This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Notes on Presentations of Strict Tensor Categories.

(October 2021)

First we’d like to prove the fact (well-known to planar algebra people) that when presenting a semisimple tensor category by generators and relations, we know we have “enough relations” as soon as we can evaluate any closed diagram. For simplicity we restrict attention to spherical categories. In this note, all categories are strict monoidal, strictly pivotal, and kk-linear.

Recall that a (kk-linear) multitensor category is a category satisfying the axioms of a tensor category, except End(𝟏)\operatorname{\textrm{End}}({\bf 1}) may not be 1-dimemnsional.

The following is just [BMPS2012], Prop. 3.5 translated to tensor category language.

Lemma 0.1.

Let 𝒞\operatorname{\mathcal{C}} be a spherical tensor category. Then the negligible morphisms form the unique maximal tensor ideal of 𝒞\operatorname{\mathcal{C}}.

Proof.

It suffices to show that any proper pivotal tensor ideal \mathcal{I} consists only of negligible morphisms. Suppose ff\in\mathcal{I} is not negligible. Then there exists gg such that Tr(fg)0\operatorname{\textrm{Tr}}(fg)\neq 0. Since 𝒞\operatorname{\mathcal{C}} is a tensor category, End𝒞(𝟏)\operatorname{\textrm{End}}_{\operatorname{\mathcal{C}}}({\bf 1}) is one-dimensional, so id𝟏\operatorname{\textrm{id}}_{\bf{1}}\in\mathcal{I} (since Tr(fg)\operatorname{\textrm{Tr}}(fg)\in\mathcal{I}). This implies \mathcal{I} is not a proper tensor ideal. ∎

We say that a spherical tensor category 𝒞\operatorname{\mathcal{C}} is generated by a set of morphisms FF if the smallest tensor ideal containing FF is equal to 𝒞\operatorname{\mathcal{C}}.

Now also assume that 𝒞\operatorname{\mathcal{C}} is semisimple, tensor generated by a symmetrically self-dual object XX, and generated by a set of morphisms FF. Let 𝒞(F)\operatorname{\mathcal{C}}(F) denote the free spherical tensor category generated by a single symmetrically self-dual object and the morphisms FF. Concretely, the objects of 𝒞(F)\operatorname{\mathcal{C}}(F) are 0,1,2,0,1,2,\dots and the morphisms are unoriented planar tangles with coupons labeled by FF, modulo isotopy.

Suppose RR is a set of relations satisfied in 𝒞\operatorname{\mathcal{C}} and let \operatorname{\mathcal{R}} be the spherical tensor ideal of 𝒞(F)\operatorname{\mathcal{C}}(F) generated by RR. Then 𝒞=𝒞(F)/\operatorname{\mathcal{C}}^{\prime}=\operatorname{\mathcal{C}}(F)/\operatorname{\mathcal{R}} is a pivotal multitensor category and we have a full pivotal tensor functor

𝒞Φ𝒞.\operatorname{\mathcal{C}}^{\prime}\xrightarrow{\Phi}\operatorname{\mathcal{C}}.

Since 𝒞\operatorname{\mathcal{C}} is semisimple, the functor factors through the semisimplification of CC^{\prime} so we get a pivotal tensor functor

𝒞/𝒩(𝒞)Φ¯𝒞.\operatorname{\mathcal{C}}^{\prime}/\mathcal{N}(\operatorname{\mathcal{C}}^{\prime})\xrightarrow{\overline{\Phi}}\operatorname{\mathcal{C}}.
Proposition 0.2.

The functor Φ¯\overline{\Phi} is an equivalence if and only if the endomorphism algebra of the unit 𝟏\bf{1} in 𝒞\operatorname{\mathcal{C}}^{\prime} is one dimensional, i.e 𝒞\operatorname{\mathcal{C}}^{\prime} is a tensor category.

Proof.

The “only if” direction is obvious (if an endomorphsim of 𝟏{\bf 1} in 𝒞\operatorname{\mathcal{C}}^{\prime} is negligible, it is already 0). For the other direction, suppose End𝒞(𝟏)=k\operatorname{\textrm{End}}_{\operatorname{\mathcal{C}}^{\prime}}({\bf 1})=k. Let 𝒦\mathcal{K} denote the kernel of Φ\Phi, which is a pivotal tensor ideal of 𝒞\operatorname{\mathcal{C}}^{\prime}. Clearly 𝒦\mathcal{K} contains 𝒩(𝒞)\mathcal{N}(\operatorname{\mathcal{C}}^{\prime}). On the other hand the lemma states 𝒦\mathcal{K} is contained in 𝒩(𝒞)\mathcal{N}(\operatorname{\mathcal{C}}^{\prime}), which completes the proof. ∎

Definition 0.3.

A semisimple presentation of a semisimple spherical tensor category 𝒞\operatorname{\mathcal{C}} is a collection of morphisms FF and relations RR such that

𝒞(𝒞(F)/)/negligibles\operatorname{\mathcal{C}}\cong\big{(}\operatorname{\mathcal{C}}(F)/\mathcal{R}\big{)}/\textrm{negligibles}

where \mathcal{R} is the pivotal tensor ideal of 𝒞(F)\operatorname{\mathcal{C}}(F) generated by RR.

Remark 0.4.

A category of type AA has no generators and the single relation

=[2]q.\leavevmode\hbox to20.8pt{\vbox to20.8pt{\pgfpicture\makeatletter\hbox{\hskip 20.40002pt\lower-10.40001pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{} {}{{}}{}{{}{}{}{{}}{{{{}{}{}{}}} {{{}{}{}{}}} {{{}{}{}{}}} {{}{}{}{}}}}{} {} {} {} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@curveto{0.0pt}{5.52292pt}{-4.4771pt}{10.00002pt}{-10.00002pt}{10.00002pt}\pgfsys@curveto{-15.52293pt}{10.00002pt}{-20.00003pt}{5.52292pt}{-20.00003pt}{0.0pt}\pgfsys@curveto{-20.00003pt}{-5.52292pt}{-15.52293pt}{-10.00002pt}{-10.00002pt}{-10.00002pt}\pgfsys@curveto{-4.4771pt}{-10.00002pt}{0.0pt}{-5.52292pt}{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}=[2]_{q}.