This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Notes on a Surface Defect in the O(N)O(N) Model

Abstract

We study a surface defect in the free and critical O(N)O(N) vector models, defined by adding a quadratic perturbation localized on a two-dimensional subspace of the dd-dimensional CFT. We compute the beta function for the corresponding defect renormalization group (RG) flow, and provide evidence that at long distances the system flows to a nontrivial defect conformal field theory (DCFT). We use epsilon and large NN expansions to compute several physical quantities in the DCFT, finding agreement across different expansion methods. We also compute the defect free energy, and check consistency with the so-called bb-theorem for RG flows on surface defects.

1 Introduction and Summary

The study of boundaries and defects in quantum field theory is interesting for a variety of reasons. From a theoretical point of view, extended objects offer a way to probe QFT dynamics which is complementary to that provided by local operators. From a more practical perspective, defects can be used to describe physical impurities or extended structures in quantum systems that can be realized in experiments. Recently, there has been growing interest in studying the physics of boundary and defects in conformal field theory (CFT). In this context, of particular relevance are defects that preserve a subgroup of the conformal symmetry of the “bulk” theory. A pp-dimensional conformal defect preserves a SO(p+1,1)×SO(dp)SO(p+1,1)\times SO(d-p) subgroup of the conformal group SO(d+1,1)SO(d+1,1), and the bulk CFT coupled to the defect is referred to as a defect conformal field theory (DCFT), whose correlation functions have a rich structure constrained by the residual SO(p+1,1)×SO(dp)SO(p+1,1)\times SO(d-p) symmetry. In the context of the conformal bootstrap program, for instance, this setup provides new bootstrap equations that are complementary to the usual ones without the defect (see e.g. [1, 2]). Defects in QFT also lead to new constraints on renormalization group flow, see for instance [3, 4, 5, 6, 7, 8].

In this paper, we study a simple example of surface defect in the O(N)O(N) vector model in dd dimensions. The defect is defined by adding a mass-like O(N)O(N) invariant term on a 2d subspace, which we take to be the x1,x2x_{1},x_{2} plane (with other coordinates set to zero). The total action is (below ϕa,a=1,,N\phi_{a},a=1,\ldots,N is a NN-component real scalar field)

S=ddx[12(ϕa)2+λ4!(ϕa2)2]+h𝑑x1𝑑x2ϕa2(x,0).S=\int d^{d}x\left[\frac{1}{2}\left(\partial\phi_{a}\right)^{2}+\frac{\lambda}{4!}\left(\phi_{a}^{2}\right)^{2}\right]+h\int dx_{1}dx_{2}\ \phi_{a}^{2}(\vec{x},0)\,. (1.1)

We tune the bulk coupling constant λ\lambda to criticality, and study the defect RG flow triggered by the defect coupling hh. It is well-known that at the critical point of the O(N)O(N) model, the operator ϕa2\phi_{a}^{2} has Δ<2\Delta<2, and hence hh is a relevant coupling. Its beta function can be computed perturbatively in d=4ϵd=4-\epsilon using the standard epsilon expansion techniques. Below we will perform this calculation to the leading non-trivial order in ϵ\epsilon, finding as expected a non-trivial O(N)O(N) invariant IR fixed point of the defect RG flow. Hence, the surface defect is conformal at long distances, and the model (1.1) flows to a non-trivial DCFT with O(N)O(N) symmetry. We determine the simplest scaling dimensions of local operators inserted on the defect, namely those of ϕ^a\hat{\phi}_{a} and ϕ^a2\hat{\phi}^{2}_{a} operators.111In this paper, we will follow the common convention of denoting local operators on the defect with a hat, in order to distinguish them from the bulk operators, which have different scaling dimensions. We also study the same system using the large NN expansion in general dd, as well as the epsilon expansion in the cubic theory [9] near d=6d=6, finding agreement between these different descriptions in their overlapping regime of validity. In d=4ϵd=4-\epsilon, we also compute perturbatively the free energy of the model for the case where the defect is supported on a two-sphere, and find a result consistent with the so-called bb-theorem [6] for 2d defect RG flow.

The planar defect (1.1) was previously mentioned in [10] in the context of the critical behavior of spin systems, but it was not studied in detail there. More recently, it was studied in [11] for d=3d=3. In this case, the defect becomes an interface and the problem is closely related to that of the O(N)O(N) model in the presence of a boundary. This problem has recently received renewed attention, in particular in connection to the so-called “extraordinary-log” phase proposed in [12], see also [13, 10]. Other recent related work includes applications to quantum Hall bilayers [14] and weak measurement systems [15].

While the analysis of [11] focuses on d=3d=3 where the defect is an interface, here we will keep the dimension of the “bulk” CFT to be general dd, and the defect to be always two-dimensional. Interestingly, we find that the results of the perturbative large NN expansion in general dd cannot be directly continued to d=3d=3, as they naively diverge in the d3d\rightarrow 3 limit. This suggests a qualitatively different behavior of the large NN theory in d=3d=3 and 3<d<43<d<4, which we discuss in more detail in Section 4.2 below.

In this paper we focus mostly on the O(N)O(N) invariant fixed point of (1.1), but the theory is also expected to admit a phase where the O(N)O(N) symmetry is broken, analogously to the case of the O(N)O(N) model in the presence of a boundary (see [16] for a review). In this phase, the bulk operator ϕa\phi_{a} acquires a non-trivial one-point function growing towards the defect. We briefly discuss such O(N)O(N) breaking phase in Section 3.2 below, both using the equations of motion in flat space, and by mapping the theory to H3×Sd3H^{3}\times S^{d-3}. Here H3H^{3} is the three-dimensional hyperbolic space, with the surface defect being at its boundary. In this case, the O(N)O(N) breaking phase can be understood as a critical point of the classical potential in hyperbolic space, similar to the BCFT setup discussed in [17].

The rest of this paper is organized as follows: as a simple example, in section 2 we first study the model (1.1) in the case where we tune the bulk coupling to the free UV fixed point (λ=0\lambda=0), so that we have a planar defect in the theory of NN free massless scalar fields.222This example was also recently discussed in [18]. We show that the beta function for hh, as well as the scaling dimensions of defect operators, can be computed exactly in this case. We also discuss the mapping to H3×Sd3H^{3}\times S^{d-3} and point out a close relation to the problem of double-trace deformations in AdS/CFT [19, 20, 21]. Then in Section 3 we use the epsilon expansion to study the planar defect in the interacting O(N)O(N) model in d=4ϵd=4-\epsilon, and in Section 4 we study the system using the large NN expansion in generic dd. As a further cross-check of the large NN results, in Section 5 we study the planar defect in the cubic scalar theory in 6ϵ6-\epsilon expansion. Finally in section 6 we compute the free energy for the spherical defect first in the case of the free theory (exactly) and then for the interacting theory in d=4ϵd=4-\epsilon (perturbatively in ϵ\epsilon), finding results in agreement with the defect bb-theorem [6].

Note added.

While writing up this paper, we became aware of [22] and [23], which present results that overlap with parts of this work. We thank Avia Raviv-Moshe and Siwei Zhong for informing us of their work [22] and for sharing a preliminary draft prior to submission.

2 Free Theory

Let us first discuss the surface defect in the case of the free scalar field theory. We consider NN free scalar fields in dd dimension, ϕa\phi_{a}, a=1,2,,Na=1,2,\cdots,N, and insert a O(N)O(N) invariant surface defect onto the x1,x2x_{1},x_{2} plane. The action is

S=ddx12(ϕa)2+h0𝑑x1𝑑x2ϕa2S=\int d^{d}x\ \frac{1}{2}\left(\partial\phi_{a}\right)^{2}+h_{0}\int dx_{1}dx_{2}\ \phi_{a}^{2} (2.1)

Of course, since the theory is free, the NN dependence is trivial and one might as well restrict to a single scalar. However, since we later generalize to the case of the interacting O(N)O(N) model, we will work with NN scalars in this section. Recall that the free scalar propagator in dd dimensions is given by

G(xy)=ddp(2π)deip(xy)p2=Cϕ|xy|d2,CϕΓ(d22)4πd2G(x-y)=\int\frac{d^{d}p}{(2\pi)^{d}}\frac{e^{ip(x-y)}}{p^{2}}=\frac{C_{\phi}}{|x-y|^{d-2}}\,,\qquad C_{\phi}\equiv\frac{\Gamma\left(\frac{d-2}{2}\right)}{4\pi^{\frac{d}{2}}} (2.2)

The operator ϕa2\phi_{a}^{2} inserted on the 2d defect is a relevant deformation in d<4d<4, and it is expected to trigger a defect RG flow. The usual perturbative renormalization can be developed in d=4ϵd=4-\epsilon, where the beta function of the defect coupling can be obtained by familiar techniques. Explicitly, to renormalize the defect coupling h0h_{0}, we require the one-point function ϕa2(0,x)\langle\phi_{a}^{2}(0,x)\rangle at a distance |x|\left\lvert x\right\rvert from the defect to be finite as ϵ0\epsilon\rightarrow 0. The diagrams contributing to ϕa2(0,x)\langle\phi_{a}^{2}(0,x)\rangle form an infinite series that we may depict as follows

(A0)(A1)(A2)\begin{gathered}\leavevmode\hbox to58.91pt{\vbox to93.89pt{\pgfpicture\makeatletter\hbox{\hskip 29.45276pt\lower-59.54515pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}} {{{}{}}}{{{}}}{{}}{{}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-9.03891pt}{-53.71214pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$(A_{0})$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{}}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{22.76228pt}{0.0pt}\pgfsys@curveto{22.76228pt}{18.85701pt}{12.57141pt}{34.14322pt}{0.0pt}{34.14322pt}\pgfsys@curveto{-12.57141pt}{34.14322pt}{-22.76228pt}{18.85701pt}{-22.76228pt}{0.0pt}\pgfsys@curveto{-22.76228pt}{-18.85701pt}{-12.57141pt}{-34.14322pt}{0.0pt}{-34.14322pt}\pgfsys@curveto{12.57141pt}{-34.14322pt}{22.76228pt}{-18.85701pt}{22.76228pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{2.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-28.45276pt}{-34.14322pt}\pgfsys@lineto{28.45276pt}{-34.14322pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\leavevmode\hbox to58.91pt{\vbox to93.89pt{\pgfpicture\makeatletter\hbox{\hskip 29.45276pt\lower-59.54515pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}} {{{}{}}}{{{}}}{{}}{{}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-9.03891pt}{-53.71214pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$(A_{1})$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{34.14322pt}\pgfsys@lineto{-22.76228pt}{-34.14322pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{34.14322pt}\pgfsys@lineto{22.76228pt}{-34.14322pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{}{}{}{{}}{{{{}{}{}{}}} {{}{}{}{}}}}{} {} {} {} {}{}{}\pgfsys@moveto{22.76228pt}{-34.14322pt}\pgfsys@curveto{22.76228pt}{-29.42891pt}{12.57141pt}{-25.60732pt}{0.0pt}{-25.60732pt}\pgfsys@curveto{-12.57141pt}{-25.60732pt}{-22.76228pt}{-29.42891pt}{-22.76228pt}{-34.14322pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{2.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-28.45276pt}{-34.14322pt}\pgfsys@lineto{28.45276pt}{-34.14322pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\leavevmode\hbox to58.91pt{\vbox to93.89pt{\pgfpicture\makeatletter\hbox{\hskip 29.45276pt\lower-59.54515pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}} {{{}{}}}{{{}}}{{}}{{}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-9.03891pt}{-53.71214pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$(A_{2})$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{34.14322pt}\pgfsys@lineto{-22.76228pt}{-34.14322pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{34.14322pt}\pgfsys@lineto{22.76228pt}{-34.14322pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{}{}{}{{}}{{{{}{}{}{}}} {{}{}{}{}}}}{} {} {} {} {}{}{}\pgfsys@moveto{0.0pt}{-34.14322pt}\pgfsys@curveto{0.0pt}{-29.42891pt}{-5.09534pt}{-25.60732pt}{-11.38092pt}{-25.60732pt}\pgfsys@curveto{-17.6665pt}{-25.60732pt}{-22.76184pt}{-29.42891pt}{-22.76184pt}{-34.14322pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{}{}{}{{}}{{{{}{}{}{}}} {{}{}{}{}}}}{} {} {} {} {}{}{}\pgfsys@moveto{22.76228pt}{-34.14322pt}\pgfsys@curveto{22.76228pt}{-29.42891pt}{17.66695pt}{-25.60732pt}{11.38136pt}{-25.60732pt}\pgfsys@curveto{5.09578pt}{-25.60732pt}{0.00044pt}{-29.42891pt}{0.00044pt}{-34.14322pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{2.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-28.45276pt}{-34.14322pt}\pgfsys@lineto{28.45276pt}{-34.14322pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\end{gathered}\cdots

where all the defect vertices form an infinite chain.

It will be more convenient to implement the renormalization in the momentum space representation. We may write

ϕa2(0,x)=dd2m(2π)d2dd2n(2π)d2d2k(2π)2ei(m+n)xϕa(k,m)ϕa(k,n).\langle\phi_{a}^{2}(0,x)\rangle=\int\frac{d^{d-2}m}{(2\pi)^{d-2}}\int\frac{d^{d-2}n}{(2\pi)^{d-2}}\int\frac{d^{2}k}{(2\pi)^{2}}e^{-i(m+n)x}\langle\phi_{a}(k,m)\phi_{a}(-k,n)\rangle\,. (2.3)

Here we denote the fields in momentum space by ϕa(k,m)\phi_{a}(k,m), where kk is a two-dimensional momentum along the defect (which is conserved), and mm is (d2)(d-2)-dimensional momentum. To renormalize the bulk one-point function, we may then equivalently require that ϕa(k,m)ϕa(k,n)\langle\phi_{a}(k,m)\phi_{a}(-k,n)\rangle is finite as ϵ0\epsilon\rightarrow 0.

The leading contribution to ϕa(k,m)ϕa(k,n)\langle\phi_{a}(k,m)\phi_{a}(-k,n)\rangle is given by

A0=2h0N(k2+m2)(k2+n2){A_{0}}=-2h_{0}\frac{N}{(k^{2}+m^{2})(k^{2}+n^{2})} (2.4)

Since the 2-dimensional defect momentum kk is conserved, insertion of a new defect vertex gives a factor of

t(k)=2h0dd2p(2π)d21k2+p2=h023dπ1d2kd4Γ(2d2)t(k)=-2h_{0}\int\frac{d^{d-2}p}{(2\pi)^{d-2}}\frac{1}{k^{2}+p^{2}}=-h_{0}2^{3-d}\pi^{1-\frac{d}{2}}k^{d-4}\Gamma\left(2-\frac{d}{2}\right) (2.5)

Insertion of more vertices gives a power of t(k)t(k). In total,

An=tn(k)A0A_{n}=t^{n}(k)A_{0} (2.6)
ϕa(k,m)ϕa(k,n)=n=0An=A01t(k)=2h0N(k2+m2)(k2+n2)1+h023dπ1d2kd4Γ(2d2)\langle\phi_{a}(k,m)\phi_{a}(-k,n)\rangle=\sum_{n=0}^{\infty}A_{n}=\frac{A_{0}}{1-t(k)}=\frac{-2h_{0}\frac{N}{(k^{2}+m^{2})(k^{2}+n^{2})}}{1+h_{0}2^{3-d}\pi^{1-\frac{d}{2}}k^{d-4}\Gamma\left(2-\frac{d}{2}\right)} (2.7)

At d=4ϵd=4-\epsilon, t(k)=h0πϵ+O(ϵ0)t(k)=-\frac{h_{0}}{\pi\epsilon}+O\left(\epsilon^{0}\right). So if we define

Mϵh0=1h1πϵ,h0=Mϵh1h/(πϵ)\frac{M^{\epsilon}}{h_{0}}=\frac{1}{h}-\frac{1}{\pi\epsilon},\quad h_{0}=M^{\epsilon}\frac{h}{1-h/(\pi\epsilon)} (2.8)

where MM is a renormalization scale, then

ϕa(k,m)ϕa(k,n)=\displaystyle\langle\phi_{a}(k,m)\phi_{a}(-k,n)\rangle= 2hMϵ(k2+m2)(k2+n2)N1hπϵ+hMϵ23dπ1d2kd4Γ(2d2)\displaystyle\frac{-2hM^{\epsilon}}{(k^{2}+m^{2})(k^{2}+n^{2})}\frac{N}{1-\frac{h}{\pi\epsilon}+h{M^{\epsilon}}2^{3-d}\pi^{1-\frac{d}{2}}k^{d-4}\Gamma\left(2-\frac{d}{2}\right)} (2.9)
=\displaystyle= 2hMϵ(k2+m2)(k2+n2)N1+h2π(log(4πM2k2)γ+O(ϵ1))\displaystyle\frac{-2hM^{\epsilon}}{(k^{2}+m^{2})(k^{2}+n^{2})}\frac{N}{1+\frac{h}{2\pi}\left(\log\left(\frac{4\pi M^{2}}{k^{2}}\right)-\gamma+O\left(\epsilon^{1}\right)\right)}

is finite.

Taking the derivative of eq. (2.8) w.r.t. MM and requiring the derivative of the bare coupling h0h_{0} vanishes (h0/M=0)\left({\partial h_{0}}/{\partial M}=0\right), we arrive at the beta function

βh=ϵh+h2π\beta_{h}=-\epsilon h+\frac{h^{2}}{\pi} (2.10)

Note that this beta function is exact, since the definition of renormalized coupling obtained above cancel divergences to all orders in hh. Then we find an exact IR fixed point at

h=πϵ=π(4d)h_{*}=\pi\epsilon=\pi(4-d) (2.11)

Conformal perturbation theory approach.

The beta function obtained above by renormalizing the bulk one-point function ϕa2\langle\phi^{2}_{a}\rangle can also be recovered by using the standard conformal perturbation theory approach, adapted to the 2-dimensional defect. In general, if we consider a CFT perturbed by a weakly relevant operator O^\hat{O} on a 2d defect, with scaling dimension Δ=2ε{\Delta}=2-\varepsilon,

S=SCFT+h0d2xgO^(x)S=S_{\mathrm{CFT}}+{h}_{0}\int{d}^{2}{x}\sqrt{{g}}\hat{O}(x) (2.12)

then the beta function for the dimensionless renormalized coupling hh is [24] (this is a straightforward adaptation of the general conformal perturbation theory result in a CFT perturbed by a weakly relevant operator, see e.g. [25, 26, 27])

βh=εh+πC3C2h2+O(h3)\beta_{h}=-\varepsilon{h}+\pi\frac{C_{3}}{C_{2}}{h}^{2}+O\left({h}^{3}\right) (2.13)

where C3=O^O^O^0C_{3}=\langle\hat{O}\hat{O}\hat{O}\rangle_{0} and C2=O^O^0C_{2}=\langle\hat{O}\hat{O}\rangle_{0} are the 3-point and 2-point function normalizations (omitting the standard position dependent factors) in the unperturbed CFT. Applied to our model in eq. (2.1), O^=ϕ^a2\hat{O}=\hat{\phi}_{a}^{2} and ε=ϵ\varepsilon=\epsilon, so we have

C3C2=8NCϕ32NCϕ2=4Cϕ\frac{C_{3}}{C_{2}}=\frac{8NC_{\phi}^{3}}{2NC_{\phi}^{2}}=4C_{\phi} (2.14)

Therefore

βh=ϵh+4πCϕh2+O(h3)\beta_{h}=-\epsilon h+4\pi C_{\phi}h^{2}+O(h^{3}) (2.15)

Note that in d=4ϵd=4-\epsilon to leading order in ϵ\epsilon, we have 4πCϕ=1/π4\pi C_{\phi}=1/\pi. So this beta function is consistent as expected with eq. (2.10) computed in the minimal subtraction scheme.333In general, the beta function in minimal subtraction and that obtained in conformal perturbation theory can be thought of as corresponding to two different schemes. Observables at the fixed point, such as scaling dimensions, are of course independent of the renormalization scheme. However, from the conformal perturbation theory approach it is not obvious that the beta function is in fact exact, as we have shown explicitly above by renormalizing the bulk one-point function and summing up all diagrams.

2.1 Scaling dimensions on the defect

We now calculate the scaling dimensions of the operators ϕ^a\hat{\phi}_{a} and ϕ^2\hat{\phi}^{2} inserted on the defect.

For the operator ϕ^i\hat{\phi}_{i}, let us consider the 2-point function ϕ^1(y1)ϕ^1(y2)d\langle\hat{\phi}_{1}(y_{1})\hat{\phi}_{1}(y_{2})\rangle_{d} where y1,y2y_{1},y_{2} are coordinates on the two-dimensional defect plane. If we do a two-dimensional Fourier transform along the defect plane (here p1,p2p_{1},p_{2} are two-dimensional defect momentum), we have

ϕ^i(p1)ϕ^j(p2)=d2y1d2y2ei(p1y1+p2y2)Cϕ|y1y2|d2δij\displaystyle\langle\hat{\phi}_{i}(p_{1})\hat{\phi}_{j}(p_{2})\rangle=\int d^{2}y_{1}\int d^{2}y_{2}\ e^{i(p_{1}y_{1}+p_{2}y_{2})}\frac{C_{\phi}}{|y_{1}-y_{2}|^{d-2}}\delta_{ij} (2.16)
=\displaystyle= d2y1d2Δyei(p1y1+p2(Δy+y1))Cϕ|Δy|d2δij\displaystyle\int d^{2}y_{1}\int d^{2}\Delta y\ e^{i(p_{1}y_{1}+p_{2}(\Delta y+y_{1}))}\frac{C_{\phi}}{|\Delta y|^{d-2}}\delta_{ij}
=\displaystyle= (2π)2δ(2)(p1+p2)22dπ1d2Γ(2d2)|p2|4dδij\displaystyle(2\pi)^{2}\delta^{(2)}(p_{1}+p_{2})\frac{2^{2-d}\pi^{1-\frac{d}{2}}\Gamma\left(2-\frac{d}{2}\right)}{|p_{2}|^{4-d}}\delta_{ij}
=\displaystyle= (2π)2δ(2)(p1+p2)t(p2)2h0δij.\displaystyle(2\pi)^{2}\delta^{(2)}(p_{1}+p_{2})\frac{t(p_{2})}{-2h_{0}}\delta_{ij}\,.

The defect action in momentum space is simply

S=h0d2k(2π)2.ϕ^i(k)ϕ^i(k)S=h_{0}\int\frac{d^{2}k}{(2\pi)^{2}}\,.\hat{\phi}_{i}(k)\hat{\phi}_{i}(-k) (2.17)

Because the defect action is quadratic, every diagram in ϕ^i(p1)ϕ^j(p2)D\langle\hat{\phi}_{i}(p_{1})\hat{\phi}_{j}(p_{2})\rangle_{D} is a chain on the defect:

\begin{gathered}\leavevmode\hbox to58.91pt{\vbox to9.74pt{\pgfpicture\makeatletter\hbox{\hskip 29.45276pt\lower-35.14322pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{}{{}{}{}{{}}{{{{}{}{}{}}} {{}{}{}{}}}}{} {} {} {} {}{}{}\pgfsys@moveto{22.76228pt}{-34.14322pt}\pgfsys@curveto{22.76228pt}{-29.42891pt}{12.57141pt}{-25.60732pt}{0.0pt}{-25.60732pt}\pgfsys@curveto{-12.57141pt}{-25.60732pt}{-22.76228pt}{-29.42891pt}{-22.76228pt}{-34.14322pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{2.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-28.45276pt}{-34.14322pt}\pgfsys@lineto{28.45276pt}{-34.14322pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\leavevmode\hbox to58.91pt{\vbox to9.74pt{\pgfpicture\makeatletter\hbox{\hskip 29.45276pt\lower-35.14322pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{}{{}{}{}{{}}{{{{}{}{}{}}} {{}{}{}{}}}}{} {} {} {} {}{}{}\pgfsys@moveto{0.0pt}{-34.14322pt}\pgfsys@curveto{0.0pt}{-29.42891pt}{-5.09534pt}{-25.60732pt}{-11.38092pt}{-25.60732pt}\pgfsys@curveto{-17.6665pt}{-25.60732pt}{-22.76184pt}{-29.42891pt}{-22.76184pt}{-34.14322pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{}{}{}{{}}{{{{}{}{}{}}} {{}{}{}{}}}}{} {} {} {} {}{}{}\pgfsys@moveto{22.76228pt}{-34.14322pt}\pgfsys@curveto{22.76228pt}{-29.42891pt}{17.66695pt}{-25.60732pt}{11.38136pt}{-25.60732pt}\pgfsys@curveto{5.09578pt}{-25.60732pt}{0.00044pt}{-29.42891pt}{0.00044pt}{-34.14322pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{2.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-28.45276pt}{-34.14322pt}\pgfsys@lineto{28.45276pt}{-34.14322pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\end{gathered}\cdots (2.18)

Momentum is conserved and the diagrams form a power series:

ϕ^i(p1)ϕ^j(p2)D=n=0(2π)2δ(2)(p1+p2)δijt(p2)2h0tn(p2)\langle\hat{\phi}_{i}(p_{1})\hat{\phi}_{j}(p_{2})\rangle_{D}=\sum_{n=0}^{\infty}(2\pi)^{2}\delta^{(2)}(p_{1}+p_{2})\delta_{ij}\frac{t(p_{2})}{-2h_{0}}t^{n}(p_{2}) (2.19)

Because t(p)=h023dπ1d2pd4Γ(2d2)t(p)=-h_{0}2^{3-d}\pi^{1-\frac{d}{2}}p^{d-4}\Gamma\left(2-\frac{d}{2}\right) is divergent as ϵ0\epsilon\rightarrow 0, the leading order diagram is divergent. To avoid this issue, it is more convenient to perform the renormalization in terms of the coordinate space representation. We can write

ϕ^1(y1)ϕ^1(y2)D=n=0Cn\langle\hat{\phi}_{1}(y_{1})\hat{\phi}_{1}(y_{2})\rangle_{D}=\sum_{n=0}^{\infty}C_{n} (2.20)

where, computing the Fourier transform of tn+1(p2)2h0\frac{t^{n+1}(p_{2})}{-2h_{0}} by using eq. (A.1), we get

Cn=2(d4)n+d5|y1y2|d(n+1)+4n+2Γ(12(d+(d4)n2))(23dπ1d2h0Γ(2d2))n+1πh0Γ(12(d4)(n+1))C_{n}=-\frac{2^{(d-4)n+d-5}|y_{1}-y_{2}|^{-d(n+1)+4n+2}\Gamma\left(\frac{1}{2}(d+(d-4)n-2)\right)\left(-2^{3-d}\pi^{1-\frac{d}{2}}h_{0}\Gamma\left(2-\frac{d}{2}\right)\right)^{n+1}}{\pi h_{0}\Gamma\left(-\frac{1}{2}(d-4)(n+1)\right)} (2.21)

We can define the renormalized operator as usual by

ϕ^i(y)=Zϕ^[ϕ^i](y)\hat{\phi}_{i}(y)=Z_{\hat{\phi}}\left[\hat{\phi}_{i}\right](y) (2.22)

where [ϕ^i][\hat{\phi}_{i}] denotes the renormalized operator on the defect. Then we substitute this and eq. (2.8) into the expression for CnC_{n}, and require that it is finite. This gives

Zϕ^=1hπϵZ_{\hat{\phi}}=1-\frac{h}{\pi\epsilon} (2.23)

The anomalous dimension of ϕ^i\hat{\phi}_{i} is then

γϕ^=logZϕ^logM=βhlogZϕ^h=1πϵZϕ^(ϵh+h2π)=hπ\gamma_{\hat{\phi}}=\frac{\partial\log Z_{\hat{\phi}}}{\partial\log M}=\beta_{h}\frac{\partial\log Z_{\hat{\phi}}}{\partial h}=\frac{-1}{\pi\epsilon Z_{\hat{\phi}}}(-\epsilon h+\frac{h^{2}}{\pi})=\frac{h}{\pi} (2.24)

At the fixed point h=πϵh_{*}=\pi\epsilon, this gives

Δϕ^=d22+γϕ^|h=h=1+ϵ2=3d2\Delta_{\hat{\phi}}=\frac{d-2}{2}+\left.\gamma_{\hat{\phi}}\right|_{h=h_{*}}=1+\frac{\epsilon}{2}=3-\frac{d}{2} (2.25)

where in the last step we expressed the scaling dimension in terms of dd, because the result is exact in ϵ\epsilon.

As the defect action is h0𝑑x1𝑑x2ϕa2h_{0}\int dx_{1}dx_{2}\,\phi_{a}^{2}, the scaling dimension of the operator ϕ^a2\hat{\phi}^{2}_{a} inserted on the defect can be calculated directly from the derivative of the beta function at the fixed point. Using the beta function and fixed point in eq. (2.10) and (2.11), we find

Δϕ^2=2+βhh|h=πϵ=2+ϵ=6d.\Delta_{\hat{\phi}^{2}}=2+\left.\frac{\partial\beta_{h}}{\partial h}\right|_{h=\pi\epsilon}=2+\epsilon=6-d\,. (2.26)

Note that this satisfies Δϕ^2=2Δϕ^\Delta_{\hat{\phi}^{2}}=2\Delta_{\hat{\phi}}. This is expected since, even though we have a non-trivial defect fixed point, the theory is Gaussian.

Note that in the special case d=3d=3, we have Δϕ^=32\Delta_{\hat{\phi}}=\frac{3}{2}. This is the dimension of the boundary scalar operator in the 3d free scalar theory with Dirichlet boundary conditions on a 2d boundary. This is as expected, since for d=3d=3 our defect becomes an interface, and the IR fixed point should correspond to two copies of the Dirichlet free scalar BCFT. This can also be confirmed by computing the defect free energy (and related defect anomaly coefficient), as we discuss in Section 6 below.

In general dd, a simple way to understand the result (2.25) is by performing a Weyl transformation to the space H3×Sd3H^{3}\times S^{d-3}, where H3H^{3} is the three-dimensional hyperbolic space. The flat space metric can be written as

ds2=dx12+dx22+dr2+r2dΩd32\displaystyle ds^{2}=dx_{1}^{2}+dx_{2}^{2}+dr^{2}+r^{2}d\Omega_{d-3}^{2} (2.27)
=\displaystyle= r2[dx12+dx22+dr2r2+dΩd32]=r2dsH3×Sd32\displaystyle r^{2}[\frac{dx_{1}^{2}+dx_{2}^{2}+dr^{2}}{r^{2}}+d\Omega_{d-3}^{2}]=r^{2}ds^{2}_{H^{3}\times S^{d-3}}

By making a Weyl rescaling to get rid of the overall conformal factor, we can then map the DCFT on flat space to H3×Sd3H^{3}\times S^{d-3}, where the 2d defect now sits at the boundary of H3H^{3}. Including the conformal coupling term, the bulk action becomes (see for instance [17])

S=ddxg[12(ϕa)2+(d2)(d6)8ϕa2]S=\int d^{d}x\sqrt{g}\left[\frac{1}{2}\left(\partial\phi_{a}\right)^{2}+\frac{(d-2)(d-6)}{8}\phi_{a}^{2}\right] (2.28)

If we perform a Kaluza-Klein reduction on Sd3S^{d-3}, we obtain a tower of states with masses m2=14(d2)(d6)+(+d4)m_{\ell}^{2}=\frac{1}{4}(d-2)(d-6)+\ell(\ell+d-4), where =0,1,2,\ell=0,1,2,\ldots and we used the standard result for the eigenvalues of the Laplacian on the sphere Sd3S^{d-3}. For the lowest lying mode, we have m02=14(d2)(d6)m^{2}_{0}=\frac{1}{4}(d-2)(d-6), which according to the mass/dimension relation on H3H^{3} given by Δ(Δ2)=m02\Delta(\Delta-2)=m^{2}_{0}, gives the two possible operator dimensions at the boundary of H3H^{3}:

Δ=d21Δ+=3d2\Delta_{-}=\frac{d}{2}-1\,\qquad\Delta_{+}=3-\frac{d}{2} (2.29)

We see that these are indeed respectively the dimensions of the defect operator ϕ^a\hat{\phi}_{a} at the trivial fixed point (h=0h=0) and at the IR fixed point (h=hh=h_{*}). From this point of view, we can think of the surface defect flow in the theory (2.1) as an analog of the familiar double-trace flow in the AdS/CFT context [19, 20, 21]. Here, the analog of the double-trace deformation is the operator ϕ^a2\hat{\phi}_{a}^{2} inserted at the boundary of H3H^{3}.

3 Interacting O(N)O(N) model in d=4ϵd=4-\epsilon

We now consider the massless O(N)O(N) symmetric Wilson-Fisher model in d=4ϵd=4-\epsilon dimension with the same surface defect inserted on the x1,x2x_{1},x_{2} plane:

S=ddx[12(ϕa)2+λ04!(ϕa2)2]+h0𝑑x1𝑑x2ϕa2S=\int d^{d}x\left[\frac{1}{2}\left(\partial\phi_{a}\right)^{2}+\frac{\lambda_{0}}{4!}\left(\phi_{a}^{2}\right)^{2}\right]+h_{0}\int dx_{1}dx_{2}\ \phi_{a}^{2} (3.1)

Since in the free theory the fixed point of the defect coupling is at h=πϵh_{*}=\pi\epsilon, it is natural to expect that at the interacting bulk fixed point, h=O(ϵ)h_{*}=O(\epsilon) as well. Then both λ\lambda_{*} and hh_{*} are of order O(ϵ)O(\epsilon), and there are three diagrams to two-loop order of h0h_{0} and λ0\lambda_{0}:

(A0)(A_{0})(A1)(A_{1})(B0)(B_{0})

In position space, these diagrams can be computed as

A0=2h0Nd2yCϕ2(x2+y2)(d2)=π1dh0Nx62dΓ(d21)2248deq. A.3A_{0}=-2h_{0}N\int d^{2}y\frac{C_{\phi}^{2}}{(x^{2}+y^{2})^{(d-2)}}=\frac{\pi^{1-d}h_{0}Nx^{6-2d}\Gamma\left(\frac{d}{2}-1\right)^{2}}{24-8d}\quad\text{eq.~{}\ref{I3}} (3.2)
A1=\displaystyle{A_{1}}= 4h02Nd2yd2zCϕ3(x2+y2)(d2)/2(x2+z2)(d2)/2|yz|(d2)\displaystyle 4h_{0}^{2}N\int d^{2}y\int d^{2}z\frac{C_{\phi}^{3}}{(x^{2}+y^{2})^{(d-2)/2}(x^{2}+z^{2})^{(d-2)/2}|y-z|^{(d-2)}} (3.3)
=\displaystyle= π33d2h02Nx103dcsc(πd2)Γ(d3)2Γ(3d25)16Γ(2d6)eq. A.4\displaystyle-\frac{\pi^{3-\frac{3d}{2}}h_{0}^{2}Nx^{10-3d}\csc\left(\frac{\pi d}{2}\right)\Gamma(d-3)^{2}\Gamma\left(\frac{3d}{2}-5\right)}{16\Gamma(2d-6)}\quad\text{eq.~{}\ref{I38}}
B0=\displaystyle B_{0}= (N+2)λ0h0N3d2yddzCϕ4|zy|2(d2)|zx|2(d2)\displaystyle\frac{(N+2)\lambda_{0}h_{0}N}{3}\int d^{2}y\int d^{d}z\frac{C_{\phi}^{4}}{|z-y|^{2(d-2)}|z-x|^{2(d-2)}} (3.4)
=\displaystyle= π33d2h0λ0N(N+2)x103dcsc2(πd2)Γ(d21)2Γ(3d25)768Γ(4d)Γ(d2)2\displaystyle\frac{\pi^{3-\frac{3d}{2}}h_{0}\lambda_{0}N(N+2)x^{10-3d}\csc^{2}\left(\frac{\pi d}{2}\right)\Gamma\left(\frac{d}{2}-1\right)^{2}\Gamma\left(\frac{3d}{2}-5\right)}{768\Gamma(4-d)\Gamma(d-2)^{2}}

The wavefunction renormalization factor is the same as the one in the bulk theory without defect (see for instance [28] for a collection of CFT data of the O(N)O(N) model in d=4ϵd=4-\epsilon):

ϕa2(x)=Zϕ2[ϕa2](x),Zϕ2=1λ(N+2)48π2ϵ+𝒪(λ2(4π)4)\phi_{a}^{2}(x)=Z_{\phi^{2}}\left[\phi_{a}^{2}\right](x),\quad Z_{\phi^{2}}=1-\frac{\lambda(N+2)}{48\pi^{2}\epsilon}+\mathcal{O}\left(\frac{\lambda^{2}}{(4\pi)^{4}}\right) (3.5)

The renormalized one-point function [ϕa2](x)\langle[\phi_{a}^{2}](x)\rangle is

[ϕa2](x)=1Zϕ2(A0+A1+B0).\displaystyle\langle[\phi_{a}^{2}](x)\rangle=\frac{1}{Z_{\phi^{2}}}(A_{0}+A_{1}+B_{0})\,. (3.6)

If we now substitute in the renormalized couplings

λ0=Mϵ(λ+O(λ2))\lambda_{0}=M^{\epsilon}\left(\lambda+O(\lambda^{2})\right) (3.7)
h0=Mϵ(h1h/(πϵ)+λa11ϵh)h_{0}=M^{\epsilon}\left(\frac{h}{1-h/(\pi\epsilon)}+\lambda\frac{a_{11}}{\epsilon}h\right) (3.8)

and require the renormalized one-point function [ϕa2](x)\langle[\phi_{a}^{2}](x)\rangle to be finite, we find

h0=Mϵ(h1h/(πϵ)+λN+248π2ϵh).h_{0}=M^{\epsilon}\left(\frac{h}{1-h/(\pi\epsilon)}+\lambda\frac{N+2}{48\pi^{2}\epsilon}h\right)\,. (3.9)

Imposing h0log(M)=0\frac{\partial h_{0}}{\partial\log(M)}=0, we arrive at the beta function

βh=hϵ+h2π+λh(N+2)48π2\beta_{h}=-h\epsilon+\frac{h^{2}}{\pi}+\frac{\lambda h(N+2)}{48\pi^{2}} (3.10)

This corresponds to a fixed point at

h=πϵ(N+2)λ48πh_{*}=\pi\epsilon-\frac{(N+2)\lambda}{48\pi} (3.11)

Plugging in the explicit value of the bulk fixed point coupling

λ(4π)2=3ϵN+8+9(3N+14)ϵ2(N+8)3+𝒪(ϵ3),\frac{\lambda_{*}}{(4\pi)^{2}}=\frac{3\epsilon}{N+8}+\frac{9(3N+14)\epsilon^{2}}{(N+8)^{3}}+\mathcal{O}\left(\epsilon^{3}\right)\,, (3.12)

the defect coupling fixed point is

h=6πN+8ϵ+𝒪(ϵ2)h_{*}=\frac{6\pi}{N+8}\epsilon+\mathcal{O}\left(\epsilon^{2}\right) (3.13)

This confirms our assumption that h=O(ϵ)h_{*}=O(\epsilon) and shows that our calculation is self-consistent.

At this fixed point, the one-point function of the bulk quadratic operator is

[ϕa2](x)=3ϵN4π2(N+8)x2+O(ϵ2)\langle[\phi_{a}^{2}](x)\rangle=-\frac{3\epsilon N}{4\pi^{2}(N+8)x^{2}}+O\left(\epsilon^{2}\right) (3.14)

To compare with the results of large NN expansion in Section 4.2, it will be useful to normalize the one-point function by the square root of the two-point function coefficient. Since

[ϕa2](x)[ϕb2](0)=𝒩ϕ22|x|2(d2+γϕ2)\left\langle\left[\phi_{a}^{2}\right](x)\left[\phi_{b}^{2}\right](0)\right\rangle=\frac{\mathcal{N}_{\phi^{2}}^{2}}{|x|^{2\left(d-2+\gamma_{\phi^{2}}\right)}} (3.15)

where (see e.g. [29])

𝒩ϕ22=2N(d2)2Ωd12[1ϵ(N+2)(γE+1+logπ)N+8+𝒪(ϵ2)],\mathcal{N}_{\phi^{2}}^{2}=\frac{2N}{(d-2)^{2}\Omega_{d-1}^{2}}\left[1-\epsilon\frac{(N+2)\left(\gamma_{E}+1+\log\pi\right)}{N+8}+\mathcal{O}\left(\epsilon^{2}\right)\right]\,, (3.16)

the normalized one-point function is

[ϕa2](x)D𝒩ϕ2=3ϵN2(N+8)x2+O(ϵ2)\frac{\langle[\phi_{a}^{2}](x)\rangle_{D}}{{\mathcal{N}}_{\phi^{2}}}=-\frac{3\epsilon\sqrt{N}}{\sqrt{2}(N+8)x^{2}}+O\left(\epsilon^{2}\right) (3.17)

Conformal perturbation theory approach.

Now we use conformal perturbation theory as in Section 2 as an alternative way to obtain the beta function. The interacting CFT in the bulk has the renormalized coupling λ\lambda_{*} given by eq. (3.12). We perturb it by the defect term h0𝑑x1𝑑x2ϕa2h_{0}\int dx_{1}dx_{2}\phi_{a}^{2}. The three-point and two-point function coefficients C3C_{3} and C2C_{2} in the unperturbed interacting CFT are the same as in free theory (eq. 2.14) to leading order. But now the scaling dimension of ϕa2\phi_{a}^{2} in the CFT at h=0h=0 is given by the well-known result [28]

Δϕ2=2ϵ+γϕ2=26ϵN+8+O(ϵ2).\Delta_{\phi^{2}}=2-\epsilon+\gamma_{\phi^{2}}=2-\frac{6\epsilon}{N+8}+O(\epsilon^{2})\,. (3.18)

Therefore, the dimension of the perturbing defect operator is 2ε2-\varepsilon with ε=2Δϕ2=6ϵN+8\varepsilon=2-\Delta_{\phi^{2}}=\frac{6\epsilon}{N+8}, and the beta function is given by

βh=\displaystyle\beta_{h}= 6ϵN+8h+4πCϕh2+O(h3)\displaystyle-\frac{6\epsilon}{N+8}h+4\pi C_{\phi}h^{2}+O(h^{3}) (3.19)
=\displaystyle= 6ϵN+8h+h2π+O(h3)\displaystyle-\frac{6\epsilon}{N+8}h+\frac{h^{2}}{\pi}+O(h^{3}) (3.20)

where in the last line we have replaced 4πCϕ4\pi C_{\phi} by its leading order value near d=4d=4. This indeed agrees with eq. (3.10) when λ=λ\lambda=\lambda_{*} is at the critical point.

3.1 Scaling dimensions on the defect

Similar to the calculation for free scalar fields, we consider ϕ^1(y1)ϕ^1(y2)D\langle\hat{\phi}_{1}(y_{1})\hat{\phi}_{1}(y_{2})\rangle_{D} where y1,y2y_{1},y_{2} are coordinates on the two-dimensional defect plane. To the linear order in ϵ\epsilon, the relevant diagrams are the same as in the free theory, namely we just need the diagram linear in hh in the “chain” eq. 2.18. There are no diagrams involving the bulk coupling to this order, since these first appear at order λ2\lambda^{2} and hλh\lambda. Hence, to the leading non-trivial order, the ZZ factor and anomalous dimension as functions of the renormalized coupling hh are the same as in the free theory

Zϕ^=1hπϵ+hλ(N+2)96π3(1ϵ2+1ϵ),\displaystyle Z_{\hat{\phi}}=1-\frac{h}{\pi\epsilon}+\frac{h\lambda(N+2)}{96\pi^{3}}\left(-\frac{1}{\epsilon^{2}}+\frac{1}{\epsilon}\right)\,, (3.21)
γϕ^=hπ+O(hλ,λ2)\displaystyle\gamma_{\hat{\phi}}=\frac{h}{\pi}+O(h\lambda,\lambda^{2})

At the fixed point h=6πN+8ϵh_{*}=\frac{6\pi}{N+8}\epsilon, this gives the scaling dimension

Δϕ^=d22+γϕ^|h=h,λ=λ=1ϵ2+6ϵN+8+O(ϵ2).\Delta_{\hat{\phi}}=\frac{d-2}{2}+\left.\gamma_{\hat{\phi}}\right|_{h=h_{*},\lambda=\lambda_{*}}=1-\frac{\epsilon}{2}+\frac{6\epsilon}{N+8}+O(\epsilon^{2})\,. (3.22)

For the dimension of the ϕ^2\hat{\phi}^{2} defect operator, we can again simply use the general formula relating it to the derivative of the beta function at the fixed point. This gives

Δϕ^2=2+βhh|h=h,λ=λ=2+6ϵN+8.\Delta_{\hat{\phi}^{2}}=2+\left.\frac{\partial\beta_{h}}{\partial h}\right|_{h=h_{*},\lambda=\lambda_{*}}=2+\frac{6\epsilon}{N+8}\,. (3.23)

We will see below that these results are consistent with the predictions of the large NN expansion. Note that in d<4d<4 the operator ϕ^2\hat{\phi}^{2} is irrelevant at the fixed point, as expected for a IR stable fixed point.

3.2 O(N)O(N) symmetry breaking phase

In the above calculation of the beta function, we found a O(N)O(N) invariant DCFT where the fixed point coupling hh_{*} is positive and the flow is perturbative for small ϵ\epsilon. By analogy with the similar problem of the “extraordinary” and “normal” transitions in the O(N)O(N) model in the presence of a boundary (see for instance [1, 17], and [16] for a review), it is natural to also look for a phase of the surface defect theory where the O(N)O(N) symmetry is broken to O(N1)O(N-1).444More general pattern of symmetry breaking should also be possible, but here we focus on the simplest breaking to O(N1)O(N-1). As in the boundary case, one can describe this phase by finding a classical solution to the equations of motion where one of the scalars, say ϕN\phi_{N}, has a non-zero classical profile, growing towards the location of the defect. One way to reach this phase is by adding an explicit O(N)O(N) breaking relevant perturbation on the defect, proportional to ϕN\phi_{N}. This is the analog of the so-called “normal” transition in the O(N)O(N) model with a boundary. It is natural to expect that an O(N)O(N) breaking phase can also be reached by starting with the defect action (3.1) and taking the coupling hh to be negative (this is the analog of the “extraordinary” transition in the boundary problem, corresponding to spontaneous breaking). Here we will not discuss in detail the difference between these two setups (see [12, 30, 11]), and for simplicity in the discussion below we will have in mind the analog of the “normal” transition.

Let us place the defect on the x1,x2x_{1},x_{2} plane as before, and use the coordinates

ds2=dx12+dx22+dy12++dyd22.ds^{2}=dx_{1}^{2}+dx_{2}^{2}+dy_{1}^{2}+\ldots+dy_{d-2}^{2}\,. (3.24)

Then the one point function of a bulk scalar operator in the presence of the surface defect must take the form

O=crΔ\langle O\rangle=\frac{c}{r^{\Delta}} (3.25)

where r=y12+y22++yd22r=\sqrt{y_{1}^{2}+y_{2}^{2}+...+y_{d-2}^{2}} is the transverse distance from the defect and Δ\Delta is the dimension of the bulk operator. For d=4ϵd=4-\epsilon, we can solve for the equation of motion (as in the boundary case [1])

2ϕi=2ϕir2+d3rϕir=λ6ϕa2ϕi\nabla^{2}\phi_{i}=\frac{\partial^{2}\phi_{i}}{\partial r^{2}}+\frac{d-3}{r}\frac{\partial\phi_{i}}{\partial r}=\frac{\lambda_{*}}{6}\phi_{a}^{2}\phi_{i} (3.26)

where the bulk fixed point coupling is given by eq. (3.12). Considering the ansatz ϕa(x)=c/r\langle\phi_{a}(x)\rangle=c/r dictated by conformal symmetry, this admits a solution

ϕa(x)={6λ1r,a=N0,a=1,2,,N1\langle\phi_{a}(x)\rangle=\begin{cases}\sqrt{\frac{6}{\lambda_{*}}}\frac{1}{r},&a=N\\ 0,&a=1,2,\cdots,N-1\end{cases} (3.27)

This is the phase where the O(N)O(N) symmetry is broken to O(N1)O(N-1).

The above analysis can be also carried out in an equivalent way by making a conformal transformation to H3×Sd3H^{3}\times S^{d-3}, as discussed above in the free theory context, see eq. (2.27). After a Weyl rescaling the bulk action becomes

S=ddxg[12(ϕa)2+(d2)(d6)8ϕa2+λ4!(ϕa2)2]S=\int d^{d}x\sqrt{g}\left[\frac{1}{2}\left(\partial\phi_{a}\right)^{2}+\frac{(d-2)(d-6)}{8}\phi_{a}^{2}+\frac{\lambda_{*}}{4!}\left(\phi_{a}^{2}\right)^{2}\right] (3.28)

The one point function of a scalar operator is a constant ϕN=c\langle\phi_{N}\rangle=c in H3×Sd3H^{3}\times S^{d-3} (the Weyl factor cancels the rr-dependent factor in (3.25)). Then the O(N)O(N) breaking configuration can be simply found by extremizing the potential

V(ϕ)=(d2)(d6)8ϕa2+λ4!(ϕa2)2.V(\phi)=\frac{(d-2)(d-6)}{8}\phi_{a}^{2}+\frac{\lambda_{*}}{4!}\left(\phi_{a}^{2}\right)^{2}\,. (3.29)

This gives

ϕa2=3(6d)(d2)2λϕa(x)={3(6d)(d2)2λ,a=N0,a={1,2,,N1}\phi_{a}^{2}=\frac{3(6-d)(d-2)}{2\lambda_{*}}\implies\langle\phi_{a}(x)\rangle=\begin{cases}\sqrt{\frac{3(6-d)(d-2)}{2\lambda_{*}}},&a=N\\ 0,&a=\{1,2,\cdots,N-1\}\end{cases} (3.30)

Transforming back to flat space, we find

ϕN(x)flat=3(6d)(d2)2λ1r=6λ1r\langle\phi_{N}(x)\rangle_{\text{flat}}=\sqrt{\frac{3(6-d)(d-2)}{2\lambda_{*}}}\frac{1}{r}=\sqrt{\frac{6}{\lambda_{*}}}\frac{1}{r} (3.31)

to leading order at d=4ϵd=4-\epsilon, in agreement with the equation of motion calculation in flat space.

Expanding the action (3.28) around this minimum using ϕi,i=1,2,,N1\phi_{i},i=1,2,\cdots,N-1 and ϕN=3(6d)(d2)2λ+χ\phi_{N}=\sqrt{\frac{3(6-d)(d-2)}{2\lambda_{*}}}+\chi, we find

S=\displaystyle S= ddxg[12(ϕi)2+12(χ)23(d6)2(d2)232λ14(d6)(d2)χ2\displaystyle\int d^{d}x\sqrt{g}\left[\frac{1}{2}\left(\partial\phi_{i}\right)^{2}+\frac{1}{2}\left(\partial\chi\right)^{2}-\frac{3(d-6)^{2}(d-2)^{2}}{32\lambda}-\frac{1}{4}(d-6)(d-2)\chi^{2}\right. (3.32)
+λ2(6d)(d2)6(χ3+χϕ2)+124λ(χ2+ϕ2)2]\displaystyle\left.+\frac{\sqrt{\lambda}}{2}\sqrt{\frac{(6-d)(d-2)}{6}}\left(\chi^{3}+\chi\phi^{2}\right)+\frac{1}{24}\lambda\left(\chi^{2}+\phi^{2}\right)^{2}\right]

Therefore, we have N1N-1 massless scalar fields ϕi\phi_{i} and a massive scalar field χ\chi with mass mχ2=12(6d)(d2)m_{\chi}^{2}=\frac{1}{2}(6-d)(d-2).

According to the familiar mass/dimension relation on H3H^{3}, Δ(Δ2)=m2\Delta(\Delta-2)=m^{2}, the N1N-1 massless scalars correspond to N1N-1 operators on the defect with Δ=2\Delta=2. These are sometimes referred to as “tilt” operators: their presence follow from the broken O(N)O(N) symmetry and they should have protected dimension. These massless operators correspond to the bottom component in the Kaluza-Klein tower arising from reduction on Sd3S^{d-3}. The higher states will have m2=(+d4)m^{2}=\ell(\ell+d-4) which leads to Δϕ^i=1+1+2\Delta^{\hat{\phi}^{i}}_{\ell}=1+\sqrt{1+\ell^{2}} to leading order in d=4ϵd=4-\epsilon.

From the field χ\chi, we find a tower of states with mχ2=2+2m^{2}_{\chi}=2+\ell^{2} (working to leading order, i.e. setting d=4d=4), which gives Δχ^=1+3+2\Delta^{\hat{\chi}}_{\ell}=1+\sqrt{3+\ell^{2}}. The =1\ell=1 state has Δ1χ^=3\Delta^{\hat{\chi}}_{1}=3, and should correspond to the displacement operator with protected scaling dimension.

From here one may proceed to further analyze the O(N)O(N) breaking phase of the planar defect in the O(N)O(N) model, but we leave further studies to future work (see [11] for a recent discussion of the d=3d=3 case).

4 Large NN

In this section we study the planar defect in the interacting O(N)O(N) model at large NN, keeping dd arbitrary. We start with a brief review of the large NN treatment of the O(N)O(N) model and a few relevant results for the “bulk” scaling dimensions, and then we move on to study the planar defect.

4.1 Review of large NN results

The large NN expansion can be developed by introducing the Hubbard-Stratonovich auxiliary field σ\sigma as

S=ddx(12(ϕa)2+1Nσϕa26σ2Nλ0)S=\int d^{d}x\left(\frac{1}{2}(\partial\phi_{a})^{2}+\frac{1}{\sqrt{N}}\sigma\phi_{a}^{2}-\frac{6\sigma^{2}}{N\lambda_{0}}\right) (4.1)

Integrating out σ\sigma gives back the original Lagrangian. At the IR fixed point of the O(N)O(N) model, the σ2/λ0\sim\sigma^{2}/\lambda_{0} term can be dropped, and we are left with

S=ddx(12(ϕa)2+1Nσϕa2)S=\int d^{d}x\left(\frac{1}{2}(\partial\phi_{a})^{2}+\frac{1}{\sqrt{N}}\sigma\phi_{a}^{2}\right) (4.2)

This action can be used for the 1/N1/N expansion of the theory. The free propagator for ϕa\phi_{a} is the same as in eq. (2.2) while the “free” propagator for σ\sigma (obtained from integrating out ϕ\phi at one-loop) is

σ(x)σ(y)=Cσ|xy|4δ,Cσ=2dΓ(d12)sin(πd2)π32Γ(d22)\langle\sigma(x)\sigma(y)\rangle=\frac{C_{\sigma}}{|x-y|^{4-\delta}},\quad C_{\sigma}=\frac{2^{d}\Gamma\left(\frac{d-1}{2}\right)\sin\left(\frac{\pi d}{2}\right)}{\pi^{\frac{3}{2}}\Gamma\left(\frac{d}{2}-2\right)} (4.3)

He we have introduced a small shift δ\delta to the σ\sigma propagator to regulate the infinities in the divergent conformal graphs (see e.g. [31]). At the end of the calculations, we will take δ0\delta\rightarrow 0 and extract the finite part. The scaling dimensions of ϕa\phi_{a} and σ\sigma are well-known and given by

Δϕ=d21+η1N+𝒪(N2),η1=2d3(d4)Γ(d12)sin(πd2)π32Γ(d2+1)\Delta_{\phi}=\frac{d}{2}-1+\frac{\eta_{1}}{N}+\mathcal{O}\left(N^{-2}\right),\quad\eta_{1}=\frac{2^{d-3}(d-4)\Gamma\left(\frac{d-1}{2}\right)\sin\left(\frac{\pi d}{2}\right)}{\pi^{\frac{3}{2}}\Gamma\left(\frac{d}{2}+1\right)} (4.4)
Δσ=2+tN+𝒪(1N2)\Delta_{\sigma}=2+\frac{t}{N}+\mathcal{O}\left(\frac{1}{N^{2}}\right) (4.5)

where

t=4(d1)(d2)d4η1=2d(d2)sin(πd2)Γ(d+12)π3/2Γ(d2+1)t=\frac{4(d-1)(d-2)}{d-4}\eta_{1}=\frac{2^{d}(d-2)\sin\left(\frac{\pi d}{2}\right)\Gamma\left(\frac{d+1}{2}\right)}{\pi^{3/2}\Gamma\left(\frac{d}{2}+1\right)} (4.6)

4.2 Defect

As σ\sigma essentially represents the operator ϕa2\phi_{a}^{2} at the IR fixed point, it is natural to define the defect action by

Sd=h0d2xσ(x,0).S_{d}=h_{0}\int d^{2}x\,\sigma(\vec{x},0)\,. (4.7)

Here we use the same notation h0h_{0} for the defect coupling constant, but a priori this coupling is not directly the same as the one used in the 4ϵ4-\epsilon expansion, because the operators σ\sigma and ϕa2\phi_{a}^{2} have different normalizations.

In the O(N)O(N) invariant DCFT fixed point in d=4ϵd=4-\epsilon, we found that the one-point function of ϕ2\phi^{2} has the behavior ϕ2ϵN0\langle\phi^{2}\rangle\sim\epsilon N^{0} at large NN, see eq. (3.14). Note that the σ\sigma equation of motion from the action (4.1) is σ=Nλ12ϕ2\sigma=\frac{\sqrt{N}\lambda}{12}\phi^{2}. Since at large NN we have λ1/N\lambda_{*}\sim 1/N, we expect that at the O(N)O(N) invariant DCFT fixed point we should have σ1/N\langle\sigma\rangle\sim 1/\sqrt{N} in the large NN approach. This one-point function is not “classical” from the point of view of the large NN expansion (in the normalizations of eq. (4.1), a classical solution of the σ\sigma effective action behaves as σN\sigma\sim\sqrt{N}), therefore we expect that to match the O(N)O(N) invariant fixed point seen in d=4ϵd=4-\epsilon, we can simply do 1/N1/N perturbation theory around the trivial saddle point ϕa=σ=0\phi_{a}=\sigma=0.555This is a saddle point because σ|σ=0\frac{\partial\mathcal{F}}{\partial\sigma}|_{\sigma=0} vanishes, since this is proportional to the one-point function of ϕ2\phi^{2} in the σ=0\sigma=0 free theory. On the other hand, the O(N)O(N) breaking fixed point discussed in Section 3.2 has ϕa21/λN\langle\phi^{2}_{a}\rangle\sim 1/\lambda_{*}\sim N (see eq. (3.27)), which translates to σN\langle\sigma\rangle\sim\sqrt{N}, and therefore should correspond to a non-trivial classical saddle point at large NN. In this paper we will focus on the O(N)O(N) invariant phase at large NN for generic dd, and hence we will simply do perturbation theory around the trivial configuration. Let us note that the case d=3d=3 requires special treatment, as we shall see below, since in that case we expect σN\langle\sigma\rangle\sim\sqrt{N} even in the O(N)O(N) invariant phase, see [11] and also [17] for the large NN treatment of the closely related boundary problem (recall that in d=3d=3, the planar defect becomes an interface).

To determine the beta function of the defect coupling, we can now follow a similar procedure as above and calculate the one-point function σ(0,x)D\langle\sigma(0,x)\rangle_{D}, where xd2x\in\mathbb{R}^{d-2} are the coordinates perpendicular to the defect plane.The leading order diagram is a σ\sigma propagator integrated on the defect plane (diagram P0P_{0}) while the next diagram P1P_{1} is of order O(h02N1/2)O\left(\frac{h_{0}^{2}}{N^{1/2}}\right):

P0P1\begin{gathered}\leavevmode\hbox to87.36pt{\vbox to121.89pt{\pgfpicture\makeatletter\hbox{\hskip 43.67914pt\lower-64.78378pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{-49.28001pt}\pgfsys@lineto{0.0pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{2.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-42.67914pt}{-49.28001pt}\pgfsys@lineto{42.67914pt}{-49.28001pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}} {{{}{}}}{{{}}}{{}}{{}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.30452pt}{-59.64633pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$P_{0}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\leavevmode\hbox to87.36pt{\vbox to121.89pt{\pgfpicture\makeatletter\hbox{\hskip 43.67914pt\lower-64.78378pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@lineto{0.0pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{{}}{}{}{}{}{}{}{}{}}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{28.45276pt}{0.0pt}\pgfsys@curveto{28.45276pt}{15.71422pt}{15.71422pt}{28.45276pt}{0.0pt}{28.45276pt}\pgfsys@curveto{-15.71422pt}{28.45276pt}{-28.45276pt}{15.71422pt}{-28.45276pt}{0.0pt}\pgfsys@curveto{-28.45276pt}{-15.71422pt}{-15.71422pt}{-28.45276pt}{0.0pt}{-28.45276pt}\pgfsys@curveto{15.71422pt}{-28.45276pt}{28.45276pt}{-15.71422pt}{28.45276pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-14.22638pt}{-24.64pt}\pgfsys@lineto{-28.45276pt}{-49.28001pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{-24.64pt}\pgfsys@lineto{28.45276pt}{-49.28001pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{2.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-42.67914pt}{-49.28001pt}\pgfsys@lineto{42.67914pt}{-49.28001pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}} {{{}{}}}{{{}}}{{}}{{}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.30452pt}{-59.64633pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$P_{1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\end{gathered} (4.8)

where we have used dashed line for σ\sigma propagator, thin solid line for ϕa\phi_{a} propagator, and thick solid line for the defect plane. The calculation of P0P_{0} is straightforward:

P0=h0d2yCσ(x2+y2)2=h0Cσπx2eq. A.3P_{0}=-h_{0}\int d^{2}y\frac{C_{\sigma}}{(x^{2}+y^{2})^{2}}=-h_{0}C_{\sigma}\frac{\pi}{x^{2}}\quad\text{eq.~{}\ref{I3}} (4.9)

To calculate P1P_{1}, we use the three-point function of σ\sigma

σ(x1)σ(x2)σ(x3)=gσ3(|x12||x23||x13|)2δ\left\langle\sigma\left(x_{1}\right)\sigma\left(x_{2}\right)\sigma\left(x_{3}\right)\right\rangle=\frac{g_{\sigma^{3}}}{\left(\left|x_{12}\right|\left|x_{23}\right|\left|x_{13}\right|\right)^{2-\delta}} (4.10)

where [31]

gσ3=1N8d1sin3(πd2)Γ(3d2)Γ(d12)3π9/2Γ(d3)g_{\sigma^{3}}=-\frac{1}{\sqrt{N}}\frac{8^{d-1}\sin^{3}\left(\frac{\pi d}{2}\right)\Gamma\left(3-\frac{d}{2}\right)\Gamma\left(\frac{d-1}{2}\right)^{3}}{\pi^{9/2}\Gamma(d-3)} (4.11)

The double integral on the defect plane can be calculated by eq. A.4:

d2x2d2x31(|x12||x23||x13|)Δσ=π2Γ(1Δσ2)Γ(Δσ1)2Γ(3Δσ22)(x12)23Δσ2Γ(2(Δσ1))Γ(Δσ2)2\displaystyle\int d^{2}x_{2}\int d^{2}x_{3}\frac{1}{\left(\left|x_{12}\right|\left|x_{23}\right|\left|x_{13}\right|\right)^{\Delta_{\sigma}}}=\frac{\pi^{2}\Gamma\left(1-\frac{\Delta_{\sigma}}{2}\right)\Gamma(\Delta_{\sigma}-1)^{2}\Gamma\left(\frac{3\Delta_{\sigma}}{2}-2\right)\left(x_{1}^{2}\right){}^{2-\frac{3\Delta_{\sigma}}{2}}}{\Gamma(2(\Delta_{\sigma}-1))\Gamma\left(\frac{\Delta_{\sigma}}{2}\right)^{2}} (4.12)

So in total we have

σ(0,x)D=h0Cσπx2\displaystyle\langle\sigma(0,x)\rangle_{D}=-h_{0}C_{\sigma}\frac{\pi}{x^{2}} (4.13)
h0221N8d1sin3(πd2)Γ(3d2)Γ(d12)3π9/2Γ(d3)π2Γ(1Δσ2)Γ(Δσ1)2Γ(3Δσ22)(x2)23Δσ2Γ(2(Δσ1))Γ(Δσ2)2.\displaystyle-\frac{h_{0}^{2}}{2}\frac{1}{\sqrt{N}}\frac{8^{d-1}\sin^{3}\left(\frac{\pi d}{2}\right)\Gamma\left(3-\frac{d}{2}\right)\Gamma\left(\frac{d-1}{2}\right)^{3}}{\pi^{9/2}\Gamma(d-3)}\frac{\pi^{2}\Gamma\left(1-\frac{\Delta_{\sigma}}{2}\right)\Gamma(\Delta_{\sigma}-1)^{2}\Gamma\left(\frac{3\Delta_{\sigma}}{2}-2\right)\left(x^{2}\right)^{2-\frac{3\Delta_{\sigma}}{2}}}{\Gamma(2(\Delta_{\sigma}-1))\Gamma\left(\frac{\Delta_{\sigma}}{2}\right)^{2}}\,.

Now we can calculate the renormalized coupling hh. Substitute

σ=Z[σ],h0=M2Δσ(h+a11h2δN),Δσ=2δ\sigma=Z[\sigma],\quad h_{0}=M^{2-\Delta_{\sigma}}\left(h+\frac{a_{11}h^{2}}{\delta\sqrt{N}}\right),\quad\Delta_{\sigma}=2-\delta (4.14)

expand in 1N\frac{1}{\sqrt{N}} and hh, and require the renormalized one-point function [σ](x)D\langle[\sigma](x)\rangle_{D} to be finite as δ0\delta\to 0 (we set Z=1Z=1 because O(1/N)O(1/N) correction will not affect the calculation of a11a_{11}). We get

a11=2d(d3)sin2(πd2)Γ(2d2)Γ(d12)π3/2a_{11}=\frac{2^{d}(d-3)\sin^{2}\left(\frac{\pi d}{2}\right)\Gamma\left(2-\frac{d}{2}\right)\Gamma\left(\frac{d-1}{2}\right)}{\pi^{3/2}} (4.15)

To calculate βh\beta_{h}, require h0log(M)=0\frac{\partial h_{0}}{\partial\log(M)}=0 and bring in the 1/N1/N correction Δσ=2+tN\Delta_{\sigma}=2+\frac{t}{N} in eq. (4.14) (where we now take the regulator δ0\delta\rightarrow 0):

βh=tNh+2d(d3)h2sin2(πd2)Γ(2d2)Γ(d12)π3/2N\beta_{h}=\frac{t}{N}h+\frac{2^{d}(d-3)h^{2}\sin^{2}\left(\frac{\pi d}{2}\right)\Gamma\left(2-\frac{d}{2}\right)\Gamma\left(\frac{d-1}{2}\right)}{\pi^{3/2}\sqrt{N}} (4.16)

As discussed in previous sections, an alternative way to obtain the beta function is to use the conformal perturbation theory approach. Now the perturbation operator on the defect is O^=σ^\hat{O}=\hat{\sigma}. Let ε=2Δσ=t/N\varepsilon=2-\Delta_{\sigma}=-t/N (eq. (4.5)). The three-point coefficient gσ3g_{\sigma^{3}} is given by eq. (4.11) and the two-point function coefficient is CσC_{\sigma} in eq. (4.3). Then we get

βh=\displaystyle\beta_{h}= εh+πgσ3Cσh2+O(h3)\displaystyle-\varepsilon{h}+\pi\frac{g_{\sigma^{3}}}{C_{\sigma}}{h}^{2}+O\left({h}^{3}\right) (4.17)
=\displaystyle= tNh+2d(d3)sin2(πd2)Γ(2d2)Γ(d12)π3/2Nh2+O(h3),\displaystyle\frac{t}{N}h+\frac{2^{d}(d-3)\sin^{2}\left(\frac{\pi d}{2}\right)\Gamma\left(2-\frac{d}{2}\right)\Gamma\left(\frac{d-1}{2}\right)}{\pi^{3/2}\sqrt{N}}h^{2}+O(h^{3}),

which is indeed the same as eq. (4.16).

From the beta function we find the fixed point

h=2(d1)π(d3)dN+O(N3/2)h_{*}=\frac{2(d-1)}{\pi(d-3)d\sqrt{N}}+O(N^{-3/2}) (4.18)

As mentioned above, we see that the d=3d=3 case requires special care. In this case formally hh_{*}\rightarrow\infty because P1P_{1} vanishes, but this just means that the large NN and d3d\rightarrow 3 limits do not commute. One may of course set d=3d=3 from the start and then develop the 1/N1/N expansion. In this case, since the defect becomes an interface, the O(N)O(N) invariant defect fixed point is expected to be equivalent to two copies of the so-called ordinary transition in the corresponding boundary problem, as explained in [11]. Note that the one-point function of σ\sigma at the fixed point (4.18) to leading order is

σ(0,x)D=hCσπx2=2d+2sin(πd2)Γ(d+12)π3/2(d3)dNx2Γ(d22)\langle\sigma(0,x)\rangle_{D}=-\frac{h_{*}C_{\sigma}\pi}{x^{2}}=-\frac{2^{d+2}\sin\left(\frac{\pi d}{2}\right)\Gamma\left(\frac{d+1}{2}\right)}{\pi^{3/2}(d-3)d\sqrt{N}x^{2}\Gamma\left(\frac{d}{2}-2\right)} (4.19)

The fact that this diverges for d=3d=3 should be related to the fact that the NN dependence at large NN is enhanced in 3d. Indeed, working directly in d=3d=3 one has σDN\langle\sigma\rangle_{D}\sim\sqrt{N} for the closely related ordinary transition of the BCFT problem. Presumably, to see this from the large NN expansion in general dd, one would need to resum all orders in the 1/N1/N expansion, and then take d=3d=3.666For instance, a toy function with the desired properties is of the form σNa+b(d3)2N2\langle\sigma\rangle\sim\frac{\sqrt{N}}{\sqrt{a+b(d-3)^{2}N^{2}}}, with aa, bb some constants. For d3d\neq 3 this corresponds to a 1/N1/N expansion starting at order 1/((d3)N)1/((d-3)\sqrt{N}), while if we take d=3d=3 first, we get the behavior N\sim\sqrt{N}. Alternatively, an additional saddle point for σ\sigma, different from the trivial one we focused on, may appear and be the dominant contribution near d=3d=3.

To compare to the result obtained in the ϵ\epsilon expansion, we can consider the normalized one-point function

σ(0,x)DCσ=4Γ(d+12)2dsin(πd2)Γ(d12)Γ(d42)π3/4(d3)dNx2Γ(d12)=3ϵ2Nx2+O(ϵ2)\frac{\langle\sigma(0,x)\rangle_{D}}{\sqrt{C_{\sigma}}}=-\frac{4\Gamma\left(\frac{d+1}{2}\right)\sqrt{\frac{2^{d}\sin\left(\frac{\pi d}{2}\right)\Gamma\left(\frac{d-1}{2}\right)}{\Gamma\left(\frac{d-4}{2}\right)}}}{\pi^{3/4}(d-3)d\sqrt{N}x^{2}\Gamma\left(\frac{d-1}{2}\right)}=-\frac{3\epsilon}{\sqrt{2}\sqrt{N}x^{2}}+O(\epsilon^{2}) (4.20)

where in the second equality we have put in d=4ϵd=4-\epsilon and expanded in ϵ\epsilon. Since σ\sigma stands for the composite field ϕa2\phi_{a}^{2} in the O(N)O(N) model with quartic interaction at the IR fixed point, the normalized one-point function of σ\sigma should be the same as the normalized one-point function of [ϕa2][\phi_{a}^{2}]. Indeed, we see that it matches eq. (3.17) at the leading order of ϵ\epsilon and 1N\frac{1}{N} expansions.

4.3 Scaling dimensions

The scaling dimension of ϕ^a\hat{\phi}_{a} inserted on the defect can be calculated by considering the two-point function ϕ^1(y1)ϕ^1(y2)d\langle\hat{\phi}_{1}(y_{1})\hat{\phi}_{1}(y_{2})\rangle_{d} where y1,y22y_{1},y_{2}\in\mathbb{R}^{2} are coordinates on the two-dimensional defect plane. The leading corrections to the free propagator are

\begin{gathered}\leavevmode\hbox to87.36pt{\vbox to50.48pt{\pgfpicture\makeatletter\hbox{\hskip 43.67914pt\lower-50.28001pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{}{{}{}{}{{}}{{{{}{}{}{}}} {{}{}{}{}}}}{} {} {} {} {}{}{}\pgfsys@moveto{28.45276pt}{-49.28001pt}\pgfsys@curveto{28.45276pt}{-22.06306pt}{15.71422pt}{0.0pt}{0.0pt}{0.0pt}\pgfsys@curveto{-15.71422pt}{0.0pt}{-28.45276pt}{-22.06306pt}{-28.45276pt}{-49.28001pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{-49.28001pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{2.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-42.67914pt}{-49.28001pt}\pgfsys@lineto{42.67914pt}{-49.28001pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\leavevmode\hbox to87.36pt{\vbox to50.48pt{\pgfpicture\makeatletter\hbox{\hskip 43.67914pt\lower-50.28001pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{}{{}{}{}{{}}{{{{}{}{}{}}} {{}{}{}{}}}}{} {} {} {} {}{}{}\pgfsys@moveto{28.45276pt}{-49.28001pt}\pgfsys@curveto{28.45276pt}{-22.06306pt}{15.71422pt}{0.0pt}{0.0pt}{0.0pt}\pgfsys@curveto{-15.71422pt}{0.0pt}{-28.45276pt}{-22.06306pt}{-28.45276pt}{-49.28001pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-22.76228pt}{-19.91684pt}\pgfsys@lineto{22.76228pt}{-19.91684pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{2.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-42.67914pt}{-49.28001pt}\pgfsys@lineto{42.67914pt}{-49.28001pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\end{gathered} (4.21)

Repeatedly applying eq. (A.3) and (A.5), the first diagram is

2h0Ndd2z1d2z2d2z3Cϕ2Cσ((z2z3)2+z12)2δ((z2x)2+z12)d22((z2y)2+z12)d22\displaystyle\frac{2h_{0}}{\sqrt{N}}\int{d^{d-2}z_{1}}\int{d^{2}z_{2}}\int{d^{2}z_{3}}\frac{C_{\phi}^{2}C_{\sigma}}{((z_{2}-z_{3})^{2}+z_{1}^{2})^{2-\delta}((z_{2}-x)^{2}+z_{1}^{2})^{\frac{d-2}{2}}((z_{2}-y)^{2}+z_{1}^{2})^{\frac{d-2}{2}}} (4.22)
=\displaystyle= 2h0Ndd2z1d2z2Cϕ2Cσ((z2x)2+z12)d22((z2y)2+z12)d22π(z12)δ11δ\displaystyle\frac{2h_{0}}{\sqrt{N}}\int{d^{d-2}z_{1}}\int{d^{2}z_{2}}\frac{C_{\phi}^{2}C_{\sigma}}{((z_{2}-x)^{2}+z_{1}^{2})^{\frac{d-2}{2}}((z_{2}-y)^{2}+z_{1}^{2})^{\frac{d-2}{2}}}\frac{\pi\left(z_{1}^{2}\right){}^{\delta-1}}{1-\delta}
=\displaystyle= 2h0Ndd2z101𝑑sCϕ2Cσπ(z12)δ11δπ(1s)d221sd221Γ(d3)((1s)sy2+z12)3dΓ(d22)2\displaystyle\frac{2h_{0}}{\sqrt{N}}\int{d^{d-2}z_{1}}\int_{0}^{1}ds{C_{\phi}^{2}C_{\sigma}}\frac{\pi\left(z_{1}^{2}\right){}^{\delta-1}}{1-\delta}\frac{\pi(1-s)^{\frac{d-2}{2}-1}s^{\frac{d-2}{2}-1}\Gamma(d-3)\left((1-s)sy^{2}+z_{1}^{2}\right){}^{3-d}}{\Gamma\left(\frac{d-2}{2}\right)^{2}}
=\displaystyle= 2h0N01𝑑sCϕ2Cσπ1δπ(1s)d221sd221Γ(d3)Γ(d22)2\displaystyle\frac{2h_{0}}{\sqrt{N}}\int_{0}^{1}ds{C_{\phi}^{2}C_{\sigma}}\frac{\pi}{1-\delta}\frac{\pi(1-s)^{\frac{d-2}{2}-1}s^{\frac{d-2}{2}-1}\Gamma(d-3)}{\Gamma\left(\frac{d-2}{2}\right)^{2}}
×πd22Γ(d2+δ2)Γ(12(d2(δ+1)))(((s1)sy2))d2+δ+1Γ(d21)Γ(d3)\displaystyle\times\frac{\pi^{\frac{d-2}{2}}\Gamma\left(\frac{d}{2}+\delta-2\right)\Gamma\left(\frac{1}{2}(d-2(\delta+1))\right)\left(-\left((s-1)sy^{2}\right)\right)^{-\frac{d}{2}+\delta+1}}{\Gamma\left(\frac{d}{2}-1\right)\Gamma(d-3)}
=\displaystyle= πd/2h02d2(δ+1)sin(πd2)Γ(d12)Γ(δ1)Γ(d2+δ2)Γ(12(d2(δ+1)))(y2)d2+δ+1NΓ(d21)Γ(d42)Γ(δ+12)\displaystyle-\frac{\pi^{-d/2}h_{0}2^{d-2(\delta+1)}\sin\left(\frac{\pi d}{2}\right)\Gamma\left(\frac{d-1}{2}\right)\Gamma(\delta-1)\Gamma\left(\frac{d}{2}+\delta-2\right)\Gamma\left(\frac{1}{2}(d-2(\delta+1))\right)\left(y^{2}\right)^{-\frac{d}{2}+\delta+1}}{\sqrt{N}\Gamma\left(\frac{d}{2}-1\right)\Gamma\left(\frac{d-4}{2}\right)\Gamma\left(\delta+\frac{1}{2}\right)}

where y=y1y2y=y_{1}-y_{2}. Since the anomalous dimension γϕ^\gamma_{\hat{\phi}} will manifest as a correction in the exponent of the free propagator

Cϕ(y2)d22+γϕ^=Cϕ(y2)1d2γϕ^Cϕ(y2)1d2log(y2)+O(γϕ^2)\frac{C_{\phi}}{(y^{2})^{\frac{d-2}{2}+\gamma_{\hat{\phi}}}}=C_{\phi}\left(y^{2}\right)^{1-\frac{d}{2}}-\gamma_{\hat{\phi}}C_{\phi}\left(y^{2}\right)^{1-\frac{d}{2}}\log(y^{2})+O\left(\gamma^{2}_{{\hat{\phi}}}\right) (4.23)

we can expand eq. 4.22 in δ\delta and extract the coefficient of Cϕ(y2)1d2log(y2)-C_{\phi}\left(y^{2}\right)^{1-\frac{d}{2}}\log(y^{2}), which gives us

γϕ^|diag.1=2dπ12(d1)+d2h0sin(πd2)Γ(d12)NΓ(d22)\gamma_{\hat{\phi}}|_{\rm diag.~{}1}=-\frac{2^{d}\pi^{\frac{1}{2}(-d-1)+\frac{d}{2}}h_{0}\sin\left(\frac{\pi d}{2}\right)\Gamma\left(\frac{d-1}{2}\right)}{\sqrt{N}\Gamma\left(\frac{d-2}{2}\right)} (4.24)

The second diagram is exactly the leading correction to the free propagator in the bulk theory (without defect), so its contribution is γϕ^|diag.2=η1N\gamma_{\hat{\phi}}|_{\rm diag.~{}2}=\frac{\eta_{1}}{N} as in eq. (4.4). In total, after replacing h0h_{0} by hh which is consistent to this order, we have

γϕ^=2dsin(πd2)Γ(d12)Nπ12Γ(d22)h+2d3(d4)Γ(d12)sin(πd2)Nπ32Γ(d2+1)\gamma_{\hat{\phi}}=-\frac{2^{d}\sin\left(\frac{\pi d}{2}\right)\Gamma\left(\frac{d-1}{2}\right)}{\sqrt{N}\pi^{\frac{1}{2}}\Gamma\left(\frac{d-2}{2}\right)}h+\frac{2^{d-3}(d-4)\Gamma\left(\frac{d-1}{2}\right)\sin\left(\frac{\pi d}{2}\right)}{N\pi^{\frac{3}{2}}\Gamma\left(\frac{d}{2}+1\right)} (4.25)

At the fixed point h=hh=h_{*} in (4.14), we then have

Δϕ^=d21+sin(πd2)(π(d4)Γ(d+1)d12d+4Γ(d+12)(d3)dΓ(d21))4Nπ3/2+O(1/N2).\Delta_{{\hat{\phi}}}=\frac{d}{2}-1+\frac{\sin\left(\frac{\pi d}{2}\right)\left(\frac{\sqrt{\pi}(d-4)\Gamma(d+1)}{d-1}-\frac{2^{d+4}\Gamma\left(\frac{d+1}{2}\right)}{(d-3)d\Gamma\left(\frac{d}{2}-1\right)}\right)}{4N\pi^{3/2}}+O(1/N^{2})\,. (4.26)

Setting d=4ϵd=4-\epsilon and expanding in small ϵ\epsilon, this gives

Δϕ^=1ϵ2+6ϵN+O(1/N2).\Delta_{{\hat{\phi}}}=1-\frac{\epsilon}{2}+\frac{6\epsilon}{N}+O(1/N^{2})\,. (4.27)

This matches eq. (3.22) to to order 1/N1/N, which provides a non-trivial consistency check.

The dimension of σ^\hat{\sigma} inserted on the defect can be computed from the derivative of the beta function:

Δσ^=2+βhh|h=h=2tN\Delta_{\hat{\sigma}}=2+\left.\frac{\partial\beta_{h}}{\partial h}\right|_{h=h_{*}}=2-\frac{t}{N} (4.28)

In the large NN theory, σ\sigma represents ϕa2\phi_{a}^{2} at the IR fixed point so Δσ^\Delta_{\hat{\sigma}} should match Δϕ^2\Delta_{{\hat{\phi}}^{2}} (eq. 3.23) computed in d=4ϵd=4-\epsilon. Indeed, setting d=4ϵd=4-\epsilon and expanding in ϵ\epsilon we get

Δσ^=2+6ϵN13ϵ22N+\Delta_{\hat{\sigma}}=2+\frac{6\epsilon}{N}-\frac{13\epsilon^{2}}{2N}+\ldots (4.29)

This indeed matches eq. (3.23) to O(ϵN)O\left(\frac{\epsilon}{N}\right). Interestingly, ϕ^\hat{\phi} and σ^\hat{\sigma} have the same anomalous dimension to O(ϵN)O\left(\frac{\epsilon}{N}\right).

5 Cubic model in d=6ϵd=6-\epsilon

Consider the following Euclidean action:

S=ddx[12(μϕa)2+12(μσ)2+g12σϕa2+g26σ3]S=\int d^{d}x\left[\frac{1}{2}\left(\partial_{\mu}\phi_{a}\right)^{2}+\frac{1}{2}\left(\partial_{\mu}\sigma\right)^{2}+\frac{g_{1}}{2}\sigma\phi^{2}_{a}+\frac{g_{2}}{6}\sigma^{3}\right] (5.1)

This model has an IR fixed point in d=6ϵd=6-\epsilon which is the same as the UV fixed point of the quartic theory in d>4d>4 [9]. This fixed point is unstable nonperturbatively due to instanton corrections [32], but here our main interest is to use the cubic model description within perturbation theory as a further consistency check of the large NN results.

The surface defect action in this theory has the same form as in large NN theory

SD=h0d2xσ(x,0).S_{D}=h_{0}\int d^{2}x\,\sigma(x,0)\,. (5.2)

This kind of surface defect in the cubic scalar field theory was also previously studied in [33, 34, 35], in a certain semiclassical double-scaling limit.

Consider σ(0,x)D\langle\sigma(0,x)\rangle_{D} where xd2x\in\mathbb{R}^{d-2} are the coordinates perpendicular to the defect. We assume the fixed point renormalized coupling hh_{*} is the same order as g1,g2g_{1}^{*},g_{2}^{*}, which we will confirm later. Using the same notation as in eq. (4.8), the leading diagrams in σ(0,x)D\langle\sigma(0,x)\rangle_{D} are:

Q0Q1Q2Q3\begin{gathered}\leavevmode\hbox to87.36pt{\vbox to122.03pt{\pgfpicture\makeatletter\hbox{\hskip 43.67914pt\lower-64.92377pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{-49.28001pt}\pgfsys@lineto{0.0pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{2.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-42.67914pt}{-49.28001pt}\pgfsys@lineto{42.67914pt}{-49.28001pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}} {{{}{}}}{{{}}}{{}}{{}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.35277pt}{-59.64633pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$Q_{0}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\leavevmode\hbox to87.36pt{\vbox to122.03pt{\pgfpicture\makeatletter\hbox{\hskip 43.67914pt\lower-64.92377pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@lineto{0.0pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{{}}{}{}{}{}{}{}{}{}}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{28.45276pt}{0.0pt}\pgfsys@curveto{28.45276pt}{15.71422pt}{15.71422pt}{28.45276pt}{0.0pt}{28.45276pt}\pgfsys@curveto{-15.71422pt}{28.45276pt}{-28.45276pt}{15.71422pt}{-28.45276pt}{0.0pt}\pgfsys@curveto{-28.45276pt}{-15.71422pt}{-15.71422pt}{-28.45276pt}{0.0pt}{-28.45276pt}\pgfsys@curveto{15.71422pt}{-28.45276pt}{28.45276pt}{-15.71422pt}{28.45276pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{-49.28001pt}\pgfsys@lineto{0.0pt}{-28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{2.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-42.67914pt}{-49.28001pt}\pgfsys@lineto{42.67914pt}{-49.28001pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}} {{{}{}}}{{{}}}{{}}{{}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.35277pt}{-59.64633pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$Q_{1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\leavevmode\hbox to87.36pt{\vbox to122.03pt{\pgfpicture\makeatletter\hbox{\hskip 43.67914pt\lower-64.92377pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@lineto{0.0pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{{}}{}{}{}{}{}{}{}{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{28.45276pt}{0.0pt}\pgfsys@curveto{28.45276pt}{15.71422pt}{15.71422pt}{28.45276pt}{0.0pt}{28.45276pt}\pgfsys@curveto{-15.71422pt}{28.45276pt}{-28.45276pt}{15.71422pt}{-28.45276pt}{0.0pt}\pgfsys@curveto{-28.45276pt}{-15.71422pt}{-15.71422pt}{-28.45276pt}{0.0pt}{-28.45276pt}\pgfsys@curveto{15.71422pt}{-28.45276pt}{28.45276pt}{-15.71422pt}{28.45276pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{-49.28001pt}\pgfsys@lineto{0.0pt}{-28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{2.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-42.67914pt}{-49.28001pt}\pgfsys@lineto{42.67914pt}{-49.28001pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}} {{{}{}}}{{{}}}{{}}{{}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.35277pt}{-59.64633pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$Q_{2}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\leavevmode\hbox to87.36pt{\vbox to122.03pt{\pgfpicture\makeatletter\hbox{\hskip 43.67914pt\lower-64.92377pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{-28.45276pt}{-49.28001pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{28.45276pt}{-49.28001pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{2.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-42.67914pt}{-49.28001pt}\pgfsys@lineto{42.67914pt}{-49.28001pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}} {{{}{}}}{{{}}}{{}}{{}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.35277pt}{-59.64633pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$Q_{3}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\end{gathered} (5.3)

To proceed, it is easiest to perform the calculation in momentum space. We consider σ(0,p)D\langle\sigma(0,p)\rangle_{D} where pd2p\in\mathbb{R}^{d-2} is the momentum perpendicular to the defect plane. Q1+Q2Q_{1}+Q_{2} can be calculated by eq. (A.2)

h0(g22+Ng12)2ddq(2π)d1p4q2(pq)2=h0(g22+Ng12)2232dπ3d2pd8csc(πd2)Γ(d12)-\frac{h_{0}(g_{2}^{2}+Ng_{1}^{2})}{2}\int\frac{d^{d}q}{(2\pi)^{d}}\frac{1}{p^{4}q^{2}(p-q)^{2}}=\frac{h_{0}(g_{2}^{2}+Ng_{1}^{2})}{2}\frac{2^{3-2d}\pi^{\frac{3-d}{2}}p^{d-8}\csc\left(\frac{\pi d}{2}\right)}{\Gamma\left(\frac{d-1}{2}\right)} (5.4)

while Q3Q_{3} is

h02g22dd2q(2π)d21p2q2(pq)2=h02g243dπ5d2pd8csc(πd2)Γ(d32)\displaystyle-\frac{h_{0}^{2}g_{2}}{2}\int\frac{d^{d-2}q}{(2\pi)^{d-2}}\frac{1}{p^{2}q^{2}(p-q)^{2}}=-{h_{0}^{2}g_{2}}\frac{4^{3-d}\pi^{\frac{5-d}{2}}p^{d-8}\csc\left(\frac{\pi d}{2}\right)}{\Gamma\left(\frac{d-3}{2}\right)} (5.5)

In total,

σ(0,p)D\displaystyle\langle\sigma(0,p)\rangle_{D} =h0p2h02g243dπ5d2pd8csc(πd2)Γ(d32)+h0(4π)3Ng12+g2212Γ(3d/2)(p2)4d/2\displaystyle=\frac{-h_{0}}{p^{2}}-{h_{0}^{2}g_{2}}\frac{4^{3-d}\pi^{\frac{5-d}{2}}p^{d-8}\csc\left(\frac{\pi d}{2}\right)}{\Gamma\left(\frac{d-3}{2}\right)}+\frac{h_{0}}{(4\pi)^{3}}\frac{Ng_{1}^{2}+g_{2}^{2}}{12}\frac{\Gamma(3-d/2)}{(p^{2})^{4-d/2}} (5.6)

The ZZ factor for the bulk operator σ\sigma can be calculated by renormalizing the 2-point function (in the absence of the defect). This has been calculated in [9]:

σ(p)σ(p)=1p2g22+Ng122232dπ3d2pd8csc(πd2)Γ(d12)\langle\sigma(p)\sigma(-p)\rangle=\frac{1}{p^{2}}-\frac{g_{2}^{2}+Ng_{1}^{2}}{2}\frac{2^{3-2d}\pi^{\frac{3-d}{2}}p^{d-8}\csc\left(\frac{\pi d}{2}\right)}{\Gamma\left(\frac{d-1}{2}\right)} (5.7)

Let σ(p)=Z×[σ](p)\sigma(p)=Z\times[\sigma](p), and require the renormalized field’s propagator [σ](p)[σ](p)\langle[\sigma](p)[\sigma](-p)\rangle to be finite as ϵ0\epsilon\rightarrow 0, we get

Z=11(4π)3Ng12+g2212ϵZ=1-\frac{1}{(4\pi)^{3}}\frac{Ng_{1}^{2}+g_{2}^{2}}{12\epsilon} (5.8)

Substitute in

h0=Mϵ2(h+a1h2g2ϵ+a2hNg12ϵ+a3hg22ϵ)h_{0}=M^{\frac{\epsilon}{2}}\left(h+a_{1}\frac{h^{2}{g}_{2}}{\epsilon}+a_{2}\frac{hN{g}^{2}_{1}}{\epsilon}+a_{3}\frac{h{g}^{2}_{2}}{\epsilon}\right) (5.9)

and require [σ](0,p)D\langle[\sigma](0,p)\rangle_{D} to be finite as ϵ0\epsilon\rightarrow 0, we arrive at:

h0=Mϵ2(h116π2h2g2ϵ+1768π3hNg12ϵ+1768π3hg22ϵ)h_{0}=M^{\frac{\epsilon}{2}}\left(h-\frac{1}{16\pi^{2}}\frac{h^{2}g_{2}}{\epsilon}+\frac{1}{768\pi^{3}}\frac{hNg_{1}^{2}}{\epsilon}+\frac{1}{768\pi^{3}}\frac{hg^{2}_{2}}{\epsilon}\right) (5.10)

Now we require the bare coupling h0h_{0} to be independent of energy scale MM and use β1=ϵ2g1\beta_{1}=-\frac{\epsilon}{2}g_{1}, β2=ϵ2g2\beta_{2}=-\frac{\epsilon}{2}g_{2} to this order. We then find the beta function

βh=hϵ2g2h216π2+g12hN768π3+g22h768π3\beta_{h}=-\frac{h\epsilon}{2}-\frac{g_{2}h^{2}}{16\pi^{2}}+\frac{g_{1}^{2}hN}{768\pi^{3}}+\frac{g_{2}^{2}h}{768\pi^{3}} (5.11)

At large NN the fixed point is:

h=(g1)2N+(g2)2384π3ϵ48πg2=202π3ϵ3Nh_{*}=\frac{(g_{1}^{*})^{2}N+(g_{2}^{*})^{2}-384\pi^{3}\epsilon}{48\pi g^{*}_{2}}=\frac{20\sqrt{\frac{2\pi}{3}}\sqrt{\epsilon}}{3\sqrt{N}} (5.12)

where we have put in the fixed point couplings g1=6ϵ(4π)3N(1+22/N+),g2=66ϵ(4π)3N(1+162/N+)g_{1}^{*}=\sqrt{\frac{6\epsilon(4\pi)^{3}}{N}}(1+22/N+\ldots),\ g_{2}^{*}=6\sqrt{\frac{6\epsilon(4\pi)^{3}}{N}}(1+162/N+\ldots) [9]. At this fixed point, we have

[σ](0,p)D=202π3ϵ3Np2\langle[\sigma](0,p)\rangle_{D}=-\frac{20\sqrt{\frac{2\pi}{3}}\sqrt{\epsilon}}{3\sqrt{N}p^{2}} (5.13)

Fourier transforming this to position space using eq. (A.1) gives us:

[σ](0,x)D=523ϵ3π3/2Nx2.\langle[\sigma](0,x)\rangle_{D}=-\frac{5\sqrt{\frac{2}{3}}\sqrt{\epsilon}}{3\pi^{3/2}\sqrt{N}x^{2}}\,. (5.14)

Since to leading order

[σ](x)[σ](y)=14π3|xy|4\langle[\sigma](x)[\sigma](y)\rangle=\frac{1}{4\pi^{3}|x-y|^{4}} (5.15)

The normalized one-point function is

[σ](0,x)D1/(4π3)=1023ϵ3Nx2\frac{\langle[\sigma](0,x)\rangle_{D}}{\sqrt{1/(4\pi^{3})}}=-\frac{10\sqrt{\frac{2}{3}}\sqrt{\epsilon}}{3\sqrt{N}x^{2}} (5.16)

This agrees with the large NN calculation in eq. (4.20) expanded in d=6ϵd=6-\epsilon:

σ(x)Dσσ=4Γ(d+12)2dsin(πd2)Γ(d12)Γ(d42)π3/4(d3)dNx2Γ(d12)=1023ϵ3Nx2.\frac{\langle\sigma(x)\rangle_{D}}{\sqrt{\langle\sigma\sigma\rangle}}=-\frac{4\Gamma\left(\frac{d+1}{2}\right)\sqrt{\frac{2^{d}\sin\left(\frac{\pi d}{2}\right)\Gamma\left(\frac{d-1}{2}\right)}{\Gamma\left(\frac{d-4}{2}\right)}}}{\pi^{3/4}(d-3)d\sqrt{N}x^{2}\Gamma\left(\frac{d-1}{2}\right)}=-\frac{10\sqrt{\frac{2}{3}}\sqrt{\epsilon}}{3\sqrt{N}x^{2}}\,. (5.17)

Conformal perturbation theory approach.

As in previous sections, as a further check let us also use conformal perturbation theory to calculate the beta function. The scaling dimension of σ\sigma at h=0h=0 is

Δσ=2ϵ2+1(4π)3N(g1)2+(g2)212\Delta_{\sigma}=2-\frac{\epsilon}{2}+\frac{1}{(4\pi)^{3}}\frac{N\left(g_{1}^{*}\right)^{2}+\left(g_{2}^{*}\right)^{2}}{12} (5.18)

So ε=2Δσ=ϵ21(4π)3N(g1)2+(g2)212\varepsilon=2-\Delta_{\sigma}=\frac{\epsilon}{2}-\frac{1}{(4\pi)^{3}}\frac{N\left(g_{1}^{*}\right)^{2}+\left(g_{2}^{*}\right)^{2}}{12}. The three-point function coefficient can be calculated by (see eq. (A.6))

σ(x1)σ(x2)σ(x3)=\displaystyle\langle\sigma(x_{1})\sigma(x_{2})\sigma(x_{3})\rangle= g2d6xCϕ3|xx1|4|xx2|4|xx3|4\displaystyle{-g_{2}}\int d^{6}x\frac{C_{\phi}^{3}}{|x-x_{1}|^{4}|x-x_{2}|^{4}|x-x_{3}|^{4}} (5.19)
=\displaystyle= g2Cϕ3π3|xx1|2|xx2|2|xx3|2\displaystyle\frac{-g_{2}C_{\phi}^{3}\pi^{3}}{|x-x_{1}|^{2}|x-x_{2}|^{2}|x-x_{3}|^{2}}

Therefore, when the bulk theory is critical,

βh=\displaystyle\beta_{h}= δh+πg2Cϕ3π3Cϕh2+O(h3)\displaystyle-\delta{h}+\pi\frac{-g_{2}C_{\phi}^{3}\pi^{3}}{C_{\phi}}{h}^{2}+O\left({h}^{3}\right) (5.20)
=\displaystyle= ϵ2h+1(4π)3N(g1)2+(g2)212hg216π2h2+O(h3)\displaystyle-\frac{\epsilon}{2}h+\frac{1}{(4\pi)^{3}}\frac{N\left(g_{1}^{*}\right)^{2}+\left(g_{2}^{*}\right)^{2}}{12}h-\frac{g_{2}^{*}}{16\pi^{2}}h^{2}+O(h^{3})

where Cϕ=14πd/2Γ(d22)=14π3C_{\phi}=\frac{1}{4}\pi^{-d/2}\Gamma\left(\frac{d-2}{2}\right)=\frac{1}{4\pi^{3}} is evaluated at d=6d=6. This agrees with eq. (5.11).

5.1 Scaling dimensions on the defect

The scaling dimension of σ^\hat{\sigma} on the defect at the fixed point is

Δσ^=2+βhh|h=h,g2=g2,g1=g1\Delta_{\hat{\sigma}}=2+\left.\frac{\partial\beta_{h}}{\partial h}\right.|_{h=h_{*},{g}_{2}=g_{2}^{*},{g}_{1}=g_{1}^{*}} (5.21)

If we plug in the explicit fixed point couplings and expand at large NN, we obtain Δσ^=240ϵN\Delta_{\hat{\sigma}}=2-\frac{40\epsilon}{N}. It is straightforward to check that this matches the large NN result (4.28), (4.6) expanded in d=6ϵd=6-\epsilon.

To determine the dimension of ϕ^a\hat{\phi}_{a} on the defect, let us consider as before ϕ^1(y1)ϕ^1(y2)D\langle\hat{\phi}_{1}(y_{1})\hat{\phi}_{1}(y_{2})\rangle_{D} where y1,y22y_{1},y_{2}\in\mathbb{R}^{2} are coordinates on the two-dimensional defect plane. The two leading order diagrams are the same as in large NN theory (eq. 4.21):

\begin{gathered}\leavevmode\hbox to87.36pt{\vbox to50.48pt{\pgfpicture\makeatletter\hbox{\hskip 43.67914pt\lower-50.28001pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{}{{}{}{}{{}}{{{{}{}{}{}}} {{}{}{}{}}}}{} {} {} {} {}{}{}\pgfsys@moveto{28.45276pt}{-49.28001pt}\pgfsys@curveto{28.45276pt}{-22.06306pt}{15.71422pt}{0.0pt}{0.0pt}{0.0pt}\pgfsys@curveto{-15.71422pt}{0.0pt}{-28.45276pt}{-22.06306pt}{-28.45276pt}{-49.28001pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{-49.28001pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{2.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-42.67914pt}{-49.28001pt}\pgfsys@lineto{42.67914pt}{-49.28001pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\leavevmode\hbox to87.36pt{\vbox to50.48pt{\pgfpicture\makeatletter\hbox{\hskip 43.67914pt\lower-50.28001pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{}{{}{}{}{{}}{{{{}{}{}{}}} {{}{}{}{}}}}{} {} {} {} {}{}{}\pgfsys@moveto{28.45276pt}{-49.28001pt}\pgfsys@curveto{28.45276pt}{-22.06306pt}{15.71422pt}{0.0pt}{0.0pt}{0.0pt}\pgfsys@curveto{-15.71422pt}{0.0pt}{-28.45276pt}{-22.06306pt}{-28.45276pt}{-49.28001pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-22.76228pt}{-19.91684pt}\pgfsys@lineto{22.76228pt}{-19.91684pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{2.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-42.67914pt}{-49.28001pt}\pgfsys@lineto{42.67914pt}{-49.28001pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\end{gathered} (5.22)

Define y=y1y2y=y_{1}-y_{2}. The first diagram is

g1h0dd2z1d2z2d2z3Cϕ3((z2z3)2+z12)d22((z2y)2+z12)d22(z22+z12)d22eq. A.3\displaystyle{g_{1}h_{0}}\int{d^{d-2}z_{1}}\int{d^{2}z_{2}}\int{d^{2}z_{3}}\frac{C_{\phi}^{3}}{((z_{2}-z_{3})^{2}+z_{1}^{2})^{\frac{d-2}{2}}((z_{2}-y)^{2}+z_{1}^{2})^{\frac{d-2}{2}}(z_{2}^{2}+z_{1}^{2})^{\frac{d-2}{2}}}\quad\text{eq.~{}\ref{I3}} (5.23)
=\displaystyle= g1h0dd2z1d2z2Cϕ3((z2y)2+z12)d22(z22+z12)d222πz14dd4eq. A.5\displaystyle{g_{1}h_{0}}\int{d^{d-2}z_{1}}\int{d^{2}z_{2}}\frac{C_{\phi}^{3}}{((z_{2}-y)^{2}+z_{1}^{2})^{\frac{d-2}{2}}(z_{2}^{2}+z_{1}^{2})^{\frac{d-2}{2}}}\frac{2\pi z_{1}^{4-d}}{d-4}\quad\text{eq.~{}\ref{2prop}}
=\displaystyle= g1h0dd2z1Cϕ32πz14dd401𝑑sπ(((s1)s))d42Γ(d3)(z12(s1)sy2)3dΓ(d22)2eq. A.3\displaystyle{g_{1}h_{0}}\int{d^{d-2}z_{1}}{C_{\phi}^{3}}\frac{2\pi z_{1}^{4-d}}{d-4}\int_{0}^{1}ds\frac{\pi(-((s-1)s))^{\frac{d-4}{2}}\Gamma(d-3)\left(z_{1}^{2}-(s-1)sy^{2}\right)^{3-d}}{\Gamma\left(\frac{d-2}{2}\right)^{2}}\quad\text{eq.~{}\ref{I3}}
=\displaystyle= g1h0Cϕ32πd401𝑑sπ(((s1)s))d42Γ(d3)Γ(d22)2πd22(s1)4s4y8(((s1)sy2))d(d4)Γ(d21)\displaystyle{g_{1}h_{0}}{C_{\phi}^{3}}\frac{2\pi}{d-4}\int_{0}^{1}ds\frac{\pi(-((s-1)s))^{\frac{d-4}{2}}\Gamma(d-3)}{\Gamma\left(\frac{d-2}{2}\right)^{2}}\frac{\pi^{\frac{d-2}{2}}(s-1)^{4}s^{4}y^{8}\left(-\left((s-1)sy^{2}\right)\right)^{-d}}{(d-4)\Gamma\left(\frac{d}{2}-1\right)}
=\displaystyle= g1h0π1dy8(y2)dΓ(3d2)2Γ(d3)32(d4)2Γ(6d)\displaystyle{g_{1}h_{0}}\frac{\pi^{1-d}y^{8}\left(y^{2}\right)^{-d}\Gamma\left(3-\frac{d}{2}\right)^{2}\Gamma(d-3)}{32(d-4)^{2}\Gamma(6-d)}

The second diagram has been calculated in momentum space in [9]:

p2(4π)3p4g126Γ(3d/2)(p2)3d/2-\frac{p^{2}}{(4\pi)^{3}p^{4}}\frac{g_{1}^{2}}{6}\frac{\Gamma(3-d/2)}{\left(p^{2}\right)^{3-d/2}} (5.24)

It is Fourier transformed as (eq. A.1):

1(4π)3g126Γ(3d/2)4π3y4-\frac{1}{(4\pi)^{3}}\frac{g_{1}^{2}}{6}\frac{\Gamma(3-d/2)}{4\pi^{3}y^{4}} (5.25)

So in total,

ϕ^1(0)ϕ^1(y)D=Cϕyd2+g1h0π1dy8(y2)dΓ(3d2)2Γ(d3)32(d4)2Γ(6d)1(4π)3g126Γ(3d/2)4π3y4\langle\hat{\phi}_{1}(0)\hat{\phi}_{1}(y)\rangle_{D}=\frac{C_{\phi}}{y^{d-2}}+{g_{1}h_{0}}\frac{\pi^{1-d}y^{8}\left(y^{2}\right)^{-d}\Gamma\left(3-\frac{d}{2}\right)^{2}\Gamma(d-3)}{32(d-4)^{2}\Gamma(6-d)}-\frac{1}{(4\pi)^{3}}\frac{g_{1}^{2}}{6}\frac{\Gamma(3-d/2)}{4\pi^{3}y^{4}} (5.26)

Now defining

ϕ^(y)=Z[ϕ^](y),Z=1+ag1hϵ+bg12ϵ\hat{\phi}(y)=Z[\hat{\phi}](y),\quad Z=1+a\frac{g_{1}h}{\epsilon}+b\frac{g_{1}^{2}}{\epsilon} (5.27)

and requiring [ϕ^]1(0)[ϕ^]1(y)D\langle[\hat{\phi}]_{1}(0)[\hat{\phi}]_{1}(y)\rangle_{D} to be finite as ϵ0\epsilon\rightarrow 0, we get

Z=1+18π2g1hϵ1384π3g12ϵZ=1+\frac{1}{8\pi^{2}}\frac{g_{1}h}{\epsilon}-\frac{1}{384\pi^{3}}\frac{g_{1}^{2}}{\epsilon} (5.28)

Therefore the anomalous dimension is

γϕ^=log(Z)log(M)=βhlog(Z)h+βg1log(Z)g1=g12384π3g1h8π2\gamma_{\hat{\phi}}=\frac{\partial\log(Z)}{\partial\log(M)}=\beta_{h}\frac{\partial\log(Z)}{\partial h}+\beta_{g_{1}}\frac{\partial\log(Z)}{\partial g_{1}}=\frac{g_{1}^{2}}{384\pi^{3}}-\frac{g_{1}h}{8\pi^{2}} (5.29)

At the fixed point (5.12), and keeping the leading order at large NN, this gives

γϕ^=37ϵ3N+\gamma_{\hat{\phi}}=-\frac{37\epsilon}{3N}+\ldots (5.30)

This agrees with eq. (4.25) obtained from the large NN expansion.

It is also straightforward to construct the phase of the model that breaks the O(N)O(N) symmetry, following the same steps as in Section 3.2 (either solving the equations of motion in flat space, or mapping the problem to H3×Sd3H^{3}\times S^{d-3}). We will omit the details of the calculation here, but let us mention that, similarly to the boundary case discussed in [17], the corresponding phase appears to be non-unitary (the classical value of ϕN\phi_{N} turns out to be complex).

6 Defect Free Energy

In this section we study the defect free energy in the case where the defect is a two-dimensional sphere. The defect free energy is defined by

=logZ𝒟ZCFT{\mathcal{F}}=-\log\frac{Z_{\mathcal{D}}}{Z_{\mathrm{CFT}}} (6.1)

where Z𝒟Z_{{\mathcal{D}}} is the partition function of the CFT in the presence of a spherical defect, and ZCFTZ_{\mathrm{CFT}} is the partition function of the CFT without the defect. On general grounds, for a sphere of radius RR, the defect free energy takes the form

=a1+a2(MR)2b3log(MR){\mathcal{F}}=a_{1}+a_{2}(MR)^{2}-\frac{b}{3}\log(MR) (6.2)

where MM is a renormalization scale. The coefficients a1a_{1} and a2a_{2} are non-universal (scheme dependent), while bb is a defect Weyl anomaly coefficient which is scheme independent. It is a direct analog of the central charge cc in a 2d CFT. It was proved in [6] (see also [18] for an alternative proof) that the bb coefficient decreases under defect RG flow

bUV>bIR.b_{\rm UV}>b_{\rm IR}\,. (6.3)

Below we will compute the exact bb coefficient at the IR fixed point of the defect RG flow in the free theory discussed in Section 2, and then compute bb perturbatively in the case of the interacting O(N)O(N) model in d=4ϵd=4-\epsilon. In both cases the results are consistent with (6.3), as expected.

6.1 Free theory

Let us start with a perturbative computation of the defect free energy in the free theory. Up to order h3h^{3}, there are two diagrams that contribute

=F0F1+O(h04){\mathcal{F}}=-F_{0}-F_{1}+O(h_{0}^{4}) (6.4)
F0F_{0}F1F_{1}

where we have used a big thick circle to represent the spherical defect and the thin lines are free propagators of ϕa\phi_{a}. The first diagram is given by

F0=\displaystyle F_{0}= Dd2xDd2yh02NCϕ2|xy|2(d2)\displaystyle\int_{D}d^{2}x\int_{D}d^{2}y\ h_{0}^{2}\frac{NC_{\phi}^{2}}{|x-y|^{2(d-2)}} (6.5)
=\displaystyle= 4πh02R40π𝑑θsin(θ)02π𝑑ϕNCϕ2|2Rsin(θ2)|2(d2)\displaystyle 4\pi h_{0}^{2}R^{4}\int_{0}^{\pi}d\theta\sin(\theta)\int_{0}^{2\pi}d\phi\frac{NC_{\phi}^{2}}{|2R\sin(\frac{\theta}{2})|^{2(d-2)}}
=\displaystyle= 242dπ2dh02NR82dΓ(d22)2d3\displaystyle-\frac{2^{4-2d}\pi^{2-d}h_{0}^{2}NR^{8-2d}\Gamma\left(\frac{d-2}{2}\right)^{2}}{d-3}

where the integral has been evaluated by analytic continuation in dd. Note that this is finite when d=4d=4. Using the integral [36]

ddxddyddzgxgygz1[s(x,y)s(y,z)s(z,x)]Δ=R3(dΔ)8π3(1+d)2Γ(d3Δ2)Γ(d)Γ(1+dΔ2)3\int d^{d}xd^{d}yd^{d}z\sqrt{g_{x}}\sqrt{g_{y}}\sqrt{g_{z}}\frac{1}{[s(x,y)s(y,z)s(z,x)]^{\Delta}}=R^{3(d-\Delta)}\frac{8\pi^{\frac{3(1+d)}{2}}\Gamma\left(d-\frac{3\Delta}{2}\right)}{\Gamma(d)\Gamma\left(\frac{1+d-\Delta}{2}\right)^{3}} (6.6)

the diagram F1F_{1} can be calculated as

F1=\displaystyle F_{1}= Dd2xDd2yDd2z(h03)83!NCϕ3|xy|d2|zy|d2|xz|d2\displaystyle\int_{D}d^{2}x\int_{D}d^{2}y\int_{D}d^{2}z\ (-h_{0}^{3})\frac{8}{3!}\frac{NC_{\phi}^{3}}{|x-y|^{d-2}|z-y|^{d-2}|x-z|^{d-2}} (6.7)
=\displaystyle= 132113dπ33d2h03NR3(d4)cos3(πd2)Γ(53d2)Γ(d3)3.\displaystyle-\frac{1}{3}2^{11-3d}\pi^{3-\frac{3d}{2}}h_{0}^{3}NR^{-3(d-4)}\cos^{3}\left(\frac{\pi d}{2}\right)\Gamma\left(5-\frac{3d}{2}\right)\Gamma(d-3)^{3}\,.

Putting these two contributions together, replacing the bare coupling h0h_{0} by the renormalized one h0=Mϵh/(1h/(πϵ))h_{0}=M^{\epsilon}h/(1-h/(\pi\epsilon)), expanding in ϵ\epsilon to the relevant order, and focusing on the log(MR)\log(MR) dependent term, we find

=N(ϵh28π2h312π3)log(MR)+{\mathcal{F}}=N\left(\frac{\epsilon h^{2}}{8\pi^{2}}-\frac{h^{3}}{12\pi^{3}}\right)\log(MR)+\ldots (6.8)

From this and eq. (6.2), we can read off the bb coefficient at the IR fixed point

bIR=N(3ϵh28π2+h34π3)=Nϵ38.b_{\rm IR}=N\left(-\frac{3\epsilon h_{*}^{2}}{8\pi^{2}}+\frac{h_{*}^{3}}{4\pi^{3}}\right)=-\frac{N\epsilon^{3}}{8}\,. (6.9)

The perturbative evaluation of bIRb_{\rm IR} in the free theory was also recently given in [18].

Even though it is not obvious from the above perturbative calculation, the result (6.9) is in fact exact (similarly to the way in which the beta function (2.10) is exact). This can be seen by computing the exact free energy using functional determinant techniques, and exploiting the analogy of this defect RG flow to the general problem of double-trace deformations in CFT. To compute the exact free energy, it is convenient to first rephrase the theory (2.1) as a non-local 2d theory, by integrating out the bulk degrees of freedom. It is convenient to dimensionally continue the defect from 2 to pp dimensions, so that p=2εp=2-\varepsilon can serve as a regulator, and we keep the bulk dimension dd arbitrary. Let us first work out the 2d action in the case of flat space. The momentum space propagator, restricted to the pp-dimensional subspace, is given by

ϕa(k)ϕb(k)=δabddpq(2π)dp1k2+q2=δab2pdπpd2Γ(12(d+p+2))k2+pd.\langle\phi_{a}(-k)\phi_{b}(k)\rangle=\delta_{ab}\int\frac{d^{d-p}q}{(2\pi)^{d-p}}\frac{1}{k^{2}+q^{2}}=\delta_{ab}\frac{2^{p-d}\pi^{\frac{p-d}{2}}\Gamma\left(\frac{1}{2}(-d+p+2)\right)}{k^{2+p-d}}\,. (6.10)

Then we can write the action on the planar pp-dimensional defect as

S=S0+ShS=S_{0}+S_{h} (6.11)

with

Sh=h0dpxϕaϕa.S_{h}=h_{0}\int d^{p}x\phi_{a}\phi_{a}\,. (6.12)

and

S0=\displaystyle S_{0}= dpk(2π)pϕa(k)12k2+pd2pdπpd2Γ(12(d+p+2))ϕa(k)\displaystyle\int\frac{d^{p}k}{(2\pi)^{p}}\phi_{a}(-k)\frac{1}{2}\frac{k^{2+p-d}}{2^{p-d}\pi^{\frac{p-d}{2}}\Gamma\left(\frac{1}{2}(-d+p+2)\right)}\phi_{a}(k) (6.13)
=\displaystyle= dpxdpyϕa(x)12[2C|xy|d2p2]ϕa(y),\displaystyle\int d^{p}x\int d^{p}y\phi_{a}(x)\frac{1}{2}\left[2C|x-y|^{d-2p-2}\right]\phi_{a}(y)\,,

where we defined

C=(dp2)π12(d2(p+1))sin(12π(dp))Γ(d2+p+1).C=(d-p-2)\pi^{\frac{1}{2}(d-2(p+1))}\sin\left(\frac{1}{2}\pi(d-p)\right)\Gamma\left(-\frac{d}{2}+p+1\right)\,. (6.14)

Now mapping this to the sphere, we have Sh=Rpdpxgxh0ϕaϕaS_{h}=R^{p}\int d^{p}x\sqrt{g_{x}}h_{0}\phi_{a}\phi_{a} and

S0=\displaystyle S_{0}= Rd2dpxgxdpygyϕa(x)12[2Cs(x,y)d2p2]ϕa(y)\displaystyle R^{d-2}\int d^{p}x\sqrt{g_{x}}\int d^{p}y\sqrt{g_{y}}\phi_{a}(x)\frac{1}{2}\left[2Cs(x,y)^{d-2p-2}\right]\phi_{a}(y) (6.15)

where the chordal distance and metric on the unit sphere are

s(x,y)=2|xy|(1+x2)1/2(1+y2)1/2,gμν=4(1+x2)2δμν.s(x,y)=\frac{2|x-y|}{\left(1+x^{2}\right)^{1/2}\left(1+y^{2}\right)^{1/2}},\quad g_{\mu\nu}=\frac{4}{\left(1+x^{2}\right)^{2}}\delta_{\mu\nu}\,. (6.16)

The calculation of the defect free energy then boils down to computing the determinant of the non-local operator

Rdp2dpygy2Cs(x,y)2p+2dϕ(y)+2h0ϕ(x)=λϕ(x)R^{d-p-2}\int d^{p}y\sqrt{g_{y}}\frac{2C}{s(x,y)^{2p+2-d}}\phi(y)+2h_{0}\phi(x)=\lambda\phi(x) (6.17)

Using the following decomposition in spherical harmonics (see e.g. [32])

1s(x,y)2α=n,mkn(α)Yn,m(x)Yn,m(y),kn(α)=πp22p2αΓ(p2α)Γ(n+α)Γ(α)Γ(p+nα)\frac{1}{s\left(x,y\right)^{2\alpha}}=\sum_{n,\vec{m}}^{\infty}k_{n}(\alpha)Y_{n,\vec{m}}^{*}\left(x\right)Y_{n,\vec{m}}\left(y\right),\quad k_{n}(\alpha)=\pi^{\frac{p}{2}}2^{p-2\alpha}\frac{\Gamma\left(\frac{p}{2}-\alpha\right)\Gamma(n+\alpha)}{\Gamma(\alpha)\Gamma(p+n-\alpha)} (6.18)

the eigenvalues of the non-local operator are given by

λn=2CRdp2kn(p+1d2)+2h0\lambda_{n}=2CR^{d-p-2}k_{n}\left(p+1-\frac{d}{2}\right)+2h_{0} (6.19)

Let Dnp=(2n+p1)Γ(n+p1)n!Γ(p)D_{n}^{p}=\frac{(2n+p-1)\Gamma(n+p-1)}{n!\Gamma(p)} the degeneracy factor for the spherical harmonics. Then the exact defect free energy is given by

=\displaystyle{\mathcal{F}}= logZ(DCFT)[𝕊d]Z(CFT)[𝕊d]\displaystyle-\log\frac{Z^{(\mathrm{DCFT})}\left[\mathbb{S}^{d}\right]}{Z^{(\mathrm{CFT})}\left[\mathbb{S}^{d}\right]} (6.20)
=\displaystyle= N2nDnplogλnh0λnh0=0=N2nDnplog(1+h0Rp+2dCkn)\displaystyle\frac{N}{2}\sum_{n}D_{n}^{p}\log\frac{\lambda_{n}^{h_{0}}}{\lambda_{n}^{h_{0}=0}}=\frac{N}{2}\sum_{n}D_{n}^{p}\log\left(1+\frac{h_{0}R^{p+2-d}}{Ck_{n}}\right)
=\displaystyle= N2nDnplog(1+2d+p+1π12(d+p+2)Γ(d2+n1)csc(12π(dp))Γ(dp2)Γ(d2+n+p+1)h0Rp+2d).\displaystyle\frac{N}{2}\sum_{n}D_{n}^{p}\log\left(1+\frac{2^{-d+p+1}\pi^{\frac{1}{2}(-d+p+2)}\Gamma\left(\frac{d}{2}+n-1\right)\csc\left(\frac{1}{2}\pi(d-p)\right)}{\Gamma\left(\frac{d-p}{2}\right)\Gamma\left(-\frac{d}{2}+n+p+1\right)}h_{0}R^{p+2-d}\right)\,.

In the IR limit, the second term inside the logarithm dominates. Using also the fact that in dimensional continuation one has the identity n=0Dnp=0\sum_{n=0}^{\infty}D_{n}^{p}=0 [21], we can simplify the free energy in the IR limit to

IR=N2n=0Dnplog(Γ(d2+n1)Γ(d2+n+p+1)).{\mathcal{F}}_{\rm IR}=\frac{N}{2}\sum_{n=0}^{\infty}D_{n}^{p}\log\left(\frac{\Gamma\left(\frac{d}{2}+n-1\right)}{\Gamma\left(-\frac{d}{2}+n+p+1\right)}\right)\,. (6.21)

This sum has exactly the same form as the one corresponding to the change of free energy in a CFTd perturbed by a double trace operator of dimension 2Δ2\Delta, which was computed in [21]

δF\displaystyle\delta F =12n=0Dndlog(Γ(n+Δ)Γ(n+dΔ))\displaystyle=\frac{1}{2}\sum_{n=0}^{\infty}D_{n}^{d}\log\left(\frac{\Gamma\left(n+\Delta\right)}{\Gamma\left(n+d-\Delta\right)}\right) (6.22)
=1sin(πd2)Γ(d+1)0Δd2𝑑uusin(πu)Γ(d2+u)Γ(d2u).\displaystyle=-\frac{1}{\sin(\frac{\pi d}{2})\Gamma(d+1)}\int_{0}^{\Delta-\frac{d}{2}}du\,u\sin(\pi u)\Gamma\left(\frac{d}{2}+u\right)\Gamma\left(\frac{d}{2}-u\right)\,.

Identifying Δ=d21\Delta=\frac{d}{2}-1 and p=dp=d, we then have for our defect free energy

IR=Nsin(πp2)Γ(p+1)0d21p2𝑑uusin(πu)Γ(p2+u)Γ(p2u).{\mathcal{F}}_{\rm IR}=-\frac{N}{\sin(\frac{\pi p}{2})\Gamma(p+1)}\int_{0}^{\frac{d}{2}-1-\frac{p}{2}}du\,u\sin(\pi u)\Gamma\left(\frac{p}{2}+u\right)\Gamma\left(\frac{p}{2}-u\right)\,. (6.23)

In the limit p2p\rightarrow 2, this has a pole as expected, reflecting the Weyl anomaly. A convenient way to extract the coefficient of the pole is to follow [24] and define the quantity D~p=sin(πp2)\tilde{D}_{p}=-\sin(\frac{\pi p}{2}){\mathcal{F}}. In the p2p\rightarrow 2 limit, this is proportional to the bb-anomaly coefficient, D~p=2=π6b\tilde{D}_{p=2}=\frac{\pi}{6}b. Then we finally find

bIR=3N0d22𝑑uu2=N(2d2)3.b_{\rm IR}=3N\int_{0}^{\frac{d}{2}-2}du\,u^{2}=-N\left(2-\frac{d}{2}\right)^{3}\,. (6.24)

This is the exact result for the bb coefficient at the IR fixed point of the defect RG flow in the free theory. Note that it agrees with (6.9) if we let d=4ϵd=4-\epsilon. We see that bIR<0b_{\rm IR}<0 in d<4d<4, consistent with the bb-theorem and the fact that the RG flow connects the trivial defect (bUV=0b_{\rm UV}=0) to the fixed point h=hh=h_{*} in the IR. In d=3d=3, (6.24) gives bIR=N8b_{\rm IR}=-\frac{N}{8}, which is twice the bb-anomaly coefficient of NN scalars with Dirichlet boundary conditions [6], as expected. For d=2d=2, the defect action becomes simply a mass term over the whole space, and so the RG flow should connect NN free scalars in the UV to the empty theory in the IR. This is consistent with (6.24), which gives bIR=Nb_{\rm IR}=-N for d=2d=2.

6.2 Interacting theory in d=4ϵd=4-\epsilon

We now compute the defect free energy in the case of the interacting O(N)O(N) model, eq. (3.1). Working up to order ϵ3\epsilon^{3}, in addition to the diagrams F0F_{0}, F1F_{1} computed above in the free theory case, there is now an additional diagram of order h2λh^{2}\lambda

F2F_{2}

This can be evaluated as

F2=\displaystyle F_{2}= Dd2xDd2yddz(λ0h02)N2+2N6Cϕ4((zx)2+z2)d2((zy)2+z2)d2eq. A.2\displaystyle\int_{D}d^{2}x\int_{D}d^{2}y\int d^{d}z\ (-\lambda_{0}h_{0}^{2})\frac{N^{2}+2N}{6}\frac{C_{\phi}^{4}}{((z_{\parallel}-x)^{2}+z_{\perp}^{2})^{d-2}((z_{\parallel}-y)^{2}+z_{\perp}^{2})^{d-2}}\quad\text{eq.~{}\ref{I1}} (6.25)
=\displaystyle= λ0h02N2+2N6Dd2xDd2yCϕ4πd/2Γ(2d2)2Γ(3d24)|xy|83dΓ(4d)Γ(d2)2\displaystyle-\lambda_{0}h_{0}^{2}\frac{N^{2}+2N}{6}\int_{D}d^{2}x\int_{D}d^{2}y\ C_{\phi}^{4}\frac{\pi^{d/2}\Gamma\left(2-\frac{d}{2}\right)^{2}\Gamma\left(\frac{3d}{2}-4\right)|x-y|^{8-3d}}{\Gamma(4-d)\Gamma(d-2)^{2}}
=\displaystyle= λ0h02N2+2N64πR4Cϕ40π𝑑θsin(θ)02π𝑑ϕπd/2Γ(2d2)2Γ(3d24)|2Rsin(θ2)|83dΓ(4d)Γ(d2)2\displaystyle-\lambda_{0}h_{0}^{2}\frac{N^{2}+2N}{6}4\pi R^{4}C_{\phi}^{4}\int_{0}^{\pi}d\theta\sin(\theta)\int_{0}^{2\pi}d\phi\frac{\pi^{d/2}\Gamma\left(2-\frac{d}{2}\right)^{2}\Gamma\left(\frac{3d}{2}-4\right)|2R\sin(\frac{\theta}{2})|^{8-3d}}{\Gamma(4-d)\Gamma(d-2)^{2}}
=\displaystyle= 285d(d4)π53d2h02λ0N(N+2)R3(d4)csc2(πd2)Γ(3(d4)2)Γ(4d)Γ(d12)2\displaystyle\frac{2^{8-5d}(d-4)\pi^{5-\frac{3d}{2}}h_{0}^{2}\lambda_{0}N(N+2)R^{-3(d-4)}\csc^{2}\left(\frac{\pi d}{2}\right)\Gamma\left(\frac{3(d-4)}{2}\right)}{\Gamma(4-d)\Gamma\left(\frac{d-1}{2}\right)^{2}}

The defect free energy to this order is then

=F0F1F2+{\mathcal{F}}=-F_{0}-F_{1}-F_{2}+\ldots (6.26)

with F0F_{0} and F1F_{1} given in (6.5), (6.7). Substituting the bare couplings with the renormalized ones as in (3.7) and (3.9), expanding to the relevant order in ϵ\epsilon, and focusing on the log(MR)\log(MR) dependence, we now find

=(Nϵh28π2Nh312π3N(N+2)h2λ384π4)log(MR)+{\mathcal{F}}=\left(\frac{N\epsilon h^{2}}{8\pi^{2}}-\frac{Nh^{3}}{12\pi^{3}}-\frac{N(N+2)h^{2}\lambda}{384\pi^{4}}\right)\log(MR)+\ldots (6.27)

At the IR fixed point, we then have

bIR=3Nϵh28π2+Nh34π3+N(N+2)h2λ128π4=27Nϵ3(N+8)3+O(ϵ4).b_{\rm IR}=\frac{-3N\epsilon h_{*}^{2}}{8\pi^{2}}+\frac{Nh_{*}^{3}}{4\pi^{3}}+\frac{N(N+2)h_{*}^{2}\lambda_{*}}{128\pi^{4}}=-\frac{27N\epsilon^{3}}{(N+8)^{3}}+O(\epsilon^{4})\,. (6.28)

This is negative, again consistently with the bb-theorem (6.3) for the defect RG flow.

The result (6.28) can also be checked by comparing with a general formula derived in [24] using the conformal perturbation theory approach (this is essentially the same as the standard conformal perturbation theory in a CFT perturbed by a weakly relevant operator, see e.g. [27]). For a 2-dimensional defect with a perturbing operator of dimension Δ=2ε\Delta=2-\varepsilon, the beta function in conformal perturbation theory is β=εh+πC3C2h2+O(h3)\beta=-\varepsilon h+\pi\frac{C_{3}}{C_{2}}h^{2}+O(h^{3}), with C3C_{3} and C2C_{2} being the 3-point and 2-point function normalizations (see the discussion in the preceding sections). The change in D~\tilde{D} is found to be [27, 24]

D~IRD~UV=π6C23C32ε3,\tilde{D}_{\rm IR}-\tilde{D}_{\rm UV}=-\frac{\pi}{6}\frac{C_{2}^{3}}{C_{3}^{2}}\varepsilon^{3}\,, (6.29)

where D~IR=D~h=h\tilde{D}_{\rm IR}=\tilde{D}_{h=h^{*}} and D~UV=D~h=0\tilde{D}_{\rm UV}=\tilde{D}_{h=0} (note that the labels ‘IR’ and ‘UV’ here assume that hh is a relevant coupling, so that the non-trivial fixed point is in the IR. This is appropriate in d<4d<4). To apply this formula to the quartic theory in d=4ϵd=4-\epsilon, we note that the perturbing operator ϕa2\phi_{a}^{2} has Δ=26ϵN+8+O(ϵ2)\Delta=2-\frac{6\epsilon}{N+8}+O(\epsilon^{2}) at the interacting bulk fixed point λ\lambda_{*} and at h=0h=0 (the UV fixed point of the defect flow). Hence, we identify ε=6ϵN+8\varepsilon=\frac{6\epsilon}{N+8}. The normalization constants are C2=2NCϕ2C_{2}=2NC_{\phi}^{2}, C3=8NCϕ3C_{3}=8NC_{\phi}^{3}. Then, accounting for the fact that D~UV=0\tilde{D}_{\rm UV}=0 and D~IR=π6bIR\tilde{D}_{\rm IR}=\frac{\pi}{6}b_{\rm IR}, we see that (6.29) indeed reproduces (6.28).

Note that the conformal perturbation theory formula (6.29) can be also applied directly to the case of the large NN expansion in general dd (for the case of perturbation theory around the trivial saddle point, as discussed in Section 4.2). In this case, identifying ε=2Δσ=t/N\varepsilon=2-\Delta_{\sigma}=-t/N, one finds

bIRLargeN=6πD~IRLargeN=Cσ3(gσ3)2t3N3.b_{\rm IR}^{\rm Large~{}N}=\frac{6}{\pi}\tilde{D}_{\rm IR}^{\rm Large~{}N}=\frac{C_{\sigma}^{3}}{\left(g_{\sigma^{3}}\right)^{2}}\frac{t^{3}}{N^{3}}\,. (6.30)

Using eqs. (4.3), (4.6) and (4.11), this gives

bIRLargeN=(4d)(d1)d(d3)2N2(2d(d2)sin(πd2)Γ(d+12)π3/2Γ(d2+1))2.b_{\rm IR}^{\rm Large~{}N}=-\frac{(4-d)(d-1)}{d(d-3)^{2}N^{2}}\left(\frac{2^{d}(d-2)\sin\left(\frac{\pi d}{2}\right)\Gamma\left(\frac{d+1}{2}\right)}{\pi^{3/2}\Gamma\left(\frac{d}{2}+1\right)}\right)^{2}\,. (6.31)

In d=4ϵd=4-\epsilon and to leading order in ϵ\epsilon, this agrees with (6.28). We can also apply (6.29) to the defect RG flow in the cubic theory in d=6ϵd=6-\epsilon (but note that in this case the non-trivial fixed point h=hh=h^{*} sits in the UV because hh is a relevant coupling). Using ε=2Δσ=ϵ21(4π)3N(g1)2+(g2)212\varepsilon=2-\Delta_{\sigma}=\frac{\epsilon}{2}-\frac{1}{(4\pi)^{3}}\frac{N\left(g_{1}^{*}\right)^{2}+\left(g_{2}^{*}\right)^{2}}{12}, as well as C2=CϕC_{2}=C_{\phi}, C3=g2π3Cϕ3C_{3}=-g_{2}^{*}\pi^{3}C_{\phi}^{3}, one finds to leading order in small ϵ\epsilon and large NN

bh=hd=6ϵ=(ϵ2+N(g1)2+(g2)2768π3)3π6(g2)2Cϕ3=8000ϵ227N2+b_{h=h^{*}}^{d=6-\epsilon}=\frac{\left(-\frac{\epsilon}{2}+\frac{N(g_{1}^{*})^{2}+(g_{2}^{*})^{2}}{768\pi^{3}}\right)^{3}}{\pi^{6}(g_{2}^{*})^{2}C_{\phi}^{3}}=\frac{8000\epsilon^{2}}{27N^{2}}+\ldots (6.32)

This can be see to agree with the large NN result (6.31) expanded in d=6ϵd=6-\epsilon (keep in mind that the label ‘IR’ should be switched to ‘UV’ in this case since it is the trivial defect that sits in the IR).

Let us also briefly comment on the renormalized defect entropy function recently proposed in [18] as a monotonically decreasing function along the flow. This is defined as [18]

𝒮=12(R2R2RR).{\cal S}=\frac{1}{2}\left(R^{2}\partial_{R}^{2}-R\partial_{R}\right)\mathcal{F}\,. (6.33)

The differential operator acting on {\mathcal{F}} is such that at the fixed points, the entropy function 𝒮{\cal S} is proportional to the bb anomaly coefficient, namely 𝒮=b/3{\cal S}=b/3, see eq. (6.2). From the above perturbative evaluation of {\mathcal{F}} in the interacting theory in d=4ϵd=4-\epsilon, we find

𝒮=Nϵh28π2+Nh312π3+N(N+2)h2λ384π4=3Nϵh24(N+8)π2+h3N12π3{\cal S}=-\frac{N\epsilon h^{2}}{8\pi^{2}}+\frac{Nh^{3}}{12\pi^{3}}+\frac{N(N+2)h^{2}\lambda_{*}}{384\pi^{4}}=-\frac{3N\epsilon h^{2}}{4(N+8)\pi^{2}}+\frac{h^{3}N}{12\pi^{3}} (6.34)

where we have plugged in the fixed point value of the bulk coupling, but kept hh general as the entropy function can be defined along the defect RG flow. It is straightforward to check that 𝒮/h<0\partial{\cal S}/\partial h<0 along the flow from h=0h=0 to h=h=6πϵ/(N+8)h=h_{*}=6\pi\epsilon/(N+8). Note also that 𝒮/h\partial{\cal S}/\partial h is simply proportional to the beta function (3.10). The entropy function can be similarly computed for the defect RG flow in the free theory, which gives 𝒮=Nϵh28π2+Nh312π3{\cal S}=-\frac{N\epsilon h^{2}}{8\pi^{2}}+\frac{Nh^{3}}{12\pi^{3}}, and 𝒮/h=Nβh/(4π2)\partial{\cal S}/\partial h=N\beta_{h}/(4\pi^{2}) is negative along the flow.

7 Conclusions

We studied the critical behavior of a surface defect in the O(N)O(N) model, using both epsilon and large NN expansions, finding evidence that the system flows to a non-trivial DCFT at low energies. We also computed the spherical defect free energy and related Weyl anomaly bb-coefficient, and checked consistency with the bb-theorem.

For future work, one obvious direction is to extend our calculations to higher orders in ϵ\epsilon and 1/N1/N, and perhaps make contact with the numerical conformal bootstrap or Monte Carlo simulations. In this note we focused on the scaling dimensions of the simplest defect operators, but it would be interesting to study the DCFT data in more detail. For example, it would be useful to analyze in depth the 2-point function of bulk scalars in the presence of the defect (for instance using the equations of motion method as in [17, 37]), and extract the relevant OPE data.

In our analysis of the large NN expansion in Section 4, we focused on perturbation theory around the trivial saddle point with σ=0\sigma=0. It would be useful to study the σ\sigma effective action in detail and see if there are non-trivial “classical” saddle points with σN\sigma\sim\sqrt{N}. As explained in Section 4.2 above, we expect at least one such saddle point corresponding to the O(N)O(N) breaking phase, but there may be other O(N)O(N) invariant saddle points (similarly to the boundary case analyzed in [17]). This may be relevant to elucidate the transition between the large NN behavior in 3<d<43<d<4 and that in d=3d=3.

Another direction is to study similar surface defects in other theories, such as the Gross-Neveu CFT. In this case, the fermion bilinear ψ¯ψσ\bar{\psi}\psi\sim\sigma has dimension slightly below 1 at large NN, so it is natural to consider a surface defect with action SDd2xσ2(x,0)S_{D}\sim\int d^{2}x\sigma^{2}(\vec{x},0). A similar defect can be considered in the Gross-Neveu-Yukawa description near d=4d=4, where σ\sigma becomes a propagating scalar field, so the surface operator would be analogous to the one studied in this paper in the interacting scalar theory in d=4ϵd=4-\epsilon.

It would be also interesting to see if the surface defect has a natural holographic description. The free and critical O(N)O(N) models in dd-dimensions, restricted to the O(N)O(N) singlet sector, are dual to the Vasiliev higher spin theory in AdSd+1 (the free and critical theory correspond to alternate choice of boundary conditions for the bulk scalar field dual to the ϕa2\phi_{a}^{2} operator, see [38] for a review). Since the surface defect (1.1) is defined in terms of the O(N)O(N) invariant “single trace” operator ϕa2\phi_{a}^{2} dual to the bulk scalar field, it should have a realization in the higher spin theory. A natural starting point would be to consider a H3×Sd3H^{3}\times S^{d-3} slicing of AdSd+1, and look for configurations where the metric and bulk scalar (and possibly the higher spin fields) have a non-trivial profile preserving the isometries of H3×Sd3H^{3}\times S^{d-3} (since these are the symmetries of the DCFT). It would be interesting to explore this and make contact with the predictions of the large NN expansion.

Acknowledgments

We thank Gabriel Cuomo and Max Metlitski for useful discussions, and Avia Raviv-Moshe and Siwei Zhong for sharing a draft of their work. The research of SG and BL is supported in part by the US NSF under Grant No. PHY-2209997.

Appendix A Formulas

In this appendix we collect some useful formulas that were used for the calculations in the main text of the paper.

Fourier transform:

ddxeikxxa=2daπd/2Γ((da)/2)Γ(a/2)1kda\int d^{d}x\frac{e^{-ikx}}{x^{a}}=\frac{2^{d-a}\pi^{d/2}\Gamma((d-a)/2)}{\Gamma(a/2)}\frac{1}{k^{d-a}} (A.1)

Eq. A.2, A.3, and A.4 can be found in [39]; eq. A.5 in [28]:

ddq(2π)d1q2α(p+q)2β=1(4π)d2Γ(d2α)Γ(d2β)Γ(α+βd2)Γ(α)Γ(β)Γ(dαβ)(1p2)α+βd2\displaystyle\int\frac{d^{d}q}{(2\pi)^{d}}\frac{1}{q^{2\alpha}(p+q)^{2\beta}}=\frac{1}{(4\pi)^{\frac{d}{2}}}\frac{\Gamma\left(\frac{d}{2}-\alpha\right)\Gamma\left(\frac{d}{2}-\beta\right)\Gamma\left(\alpha+\beta-\frac{d}{2}\right)}{\Gamma(\alpha)\Gamma(\beta)\Gamma(d-\alpha-\beta)}\left(\frac{1}{p^{2}}\right)^{\alpha+\beta-\frac{d}{2}} (A.2)
ddk(2π)d1(k2+m2)λ1(k2)λ2=Γ(λ1+λ2d/2)Γ(λ2+d/2)(4π)d/2Γ(λ1)Γ(d/2)1(m2)λ1+λ2d/2\displaystyle\int\frac{\mathrm{d}^{d}k}{(2\pi)^{d}}\frac{1}{\left(k^{2}+m^{2}\right)^{\lambda_{1}}\left(k^{2}\right)^{\lambda_{2}}}=\frac{\Gamma\left(\lambda_{1}+\lambda_{2}-d/2\right)\Gamma\left(-\lambda_{2}+d/2\right)}{(4\pi)^{d/2}\Gamma\left(\lambda_{1}\right)\Gamma(d/2)}\frac{1}{\left(m^{2}\right)^{\lambda_{1}+\lambda_{2}-d/2}} (A.3)
ddkddl(k2+m2)λ1[(k+l)2]λ2(l2+m2)λ3\displaystyle\iint\frac{\mathrm{d}^{d}k\mathrm{~{}d}^{d}l}{\left(k^{2}+m^{2}\right)^{\lambda_{1}}\left[(k+l)^{2}\right]^{\lambda_{2}}\left(l^{2}+m^{2}\right)^{\lambda_{3}}} (A.4)
=\displaystyle= πdΓ(λ1+λ2d/2)Γ(λ2+λ3d/2)Γ(d/2λ2)Γ(λ1+λ2+λ3d)Γ(λ1)Γ(λ3)Γ(λ1+2λ2+λ3d)Γ(d/2)(m2)λ1+λ2+λ3d\displaystyle\frac{\pi^{d}\Gamma\left(\lambda_{1}+\lambda_{2}-d/2\right)\Gamma\left(\lambda_{2}+\lambda_{3}-d/2\right)\Gamma\left(d/2-\lambda_{2}\right)\Gamma\left(\lambda_{1}+\lambda_{2}+\lambda_{3}-d\right)}{\Gamma\left(\lambda_{1}\right)\Gamma\left(\lambda_{3}\right)\Gamma\left(\lambda_{1}+2\lambda_{2}+\lambda_{3}-d\right)\Gamma(d/2)\left(m^{2}\right)^{\lambda_{1}+\lambda_{2}+\lambda_{3}-d}}
dDp(2π)D1(𝐩2+m2)a[(𝐩𝐤)2+m2]b=Γ(a+bD/2)(4π)D/2Γ(a)Γ(b)01𝑑x(1x)a1xb1[m2+𝐤2x(1x)]a+bD/2\begin{gathered}\int\frac{d^{D}p}{(2\pi)^{D}}\frac{1}{\left(\mathbf{p}^{2}+m^{2}\right)^{a}\left[(\mathbf{p}-\mathbf{k})^{2}+m^{2}\right]^{b}}=\frac{\Gamma(a+b{-D/2})}{(4\pi)^{D/2}\Gamma(a)\Gamma(b)}\int_{0}^{1}dx\frac{(1-x)^{a-1}x^{b-1}}{\left[m^{2}+\mathbf{k}^{2}x(1-x)\right]^{a+b-D/2}}\end{gathered} (A.5)

For a1+a2+a3=da_{1}+a_{2}+a_{3}=d, the uniqueness relation is [31]

ddx1|x1x|2a1|x2x|2a2|x3x|2a3=U(a1,a2,a3)|x12|d2a3|x13|d2a2|x23|d2a1\int d^{d}x\frac{1}{\left|x_{1}-x\right|^{2a_{1}}\left|x_{2}-x\right|^{2a_{2}}\left|x_{3}-x\right|^{2a_{3}}}=\frac{U\left(a_{1},a_{2},a_{3}\right)}{\left|x_{12}\right|^{d-2a_{3}}\left|x_{13}\right|^{d-2a_{2}}\left|x_{23}\right|^{d-2a_{1}}} (A.6)

where

U(a,b,c)=πd2Γ(d2a)Γ(d2b)Γ(d2c)Γ(a)Γ(b)Γ(c)U(a,b,c)=\frac{\pi^{\frac{d}{2}}\Gamma\left(\frac{d}{2}-a\right)\Gamma\left(\frac{d}{2}-b\right)\Gamma\left(\frac{d}{2}-c\right)}{\Gamma(a)\Gamma(b)\Gamma(c)} (A.7)

References

  • [1] P. Liendo, L. Rastelli, and B. C. van Rees, “The Bootstrap Program for Boundary CFTd,” JHEP 07 (2013) 113, 1210.4258.
  • [2] M. Billò, V. Gonçalves, E. Lauria, and M. Meineri, “Defects in conformal field theory,” JHEP 04 (2016) 091, 1601.02883.
  • [3] I. Affleck and A. W. W. Ludwig, “Universal noninteger ’ground state degeneracy’ in critical quantum systems,” Phys. Rev. Lett. 67 (1991) 161–164.
  • [4] D. Friedan and A. Konechny, “On the boundary entropy of one-dimensional quantum systems at low temperature,” Phys. Rev. Lett. 93 (2004) 030402, hep-th/0312197.
  • [5] D. Gaiotto, “Boundary F-maximization,” 1403.8052.
  • [6] K. Jensen and A. O’Bannon, “Constraint on Defect and Boundary Renormalization Group Flows,” Phys. Rev. Lett. 116 (2016), no. 9 091601, 1509.02160.
  • [7] M. Beccaria, S. Giombi, and A. Tseytlin, “Non-supersymmetric Wilson loop in 𝒩\mathcal{N} = 4 SYM and defect 1d CFT,” JHEP 03 (2018) 131, 1712.06874.
  • [8] G. Cuomo, Z. Komargodski, and A. Raviv-Moshe, “Renormalization Group Flows on Line Defects,” Phys. Rev. Lett. 128 (2022), no. 2 021603, 2108.01117.
  • [9] L. Fei, S. Giombi, and I. R. Klebanov, “Critical O(N)O(N) models in 6ϵ6-\epsilon dimensions,” Phys. Rev. D90 (2014), no. 2 025018, 1404.1094.
  • [10] F. Parisen Toldin, F. F. Assaad, and S. Wessel, “Critical behavior in the presence of an order-parameter pinning field,” Phys. Rev. B 95 (2017), no. 1 014401, 1607.04270.
  • [11] A. Krishnan and M. A. Metlitski, “A plane defect in the 3d O(N)(N) model,” 2301.05728.
  • [12] M. A. Metlitski, “Boundary criticality of the O(N) model in d = 3 critically revisited,” SciPost Phys. 12 (2022), no. 4 131, 2009.05119.
  • [13] J. Padayasi, A. Krishnan, M. A. Metlitski, I. A. Gruzberg, and M. Meineri, “The extraordinary boundary transition in the 3d O(N) model via conformal bootstrap,” SciPost Phys. 12 (2022), no. 6 190, 2111.03071.
  • [14] Y.-H. Zhang, Z. Zhu, and A. Vishwanath, “XY* transition and extraordinary boundary criticality from fractional exciton condensation in quantum Hall bilayer,” 2302.03703.
  • [15] J. Y. Lee, C.-M. Jian, and C. Xu, “Quantum criticality under decoherence or weak measurement,” 2301.05238.
  • [16] H. W. Diehl, “The Theory of boundary critical phenomena,” Int. J. Mod. Phys. B 11 (1997) 3503–3523, cond-mat/9610143.
  • [17] S. Giombi and H. Khanchandani, “CFT in AdS and boundary RG flows,” JHEP 11 (2020) 118, 2007.04955.
  • [18] T. Shachar, R. Sinha, and M. Smolkin, “RG flows on two-dimensional spherical defects,” 2212.08081.
  • [19] I. R. Klebanov and E. Witten, “AdS / CFT correspondence and symmetry breaking,” Nucl. Phys. B 556 (1999) 89–114, hep-th/9905104.
  • [20] S. S. Gubser and I. R. Klebanov, “A Universal result on central charges in the presence of double trace deformations,” Nucl. Phys. B 656 (2003) 23–36, hep-th/0212138.
  • [21] D. E. Diaz and H. Dorn, “Partition functions and double-trace deformations in AdS/CFT,” JHEP 05 (2007) 046, hep-th/0702163.
  • [22] A. Raviv-Moshe and S. Zhong, “Phases of Surface Defects in Scalar Field Theories,” 2305.11370.
  • [23] M. Trépanier, “Surface defects in the O(N)O(N) model,” 2305.10486.
  • [24] N. Kobayashi, T. Nishioka, Y. Sato, and K. Watanabe, “Towards a CC-theorem in defect CFT,” JHEP 01 (2019) 039, 1810.06995.
  • [25] J. L. Cardy, “Is There a c Theorem in Four-Dimensions?,” Phys. Lett. B 215 (1988) 749–752.
  • [26] I. R. Klebanov, S. S. Pufu, and B. R. Safdi, “F-Theorem without Supersymmetry,” JHEP 10 (2011) 038, 1105.4598.
  • [27] L. Fei, S. Giombi, I. R. Klebanov, and G. Tarnopolsky, “Generalized FF-Theorem and the ϵ\epsilon Expansion,” JHEP 12 (2015) 155, 1507.01960.
  • [28] H. Kleinert and V. Schulte-Frohlinde, Critical Properties of ϕ4\phi^{4}-Theories. World Scientific Publishing Company Incorporated, 2001.
  • [29] G. Cuomo, Z. Komargodski, and M. Mezei, “Localized magnetic field in the O(N)O(N) model,” JHEP 02 (2022) 134, 2112.10634.
  • [30] F. P. Toldin and M. A. Metlitski, “Boundary Criticality of the 3D O(N) Model: From Normal to Extraordinary,” Phys. Rev. Lett. 128 (2022), no. 21 215701, 2111.03613.
  • [31] N. Chai, M. Goykhman, and R. Sinha, “Conformal correlators in the critical O(N) vector model,” Phys. Rev. D 105 (2022), no. 8 086026, 2103.10168.
  • [32] S. Giombi, R. Huang, I. R. Klebanov, S. S. Pufu, and G. Tarnopolsky, “The O(N)O(N) Model in 4<d<6{4<d<6} : Instantons and complex CFTs,” Phys. Rev. D 101 (2020), no. 4 045013, 1910.02462.
  • [33] D. Rodriguez-Gomez, “A scaling limit for line and surface defects,” JHEP 06 (2022) 071, 2202.03471.
  • [34] D. Rodriguez-Gomez and J. G. Russo, “Defects in scalar field theories, RG flows and dimensional disentangling,” JHEP 11 (2022) 167, 2209.00663.
  • [35] I. Carreño Bolla, D. Rodriguez-Gomez, and J. G. Russo, “RG flows and stability in defect field theories,” JHEP 05 (2023) 105, 2303.01935.
  • [36] S. Giombi and I. R. Klebanov, “Interpolating between aa and FF,” JHEP 03 (2015) 117, 1409.1937.
  • [37] S. Giombi, E. Helfenberger, and H. Khanchandani, “Line Defects in Fermionic CFTs,” 2211.11073.
  • [38] S. Giombi, “Higher Spin — CFT Duality,” in Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings, pp. 137–214, 2017. 1607.02967.
  • [39] V. A. Smirnov, Feynman integral calculus. Springer, Berlin, Heidelberg, 2006.