since the discovery of the τ\tau lepton. The spectroscopy of τ+τ\tau^{+}\tau^{-} atoms was studied in Ref. dEnterria:2022alo . The production of ητ\eta_{\tau} was considered in Refs. dEnterria:2022ysg ; Yu:2022hdt and that of the process e+eJτ(1S)μ+μe^{+}e^{-}\to J_{\tau}(1S)\to\mu^{+}\mu^{-} in Refs. Avilez:1977ai ; Malik:2008pn ; dEnterria:2023yao . In addition, study of the Jτ(nS)J_{\tau}(nS) via the processes e+eJτ(1S)lighthadronse^{+}e^{-}\to J_{\tau}(1S)\to{\rm light~{}hadrons} Avilez:1977ai ; Avilez:1978sa and e+eJτ(nS)γητe^{+}e^{-}\to J_{\tau}(nS)\to\gamma\eta_{\tau} were proposed Moffat:1975uw . Achievements have been made in the precise measurements of standard model and searches for exotic states at e+ee^{+}e^{-} colliders BESIII:2014srs ; Zhang:2018gol ; Achasov:2019rdp ; Anashin2007 ; Oset2023 ; He2022 ; Liu2023 .

2. Methods and calculations

In this Letter, we introduce a novel method for identifying Jτ(nS)J_{\tau}(nS) by measuring the cross section ratio σ(e+eX+Y)/σ(e+eμ+μ)\sigma(e^{+}e^{-}\to X^{+}Y^{-}\not{E})/\sigma(e^{+}e^{-}\to\mu^{+}\mu^{-}). Here X,Y=eX,\,Y=e, μ\mu, π\pi, KK, or ρ\rho, and \not{E} is the missing energy due to unobserved neutrinos. To suppress backgrounds with extra missing particles, one can require no additional photons in the event besides those from ρ\rho decays and the number of good charged tracks is exactly two for all the channels of ττee,eμ,eπ,eK,μμ,μπ,μK,πK,ππ,KK,eρ,μρ,andπρ\tau\tau\to ee,~{}e\mu,~{}e\pi,~{}eK,~{}\mu\mu,~{}\mu\pi,~{}\mu K,\pi K,~{}\pi\pi,~{}KK,~{}e\rho,~{}\mu\rho,~{}{\rm and}~{}\pi\rho. To remove background events from two-photon processes of e+ee+ee+eande+ee+eμ+μe^{+}e^{-}\to e^{+}e^{-}e^{+}e^{-}~{}{\rm and}~{}e^{+}e^{-}\to e^{+}e^{-}\mu^{+}\mu^{-}, a lower limit of the transverse momentum of the charged tracks can be applied. The process of e+eX+Ye^{+}e^{-}\to X^{+}Y^{-}\not{E} can manifest in intermediate states in two distinct ways: τ+τ\tau^{+}\tau^{-} open states above the double τ\tau lepton mass threshold (2mτ2m_{\tau}) and τ+τ\tau^{+}\tau^{-} bound states Jτ(nS)J_{\tau}(nS) just below the threshold with a binding energy of Enα2mτ/(4n2)23.7/n2E_{n}\approx\alpha^{2}m_{\tau}/(4n^{2})\approx 23.7/n^{2} keV.

By fitting the σ(e+eX+Y)/σ(e+eμ+μ)\sigma(e^{+}e^{-}\to X^{+}Y^{-}\not{E})/\sigma(e^{+}e^{-}\to\mu^{+}\mu^{-}) distribution in the vicinity of the τ\tau pair production threshold with and without a Jτ(nS)J_{\tau}(nS) atom component, we can identify its existence. We show below that the τ\tau lepton mass measured with the process e+eτ+τX+Ye^{+}e^{-}\to\tau^{+}\tau^{-}\to X^{+}Y^{-}\not{E} will also be affected after considering the Jτ(nS)J_{\tau}(nS) contribution.

The τ\tau lepton mass is one of the fundamental parameters of the Standard Model. A precise τ\tau mass measurement is essential to check the lepton flavor universality and constrain the ντ\nu_{\tau} mass Marciano . In the previous measurements of e+eτ+τe^{+}e^{-}\to\tau^{+}\tau^{-} cross sections at the BESIII BESIII:2014srs ; Zhang:2018gol ; Achasov:2019rdp and KEDR experiments Anashin2007 , the contribution of e+eJτ(nS)e^{+}e^{-}\to J_{\tau}(nS) was not included in theoretical calculation. This is not a problem at these experiments as the uncertainties are at 100 keV level (The current world average value of τ\tau mass is mτPDG=(1776.86±0.12)MeVm^{\rm PDG}_{\tau}=(1776.86\pm 0.12)~{}{\rm MeV} ParticleDataGroup:2022pth and the recent most precise measurement from Belle II experiment is 1777.09±0.08±0.11MeV1777.09\pm 0.08\pm 0.11~{}{\rm MeV} Belle-II:2023izd ), but the effect should not be ignored in the next generation experiments which aim at a precision of one or two orders of magnitude better than previous ones. In BESIII measurement BESIII:2014srs , the primary source of systematic uncertainty arises from the energy scale and efficiency. In KEDR measurement Achasov:2019rdp , the primary systematic uncertainty is attributed to efficiency and luminosity measurements. In the next generation of experiments, the statistical uncertainty is anticipated to decrease due to the large integrated luminosity, while the systematic uncertainty will be mitigated through the adoption of new fitting methods developed in this work and the application of advanced technologies to the detector and accelerator design.

The cross section σ(e+eX+Y)\sigma(e^{+}e^{-}\to X^{+}Y^{-}\not{E}) around the τ+τ\tau^{+}\tau^{-} production threshold is BESIII:2014srs ; Zhang:2018gol ; Achasov:2019rdp ; Anashin2007

σ(W,mτ,Γτ,δW)=mJτdW12πδWe(WW)22δW2×\displaystyle\sigma(W,m_{\tau},\Gamma_{\tau},\delta_{W})=\int_{m_{J_{\tau}}}^{\infty}dW^{\prime}\frac{1}{\sqrt{2\pi}\delta_{W}}e^{-\frac{(W-W^{\prime})^{2}}{2\delta_{W}^{2}}}\times
01mJτ2W2𝑑xF(x,W)σ¯(W1x,mτ,Γτ)|1Π(W1x)|2.\displaystyle\int_{0}^{1-\frac{m_{J_{\tau}}^{2}}{W^{\prime 2}}}dx~{}F(x,W^{\prime})\frac{\bar{\sigma}(W^{\prime}\sqrt{1-x},m_{\tau},\Gamma_{\tau})}{|1-\Pi(W^{\prime}\sqrt{1-x})|^{2}}. (1)

Here, WW is the center-of-mass energy, δW\delta_{W} is the center-of-mass energy spread, F(x,W)F(x,W) is the initial state radiation factor Kuraev:1985hb , Π(W)\Pi(W) is the vacuum polarization factor WorkingGrouponRadiativeCorrections:2010bjp , and σ¯(W,mτ,Γτ)\bar{\sigma}(W,m_{\tau},\Gamma_{\tau}) is the Born cross section. With Jτ(nS)J_{\tau}(nS) atoms included, Eq. (II) differs from those given in Refs. BESIII:2014srs ; Zhang:2018gol ; Achasov:2019rdp ; Anashin2007 , where 2mτ2m_{\tau} is replaced by the ground state mass mJτm_{J_{\tau}} in the range of integration, the τ\tau width Γτ\Gamma_{\tau} is added as a variable, and the contribution of Jτ(nS)J_{\tau}(nS) atoms (σ¯Jτ(W)\bar{\sigma}^{J_{\tau}}(W)) is included in σ¯(W,mτ,Γτ)\bar{\sigma}(W,m_{\tau},\Gamma_{\tau}) as

σ¯(W,mτ,Γτ)=σ¯Jτ(W)+σ¯con.(W),\displaystyle\bar{\sigma}(W,m_{\tau},\Gamma_{\tau})=\bar{\sigma}^{J_{\tau}}(W)+\bar{\sigma}^{\rm con.}(W), (2)

where σ¯con.(W)\bar{\sigma}^{\rm con.}(W) is the cross section from the e+eτ+τe^{+}e^{-}\to\tau^{+}\tau^{-} continuum process and is calculated to the next-to-leading order (NLO) in the fine structure constant α\alpha, as has been done for σ¯Jτ(W)\bar{\sigma}^{J_{\tau}}(W).

At NLO Brodsky:2009gx ; dEnterria:2022alo , the cross section σ¯Jτ\bar{\sigma}^{J_{\tau}} from narrow atoms is given by the Breit-Wigner function ParticleDataGroup:2022pth

σ¯Jτ(W)=n6π2|1Π(2mτ)|2(13α4π)W2ΓtotalJτ(nS)×\displaystyle\bar{\sigma}^{J_{\tau}}(W)=\sum_{n}\frac{6\pi^{2}|1-\Pi(2m_{\tau})|^{2}\left(1-\frac{3\alpha}{4\pi}\right)}{W^{2}\Gamma^{J_{\tau}(nS)}_{\rm total}}\times
δ(WmJτ(nS))ΓX+YJτ(nS)×Γe+eJτ(nS),\displaystyle\delta(W-m_{J_{\tau}(nS)})\Gamma^{J_{\tau}(nS)}_{X^{+}Y^{-}\not{E}}\times\Gamma^{J_{\tau}(nS)}_{e^{+}e^{-}}, (3)

where mJτ(nS)=2mτEnm_{J_{\tau}(nS)}=2m_{\tau}-E_{n} is the mass of Jτ(nS)J_{\tau}(nS), |1Π(2mτ)|2(13α/4π){|1-\Pi(2m_{\tau})|^{2}}(1-3\alpha/4\pi) is recalled here since the initial state radiation factor and the vacuum polarization factor have been considered in Eq. (II), ΓX+YJτ(nS)\Gamma^{J_{\tau}(nS)}_{X^{+}Y^{-}\not{E}} is the partial decay width of Jτ(nS)X+YJ_{\tau}(nS)\to X^{+}Y^{-}\not{E}, and Γe+eJτ(nS)\Gamma^{J_{\tau}(nS)}_{e^{+}e^{-}} is that of Jτ(nS)e+eJ_{\tau}(nS)\to e^{+}e^{-}. We have

Γe+eJτ(nS)\displaystyle\Gamma^{J_{\tau}(nS)}_{e^{+}e^{-}} =\displaystyle= α5mτ6n3|1Π(2mτ)|2(113α4π+CcoulombnSαπ),\displaystyle\frac{\alpha^{5}m_{\tau}}{6n^{3}|1-\Pi(2m_{\tau})|^{2}}\left(1-\frac{13\alpha}{4\pi}+C_{\rm coulomb}^{nS}\frac{\alpha}{\pi}\right),
ΓX+YJτ(nS)\displaystyle\Gamma^{J_{\tau}(nS)}_{X^{+}Y^{-}\not{E}} =\displaystyle= 2Γτ+Γ(Jτ(nS)γχτJ),and\displaystyle 2\Gamma_{\tau}+\Gamma(J_{\tau}(nS)\to\gamma\chi_{\tau J}),~{}{\rm and}
ΓtotalJτ(nS)\displaystyle\Gamma^{J_{\tau}(nS)}_{\rm total} =\displaystyle= ΓX+YJτ(nS)+(2+R)Γe+eJτ(nS).\displaystyle\Gamma^{J_{\tau}(nS)}_{X^{+}Y^{-}\not{E}}+(2+R)\Gamma^{J_{\tau}(nS)}_{e^{+}e^{-}}. (4)

Futher detailed data are available in Table 1, which is calculated to NLO in the fine structure constant α\alpha Dzikowski2019AGI ; dEnterria:2022alo . Here, 2Γτ2\Gamma_{\tau} is twice the free-τ\tau decay width (since the lifetime of the bound state is about 10 times shorter than that of its components and relativistic corrections are neglected due to their minute contributions of the order of 10-4). The uncertainties of RR and Γτ\Gamma_{\tau} are included in the theoretical uncertainties. The factor (2+R)(2+R) comes from e+ee^{+}e^{-}, μ+μ\mu^{+}\mu^{-}, and hadronic final states with Rexp.=2.342±0.064R_{\rm exp.}=2.342\pm 0.064 BESIII:2021wib , the total τ\tau decay width Γτ=2.2674±0.0039meV\Gamma_{\tau}=2.2674\pm 0.0039~{}{\rm meV} ParticleDataGroup:2022pth , and Γ(Jτ(nS)γχτJ)\Gamma(J_{\tau}(nS)\to\gamma\chi_{\tau J}) is the E1E1 transition width (the annihilation decays of χτJ\chi_{\tau J} are ignored since their contributions are smaller than σ¯Jτ(W)\bar{\sigma}^{J_{\tau}}(W) by a factor of 10610^{-6}). With Green functions, the Coulomb corrections (CcoulombnSC_{\rm coulomb}^{nS}) are calculated to be 5.804, 4.428, 3.810, 3.518, 3.358, 3.256, 3.186, 3.134, 3.093, and 3.061 for n=1n=1, 2, 3, 4, 5, 6, 7, 8, 9, and 10, respectively.

Most of the NLO corrections of Γ(Jτ(nS)e+e)\Gamma(J_{\tau}(nS)\to e^{+}e^{-}) come from the vacuum polarization factor Π\Pi. Then we get

σ¯Jτ(W)=(3.11±0.02)δ(W2mτ+13.8keV1MeV)pb,\displaystyle\bar{\sigma}^{J_{\tau}}(W)=(3.11\pm 0.02)~{}\delta\left(\frac{W-2m_{\tau}+13.8~{}{\rm keV}}{1~{}{\rm MeV}}\right)~{}{\rm pb}, (5)

where 13.8keV=nEnBrX+YJτ(nS)Γe+eJτ(nS)/nBrX+YJτ(nS)Γe+eJτ(nS)13.8~{}{\rm keV}=\sum_{n}E_{n}Br^{J_{\tau}(nS)}_{X^{+}Y^{-}\not{E}}\Gamma^{J_{\tau}(nS)}_{e^{+}e^{-}}/\sum_{n}Br^{J_{\tau}(nS)}_{X^{+}Y^{-}\not{E}}\Gamma^{J_{\tau}(nS)}_{e^{+}e^{-}} with BrX+YJτ(nS)Br^{J_{\tau}(nS)}_{X^{+}Y^{-}\not{E}} being the branching fraction of Jτ(nS)X+YJ_{\tau}(nS)\to X^{+}Y^{-}\not{E}. The uncertainty from RR is one order of magnitude greater than that from mτm_{\tau} and Γτ\Gamma_{\tau}.

Table 1: The decay data of Jτ(nS)J_{\tau}(nS) in meV.
n Γe+eJτ(nS)\Gamma^{J_{\tau}(nS)}_{e^{+}e^{-}} 2Γτ2\Gamma_{\tau} ΓE1Jτ(nS)\Gamma^{J_{\tau}(nS)}_{E1} ΓtotalJτ(nS)\Gamma^{J_{\tau}(nS)}_{\rm total} Γe+eJτ(nS)BrX+YJτ(nS)\Gamma^{J_{\tau}(nS)}_{e^{+}e^{-}}Br^{J_{\tau}(nS)}_{X^{+}Y^{-}\not{E}}
1 6.484 4.535 0.0000 32.695 0.899
2 0.808 4.535 0.0000 8.044 0.455
3 0.239 4.535 0.0072 5.573 0.195
n=1\sum_{n=1}^{\infty} 1.795±0.0121.795\pm 0.012

We use the NLO cross sections σ¯con.(W)\bar{\sigma}^{\rm con.}(W) and take next-to-next-to-leading order (NNLO) corrections as uncertainties here Voloshin:2002mv . To reduce the uncertainties from the initial state radiation factor and the vacuum polarization factor in Eq. (II), and that from the integrated luminosity BESIII:2021wib , we introduce RX+YR_{X^{+}Y^{-}\not{E}}, ratio of the cross sections, as

RX+Y(W,δW,mτ)=σ(W,mτ,Γτ,δW)σμ+μ(W,δW).\displaystyle R_{X^{+}Y^{-}\not{E}}(W,\delta_{W},m_{\tau})=\frac{\sigma(W,m_{\tau},\Gamma_{\tau},\delta_{W})}{\sigma^{\mu^{+}\mu^{-}}(W,\delta_{W})}. (6)

Here, σμ+μ(W,δW)\sigma^{\mu^{+}\mu^{-}}(W,\delta_{W}) is calculated with σ¯μ+μ(W)=4πα2(1+3α/4π)3W2\bar{\sigma}^{\mu^{+}\mu^{-}}(W)=\frac{4\pi\alpha^{2}(1+3\alpha/4\pi)}{3W^{2}} in Eq. (II). The higher order correction terms, such as 9αmμ2/πW29\alpha m_{\mu}^{2}/\pi W^{2} and mμ4/W4m_{\mu}^{4}/W^{4}, are ignored because they are merely global factors of about 2×1052\times 10^{-5} here. With mτ=mτPDGm_{\tau}=m_{\tau}^{\rm PDG} and δW=1MeV\delta_{W}=1~{}{\rm MeV} Achasov:2023gey , the cross sections σatom(mτPDG)\sigma^{\rm atom}(m_{\tau}^{\rm PDG}), σcon.(mτPDG)\sigma^{\rm con.}(m_{\tau}^{\rm PDG}), and σtotal(mτPDG)\sigma^{\rm total}(m_{\tau}^{\rm PDG}) are shown in Fig. 1.

Refer to caption
Figure 1: Cross sections σatom(mτPDG)\sigma^{\rm atom}(m_{\tau}^{\rm PDG}), σcon.(mτPDG)\sigma^{\rm con.}(m_{\tau}^{\rm PDG}), and σtotal(mτPDG)\sigma^{\rm total}(m_{\tau}^{\rm PDG}) as a function of center-of-mass energy WW. The black vertical line shows the τ+τ\tau^{+}\tau^{-} mass threshold. The inset shows the σcon.(mτPDG)\sigma^{\rm con.}(m_{\tau}^{\rm PDG}) and σtotal(mτPDG)\sigma^{\rm total}(m_{\tau}^{\rm PDG}) as a function of WW in a small WW region of 3552.5 – 3552.6 MeV.

3. Sensitivity of observing the Jτ(nS)J_{\tau}(nS) and uncertainty of τ\tau mass measuement

Next, we estimate the sensitivity of observing the Jτ(nS)J_{\tau}(nS) at a future high luminosity facility such as the super tau-charm facility (STCF) in China Achasov:2023gey and the super charm-tau factory (SCTF) in Russia Anashin . To determine which energy points are optimal for the study, we use the χ2\chi^{2} values per integrated luminosity as

χi2i=(σitotal(mτPDG)σicon.(mτ))2εX+Yσitotal(mτPDG),\displaystyle\frac{\chi^{2}_{i}}{{\cal{L}}_{i}}=\frac{(\sigma^{\rm total}_{i}(m^{\rm PDG}_{\tau})-\sigma_{i}^{\rm con.}(m_{\tau}))^{2}\cdot\varepsilon_{X^{+}Y^{-}\not{E}}}{\sigma^{\rm total}_{i}(m^{\rm PDG}_{\tau})}, (7)

where σitotal(mτPDG)\sigma^{\rm total}_{i}(m^{\rm PDG}_{\tau}) = σ(W,mτ,Γτ,δW)\sigma(W,m_{\tau},\Gamma_{\tau},\delta_{W}) in Eq. (II) is the total cross section for energy point ii assuming mτ=mτPDGm_{\tau}=m^{\rm PDG}_{\tau}, σicon.\sigma_{i}^{\rm con.} is the cross section when only the continuum is included in Eq. (2), εX+Y=8%\varepsilon_{X^{+}Y^{-}\not{E}}=8\% is the reconstruction efficiency of e+eX+Ye^{+}e^{-}\to X^{+}Y^{-}\not{E} events BESIII:2014srs ; Achasov:2023gey , and i{\cal{L}}_{i} is the integrated luminosity. The reconstruction efficiency is estimated based on Monte Carlo simulations, where kkmc Jadach:1999vf ; Jadach:2000ir is used to simulate the production of τ\tau pairs, and tauola Jadach:1990mz ; Jadach:1993hs is used to generate all the τ\tau decay modes. Note that in the calculation of σicon.(mτ)\sigma_{i}^{\rm con.}(m_{\tau}), mτm_{\tau} is allowed to vary so that χi2i\frac{\chi^{2}_{i}}{{\cal{L}}_{i}} has different values at each energy point. Here, we choose the best solution by minimizing the value of Σiχi2i\Sigma_{i}\frac{\chi^{2}_{i}}{{\cal{L}}_{i}} within the region of 3.54<W<3.563.54<W<3.56 GeV. In the end, we find the values of χi2i\frac{\chi^{2}_{i}}{{\cal{L}}_{i}} are relatively large at W=3552.56W=3552.56 and 3555.833555.83 MeV, and that at 3552.563552.56 MeV is about half of that at 3555.833555.83 MeV. Besides the above two energy points, an additional energy point of 3549.003549.00 MeV is needed to obtain the whole lineshape of the e+eX+Ye^{+}e^{-}\to X^{+}Y^{-}\not{E} cross section.

We determine how large data samples are required in order to observe the Jτ(nS)J_{\tau}(nS) at W=3549.00W=3549.00, 3552.563552.56, and 3555.833555.83 MeV by performing 10510^{5} sets of simulated pseudoexperiments with the reconstruction efficiencies of εX+Y=(8.0±0.2)%\varepsilon_{X^{+}Y^{-}\not{E}}=(8.0\pm 0.2)\% BESIII:2014srs ; Achasov:2023gey and εμ+μ=(45.00±0.01)%\varepsilon_{\mu^{+}\mu^{-}}=(45.00\pm 0.01)\% Ablikim:2002 ; Achasov:2023gey , and other quantities used in Eq. (II). Since the energy difference between energy points two and three is very small, we expect the efficiencies at these two points are very similar and almost 100% correlated. The significance of the observation of the tauonium is independent of the uncertainty of the efficiency. The numbers of expected events for e+eX+Ye^{+}e^{-}\to X^{+}Y^{-}\not{E} and e+eμ+μe^{+}e^{-}\to\mu^{+}\mu^{-} in simulated data samples are determined by NX+Ydata=σtotal(mτPDG)εX+YN^{\rm data}_{X^{+}Y^{-}\not{E}}=\sigma^{\rm total}(m^{\rm PDG}_{\tau})\cdot{{\cal{L}}}\cdot\varepsilon_{X^{+}Y^{-}\not{E}} and Nμ+μdata=σμ+μεμ+μN^{\rm data}_{\mu^{+}\mu^{-}}=\sigma^{\mu^{+}\mu^{-}}\cdot{{\cal{L}}}\cdot\varepsilon_{\mu^{+}\mu^{-}}. The statistical uncertainties of NX+YdataN^{\rm data}_{X^{+}Y^{-}\not{E}} and Nμ+μdataN^{\rm data}_{\mu^{+}\mu^{-}} are the square roots of them. For e+eX+Ye^{+}e^{-}\to X^{+}Y^{-}\not{E} at W=3549.00W=3549.00 MeV, since the signal yield (NN) is small, the statistical uncertainty of NN is estimated with the Bayesian approach implemented in the Bayesian Poisson Upper Limit Estimator at a 68.27% confidence level Zhu:2007zza , where the number of expected background events is zero. The numbers of expected events and the statistical uncertainties for e+eX+Ye^{+}e^{-}\to X^{+}Y^{-}\not{E} and e+eμ+μe^{+}e^{-}\to\mu^{+}\mu^{-} in the simulated data samples are summarized in Table 2, where the integrated luminosities are optimized and determined based on the χ2\chi^{2} value to estimate the Jτ(nS)J_{\tau}(nS) signal significance reaching a 5σ\sigma level (discussed below). For each set of pseudoexperiment, we generate randomly the numbers of events (NX+Y,idataN^{\rm data}_{X^{+}Y^{-}\not{E},\,i} and Nμ+μ,idataN^{\rm data}_{\mu^{+}\mu^{-},\,i}, i=1i=1, 22, and 33) according to Poisson distributions.

Table 2: Numbers of e+eX+Ye^{+}e^{-}\rightarrow X^{+}Y^{-}\not{E} and μ+μ\mu^{+}\mu^{-} events and their statistical uncertainties in the pseudoexperiments with mτ=mτPDGm_{\tau}=m_{\tau}^{\rm PDG}.
ii i{\cal L}_{i} (fb1)({\rm fb}^{-1}) WiW_{i} (MeV) NX+Y,idataN^{\rm data}_{X^{+}Y^{-}\not{E},~{}i} Nμ+μ,idataN^{\rm data}_{\mu^{+}\mu^{-},~{}i}
1 5 3549.00 0.10.1+1.20.1^{+1.2}_{-0.1} (1.1764±0.0003)×107(1.1764\pm 0.0003)\times 10^{7}
2 500 3552.56 (8.772±0.009)×105(8.772\pm 0.009)\times 10^{5} (1.17394±0.00003)×109(1.17394\pm 0.00003)\times 10^{9}
3 1000 3555.83 (2.4052±0.0005)×107(2.4052\pm 0.0005)\times 10^{7} (2.34331±0.00005)×109(2.34331\pm 0.00005)\times 10^{9}

A least-square fit is applied to each set of the pseudoexperiments with

χ2=i=13(idata^i(mτ)Δidata)2,\displaystyle\chi^{2}=\sum_{i=1}^{3}\left(\frac{{\cal R}^{\rm data}_{i}-{\cal\hat{R}}_{i}(m_{\tau})}{\Delta{\cal R}^{\rm data}_{i}}\right)^{2}, (8)

where idata=NX+Y,idataNμ+μ,idata{\cal R}^{\rm data}_{i}=\frac{N^{\rm data}_{X^{+}Y^{-}\not{E},\,i}}{N^{\rm data}_{\mu^{+}\mu^{-},\,i}} and Δidata\Delta{\cal R}^{\rm data}_{i} is its statistical uncertainty calculated from those of NX+Y,idataN^{\rm data}_{X^{+}Y^{-}\not{E},\,i} and Nμ+μ,idataN^{\rm data}_{\mu^{+}\mu^{-},\,i}; ^i(mτ){\cal\hat{R}}_{i}(m_{\tau}) is the expected ratio at the τ\tau mass mτm_{\tau} to be determined from the fit. The fit to one pseudoexperiment is shown in Fig. 2a, and the corresponding contribution from the Jτ(nS)J_{\tau}(nS) atom cross section (σatom\sigma^{\rm atom}) is shown in Fig. 2b. For 10510^{5} sets of simulated pseudoexperiments, the average value of χ2/ndf\chi^{2}/{\rm ndf} is 0.7/2, where ndf is the number of degrees of freedom. This indicates a very good fit to the simulated data samples.

Refer to caption

(a)

Refer to caption

(b)

Figure 2: (a) The fit to data{\cal R}^{\rm data} from one set of pseudoexperiment data, and (b) the σatom\sigma^{\rm atom} contribution from the fit. The dots with error bars are the pseudoexperiment data, and the red curves display the best fit. The blue dashed line in the inset of (a) shows withoutJτ/{\cal R}_{\rm without~{}J_{\tau}}/{\cal R}.

By removing the Jτ(nS)J_{\tau}(nS) atom contribution in calculating ^i(mτ){\cal\hat{R}}_{i}(m_{\tau}) and refiting the data, we find a much poorer fit quality (the average value of χ2/ndf\chi^{2}/{\rm ndf} is 51/2 for the 10510^{5} sets of simulated pseudoexperiments) and the difference in the χ2\chi^{2}s measures the statistical significance of the Jτ(nS)J_{\tau}(nS) signals. Figure 3 shows the normalized distribution of the statistical significances in all the pseudoexperiments. We conclude that in the scenario of taking 5 fb-1 data at 3549.00 MeV, 500 fb-1 at 3552.56 MeV, and 1000 fb-1 at 3555.83 MeV as indicated in Table 2, we have a 96% chance of discovering the Jτ(nS)J_{\tau}(nS) with a statistical significance larger than 5σ5\sigma and an almost 100% chance of observing it with a significance larger than 3σ3\sigma. These data samples correspond to about 350 and 175 days’ data taking time at the STCF Achasov:2023gey and SCTF Anashin , with designed instantaneous luminosities of 0.5×10350.5\times 10^{35} and 1.0×10351.0\times 10^{35} cm-2s-1, respectively. Here, we assume the efficiency and δW\delta_{W} at the SCTF are the same as those at the STCF. If the δW\delta_{W} is reduced to 0.1MeV0.1~{}{\rm MeV}, the required integrated luminosity of the data is only 66fb166~{}{\rm fb}^{-1}. In order to minimize the impact of beam energy instability and detector performance, it is advisable to frequently measure the beam energy and collect data at two high energy points in multiple rounds, with the integrated luminosity ratio of 1:2, rather than completing data collection at one energy before moving to the other.

Refer to caption
Figure 3: Normalized distribution of the statistical significance of the Jτ(nS)J_{\tau}(nS) signals in all the pseudoexperiments.

The background cross section can be measured at W1W_{1}. The background cross section σB=0+0.12pb\sigma_{B}=0^{+0.12}~{}{\rm pb} is obtained at BESIII BESIII:2014srs . If we set σB=0.12/2pb\sigma_{B}=0.12/2~{}{\rm pb} in data, and σB\sigma_{B} and mτm_{\tau} float in the fit, ΔχJτ2/ndf=45.4/1\Delta\chi^{2}_{J_{\tau}}/{\rm ndf}=45.4/1 with the significance of 6.7σ\sigma is obtained, where ΔχJτ2=χwithoutJτ2χJτ2\Delta\chi_{J_{\tau}}^{2}=\chi_{{\rm without}~{}J_{\tau}}^{2}-\chi_{J_{\tau}}^{2}. Taking into account the non-τ\tau background, i.e. changing the number of background events to be 1010+12010_{-10}^{+120} (corresponding to an integrated luminosity of 500fb1500~{}{\rm fb^{-1}}) for the second point and 2020+24020_{-20}^{+240} (corresponding to an integrated luminosity of 1000fb11000~{}{\rm fb^{-1}}) for third energy point, an average signal significance of the JτJ_{\tau} is reduced by 0.02σ0.02\sigma from 6.8σ6.8\sigma. The ratios of the numbers of non-τ\tau backgrounds including the uncertainty based on the BESIII cross section determination BESIII:2014srs relative to the numbers of e+eX+Ye^{+}e^{-}\rightarrow X^{+}Y^{-}\not{E} are 1.5×1041.5\times 10^{-4} and 1.1×1051.1\times 10^{-5} at WW = 3552.56 and 3555.83 MeV, respectively. Therefore, the non-τ\tau backgrounds are negligible.

With these data samples, we obtain a high precision τ\tau mass measurement. The above fit yields

mτ=(1776860.00±0.25(stat.)±0.99(syst.))keV,m_{\tau}=(1~{}776~{}860.00\pm 0.25~{}({\rm stat.})\pm 0.99~{}({\rm syst.}))~{}{\rm keV},

where the first and second uncertainties are statistical and systematic, respectively. The fit with the Jτ(nS)J_{\tau}(nS) contribution removed gives a shift of 4-4 keV relative to the nominal fit with both the bound state and continuum contributions. This shift is about a factor of 4 larger than the total uncertainty and should not be ignored in the future high precision measurements.

4. Systematic uncertainties

The systematic uncertainties in the τ\tau mass measurement are listed in Table 3. The uncertainty of the center-of-mass energy scale WW is estimated according to that achieved twenty years ago at the VEPP-4M, which had a characteristic uncertainty of 1.5 keV in the beam energy in the ψ(2S)\psi(2S) and J/ψJ/\psi mass scan experiments using the resonant depolarization method KEDR:2003bik ; Anashin:2015rca . The uncertainty of W2(W3)W_{2}~{}(W_{3}) is estimated to be 1.52=2.121.5\sqrt{2}=2.12 keV, leading to an uncertainty of 0.72(0.35)0.72~{}(0.35) keV in mτm_{\tau}.

The energy spread can be measured from experimental data directly. In the previous measurements, the mτm_{\tau} uncertainties from energy spread and energy scale are 16 keV and 86+22{}^{+22}_{-86} keV from BESIII BESIII:2014srs , and 25 keV and 40 keV from KEDR Anashin2007 . Therefore, we conservatively take the maximum ratio of 16/220.7316/22\sim 0.73, and find the uncertainty in the mτm_{\tau} measurement from energy spread is 0.73×0.722+0.3520.73\times\sqrt{0.72^{2}+0.35^{2}} = 0.59 keV, where the 0.72 and 0.35 keV are the mτm_{\tau} uncertainties from energy scales at W2W_{2} and W3W_{3}, respectively. In the mτm_{\tau} measurements at the BESIII BESIII:2014srs and the KEDR Anashin2007 experiments, δW\delta_{W} is fit from δmψ(2S)\delta_{m_{\psi(2S)}} and δmJ/ψ\delta_{m_{J/\psi}}, where δmψ(2S)\delta_{m_{\psi(2S)}} and δmJ/ψ\delta_{m_{J/\psi}} are free parameters and are obtained from fits to the measured ψ(2S)\psi(2S) and J/ψJ/\psi excitation curves Anashin:2015rca . If we consider δW\delta_{W} as a free parameter in the mτm_{\tau} fit function in Eq. (8), the 0.270.27 keV uncertainty of mτm_{\tau} is given through Δmτ2|χ2=2Δmτ2|χ2=1\Delta m_{\tau}^{2}|_{\chi^{2}=2}-\Delta m_{\tau}^{2}|_{\chi^{2}=1}.

Considering the improvement of the particle identifications for ee, μ\mu, π\pi, KK, and ρ\rho candidates at the future experiments, we expect the efficiency and its uncertainty of εX+Y=(8.0±0.2)%\varepsilon_{X^{+}Y^{-}\not{E}}=(8.0\pm 0.2)\%. We change the efficiency by ±1σ\pm 1\sigma, and find a change of 0.04 keV on the τ\tau mass compared with the nominal result.

By replacing the NLO correction with the NNLO correction in the calculation of the e+eX+Ye^{+}e^{-}\to X^{+}Y^{-}\not{E} cross sections, we find the τ\tau mass changes by 0.07 keV which is included as the uncertainty due to the theoretical accuracy. Since we perform the fit to the ratio of observed e+eX+Ye^{+}e^{-}\to X^{+}Y^{-}\not{E} and μ+μ\mu^{+}\mu^{-} events, the uncertainty from the integrated luminosity is cancelled. For the first energy point with a small expected number of events and large statistical uncertainty, we enlarge the uncertainty on the NX+YdataN^{\rm data}_{X^{+}Y^{-}\not{E}} by a factor of three, and the resulting τ\tau mass does not change.

Assuming all these sources are independent, we add them in quadrature to obtain the total systematic uncertainty, which is listed in Table 3. Taking into account the systematic uncertainties mentioned above, we obtain an average signal significance of the JτJ_{\tau} of 6.7σ6.7\sigma, which will be 6.8σ6.8\sigma if the systematic uncertainties are not taken into account.

Table 3: The systematic uncertainties of the mτm_{\tau} (σmτ\sigma_{m_{\tau}}) in keV.
Sources σmτ\sigma_{m_{\tau}} (keV)
Energy scale of W2W_{2} 0.72
Energy scale of W3W_{3} 0.35
Energy spread δW\delta_{W} 0.59
Efficiency 0.04
Theory 0.070.07
Systematic uncertainties 0.99
Refer to caption
Figure 4: The significance of Jτ(nS)J_{\tau}(nS) as a function of mτNaturalmτPDGm_{\tau}^{\rm Natural}-m_{\tau}^{\rm PDG}.

The value of mτNaturalm_{\tau}^{\rm Natural} may be different from the central value of mτPDG=1776.86MeVm^{\rm PDG}_{\tau}=1776.86~{}{\rm MeV}  ParticleDataGroup:2022pth . We examine the statistical significance of the Jτ(nS)J_{\tau}(nS) signals as a function of the difference mτNaturalmτPDGm_{\tau}^{\rm Natural}-m_{\tau}^{\rm PDG} as shown in Fig. 4, and find that the uncertainty in mτm_{\tau} remains unchanged, since it is mainly determined by the beam properties.

5. Conclusion

To conclude, the novel method proposed in this Letter is summarized as follows: (1) In contrast to the process e+eJτμ+μe^{+}e^{-}\to J_{\tau}\to\mu^{+}\mu^{-} proposed in Ref. dEnterria:2023yao , the continuum contributions are much smaller and the selected τ\tau pair candidate sample is very pure in the process e+eJττ+τe^{+}e^{-}\to J_{\tau}\to\tau^{+}\tau^{-}. The signal to background ratio in e+eJττ+τe^{+}e^{-}\to J_{\tau}\to\tau^{+}\tau^{-} is improved drastically. (2) We propose to measure the relative rate =NX+YNμ+μ{\cal R}=\frac{N_{X^{+}Y^{-}\not{E}}}{N_{\mu^{+}\mu^{-}}} rather than the absolute cross section so that the uncertainties are controlled at a low level since those in VP, ISR, and luminosity determinations are canceled. (3) mτm_{\tau} is taken as a free parameter to be extracted from the experimental data. A high precision mτm_{\tau} measurement can be achieved at the same time.

In summary, we show that the τ+τ\tau^{+}\tau^{-} atom with JPC=1J^{PC}=1^{--}, JτJ_{\tau}, can be observed with a significance larger than 5σ\sigma with a 1.5ab11.5~{}{\rm ab^{-1}} data sample at the proposed high luminosity experiments STCF and SCTF, by measuring the cross section ratio of the processes e+eX+Ye^{+}e^{-}\to X^{+}Y^{-}\not{E} and e+eμ+μe^{+}e^{-}\to\mu^{+}\mu^{-}. With the same data sample, the τ\tau lepton mass can be measured with a precision of 1 keV, a factor of about 100 improvement over the existing world best measurements.

Acknowledgments

We thank Profs. Kuang-Ta Chao and Hua-Sheng Shao for valuable and helpful discussions. This work is supported in part by National Key Research and Development Program of China under Contract No. 2020YFA0406300, National Natural Science Foundation of China (NSFC) under contract No. 11975076, No. 12161141008, No. 12135005, No. 12075018, No. 12005040, and No. 12335004; and the Fundamental Research Funds for the Central Universities Grant No. RF1028623046.

Author contributions

Yu-Jie Zhang proposed this project. Jing-Hang Fu and Yu-Jie Zhang did the calculations. Sen Jia, Xing-Yu Zhou, Cheng-Ping Shen, and Chang-Zheng Yuan carried out the experiments. Cheng-Ping Shen and Chang-Zheng Yuan checked the results and resolved physical and technical issues. Yu-Jie Zhang, Cheng-Ping Shen and Chang-Zheng Yuan supervised throughout this work. All authors contributed to the writing of the manuscript.

References

  • (1) S. G. Karshenboim. Precision physics of simple atoms: QED tests, nuclear structure and fundamental constant. Phys Rept 2005;422:1-63.
  • (2) M. S. Safronova, D. Budker, D. DeMille, et al. Search for new physics with atoms and molecules. Rev Mod Phys 2018;90:025008.
  • (3) V. W. Hughes, M. Grosse Perdekamp, D. Kawall, et al. Test of CPT and Lorentz invariance from muonium spectroscopy. Phys Rev Lett 2001;87:111804.
  • (4) T. Yamazaki, T. Namba, S. Asai, et al. Search for CP violation in positronium decay. Phys Rev Lett 2010;104:083401 [Erratum: Phys Rev Lett 2018;120:239902].
  • (5) MAGE Collaboration, A. Antognini, et al. Studying Antimatter Gravity with Muonium. Atoms 2018;6:17.
  • (6) A. Soter, A. Knecht. Development of a cold atomic muonium beam for next generation atomic physics and gravity experiments. SciPost Phys Proc 2021;4:031.
  • (7) W. Bernreuther, U. Löw, J. P. Ma, et al. How to test CP, T, and CPT invariance in the three photon decay of polarized S13{}^{3}S_{1} wave triplet positronium. Z Phys C 1988;41:143-158.
  • (8) G. S. Adkins, D. B. Cassidy, J. Pérez-Ríos. Precision spectroscopy of positronium: Testing bound-state QED theory and the search for physics beyond the Standard Model. Phys Rept 2022;975:1-61.
  • (9) S. C. Ellis, J. Bland-Hawthorn. Astrophysical signatures of leptonium. Eur Phys J D 2018;72:18.
  • (10) M. Deutsch. Evidence for the formation of positronium in gases. Phys Rev 1951;82:455-456.
  • (11) V. W. Hughes, D. W. McColm, K. Ziock, et al. Formation of muonium and observation of its Larmor precession. Phys Rev Lett 1960;5:63-65.
  • (12) P. J. Fox, S. R. Jindariani, V. D. Shiltsev. DIMUS: super-compact Dimuonium Spectroscopy collider at Fermilab. J Instrum 2023;18:T08007.
  • (13) R. Gargiulo, E. Di Meco, D. Paesani, et al. True muonium resonant production at e+ee^{+}e^{-} colliders with standard crossing angle. J Phys G 2024;51:045004.
  • (14) S. J. Brodsky, R. F. Lebed. Production of the smallest QED atom: True muonium μ+μ\mu^{+}\mu^{-}. Phys Rev Lett 2009;102:213401.
  • (15) U. D. Jentschura, G. Soff, V. G. Ivanov, et al. Bound μ+μ\mu^{+}\mu^{-} system. Phys Rev A 1997;56:4483-4495.
  • (16) J. W. Moffat. Does a Heavy Positronium Atom Exist?. Phys Rev Lett 1975;35:1605-1606.
  • (17) C. Avilez, R. Montemayor, M. Moreno. Tauonium: τ+τ\tau^{+}\tau^{-}, a bound state of heavy leptons. Lett Nuovo Cim 1978;21:301-304.
  • (18) C. Avilez, E. Ley Koo, M. Moreno. Comments on the observability of tauonium. Phys Rev D 1979;19:2214.
  • (19) D. d’Enterria, R. Perez-Ramos, H.-S. Shao. Ditauonium spectroscopy. Eur Phys J C 2022;82:923.
  • (20) G. Yu, Y. Cai, Q. Gao, et al. Production of positronium, dimuonium, and ditauonium in ultra-peripheral heavy ion collisions with two-photon processes. arXiv:2209.11439 [hep-ph].
  • (21) D. d’Enterria, H.-S. Shao. Observing true tauonium via two-photon fusion at e+ee^{+}e^{-} and hadron colliders. Phys Rev D 2022;105:093008.
  • (22) Particle Data Group Collaboration, R. L. Workman,et al. Review of Particle Physics. Prog Theor Exp Phys 2022;2022:083C01.
  • (23) A. A. Malik, I. S. Satsunkevich. Production of (τ+τ)(\tau^{+}\tau^{-}) in electron positron collisions. Int J Mod Phys A 2009;24:4039-4044.
  • (24) D. d’Enterria , H.-S. Shao. Prospects for ditauonium discovery at colliders. Phys Lett B 2023;842:137960.
  • (25) BESIII Collaboration, M. Ablikim, et al. Precision measurement of the mass of the τ\tau lepton. Phys Rev D 2014;90:012001.
  • (26) BESIII Collaboration, J. Y. Zhang, et al. τ\tau lepton mass measurement at BESIII. SciPost Phys Proc 2019;1:004.
  • (27) M. N. Achasov, X. H. Mo, N. Y. Muchnoi, et al. Tau mass measurement at BESIII. EPJ Web Conf 2019;212:08005.
  • (28) V. V. Anashin, et al. Measurement of the τ\tau lepton mass at the KEDR detector. JETP Lett 2007;85:347-352.
  • (29) E. Oset, L. R. Dai, L. S. Geng. Repercussion of the a0(1710)a_{0}(1710) [a0(1817)a_{0}(1817)] resonance and future developments. Sci Bull 2023:243-246.
  • (30) X. G. He, J. Tandean, G. Valencia. Pursuit of CP violation in hyperon decays at e+ee^{+}e^{-} colliders. Sci Bull 2022;67:1840-1843.
  • (31) Z. Q. Liu and R. E. Mitchell, New hadrons discovered at BESIII. Sci Bull 2023;68:2148-2150.
  • (32) W. J. Marciano, A. Sirlin. Electroweak radiative corrections to τ\tau decay. Phys Rev Lett 1988;61:1815-1818.
  • (33) Belle II Collaboration, I. Adachi, et al. Measurement of the τ\tau-lepton mass with the Belle II experiment. Phys Rev D 2023;108:032006.
  • (34) E. A. Kuraev, V. S. Fadin. On radiative corrections to e+ee^{+}e^{-} single photon annihilation at high-energy. Sov J Nucl Phys 1985;41:466-472.
  • (35) S. Actis, et al. (Working Group on Radiative Corrections and Monte Carlo Generators for Low Energies). Quest for precision in hadronic cross sections at low energy: Monte Carlo tools vs. experimental data. Eur Phys J C 2010;66:585-686.
  • (36) K. Dzikowski, O. D. Skoromnik. A generating integral for the matrix elements of the coulomb green’s function with the coulomb wave functions. J Math Phys 2022;61:032103.
  • (37) BESIII Collaboration, M. Ablikim, et al. Measurement of the Cross Section for e+ee^{+}e^{-}\toHadrons at Energies from 2.2324 to 3.6710 GeV. Phys Rev Lett 2022;128:062004.
  • (38) M. B. Voloshin. The Onset of e+eτ+τe^{+}e^{-}\to\tau^{+}\tau^{-} at threshold revisited. Phys Lett B 2003;556:153-162.
  • (39) M. Achasov, X. C. Ai, L. P. An, et al. STCF conceptual design report (Volume 1): Physics & detector. Front Phys 2024;19:14701.
  • (40) M. N. Achasov, V. E. Blinov, A. V. Bobrov, et al. Experiments at the Super Charm-Tau factory. Phys Usp 2024;67:55-70.
  • (41) S. Jadach, B. F. L. Ward, Z. Wa̧s. The precision Monte Carlo event generator 𝒦𝒦{\cal KK} for two fermion final states in e+ee^{+}e^{-} collisions. Comput Phys Commun 2000;130:260-325.
  • (42) S. Jadach, B. F. L. Ward, Z. Wa̧s. Coherent exclusive exponentiation for precision Monte Carlo calculations. Phys Rev D 2001;63:113009.
  • (43) S. Jadach, J. H. Kühn, Z. Wa̧s. TAUOLA - a library of Monte Carlo programs to simulate decays of polarized τ\tau leptons. Comput Phys Commun 1990;64:275-299.
  • (44) S. Jadach, Z. Wa̧s, R. Decker, et al. The τ\tau decay library TAUOLA, version 2.4. Comput Phys Commun 1993;76:361-380.
  • (45) BESIII Collaboration, M. Ablikim, et al. Measurement of cross sections for e+eμ+μe^{+}e^{-}\to\mu^{+}\mu^{-} at center-of-mass energies from 3.80 to 4.60 GeV. Phys Rev D 2020;102:112009.
  • (46) Y. S. Zhu. Upper limit for Poisson variable incorporating systematic uncertainties by Bayesian approach. Nucl Instrum Meth A 2007;578:322-328.
  • (47) KEDR Collaboration, V. M. Aulchenko, et al. New precision measurement of the J/ψJ/\psi and ψ\psi^{\prime} meson masses. Phys Lett B 2003;573:63-79.
  • (48) KEDR Collaboration, V. V. Anashin, et al. Final analysis of KEDR data on J/ψJ/\psi and ψ(2S)\psi(2S) masses. Phys Lett B 2015;749:50-56.