This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Norms of structured random matrices

Radosław Adamczak Radosław Adamczak, Institute of Mathematics, University of Warsaw, Banacha 2, 02–097 Warsaw, Poland. [email protected] Joscha Prochno Joscha Prochno, Faculty of Computer Science and Mathematics, University of Passau, Innstraße 33, 94032 Passau, Germany. [email protected] Marta Strzelecka Marta Strzelecka, Institute of Mathematics and Scientific Computing, University of Graz, Heinrichstraße 36, 8010 Graz, Austria; Institute of Mathematics, University of Warsaw, Banacha 2, 02–097 Warsaw, Poland. [email protected] (corresponding author)  and  Michał Strzelecki Michał Strzelecki, Institute of Mathematics, University of Warsaw, Banacha 2, 02–097 Warsaw, Poland. [email protected]
(Date: March 31, 2023)
Abstract.

For m,nm,n\in\mathbb{N}, let X=(Xij)im,jnX=(X_{ij})_{i\leq m,j\leq n} be a random matrix, A=(aij)im,jnA=(a_{ij})_{i\leq m,j\leq n} a real deterministic matrix, and XA=(aijXij)im,jnX_{A}=(a_{ij}X_{ij})_{i\leq m,j\leq n} the corresponding structured random matrix. We study the expected operator norm of XAX_{A} considered as a random operator between pn\ell_{p}^{n} and qm\ell_{q}^{m} for 1p,q1\leq p,q\leq\infty. We prove optimal bounds up to logarithmic terms when the underlying random matrix XX has i.i.d. Gaussian entries, independent mean-zero bounded entries, or independent mean-zero ψr\psi_{r} (r(0,2]r\in(0,2]) entries. In certain cases, we determine the precise order of the expected norm up to constants. Our results are expressed through a sum of operator norms of Hadamard products AAA\circ A and (AA)T(A\circ A)^{T}.

Key words and phrases:
Gaussian random matrix, operator norm, structured random matrix, ψr\psi_{r} random variable.
2020 Mathematics Subject Classification:
Primary 60B20; Secondary 46B09; 52A23; 60G15; 60E15.

1. Introduction and main results

With his work on the statistical analysis of large samples [69], Wishart initiated the systematic study of large random matrices. Ever since, random matrices have continuously entered more and more areas of mathematics and applied sciences beyond probability theory and statistics, for instance, in numerical analysis through the work of Goldstine and von Neumann [65, 20] and in quantum physics through the works of Wigner [66, 67, 68] on his famous semicircle law, which resulted in significant effort to understand spectral statistics of random matrices from an asymptotic point of view. Today, random matrix theory has grown into a vital area of probability theory and statistics, and within the last two decades, random matrices have come to play a major role in many areas of (algorithmic) computational mathematics, for instance, in questions related to sparsification methods [1, 54] and sparse approximation [57, 58], dimension reduction [4, 12, 44], or combinatorial optimization [46, 53]. We refer the reader to [5, 6, 60] for more information.

In this paper, we are interested in the non-asymptotic theory of (large) random matrices. This theory plays a fundamental role in geometric functional analysis at least since the ’70s, the connection coming in various different flavors. It is of particular importance in the geometry of Banach spaces and the theory of operator algebras [9, 10, 15, 18, 21, 30] and their applications to high-dimensional problems, for instance, in convex geometry [17, 22], compressed sensing [14, 16, 48, 63], information-based complexity [27, 28], or statistical learning theory [50, 64]. On the other hand, geometric functional analysis had and still has enduring influence on random matrix theory as is witnessed, for instance, through applications of measure concentration techniques; we refer to [15, 42] and the references cited therein. The quantity we study and focus on here concerns the expected operator norm of random matrices considered as operators between finite-dimensional p\ell_{p} spaces; recall that pn\ell_{p}^{n} denotes the space n\mathbb{R}^{n} equipped with the (quasi-)norm p\|\cdot\|_{p}, given by (xj)j=1np=(j=1n|xj|p)1/p\|(x_{j})_{j=1}^{n}\|_{p}=(\sum_{j=1}^{n}|x_{j}|^{p})^{1/p} for 0<p<0<p<\infty and (xj)j=1n=maxjn|xj|\|(x_{j})_{j=1}^{n}\|_{\infty}=\max_{j\leq n}|x_{j}| if p=p=\infty. We address the following problem: for 1p,q1\leq p,q\leq\infty and m,nm,n\in\mathbb{N}, determine the right order (up to constants that may depend on the parameters pp and qq) of

𝔼XA:pnqm,\mathbb{E}\|X_{A}\colon\ell^{n}_{p}\to\ell^{m}_{q}\|,

where, given a deterministic real m×nm\times n matrix A=(aij)im,jnA=(a_{ij})_{i\leq m,j\leq n} and a random matrix X=(Xij)im,jnX=(X_{ij})_{i\leq m,j\leq n}, we denote by

XAAX=(aijXij)im,jnX_{A}\coloneqq A\mathbin{\circ}X=(a_{ij}X_{ij})_{i\leq m,j\leq n}

the structured random matrix; the symbol \mathbin{\circ} stands for the Hadamard product of matrices (i.e., entrywise multiplication). The bounds on the expected operator norm should be of optimal order and expressed in terms of the coefficients aija_{ij}, im,jni\leq m,j\leq n. Understanding such expressions and related quantities is important, for instance, when studying the worst-case error of optimal algorithms which are based on random information in function approximation problems [28] (see also [33]) or the quality of random information for the recovery of vectors from an p\ell_{p}-ellipsoid, where (the radius of) optimal information is given by Gelfand numbers of a diagonal operator [29].

In the case where the random entries of XX are i.i.d. standard Gaussians (then we write GAG_{A} instead of XAX_{A}) and 1p,q1\leq p,q\leq\infty, we will show the following bound, which is sharp up to logarithmic terms:

(1.1) D1+D2𝔼GA:pnqm(lnn)1/p(lnm)1/q[ln(mn)D1+lnnD2],D_{1}+D_{2}\lesssim\mathbb{E}\|G_{A}\colon\ell^{n}_{p}\to\ell^{m}_{q}\|\lesssim(\ln n)^{1/p^{*}}(\ln m)^{1/q}\bigl{[}\sqrt{\ln(mn)}D_{1}+\sqrt{\ln n}D_{2}\bigr{]},

where D1AA:p/2nq/2m1/2D_{1}\coloneqq\|A\mathbin{\circ}A\colon\ell^{n}_{p/2}\to\ell^{m}_{q/2}\|^{1/2} , D2(AA)T:q/2mp/2n1/2D_{2}\coloneqq\|(A\mathbin{\circ}A)^{T}\colon\ell^{m}_{q^{*}/2}\to\ell^{n}_{p^{*}/2}\|^{1/2}, and pp^{*} denotes the Hölder conjugate of pp defined by the relation 1/p+1/p=11/p+1/p^{*}=1. As will be explained later, we obtain sharp estimates in certain cases and derive results similar to (1.1) for other models of randomness.

1.1. History of the problem and known results

In what follows, A=(aij)i,jA=(a_{ij})_{i,j} is a real deterministic matrix and G=(gij)i,jG=(g_{ij})_{i,j} always stands for a random matrix with i.i.d. standard Gaussian entries (usually the matrices are of size m×nm\times n unless explicitly stated otherwise). We use C(r)C(r), C(r,K)C(r,K), etc. for positive constants which may depend only on the parameters given in brackets and write C,C,c,c,C,C^{\prime},c,c^{\prime},\dots for positive absolute constants. The symbols \lesssim, r\lesssim_{r}, r,K\lesssim_{r,K}, etc. denote that the inequality holds up to multiplicative constants depending only on the parameters given in the subscripts; we write aba\asymp b if aba\lesssim b and bab\lesssim a, and r\asymp_{r}, r,K\asymp_{r,K}, etc. if the constants may depend on the parameters given in the subscript.

In 1975, Bennett, Goodman, and Newman [9] proved that if XX is an m×nm\times n random matrix with independent, mean-zero entries taking values in [1,1][-1,1], and 2q<2\leq q<\infty, then

(1.2) 𝔼X:2nqmqmax{n1/2,m1/q}.\mathbb{E}\|X\colon\ell^{n}_{2}\to\ell^{m}_{q}\|\lesssim_{q}\max\{n^{1/2},m^{1/q}\}.

In fact, up to constants, this estimate is best possible: for any m×nm\times n matrix XX^{\prime} with ±1\pm 1 entries one readily sees that X:2nqmmax{n1/2,m1/q}\|X^{\prime}\colon\ell^{n}_{2}\to\ell^{m}_{q}\|\geq\max\{n^{1/2},m^{1/q}\}; just use standard unit vectors and operator duality. Moreover, in this ‘unstructured’ case, where aij=1a_{ij}=1 for all i,ji,j, it is easy to extend (1.2) to the whole range of p,q[1,]p,q\in[1,\infty] (see [8, 13] or Remark 4.2 below). Also, if all entries are i.i.d. Rademacher random variables, then the bounds are two-sided, i.e., the expected operator norm is, up to constants, the same as the minimal norm for all pp, qq (see [8, Proposition 3.2] or [13, Satz 2]).

The case most studied in the literature is the one of the spectral norm, i.e., the 2n2m\ell_{2}^{n}\to\ell_{2}^{m} operator norm. Seginer [51] proved in 2000 that if X=(Xij)im,jnX=(X_{ij})_{i\leq m,j\leq n} is an m×nm\times n random matrix with i.i.d. mean-zero entries, then its operator norm is of the same order as the sum of expectations of the maximum Euclidean norm of rows and columns of XX, i.e.,

(1.3) 𝔼X:2n2m\displaystyle\mathbb{E}\|X\colon\ell_{2}^{n}\to\ell_{2}^{m}\| 𝔼maxjn(Xij)i=1m2+𝔼maxim(Xij)j=1n2.\displaystyle\asymp\mathbb{E}\max_{j\leq n}\|(X_{ij})_{i=1}^{m}\|_{2}+\mathbb{E}\max_{i\leq m}\|(X_{ij})_{j=1}^{n}\|_{2}.

Riemer and Schütt [49] proved that, up to a logarithmic factor ln(en)2\ln(en)^{2}, the same holds true for any random matrix with independent but not necessarily identically distributed mean-zero entries. Let us also mention that in the Gaussian setting one can use a non-commutative Khintchine bound (see, e.g., [59, Equation (4.9)]) to show that, up to a factor lnn\sqrt{\ln n}, the expected spectral norm is of the order of the largest Euclidean norm of its rows and columns.

In the very same setting that was considered by Riemer and Schütt, Latała [37] had obtained a few years earlier the dimension-free estimate

𝔼X:2n2mmaxjn(i=1m𝔼Xij2)1/2+maxim(j=1n𝔼Xij2)1/2+(i=1mj=1n𝔼Xij4)1/4.\mathbb{E}\|X\colon\ell_{2}^{n}\to\ell_{2}^{m}\|\lesssim\max_{j\leq n}\Bigl{(}\sum_{i=1}^{m}\mathbb{E}X_{ij}^{2}\Bigr{)}^{1/2}+\max_{i\leq m}\Bigl{(}\sum_{j=1}^{n}\mathbb{E}X_{ij}^{2}\Bigr{)}^{1/2}+\Bigl{(}\sum_{i=1}^{m}\sum_{j=1}^{n}\mathbb{E}X_{ij}^{4}\Bigr{)}^{1/4}.

This bound is superior to the Riemer–Schütt bound in the case of matrices with all entries equal to 11 and is optimal for Wigner matrices. In other cases, like the one of diagonal matrices, the Riemer–Schütt bound is better.

In the case of structured Gaussian matrices, Latała, van Handel, and Youssef [40], building upon earlier work of Bandeira and van Handel [7] (which combined the moment method with combinatorial considerations) as well as results proved by van Handel in [61] (which used Slepian’s lemma), obtained the precise behavior without any logarithmic terms in the dimension, namely

(1.4) 𝔼GA:2n2m\displaystyle\mathbb{E}\|G_{A}\colon\ell_{2}^{n}\to\ell_{2}^{m}\| 𝔼maxjn(aijgij)i=1m2+𝔼maxim(aijgij)j=1n2\displaystyle\asymp\mathbb{E}\max_{j\leq n}\|(a_{ij}g_{ij})_{i=1}^{m}\|_{2}+\mathbb{E}\max_{i\leq m}\|(a_{ij}g_{ij})_{j=1}^{n}\|_{2}
maxjn(aij)i=1m2+maxim(aij)j=1n2+𝔼maxim,jn|aijgij|.\displaystyle\asymp\max_{j\leq n}\|(a_{ij})_{i=1}^{m}\|_{2}+\max_{i\leq m}\|(a_{ij})_{j=1}^{n}\|_{2}+\mathbb{E}\max_{i\leq m,j\leq n}|a_{ij}g_{ij}|.

Their proof is based on a clever block decomposition of the underlying matrix (see [40, Figure 3.1]). This result finally answered in the affirmative a conjecture made by Latała more than a decade before. We also refer the reader to the survey [62] discussing in quite some detail results prior to [40] and [61] — the latter work discusses the conjectures of Latała and van Handel and shows their equivalence.

Very recently, Latała and Świątkowski [39] investigated a similar problem when the underlying random matrix has Rademacher entries. They proved a lower bound which, up to a lnlnn\ln\ln n factor, can be reversed for randomized n×nn\times n circulant matrices.

In [23], Guédon, Hinrichs, Litvak, and Prochno studied our main and motivating question on the order of the expected operator norm of structured random matrices considered as operators between pn\ell_{p}^{n} and qm\ell_{q}^{m} in the special case where p2qp\leq 2\leq q and the random entries are Gaussian. In this situation, where we are not dealing with the spectral norm, the moment method cannot be employed. The approach in [23] was therefore different and based on a majorizing measure construction combining the works [24] and [25]. In [23, Theorem 1.1], the authors proved that if 1<p2q<1<p\leq 2\leq q<\infty, then

𝔼GA:pnqmγqmaxjn(aij)i=1mq\displaystyle\mathbb{E}\|G_{A}\colon\ell_{p}^{n}\to\ell_{q}^{m}\|\lesssim\gamma_{q}\max_{j\leq n}\|(a_{ij})_{i=1}^{m}\|_{q} +(p)5/q(lnm)1/qγpmaxim(aij)j=1np\displaystyle+(p^{*})^{5/q}(\ln m)^{1/q}\gamma_{p^{*}}\max_{i\leq m}\|(a_{ij})_{j=1}^{n}\|_{p^{*}}
(1.5) +(p)5/q(lnm)1/qγq𝔼maxim,jn|aijgij|,\displaystyle+(p^{*})^{5/q}(\ln m)^{1/q}\gamma_{q}\ \mathbb{E}\max_{i\leq m,j\leq n}|a_{ij}g_{ij}|,

where γr(𝔼|g|r)1/r\gamma_{r}\coloneqq(\mathbb{E}|g|^{r})^{1/r} for a standard Gaussian random variable gg. Moreover, for p=1p=1 and q2q\geq 2, it was noted in [23, Remark 1.4] (see also [45, Twierdzenie 2]) that

(1.6) 𝔼GA:1nqm\displaystyle\mathbb{E}\|G_{A}\colon\ell_{1}^{n}\to\ell_{q}^{m}\| qmaxjn(aij)i=1mq+𝔼maxim,jn|aijgij|.\displaystyle\lesssim\sqrt{q}\max_{j\leq n}\|(a_{ij})_{i=1}^{m}\|_{q}+\mathbb{E}\max_{i\leq m,j\leq n}|a_{ij}g_{ij}|.

Later, an extension of (1.5) to the case of matrices with i.i.d. isotropic log-concave rows was obtained by Strzelecka in [55].

Trying to extend the upper bound for 𝔼GA:pnqm\mathbb{E}\|G_{A}\colon\ell_{p}^{n}\to\ell_{q}^{m}\| to the whole range 1p,q1\leq p,q\leq\infty one encounters two difficulties. First of all, the methods used in order to prove (1.5) fail if q2q\leq 2 or p2p\geq 2, because the majorizing measure construction used in [23] is restricted to the case q2q\geq 2 and the assumption 1<p21<p\leq 2 is required in a Hölder bound. Moreover, when q2q\leq 2 or p2p\geq 2 the result cannot hold with the right-hand side of the same form as in (1.5) (see Remark 4.2 below for counterexamples111By Jensen’s inequality, the expected norm of a matrix with i.i.d. Rademacher entries is less than or equal to 2/π\sqrt{2/\pi} times the expected norm of the matrix with Gaussian entries, so (1.5) for q2q\leq 2 or p2p\geq 2 would imply the same (up to a constant) bound for ±1\pm 1 matrices, which does not hold in this range of (p,q)(p,q) as we explain in Remark 4.2. to (1.5) in the cases q2q\leq 2 and p2p\geq 2). This explains the different form of expressions D1D_{1} and D2D_{2} in (1.1), which in the range p2qp\leq 2\leq q reduce to the maxima of norms on the right-hand side of (1.5) — see (1.9) below.

1.2. Lower bounds and conjectures

By arguments similar to the ones used in order to prove the lower bound in (1.4), one can check that in the range considered in [23, 45] (i.e., 1p2q1\leq p\leq 2\leq q\leq\infty) one has

(1.7) 𝔼GA:pnqmp,qmaxjn(aij)i=1mq\displaystyle\mathbb{E}\|G_{A}\colon\ell_{p}^{n}\to\ell_{q}^{m}\|\gtrsim_{p,q}\max_{j\leq n}\|(a_{ij})_{i=1}^{m}\|_{q} +maxim(aij)j=1np\displaystyle+\max_{i\leq m}\|(a_{ij})_{j=1}^{n}\|_{p^{*}}
+𝔼maxim,jn|aijgij|.\displaystyle+\mathbb{E}\max_{i\leq m,j\leq n}|a_{ij}g_{ij}|.

Note that for p=1p=1,

maxim(aij)j=1np=maxim,jn|aij|π/2𝔼maxim,jn|aijgij|,\max_{i\leq m}\|(a_{ij})_{j=1}^{n}\|_{p^{*}}=\max_{i\leq m,j\leq n}|a_{ij}|\leq\sqrt{\pi/2}\,\mathbb{E}\max_{i\leq m,j\leq n}|a_{ij}g_{ij}|,

which explains the simplified form of (1.6).

We remark that the proof of (1.7) is based merely on the observation that the operator norm is greater than the maximum entry of the matrix and the appropriate maximum norms of its rows and columns, combined with comparison of moments for Gaussian random vectors. Another but related way to proceed, valid for all 1p,q1\leq p,q\leq\infty, is to exchange expectation and suprema over the pn\ell_{p}^{n} and qm\ell_{q^{\ast}}^{m} balls in the definition of the operator norm. We present the details in Subsection 5.1. In particular, Proposition 5.1 and Corollary 5.2 imply222We use here also a trivial observation that GA:pnqmmaxi,j|aijgij|\|G_{A}\colon\ell_{p}^{n}\to\ell_{q}^{m}\|\geq\max_{i,j}|a_{ij}g_{ij}|. that, for 1p,q1\leq p,q\leq\infty,

𝔼GA:pnqmAA:p/2nq/2m1/2\displaystyle\mathbb{E}\|G_{A}\colon\ell_{p}^{n}\to\ell_{q}^{m}\|\gtrsim\|A\mathbin{\circ}A\colon\ell^{n}_{p/2}\to\ell^{m}_{q/2}\|^{1/2} +(AA)T:q/2mp/2n1/2\displaystyle+\|(A\mathbin{\circ}A)^{T}\colon\ell^{m}_{q^{*}/2}\to\ell^{n}_{p^{*}/2}\|^{1/2}
(1.8) +𝔼maxim,jn|aijgij|.\displaystyle+\mathbb{E}\max_{i\leq m,j\leq n}|a_{ij}g_{ij}|.

It is an easy observation (see Lemma 2.1 below) that for p2qp\leq 2\leq q,

(1.9) AA:p/2nq/2m1/2=maxjn(aij)i=1mq,(AA)T:q/2mp/2n1/2=maxim(aij)j=1np.\begin{split}\|A\mathbin{\circ}A\colon\ell^{n}_{p/2}\to\ell^{m}_{q/2}\|^{1/2}&=\max_{j\leq n}\|(a_{ij})_{i=1}^{m}\|_{q},\\ \|(A\mathbin{\circ}A)^{T}\colon\ell^{m}_{q^{*}/2}\to\ell^{n}_{p^{*}/2}\|^{1/2}&=\max_{i\leq m}\|(a_{ij})_{j=1}^{n}\|_{p^{\ast}}.\end{split}

Thus, in the range 1p2q<1\leq p\leq 2\leq q<\infty considered in [23, 45], the lower bounds (1.7) and (1.8) coincide.

Although it would be natural to conjecture at this point that the bound (1.8) may be reversed up to a multiplicative constant depending only on p,qp,q, such a reverse bound turns out not to be true in the case pq<2p\leq q<2 (and in the dual one 2<pq2<p\leq q) as we shall show in Subsection 5.3.

In order to conjecture the right asymptotic behavior of 𝔼GA:pnqm\mathbb{E}\|G_{A}\colon\ell_{p}^{n}\to\ell_{q}^{m}\|, one may take a look at the boundary values of pp and qq, i.e., p{1,}p\in\{1,\infty\} or q{1,}q\in\{1,\infty\}. Note that (1.6) provides an asymptotic behavior of 𝔼GA:pnqm\mathbb{E}\|G_{A}\colon\ell_{p}^{n}\to\ell_{q}^{m}\| on a part of this boundary (i.e., for p=1p=1 and 2q2\leq q\leq\infty and in the dual case q=q=\infty and 1p21\leq p\leq 2). We provide sharp results on the remaining parts of the boundary of [1,]×[1,][1,\infty]\times[1,\infty] (see dense lines on the boundary of Figure 1 below):

𝔼GA:pn1m\displaystyle\mathbb{E}\|G_{A}\colon\ell^{n}_{p}\to\ell^{m}_{1}\| pD1+D2\displaystyle\asymp_{p}D_{1}+D_{2} for all 1<p,\displaystyle\qquad\text{for all }1<p\leq\infty,
𝔼GA:nqm\displaystyle\mathbb{E}\|G_{A}\colon\ell^{n}_{\infty}\to\ell^{m}_{q}\| qD1+D2\displaystyle\asymp_{q}D_{1}+D_{2} for all 1q<,\displaystyle\qquad\text{for all }1\leq q<\infty,
𝔼GA:1nqm\displaystyle\mathbb{E}\|G_{A}\colon\ell^{n}_{1}\to\ell^{m}_{q}\| D1+maxjn(ln(j+1)bj)\displaystyle\asymp_{\phantom{r}}D_{1}+\max_{j\leq n}(\sqrt{\ln(j+1)}b_{j}^{\downarrow{}}) for all 1q2,\displaystyle\qquad\text{for all }1\leq q\leq 2,
𝔼GA:pnm\displaystyle\mathbb{E}\|G_{A}\colon\ell_{p}^{n}\to\ell_{\infty}^{m}\| D2+maxim(ln(i+1)di)\displaystyle\asymp_{\phantom{r}}D_{2}+\max_{i\leq m}(\sqrt{\ln(i+1)}d_{i}^{\downarrow{}}) for all 2p,\displaystyle\qquad\text{for all }2\leq p\leq\infty,

where

D1AA:p/2nq/2m1/2,D2(AA)T:q/2mp/2n1/2,bj(aij)im2q/(2q),di(aij)jn2p/(p2),\begin{split}D_{1}&\coloneqq\|A\mathbin{\circ}A\colon\ell^{n}_{p/2}\to\ell^{m}_{q/2}\|^{1/2},\\ D_{2}&\coloneqq\|(A\mathbin{\circ}A)^{T}\colon\ell^{m}_{q^{*}/2}\to\ell^{n}_{p^{*}/2}\|^{1/2},\end{split}\qquad\qquad\begin{split}b_{j}&\coloneqq\|(a_{ij})_{i\leq m}\|_{2q/(2-q)},\\ d_{i}&\coloneqq\|(a_{ij})_{j\leq n}\|_{2p/(p-2)},\end{split}

and with (x1,,xn)(x_{1}^{\downarrow{}},\ldots,x_{n}^{\downarrow{}}) denoting the non-increasing rearrangement of (|x1|,,|xn|)(|x_{1}|,\ldots,|x_{n}|) for a given (xj)jnn(x_{j})_{j\leq n}\in\mathbb{R}^{n}. (For the precise formulation see Propositions 1.8 and 1.10, and Corollary 1.11 below.)

Moreover, in Subsection 5.1 we generalize the lower bounds from the boundary into the whole range (p,q)[1,]×[1,](p,q)\in[1,\infty]\times[1,\infty] (see Figure 1 below), i.e., we prove

(1.10) 𝔼GA:pnqmp,qD1+D2+{𝔼maxim,jn|aijgij|if p2q,maxjnln(j+1)bjif pq2,maximln(i+1)diif  2pq,0if q<p.\mathbb{E}\|G_{A}\colon\ell_{p}^{n}\to\ell_{q}^{m}\|\gtrsim_{p,q}D_{1}+D_{2}+\begin{cases}\mathbb{E}\max_{i\leq m,j\leq n}|a_{ij}g_{ij}|&\text{if }\ p\leq 2\leq q,\\ \max_{j\leq n}\sqrt{\ln(j+1)}b_{j}^{\downarrow{}}&\text{if }\ p\leq q\leq 2,\\ \max_{i\leq m}\sqrt{\ln(i+1)}d_{i}^{\downarrow{}}&\text{if }\ 2\leq p\leq q,\\ 0&\textrm{if }\ q<p.\end{cases}
p=1p=1p=2p=2p=p=\inftyq=q=\inftyq=2q=2q=1q=1
Figure 1. The third summand in (1.10) and in Conjecture 1:
northeast lines: 𝔼maxim,jn|aijgij|,\displaystyle\qquad\mathbb{E}\max_{i\leq m,j\leq n}|a_{ij}g_{ij}|,
horizontal lines: maxjnln(j+1)bj,\displaystyle\qquad\max_{j\leq n}\sqrt{\ln(j+1)}b_{j}^{\downarrow{}},
vertical lines: maximln(i+1)di,\displaystyle\qquad\max_{i\leq m}\sqrt{\ln(i+1)}d_{i}^{\downarrow{}},
northwest lines: 0.\displaystyle\qquad 0.
Note that the horizontal axis represents 1/p1/p and the vertical one 1/q1/q. Dense lines correspond to exact asymptotics and loosely spaced lines to upper and lower bounds matching up to logarithms.

Let us now discuss the relation between the terms appearing above. We postpone the proofs of all the following claims to Section 5.

In the case p2qp\leq 2\leq q, we have

(1.11) D1+D2+𝔼maxim,jn|aijgij|\displaystyle D_{1}+D_{2}+\mathbb{E}\max_{i\leq m,j\leq n}|a_{ij}g_{ij}| p,qD1+D2+maxim,jnln(j+1)aij\displaystyle\asymp_{p,q}D_{1}+D_{2}+\max_{i\leq m,j\leq n}\sqrt{\ln(j+1)}a_{ij}^{\prime}
p,qD1+D2+maxim,jnln(i+1)aij′′,\displaystyle\asymp_{p,q}D_{1}+D_{2}+\max_{i\leq m,j\leq n}\sqrt{\ln(i+1)}a_{ij}^{\prime\prime},

where the matrices (aij)i,j(a_{ij}^{\prime})_{i,j} and (aij′′)i,j(a_{ij}^{\prime\prime})_{i,j} are obtained by permuting the columns and rows, respectively, of the matrix (|aij|)i,j(|a_{ij}|)_{i,j} in such a way that maxiai1maxiain\max_{i}a_{i1}^{\prime}\geq\dots\geq\max_{i}a_{in}^{\prime} and maxja1j′′maxjamj′′\max_{j}a_{1j}^{\prime\prime}\geq\dots\geq\max_{j}a_{mj}^{\prime\prime}. Therefore, in the range 1pq1\leq p\leq q\leq\infty the right-hand side of (1.10) changes continuously with pp and qq (for a fixed matrix AA).

Obviously, maxjnln(j+1)bjmaxim,jnln(j+1)aij\max_{j\leq n}\sqrt{\ln(j+1)}b_{j}^{\downarrow{}}\geq\max_{i\leq m,j\leq n}\sqrt{\ln(j+1)}a_{ij}^{\prime} and, in general, the former quantity may be of larger order than the latter one. In Subsection 5.3 we shall present a more subtle relation: for every 1pq<21\leq p\leq q<2 we shall give an example showing that the right-hand side of (1.10) may be of larger order than D1+D2+𝔼maxim,jn|aijgij|D_{1}+D_{2}+\mathbb{E}\max_{i\leq m,j\leq n}|a_{ij}g_{ij}|. Note that by duality, i.e., the fact that

(1.12) XA:pnqm=(XA)T:qmpn=(XT)AT:qmpn,\|X_{A}\colon\ell_{p}^{n}\to\ell_{q}^{m}\|=\|(X_{A})^{T}\colon\ell_{q^{*}}^{m}\to\ell_{p^{*}}^{n}\|=\|(X^{T})_{A^{T}}\colon\ell_{q^{*}}^{m}\to\ell_{p^{*}}^{n}\|,

the same holds in the case 2<pq2<p\leq q. This suggests that the behavior of 𝔼GA:pnqm\mathbb{E}\|G_{A}\colon\ell_{p}^{n}\to\ell_{q}^{m}\| is different in the regions with horizontal or vertical lines than in the region with northeast lines.

Moreover, we have

(1.13) D1+D2p,q{maxjnln(j+1)bjif q<p and q<2,maximln(i+1)diif q<p and p<2D_{1}+D_{2}\gtrsim_{p,q}\begin{cases}\max_{j\leq n}\sqrt{\ln(j+1)}b_{j}^{\downarrow{}}&\text{if }q<p\text{ and }q<2,\\ \max_{i\leq m}\sqrt{\ln(i+1)}d_{i}^{\downarrow{}}&\text{if }q<p\text{ and }p^{\ast}<2\end{cases}

(see Subsection 5.2). Note that this is not the case for pqp\leq q, as one can easily see by considering, e.g., AA equal to the identity matrix. This suggests a different (than in other regions), simplified, behavior of 𝔼GA:pnqm\mathbb{E}\|G_{A}\colon\ell_{p}^{n}\to\ell_{q}^{m}\| in the region with northwest lines.

Given the discussion above, the lower bounds presented in (1.10), and the fact that they can be reversed for all p[1,]p\in[1,\infty], q{1,}q\in\{1,\infty\} (and for all q[1,]q\in[1,\infty], p{1,}p\in\{1,\infty\}), it is natural to conjecture the following.

Conjecture 1.

For all 1p,q1\leq p,q\leq\infty, we conjecture that

(1.14) 𝔼GA:pnqmp,qD1+D2+{𝔼maxim,jn|aijgij|if p2q,maxjnln(j+1)bjif pq2,maximln(i+1)diif  2pq,0if q<p.\mathbb{E}\|G_{A}\colon\ell_{p}^{n}\to\ell_{q}^{m}\|\asymp_{p,q}D_{1}+D_{2}+\begin{cases}\mathbb{E}\max_{i\leq m,j\leq n}|a_{ij}g_{ij}|&\text{if }\ p\leq 2\leq q,\\ \max_{j\leq n}\sqrt{\ln(j+1)}b_{j}^{\downarrow{}}&\text{if }\ p\leq q\leq 2,\\ \max_{i\leq m}\sqrt{\ln(i+1)}d_{i}^{\downarrow{}}&\text{if }\ 2\leq p\leq q,\\ 0&\textrm{if }\ q<p.\end{cases}
Remark 1.1.

One could pose another natural conjecture, based on the potential generalization of the first line of the bound (1.4), namely that the inequality

(1.15) 𝔼GA:pnqmp,q𝔼maxim(aijgij)jp+𝔼maxjn(aijgij)iq\mathbb{E}\|G_{A}\colon\ell_{p}^{n}\to\ell_{q}^{m}\|\asymp_{p,q}\mathbb{E}\max_{i\leq m}\|(a_{ij}g_{ij})_{j}\|_{p^{\ast}}+\mathbb{E}\max_{j\leq n}\|(a_{ij}g_{ij})_{i}\|_{q}

holds for all 1p,q1\leq p,q\leq\infty. Indeed, the lower bound is true with constant 12\frac{1}{2}, since for every deterministic matrix XX one has

X:pnqmmax{maxim(Xij)jp,maxjn(Xij)iq}.\|X\colon\ell_{p}^{n}\to\ell_{q}^{m}\|\geq\max\Bigl{\{}\max_{i\leq m}\|(X_{ij})_{j}\|_{p^{\ast}},\max_{j\leq n}\|(X_{ij})_{i}\|_{q}\Bigr{\}}.

However, as we prove in Subsection 5.4, this conjecture is wrong: although the right-hand sides of (1.14) and (1.15) are comparable in the range 1p2q1\leq p\leq 2\leq q\leq\infty, for every pair of p,qp,q outside this range the right-hand side of (1.15) may be of smaller order than the left-hand side.

Let us now present a conjecture concerning the boundedness of linear operators given by infinite dimensional matrices. In what follows, we say that a matrix B=(bij)i,jB=(b_{ij})_{i,j\in\mathbb{N}} defines a bounded operator from p()\ell_{p}(\mathbb{N}) to q()\ell_{q}(\mathbb{N}) if for all xp()x\in\ell_{p}(\mathbb{N}) the product BxBx is well defined, belongs to q()\ell_{q}(\mathbb{N}) and the corresponding linear operator is bounded.

Conjecture 2.

Let A=(aij)i,jA=(a_{ij})_{i,j\in\mathbb{N}} be an infinite matrix with real coefficients and let 1p,q1\leq p,q\leq\infty. We conjecture that the matrix GA=(aijgij)i,jG_{A}=(a_{ij}g_{ij})_{i,j\in\mathbb{N}} defines a bounded linear operator between p()\ell_{p}(\mathbb{N}) and q()\ell_{q}(\mathbb{N}) almost surely if and only if the matrix AAA\circ A defines a bounded linear operator between p/2()\ell_{p/2}(\mathbb{N}) and q/2()\ell_{q/2}(\mathbb{N}), the matrix (AA)T(A\circ A)^{T} defines a bounded linear operator between q/2()\ell_{q^{\ast}/2}(\mathbb{N}) and p/2()\ell_{p^{\ast}/2}(\mathbb{N}), and

  • in the case p2qp\leq 2\leq q, 𝔼supi,j|aijgij|<\mathbb{E}\sup_{i,j\in\mathbb{N}}|a_{ij}g_{ij}|<\infty,

  • in the case pq2p\leq q\leq 2, limjbj=0\lim_{j\to\infty}b_{j}=0, and supjln(j+1)bj<\sup_{j\in\mathbb{N}}\sqrt{\ln(j+1)}b_{j}^{\downarrow{}}<\infty, where bj=(aij)i2q/(2q)b_{j}=\|(a_{ij})_{i\in\mathbb{N}}\|_{2q/(2-q)}, jj\in\mathbb{N},

  • in the case 2pq2\leq p\leq q, limidi=0\lim_{i\to\infty}d_{i}=0, and supiln(i+1)di<\sup_{i\in\mathbb{N}}\sqrt{\ln(i+1)}d_{i}^{\downarrow{}}<\infty, where di(aij)j2p/(p2)d_{i}\coloneqq\|(a_{ij})_{j\in\mathbb{N}}\|_{2p/(p-2)}, ii\in\mathbb{N},

  • (in the case q<pq<p we do not need to assume any additional conditions).

We remark that it suffices to prove Conjecture 1 in order to confirm Conjecture 2.

Proposition 1.2.

Assume 1p,q1\leq p,q\leq\infty. Then (1.14) for this choice of p,qp,q implies the assertion of Conjecture 2 for the same choice of p,qp,q.

We postpone the proof of this proposition to Subsection 5.5.

In this article, in addition to the cases p=q=2p=q=2 obtained in [40] and p=1,q2p=1,q\geq 2 proved in [23, 45], we confirm Conjecture 1 when p{1,}p\in\{1,\infty\}, q[1,]q\in[1,\infty] and when q{1,}q\in\{1,\infty\}, p[1,]p\in[1,\infty]. In all the other cases, we are able to prove the upper bounds only up to logarithmic (in the dimensions m,nm,n) multiplicative factors (see Corollary 1.4 below). In particular, Proposition 1.2 implies that Conjecture 2 holds for all p{1,}p\in\{1,\infty\}, q[1,]q\in[1,\infty] and for all q{1,}q\in\{1,\infty\}, p[1,]p\in[1,\infty].

Note that in the structured case we work with, interpolating the results obtained for the boundary cases p{1,}p\in\{1,\infty\} or q{1,}q\in\{1,\infty\} gives a bound with polynomial (in the dimensions) multiplicative constants which are much worse than logarithmic constants from Corollary 1.4 below. However, as we shall see in Remark 4.2 below, interpolation techniques work well in the non-structured case.

1.3. Main results valid for 1p,q1\leq p,q\leq\infty

We start with general theorems valid for the whole range of pp, qq. Results which are based on methods working only for specific values of pp, qq, but yielding better logarithmic terms, are presented in the next subsection. A brief summary and comparison of all results can be found in Table LABEL:table:summary.

Before stating our main results, we need to introduce additional notation. For a non-empty set J{1,,n}J\subset\{1,\ldots,n\}, and 1p1\leq p\leq\infty, we define

BpJ{(xj)jJ:jJ|xj|p1,xj}.B_{p}^{J}\coloneqq\Bigl{\{}(x_{j})_{j\in J}:\sum_{j\in J}|x_{j}|^{p}\leq 1,\quad x_{j}\in\mathbb{R}\Bigr{\}}.

By pJ\ell_{p}^{J} we denote the space J{(xj)jJ:xj}\mathbb{R}^{J}\coloneqq\bigl{\{}(x_{j})_{j\in J}:x_{j}\in\mathbb{R}\bigr{\}} equipped with the norm

xpJ=(jJ|xj|p)1/p,\|x\|_{\ell_{p}^{J}}=\Bigl{(}\sum_{j\in J}|x_{j}|^{p}\Bigr{)}^{1/p},

whose unit ball is BpJB_{p}^{J}. Obviously, the space pJ\ell_{p}^{J} can be identified with a subspace of pn\ell_{p}^{n}. If A:pnqmA\colon\ell_{p}^{n}\to\ell_{q}^{m} is a linear operator, the notation A:pJqIA\colon\ell_{p}^{J}\to\ell_{q}^{I} means that AA is restricted to the space pJ\ell_{p}^{J} and composed with a projection onto qI\ell_{q}^{I}. Moreover, for x=(x1,,xn)nx=(x_{1},\ldots,x_{n})\in\mathbb{R}^{n}, supJxpJ=(jk|xj|p)1/p\sup_{J}\|x\|_{\ell_{p}^{J}}=\bigl{(}\sum_{j\leq k}|x_{j}^{\downarrow{}}|^{p}\bigr{)}^{1/p}, where the supremum is taken over all J{1,,n}J\subset\{1,\ldots,n\} with |J|=k|J|=k, and (x1,,xn)(x_{1}^{\downarrow{}},\ldots,x_{n}^{\downarrow{}}) is the non-increasing rearrangement of (|x1|,,|xn|)(|x_{1}|,\ldots,|x_{n}|).

Theorem 1.3 (Main theorem in a general version with sets I0I_{0}, J0J_{0}).

Assume that mMm\leq M, nNn\leq N, 1p,q1\leq p,q\leq\infty, and G=(gij)iM,jNG=(g_{ij})_{i\leq M,j\leq N} has i.i.d. standard Gaussian entries. Then

𝔼supI0,J0GA:pJ0qI0=𝔼supI0,J0supxBpJ0supyBqI0iI0jJ0yiaijgijxj\displaystyle\mathbb{E}\sup_{I_{0},J_{0}}\|G_{A}\colon\ell_{p}^{J_{0}}\to\ell_{q}^{I_{0}}\|=\mathbb{E}\sup_{I_{0},J_{0}}\sup_{x\in B_{p}^{J_{0}}}\sup_{y\in B_{q^{*}}^{I_{0}}}\sum_{i\in I_{0}}\sum_{j\in J_{0}}y_{i}a_{ij}g_{ij}x_{j}
ln(en)1/pln(em)1/q[\displaystyle\leq\ln(en)^{1/p^{*}}\ln(em)^{1/q}\Bigl{[} (2.4ln(mn)+8lnM+2/π)supI0,J0AA:p/2J0q/2I01/2\displaystyle\bigl{(}2.4\sqrt{\ln(mn)}+8\sqrt{\ln M}+\sqrt{2/\pi}\bigr{)}\sup_{I_{0},J_{0}}\|A\mathbin{\circ}A\colon\ell^{J_{0}}_{p/2}\to\ell^{I_{0}}_{q/2}\|^{1/2}
+(8lnN+22/π)supI0,J0(AA)T:q/2I0p/2J01/2],\displaystyle+\bigl{(}8\sqrt{\ln N}+2\sqrt{2/\pi}\bigr{)}\sup_{I_{0},J_{0}}\|(A\mathbin{\circ}A)^{T}\colon\ell^{I_{0}}_{q^{*}/2}\to\ell^{J_{0}}_{p^{*}/2}\|^{1/2}\Bigr{]},

where the suprema are taken over all sets I0{1,,M}I_{0}\subset\{1,\ldots,M\}, J0{1,,N}J_{0}\subset\{1,\ldots,N\} such that |I0|=m|I_{0}|=m, |J0|=n|J_{0}|=n.

The above theorem gives an estimate on the largest operator norm among all submatrices of GAG_{A} of fixed size. Let us remark that apart from being of intrinsic interest, quantities of this type (for p=q=2p=q=2) have appeared in connection with the study of the restricted isometry property of random matrices with independent rows [2] or in the analysis of entropic uncertainty principles for random quantum measurements [3, 47].

Let us now give an outline of the proof of Theorem 1.3. Note that

(1.16) GA:pJ0qI0=supxBpJ0supyBqI0iI0jJ0yiaijgijxj.\|G_{A}\colon\ell_{p}^{J_{0}}\to\ell_{q}^{I_{0}}\|=\sup_{x\in B_{p}^{J_{0}}}\sup_{y\in B_{q^{\ast}}^{I_{0}}}\sum_{i\in I_{0}}\sum_{j\in J_{0}}y_{i}a_{ij}g_{ij}x_{j}.

In the first step of our proof, we find polytopes LL and KK approximating (with accuracy depending logarithmically on the dimension) the unit balls in pJ0\ell_{p}^{J_{0}} and qI0\ell_{q^{\ast}}^{I_{0}}, respectively. The extreme points of the sets KK and LL have a special and simple structure: absolute values of their non-zero coordinates are all equal to a constant depending only on the size of the support of a given point. Since KK is close to BqI0B_{q^{*}}^{I_{0}} and LL is close to BpJ0B_{p}^{J_{0}}, we may consider only xExt(L),yExt(K)x\in\operatorname{Ext}(L),y\in\operatorname{Ext}(K) in (1.16). Since non-zero coordinates of xExt(L)x\in\operatorname{Ext}(L) and yExt(K)y\in\operatorname{Ext}(K), respectively, are all equal up to a sign we may use a symmetrization argument and the contraction principle to remove xx and yy in the sum on the right-hand side of (1.16). Thus, in the next step of the proof we only need to estimate the expected value of

supI0,J0supII0supJJ0|I|1/q|J|1/piI,jJaijgij,\sup_{I_{0},J_{0}}\sup_{\emptyset\neq I\subset I_{0}}\sup_{\emptyset\neq J\subset J_{0}}|I|^{-1/q^{*}}|J|^{-1/p}\sum_{i\in I,j\in J}a_{ij}g_{ij},

where II and JJ represent the potential supports of points in Ext(K)\operatorname{Ext}(K) and Ext(L)\operatorname{Ext}(L). To deal with this quantity, we first consider the suprema over the subsets of fixed sizes and use Slepian’s lemma to compare the supremum of the Gaussian process above with the supremum of another Gaussian process, which may be bounded easily. Then we make use of the term |I|1/q|J|1/p<1|I|^{-1/q^{*}}|J|^{-1/p}<1, which allows us to go back to suprema over the sets BpJ0B_{p}^{J_{0}} and BqI0B_{q^{*}}^{I_{0}}. At the end, we use the Gaussian concentration inequality to unfix the sizes of sets II and JJ and complete the proof.

Applying Theorem 1.3 with N=nN=n, M=mM=m immediately yields the following result, which confirms Conjecture 1 up to some logarithmic terms.

Corollary 1.4 (Main theorem – p\ell_{p} to q\ell_{q} version).

Assume that 1p,q1\leq p,q\leq\infty and G=(gij)im,jnG=(g_{ij})_{i\leq m,j\leq n} has i.i.d. standard Gaussian entries. Then,

𝔼GA:pnqm(lnn)1/p(lnm)1/q[\displaystyle\mathbb{E}\|G_{A}\colon\ell^{n}_{p}\to\ell^{m}_{q}\|\lesssim(\ln n)^{1/p^{*}}(\ln m)^{1/q}\Bigl{[} ln(mn)AA:p/2nq/2m1/2\displaystyle\sqrt{\ln(mn)}\|A\mathbin{\circ}A\colon\ell^{n}_{p/2}\to\ell^{m}_{q/2}\|^{1/2}
+lnn(AA)T:q/2mp/2n1/2].\displaystyle+\sqrt{\ln n}\|(A\mathbin{\circ}A)^{T}\colon\ell^{m}_{q^{*}/2}\to\ell^{n}_{p^{*}/2}\|^{1/2}\Bigr{]}.

Moreover, we easily recover the same bound in the case of independent bounded entries. We state and prove a general version with sets I0I_{0} and J0J_{0} akin to Theorem 1.3 in Subsection 3.2.

Corollary 1.5.

Assume that 1p,q1\leq p,q\leq\infty and X=(Xij)im,jnX=(X_{ij})_{i\leq m,j\leq n} has independent mean-zero entries taking values in [1,1][-1,1]. Then

𝔼XA:pnqm(lnn)1/p(lnm)1/q[\displaystyle\mathbb{E}\|X_{A}\colon\ell^{n}_{p}\to\ell^{m}_{q}\|\lesssim(\ln n)^{1/p^{*}}(\ln m)^{1/q}\Bigl{[} ln(mn)AA:p/2nq/2m1/2\displaystyle\sqrt{\ln(mn)}\|A\mathbin{\circ}A\colon\ell^{n}_{p/2}\to\ell^{m}_{q/2}\|^{1/2}
+lnn(AA)T:q/2mp/2n1/2].\displaystyle+\sqrt{\ln n}\|(A\mathbin{\circ}A)^{T}\colon\ell^{m}_{q^{*}/2}\to\ell^{n}_{p^{*}/2}\|^{1/2}\Bigr{]}.

We use the two results above to obtain their analogue in the case of ψr\psi_{r} entries for r2r\leq 2; these random variables are defined by (1.17). This class contains, among others,

  • log-concave random variables (which are ψ1\psi_{1}),

  • heavy tailed Weibull random variables (of shape parameter r(0,1)r\in(0,1), i.e., (|Xij|t)=etr/L\mathbb{P}(|X_{ij}|\geq t)=e^{-t^{r}/L} for t0t\geq 0),

  • random variables satisfying the condition

    Xij2ραXijρfor all ρ1.\|X_{ij}\|_{2\rho}\leq\alpha\|X_{ij}\|_{\rho}\qquad\text{for all }\rho\geq 1.

    These random variables are ψr\psi_{r} with r=1/log2αr=1/\log_{2}\alpha. They were considered recently in [38].

A general version of the following Corollary 1.6 with sets I0I_{0} and J0J_{0} is stated and proved in Subsection 3.2.

Corollary 1.6.

Assume that K,L>0K,L>0, r(0,2]r\in(0,2], 1p,q1\leq p,q\leq\infty, and X=(Xij)im,jnX=(X_{ij})_{i\leq m,j\leq n} has independent mean-zero entries satisfying

(1.17) (|Xij|t)Ketr/Lfor all t0,im,jn.\displaystyle\mathbb{P}(|X_{ij}|\geq t)\leq Ke^{-t^{r}/L}\qquad\text{for all }t\geq 0,i\leq m,j\leq n.

Then

𝔼XA:pnqm\displaystyle\mathbb{E}\|X_{A}\colon\ell^{n}_{p}\to\ell^{m}_{q}\|
r,K,L(lnn)1/p(lnm)1/qln(mn)1r12[\displaystyle\lesssim_{r,K,L}(\ln n)^{1/p^{*}}(\ln m)^{1/q}\ln(mn)^{\frac{1}{r}-\frac{1}{2}}\Bigl{[} ln(mn)AA:p/2nq/2m1/2\displaystyle\sqrt{\ln(mn)}\|A\mathbin{\circ}A\colon\ell^{n}_{p/2}\to\ell^{m}_{q/2}\|^{1/2}
+lnn(AA)T:q/2mp/2n1/2].\displaystyle+\sqrt{\ln n}\|(A\mathbin{\circ}A)^{T}\colon\ell^{m}_{q^{*}/2}\to\ell^{n}_{p^{*}/2}\|^{1/2}\Bigr{]}.

1.4. Results for particular ranges of pp, qq

We continue with results for some specific ranges of pp, qq, where we are able to prove estimates with better logarithmic dependence (results which follow from them by duality (1.12) are stated in Table LABEL:table:summary to keep the presentation short). We postpone their proofs to Section 4. We start with the case of Gaussian random variables. Recall that γq=(𝔼|g|q)1/q\gamma_{q}=(\mathbb{E}|g|^{q})^{1/q}, where gg is a standard Gaussian random variable.

Proposition 1.7.

For all 1p21\leq p\leq 2 and 1q<1\leq q<\infty, we have

(1.18) 𝔼GA:pnqm\displaystyle\mathbb{E}\|G_{A}\colon\ell^{n}_{p}\to\ell^{m}_{q}\| γqln(en)1/pAA:p/2nq/2m1/2\displaystyle\leq\gamma_{q}\ln(en)^{1/p^{*}}\|A\mathbin{\circ}A\colon\ell^{n}_{p/2}\to\ell^{m}_{q/2}\|^{1/2}
+2.2ln(en)1/2+1/p(AA)T:q/2mp/2n1/2.\displaystyle\qquad+2.2\ln(en)^{1/2+1/p^{*}}\|(A\mathbin{\circ}A)^{T}\colon\ell^{m}_{q^{*}/2}\to\ell^{n}_{p^{*}/2}\|^{1/2}.

If q=1q=1 or p=p=\infty, then we are able to get a result without logarithmic terms. Recall that for a sequence (xj)jn(x_{j})_{j\leq n} we denote by (xj)jn(x_{j}^{\downarrow{}})_{j\leq n} the non-increasing rearrangement of (|xj|)jn(|x_{j}|)_{j\leq n}.

Proposition 1.8.
  1. (i)

    For 1<p1<p\leq\infty, we have

    AA:p/2n1/2m1/2+(AA)T:mp/2n1/2𝔼GA:pn1mγ1AA:p/2n1/2m1/2+2γp(AA)T:mp/2n1/2.\|A\mathbin{\circ}A\colon\ell^{n}_{p/2}\to\ell^{m}_{1/2}\|^{1/2}+\|(A\mathbin{\circ}A)^{T}\colon\ell^{m}_{\infty}\to\ell^{n}_{p^{*}/2}\|^{1/2}\lesssim\mathbb{E}\|G_{A}\colon\ell^{n}_{p}\to\ell^{m}_{1}\|\\ \leq\gamma_{1}\|A\mathbin{\circ}A\colon\ell^{n}_{p/2}\to\ell^{m}_{1/2}\|^{1/2}+2\gamma_{p^{*}}\|(A\mathbin{\circ}A)^{T}\colon\ell^{m}_{\infty}\to\ell^{n}_{p^{*}/2}\|^{1/2}.
  2. (ii)

    Moreover,

    𝔼GA:1n1mAA:1/2n1/2m1/2+maxjnln(j+1)bj,\mathbb{E}\|G_{A}\colon\ell^{n}_{1}\to\ell^{m}_{1}\|\asymp\|A\mathbin{\circ}A\colon\ell^{n}_{1/2}\to\ell^{m}_{1/2}\|^{1/2}+\max_{j\leq n}\sqrt{\ln(j+1)}b_{j}^{\downarrow{}},

    where bj(aij)im2b_{j}\coloneqq\|(a_{ij})_{i\leq m}\|_{2}, jnj\leq n.

Note that ii shows in particular that a blow up of the constant γp\gamma_{p^{\ast}} in the upper estimate (i) for p1p\to 1 is necessary, since the right most summands in i and ii are non-comparable.

Remark 1.9.

It shall be clear from the proof that the upper bound in part i of Proposition 1.8 remains valid for any random matrix XX (instead of GG) with independent isotropic rows (i.e., rows with mean zero and the covariance matrix equal to the identity) such that

(1.19) (𝔼|i=1mαiXij|p)1/pp(i=1mαi2)1/2for all αm,jn.\Bigr{(}\mathbb{E}\Bigl{|}\sum_{i=1}^{m}\alpha_{i}X_{ij}\Bigr{|}^{p^{*}}\Bigr{)}^{1/p^{*}}\lesssim_{p}\Bigl{(}\sum_{i=1}^{m}\alpha_{i}^{2}\Bigr{)}^{1/2}\qquad\text{for all }\alpha\in\mathbb{R}^{m},j\leq n.

Note that the independence and the isotropicity of rows imply that also the columns of XX are isotropic (since the coordinates of every column are independent and have mean zero and variance 11). Therefore, whenever p2p\geq 2, condition (1.19) is always satisfied (because the pp^{\ast}-integral norm is bounded above by the 22-integral norm, which is then equal to the right-hand side of (1.19), since the covariance matrix of each column is equal to the m×mm\times m identity matrix).

The following proposition generalizes part (ii) of Proposition 1.8 to an arbitrary q2q\leq 2. We list it separately since we present a proof using different arguments. Recall that the case p=1p=1, q2q\geq 2 was established before, see (1.6).

Proposition 1.10.

If 1q21\leq q\leq 2, then

GA:1nqm\displaystyle\|G_{A}\colon\ell_{1}^{n}\to\ell_{q}^{m}\| AA:1/2nq/2m1/2+maxjn(ln(j+1)bj)\displaystyle\asymp\|A\mathbin{\circ}A\colon\ell_{1/2}^{n}\to\ell_{q/2}^{m}\|^{1/2}+\max_{j\leq n}(\sqrt{\ln(j+1)}b_{j}^{\downarrow{}})
=maxjn(aij)imq+maxjn(ln(j+1)bj),\displaystyle=\max_{j\leq n}\|(a_{ij})_{i\leq m}\|_{q}+\max_{j\leq n}(\sqrt{\ln(j+1)}b_{j}^{\downarrow{}}),

where bj=(aij)im2q/(2q)b_{j}=\|(a_{ij})_{i\leq m}\|_{2q/(2-q)} for jnj\leq n.

Proposition 1.10 immediately implies its dual version.

Corollary 1.11.

If 2p2\leq p\leq\infty, then

GA:pnm\displaystyle\|G_{A}\colon\ell_{p}^{n}\to\ell_{\infty}^{m}\| (AA)T:1/2mp/2n1/2+maxim(ln(i+1)di)\displaystyle\asymp\|(A\mathbin{\circ}A)^{T}\colon\ell_{1/2}^{m}\to\ell_{p^{\ast}/2}^{n}\|^{1/2}+\max_{i\leq m}(\sqrt{\ln(i+1)}d_{i}^{\downarrow{}})
=maxim(aij)jnp+maxim(ln(i+1)di),\displaystyle=\max_{i\leq m}\|(a_{ij})_{j\leq n}\|_{p^{\ast}}+\max_{i\leq m}(\sqrt{\ln(i+1)}d_{i}^{\downarrow{}}),

where di=(aij)jn2p/(2p)=(aij)jn2p/(p2)d_{i}=\|(a_{ij})_{j\leq n}\|_{2p^{\ast}/(2-p^{\ast})}=\|(a_{ij})_{j\leq n}\|_{2p/(p-2)} for imi\leq m.

Remark 1.12.

Corollary 1.11 and the dual version of (1.6) provide the exact behavior of expected norm of Gaussian operator from pn\ell_{p}^{n} to qm\ell_{q}^{m} not only when q=q=\infty, but also for qc0lnmq\geq c_{0}\ln m, as we explain now. For all qq0c0lnmq\geq q_{0}\coloneqq c_{0}\ln m we have the following inequalities for norms on m\mathbb{R}^{m},

qm1/q0q0=e1/c0q0e1/c0q,\|\cdot\|_{q}\geq\|\cdot\|_{\infty}\geq m^{-1/q_{0}}\|\cdot\|_{q_{0}}=e^{-1/c_{0}}\|\cdot\|_{q_{0}}\geq e^{-1/c_{0}}\|\cdot\|_{q},

therefore,

1e1/c0𝔼XA:pnqm𝔼XA:pnm𝔼XA:pnqm.\frac{1}{e^{1/c_{0}}}\mathbb{E}\|X_{A}\colon\ell_{p}^{n}\to\ell_{q}^{m}\|\leq\mathbb{E}\|X_{A}\colon\ell_{p}^{n}\to\ell_{\infty}^{m}\|\leq\mathbb{E}\|X_{A}\colon\ell_{p}^{n}\to\ell_{q}^{m}\|.

Similarly,

(AA)T:q/2mp/2n\displaystyle\|(A\mathbin{\circ}A)^{T}\colon\ell^{m}_{q^{*}/2}\to\ell^{n}_{p^{*}/2}\| c0(AA)T:1/2mp/2n.\displaystyle\asymp_{c_{0}}\|(A\mathbin{\circ}A)^{T}\colon\ell^{m}_{1/2}\to\ell^{n}_{p^{*}/2}\|.

Proposition 1.7 implies the following estimate for matrices with independent ψr\psi_{r} entries, in the same way as Corollary 1.4 implies Corollary 1.6 (see Subsection 3.2).

Corollary 1.13.

Assume that K,L>0K,L>0, r(0,2]r\in(0,2], and X=(Xij)im,jnX=(X_{ij})_{i\leq m,j\leq n} has independent mean-zero entries satisfying

(1.20) (|Xij|t)Ketr/Lfor all t0.\displaystyle\mathbb{P}(|X_{ij}|\geq t)\leq Ke^{-t^{r}/L}\qquad\text{for all }t\geq 0.

Then, for 1p21\leq p\leq 2, 1q1\leq q\leq\infty,

𝔼XA:pnqm\displaystyle\mathbb{E}\|X_{A}\colon\ell^{n}_{p}\to\ell^{m}_{q}\| r,K,L(lnn)1/pln(nm)1/r1/2AA:p/2nq/2m1/2\displaystyle\lesssim_{r,K,L}(\ln n)^{1/p^{*}}\ln(nm)^{1/r-1/2}\|A\mathbin{\circ}A\colon\ell^{n}_{p/2}\to\ell^{m}_{q/2}\|^{1/2}
+(lnn)1/2+1/pln(nm)1/r1/2(AA)T:q/2mp/2n1/2.\displaystyle\qquad+(\ln n)^{1/2+1/p^{*}}\ln(nm)^{1/r-1/2}\|(A\mathbin{\circ}A)^{T}\colon\ell^{m}_{q^{*}/2}\to\ell^{n}_{p^{*}/2}\|^{1/2}.

By Hoeffding’s inequality (i.e., Lemma 2.13) we know that matrices with independent valued in [1,1][-1,1] entries having mean zero satisfy (1.20) with r=2r=2 and K=2=LK=2=L. In this special case of independent bounded random variables one can also adapt the methods of [9] to prove in the smaller range 1p2q<1\leq p\leq 2\leq q<\infty the following result with explicit numerical constants and improved dependence on nn (note that the second logarithmic term is better than in Corollary 1.13, where the exponent equals 1/2+1/p1/2+1/p^{*}).

Proposition 1.14.

Assume that X=(Xij)im,jnX=(X_{ij})_{i\leq m,j\leq n} has independent mean-zero entries taking values in [1,1][-1,1]. Then, for 1p2q<1\leq p\leq 2\leq q<\infty,

𝔼XA:pnqm\displaystyle\mathbb{E}\|X_{A}\colon\ell^{n}_{p}\to\ell^{m}_{q}\| C(q)ln(en)1/pAA:p/2nq/2m1/2\displaystyle\leq C(q)\ln(en)^{1/p^{*}}\|A\mathbin{\circ}A\colon\ell^{n}_{p/2}\to\ell^{m}_{q/2}\|^{1/2}
+101/qln(en)1/q+1/p(AA)T:q/2mp/2n1/2,\displaystyle\quad+10^{1/q}\ln(en)^{1/q+1/p^{*}}\|(A\mathbin{\circ}A)^{T}\colon\ell^{m}_{q^{*}/2}\to\ell^{n}_{p^{*}/2}\|^{1/2},

where C(q)2(qΓ(q/2))1/qqC(q)\coloneqq 2(q\Gamma(q/2))^{1/q}\asymp\sqrt{q}.

Finally, we have the following general result for matrices with independent ψr\psi_{r} entries (cf. Corollary 1.6).

Theorem 1.15.

Let K,L>0K,L>0, r(0,2]r\in(0,2], and assume that X=(Xij)im,jnX=(X_{ij})_{i\leq m,j\leq n} has independent mean-zero entries satisfying

(|Xij|t)Ketr/Lfor all t0.\mathbb{P}(|X_{ij}|\geq t)\leq Ke^{-t^{r}/L}\quad\text{for all }t\geq 0.

Then, for all 1p21\leq p\leq 2 and 1q<1\leq q<\infty,

𝔼XA:pnqm\displaystyle\mathbb{E}\|X_{A}\colon\ell^{n}_{p}\to\ell^{m}_{q}\| r,K,Lq1/r(lnn)1/pAA:p/2nq/2m1/2\displaystyle\lesssim_{r,K,L}\ q^{1/r}(\ln n)^{1/p^{*}}\|A\mathbin{\circ}A\colon\ell^{n}_{p/2}\to\ell^{m}_{q/2}\|^{1/2}
+(lnn)1/2+1/pln(mn)1/r(AA)T:q/2mp/2n1/2.\displaystyle\qquad\ \ \ +(\ln n)^{1/2+1/p^{*}}\ln(mn)^{1/r}\|(A\mathbin{\circ}A)^{T}\colon\ell^{m}_{q^{*}/2}\to\ell^{n}_{p^{*}/2}\|^{1/2}.

Having in mind the strategy of proof described after Theorem 1.3, let us elaborate on the idea of proof of Theorem 1.15. We shall split the matrix XX into two parts X(1)X^{(1)} and X(2)X^{(2)} which we treat separately. In our decomposition, all entries of X(1)X^{(1)} are bounded by Cln(mn)1/rC\ln(mn)^{1/r} and the probability that X(2)0X^{(2)}\neq 0 is very small. Then we shall deal with X(2)X^{(2)} using a crude bound (Lemma 4.3) and the fact that the probability that X(2)0X^{(2)}\neq 0 is small enough to compensate it. In order to bound the expectation of the norm of X(1)X^{(1)}, we require a cut-off version of Theorem 1.15 (Lemma 4.4). To obtain it, we shall replace BpnB_{p}^{n} in the expression for the operator norm with a suitable polytope KK (and leave supyBqm\sup_{y\in B_{q^{*}}^{m}} as it is) and then apply a Gaussian-type concentration inequality to the function ZF(Z)ZAxqZ\mapsto F(Z)\coloneqq\|Z_{A}x\|_{q} for xExt(K)x\in\operatorname{Ext}(K).

1.5. Tail bounds

All the bounds for 𝔼XA:pnqm\mathbb{E}\|X_{A}\colon\ell_{p}^{n}\to\ell_{q}^{m}\| provided in this work for random matrices XX also yield a tail bound for XA:pnqm\|X_{A}\colon\ell_{p}^{n}\to\ell_{q}^{m}\|. (It is clear from the proof of Proposition 1.16 — see Subsection 3.2 — that the same applies to the estimates for supI0,J0GA:pJ0qI0\sup_{I_{0},J_{0}}\|G_{A}:\ell_{p}^{J_{0}}\to\ell_{q}^{I_{0}}\|, but we omit the details to keep the presentation clear.)

Proposition 1.16 (Tail bound).

Assume that K,L1K,L\geq 1, r(0,2]r\in(0,2], 1p,q1\leq p,q\leq\infty, and γ1\gamma\geq 1. Fix a deterministic m×nm\times n matrix AA and assume that

DAA:p/2nq/2m1/2.D\geq\|A\mathbin{\circ}A\colon\ell^{n}_{p/2}\to\ell^{m}_{q/2}\|^{1/2}.

If for all random matrices X=(Xij)im,jnX=(X_{ij})_{i\leq m,j\leq n} with independent mean-zero entries satisfying

(1.21) (|Xij|t)Ketr/Lfor all t0,im,jn,\mathbb{P}(|X_{ij}|\geq t)\leq Ke^{-t^{r}/L}\qquad\text{for all }t\geq 0,\,i\leq m,\,j\leq n,

we have

(1.22) 𝔼XA:pnqmγD,\mathbb{E}\|X_{A}\colon\ell^{n}_{p}\to\ell^{m}_{q}\|\leq\gamma D,

then, for all random matrices with independent mean-zero entries satisfying (1.21), we also have

(1.23) (𝔼XA:pnqmρ)1/ρr,K,Lρ1/rγDfor all ρ1,\bigl{(}\mathbb{E}\|X_{A}\colon\ell^{n}_{p}\to\ell^{m}_{q}\|^{\rho}\bigr{)}^{1/\rho}\lesssim_{r,K,L}\ \rho^{1/r}\gamma D\qquad\text{for all }\rho\geq 1,

and, for all t>0t>0,

(1.24) (XA:pnqmtγD)C(r,K,L)exp(tr/C(r,K,L)).\mathbb{P}\bigl{(}\|X_{A}\colon\ell^{n}_{p}\to\ell^{m}_{q}\|\geq t\gamma D\bigr{)}\leq C(r,K,L)\exp\bigl{(}-t^{r}/C(r,K,L)\bigr{)}.

Note that random variables taking values in [1,1][-1,1] satisfy condition (1.21) with r=2r=2, K=eK=e, and L=1L=1. Thus, Proposition 1.16 applies also in the setting of bounded or Gaussian entries.

1.6. Organization of the paper

In Section 2 we gather various preliminary results we shall use in the sequel. Section 3 contains the proofs of the main results valid for all pp, qq (i.e., Theorem 1.3 and its corollaries) and the tail bound from Proposition 1.16. In Section 4 we prove the results for specific choices/ranges of pp, qq. In Section 5 we prove lower bounds on expected operator norms, showing in particular that our estimates are optimal up to logarithmic factors. We also prove other results justifying the proposed form of Conjecture 1. The last subsection of Section 5 is devoted to infinite dimensional Gaussian operators.

2. Preliminaries

2.1. General facts

We start with some easy lemmas which will be used repeatedly throughout the paper.

Lemma 2.1.

For any real m×nm\times n matrix B=(bij)im,jnB=(b_{ij})_{i\leq m,j\leq n} and 0<r1s0<r\leq 1\leq s\leq\infty, we have

B:rnsm=B:1nsm=maxjn(bij)i=1ms.\|B\colon\ell^{n}_{r}\to\ell^{m}_{s}\|=\|B\colon\ell^{n}_{1}\to\ell^{m}_{s}\|=\max_{j\leq n}\|(b_{ij})_{i=1}^{m}\|_{s}.

Furthermore, for a real m×nm\times n matrix A=(aij)im,jnA=(a_{ij})_{i\leq m,j\leq n} and 1p21\leq p\leq 2, pqp\leq q\leq\infty,

AA:p/2nq/2m1/2=maxjn(aij)i=1mq.\|A\mathbin{\circ}A\colon\ell^{n}_{p/2}\to\ell^{m}_{q/2}\|^{1/2}=\max_{j\leq n}\|(a_{ij})_{i=1}^{m}\|_{q}.
Proof.

Since 0<r10<r\leq 1, we have convBrn=B1n\operatorname{conv}B_{r}^{n}=B_{1}^{n}, where convS\operatorname{conv}S denotes the convex hull of the set SS. Moreover, the extreme points of B1nB_{1}^{n} are the signed standard unit vectors, i.e., ±e1,,±en\pm e_{1},\dots,\pm e_{n}, and zzsz\mapsto\|z\|_{s} is a convex function (since s1s\geq 1). Thus,

supxBrnBxs=supxconvBrnBxs=supxB1nBxs=max1jnBejs=max1jn(bij)i=1ms.\sup_{x\in B_{r}^{n}}\|Bx\|_{s}=\sup_{x\in\operatorname{conv}B_{r}^{n}}\|Bx\|_{s}=\sup_{x\in B_{1}^{n}}\|Bx\|_{s}=\max_{1\leq j\leq n}\|Be_{j}\|_{s}=\max_{1\leq j\leq n}\|(b_{ij})_{i=1}^{m}\|_{s}.

This immediately implies the result for the Hadamard product AA=:BA\circ A=:B if 1p2q1\leq p\leq 2\leq q\leq\infty.

If, on the other hand, 1pq21\leq p\leq q\leq 2, then by the subadditivity of the function t|t|q/2t\mapsto|t|^{q/2},

AA:p/2nq/2mq/2\displaystyle\|A\mathbin{\circ}A\colon\ell_{p/2}^{n}\to\ell_{q/2}^{m}\|^{q/2} =supxBp/2ni=1m|j=1naij2xj|q/2supxBp/2ni=1mj=1n|aij|q|xj|q/2\displaystyle=\sup_{x\in B_{p/2}^{n}}\sum_{i=1}^{m}\Bigl{|}\sum_{j=1}^{n}a_{ij}^{2}x_{j}\Bigr{|}^{q/2}\leq\sup_{x\in B_{p/2}^{n}}\sum_{i=1}^{m}\sum_{j=1}^{n}|a_{ij}|^{q}|x_{j}|^{q/2}
=(|aij|q)im,jn:p/qn1m=maxjn(aij)imqq,\displaystyle=\|(|a_{ij}|^{q})_{i\leq m,j\leq n}\colon\ell_{p/q}^{n}\to\ell_{1}^{m}\|=\max_{j\leq n}\|(a_{ij})_{i\leq m}\|_{q}^{q},

where in the last equality we used the first part of the Lemma. Since we clearly have

AA:p/2nq/2mmaxjn(aij2)imq/2=maxjn(aij)imq2,\|A\mathbin{\circ}A\colon\ell_{p/2}^{n}\to\ell_{q/2}^{m}\|\geq\max_{j\leq n}\|(a_{ij}^{2})_{i\leq m}\|_{q/2}=\max_{j\leq n}\|(a_{ij})_{i\leq m}\|_{q}^{2},

we thus obtain

AA:p/2nq/2m1/2=maxjn(aij)imq.\|A\mathbin{\circ}A\colon\ell_{p/2}^{n}\to\ell_{q/2}^{m}\|^{1/2}=\max_{j\leq n}\|(a_{ij})_{i\leq m}\|_{q}.\qed
Definition 2.2.

A set KnK\subset\mathbb{R}^{n} is called unconditional, if for every (xj)jnK(x_{j})_{j\leq n}\in K and every (εj)jn{1,1}n(\varepsilon_{j})_{j\leq n}\in\{-1,1\}^{n} we have (εjxj)jnK(\varepsilon_{j}x_{j})_{j\leq n}\in K.

We shall use the following version of [49, Lemma 2.1].

Lemma 2.3.

Assume that 1p1\leq p\leq\infty, nn\in\mathbb{N}, and define the convex set

Kconv{1|J|1/p(εj𝟏{jJ})j=1n:J{1,,n},J,(εj)j=1n{1,1}n}.K\coloneqq\operatorname{conv}\Bigl{\{}\frac{1}{|J|^{1/p}}\bigl{(}\varepsilon_{j}\mathbf{1}_{\{j\in J\}}\bigr{)}_{j=1}^{n}:J\subset\{1,\dots,n\},J\neq\emptyset,(\varepsilon_{j})_{j=1}^{n}\in\{-1,1\}^{n}\Bigr{\}}.

Then Bpnln(en)1/pKB_{p}^{n}\subset\ln(en)^{1/p^{*}}K.

Proof.

Fix a vector x=(x1,,xn)nx=(x_{1},\dots,x_{n})\in\mathbb{R}^{n}. We want to prove that xKln(en)1/pxp\|x\|_{K}\leq\ln(en)^{1/p^{*}}\|x\|_{p}, where

xK=inf{λ>0:xλK}\|x\|_{K}=\inf\{\lambda>0\colon x\in\lambda K\}

denotes the norm generated by KK, i.e., its Minkowski gauge. Since both KK and BpnB_{p}^{n} are permutationally invariant and unconditional (see Definition 2.2), we may and will assume that x1xn0x_{1}\geq\dots\geq x_{n}\geq 0. If we put xn+10x_{n+1}\coloneqq 0, then

x=j=1nxjej=j=1n(xjxj+1)(e1++ej).\displaystyle x=\sum_{j=1}^{n}x_{j}e_{j}=\sum_{j=1}^{n}(x_{j}-x_{j+1})(e_{1}+\dots+e_{j}).

Since e1++ejK=j1/p\|e_{1}+\dots+e_{j}\|_{K}=j^{1/p} for 1jn1\leq j\leq n,333Indeed, j1/p(e1++ej)Kj^{-1/p}(e_{1}+\dots+e_{j})\in K, so e1++ejKj1/p\|e_{1}+\dots+e_{j}\|_{K}\leq j^{1/p}; on the other hand, KBpnK\subset B_{p}^{n}, so e1++ejKe1++ejp=j1/p\|e_{1}+\dots+e_{j}\|_{K}\geq\|e_{1}+\dots+e_{j}\|_{p}=j^{1/p}. the triangle and Hölder inequalities yield

xK\displaystyle\|x\|_{K} j=1n(xjxj+1)j1/p=j=1nxj(j1/p(j1)1/p)\displaystyle\leq\sum_{j=1}^{n}(x_{j}-x_{j+1})j^{1/p}=\sum_{j=1}^{n}x_{j}(j^{1/p}-(j-1)^{1/p})
j=1nxjj1/p1xp(j=1n1j)1/pxpln(en)1/p,\displaystyle\leq\sum_{j=1}^{n}x_{j}j^{1/p-1}\leq\|x\|_{p}\Bigl{(}\sum_{j=1}^{n}\frac{1}{j}\Bigr{)}^{1/p^{*}}\leq\|x\|_{p}\ln(en)^{1/p^{*}},

where we also used the elementary estimates j1/p(j1)1/pj1p1j^{1/p}-(j-1)^{1/p}\leq j^{\frac{1}{p}-1} and j=1n1j1+1n1t𝑑t=ln(en)\sum_{j=1}^{n}\frac{1}{j}\leq 1+\int_{1}^{n}\frac{1}{t}dt=\ln(en). This completes the proof. ∎

Remark 2.4.

The term ln(en)1/p\ln(en)^{1/p^{*}} can be replaced by 1+1pln(en)1/p1+\frac{1}{p}\ln(en)^{1/p^{*}} by writing in the above proof

j=1nxj(j1/p(j1)1/p)\displaystyle\sum_{j=1}^{n}x_{j}(j^{1/p}-(j-1)^{1/p}) x1+1pj=2nxj(j1)1p1xp(1+1p(j=1n11j)1/p).\displaystyle\leq x_{1}+\frac{1}{p}\sum_{j=2}^{n}x_{j}(j-1)^{\frac{1}{p}-1}\leq\|x\|_{p}\Bigl{(}1+\frac{1}{p}\Bigl{(}\sum_{j=1}^{n-1}\frac{1}{j}\Bigr{)}^{1/p^{*}}\Bigr{)}.

Here we used the estimates j1/p(j1)1/p1p(j1)1p1j^{1/p}-(j-1)^{1/p}\leq\frac{1}{p}(j-1)^{\frac{1}{p}-1} for j>1j>1 (which follows from the concavity of the function tt1/pt\mapsto t^{1/p}) and the trivial one x1xpx_{1}\leq\|x\|_{p}.

Remark 2.5.

The constant (lnn)1/p(\ln n)^{1/p^{\ast}} in Lemma 2.3 is sharp up to a constant depending on pp for every 1p<1\leq p<\infty (when p=p=\infty, K=BpnK=B_{p}^{n} and the constant depending on pp degenerates as pp\to\infty). More precisely, we shall prove that if BpnC(p,n)KB_{p}^{n}\subset C(p,n)K, then C(p,n)p(lnn)1/pC(p,n)\gtrsim_{p}(\ln n)^{1/p^{\ast}}. Note that BpnC(p,n)KB_{p}^{n}\subset C(p,n)K if and only if

(2.1) pC(p,n)K,\|\cdot\|_{p^{\ast}}\leq C(p,n)\|\cdot\|_{K}^{\ast},

where K\|\cdot\|_{K}^{\ast} is norm dual to K\|\cdot\|_{K}.

Let ExtK\operatorname{Ext}K be the set of extreme points of KK, and let (yj)jn(y_{j}^{\downarrow{}})_{j\leq n} be the non-increasing rearrangement of (|yj|)jn(|y_{j}|)_{j\leq n}. For every yny\in\mathbb{R}^{n},

yK=supxKj=1nxjyj=supxExtKj=1nxjyj\displaystyle\|y\|_{K}^{\ast}=\sup_{x\in K}\sum_{j=1}^{n}x_{j}y_{j}=\sup_{x\in\operatorname{Ext}K}\sum_{j=1}^{n}x_{j}y_{j} =supJ[n],JjJ|yj|1|J|1/p\displaystyle=\sup_{J\subset[n],J\neq\emptyset}\sum_{j\in J}|y_{j}|\frac{1}{|J|^{1/p}}
=supknj=1kyj1k1/p.\displaystyle=\sup_{k\leq n}\sum_{j=1}^{k}y_{j}^{\downarrow{}}\frac{1}{k^{1/p}}.

Assume that p1p^{\ast}\neq 1 and put yjj1/py_{j}\coloneqq j^{-1/p^{\ast}}. We get

yK=supknj=1kj1/p1k1/ppsupknk11p1k1/p=1,\|y\|_{K}^{\ast}=\sup_{k\leq n}\sum_{j=1}^{k}j^{-1/p^{\ast}}\frac{1}{k^{1/p}}\asymp_{p}\sup_{k\leq n}k^{1-\frac{1}{p^{\ast}}}\frac{1}{k^{1/p}}=1,

whereas

yp=(j=1nj1)1/p(lnn)1/p,\|y\|_{p^{\ast}}=\Bigl{(}\sum_{j=1}^{n}j^{-1}\Bigr{)}^{1/p^{\ast}}\asymp(\ln n)^{1/p^{\ast}},

so inequality (2.1) yields that C(p,n)p(lnn)1/pC(p,n)\gtrsim_{p}(\ln n)^{1/p^{\ast}}.

We shall also need the following standard lemma (see, e.g., [41, Section 1.3]). We will use the versions with r=1r=1 and r=2r=2.

Lemma 2.6.

Let ZZ be a nonnegative random variable. If there exist a0a\geq 0, b,α,β,s0>0b,\alpha,\beta,s_{0}>0, and r1r\geq 1 such that

(Za+bs)αeβsrfor ss0,\mathbb{P}(Z\geq a+bs)\leq\alpha e^{-\beta s^{r}}\quad\text{for }s\geq s_{0},

then

𝔼Za+b(s0+αeβs0rrβs0r1).\mathbb{E}Z\leq a+b\Bigl{(}s_{0}+\alpha\frac{e^{-\beta s_{0}^{r}}}{r\beta s_{0}^{r-1}}\Bigr{)}.
Proof.

Integration by parts yields

𝔼Z\displaystyle\mathbb{E}Z a+bs0+a+bs0(Zu)𝑑u=a+bs0+bs0(Za+bs)𝑑s\displaystyle\leq a+bs_{0}+\int_{a+bs_{0}}^{\infty}\mathbb{P}(Z\geq u)du=a+bs_{0}+b\int_{s_{0}}^{\infty}\mathbb{P}(Z\geq a+bs)ds
a+bs0+bαs0eβsr𝑑s\displaystyle\leq a+bs_{0}+b\alpha\int_{s_{0}}^{\infty}e^{-\beta s^{r}}ds
a+bs0+bαrβs0r1s0rβsr1eβsr𝑑s=a+b(s0+αeβs0rrβs0r1).\displaystyle\leq a+bs_{0}+\frac{b\alpha}{r\beta s_{0}^{r-1}}\int_{s_{0}}^{\infty}r\beta s^{r-1}e^{-\beta s^{r}}ds=a+b\Bigl{(}s_{0}+\alpha\frac{e^{-\beta s_{0}^{r}}}{r\beta s_{0}^{r-1}}\Bigr{)}.\qed

2.2. Contraction principles

Below we recall the well-known contraction principle due to Kahane and its extension by Talagrand (see, e.g., [64, Exercise 6.7.7] and [43, Theorem 4.4 and the proof of Theorem 4.12]).

Lemma 2.7 (Contraction principle).

Let (X,)(X,\|\cdot\|) be a normed space, nn\in\mathbb{N}, and ρ1\rho\geq 1. Assume that x1,,xnXx_{1},\dots,x_{n}\in X and α(α1,,αn)n\alpha\coloneqq(\alpha_{1},\dots,\alpha_{n})\in\mathbb{R}^{n}. Then, if ε1,,εn\varepsilon_{1},\dots,\varepsilon_{n} are independent Rademacher random variables, we have

𝔼i=1nαiεixiραρ𝔼i=1nεixiρ.\mathbb{E}\bigl{\|}\sum_{i=1}^{n}\alpha_{i}\varepsilon_{i}x_{i}\bigr{\|}^{\rho}\leq\|\alpha\|_{\infty}^{\rho}\,\mathbb{E}\bigl{\|}\sum_{i=1}^{n}\varepsilon_{i}x_{i}\bigr{\|}^{\rho}.
Lemma 2.8 (Contraction principle).

Let TT be a bounded subset of n\mathbb{R}^{n}. Assume that φi:\varphi_{i}:\mathbb{R}\to\mathbb{R} are 11-Lipschitz and φi(0)=0\varphi_{i}(0)=0 for i=1,,ni=1,\ldots,n. Then, if ε1,,εn\varepsilon_{1},\dots,\varepsilon_{n} are independent Rademacher random variables, we have

𝔼suptTi=1nεiφi(ti)𝔼suptTi=1nεiti.\mathbb{E}\sup_{t\in T}\sum_{i=1}^{n}\varepsilon_{i}\varphi_{i}(t_{i})\leq\mathbb{E}\sup_{t\in T}\sum_{i=1}^{n}\varepsilon_{i}t_{i}.

2.3. Gaussian random variables

The following result is fundamental to the theory of Gaussian processes and referred to as Slepian’s inequality or Slepian’s lemma [52]. We use the following (slightly adapted) version taken from [11, Theorem 13.3].

Lemma 2.9 (Slepian’s lemma).

Let (Xt)tT(X_{t})_{t\in T} and (Yt)tT(Y_{t})_{t\in T} be two Gaussian random vectors satisfying 𝔼[Xt]=𝔼[Yt]\mathbb{E}[X_{t}]=\mathbb{E}[Y_{t}] for all tTt\in T. Assume that, for all s,tTs,t\in T, we have 𝔼[(XsXt)2]𝔼[(YsYt)2]\mathbb{E}[(X_{s}-X_{t})^{2}]\leq\mathbb{E}[(Y_{s}-Y_{t})^{2}]. Then

𝔼suptTXt𝔼suptTYt.\mathbb{E}\sup_{t\in T}X_{t}\leq\mathbb{E}\sup_{t\in T}Y_{t}.

The next lemma is folklore. We include a short proof of an estimate with specific constants for the sake of completeness.

Lemma 2.10.

Assume that k2k\geq 2 and let gig_{i}, iki\leq k, be standard Gaussian random variables (not necessarily independent). Then

𝔼max1ikgi\displaystyle\mathbb{E}\max_{1\leq i\leq k}g_{i} 2lnk,\displaystyle\leq\sqrt{2\ln k},
𝔼max1ik|gi|\displaystyle\mathbb{E}\max_{1\leq i\leq k}|g_{i}| 2lnk.\displaystyle\leq 2\sqrt{\ln k}.
Proof.

Since the moment generating function of a Gaussian random variable is given by 𝔼etg1=et2/2\mathbb{E}e^{tg_{1}}=e^{t^{2}/2}, it follows from Jensen’s inequality that

𝔼maxikgi\displaystyle\mathbb{E}\max_{i\leq k}g_{i} 1tln(𝔼exp(tmaxikgi))\displaystyle\leq\frac{1}{t}\ln\bigl{(}\mathbb{E}\exp(t\max_{i\leq k}g_{i})\bigr{)}
1tln(𝔼i=1kexp(tgi))=1tln(ket2/2)=lnkt+t2.\displaystyle\leq\frac{1}{t}\ln\bigl{(}\mathbb{E}\sum_{i=1}^{k}\exp(tg_{i})\bigr{)}=\frac{1}{t}\ln\bigl{(}ke^{t^{2}/2}\bigr{)}=\frac{\ln k}{t}+\frac{t}{2}.

By taking t=2lnkt=\sqrt{2\ln k}, we get the first assertion. We apply this inequality with random variables g1,g1,,gk,gkg_{1},-g_{1},\ldots,g_{k},-g_{k} to get the second assertion, namely

𝔼maxik|gi|=𝔼maxikmax{gi,gi}2ln(2k)2ln(k2)=2lnk.\mathbb{E}\max_{i\leq k}|g_{i}|=\mathbb{E}\max_{i\leq k}\max\{g_{i},-g_{i}\}\leq\sqrt{2\ln(2k)}\leq\sqrt{2\ln(k^{2})}=2\sqrt{\ln k}.\qed

The next two lemmas are taken from [61]. Recall that b1bnb_{1}^{\downarrow{}}\geq\ldots\geq b_{n}^{\downarrow{}} is the non-increasing rearrangement of (|bj|)jn(|b_{j}|)_{j\leq n}.

Lemma 2.11 ([61, Lemma 2.3]).

Assume that (bj)jnn(b_{j})_{j\leq n}\in\mathbb{R}^{n} and let (Xj)jn(X_{j})_{j\leq n} be random variables (not necessarily independent) satisfying

(|Xj|>t)Ket2/bj2for all t0,jn.\mathbb{P}(|X_{j}|>t)\leq Ke^{-t^{2}/b_{j}^{2}}\qquad\text{for all }t\geq 0,\ j\leq n.

Then

𝔼maxjn|Xj|Kmaxjnbjln(j+1).\mathbb{E}\max_{j\leq n}|X_{j}|\lesssim_{K}\max_{j\leq n}b_{j}^{\downarrow{}}\sqrt{\ln(j+1)}.
Lemma 2.12 ([61, Lemma 2.4]).

Assume that (bj)jnn(b_{j})_{j\leq n}\in\mathbb{R}^{n} and let (Xj)jn(X_{j})_{j\leq n} be independent random variables with Xj𝒩(0,bj2)X_{j}\sim\mathcal{N}(0,b_{j}^{2}) for jnj\leq n. Then

𝔼maxjn|Xj|maxjnbjln(j+1).\mathbb{E}\max_{j\leq n}|X_{j}|\gtrsim\max_{j\leq n}b_{j}^{\downarrow{}}\sqrt{\ln(j+1)}.
Lemma 2.13 (Hoeffding’s inequality, [32, Theorem 2]).

Assume that (bj)jnn(b_{j})_{j\leq n}\in\mathbb{R}^{n} and let XjX_{j}, jnj\leq n, be independent mean-zero random variables such that |Xj|1|X_{j}|\leq 1 a.s. Then, for all t0t\geq 0,

(|j=1nbjXj|t)2exp(t22j=1nbj2).\mathbb{P}\bigl{(}\bigl{|}\sum_{j=1}^{n}b_{j}X_{j}\bigr{|}\geq t\bigr{)}\leq 2\exp\Bigl{(}-\frac{t^{2}}{2\sum_{j=1}^{n}b_{j}^{2}}\Bigr{)}.

2.4. Random variables with heavy tails

The following lemma is a special case of [34, Theorem 1].

Lemma 2.14 (Contraction principle).

Let K,L>0K,L>0 and assume that (ηi)in(\eta_{i})_{i\leq n} and (ξi)in(\xi_{i})_{i\leq n} are two sequences of independent symmetric random variables satisfying for every ini\leq n and t0t\geq 0,

(|ηi|t)K(L|ξi|t).\mathbb{P}(|\eta_{i}|\geq t)\leq K\mathbb{P}(L|\xi_{i}|\geq t).

Then, for every convex function φ\varphi and every a1,,ana_{1},\ldots,a_{n}\in\mathbb{R},

𝔼φ(i=1naiηi)𝔼φ(KLi=1naiξi).\mathbb{E}\varphi\Big{(}\sum_{i=1}^{n}a_{i}\eta_{i}\Big{)}\leq\mathbb{E}\varphi\Big{(}KL\sum_{i=1}^{n}a_{i}\xi_{i}\Big{)}.
Lemma 2.15 ([31, Theorem 6.2]).

Assume that Z1,,ZnZ_{1},\dots,Z_{n} are independent symmetric Weibull random variables with shape parameter r(0,1]r\in(0,1] and scale parameter 11, i.e., (|Zi|t)=etr\mathbb{P}(|Z_{i}|\geq t)=e^{-t^{r}} for t0t\geq 0. Then, for every ρ2\rho{}\geq 2 and ana\in\mathbb{R}^{n},

i=1naiZiρmax{ρa2Z12,aρZ1ρ}.\Bigl{\|}\sum_{i=1}^{n}a_{i}Z_{i}\Bigr{\|}_{\rho{}}\asymp\max\bigl{\{}\sqrt{\rho{}}\|a\|_{2}\|Z_{1}\|_{2},\|a\|_{\rho{}}\|Z_{1}\|_{\rho{}}\bigr{\}}.
Remark 2.16 (Moments of Weibull random variables).

Note that if ZZ is a symmetric random variable such that (|Z|t)=etr\mathbb{P}(|Z|\geq t)=e^{-t^{r}}, r(0,2]r\in(0,2], then Y=|Z|rsgn(Z)Y=|Z|^{r}\operatorname{sgn}(Z) has (symmetric) exponential distribution with parameter 11, so by Stirling’s formula we obtain, for all ρ1\rho\geq 1,

Zρ=Yρ/r1/r=Γ(ρr+1)1/ρ(Cr)1r+12ρρ1/r(Cr)1r+12ρ,1/r\|Z\|_{\rho{}}=\|Y\|_{\rho{}/r}^{1/r}=\Gamma\Bigl{(}\frac{\rho{}}{r}+1\Bigr{)}^{1/{\rho{}}}\leq\Bigl{(}\frac{C}{r}\Bigr{)}^{\frac{1}{r}+\frac{1}{2\rho{}}}\rho{}^{1/r}\leq\Bigl{(}\frac{C}{r}\Bigr{)}^{\frac{1}{r}+\frac{1}{2}}\rho{}^{1/r},

with C1C\geq 1.

The three previous results easily imply the following estimate for integral norms of linear combinations of independent ψr\psi_{r} random variables.

Proposition 2.17.

Let K,L>0K,L>0, r(0,1]r\in(0,1] and assume that Z1,,ZnZ_{1},\dots,Z_{n} are independent symmetric random variables satisfying (|Zi|t)Ketr/L\mathbb{P}(|Z_{i}|\geq t)\leq Ke^{-t^{r}/L} for all t0t\geq 0 and ini\leq n. Then, for every ρ2\rho{}\geq 2 and ana\in\mathbb{R}^{n},

i=1naiZiρ\displaystyle\Bigl{\|}\sum_{i=1}^{n}a_{i}Z_{i}\Bigr{\|}_{\rho{}} (C/r)1r+12KL1/rmax{ρa2,ρ1/raρ}\displaystyle\lesssim(C/r)^{\frac{1}{r}+\frac{1}{2}}KL^{1/r}\max\bigl{\{}\sqrt{\rho{}}\|a\|_{2},\rho{}^{1/r}\|a\|_{\rho{}}\bigr{\}}
(C/r)1r+12KL1/rmax{ρa2,ρ1/ra}.\displaystyle\lesssim(C^{\prime}/r)^{\frac{1}{r}+\frac{1}{2}}KL^{1/r}\max\bigl{\{}\sqrt{\rho{}}\|a\|_{2},\rho{}^{1/r}\|a\|_{\infty}\bigr{\}}.
Proof.

The first inequality is an immediate consequence of Lemma 2.14 (applied with ηi=Zi\eta_{i}=Z_{i}, independent Weibull variables ξi\xi_{i} with shape parameter rr and scale parameter 11, and with the convex function φ:t|t|ρ\varphi:t\mapsto|t|^{\rho}), Lemma 2.15, and Remark 2.16. The second inequality follows from

aρa22/ρa12/ρ\displaystyle\|a\|_{\rho{}}\leq\|a\|_{2}^{2/\rho{}}\|a\|_{\infty}^{1-2/{\rho{}}} =ρ2ρrρa1/r22/ρa12/ρ\displaystyle=\rho{}^{\frac{2}{\rho{}r}}\|\rho{}^{-1/r}a\|_{2}^{2/\rho{}}\|a\|_{\infty}^{1-2/{\rho{}}}
ρ2ρr(2ρ1+1/ra2+(12/ρ)a),\displaystyle\leq{\rho{}}^{\frac{2}{\rho{}r}}\Bigl{(}\frac{2}{\rho{}^{1+1/r}}\|a\|_{2}+\Bigl{(}1-2/{\rho{}}\Bigr{)}\|a\|_{\infty}\Bigr{)},

where in the last step we used the inequality between weighted arithmetic and geometric means. ∎

The next lemma is standard and provides us with several equivalent formulations of the ψr\psi_{r} property expressed through tail bounds, growth of moments, and the exponential moments, respectively. We provide a brief proof, since in the literature one usually finds versions for r1r\geq 1 only.

Lemma 2.18.

Assume that r(0,2]r\in(0,2]. Let ZZ be a non-negative random variable. The following conditions are equivalent:

  1. (i)

    There exist K1,L1>0K_{1},L_{1}>0 such that

    (Zt)K1etr/L1for all t0.\mathbb{P}(Z\geq t)\leq K_{1}e^{-t^{r}/L_{1}}\quad\text{for all }t\geq 0.
  2. (ii)

    There exists K2K_{2} such that

    ZρK2ρ1/rfor all ρ1.\|Z\|_{\rho{}}\leq K_{2}\rho{}^{1/r}\quad\text{for all }\rho{}\geq 1.
  3. (iii)

    There exist K3,u>0K_{3},u>0 such that

    𝔼exp(uZr)K3.\mathbb{E}\exp(uZ^{r})\leq K_{3}.

Here, i implies ii with K2=C(r)K1L11/rK_{2}=C(r)K_{1}L_{1}^{1/r}, ii implies iii with K3=1+e(2er)1K_{3}=1+e^{(2er)^{-1}}, u=(2erK2r)1u=(2erK_{2}^{r})^{-1}, and iii implies i with K1=K3K_{1}=K_{3}, L1=u1L_{1}=u^{-1}.

Proof.

Property i implies ii by Lemma 2.14 (applied with n=1n=1, η1=Z\eta_{1}=Z and an independent Weibull variable ξ1\xi_{1} with parameter rr) and Remark 2.16. Property iii implies i by Chebyshev’s inequality:

(Zt)=(exp(uZr)exp(utr))K3exp(utr).\mathbb{P}(Z\geq t)=\mathbb{P}\bigl{(}\exp(uZ^{r})\geq\exp(ut^{r})\bigr{)}\leq K_{3}\exp(-ut^{r}).

Assume now that ii holds and denote k0=1rk_{0}=\lfloor\frac{1}{r}\rfloor. Then, for every k[1,k0]k\in[1,k_{0}], we have kr1kr\leq 1 and

𝔼Zkr(𝔼Z)krK2kr,\mathbb{E}Z^{kr}\leq(\mathbb{E}Z\bigr{)}^{kr}\leq K_{2}^{kr},

while for kk0+1k\geq k_{0}+1, we have kr1kr\geq 1 and, hence, property ii yields

𝔼ZkrK2kr(kr)k.\mathbb{E}Z^{kr}\leq K_{2}^{kr}(kr)^{k}.

Hence, by Stirling’s formula we have for u=(2erK2r)1u=(2erK_{2}^{r})^{-1},

𝔼exp(uZr)\displaystyle\mathbb{E}\exp(uZ^{r}) =1+k=1k0uk𝔼Zkrk!+k=k0+1uk𝔼Zkrk!\displaystyle=1+\sum_{k=1}^{k_{0}}\frac{u^{k}\mathbb{E}Z^{kr}}{k!}+\sum_{k=k_{0}+1}^{\infty}\frac{u^{k}\mathbb{E}Z^{kr}}{k!}
1+k=1k0ukK2krk!+k=k0+1ukK2kr(kr)k(k/e)k\displaystyle\leq 1+\sum_{k=1}^{k_{0}}\frac{u^{k}K_{2}^{kr}}{k!}+\sum_{k=k_{0}+1}^{\infty}\frac{u^{k}K_{2}^{kr}(kr)^{k}}{\bigl{(}k/e\bigr{)}^{k}}
=1+k=1k0ukK2krk!+k=k0+12keuK2r+1.\displaystyle=1+\sum_{k=1}^{k_{0}}\frac{u^{k}K_{2}^{kr}}{k!}+\sum_{k=k_{0}+1}^{\infty}2^{-k}\leq e^{uK_{2}^{r}}+1.\qed

The next lemma states that a linear combination of independent ψr\psi_{r} random variables is a ψr\psi_{r} random variable.

Lemma 2.19.

Assume that u>0u>0, r(0,2]r\in(0,2], and let (Zi)ik(Z_{i})_{i\leq k} be independent symmetric random variables satisfying (|Zi|t)Ketr/L\mathbb{P}(|Z_{i}|\geq t)\leq Ke^{-t^{r}/L} for all t0t\geq 0. Then for every aka\in\mathbb{R}^{k} the random variable Ya21i=1kaiZiY\coloneqq\|a\|_{2}^{-1}\sum_{i=1}^{k}a_{i}Z_{i} satisfies, for all t0t\geq 0,

(|Y|t)Ketr/L,\mathbb{P}(|Y|\geq t)\leq K^{\prime}e^{-t^{r}/L^{\prime}},

where KK^{\prime}, LL^{\prime} depend only on KK, LL, and rr.

Proof.

The case r1r\geq 1 is standard (see, e.g., [14, Theorem 1.2.5]), therefore we skip a proof in this case (however, in order to prove the lemma in the case r1r\geq 1 it suffices to use the result of Gluskin and Kwapień [19] (together with Lemma 2.14) instead of Lemma 2.15 in the proof below).

Assume that r(0,1]r\in(0,1] and recall that Y=a21i=1kaiZiY=\|a\|_{2}^{-1}\sum_{i=1}^{k}a_{i}Z_{i}. By Proposition 2.17,

YρK,L,rmax{ρ,ρ}1/r=ρ1/rfor all ρ1.\|Y\|_{\rho{}}\lesssim_{K,L,r}\max\{\sqrt{\rho{}},\rho{}^{1/r}\}=\rho{}^{1/r}\qquad\text{for all }\rho{}\geq 1.

Hence, Lemma 2.18 yields the assertion. ∎

Lemma 2.20.

Assume that r(0,2]r\in(0,2], 1s1r12\frac{1}{s}\coloneqq\frac{1}{r}-\frac{1}{2}, YY is a non-negative random variable such that (Yt)=ets\mathbb{P}(Y\geq t)=e^{-t^{s}} for all t0t\geq 0, and g𝒩(0,1)g\sim\mathcal{N}(0,1) is independent of YY. Then, for every t0t\geq 0,

(|g|Yt)ce4tr,\mathbb{P}\bigl{(}|g|Y\geq t\bigr{)}\geq ce^{-4t^{r}},

where c:=2/πe2c:=\sqrt{2/\pi}e^{-2}.

Proof.

In the case r=2r=2 we have s=s=\infty and then Y=1Y=1 almost surely and the assertion is trivial. Assume now that r<2r<2. By our assumptions r=2s2+sr=\frac{2s}{2+s}. Let x0(2ts)1/(2+s)x_{0}\coloneqq(2t^{s})^{1/(2+s)}. Note that xx0x\geq x_{0} is equivalent to tsxsx22\frac{t^{s}}{x^{s}}\leq\frac{x^{2}}{2}. Thus,

(|g|Yt)\displaystyle\mathbb{P}\bigl{(}|g|Y\geq t\bigr{)} =𝔼ets|g|s=2π0etsxsx22𝑑x2πx0x0+1etsxsx22𝑑x\displaystyle=\mathbb{E}e^{-\frac{t^{s}}{|g|^{s}}}=\sqrt{\frac{2}{\pi}}\int_{0}^{\infty}e^{-\frac{t^{s}}{x^{s}}-\frac{x^{2}}{2}}dx\geq\sqrt{\frac{2}{\pi}}\int_{x_{0}}^{x_{0}+1}e^{-\frac{t^{s}}{x^{s}}-\frac{x^{2}}{2}}dx
2πx0x0+1ex2𝑑x2πe(x0+1)22πe2(x02+1)\displaystyle\geq\sqrt{\frac{2}{\pi}}\int_{x_{0}}^{x_{0}+1}e^{-x^{2}}dx\geq\sqrt{\frac{2}{\pi}}e^{-(x_{0}+1)^{2}}\geq\sqrt{\frac{2}{\pi}}e^{-2(x_{0}^{2}+1)}
=ce2x02ce4t2s/(2+s)=ce4tr,\displaystyle=ce^{-2x_{0}^{2}}\geq ce^{-4t^{2s/(2+s)}}=ce^{-4t^{r}},

where we used 22/(2+s)22^{{2/(2+s)}}\leq 2 and chose c2/πe2c\coloneqq\sqrt{2/\pi}e^{-2}. ∎

Lemma 2.21.

Assume that K,L>0K,L>0, r(0,2]r\in(0,2] and that ZZ is a random variable satisfying (|Z|t)Ketr/L\mathbb{P}(|Z|\geq t)\leq Ke^{-t^{r}/L} for all t0t\geq 0. Let YY, gg, and c=2/πe2c=\sqrt{2/\pi}e^{-2} be as in Lemma 2.20. Then there exist random variables U|Z|U\sim|Z| and V|g|YV\sim|g|Y such that

U(8L)1/r((ln(K/c)4)1/r+V)a.s.U\leq(8L)^{1/r}\Bigl{(}\Bigl{(}\frac{\ln(K/c)}{4}\Bigr{)}^{1/r}+V\Bigr{)}\quad\text{a.s.}
Proof.

For t=0t=0 we have 1=(|Z|0)K1=\mathbb{P}(|Z|\geq 0)\leq K, so K1K\geq 1, and thus ln(K/c)=ln(Ke2π/2)>0\ln(K/c)=\ln(Ke^{2}\sqrt{\pi/2})>0. We use our assumptions, the inequality (a+b)r(ar+br)/2(a+b)^{r}\geq(a^{r}+b^{r})/2, and Lemma 2.20 to obtain for any t0t\geq 0,

((8L)1/r|Z|t+(ln(K/c)/4)1/r)\displaystyle\mathbb{P}\Bigl{(}(8L)^{-1/r}|Z|\geq t+\bigl{(}\ln(K/c)/4\bigr{)}^{1/r}\Bigr{)} Kexp(8[t+(ln(K/c)/4)1/r]r)\displaystyle\leq K\exp\Bigl{(}-8\Bigl{[}t+\bigl{(}\ln(K/c)/4\bigr{)}^{1/r}\Bigr{]}^{r}\Bigr{)}
Kexp(4(tr+ln(K/c)/4))=ce4tr\displaystyle\leq K\exp\Bigl{(}-4\bigl{(}t^{r}+\ln(K/c)/4\bigr{)}\Bigr{)}=ce^{-4t^{r}}
(|g|Yt).\displaystyle\leq\mathbb{P}\bigl{(}|g|Y\geq t\bigr{)}.

Consider the version UU of |Z||Z| and the version VV of |g|Y|g|Y defined on the (common) probability space (0,1)(0,1) equipped with Lebesgue measure, constructed as the (generalised) inverses of cumulative distribution functions of |Z||Z| and |g|Y|g|Y, respectively. Then (8L)1/rU(ln(K/c)/4)1/rV(8L)^{-1/r}U-\bigl{(}\ln(K/c)/4\bigr{)}^{1/r}\leq V, which implies the assertion. ∎

Lemma 2.22.

Let K,L>0K,L>0, r(0,2]r\in(0,2] and k3k\geq 3, and assume that (Zi)ik(Z_{i})_{i\leq k}, are random variables satisfying (|Zi|t)Ketr/L\mathbb{P}(|Z_{i}|\geq t)\leq Ke^{-t^{r}/L} for all t0t\geq 0. Then

(maxik|Zi|(vLlnk)1/r)Kkv+1eKevfor every v1\mathbb{P}\bigl{(}\max_{i\leq k}|Z_{i}|\geq(vL\ln k)^{1/r}\bigr{)}\leq Kk^{-v+1}\leq eKe^{-v}\qquad\text{for every }v\geq 1

and

𝔼maxik|Zi|(LKrr1lnk)1/rr,K,L(lnk)1/r.\mathbb{E}\max_{i\leq k}|Z_{i}|\lesssim\bigl{(}LK^{r}r^{-1}\ln k\bigr{)}^{1/r}\lesssim_{r,K,L}(\ln k)^{1/r}.
Proof.

By a union bound and the assumptions we get, for every v1v\geq 1,

(maxik|Zi|(vLlnk)1/r)\displaystyle\mathbb{P}\bigl{(}\max_{i\leq k}|Z_{i}|\geq(vL\ln k)^{1/r}\bigr{)} i=1k(|Zi|(vLlnk)1/r)kKevlnk\displaystyle\leq\sum_{i=1}^{k}\mathbb{P}\bigl{(}|Z_{i}|\geq(vL\ln k)^{1/r}\bigr{)}\leq k\cdot Ke^{-v\ln k}
=Ke(v1)lnk=Kkv+1eKev,\displaystyle=Ke^{-(v-1)\ln k}=Kk^{-v+1}\leq eKe^{-v},

where we used k3k\geq 3 in the last step. We integrate by parts, change the variables, and use the above bound to obtain the second part of the assertion, i.e.,

𝔼maxik|Zi|\displaystyle\mathbb{E}\max_{i\leq k}|Z_{i}| =0(maxik|Zi|u)𝑑u(Llnk)1/r+(Llnk)1/r(maxik|Zi|u)𝑑u\displaystyle=\int_{0}^{\infty}\mathbb{P}\bigl{(}\max_{i\leq k}|Z_{i}|\geq u\bigr{)}du\leq(L\ln k)^{1/r}+\int_{(L\ln k)^{1/r}}^{\infty}\mathbb{P}\bigl{(}\max_{i\leq k}|Z_{i}|\geq u\bigr{)}du
=(Llnk)1/r+(Llnk)1/rr1v1r1(maxik|Zi|(vLlnk)1/r)𝑑v\displaystyle=(L\ln k)^{1/r}+\frac{(L\ln k)^{1/r}}{r}\int_{1}^{\infty}v^{\frac{1}{r}-1}\mathbb{P}\bigl{(}\max_{i\leq k}|Z_{i}|\geq(vL\ln k)^{1/r}\bigr{)}dv
(Llnk)1/r(1+eKr1v1r1ev𝑑v)\displaystyle\leq(L\ln k)^{1/r}\Bigl{(}1+\frac{eK}{r}\int_{1}^{\infty}v^{\frac{1}{r}-1}e^{-v}dv\Bigr{)}
(Llnk)1/r(1+eKΓ(1r+1)).\displaystyle\leq(L\ln k)^{1/r}\Bigl{(}1+eK\ \Gamma\Bigl{(}\frac{1}{r}+1\Bigr{)}\Bigr{)}.\qed

3. Proofs of the main results

After the preparation in the previous section, we shall now present the proofs of our main results.

3.1. General bound via Slepian’s lemma

In order to obtain Theorem 1.3 we first prove its weaker version, for p=p=\infty and q=1q=1 only. After that we shall use the polytope KK from Lemma 2.3 and the Gaussian concentration to see how Proposition 3.1 implies the general bound. The proof of this proposition relies on the symmetrization together with the contraction principle, which allow us to get rid of yiy_{i} and xjx_{j}, and make use of Slepian’s lemma.

Proposition 3.1.

Assume that G=(gij)im,jnG=(g_{ij})_{i\leq m,j\leq n} has i.i.d. standard Gaussian entries and kmk\leq m, lnl\leq n. Then

𝔼supI,JsupyBmsupxBniI,jJyiaijgijxj\displaystyle\mathbb{E}\sup_{I,J}\sup_{y\in B_{\infty}^{m}}\sup_{x\in B_{\infty}^{n}}\sum_{i\in I,j\in J}y_{i}a_{ij}g_{ij}x_{j} (8lnm+2/π)supI,JiIjJaij2\displaystyle\leq\bigl{(}8\sqrt{\ln m}+\sqrt{2/\pi}\bigr{)}\sup_{I,J}\sum_{i\in I}\sqrt{\sum_{j\in J}a_{ij}^{2}}
+(8lnn+22/π)supI,JjJiIaij2,\displaystyle\qquad+\bigl{(}8\sqrt{\ln n}+2\sqrt{2/\pi}\bigr{)}\sup_{I,J}\sum_{j\in J}\sqrt{\sum_{i\in I}a_{ij}^{2}},

where the suprema are taken over all sets I{1,,m}I\subset\{1,\ldots,m\}, J{1,,n}J\subset\{1,\ldots,n\} such that |I|=k|I|=k, |J|=l|J|=l.

Proof.

Throughout the proof, kmk\leq m and lnl\leq n are fixed and the suprema are taken over all index sets satisfying I{1,,m}I\subset\{1,\ldots,m\}, |I|=k|I|=k and J{1,,n}J\subset\{1,\ldots,n\}, |J|=l|J|=l.

Let us denote by (g~ij)im,jn(\widetilde{g}_{ij})_{i\leq m,j\leq n} an independent copy of (gij)im,jn(g_{ij})_{i\leq m,j\leq n}. Using the duality (1m)=m(\ell_{1}^{m})^{*}=\ell_{\infty}^{m}, centering the expression, noticing that jJaijg~ijxj\sum_{j\in J}a_{ij}\widetilde{g}_{ij}x_{j} is a Gaussian random variable with variance jJaij2xj2\sqrt{\sum_{j\in J}a_{ij}^{2}x_{j}^{2}}, and using Jensen’s inequality, we see that

𝔼supI,J\displaystyle\mathbb{E}\sup_{I,J} supxBnsupyBmiI,jJyiaijgijxj=𝔼supI,JsupxBniI|jJaijgijxj|\displaystyle\sup_{x\in B_{\infty}^{n}}\sup_{y\in B_{\infty}^{m}}\sum_{i\in I,j\in J}y_{i}a_{ij}g_{ij}x_{j}=\mathbb{E}\sup_{I,J}\sup_{x\in B_{\infty}^{n}}\sum_{i\in I}\Bigl{|}\sum_{j\in J}a_{ij}g_{ij}x_{j}\Bigr{|}
𝔼supI,JsupxBniI(|jJaijgijxj|𝔼|jJaijg~ijxj|)+supI,JsupxBniI𝔼|jJaijg~ijxj|\displaystyle\leq\mathbb{E}\sup_{I,J}\sup_{x\in B_{\infty}^{n}}\sum_{i\in I}\Bigl{(}\Bigl{|}\sum_{j\in J}a_{ij}g_{ij}x_{j}\Bigr{|}-\mathbb{E}\Bigl{|}\sum_{j\in J}a_{ij}\widetilde{g}_{ij}x_{j}\Bigr{|}\Bigr{)}+\sup_{I,J}\sup_{x\in B_{\infty}^{n}}\sum_{i\in I}\mathbb{E}\Bigl{|}\sum_{j\in J}a_{ij}\widetilde{g}_{ij}x_{j}\Bigr{|}
=𝔼supI,JsupxBniI(|jJaijgijxj|𝔼|jJaijg~ijxj|)+supI,JsupxBniIjJaij2xj2𝔼|g|\displaystyle=\mathbb{E}\sup_{I,J}\sup_{x\in B_{\infty}^{n}}\sum_{i\in I}\Bigl{(}\Bigl{|}\sum_{j\in J}a_{ij}g_{ij}x_{j}\Bigr{|}-\mathbb{E}\Bigl{|}\sum_{j\in J}a_{ij}\widetilde{g}_{ij}x_{j}\Bigr{|}\Bigr{)}+\sup_{I,J}\sup_{x\in B_{\infty}^{n}}\sum_{i\in I}\sqrt{\sum_{j\in J}a_{ij}^{2}x_{j}^{2}}\mathbb{E}|g|
(3.1) 𝔼supI,JsupxBniI(|jJaijgijxj||jJaijg~ijxj|)+2πsupI,JiIjJaij2.\displaystyle\leq\mathbb{E}\sup_{I,J}\sup_{x\in B_{\infty}^{n}}\sum_{i\in I}\Bigl{(}\Bigl{|}\sum_{j\in J}a_{ij}g_{ij}x_{j}\Bigr{|}-\Bigl{|}\sum_{j\in J}a_{ij}\widetilde{g}_{ij}x_{j}\Bigr{|}\Bigr{)}+\sqrt{\frac{2}{\pi}}\sup_{I,J}\sum_{i\in I}\sqrt{\sum_{j\in J}a_{ij}^{2}}.

To estimate the expected value on the right-hand side, we use a symmetrization trick together with the contraction principle (Lemma 2.8). Let (εi)im(\varepsilon_{i})_{i\leq m} be a sequence of independent Rademacher random variables independent of all others. Since the random vectors

Zi=(𝟏{iI}(|jJaijgijxj||jJaijg~ijxj|))I[m],J[n],xBnZ_{i}=\Bigl{(}\mathbf{1}_{\{i\in I\}}\Bigl{(}\bigl{|}\sum_{j\in J}a_{ij}g_{ij}x_{j}\bigr{|}-\bigl{|}\sum_{j\in J}a_{ij}\widetilde{g}_{ij}x_{j}\bigr{|}\Bigr{)}\Bigr{)}_{I\subset[m],J\subset[n],x\in B_{\infty}^{n}}

(where imi\leq m) are independent and symmetric, (Zi)im(Z_{i})_{i\leq m} has the same distribution as (εiZi)im(\varepsilon_{i}Z_{i})_{i\leq m}. Therefore,

𝔼supI,JsupxBniI(|jJaijgijxj||jJaijg~ijxj|)\displaystyle\mathbb{E}\sup_{I,J}\sup_{x\in B_{\infty}^{n}}\sum_{i\in I}\Bigl{(}\Bigl{|}\sum_{j\in J}a_{ij}g_{ij}x_{j}\Bigr{|}-\Bigl{|}\sum_{j\in J}a_{ij}\widetilde{g}_{ij}x_{j}\Bigr{|}\Bigr{)}
=𝔼supI,JsupxBniIεi(|jJaijgijxj||jJaijg~ijxj|)\displaystyle=\mathbb{E}\sup_{I,J}\sup_{x\in B_{\infty}^{n}}\sum_{i\in I}\varepsilon_{i}\Bigl{(}\Bigl{|}\sum_{j\in J}a_{ij}g_{ij}x_{j}\Bigr{|}-\Bigl{|}\sum_{j\in J}a_{ij}\widetilde{g}_{ij}x_{j}\Bigr{|}\Bigr{)}
2𝔼supI,JsupxBniIεi|jJaijgijxj|\displaystyle\leq 2\mathbb{E}\sup_{I,J}\sup_{x\in B_{\infty}^{n}}\sum_{i\in I}\varepsilon_{i}\Bigl{|}\sum_{j\in J}a_{ij}g_{ij}x_{j}\Bigr{|}
(3.2) =2𝔼supI,JsupxBni=1mεi|jJaijgijxj𝟏{iI}|.\displaystyle=2\mathbb{E}\sup_{I,J}\sup_{x\in B_{\infty}^{n}}\sum_{i=1}^{m}\varepsilon_{i}\Bigl{|}\sum_{j\in J}a_{ij}g_{ij}x_{j}\mathbf{1}_{\{i\in I\}}\Bigr{|}.

Applying (conditionally, with the values of gijg_{ij}’s fixed) the contraction principle (i.e., Lemma 2.8) with the set

T={(jJaijgijxj𝟏{iI})im:I[m],|I|=k,J[n],|J|=l,xBn}T=\biggl{\{}\Bigl{(}\sum_{j\in J}a_{ij}g_{ij}x_{j}\mathbf{1}_{\{i\in I\}}\Bigr{)}_{i\leq m}\colon I\subset[m],|I|=k,J\subset[n],|J|=l,x\in B_{\infty}^{n}\biggr{\}}

and the function u|u|u\mapsto|u| (which is 1-Lipschitz and takes the value 0 at the origin), we get

𝔼supI,JsupxBni=1mεi|jJaijgijxj𝟏{iI}|𝔼supI,JsupxBni=1mεijJaijgijxj𝟏{iI}\displaystyle\mathbb{E}\sup_{I,J}\sup_{x\in B_{\infty}^{n}}\sum_{i=1}^{m}\varepsilon_{i}\Bigl{|}\sum_{j\in J}a_{ij}g_{ij}x_{j}\mathbf{1}_{\{i\in I\}}\Bigr{|}\leq\mathbb{E}\sup_{I,J}\sup_{x\in B_{\infty}^{n}}\sum_{i=1}^{m}\varepsilon_{i}\sum_{j\in J}a_{ij}g_{ij}x_{j}\mathbf{1}_{\{i\in I\}}
(3.3) =𝔼supI,JsupxBnjJiIaijεigijxj=𝔼supI,JsupxBnjJiIaijgijxj.\displaystyle=\mathbb{E}\sup_{I,J}\sup_{x\in B_{\infty}^{n}}\sum_{j\in J}\sum_{i\in I}a_{ij}\varepsilon_{i}g_{ij}x_{j}=\mathbb{E}\sup_{I,J}\sup_{x\in B_{\infty}^{n}}\sum_{j\in J}\sum_{i\in I}a_{ij}g_{ij}x_{j}.

By proceeding similarly as in (3.1), we obtain

𝔼supI,JsupxBnjJiIaijgijxj=𝔼supI,JjJ|iIaijgij|\displaystyle\mathbb{E}\sup_{I,J}\sup_{x\in B_{\infty}^{n}}\sum_{j\in J}\sum_{i\in I}a_{ij}g_{ij}x_{j}=\mathbb{E}\sup_{I,J}\sum_{j\in J}\Bigl{|}\sum_{i\in I}a_{ij}g_{ij}\Bigr{|}
(3.4) 𝔼supI,JjJ(|iIaijgij|𝔼|iIaijg~ij|)+2πsupI,JjJiIaij2.\displaystyle\leq\mathbb{E}\sup_{I,J}\sum_{j\in J}\Bigl{(}\Bigl{|}\sum_{i\in I}a_{ij}g_{ij}\Bigr{|}-\mathbb{E}\Bigl{|}\sum_{i\in I}a_{ij}\widetilde{g}_{ij}\Bigr{|}\Bigr{)}+\sqrt{\frac{2}{\pi}}\sup_{I,J}\sum_{j\in J}\sqrt{\sum_{i\in I}a_{ij}^{2}}.

Observe that using symmetrization and the contraction principle similarly as in (3.2) and (3.1), we can estimate the first summand on right-hand side of (3.4) as follows,

(3.5) 𝔼supI,JjJ(|iIaijgij|𝔼|iIaijg~ij|)2𝔼supI,JiIjJaijgij.\mathbb{E}\sup_{I,J}\sum_{j\in J}\Bigl{(}\Bigl{|}\sum_{i\in I}a_{ij}g_{ij}\Bigr{|}-\mathbb{E}\Bigl{|}\sum_{i\in I}a_{ij}\widetilde{g}_{ij}\Bigr{|}\Bigr{)}\leq 2\mathbb{E}\sup_{I,J}\sum_{i\in I}\sum_{j\in J}a_{ij}g_{ij}.

Altogether, the inequalities in (3.1) – (3.5) yield that

𝔼supI,JsupyBmsupxBniI,jJyiaijgijxj\displaystyle\mathbb{E}\sup_{I,J}\sup_{y\in B_{\infty}^{m}}\sup_{x\in B_{\infty}^{n}}\sum_{i\in I,j\in J}y_{i}a_{ij}g_{ij}x_{j} 4𝔼supI,JiIjJaijgij+22πsupI,JjJiIaij2\displaystyle\leq 4\mathbb{E}\sup_{I,J}\sum_{i\in I}\sum_{j\in J}a_{ij}g_{ij}+2\sqrt{\frac{2}{\pi}}\sup_{I,J}\sum_{j\in J}\sqrt{\sum_{i\in I}a_{ij}^{2}}
(3.6) +2πsupI,JiIjJaij2.\displaystyle\qquad+\sqrt{\frac{2}{\pi}}\sup_{I,J}\sum_{i\in I}\sqrt{\sum_{j\in J}a_{ij}^{2}}.

We shall now estimate the first summand on the right-hand side of (3.6) using Slepian’s lemma (i.e., Lemma 2.9). Denote

XI,J\displaystyle X_{I,J} iIjJaijgij,\displaystyle\coloneqq\sum_{i\in I}\sum_{j\in J}a_{ij}g_{ij},
YI,J\displaystyle Y_{I,J} iIgijJaij2+jJg~jiIaij2,\displaystyle\coloneqq\sum_{i\in I}g_{i}\sqrt{\sum_{j\in J}a_{ij}^{2}}+\sum_{j\in J}\widetilde{g}_{j}\sqrt{\sum_{i\in I}a_{ij}^{2}},

where gi,i=1,,mg_{i},i=1,\ldots,m, g~j,j=1,,n\widetilde{g}_{j},j=1,\ldots,n are independent standard Gaussian variables. The random variables XI,J,YI,JX_{I,J},Y_{I,J} clearly have zero mean. Thus, we only need to calculate and compare 𝔼(XI,JXI~,J~)2\mathbb{E}(X_{I,J}-X_{\widetilde{I},\widetilde{J}})^{2} and 𝔼(YI,JYI~,J~)2\mathbb{E}(Y_{I,J}-Y_{\widetilde{I},\widetilde{J}})^{2}. In the calculations below it will be evident over which sets the index ii (resp. jj) runs, so in order to shorten the notation and improve readability, we use the notational convention

IiI,J~jJ~,II~,JJ~iII~,jJJ~,etc.\sum_{I}\coloneqq\sum_{i\in I},\qquad\sum_{\widetilde{J}}\coloneqq\sum_{j\in\widetilde{J}},\qquad\sum_{I\cap\widetilde{I},J\setminus\widetilde{J}}\coloneqq\sum_{{i\in I\cap\widetilde{I},j\in J\setminus\widetilde{J}}},\qquad\text{etc.}

By independence,

𝔼(XI,JXI~,J~)2\displaystyle\mathbb{E}(X_{I,J}-X_{\widetilde{I},\widetilde{J}})^{2} =I,Jaij2+I~,J~aij22II~,JJ~aij2\displaystyle=\sum_{I,J}a_{ij}^{2}+\sum_{\widetilde{I},\widetilde{J}}a_{ij}^{2}-2\sum_{\mathclap{I\cap\widetilde{I},J\cap\widetilde{J}}}a_{ij}^{2}
=I,Jaij2+I~,J~aij2II~,Jaij2II~,J~aij2+II~,JJ~aij2+II~,J~Jaij2.\displaystyle=\sum_{I,J}a_{ij}^{2}+\sum_{\widetilde{I},\widetilde{J}}a_{ij}^{2}-\sum_{{I\cap\widetilde{I},J}}a_{ij}^{2}-\sum_{{I\cap\widetilde{I},\widetilde{J}}}a_{ij}^{2}+\!\!\sum_{{I\cap\widetilde{I},J\setminus\widetilde{J}}}a_{ij}^{2}+\!\!\sum_{{I\cap\widetilde{I},\widetilde{J}\setminus J}}a_{ij}^{2}.

By independence and the inequality 2aba+b2\sqrt{ab}\leq a+b (valid for a,b0a,b\geq 0),

𝔼(YI,JYI~,J~)2\displaystyle\mathbb{E}(Y_{I,J}-Y_{\widetilde{I},\widetilde{J}})^{2} =2I,Jaij2+2I~,J~aij2\displaystyle=2\sum_{I,J}a_{ij}^{2}+2\sum_{\widetilde{I},\widetilde{J}}a_{ij}^{2}
2II~Jaij2J~aij22JJ~Iaij2I~aij2\displaystyle\qquad-2\sum_{I\cap\widetilde{I}}\sqrt{\sum_{J\vphantom{\widetilde{J}--cludgeformovingpositionoflimitdown}}a_{ij}^{2}}\sqrt{\sum_{\widetilde{J}}a_{ij}^{2}}-2\sum_{J\cap\widetilde{J}}\sqrt{\sum_{I\vphantom{\widetilde{I}--cludgeformovingpositionoflimitdown}}a_{ij}^{2}}\sqrt{\sum_{\widetilde{I}}a_{ij}^{2}}
2I,Jaij2+2I~,J~aij2II~,Jaij2II~,J~aij2I,JJ~aij2I~,JJ~aij2\displaystyle\geq 2\sum_{I,J}a_{ij}^{2}+2\sum_{\widetilde{I},\widetilde{J}}a_{ij}^{2}-\sum_{I\cap\widetilde{I},J\vphantom{\widetilde{J}--cludgeformovingpositionoflimitdown}}a_{ij}^{2}-\sum_{I\cap\widetilde{I},\widetilde{J}}a_{ij}^{2}-\sum_{I\vphantom{\widetilde{I}--cludgeformovingpositionoflimitdown},J\cap\widetilde{J}}a_{ij}^{2}-\sum_{\widetilde{I},J\cap\widetilde{J}}a_{ij}^{2}
=I,Jaij2+I~,J~aij2II~,Jaij2II~,J~aij2+I,JJ~aij2+I~,J~Jaij2.\displaystyle=\sum_{I,J}a_{ij}^{2}+\sum_{\widetilde{I},\widetilde{J}}a_{ij}^{2}-\sum_{I\cap\widetilde{I},J\vphantom{\widetilde{J}--cludgeformovingpositionoflimitdown}}a_{ij}^{2}-\sum_{I\cap\widetilde{I},\widetilde{J}}a_{ij}^{2}+\sum_{I\vphantom{\widetilde{I}--cludgeformovingpositionoflimitdown},J\setminus\widetilde{J}}a_{ij}^{2}+\sum_{\widetilde{I},\widetilde{J}\setminus J}a_{ij}^{2}.

Thus, we clearly have

𝔼(XI,JXI~,J~)2𝔼(YI,JYI~,J~)2\mathbb{E}(X_{I,J}-X_{\widetilde{I},\widetilde{J}})^{2}\leq\mathbb{E}(Y_{I,J}-Y_{\widetilde{I},\widetilde{J}})^{2}

(cf. Remark 3.2 below). Hence, by Slepian’s lemma (Lemma 2.9) and Lemma 2.10 on the expected maxima of standard Gaussian random variables,

𝔼supI,JiIjJaijgij\displaystyle\mathbb{E}\sup_{I,J}\sum_{i\in I}\sum_{j\in J}a_{ij}g_{ij} 𝔼supI,J[iIgijJaij2+jJg~jiIaij2]\displaystyle\leq\mathbb{E}\sup_{I,J}\Biggl{[}\sum_{i\in I}g_{i}\sqrt{\sum_{j\in J}a_{ij}^{2}}+\sum_{j\in J}\widetilde{g}_{j}\sqrt{\sum_{i\in I}a_{ij}^{2}}\Biggr{]}
𝔼supI,JiIgijJaij2+𝔼supI,JjJg~jiIaij2\displaystyle\leq\mathbb{E}\sup_{I,J}\sum_{i\in I}g_{i}\sqrt{\sum_{j\in J}a_{ij}^{2}}+\mathbb{E}\sup_{I,J}\sum_{j\in J}\widetilde{g}_{j}\sqrt{\sum_{i\in I}a_{ij}^{2}}
𝔼supim|gi|supI,JiIjJaij2+𝔼supjn|g~j|supI,JjJiIaij2\displaystyle\leq\mathbb{E}\sup_{i\leq m}|g_{i}|\sup_{I,J}\sum_{i\in I}\sqrt{\sum_{j\in J}a_{ij}^{2}}+\mathbb{E}\sup_{j\leq n}|\widetilde{g}_{j}|\sup_{I,J}\sum_{j\in J}\sqrt{\sum_{i\in I}a_{ij}^{2}}
2lnmsupI,JiIjJaij2+2lnnsupI,JjJiIaij2.\displaystyle\leq 2\sqrt{\ln m}\sup_{I,J}\sum_{i\in I}\sqrt{\sum_{j\in J}a_{ij}^{2}}+2\sqrt{\ln n}\sup_{I,J}\sum_{j\in J}\sqrt{\sum_{i\in I}a_{ij}^{2}}.

Recalling the estimate (3.6), we arrive at

𝔼supI,JsupyBmsupxBniI,jJyiaijgijxj\displaystyle\mathbb{E}\sup_{I,J}\sup_{y\in B_{\infty}^{m}}\sup_{x\in B_{\infty}^{n}}\sum_{i\in I,j\in J}y_{i}a_{ij}g_{ij}x_{j} (8lnm+2/π)supI,JiIjJaij2\displaystyle\leq\bigl{(}8\sqrt{\ln m}+\sqrt{2/\pi}\bigr{)}\sup_{I,J}\sum_{i\in I}\sqrt{\sum_{j\in J}a_{ij}^{2}}
+(8lnn+22/π)supI,JjJiIaij2,\displaystyle\qquad+\bigl{(}8\sqrt{\ln n}+2\sqrt{2/\pi}\bigr{)}\sup_{I,J}\sum_{j\in J}\sqrt{\sum_{i\in I}a_{ij}^{2}},

which completes the proof of Proposition 3.1. ∎

Remark 3.2.

In the above proof, we also have

𝔼(XI,JXI~,J~)2=I,Jaij2+I~,J~aij2II~,JJ~aij2JJ~,II~aij2\displaystyle\mathbb{E}(X_{I,J}-X_{\widetilde{I},\widetilde{J}})^{2}=\sum_{I,J}a_{ij}^{2}+\sum_{\widetilde{I},\widetilde{J}}a_{ij}^{2}-\sum_{I\cap\widetilde{I},J\cap\widetilde{J}}a_{ij}^{2}-\sum_{J\cap\widetilde{J},I\cap\widetilde{I}}a_{ij}^{2}
I,Jaij2+I~,J~aij2II~Jaij2J~aij2JJ~Iaij2I~aij2\displaystyle\geq\sum_{I,J}a_{ij}^{2}+\sum_{\widetilde{I},\widetilde{J}}a_{ij}^{2}-\sum_{I\cap\widetilde{I}}\sqrt{\sum_{J}a_{ij}^{2}}\sqrt{\sum_{\widetilde{J}}a_{ij}^{2}}-\sum_{J\cap\widetilde{J}}\sqrt{\sum_{I}a_{ij}^{2}}\sqrt{\sum_{\widetilde{I}}a_{ij}^{2}}
=12𝔼(YI,JYI~,J~)2.\displaystyle=\frac{1}{2}\mathbb{E}(Y_{I,J}-Y_{\widetilde{I},\widetilde{J}})^{2}.

Therefore, by Slepian’s lemma (Lemma 2.9) we may reverse the estimate from the proof as follows:

𝔼supI,JsupyBmsupxBniI,jJyiaijgijxj12𝔼supI,J[iIgijJaij2+jJg~jiIaij2].\displaystyle\mathbb{E}\sup_{I,J}\sup_{y\in B_{\infty}^{m}}\sup_{x\in B_{\infty}^{n}}\sum_{i\in I,j\in J}y_{i}a_{ij}g_{ij}x_{j}\geq\frac{1}{\sqrt{2}}\mathbb{E}\sup_{I,J}\biggl{[}\sum_{i\in I}g_{i}\sqrt{\sum_{j\in J}a_{ij}^{2}}+\sum_{j\in J}\widetilde{g}_{j}\sqrt{\sum_{i\in I}a_{ij}^{2}}\biggr{]}.
Proof of Theorem 1.3.

Recall that supI0,J0\sup_{I_{0},J_{0}} stands for the supremum taken over all sets I0[M]{1,,M}I_{0}\subset[M]\coloneqq\{1,\ldots,M\}, J0[N]{1,,N}J_{0}\subset[N]\coloneqq\{1,\ldots,N\} with |I0|=m|I_{0}|=m, |J0|=n|J_{0}|=n. Given such sets I0I_{0}, J0{J_{0}}, we introduce the sets

K\displaystyle K =K(I0)conv{1|I|1/q(εi𝟏{iI})iI0:II0,I,(εi)iI0{1,1}I0},\displaystyle=K(I_{0})\coloneqq\operatorname{conv}\Bigl{\{}\frac{1}{|I|^{1/q^{*}}}\bigl{(}\varepsilon_{i}\mathbf{1}_{\{i\in I\}}\bigr{)}_{i\in I_{0}}\colon I\subset I_{0},I\neq\emptyset,(\varepsilon_{i})_{i\in I_{0}}\in\{-1,1\}^{I_{0}}\Bigr{\}},
L\displaystyle L =L(J0)conv{1|J|1/p(ηj𝟏{jJ})jJ0:JJ0,J,(ηj)jJ0{1,1}J0}.\displaystyle=L(J_{0})\coloneqq\operatorname{conv}\Bigl{\{}\frac{1}{|J|^{1/p}}\bigl{(}\eta_{j}\mathbf{1}_{\{j\in J\}}\bigr{)}_{j\in{J_{0}}}\colon J\subset{J_{0}},J\neq\emptyset,(\eta_{j})_{j\in{J_{0}}}\in\{-1,1\}^{J_{0}}\Bigr{\}}.

Then, by Lemma 2.3, BqI0ln(em)1/qKB_{q^{*}}^{I_{0}}\subset\ln(em)^{1/q}K and BpJ0ln(en)1/pLB_{p}^{J_{0}}\subset\ln(en)^{1/p^{*}}L. Therefore,

𝔼supI0,J0supxBpJ0supyBqI0iI0jJ0yiaijgijxj\displaystyle\mathbb{E}\sup_{I_{0},J_{0}}\sup_{x\in B_{p}^{J_{0}}}\sup_{y\in B_{q^{*}}^{I_{0}}}\sum_{i\in I_{0}}\sum_{j\in J_{0}}y_{i}a_{ij}g_{ij}x_{j}
ln(em)1/qln(en)1/p\displaystyle\leq\ln(em)^{1/q}\ln(en)^{1/p^{*}}
𝔼supI0,J0supII0,JJ0sup{1|I|1/q|J|1/piIjJεiaijgijηj:εi,ηj{1,1}}\displaystyle\quad\cdot\mathbb{E}\sup_{I_{0},J_{0}}\sup_{I\subset I_{0},J\subset J_{0}}\sup\Bigl{\{}\frac{1}{|I|^{1/q^{*}}|J|^{1/p}}\sum_{i\in I}\sum_{j\in J}\varepsilon_{i}a_{ij}g_{ij}\eta_{j}:\ \varepsilon_{i},\eta_{j}\in\{-1,1\}\Bigr{\}}
=ln(em)1/qln(en)1/p\displaystyle=\ln(em)^{1/q}\ln(en)^{1/p^{*}}
𝔼maxkm,ln1k1/ql1/psupI[M],|I|=ksupJ[N],|J|=lsupxBNsupyBMiIjJyiaijgijxj\displaystyle\quad\cdot\mathbb{E}\max_{k\leq m,l\leq n}\frac{1}{k^{1/q^{*}}l^{1/p}}\sup_{I\subset[M],|I|=k}\sup_{J\subset[N],|J|=l}\sup_{x\in B_{\infty}^{N}}\sup_{y\in B_{\infty}^{M}}\sum_{i\in I}\sum_{j\in J}y_{i}a_{ij}g_{ij}x_{j}
(3.7) =ln(em)1/qln(en)1/p𝔼maxkm,lnZk,l,\displaystyle=\ln(em)^{1/q}\ln(en)^{1/p^{*}}\mathbb{E}\max_{k\leq m,l\leq n}Z_{k,l},

where we denoted

Zk,l1k1/ql1/psupI,JsupxBNsupyBMiIjJyiaijgijxj,Z_{k,l}\coloneqq\frac{1}{k^{1/q^{*}}l^{1/p}}\sup_{I,J}\sup_{x\in B_{\infty}^{N}}\sup_{y\in B_{\infty}^{M}}\sum_{i\in I}\sum_{j\in J}y_{i}a_{ij}g_{ij}x_{j},

with the suprema here (and later on in this proof) being always taken over all sets I[M],|I|=kI\subset[M],|I|=k and J[N],|J|=lJ\subset[N],|J|=l.

By Proposition 3.1, we only know that for all kmk\leq m and lnl\leq n,

𝔼Zk,l\displaystyle\mathbb{E}Z_{k,l} (8lnM+2/π)1k1/ql1/psupI,JiIjJaij2\displaystyle\leq\bigl{(}8\sqrt{\ln M}+\sqrt{2/\pi}\bigr{)}\frac{1}{k^{1/q^{*}}l^{1/p}}\sup_{I,J}\sum_{i\in I}\sqrt{\sum_{j\in J}a_{ij}^{2}}
(3.8) +(8lnN+22/π)1k1/ql1/psupI,JjJiIaij2,\displaystyle\qquad+\bigl{(}8\sqrt{\ln N}+2\sqrt{2/\pi}\bigr{)}\frac{1}{k^{1/q^{*}}l^{1/p}}\sup_{I,J}\sum_{j\in J}\sqrt{\sum_{i\in I}a_{ij}^{2}},

but we shall use the Gaussian concentration and the union bound to obtain an estimate for 𝔼maxkm,lnZk,l.\mathbb{E}\max_{k\leq m,l\leq n}Z_{k,l}.

Note first that (k1/q𝟏{iI})iI0K(I0)BqI0(k^{-1/q^{\ast}}\mathbf{1}_{\{i\in I\}})_{i\in I_{0}}\in K(I_{0})\subset B_{q^{\ast}}^{I_{0}} and (l1/p𝟏{jJ})jJ0L(J0)BpJ0(l^{-1/p}\mathbf{1}_{\{j\in J\}})_{j\in J_{0}}\in L(J_{0})\subset B_{p}^{J_{0}}, provided that |I|=k|I|=k, |J|=l|J|=l, II0I\subset I_{0}, JJ0J\subset J_{0}. Therefore,

1k1/ql1/psupI,JiIjJaij2\displaystyle\frac{1}{k^{1/q^{*}}l^{1/p}}\sup_{I,J}\sum_{i\in I}\sqrt{\sum_{j\in J}a_{ij}^{2}} supI0,J0supxBpJ0supyBqI0iI0yijJ0aij2xj2\displaystyle\leq\sup_{I_{0},J_{0}}\sup_{x\in B_{p}^{J_{0}}}\sup_{y\in B_{q^{\ast}}^{I_{0}}}\sum_{i\in I_{0}}y_{i}\sqrt{\sum_{j\in J_{0}}a_{ij}^{2}x_{j}^{2}}
=supI0,J0supzBp/2J0(iI0(jJ0aij2zj)q/2)1/q\displaystyle=\sup_{I_{0},J_{0}}\sup_{z\in B_{p/2}^{J_{0}}}\Bigl{(}\sum_{i\in I_{0}}\bigl{(}\sum_{j\in J_{0}}a_{ij}^{2}z_{j}\bigr{)}^{q/2}\Bigr{)}^{1/q}
=supI0,J0AA:p/2J0q/2I01/2\displaystyle=\sup_{I_{0},J_{0}}\|A\mathbin{\circ}A\colon\ell^{J_{0}}_{p/2}\to\ell^{I_{0}}_{q/2}\|^{1/2}

and, similarly,

1k1/ql1/psupI,JjJiIaij2supI0,J0(AA)T:q/2I0p/2J01/2.\displaystyle\frac{1}{k^{1/q^{*}}l^{1/p}}\sup_{I,J}\sum_{j\in J}\sqrt{\sum_{i\in I}a_{ij}^{2}}\leq\sup_{I_{0},J_{0}}\|(A\mathbin{\circ}A)^{T}\colon\ell^{I_{0}}_{q^{*}/2}\to\ell^{J_{0}}_{p^{*}/2}\|^{1/2}.

This together with the estimate in (3.1) gives

𝔼Zk,l\displaystyle\mathbb{E}Z_{k,l} (8lnM+2/π)supI0,J0AA:p/2J0q/2I01/2\displaystyle\leq\bigl{(}8\sqrt{\ln M}+\sqrt{2/\pi}\bigr{)}\sup_{I_{0},J_{0}}\|A\mathbin{\circ}A\colon\ell^{J_{0}}_{p/2}\to\ell^{I_{0}}_{q/2}\|^{1/2}
(3.9) +(8lnN+22/π)supI0,J0(AA)T:q/2I0p/2J01/2.\displaystyle\qquad+\bigl{(}8\sqrt{\ln N}+2\sqrt{2/\pi}\bigr{)}\sup_{I_{0},J_{0}}\|(A\mathbin{\circ}A)^{T}\colon\ell^{I_{0}}_{q^{*}/2}\to\ell^{J_{0}}_{p^{*}/2}\|^{1/2}.

Note that by the Cauchy–Schwarz inequality, the function

z1k1/ql1/psupI,JsupxBNsupyBMiIjJyiaijzijxjz\mapsto\frac{1}{k^{1/q^{*}}l^{1/p}}\sup_{I,J}\sup_{x\in B_{\infty}^{N}}\sup_{y\in B_{\infty}^{M}}\sum_{i\in I}\sum_{j\in J}y_{i}a_{ij}z_{ij}x_{j}

is DD-Lipschitz with

D1k1/ql1/psupI,JjJiIaij2\displaystyle D\leq\frac{1}{k^{1/q^{*}}l^{1/p}}\sup_{I,J}\sqrt{\sum_{j\in J}\sum_{i\in I}a_{ij}^{2}} supI,JsupxBp/2NsupyBq/2MiIjJyiaij2xj\displaystyle\leq\sup_{I,J}\sqrt{\sup_{x\in B_{p/2}^{N}}\sup_{y\in B_{q^{*}/2}^{M}}\sum_{i\in I}\sum_{j\in J}y_{i}a_{ij}^{2}x_{j}}
supI0,J0supxBp/2NsupyBq/2MiI0jJ0yiaij2xj,\displaystyle\leq\sup_{I_{0},J_{0}}\sqrt{\sup_{x\in B_{p/2}^{N}}\sup_{y\in B_{q^{*}/2}^{M}}\sum_{i\in I_{0}}\sum_{j\in J_{0}}y_{i}a_{ij}^{2}x_{j}},

where in the last inequality we used the fact that kmk\leq m and lnl\leq n. In order to estimate the right-hand side of the latter inequality, we consider the following two cases:

Case 1. If q2q^{*}\geq 2, then (q/2)=q/(2q)q/2(q^{*}/2)^{*}=q/(2-q)\geq q/2 and q/(2q)q/2\|\cdot\|_{q/(2-q)}\leq\|\cdot\|_{q/2}. Consequently,

(3.10) supxBp/2N,yBq/2MiI0jJ0yiaij2xj\displaystyle\sup_{x\in B_{p/2}^{N},y\in B_{q^{*}/2}^{M}}\sum_{i\in I_{0}}\sum_{j\in J_{0}}y_{i}a_{ij}^{2}x_{j} =AA:p/2J0q/(2q)I0AA:p/2J0q/2I0.\displaystyle=\|A\mathbin{\circ}A\colon\ell_{p/2}^{J_{0}}\to\ell_{q/(2-q)}^{I_{0}}\|\leq\|A\mathbin{\circ}A\colon\ell_{p/2}^{J_{0}}\to\ell_{q/2}^{I_{0}}\|.

Case 2. If q2q^{*}\leq 2, then Bq/2MB1MB_{q^{*}/2}^{M}\subset B_{1}^{M} and q/2\|\cdot\|_{\infty}\leq\|\cdot\|_{q/2}. Thus,

supxBp/2N,yBq/2MiI0jJ0yiaij2xj\displaystyle\sup_{x\in B_{p/2}^{N},y\in B_{q^{*}/2}^{M}}\sum_{i\in I_{0}}\sum_{j\in J_{0}}y_{i}a_{ij}^{2}x_{j} supuBp/2N,vB1MiI0jJ0viaij2uj\displaystyle\leq\sup_{u\in B_{p/2}^{N},v\in B_{1}^{M}}\sum_{i\in I_{0}}\sum_{j\in J_{0}}v_{i}a_{ij}^{2}u_{j}
(3.11) =AA:p/2J0I0AA:p/2J0q/2I0.\displaystyle=\|A\mathbin{\circ}A\colon\ell_{p/2}^{J_{0}}\to\ell_{\infty}^{I_{0}}\|\leq\|A\mathbin{\circ}A\colon\ell_{p/2}^{J_{0}}\to\ell_{q/2}^{I_{0}}\|.

In both cases we have

DsupI0,J0AA:p/2J0q/2I01/2,D\leq\sup_{I_{0},J_{0}}\|A\mathbin{\circ}A\colon\ell^{J_{0}}_{p/2}\to\ell^{I_{0}}_{q/2}\|^{1/2},

so the Gaussian concentration inequality (see, e.g., [41, Chapter 5.1]) implies that for all u0u\geq 0, kmk\leq m, and lnl\leq n,

(Zk,l𝔼Zk,l+u)exp(u22supI0,J0AA:p/2J0q/2I0),\displaystyle\mathbb{P}(Z_{k,l}\geq\mathbb{E}Z_{k,l}+u)\leq\exp\Bigl{(}-\frac{u^{2}}{2\sup_{I_{0},J_{0}}\|A\mathbin{\circ}A\colon\ell^{J_{0}}_{p/2}\to\ell^{I_{0}}_{q/2}\|}\Bigr{)},

so

(Zk,lmaxkm,ln𝔼Zk,l+2ln(mn)usupI0,J0AA:p/2J0q/2I01/2)exp(u2ln(mn)).\mathbb{P}\bigl{(}Z_{k,l}\geq\max_{k\leq m,l\leq n}\mathbb{E}Z_{k,l}+\sqrt{2\ln(mn)}u\sup_{I_{0},J_{0}}\|A\mathbin{\circ}A\colon\ell^{J_{0}}_{p/2}\to\ell^{I_{0}}_{q/2}\|^{1/2}\bigr{)}\\ \leq\exp(-u^{2}\ln(mn)).

This, together with the union bound, implies that for u2u\geq\sqrt{2}, we have

(maxkm,lnZk,lmaxkm,ln𝔼Zk,l+2ln(mn)usupI0,J0AA:p/2J0q/2I01/2)mneu2ln(mn)=exp((u21)ln(mn))eu2/2.\mathbb{P}\bigl{(}\max_{k\leq m,l\leq n}Z_{k,l}\geq\max_{k\leq m,l\leq n}\mathbb{E}Z_{k,l}+\sqrt{2\ln(mn)}u\sup_{I_{0},J_{0}}\|A\mathbin{\circ}A\colon\ell^{J_{0}}_{p/2}\to\ell^{I_{0}}_{q/2}\|^{1/2}\bigr{)}\\ \leq mne^{-u^{2}\ln(mn)}=\exp\Bigl{(}-(u^{2}-1)\ln(mn)\Bigr{)}\leq e^{-u^{2}/2}.

Hence, by Lemma 2.6 and the estimate in (3.1),

𝔼maxkm,lnZk,l\displaystyle\mathbb{E}\!\max_{k\leq m,l\leq n}Z_{k,l} maxkm,ln𝔼Zk,l+2ln(mn)(2+1e2)supI0,J0AA:p/2J0q/2I01/2\displaystyle\leq\max_{k\leq m,l\leq n}\mathbb{E}Z_{k,l}+\sqrt{2\ln(mn)}\Bigl{(}\sqrt{2}+\frac{1}{e\sqrt{2}}\Bigr{)}\sup_{I_{0},J_{0}}\|A\mathbin{\circ}A\colon\ell^{J_{0}}_{p/2}\to\ell^{I_{0}}_{q/2}\|^{1/2}
(2.4ln(mn)+8lnM+2/π)supI0,J0AA:p/2J0q/2I01/2\displaystyle\leq\bigl{(}2.4\sqrt{\ln(mn)}+8\sqrt{\ln M}+\sqrt{2/\pi}\bigr{)}\sup_{I_{0},J_{0}}\|A\mathbin{\circ}A\colon\ell^{J_{0}}_{p/2}\to\ell^{I_{0}}_{q/2}\|^{1/2}
+(8lnN+22/π)supI0,J0(AA)T:q/2I0p/2J01/2.\displaystyle\qquad\qquad+\bigl{(}8\sqrt{\ln N}+2\sqrt{2/\pi}\bigr{)}\sup_{I_{0},J_{0}}\|(A\mathbin{\circ}A)^{T}\colon\ell^{I_{0}}_{q^{*}/2}\to\ell^{J_{0}}_{p^{*}/2}\|^{1/2}.

Recalling (3.1) yields the assertion. ∎

3.2. Coupling

In this subsection we use contraction principles and the coupling described in Lemma 2.21 to prove Corollaries 1.5 and 1.6, and Proposition 1.16. Below we state more general versions of the corollaries akin to Theorem 1.3 (the versions from the introduction follow by setting M=mM=m, N=nN=n).

Theorem 3.3 (General version of Corollary 1.5).

Assume that mMm\leq M, nNn\leq N, 1p,q1\leq p,q\leq\infty, and X=(Xij)iM,jNX=(X_{ij})_{i\leq M,j\leq N} has independent mean-zero entries taking values in [1,1][-1,1]. Then

𝔼supI,JXA:pJqI=𝔼supI,JsupxBpJsupyBqIiIjJyiaijXijxjln(en)1/pln(em)1/q[(2.42πln(mn)+82πlnM+2)supI,JAA:p/2Jq/2I1/2+(82πlnN+4)supI,J(AA)T:q/2Ip/2J1/2],\mathbb{E}\sup_{I,J}\|X_{A}\colon\ell_{p}^{J}\to\ell_{q}^{I}\|=\mathbb{E}\sup_{I,J}\sup_{x\in B_{p}^{J}}\sup_{y\in B_{q^{*}}^{I}}\sum_{i\in I}\sum_{j\in J}y_{i}a_{ij}X_{ij}x_{j}\\ \leq\ln(en)^{1/p^{*}}\ln(em)^{1/q}\Bigl{[}\bigl{(}2.4\sqrt{2\pi}\sqrt{\ln(mn)}+8\sqrt{2\pi}\sqrt{\ln M}+2\bigr{)}\sup_{I,J}\|A\mathbin{\circ}A\colon\ell^{J}_{p/2}\to\ell^{I}_{q/2}\|^{1/2}\\ +\bigl{(}8\sqrt{2\pi}\sqrt{\ln N}+4\bigr{)}\sup_{I,J}\|(A\mathbin{\circ}A)^{T}\colon\ell^{I}_{q^{*}/2}\to\ell^{J}_{p^{*}/2}\|^{1/2}\Bigr{]},

where the suprema are taken over all sets I{1,,M}I\subset\{1,\ldots,M\}, J{1,,N}J\subset\{1,\ldots,N\} such that |I|=m|I|=m, |J|=n|J|=n.

Remark 3.4 (Symmetrization of entries of a random matrix).

Let Z~\widetilde{Z} be an independent copy of a random matrix ZZ with mean 0 entries. Then for any norm \|\cdot\|, including the operator norm from pn\ell_{p}^{n} to qm\ell_{q}^{m}, we have by Jensen’s inequality

𝔼Z=𝔼Z𝔼Z~𝔼ZZ~𝔼Z+𝔼Z~=2𝔼Z.\mathbb{E}\|Z\|=\mathbb{E}\|Z-\mathbb{E}\widetilde{Z}\|\leq\mathbb{E}\|Z-\widetilde{Z}\|\leq\mathbb{E}\|Z\|+\mathbb{E}\|\widetilde{Z}\|=2\mathbb{E}\|Z\|.

Therefore, in many cases we may simply assume that we deal with matrices with symmetric (not only mean 0) entries. For example, in the setting of Theorem 3.3, the entries of XX~X-\widetilde{X} are symmetric and take values in [2,2][-2,2], so it suffices to prove the assertion of this theorem (with a two times smaller constant on the right-hand side) under the additional assumption that the entries of the given random matrix are symmetric.

Proof of Theorem 3.3.

By Remark 3.4 we may and do assume that the entries of XX are symmetric — in this case we need to prove the assertion with a two times smaller constant.

Since the entries of XX are independent and symmetric, XX has the same distribution as (εij|Xij|)i,j(\varepsilon_{ij}|X_{ij}|)_{i,j}, where (εij)iM,jN(\varepsilon_{ij})_{i\leq M,j\leq N} is a random matrix with i.i.d.  Rademacher entries, independent of all other random variables. Thus, the contraction principle (see Lemma 2.7) applied conditionally yields (below the suprema are taken over all sets I{1,,M}I\subset\{1,\ldots,M\}, J{1,,N}J\subset\{1,\ldots,N\} such that |I|=m|I|=m, |J|=n|J|=n, and over all xBpJ,yBqIx\in B_{p}^{J},y\in B_{q^{*}}^{I}, and the sums run over all iIi\in I and jJj\in J)

𝔼supI,JyiaijXijxj\displaystyle\mathbb{E}\sup\sum_{I,J}y_{i}a_{ij}X_{ij}x_{j} =𝔼supI,Jyiaijεij|Xij|xj𝔼supI,Jyiaijεijxj\displaystyle=\mathbb{E}\sup\sum_{I,J}y_{i}a_{ij}\varepsilon_{ij}\bigl{|}X_{ij}\bigr{|}x_{j}\leq\mathbb{E}\sup\sum_{I,J}y_{i}a_{ij}\varepsilon_{ij}x_{j}
=π2𝔼supI,Jyiaijεij𝔼|gij|xjπ2𝔼supI,Jyiaijεij|gij|xj\displaystyle=\sqrt{\frac{\pi}{2}}\mathbb{E}\sup\sum_{I,J}y_{i}a_{ij}\varepsilon_{ij}\mathbb{E}|g_{ij}|x_{j}\leq\sqrt{\frac{\pi}{2}}\mathbb{E}\sup\sum_{I,J}y_{i}a_{ij}\varepsilon_{ij}|g_{ij}|x_{j}
=π2𝔼supI,Jyiaijgijxj,\displaystyle=\sqrt{\frac{\pi}{2}}\mathbb{E}\sup\sum_{I,J}y_{i}a_{ij}g_{ij}x_{j},

and the assertion follows from Theorem 1.3. ∎

Theorem 3.5 (General version of Corollary 1.6).

Assume that K,L>0K,L>0, r(0,2]r\in(0,2], mMm\leq M, nNn\leq N, 1p,q1\leq p,q\leq\infty, and X=(Xij)iM,jNX=(X_{ij})_{i\leq M,j\leq N} has independent mean-zero entries satisfying

(|Xij|t)Ketr/Lfor all t0,iM,jN.\mathbb{P}(|X_{ij}|\geq t)\leq Ke^{-t^{r}/L}\qquad\text{for all }t\geq 0,\,i\leq M,\,j\leq N.

Then

𝔼supI,JXA:pJqI=𝔼supI,JsupxBpJsupyBqIiIjJyiaijXijxjr,K,L(lnn)1/p(lnm)1/qln(MN)1r12[(ln(mn)+lnM)supI,JAA:p/2Jq/2I1/2+lnNsupI,J(AA)T:q/2Ip/2J1/2],\mathbb{E}\sup_{I,J}\|X_{A}\colon\ell_{p}^{J}\to\ell_{q}^{I}\|=\mathbb{E}\sup_{I,J}\sup_{x\in B_{p}^{J}}\sup_{y\in B_{q^{*}}^{I}}\sum_{i\in I}\sum_{j\in J}y_{i}a_{ij}X_{ij}x_{j}\\ \lesssim_{r,K,L}(\ln n)^{1/p^{*}}(\ln m)^{1/q}\ln(MN)^{\frac{1}{r}-\frac{1}{2}}\Bigl{[}\bigl{(}\sqrt{\ln(mn)}+\sqrt{\ln M}\bigr{)}\sup_{I,J}\|A\mathbin{\circ}A\colon\ell^{J}_{p/2}\to\ell^{I}_{q/2}\|^{1/2}\\ +\sqrt{\ln N}\sup_{I,J}\|(A\mathbin{\circ}A)^{T}\colon\ell^{I}_{q^{*}/2}\to\ell^{J}_{p^{*}/2}\|^{1/2}\Bigr{]},

where the suprema are taken over all sets I{1,,M}I\subset\{1,\ldots,M\}, J{1,,N}J\subset\{1,\ldots,N\} such that |I|=m|I|=m, |J|=n|J|=n.

Proof.

Let X~\widetilde{X} be an independent copy of XX. Then

(|XijX~ij|t)\displaystyle\mathbb{P}(|X_{ij}-\widetilde{X}_{ij}|\geq t) (|Xij|t/2 or |X~ij|t/2)\displaystyle\leq\mathbb{P}(|X_{ij}|\geq t/2\text{ or }|\widetilde{X}_{ij}|\geq t/2)
2(|Xij|t/2)2Ketr/(2rL).\displaystyle\leq 2\mathbb{P}(|X_{ij}|\geq t/2)\leq 2Ke^{-t^{r}/(2^{r}L)}.

This means that the symmetric matrix XX~X-\widetilde{X} satisfies the assumptions of Theorem 3.5. Hence, due to Remark 3.4, we may and do assume that the entries of XX are symmetric.

Take the unique positive parameter ss satisfying 1r=12+1s\frac{1}{r}=\frac{1}{2}+\frac{1}{s}. For iMi\leq M, jNj\leq N, let gijg_{ij} be i.i.d. standard Gaussian variables, independent of other variables, and let YijY_{ij} be i.i.d. non-negative Weibull random variables with shape parameter ss scale parameter 11 (i.e., (Yijt)=ets\mathbb{P}(Y_{ij}\geq t)=e^{-t^{s}} for t0t\geq 0), independent of other variables. (In the case r=2r=2, we have s=s=\infty and then Yij=1Y_{ij}=1 almost surely.) Take

(Uij)iM,jN𝑑(|Xij|)iM,jN,(Vij)iM,jN𝑑(|gij|Yij)iM,jN(U_{ij})_{i\leq M,j\leq N}\overset{d}{\sim}(|X_{ij}|)_{i\leq M,j\leq N},\qquad(V_{ij})_{i\leq M,j\leq N}\overset{d}{\sim}(|g_{ij}|Y_{ij})_{i\leq M,j\leq N}

as in Lemma 2.21 (we pick a pair (Uij,Vij)(U_{ij},V_{ij}) separately for every (i,j)(i,j), and then take such a version of each pair that the system of MNMN random pairs (Uij,Vij)(U_{ij},V_{ij}) is independent).

Let (εij)iM,jN(\varepsilon_{ij})_{i\leq M,j\leq N} be a random matrix with i.i.d. Rademacher entries, independent of all other random variables. Since the entries of XX are symmetric and independent, XX has the same distribution as (εij|Xij|)ij(\varepsilon_{ij}|X_{ij}|)_{ij}. By Lemma 2.21 we know that

Uij(8L)1/r((ln(K/c)4)1/r+Vij)r,K,L1+Vija.s.U_{ij}\leq(8L)^{1/r}\Bigl{(}\Bigl{(}\frac{\ln(K/c)}{4}\Bigr{)}^{1/r}+V_{ij}\Bigr{)}\lesssim_{r,K,L}1+V_{ij}\qquad\text{a.s.}

We use the contraction principle conditionally for 𝔼ε\mathbb{E}_{\varepsilon}, i.e., for UijU_{ij}’s and VijV_{ij}’s fixed. More precisely, we apply Lemma 2.7 to the space 𝐗\bf{X} of all M×NM\times N matrices with real coefficients, equipped with the norm

(Mij)iM,jNsupI,J(Mij)iI,jJ:pIqJ=supI,JyiMijxj\|(M_{ij})_{i\leq M,j\leq N}\|\coloneqq\sup_{I,J}\bigl{\|}(M_{ij})_{i\in I,j\in J}\colon\ell_{p}^{I}\to\ell_{q}^{J}\bigr{\|}=\sup\sum_{I,J}y_{i}M_{ij}x_{j}

(where the first supremum is taken over all sets I{1,,M}I\subset\{1,\ldots,M\}, J{1,,N}J\subset\{1,\ldots,N\} such that |I|=m|I|=m, |J|=n|J|=n; recall that the second supremum is taken over all sets I,JI,J as in the first supremum, and over all xBpJ,yBqIx\in B_{p}^{J},y\in B_{q^{*}}^{I}, and the sum runs over all iIi\in I and jJj\in J); note that we identify 𝐗\bf{X} with MN\mathbb{R}^{MN} (and MNMN plays the role of nn from Lemma 2.7). We apply the contraction principle of Lemma 2.7 (conditionally, with the values of UijU_{ij}’s and VijV_{ij}’s fixed) with coefficients αijUijC(r,K,L)(1+Vij)\alpha_{ij}\coloneqq\frac{U_{ij}}{C(r,K,L)(1+V_{ij})} and points 𝐱ij(aklC(r,K,L)(1+Vkl)𝟏{(k,l)=(i,j)})kl𝐗{\bf x}_{ij}\coloneqq\bigl{(}a_{kl}C(r,K,L)(1+V_{kl})\mathbf{1}_{\{(k,l)=(i,j)\}}\bigr{)}_{kl}\in\bf{X} to get

𝔼supI,JyiaijXijxj\displaystyle\mathbb{E}\sup\sum_{I,J}y_{i}a_{ij}X_{ij}x_{j} =𝔼supI,Jyiaijεij|Xij|xj=𝔼supI,JyiaijεijUijxj\displaystyle=\mathbb{E}\sup\sum_{I,J}y_{i}a_{ij}\varepsilon_{ij}|X_{ij}|x_{j}=\mathbb{E}\sup\sum_{I,J}y_{i}a_{ij}\varepsilon_{ij}U_{ij}x_{j}
(3.12) r,K,LLemma 2.7𝔼supI,Jyiaijεijxj+𝔼supI,JyiaijεijVijxj.\displaystyle\overset{\mathclap{\text{Lemma }\ref{lem:contraction-principle}}}{\lesssim_{r,K,L}}\ \mathbb{E}\sup\sum_{I,J}y_{i}a_{ij}\varepsilon_{ij}x_{j}+\mathbb{E}\sup\sum_{I,J}y_{i}a_{ij}\varepsilon_{ij}V_{ij}x_{j}.

We may estimate the first term using Theorem 3.3 applied to the matrix (εij)iM,jN(\varepsilon_{ij})_{i\leq M,j\leq N} as follows,

𝔼supI,Jyiaijεijxj\displaystyle\mathbb{E}\sup\sum_{I,J}y_{i}a_{ij}\varepsilon_{ij}x_{j} ln(en)1/pln(em)1/q\displaystyle\lesssim\ln(en)^{1/p^{*}}\ln(em)^{1/q}
[(ln(mn)+lnM)supI,JAA:p/2Jq/2I1/2\displaystyle\qquad\cdot\Bigl{[}\bigl{(}\sqrt{\ln(mn)}+\sqrt{\ln M}\bigr{)}\sup_{I,J}\|A\mathbin{\circ}A\colon\ell^{J}_{p/2}\to\ell^{I}_{q/2}\|^{1/2}
(3.13) +lnNsupI,J(AA)T:q/2Ip/2J1/2].\displaystyle\qquad\qquad+\sqrt{\ln N}\sup_{I,J}\|(A\mathbin{\circ}A)^{T}\colon\ell^{I}_{q^{*}/2}\to\ell^{J}_{p^{*}/2}\|^{1/2}\Bigr{]}.

Recall that (εijVij)iM,jN𝑑(εijgijYij)iM,jN(\varepsilon_{ij}V_{ij})_{i\leq M,j\leq N}\overset{d}{\sim}(\varepsilon_{ij}g_{ij}Y_{ij})_{i\leq M,j\leq N} and that Yij0Y_{ij}\geq 0 almost surely. Next we again use the contraction principle (applied conditionally for 𝔼ε\mathbb{E}_{\varepsilon}, i.e. for fixed YijY_{ij}’s and gijg_{ij}’s) and get

𝔼supI,JyiaijεijVijxj\displaystyle\mathbb{E}\sup\sum_{I,J}y_{i}a_{ij}\varepsilon_{ij}V_{ij}x_{j} =𝔼supI,JyiaijεijgijYijxj\displaystyle=\mathbb{E}\sup\sum_{I,J}y_{i}a_{ij}\varepsilon_{ij}g_{ij}Y_{ij}x_{j}
(3.14) 𝔼YmaxiM,jN|Yij|𝔼ε,gsupI,Jyiaijεijgijxj.\displaystyle\leq\mathbb{E}_{Y}\max_{i\leq M,j\leq N}|Y_{ij}|\ \mathbb{E}_{\varepsilon,g}\sup\sum_{I,J}y_{i}a_{ij}\varepsilon_{ij}g_{ij}x_{j}.

Moreover, Theorem 1.3 and Lemma 2.22 (applied with r=sr=s, k=MNk=MN, Zij=YijZ_{ij}=Y_{ij}, and K=1=LK=1=L), imply

𝔼YmaxiM,jN|Yij|𝔼ε,gsupI,Jyiaijεijgijxj\displaystyle\mathbb{E}_{Y}\max_{i\leq M,j\leq N}|Y_{ij}|\ \mathbb{E}_{\varepsilon,g}\sup\sum_{I,J}y_{i}a_{ij}\varepsilon_{ij}g_{ij}x_{j}
rln(MN)1/s𝔼supI,Jyiaijgijxj\displaystyle\lesssim_{r}\ln(MN)^{1/s}\ \mathbb{E}\sup\sum_{I,J}y_{i}a_{ij}g_{ij}x_{j}
ln(MN)1r12(lnn)1/p(lnm)1/q\displaystyle\lesssim\ln(MN)^{\frac{1}{r}-\frac{1}{2}}(\ln n)^{1/p^{*}}(\ln m)^{1/q}
[(ln(mn)+lnM)supI,JAA:p/2Jq/2I1/2\displaystyle\qquad\cdot\Bigl{[}\bigl{(}\sqrt{\ln(mn)}+\sqrt{\ln M}\bigr{)}\sup_{I,J}\|A\mathbin{\circ}A\colon\ell^{J}_{p/2}\to\ell^{I}_{q/2}\|^{1/2}
(3.15) +lnNsupI,J(AA)T:q/2Ip/2J1/2].\displaystyle\qquad\qquad\qquad+\sqrt{\ln N}\sup_{I,J}\|(A\mathbin{\circ}A)^{T}\colon\ell^{I}_{q^{*}/2}\to\ell^{J}_{p^{*}/2}\|^{1/2}\Bigr{]}.

Combining the estimates in (3.2)–(3.2) yields the assertion. ∎

Finally, we prove that these estimates of the operator norms translate into tail bounds.

Proof of Proposition 1.16.

Since (1.23) implies (1.24) (by Lemma 2.18), it suffices to prove inequality (1.23). By the symmetrization argument similar to the one from the first paragraph of the proof of Theorem 3.5, we may nad will assume that XX has independent and symmetric entries satisfying (1.21). By assumption (1.21), and the inequality 2(a+b)rar+br2(a+b)^{r}\geq a^{r}+b^{r} we have for every t0t\geq 0,

((2L)1/r|Xij|t+(lnK)1/r)Kexp(2(t+(lnK)1/r)r)Kexp(trlnK)=etr,\mathbb{P}\bigl{(}(2L)^{-1/r}|X_{ij}|\geq t+(\ln K)^{1/r}\bigr{)}\\ \leq K\exp\Bigl{(}-2\bigl{(}t+(\ln K)^{1/r}\bigr{)}^{r}\Bigr{)}\leq K\exp\bigl{(}-t^{r}-\ln K\bigr{)}=e^{-t^{r}},

so (as in the proof of Lemma 2.21) there exists a random matrix (Yij)im,jn(Y_{ij})_{i\leq m,j\leq n} with i.i.d.  entries with the symmetric Weibull distribution with shape parameter rr and scale parameter 11 (i.e., (|Yij|t)=etr\mathbb{P}(|Y_{ij}|\geq t)=e^{-t^{r}} for t0t\geq 0) satisfying

(3.16) |Xij|(2L)1/r((lnK)1/r+|Yij|)r,K,L1+Yija.s.|X_{ij}|\leq(2L)^{1/r}\bigl{(}(\ln K)^{1/r}+|Y_{ij}|\bigr{)}\lesssim_{r,K,L}1+Y_{ij}\qquad\text{a.s.}

Let (εij)im,jn(\varepsilon_{ij})_{i\leq m,j\leq n} be a matrix of independent Rademacher random variables independent of all others, and let \|\cdot\| denote the operator norm from pn\ell_{p}^{n} to qm\ell_{q}^{m}. Let EijE_{ij} be a matrix with 11 at the intersection of iith row and jjth column and with other entries 0. The contraction principle (i.e., Lemma 2.7) applied conditionally, (3.16), and the triangle inequality yield for any ρ1\rho\geq 1,

(𝔼i=1mj=1n\displaystyle\biggl{(}\mathbb{E}\Bigl{\|}\sum_{i=1}^{m}\sum_{j=1}^{n} XijaijEijρ)1/ρ(𝔼i,jεij|Xij|aijEijρ)1/ρ\displaystyle X_{ij}a_{ij}E_{ij}\Bigr{\|}^{\rho}\biggr{)}^{1/\rho}\leq\biggl{(}\mathbb{E}\Bigl{\|}\sum_{i,j}\varepsilon_{ij}|X_{ij}|a_{ij}E_{ij}\Bigr{\|}^{\rho}\biggr{)}^{1/\rho}
r,K,L(𝔼i,jεijaijEijρ)1/ρ+(𝔼i,jεij|Yij|aijEijρ)1/ρ\displaystyle\lesssim_{r,K,L}\biggl{(}\mathbb{E}\Bigl{\|}\sum_{i,j}\varepsilon_{ij}a_{ij}E_{ij}\Bigr{\|}^{\rho}\biggr{)}^{1/\rho}+\biggl{(}\mathbb{E}\Bigl{\|}\sum_{i,j}\varepsilon_{ij}|Y_{ij}|a_{ij}E_{ij}\Bigr{\|}^{\rho}\biggr{)}^{1/\rho}
=(𝔼i,jεijaijEijρ)1/ρ+(𝔼i,jYijaijEijρ)1/ρ.\displaystyle=\biggl{(}\mathbb{E}\Bigl{\|}\sum_{i,j}\varepsilon_{ij}a_{ij}E_{ij}\Bigr{\|}^{\rho}\biggr{)}^{1/\rho}+\biggl{(}\mathbb{E}\Bigl{\|}\sum_{i,j}Y_{ij}a_{ij}E_{ij}\Bigr{\|}^{\rho}\biggr{)}^{1/\rho}.

Therefore, it suffices to prove (1.23) for random matrices (Yij)ij(Y_{ij})_{ij} and (εij)ij(\varepsilon_{ij})_{ij} instead of XX.

Since by assumption K,L1K,L\geq 1, both random matrices (Yij)ij(Y_{ij})_{ij} and (εij)ij(\varepsilon_{ij})_{ij} satisfy (1.21), so for them inequality (1.22) holds. By the comparison of weak and strong moments [38, Theorem 1.1] (note that the random variables YijY_{ij} satisfy the assumption Yij2sαYijs\|Y_{ij}\|_{2s}\leq\alpha\|Y_{ij}\|_{s} for all s2s\geq 2 with α=21/r\alpha=2^{1/r} by [38, Remark 1.5]), we have

(3.17) (𝔼i,jYijaijEijρ)1/ρ=(𝔼supxBpn,yBqm|i,jyiYijaijxj|ρ)1/ρr𝔼supxBpn,yBqmi,jyiYijaijxj+supxBpn,yBqm(𝔼|i,jyiYijaijxj|ρ)1/ρ.\biggl{(}\mathbb{E}\Bigl{\|}\sum_{i,j}Y_{ij}a_{ij}E_{ij}\Bigr{\|}^{\rho}\biggr{)}^{1/\rho}=\biggl{(}\mathbb{E}\sup_{x\in B_{p}^{n},\ y\in B_{q^{*}}^{m}}\Bigl{|}\sum_{i,j}y_{i}Y_{ij}a_{ij}x_{j}\Bigr{|}^{\rho}\biggr{)}^{1/\rho}\\ \lesssim_{r}\mathbb{E}\sup_{x\in B_{p}^{n},\ y\in B_{q^{*}}^{m}}\sum_{i,j}y_{i}Y_{ij}a_{ij}x_{j}+\sup_{x\in B_{p}^{n},\ y\in B_{q^{*}}^{m}}\biggl{(}\mathbb{E}\Bigl{|}\sum_{i,j}y_{i}Y_{ij}a_{ij}x_{j}\Bigr{|}^{\rho}\biggr{)}^{1/\rho}.

Because of inequality (1.22), the first summand on the right-hand side may be estimated by γD\gamma D. Lemma 2.19 and the implication i\impliesii from Lemma 2.18 yield

(𝔼|i,jyiYijaijxj|ρ)1/ρr,K,Lρ1/ri,jyi2aij2xj2.\biggl{(}\mathbb{E}\Bigl{|}\sum_{i,j}y_{i}Y_{ij}a_{ij}x_{j}\Bigr{|}^{\rho}\biggr{)}^{1/\rho}\lesssim_{r,K,L}\ \rho^{1/r}\sqrt{\sum_{i,j}y_{i}^{2}a_{ij}^{2}x_{j}^{2}}.

Moreover, by (3.10) and (3.1) (used with m=Mm=M and n=Nn=N) and our assumption that AA:p/2nq/2m1/2D\|A\mathbin{\circ}A\colon\ell^{n}_{p/2}\to\ell^{m}_{q/2}\|^{1/2}\leq D,

supxBpn,yBqmi,jyi2aij2xj2D,\sup_{x\in B_{p}^{n},\ y\in B_{q^{*}}^{m}}\sqrt{\sum_{i,j}y_{i}^{2}a_{ij}^{2}x_{j}^{2}}\leq D,

so the second summand on the right-hand side of (3.17) is bounded above (up to a multiplicative constant depending only on rr, KK, and LL) by ρ1/rD\rho^{1/r}D. Thus, (1.23) indeed holds for the random matrix (Yij)ij(Y_{ij})_{ij} instead of XX. A similar reasoning shows that the same inequality holds also for the random matrix (εij)ij(\varepsilon_{ij})_{ij} (one may also simply use the Khintchine–Kahane inequality and assumption (1.22)). ∎

4. Proofs of further results

4.1. Gaussian random variables

Proof of Proposition 1.7.

Fix 1p21\leq p\leq 2 and 1q1\leq q\leq\infty. Let KK be the set defined in Lemma 2.3 for which Bpnln(en)1/pKB_{p}^{n}\subset\ln(en)^{1/p^{*}}K. Then

(4.1) GA:pnqm=supxBpnGAxqln(en)1/psupxExt(K)GAxq,\|G_{A}\colon\ell^{n}_{p}\to\ell^{m}_{q}\|=\sup_{x\in B_{p}^{n}}\|G_{A}x\|_{q}\leq\ln(en)^{1/p^{*}}\!\sup_{x\in\operatorname{Ext}(K)}\!\|G_{A}x\|_{q},

where Ext(K)\operatorname{Ext}(K) is the set of extreme points of KK. We shall now estimate the expected value of the right-hand side of (4.1).

To this end, we first consider a fixed x=(xj)j=1nExt(K)x=(x_{j})_{j=1}^{n}\in\operatorname{Ext}(K). Then there exists a non-empty index set J{1,,n}J\subset\{1,\dots,n\} of cardinality knk\leq n such that xj=±1k1/px_{j}=\frac{\pm 1}{k^{1/p}} for jJj\in J and xj=0x_{j}=0 for jJj\notin J. We have

(4.2) GAxq=(j=1naijgijxj)i=1mq=(i=1m|j=1naijgijxj|q)1/q.\|G_{A}x\|_{q}=\Bigl{\|}\Bigl{(}\sum_{j=1}^{n}a_{ij}g_{ij}x_{j}\Bigr{)}_{i=1}^{m}\Bigr{\|}_{q}=\Bigl{(}\sum_{i=1}^{m}\Bigl{|}\sum_{j=1}^{n}a_{ij}g_{ij}x_{j}\Bigr{|}^{q}\Bigr{)}^{1/q}.

Let us estimate the Lipschitz constant of the function

(4.3) z=(zij)ij(j=1naijzijxj)i=1mq=supyBqmi=1mj=1nyiaijzijxj.\displaystyle z=(z_{ij})_{ij}\mapsto\Bigl{\|}\Bigl{(}\sum_{j=1}^{n}a_{ij}z_{ij}x_{j}\Bigr{)}_{i=1}^{m}\Bigr{\|}_{q}=\sup_{y\in B_{q^{*}}^{m}}\sum_{i=1}^{m}\sum_{j=1}^{n}y_{i}a_{ij}z_{ij}x_{j}.

It follows from the Cauchy–Schwarz inequality (used in m×n\mathbb{R}^{m\times n}) that

supyBqmi=1mj=1nyiaijzijxj\displaystyle\sup_{y\in B_{q^{*}}^{m}}\sum_{i=1}^{m}\sum_{j=1}^{n}y_{i}a_{ij}z_{ij}x_{j} z2supyBqmi=1mj=1nyi2aij2xj2\displaystyle\leq\|z\|_{2}\sqrt{\sup_{y\in B_{q^{*}}^{m}}\sum_{i=1}^{m}\sum_{j=1}^{n}y_{i}^{2}a_{ij}^{2}x_{j}^{2}}
(4.4) =z21k1/psupyBq/2mi=1mjJyiaij2=z2bJk1/p,\displaystyle=\|z\|_{2}\frac{1}{k^{1/p}}\sqrt{\sup_{y\in B^{m}_{q^{*}/2}}\sum_{i=1}^{m}\sum_{j\in J}y_{i}a_{ij}^{2}}=\|z\|_{2}\frac{b_{J}}{k^{1/p}},

where we put

bJsupyBq/2mi=1mjJyiaij2.b_{J}\coloneqq\sqrt{\sup_{y\in B^{m}_{q^{*}/2}}\sum_{i=1}^{m}\sum_{j\in J}y_{i}a_{ij}^{2}}\,.

This shows that the function defined by (4.3) is bJk1/p\frac{b_{J}}{k^{1/p}}-Lipschitz continuous. Therefore, by the Gaussian concentration inequality (see, e.g., [41, Chapter 5.1]), for any u0u\geq 0,

(4.5) (GAxq𝔼GAxq+u)exp(k2/pu22bJ2).\mathbb{P}\bigl{(}\|G_{A}x\|_{q}\geq\mathbb{E}\|G_{A}x\|_{q}+u\bigr{)}\leq\exp\bigl{(}-\frac{k^{2/p}u^{2}}{2b_{J}^{2}}\bigr{)}.

We shall transform this inequality into a form which is more convenient to work with. We want to estimate 𝔼GAxq\mathbb{E}\|G_{A}x\|_{q} independently of xx and get rid of the dependence on JJ and pp on the right-hand side. By (4.2) and the fact that xExt(K)Bpnx\in\operatorname{Ext}(K)\subset B_{p}^{n}, we obtain

𝔼GAxq\displaystyle\mathbb{E}\|G_{A}x\|_{q} (𝔼GAxqq)1/q=γq(i=1m|j=1naij2xj2|q/2)1/q\displaystyle\leq(\mathbb{E}\|G_{A}x\|_{q}^{q})^{1/q}=\gamma_{q}\Bigl{(}\sum_{i=1}^{m}\Bigl{|}\sum_{j=1}^{n}a_{ij}^{2}x_{j}^{2}\Bigr{|}^{q/2}\Bigr{)}^{1/q}
γqsupzBpn(i=1m|j=1naij2zj2|q/2)1/q=γqAA:p/2nq/2m1/2a.\displaystyle\leq\gamma_{q}\sup_{z\in B_{p}^{n}}\Bigl{(}\sum_{i=1}^{m}\Bigl{|}\sum_{j=1}^{n}a_{ij}^{2}z_{j}^{2}\Bigr{|}^{q/2}\Bigr{)}^{1/q}=\gamma_{q}\|A\mathbin{\circ}A\colon\ell^{n}_{p/2}\to\ell^{m}_{q/2}\|^{1/2}\eqqcolon a.

We use the definition of bJb_{J}, then interchange the sums, use the triangle inequality, and then the inequality between the arithmetic mean and the power mean of order p/21p^{*}/2\geq 1 (recall that |J|=k|J|=k and p2p\leq 2) to obtain

k2/p1bJ2\displaystyle k^{2/p^{*}-1}b_{J}^{2} =k2/p1supyBq/2mi=1mjJaij2yi=k2/p1supyBq/2mjJ|i=1maij2yi|\displaystyle=k^{2/p^{*}-1}\sup_{y\in B^{m}_{q^{*}/2}}\sum_{i=1}^{m}\sum_{j\in J}a_{ij}^{2}y_{i}=k^{2/p^{*}-1}\sup_{y\in B^{m}_{q^{*}/2}}\sum_{j\in J}\Bigl{|}\sum_{i=1}^{m}a_{ij}^{2}y_{i}\Bigr{|}
supyBq/2m(jJ|i=1maij2yi|p/2)2/psupyBq/2m(j=1n|i=1maij2yi|p/2)2/p\displaystyle\leq\sup_{y\in B^{m}_{q^{*}/2}}\Bigl{(}\sum_{j\in J}\Bigl{|}\sum_{i=1}^{m}a_{ij}^{2}y_{i}\Bigr{|}^{p^{*}/2}\Bigr{)}^{2/p^{*}}\leq\sup_{y\in B^{m}_{q^{*}/2}}\Bigl{(}\sum_{j=1}^{n}\Bigl{|}\sum_{i=1}^{m}a_{ij}^{2}y_{i}\Bigr{|}^{p^{*}/2}\Bigr{)}^{2/p^{*}}
(4.6) =(AA)T:q/2mp/2nb2.\displaystyle=\|(A\mathbin{\circ}A)^{T}\colon\ell^{m}_{q^{*}/2}\to\ell^{n}_{p^{*}/2}\|\eqqcolon b^{2}.

The two inequalities above, together with inequality (4.5) (applied with u=k1/p1/2bJ2ln(en)su=k^{1/p^{*}-1/2}b_{J}\sqrt{2\ln(en)}s), imply that

(4.7) (GAxqa+b2ln(en)s)\displaystyle\mathbb{P}\bigl{(}\|G_{A}x\|_{q}\geq a+b\sqrt{2\ln(en)}\,s\bigr{)} exp(k2/p+2/p1ln(en)s2)\displaystyle\leq\exp\bigl{(}-k^{2/p+2/p^{*}-1}\ln(en)s^{2}\bigr{)}
=exp(kln(en)s2)\displaystyle=\exp\bigl{(}-k\ln(en)s^{2}\bigr{)}

holds for any s0s\geq 0 and all xExt(K)x\in\operatorname{Ext}(K) with support of cardinality kk.

For any knk\leq n, there are 2k(nk)2knkexp(kln(en))2^{k}\binom{n}{k}\leq 2^{k}n^{k}\leq\exp(k\ln(en)) vectors in Ext(K)\operatorname{Ext}(K) with support of cardinality kk. Therefore, using a union bound together with (4.7), we see that, for all s2s\geq\sqrt{2},

(supxExtKGAxqa+b2ln(en)s)k=1nexp(kln(en)(s21))nexp(ln(en)(s21))=n(en)s2+1es2+1.\mathbb{P}\bigl{(}\sup_{x\in\operatorname{Ext}K}\!\|G_{A}x\|_{q}\geq a+b\sqrt{2\ln(en)}s\bigr{)}\leq\sum_{k=1}^{n}\exp(-k\ln(en)(s^{2}-1))\\ \leq n\exp(-\ln(en)(s^{2}-1))=n(en)^{-s^{2}+1}\leq e^{-s^{2}+1}.

Hence, by Lemma 2.6 (applied with s02s_{0}\coloneqq\sqrt{2}, αe\alpha\coloneqq e, β1\beta\coloneqq 1, and r2r\coloneqq 2),

𝔼supxExtKGAxq\displaystyle\mathbb{E}\!\sup_{x\in\operatorname{Ext}K}\!\|G_{A}x\|_{q} a+b2ln(en)(2+ee222)a+2.2bln(en).\displaystyle\leq a+b\sqrt{2\ln(en)}\Bigl{(}\sqrt{2}+e\frac{e^{-2}}{2\sqrt{2}}\Bigr{)}\leq a+2.2b\sqrt{\ln(en)}.

Recalling (4.1) and the definitions of aa and bb yields the assertion. ∎

We now turn to the special case q=1q=1.

Proof of Proposition 1.8.

Since the first part of this proof works for general q1q\geq 1, we do not restrict our attention to q=1q=1 for now. First of all,

𝔼GA:pnqm(𝔼GA:pnqmq)1/q=(𝔼supxBpni=1m|Xi,x|q)1/q,\mathbb{E}\|G_{A}\colon\ell_{p}^{n}\to\ell_{q}^{m}\|\leq\bigl{(}\mathbb{E}\|G_{A}\colon\ell_{p}^{n}\to\ell_{q}^{m}\|^{q}\bigr{)}^{1/q}=\Bigl{(}\mathbb{E}\sup_{x\in B_{p}^{n}}\sum_{i=1}^{m}|\langle X_{i},x\rangle|^{q}\Bigr{)}^{1/q},

where Xi=(aijgij)j=1nX_{i}=(a_{ij}g_{ij})_{j=1}^{n} is the ii-th row of the matrix GAG_{A}. Centering this expression gives

(4.8) 𝔼supxBpni=1m|Xi,x|q\displaystyle\mathbb{E}\sup_{x\in B_{p}^{n}}\sum_{i=1}^{m}|\langle X_{i},x\rangle|^{q} 𝔼supxBpn[i=1m|Xi,x|q𝔼|Xi,x|q]\displaystyle\leq\mathbb{E}\sup_{x\in B_{p}^{n}}\Big{[}\sum_{i=1}^{m}|\langle X_{i},x\rangle|^{q}-\mathbb{E}|\langle X_{i},x\rangle|^{q}\Big{]}
+supxBpni=1m𝔼|Xi,x|q.\displaystyle\qquad+\sup_{x\in B_{p}^{n}}\sum_{i=1}^{m}\mathbb{E}|\langle X_{i},x\rangle|^{q}.

We first take care of the second term on the right-hand side of (4.8). We have

supxBpni=1m𝔼|Xi,x|q\displaystyle\sup_{x\in B_{p}^{n}}\sum_{i=1}^{m}\mathbb{E}|\langle X_{i},x\rangle|^{q} =γqqsupxBpni=1m(j=1naij2xj2)q/2\displaystyle=\gamma_{q}^{q}\sup_{x\in B_{p}^{n}}\sum_{i=1}^{m}\Bigl{(}\sum_{j=1}^{n}a_{ij}^{2}x_{j}^{2}\Bigr{)}^{q/2}
(4.9) =γqqsupzBp/2n(j=1naij2zj)imq/2q/2=γqqAA:p/2nq/2mq/2.\displaystyle=\gamma_{q}^{q}\sup_{z\in B_{p/2}^{n}}\Big{\|}\Bigl{(}\sum_{j=1}^{n}a_{ij}^{2}z_{j}\Bigr{)}_{i\leq m}\Big{\|}_{q/2}^{q/2}=\gamma_{q}^{q}\|A\mathbin{\circ}A\colon\ell^{n}_{p/2}\to\ell^{m}_{q/2}\|^{q/2}.

In order to deal with the first term on the right-hand side of (4.8), we use a symmetrization trick together with the contraction principle. The latter is the reason that we need to work with q=1q=1 here. We start with the symmetrization. Denoting by X~1,,X~n\widetilde{X}_{1},\dots,\widetilde{X}_{n} independent copies of X1,,XnX_{1},\dots,X_{n} and by (εi)i=1m(\varepsilon_{i})_{i=1}^{m} a sequence of Rademacher random variables independent of all others, we obtain by Jensen’s and the triangle inequalities that

𝔼supxBpn[i=1m\displaystyle\mathbb{E}\sup_{x\in B_{p}^{n}}\Bigl{[}\sum_{i=1}^{m} |Xi,x|q𝔼|Xi,x|q]=𝔼supxBpn[i=1m|Xi,x|q𝔼|X~i,x|q]\displaystyle|\langle X_{i},x\rangle|^{q}-\mathbb{E}|\langle X_{i},x\rangle|^{q}\Bigr{]}=\mathbb{E}\sup_{x\in B_{p}^{n}}\Big{[}\sum_{i=1}^{m}|\langle X_{i},x\rangle|^{q}-\mathbb{E}|\langle\widetilde{X}_{i},x\rangle|^{q}\Bigr{]}
𝔼supxBpn[i=1m|Xi,x|q|X~i,x|q]\displaystyle\leq\mathbb{E}\sup_{x\in B_{p}^{n}}\Bigl{[}\sum_{i=1}^{m}|\langle X_{i},x\rangle|^{q}-|\langle\widetilde{X}_{i},x\rangle|^{q}\Bigr{]}
(4.10) =𝔼supxBpn[i=1mεi(|Xi,x|q|X~i,x|q)]2𝔼supxBpni=1mεi|Xi,x|q.\displaystyle=\mathbb{E}\sup_{x\in B_{p}^{n}}\Bigl{[}\sum_{i=1}^{m}\varepsilon_{i}(|\langle X_{i},x\rangle|^{q}-|\langle\widetilde{X}_{i},x\rangle|^{q})\Bigr{]}\leq 2\cdot\mathbb{E}\sup_{x\in B_{p}^{n}}\sum_{i=1}^{m}\varepsilon_{i}|\langle X_{i},x\rangle|^{q}.

If q=1q=1, we may use the contraction principle (i.e., Lemma 2.8 applied with functions φi(t)=|t|\varphi_{i}(t)=|t|) conditionally to obtain

𝔼supxBpni=1mεi|Xi,x|\displaystyle\mathbb{E}\sup_{x\in B_{p}^{n}}\sum_{i=1}^{m}\varepsilon_{i}|\langle X_{i},x\rangle| 𝔼supxBpni=1mεiXi,x\displaystyle\leq\mathbb{E}\sup_{x\in B_{p}^{n}}\sum_{i=1}^{m}\varepsilon_{i}\langle X_{i},x\rangle
(4.11) =𝔼supxBpnj=1nxji=1maijεigij=𝔼supxBpnj=1nxji=1maijgij.\displaystyle=\mathbb{E}\sup_{x\in B_{p}^{n}}\sum_{j=1}^{n}x_{j}\sum_{i=1}^{m}a_{ij}\cdot\varepsilon_{i}g_{ij}=\mathbb{E}\sup_{x\in B_{p}^{n}}\sum_{j=1}^{n}x_{j}\sum_{i=1}^{m}a_{ij}g_{ij}.

For p>1p>1, we have

𝔼supxBpnj=1nxji=1maijgij\displaystyle\mathbb{E}\sup_{x\in B_{p}^{n}}\sum_{j=1}^{n}x_{j}\sum_{i=1}^{m}a_{ij}g_{ij} =𝔼(j=1n|i=1maijgij|p)1/p\displaystyle=\mathbb{E}\Bigl{(}\sum_{j=1}^{n}\Big{|}\sum_{i=1}^{m}a_{ij}g_{ij}\Big{|}^{p^{*}}\Bigr{)}^{1/p^{*}}
(4.12) (j=1n𝔼|i=1maijgij|p)1/p=γp(j=1n(i=1maij2)p/2)1/p.\displaystyle\leq\Bigl{(}\sum_{j=1}^{n}\mathbb{E}\Big{|}\sum_{i=1}^{m}a_{ij}g_{ij}\Big{|}^{p^{*}}\Bigr{)}^{1/p^{*}}=\gamma_{p^{*}}\Bigl{(}\sum_{j=1}^{n}\Bigl{(}\sum_{i=1}^{m}a_{ij}^{2}\Bigr{)}^{p^{*}/2}\Bigr{)}^{1/p^{*}}.

Moreover, we have

(j=1n(i=1maij2)p/2)1/p\displaystyle\Bigl{(}\sum_{j=1}^{n}\Bigl{(}\sum_{i=1}^{m}a_{ij}^{2}\Bigr{)}^{p^{*}/2}\Bigr{)}^{1/p^{*}} =supδ{1,1}m(i=1maij2δi)jnp/21/2\displaystyle=\sup_{\delta\in\{-1,1\}^{m}}\Bigl{\|}\Bigl{(}\sum_{i=1}^{m}a_{ij}^{2}\delta_{i}\Bigr{)}_{j\leq n}\Bigr{\|}_{p^{*}/2}^{1/2}
(4.13) =(AA)T:mp/2n1/2.\displaystyle=\bigl{\|}(A\mathbin{\circ}A)^{T}\colon\ell_{\infty}^{m}\to\ell_{p^{*}/2}^{n}\Bigr{\|}^{1/2}.

Inequalities (4.10)–(4.13) give the estimate of the first term on the right-hand side of (4.8). This ends the proof of the upper bound for p>1p>1.

If p=1p=1, then letting g1,,gng_{1},\ldots,g_{n} be i.i.d. standard Gaussian random variables, we have

𝔼supxBpnj=1nxji=1maijgij\displaystyle\mathbb{E}\sup_{x\in B_{p}^{n}}\sum_{j=1}^{n}x_{j}\sum_{i=1}^{m}a_{ij}g_{ij} =𝔼maxjn|i=1maijgij|\displaystyle=\mathbb{E}\max_{j\leq n}\Big{|}\sum_{i=1}^{m}a_{ij}g_{ij}\Big{|}
(4.14) =𝔼maxjngjbjmaxjn(ln(j+1)bj),\displaystyle=\mathbb{E}\max_{j\leq n}g_{j}b_{j}\asymp\max_{j\leq n}(\sqrt{\ln(j+1)}b_{j}^{\downarrow{}}),

where the last step follows from Lemmas 2.11 and 2.12 with bj(aij)im2b_{j}\coloneqq\|(a_{ij})_{i\leq m}\|_{2}, jnj\leq n. Putting together (4.8)–(4.11) and (4.1) completes the proof of the upper bound in the case p=1p=1.

The lower bound in the case p>1p>1 follows from Proposition 5.1 and Corollary 5.2 below. In the case p=1p=1, we use Proposition 5.1, note that

𝔼GA:pn1m𝔼supxBpnj=1nxji=1maijgij,\mathbb{E}\|G_{A}\colon\ell_{p}^{n}\to\ell_{1}^{m}\|\geq\mathbb{E}\sup_{x\in B_{p}^{n}}\sum_{j=1}^{n}x_{j}\sum_{i=1}^{m}a_{ij}g_{ij},

and use (4.1) to obtain a lower bound. ∎

Now we deal with another special case, the one where p=1p=1.

Proof of Proposition 1.10.

Recall that we deal with the range p=1q2p=1\leq q\leq 2. Using the structure of extreme points of B1nB_{1}^{n} we get

𝔼GA:1nqm=𝔼maxjn(aijgij)imq.\mathbb{E}\|G_{A}\colon\ell_{1}^{n}\to\ell_{q}^{m}\|=\mathbb{E}\max_{j\leq n}\|(a_{ij}g_{ij})_{i\leq m}\|_{q}.

Denote Zj=(aijgij)imqZ_{j}=\|(a_{ij}g_{ij})_{i\leq m}\|_{q}. By well-known tail estimates of norms of Gaussian variables with values in Banach spaces (see, e.g., [36, Corollary 1] for a more general formulation) we get for all t>0t>0,

(4.15) (ZjC(𝔼Zj+tbj))\displaystyle\mathbb{P}\bigl{(}Z_{j}\geq C(\mathbb{E}Z_{j}+\sqrt{t}b_{j})\bigr{)} et,\displaystyle\leq e^{-t},
(4.16) (Zjc(𝔼Zj+tbj))\displaystyle\mathbb{P}\bigl{(}Z_{j}\geq c(\mathbb{E}Z_{j}+\sqrt{t}b_{j})\bigr{)} min(c,et),\displaystyle\geq\min(c,e^{-t}),

where c,Cc,C are universal positive constants, and

bj2=(aij2)imq/(2q)=(aij2)im(q/2)=supxBqmi=1maij2xi2.b_{j}^{2}=\|(a_{ij}^{2})_{i\leq m}\|_{q/(2-q)}=\|(a_{ij}^{2})_{i\leq m}\|_{(q^{\ast}/2)^{\ast}}=\sup_{x\in B_{q^{\ast}}^{m}}\sum_{i=1}^{m}a_{ij}^{2}x_{i}^{2}.

Inequality (4.15) shows in particular that the random variables (ZjC𝔼Zj)+(Z_{j}-C\mathbb{E}Z_{j})_{+} satisfy

((ZjC𝔼Zj)+t)exp(t2C2bj2)\mathbb{P}((Z_{j}-C\mathbb{E}Z_{j})_{+}\geq t)\leq\exp\Bigl{(}-\frac{t^{2}}{C^{2}b_{j}^{2}}\Bigr{)}

for all t>0t>0, thus by Lemma 2.11 we get

𝔼GA:1nqm=𝔼maxjnZj\displaystyle\mathbb{E}\|G_{A}\colon\ell_{1}^{n}\to\ell_{q}^{m}\|=\mathbb{E}\max_{j\leq n}Z_{j} Cmaxjn𝔼Zj+maxjn(ZjC𝔼Zj)+\displaystyle\leq C\max_{j\leq n}\mathbb{E}Z_{j}+\max_{j\leq n}(Z_{j}-C\mathbb{E}Z_{j})_{+}
(maxjn𝔼Zj+maxjn(ln(j+1)bj)),\displaystyle\lesssim\Big{(}\max_{j\leq n}\mathbb{E}Z_{j}+\max_{j\leq n}(\sqrt{\ln(j+1)}b_{j}^{\downarrow{}})\Big{)},

which together with the observation (following from Lemma 2.1 and the fact that 1=pq21=p\leq q\leq 2) that

𝔼Zj(𝔼i=1m|aij|q|gij|q)1/q=γq(aij)imq=γqAA:1/2nq/2m1/2,\mathbb{E}Z_{j}\leq\Big{(}\mathbb{E}\sum_{i=1}^{m}|a_{ij}|^{q}|g_{ij}|^{q}\Big{)}^{1/q}=\gamma_{q}\|(a_{ij})_{i\leq m}\|_{q}=\gamma_{q}\|A\mathbin{\circ}A\colon\ell_{1/2}^{n}\to\ell_{q/2}^{m}\|^{1/2},

proves the upper estimate of the proposition.

Using comparison of moments of norms of Gaussian random vectors, we also get

𝔼GA:1nqm\displaystyle\mathbb{E}\|G_{A}\colon\ell_{1}^{n}\to\ell_{q}^{m}\| maxjn𝔼Zjmaxjn(𝔼Zjq)1/q\displaystyle\geq\max_{j\leq n}\mathbb{E}Z_{j}\gtrsim\max_{j\leq n}(\mathbb{E}Z_{j}^{q})^{1/q}
(4.17) =γq(aij)imq=γqAA:1/2nq/2m1/2,\displaystyle=\gamma_{q}\|(a_{ij})_{i\leq m}\|_{q}=\gamma_{q}\|A\mathbin{\circ}A\colon\ell_{1/2}^{n}\to\ell_{q/2}^{m}\|^{1/2},

so to end the proof it is enough to show that

(4.18) 𝔼GA:1nqmmaxjn(ln(j+1)bj).\displaystyle\mathbb{E}\|G_{A}\colon\ell_{1}^{n}\to\ell_{q}^{m}\|\geq\max_{j\leq n}(\sqrt{\ln(j+1)}b_{j}^{\downarrow{}}).

This will follow by a straightforward adaptation of the argument from the proof of Lemma 2.12. We may and do assume that the sequence (bj)jn(b_{j})_{j\leq n} is non-increasing in jj. By (4.16) we have for any jnj\leq n and k1k\geq 1,

(Zjcln(k+1)bj)ck.\mathbb{P}(Z_{j}\geq c\sqrt{\ln(k+1)}b_{j})\geq\frac{c^{\prime}}{k}.

Thus, since bjbkb_{j}\geq b_{k} for all jkj\leq k, we have for any knk\leq n,

(maxjnZjln(k+1)bk)\displaystyle\mathbb{P}(\max_{j\leq n}Z_{j}\geq\sqrt{\ln(k+1)}b_{k}) (jkZjln(k+1)bj)\displaystyle\geq\mathbb{P}(\exists_{j\leq k}\ Z_{j}\geq\sqrt{\ln(k+1)}b_{j})
1(1c/k)k1ec>0.\displaystyle\geq 1-(1-c^{\prime}/k)^{k}\geq 1-e^{-c^{\prime}}>0.

Thus,

𝔼GA:1nqm=𝔼maxjnZjln(k+1)bk.\mathbb{E}\|G_{A}\colon\ell_{1}^{n}\to\ell_{q}^{m}\|=\mathbb{E}\max_{j\leq n}Z_{j}\gtrsim\sqrt{\ln(k+1)}b_{k}.

Taking maximum over knk\leq n gives (4.18) and ends the proof. ∎

4.2. Bounded random variables

Here we show how one can adapt the methods of [9] to prove Proposition 1.14, i.e., a version of Corollary 1.13 in the special case of bounded random variables with better logarithmic terms and with explicit numerical constants. Following [9], we start with a lemma.

Lemma 4.1.

Assume that XX is as in Proposition 1.14. Let (bj)jnn(b_{j})_{j\leq n}\in\mathbb{R}^{n} and suppose that t0t_{0} is such that |j=1nbjXij|t0\bigl{|}\sum_{j=1}^{n}b_{j}X_{ij}\bigr{|}\leq t_{0} almost surely. Then, for all q2q\geq 2 and 0tt02q(4j=1nbj2)10\leq t\leq{t_{0}^{2-q}}(4\sum_{j=1}^{n}b_{j}^{2})^{-1},

(4.19) 𝔼exp(t|j=1nbjXij|q)1+Cq(q)t(j=1nbj2)q/2,\mathbb{E}\exp\bigl{(}t\bigl{|}\sum_{j=1}^{n}b_{j}X_{ij}\bigr{|}^{q}\bigr{)}\leq 1+C^{q}(q)\,t\,\bigl{(}\sum_{j=1}^{n}b_{j}^{2}\bigr{)}^{q/2},

where C(q)2(qΓ(q/2))1/qqC(q)\coloneqq 2(q\Gamma(q/2))^{1/q}\asymp\sqrt{q}.

Proof.

Without loss of generality we may and do assume that j=1nbj2=1\sum_{j=1}^{n}b_{j}^{2}=1.

Since q2q\geq 2, for s[0,t0]s\in[0,t_{0}] and t[0,14t02q]t\in[0,\frac{1}{4}t_{0}^{2-q}] we have tsqs2/2s2/4ts^{q}-s^{2}/2\leq-s^{2}/4. Thus, integration by parts, our assumption 0|j=1nbjXij|t00\leq\bigl{|}\sum_{j=1}^{n}b_{j}X_{ij}\bigr{|}\leq t_{0} a.s., and Hoeffding’s inequality (i.e., Lemma 2.13) yield

𝔼exp(t|j=1nbjXij|q)\displaystyle\mathbb{E}\exp\bigl{(}t\bigl{|}\sum_{j=1}^{n}b_{j}X_{ij}\bigr{|}^{q}\bigr{)} =1+qt0t0sq1exp(tsq)(|j=1nbjXij|s)𝑑s\displaystyle=1+qt\int_{0}^{t_{0}}s^{q-1}\exp(ts^{q})\mathbb{P}\bigl{(}\bigl{|}\sum_{j=1}^{n}b_{j}X_{ij}\bigr{|}\geq s\bigr{)}ds
1+2qt0t0sq1exp(tsqs2/2)𝑑s\displaystyle\leq 1+2qt\int_{0}^{t_{0}}s^{q-1}\exp(ts^{q}-s^{2}/2)ds
1+2qt0sq1exp(s2/4)𝑑s\displaystyle\leq 1+2qt\int_{0}^{\infty}s^{q-1}\exp(-s^{2}/4)ds
=1+t2qqΓ(q/2).\displaystyle=1+t2^{q}q\Gamma(q/2).\qed
Proof of Proposition 1.14.

We start with a bunch of reductions. Set

a\displaystyle a AA:p/2nq/2m1/2=maxjn(aij)i=1mq,\displaystyle\coloneqq\|A\mathbin{\circ}A\colon\ell^{n}_{p/2}\to\ell^{m}_{q/2}\|^{1/2}=\max_{j\leq n}\|(a_{ij})_{i=1}^{m}\|_{q},
b\displaystyle b (AA)T:q/2mp/2n1/2=maxim(aij)j=1np.\displaystyle\coloneqq\|(A\mathbin{\circ}A)^{T}\colon\ell^{m}_{q^{*}/2}\to\ell^{n}_{p^{*}/2}\|^{1/2}=\max_{i\leq m}\|(a_{ij})_{j=1}^{n}\|_{p^{*}}.

(The equalities follow from Lemma 2.1, since p/21q/2p/2\leq 1\leq q/2 and q/21p/2q^{*}/2\leq 1\leq p^{*}/2). Let KK be the set defined in Lemma 2.3, so that Bpnln(en)1/pKB_{p}^{n}\subset\ln(en)^{1/p^{*}}K. Then

(4.20) XA:pnqm=supxBpnXAxqln(en)1/psupxExt(K)XAxq,\|X_{A}\colon\ell^{n}_{p}\to\ell^{m}_{q}\|=\sup_{x\in B_{p}^{n}}\|X_{A}x\|_{q}\leq\ln(en)^{1/p^{*}}\!\sup_{x\in\operatorname{Ext}(K)}\!\|X_{A}x\|_{q},

where Ext(K)\operatorname{Ext}(K) is the set of extreme points of KK.

Consider first a fixed x=(xj)j=1nExt(K)Bpnx=(x_{j})_{j=1}^{n}\in\operatorname{Ext}(K)\subset B_{p}^{n}. We have

(4.21) XAxqq=i=1m|j=1naijXijxj|q.\|X_{A}x\|_{q}^{q}=\sum_{i=1}^{m}\Bigl{|}\sum_{j=1}^{n}a_{ij}X_{ij}x_{j}\Bigr{|}^{q}.

Denote

t0\displaystyle t_{0} b=maxim(aij)j=1np,\displaystyle\coloneqq b=\max_{i\leq m}\|(a_{ij})_{j=1}^{n}\|_{p^{*}},
t\displaystyle t t02q4maxim(aijxj)j=1n22.\displaystyle\coloneqq\frac{t_{0}^{2-q}}{4\max_{i\leq m}\|(a_{ij}x_{j})_{j=1}^{n}\|_{2}^{2}}.

Then, by the boundedness of XijX_{ij} and by Hölder’s inequality, for every imi\leq m,

|j=1naijxjXij|j=1n|aij||xj|(aij)j=1np(xj)j=1npt0.\bigl{|}\sum_{j=1}^{n}a_{ij}x_{j}X_{ij}\bigr{|}\leq\sum_{j=1}^{n}|a_{ij}||x_{j}|\leq\|(a_{ij})_{j=1}^{n}\|_{p^{*}}\|(x_{j})_{j=1}^{n}\|_{p}\leq t_{0}.

We can now apply, for every imi\leq m, Lemma 4.1 (with tt and t0t_{0} as above and with coefficients bj=aijxjb_{j}=a_{ij}x_{j}). Since the random variables |j=1naijxjXij|\bigl{|}\sum_{j=1}^{n}a_{ij}x_{j}X_{ij}\bigr{|}, imi\leq m, are independent, using Lemma 4.1 yields

𝔼exp(ti=1m|j=1naijxjXij|q)\displaystyle\mathbb{E}\exp\bigl{(}t\sum_{i=1}^{m}\bigl{|}\sum_{j=1}^{n}a_{ij}x_{j}X_{ij}\bigr{|}^{q}\bigr{)} =i=1m[𝔼exp(t|j=1naijxjXij|q)]\displaystyle=\prod_{i=1}^{m}\Bigl{[}\mathbb{E}\exp\bigl{(}t\bigl{|}\sum_{j=1}^{n}a_{ij}x_{j}X_{ij}\bigr{|}^{q}\bigr{)}\Bigr{]}
i=1m(1+Cq(q)t(j=1naij2xj2)q/2)\displaystyle\leq\prod_{i=1}^{m}\Bigl{(}1+C^{q}(q)\,t\,\bigl{(}\sum_{j=1}^{n}a_{ij}^{2}x_{j}^{2}\bigr{)}^{q/2}\Bigr{)}
exp(Cq(q)ti=1m(j=1naij2xj2)q/2)exp(Cq(q)taq),\displaystyle\leq\exp\Bigl{(}C^{q}(q)\,t\sum_{i=1}^{m}\bigl{(}\sum_{j=1}^{n}a_{ij}^{2}x_{j}^{2}\bigr{)}^{q/2}\Bigr{)}\leq\exp\bigl{(}C^{q}(q)\,ta^{q}\bigr{)},

where in the last step we used the definition of a=AA:p/2nq/2m1/2a=\|A\mathbin{\circ}A\colon\ell^{n}_{p/2}\to\ell^{m}_{q/2}\|^{1/2} (and the fact that xBpnx\in B^{n}_{p}). By Chebyshev’s inequality and (4.21), we have, for every s0s\geq 0,

(tXAxqqln[𝔼exp(ti=1m|j=1naijxjXij|q)]+sk)esk.\mathbb{P}\bigl{(}t\|X_{A}x\|_{q}^{q}\geq\ln\bigl{[}\mathbb{E}\exp\bigl{(}t\sum_{i=1}^{m}\bigl{|}\sum_{j=1}^{n}a_{ij}x_{j}X_{ij}\bigr{|}^{q}\bigr{)}\bigr{]}+sk\bigr{)}\leq e^{-sk}.

Combining this with the previous estimate yields, for every s0s\geq 0,

(XAxqqCq(q)aq+skt)esk.\mathbb{P}\bigl{(}\|X_{A}x\|_{q}^{q}\geq C^{q}(q)\,a^{q}+\frac{sk}{t}\bigr{)}\leq e^{-sk}.

Recall that xExt(K)x\in\operatorname{Ext}(K). Thus, there exists an index set J{1,,n}J\subset\{1,\dots,n\} of cardinality knk\leq n, such that xj=±1k1/px_{j}=\frac{\pm 1}{k^{1/p}} for jJj\in J and xj=0x_{j}=0 for jJj\notin J. We use the definition of tt and the inequality between the arithmetic mean and the power mean of order p/21p^{*}/2\geq 1 (recall that |J|=k|J|=k and p2p\leq 2) to get

14t=bq2maxim(aijxj)j=1n22\displaystyle\frac{1}{4t}=b^{q-2}\max_{i\leq m}\|(a_{ij}x_{j})_{j=1}^{n}\|_{2}^{2} =bq2k2/pmaximjJaij2\displaystyle=b^{q-2}k^{-2/p}\max_{i\leq m}\sum_{j\in J}a_{ij}^{2}
bq2k2/p+12/pmaxim(jJ|aij|p)2/p=bqk1.\displaystyle\leq b^{q-2}k^{-2/p+1-2/p^{*}}\max_{i\leq m}\bigl{(}\sum_{j\in J}|a_{ij}|^{p^{*}}\bigr{)}^{2/p^{*}}=b^{q}k^{-1}.

Putting everything together, we obtain

(4.22) (XAxqqCq(q)aq+4bqs)esk\mathbb{P}\bigl{(}\|X_{A}x\|_{q}^{q}\geq C^{q}(q)\,a^{q}+4b^{q}s\bigr{)}\leq e^{-sk}

for all s0s\geq 0 and all xExt(K)x\in\operatorname{Ext}(K) with support of cardinality kk.

For any knk\leq n, there are 2k(nk)2knkexp(kln(en))2^{k}\binom{n}{k}\leq 2^{k}n^{k}\leq\exp(k\ln(en)) vectors in Ext(K)\operatorname{Ext}(K) with support of cardinality kk. Thus, using the union bound and (4.22), we see that, for all s2s\geq 2,

(supxExtKXAxqqCq(q)aq+4bqln(en)s)k=1nexp(kln(en)(s1))nexp(ln(en)(s1))=n(en)s+1es+1.\mathbb{P}\bigl{(}\sup_{x\in\operatorname{Ext}K}\!\|X_{A}x\|_{q}^{q}\geq C^{q}(q)\,a^{q}+4b^{q}\ln(en)s\bigr{)}\leq\sum_{k=1}^{n}\exp(-k\ln(en)(s-1))\\ \leq n\exp(-\ln(en)(s-1))=n(en)^{-s+1}\leq e^{-s+1}.

Hence, by Lemma 2.6,

𝔼supxExtKXAxq(𝔼supxExtKXAxqq)1/q\displaystyle\mathbb{E}\!\!\sup_{x\in\operatorname{Ext}K}\!\!\ \|X_{A}x\|_{q}\leq\bigl{(}\mathbb{E}\!\!\sup_{x\in\operatorname{Ext}K}\!\!\|X_{A}x\|_{q}^{q}\bigr{)}^{1/q} (Cq(q)aq+4bqln(en)(2+ee2))1/q\displaystyle\leq\bigl{(}C^{q}(q)\,a^{q}+4b^{q}\ln(en)(2+e\cdot e^{-2})\bigr{)}^{1/q}
C(q)a+101/qln(en)1/qb.\displaystyle\leq C(q)a+10^{1/q}\ln(en)^{1/q}b.

Recalling (4.20) and the definitions of aa, bb, and C(q)C(q) yields the assertion. ∎

Remark 4.2.

In the unstructured case, for XijX_{ij} which are independent, mean-zero, and take values in [1,1][-1,1], it is easy to extend (1.2) to the whole range of p,q[1,]p,q\in[1,\infty] (see [8, 13]). Indeed, for p2p\geq 2 and q2q\geq 2,

𝔼X:pnqm\displaystyle\mathbb{E}\|X\colon\ell^{n}_{p}\to\ell^{m}_{q}\| pn2n𝔼X:2nqm\displaystyle\leq\|\ell^{n}_{p}\hookrightarrow\ell^{n}_{2}\|\cdot\mathbb{E}\|X\colon\ell^{n}_{2}\to\ell^{m}_{q}\|
qn1/21/pmax{n1/2,m1/q}=max{n11/p,n1/21/pm1/q}.\displaystyle\lesssim_{q}n^{1/2-1/p}\cdot\max\{n^{1/2},m^{1/q}\}=\max\{n^{1-1/p},n^{1/2-1/p}m^{1/q}\}.

Thus, for p2p\geq 2 and 1q21\leq q\leq 2,

𝔼X:pnqm\displaystyle\mathbb{E}\|X\colon\ell^{n}_{p}\to\ell^{m}_{q}\| 𝔼X:pn2m2mqm\displaystyle\leq\mathbb{E}\|X\colon\ell^{n}_{p}\to\ell^{m}_{2}\|\cdot\|\ell^{m}_{2}\hookrightarrow\ell^{m}_{q}\|
qmax{n11/p,n1/21/pm1/2}m1/q1/2\displaystyle\lesssim_{q}\max\{n^{1-1/p},n^{1/2-1/p}m^{1/2}\}\cdot m^{1/q-1/2}
=max{n11/pm1/q1/2,n1/21/pm1/q}.\displaystyle=\max\{n^{1-1/p}m^{1/q-1/2},n^{1/2-1/p}m^{1/q}\}.

Suppose now that 1p2q1\leq p\leq 2\leq q\leq\infty and 1/p+1/q11/p+1/q\leq 1 (i.e., qpq\geq p^{*}). Choose θ[0,1]\theta\in[0,1] and r2r\geq 2 so that 1p=θ2+1θ1\frac{1}{p}=\frac{\theta}{2}+\frac{1-\theta}{1} and 1q=θr+1θ\frac{1}{q}=\frac{\theta}{r}+\frac{1-\theta}{\infty}, i.e., θ=2/p\theta=2/p^{*} and r=2q/pr=2q/p^{*}. Using the Riesz–Thorin interpolation theorem, the fact that X:1nm1\|X\colon\ell^{n}_{1}\to\ell^{m}_{\infty}\|\leq 1 (since the entries take values in [1,1][-1,1]), and Jensen’s inequality, we arrive at

𝔼X:pnqm\displaystyle\mathbb{E}\|X\colon\ell^{n}_{p}\to\ell^{m}_{q}\| 𝔼X:2nrmθX:1nm1θ\displaystyle\leq\mathbb{E}\|X\colon\ell^{n}_{2}\to\ell^{m}_{r}\|^{\theta}\|X\colon\ell^{n}_{1}\to\ell^{m}_{\infty}\|^{1-\theta}
𝔼X:2nrmθ(𝔼X:2nrm)θ\displaystyle\leq\mathbb{E}\|X\colon\ell^{n}_{2}\to\ell^{m}_{r}\|^{\theta}\leq\bigl{(}\mathbb{E}\|X\colon\ell^{n}_{2}\to\ell^{m}_{r}\|\bigr{)}^{\theta}
max{n1/2,m1/r}θ=max{n1/p,m1/q}.\displaystyle\leq\max\{n^{1/2},m^{1/r}\}^{\theta}=\max\{n^{1/p^{*}},m^{1/q}\}.

The estimates in the remaining ranges of p,qp,q follow by duality (1.12). Moreover, up to constants, all these estimates are optimal, as they can be reversed for matrices with ±1\pm 1 entries (see [8, Proposition 3.2] or [13, Satz 2]).

4.3. ψr\psi_{r} random variables

In this section, we prove Theorem 1.15. To this end we shall split the matrix XX into two parts X(1)X^{(1)} and X(2)X^{(2)} such that all entries of X(1)X^{(1)} are bounded by Cln(mn)1/rC\ln(mn)^{1/r}. Then, we shall deal with X(2)X^{(2)} using the following crude bound and the fact that the probability that X(2)0X^{(2)}\neq 0 is very small. In order to bound the expectation of the norm of X(1)X^{(1)} we need a cut-off version of Theorem 1.15 – see Lemma 4.4 below.

Lemma 4.3.

Let r(0,2]r\in(0,2]. Assume that X=(Xij)im,jnX=(X_{ij})_{i\leq m,j\leq n} satisfies the assumptions of Theorem 1.15. Then

(𝔼XA:pnqm2)1/2r,K,L(m+n)1/rAA:p/2nq/2m1/2.\bigl{(}\mathbb{E}\|X_{A}\colon\ell_{p}^{n}\to\ell_{q}^{m}\|^{2}\bigr{)}^{1/2}\lesssim_{r,K,L}(m+n)^{1/r}\|A\mathbin{\circ}A\colon\ell^{n}_{p/2}\to\ell^{m}_{q/2}\|^{1/2}.
Proof.

By a standard volumetric estimate (see, e.g., [64, Corollary 4.2.13]), we know that there exists (in the metric p\|\cdot\|_{p}) a 1/21/2-net SS in BpnB_{p}^{n} of size at most 5n5^{n}. In other words, for any xBpnx\in B_{p}^{n} there exists ySy\in S such that xy12Bpnx-y\in\frac{1}{2}B_{p}^{n}. Thus, for any znz\in\mathbb{R}^{n},

supxBpnj=1nxjzj\displaystyle\sup_{x\in B_{p}^{n}}\sum_{j=1}^{n}x_{j}z_{j} supxBpnminySj=1n(xjyj)zj+supySj=1nyjzj\displaystyle\leq\sup_{x\in B_{p}^{n}}\min_{y\in S}\sum_{j=1}^{n}(x_{j}-y_{j})z_{j}+\sup_{y\in S}\sum_{j=1}^{n}y_{j}z_{j}
supu12Bpnj=1nujzj+supySj=1nyjzj=12supxBpnj=1nxjzj+supySj=1nyjzj.\displaystyle\leq\sup_{u\in\frac{1}{2}B_{p}^{n}}\sum_{j=1}^{n}u_{j}z_{j}+\sup_{y\in S}\sum_{j=1}^{n}y_{j}z_{j}=\frac{1}{2}\sup_{x\in B_{p}^{n}}\sum_{j=1}^{n}x_{j}z_{j}+\sup_{y\in S}\sum_{j=1}^{n}y_{j}z_{j}.

Hence,

(4.23) supxBpnj=1nxjzj2supySj=1nyjzj.\sup_{x\in B_{p}^{n}}\sum_{j=1}^{n}x_{j}z_{j}\leq 2\sup_{y\in S}\sum_{j=1}^{n}y_{j}z_{j}.

Likewise, if we denote by TT the 1/21/2-net in BqmB_{q^{*}}^{m} (in the metric q\|\cdot\|_{q^{*}}) of size at most 5m5^{m}, then

(4.24) supxBqmi=1mxizi2supyTi=1myizi.\sup_{x\in B_{q^{*}}^{m}}\sum_{i=1}^{m}x_{i}z_{i}\leq 2\sup_{y\in T}\sum_{i=1}^{m}y_{i}z_{i}.

Combining these two estimates, we see that

(4.25) (𝔼XA:pnqm2)1/2\displaystyle\bigl{(}\mathbb{E}\|X_{A}\colon\ell_{p}^{n}\to\ell_{q}^{m}\|^{2}\bigr{)}^{1/2} =(𝔼supxBpn,yBqm(i=1mj=1nyiaijXijxj)2)1/2\displaystyle=\bigl{(}\mathbb{E}\sup_{x\in B_{p}^{n},y\in B_{q^{*}}^{m}}\bigl{(}\sum_{i=1}^{m}\sum_{j=1}^{n}y_{i}a_{ij}X_{ij}x_{j}\bigr{)}^{2}\bigr{)}^{1/2}
4(𝔼supxS,yT(i=1mj=1nyiaijXijxj)2)1/2.\displaystyle\leq 4\bigl{(}\mathbb{E}\sup_{x\in S,y\in T}\bigl{(}\sum_{i=1}^{m}\sum_{j=1}^{n}y_{i}a_{ij}X_{ij}x_{j}\bigr{)}^{2}\bigr{)}^{1/2}.

Lemma 2.19 implies that for any xnx\in\mathbb{R}^{n}, ymy\in\mathbb{R}^{m}, the random variable

Z(x,y)(i,jyi2aij2xj2)1/2i=1mj=1nyiaijXijxjZ(x,y)\coloneqq\bigl{(}\sum_{i,j}y_{i}^{2}a_{ij}^{2}x_{j}^{2}\bigr{)}^{-1/2}\sum_{i=1}^{m}\sum_{j=1}^{n}y_{i}a_{ij}X_{ij}x_{j}

satisfies condition (i) in Lemma 2.18. Thus, Lemma  2.18 implies that

(4.26) 𝔼exp(c(r,K,L)(i,jyi2aij2xj2)r/2(i=1mj=1nyiaijXijxj)r)C(r,K,L),\mathbb{E}\exp\Bigl{(}c(r,K,L)\bigl{(}\sum_{i,j}y_{i}^{2}a_{ij}^{2}x_{j}^{2}\bigr{)}^{-r/2}\Bigl{(}\sum_{i=1}^{m}\sum_{j=1}^{n}y_{i}a_{ij}X_{ij}x_{j}\Bigr{)}^{r}\Bigr{)}\leq C(r,K,L),

where c(r,K,L)(0,)c(r,K,L)\in(0,\infty) and C(r,K,L)(0,)C(r,K,L)\in(0,\infty) depend only on rr, KK, and LL.

The function zezr/2z\mapsto e^{z^{r/2}} is convex on [(2r11)2/r,)[(2r^{-1}-1)^{2/r},\infty). Therefore, by Jensen’s inequality, for any u>0u>0 and any nonnegative random variable ZZ,

exp(u(𝔼Z2)r/2)\displaystyle\exp\bigl{(}u(\mathbb{E}Z^{2})^{r/2}\bigr{)} exp((u2/r𝔼Z2+(2r11)2/r)r/2)\displaystyle\leq\exp\bigl{(}(u^{2/r}\mathbb{E}Z^{2}+(2r^{-1}-1)^{2/r})^{r/2}\bigr{)}
𝔼exp((u2/rZ2+(2r11)2/r)r/2)\displaystyle\leq\mathbb{E}\exp\bigl{(}(u^{2/r}Z^{2}+(2r^{-1}-1)^{2/r})^{r/2}\bigr{)}
𝔼exp(uZr+(2r11))e2/r𝔼exp(uZr).\displaystyle\leq\mathbb{E}\exp\bigl{(}uZ^{r}+(2r^{-1}-1)\bigr{)}\leq e^{2/r}\mathbb{E}\exp(uZ^{r}).

Hence,

(𝔼Z2)1/2u1/r(ln(e2/r𝔼exp(uZr)))1/r.(\mathbb{E}Z^{2})^{1/2}\leq u^{-1/r}\Bigl{(}\ln\bigl{(}e^{2/r}\mathbb{E}\exp(uZ^{r})\bigr{)}\Bigr{)}^{1/r}.

Thus, when

uc(r,K,L)(maxxS,yTi,jyi2aij2xj2)r/2,u\coloneqq c(r,K,L)\bigl{(}\max_{x\in S,y\in T}\sum_{i,j}y_{i}^{2}a_{ij}^{2}x_{j}^{2}\bigr{)}^{-r/2},

we get by (4.26), (3.10), and (3.1),

(𝔼supxS,yT(i=1mj=1nyiaijXijxj)2)1/2\displaystyle\bigl{(}\mathbb{E}\sup_{x\in S,y\in T}\bigl{(}\sum_{i=1}^{m}\sum_{j=1}^{n}y_{i}a_{ij}X_{ij}x_{j}\bigr{)}^{2}\bigr{)}^{1/2}
u1/rln1/r(e2/r𝔼exp(c(r,K,L)supxS,yTZ(x,y)r))\displaystyle\leq u^{-1/r}\ln^{1/r}\Bigl{(}e^{2/r}\mathbb{E}\exp\Bigl{(}c(r,K,L)\sup_{x\in S,y\in T}Z(x,y)^{r}\Bigr{)}\Bigr{)}
u1/rln1/r(e2/r𝔼xS,yTexp(c(r,K,L)Z(x,y)r))\displaystyle\leq u^{-1/r}\ln^{1/r}\Bigl{(}e^{2/r}\mathbb{E}\!\!\sum_{x\in S,y\in T}\!\!\exp\bigl{(}c(r,K,L)Z(x,y)^{r}\bigr{)}\Bigr{)}
u1/rln1/r(e2/r|S||T|C(r,K,L))\displaystyle\leq u^{-1/r}\ln^{1/r}\Bigl{(}e^{2/r}|S||T|C(r,K,L)\Bigr{)}
1c(r,K,L)maxxS,yT(i,jyi2aij2xj2)1/2ln1/r(e2/r5m5nC(r,K,L))\displaystyle\leq\frac{1}{c(r,K,L)}\max_{x\in S,y\in T}\bigl{(}\sum_{i,j}y_{i}^{2}a_{ij}^{2}x_{j}^{2}\bigr{)}^{1/2}\ln^{1/r}\Bigl{(}e^{2/r}5^{m}5^{n}C(r,K,L)\Bigr{)}
r,K,L(3.10),(3.1)AA:p/2nq/2m1/2(m+n+C~(r,K,L))1/r,\displaystyle\overset{\mathclap{\eqref{eq:manipulations-to-fix1},\ \eqref{eq:manipulations-to-fix2}}}{\lesssim_{r,K,L}}\ \|A\mathbin{\circ}A\colon\ell^{n}_{p/2}\to\ell^{m}_{q/2}\|^{1/2}\bigl{(}m+n+\widetilde{C}(r,K,L)\bigr{)}^{1/r},

where in the last two inequalities we also used inequalities |S|5n|S|\leq 5^{n} and |T|5m|T|\leq 5^{m}, and the inclusions SBpnS\subset B_{p}^{n}, TBqmT\subset B_{q^{*}}^{m}. Recalling (4.25) completes the proof. ∎

The following cut-off version of Theorem 1.15 can be proved similarly as Proposition 1.7.

Lemma 4.4.

Let K,L,M>0K,L,M>0 and r(0,2]r\in(0,2]. Assume X=(Xij)im,jnX=(X_{ij})_{i\leq m,j\leq n} is a random matrix with independent symmetric entries taking values in [M,M][-M,M] and satisfying the condition

(4.27) (|Xij|t)Ketr/Lfor all t0.\mathbb{P}\bigl{(}|X_{ij}|\geq t\bigr{)}\leq Ke^{-t^{r}/L}\quad\text{for all }t\geq 0.

Then, for 1p21\leq p\leq 2 and 1q<1\leq q<\infty, we have

𝔼XA:pnqm\displaystyle\mathbb{E}\|X_{A}\colon\ell^{n}_{p}\to\ell^{m}_{q}\| q1/rC(r,K,L)ln(en)1/pAA:p/2nq/2m1/2\displaystyle\lesssim q^{1/r}C(r,K,L)\ln(en)^{1/p^{*}}\|A\mathbin{\circ}A\colon\ell^{n}_{p/2}\to\ell^{m}_{q/2}\|^{1/2}
+Mln(en)1/2+1/p(AA)T:q/2mp/2n1/2.\displaystyle\qquad+M\ln(en)^{1/2+1/p^{*}}\|(A\mathbin{\circ}A)^{T}\colon\ell^{m}_{q^{*}/2}\to\ell^{n}_{p^{*}/2}\|^{1/2}.
Proof.

Fix 1p21\leq p\leq 2 and 1q1\leq q\leq\infty. Let KK be the set defined in Lemma 2.3 so that Bpnln(en)1/pKB_{p}^{n}\subset\ln(en)^{1/p^{*}}K. Then

(4.28) XA:pnqm=supxBpnXAxqln(en)1/psupxExt(K)XAxq,\|X_{A}\colon\ell^{n}_{p}\to\ell^{m}_{q}\|=\sup_{x\in B_{p}^{n}}\|X_{A}x\|_{q}\leq\ln(en)^{1/p^{*}}\!\sup_{x\in\operatorname{Ext}(K)}\!\|X_{A}x\|_{q},

where Ext(K)\operatorname{Ext}(K) is the set of extreme points of KK. We shall now estimate the expected value of the right-hand side of (4.28).

To this end, we consider a fixed x=(xj)j=1nExt(K)x=(x_{j})_{j=1}^{n}\in\operatorname{Ext}(K). This means that there exists a non-empty index set J{1,,n}J\subset\{1,\dots,n\} of cardinality knk\leq n such that xj=±1k1/px_{j}=\frac{\pm 1}{k^{1/p}} for jJj\in J and xj=0x_{j}=0 for jJj\notin J. We know from (4.1) that the Lipschitz constant of the convex function

z=(zij)ij(j=1naijzijxj)iq=supyBqmi=1mj=1nyiaijzijxjz=(z_{ij})_{ij}\mapsto\Bigl{\|}\Bigl{(}\sum_{j=1}^{n}a_{ij}z_{ij}x_{j}\Bigr{)}_{i}\Bigr{\|}_{q}=\sup_{y\in B_{q^{*}}^{m}}\sum_{i=1}^{m}\sum_{j=1}^{n}y_{i}a_{ij}z_{ij}x_{j}

is less than or equal to

1k1/psupyBq/2mi=1mjJyiaij2bJk1/p.\frac{1}{k^{1/p}}\sqrt{\sup_{y\in B^{m}_{q^{*}/2}}\sum_{i=1}^{m}\sum_{j\in J}y_{i}a_{ij}^{2}}\,\eqqcolon\frac{b_{J}}{k^{1/p}}.

Thus, Talagrand’s concentration for convex functions and random vectors with independent bounded coordinates (see [56, Theorem 6.6 and Equation (6.18)]), together with the inequality Med(|Z|)2𝔼|Z|\operatorname{Med}(|Z|)\leq 2\mathbb{E}|Z|, implies

(4.29) (XAxq2𝔼XAxq+t)4exp(k2/pt216M2bJ2)for all t0.\mathbb{P}(\|X_{A}x\|_{q}\geq 2\mathbb{E}\|X_{A}x\|_{q}+t)\leq 4\exp\Bigl{(}-\frac{k^{2/p}t^{2}}{16M^{2}b_{J}^{2}}\Bigr{)}\qquad\text{for all }t\geq 0.

Similar to the proof in the Gaussian case (i.e., proof of Proposition 1.7), we shall transform this into a more convenient form by getting rid of bJb_{J} and estimating 𝔼XAxq\mathbb{E}\|X_{A}x\|_{q}. Let us denote, for each i{1,,m}i\in\{1,\dots,m\},

Zi\displaystyle Z_{i} j=1naijXijxj.\displaystyle\coloneqq\sum_{j=1}^{n}a_{ij}X_{ij}x_{j}.

From our assumption (4.27) as well as Lemmas 2.19 and 2.18, we obtain that (𝔼|Zi|q)1/qr,K,Lq1/rj=1naij2xj2(\mathbb{E}|Z_{i}|^{q})^{1/q}\lesssim_{r,K,L}q^{1/r}\sqrt{\sum_{j=1}^{n}a_{ij}^{2}x_{j}^{2}}. Hence,

𝔼XAxq\displaystyle\mathbb{E}\|X_{A}x\|_{q} (𝔼XAxqq)1/q=(i=1m𝔼|(XAx)i|q)1/qr,K,Lq1/r(i=1m(j=1naij2xj2)q/2)1/q\displaystyle\leq\bigl{(}\mathbb{E}\|X_{A}x\|_{q}^{q}\bigr{)}^{1/q}=\bigl{(}\sum_{i=1}^{m}\mathbb{E}|(X_{A}x)_{i}|^{q}\bigr{)}^{1/q}\lesssim_{r,K,L}q^{1/r}\Bigl{(}\sum_{i=1}^{m}\bigl{(}\sum_{j=1}^{n}a_{ij}^{2}x_{j}^{2}\bigr{)}^{q/2}\Bigr{)}^{1/q}
q1/rsupzBpn(i=1m|j=1naij2zj2|q/2)1/q=q1/rAA:p/2nq/2m1/2q1/ra.\displaystyle\leq q^{1/r}\sup_{z\in B_{p}^{n}}\Bigl{(}\sum_{i=1}^{m}\Bigl{|}\sum_{j=1}^{n}a_{ij}^{2}z_{j}^{2}\Bigr{|}^{q/2}\Bigr{)}^{1/q}=q^{1/r}\|A\mathbin{\circ}A\colon\ell^{n}_{p/2}\to\ell^{m}_{q/2}\|^{1/2}\eqqcolon q^{1/r}a.

From (4.1), we see that

k2/p1bJ2(AA)T:q/2mp/2nb2.k^{2/p^{*}-1}b_{J}^{2}\leq\|(A\mathbin{\circ}A)^{T}\colon\ell^{m}_{q^{*}/2}\to\ell^{n}_{p^{*}/2}\|\eqqcolon b^{2}.

The above two inequalities together with estimate (4.29) (applied with t=4k1p12bJMln(en)st=4k^{\frac{1}{p^{*}}-\frac{1}{2}}b_{J}M\sqrt{\ln(en)}s), imply that

(4.30) (XAxqC(r,K,L)q1/ra+4bMln(en)s)4exp(kln(en)s2)\mathbb{P}\bigl{(}\|X_{A}x\|_{q}\geq C(r,K,L)q^{1/r}a+4bM\sqrt{\ln(en)}s\bigr{)}\leq 4\exp\bigl{(}-k\ln(en)s^{2}\bigr{)}

for every s0s\geq 0 and any xExt(K)x\in\operatorname{Ext}(K) with support of cardinality kk.

For any knk\leq n, there are 2k(nk)2knkexp(kln(en))2^{k}\binom{n}{k}\leq 2^{k}n^{k}\leq\exp(k\ln(en)) vectors in Ext(K)\operatorname{Ext}(K) with support of cardinality kk. Thus, using the union bound and (4.30), we see that for s2s\geq\sqrt{2},

(supxExtKXAxqC(r,K,L)q1/ra+4bMln(en)s)4k=1nexp(kln(en)(s21))4nexp(ln(en)(s21))=4n(en)s2+14es2+1.\mathbb{P}\bigl{(}\sup_{x\in\operatorname{Ext}K}\!\|X_{A}x\|_{q}\geq C(r,K,L)q^{1/r}a+4bM\sqrt{\ln(en)}s\bigr{)}\leq 4\sum_{k=1}^{n}\exp(-k\ln(en)(s^{2}-1))\\ \leq 4n\exp(-\ln(en)(s^{2}-1))=4n(en)^{-s^{2}+1}\leq 4e^{-s^{2}+1}.

Hence, by Lemma 2.6,

𝔼supxExtKXAxq\displaystyle\mathbb{E}\!\sup_{x\in\operatorname{Ext}K}\!\|X_{A}x\|_{q} C(r,K,L)q1/ra+4bMln(en)(2+4ee222).\displaystyle\leq C(r,K,L)q^{1/r}a+4bM\sqrt{\ln(en)}\Bigl{(}\sqrt{2}+4e\frac{e^{-2}}{2\sqrt{2}}\Bigr{)}.

Recalling (4.28) and the definitions of aa and bb yields the assertion. ∎

Proof of Theorem 1.15.

By a symmetrization argument (as in the first paragraph of the proof of Theorem 3.5), we may and do assume that all the entries XijX_{ij} are symmetric. Set M=(4Lln(mn)/r)1/rM=(4L\ln(mn)/r)^{1/r}. Denote X^ij=Xij𝟏{|Xij|M}\widehat{X}_{ij}=X_{ij}\mathbf{1}_{\{|X_{ij}|\leq M\}} and let X^\widehat{X} be the m×nm\times n matrix with entries X^ij\widehat{X}_{ij}. We have

𝔼XA:npmq\displaystyle\mathbb{E}\|X_{A}\colon\ell^{n}_{p}\to\ell^{m}_{q}\| =𝔼XA:npmq𝟏{maxk,l|Xkl|M}\displaystyle=\mathbb{E}\|X_{A}\colon\ell^{n}_{p}\to\ell^{m}_{q}\|\mathbf{1}_{\{\max_{k,l}|X_{kl}|\leq M\}}
+𝔼XA:npmq𝟏{maxk,l|Xkl|>M}.\displaystyle\quad+\mathbb{E}\|X_{A}\colon\ell^{n}_{p}\to\ell^{m}_{q}\|\mathbf{1}_{\{\max_{k,l}|X_{kl}|>M\}}.

The random matrix X^\widehat{X} satisfies the assumptions of Lemma 4.4. Thus, the first summand above can be estimated as follows:

𝔼XA:npmq𝟏{maxk,l|Xkl|M}\displaystyle\mathbb{E}\|X_{A}\colon\ell^{n}_{p}\to\ell^{m}_{q}\|\mathbf{1}_{\{\max_{k,l}|X_{kl}|\leq M\}}
=𝔼supyBqm,xBpn{i=1mj=1nyiaijXijxj}𝟏{maxk,l|Xkl|M}\displaystyle=\mathbb{E}\sup_{y\in B_{q^{*}}^{m},x\in B_{p}^{n}}\bigl{\{}\sum_{i=1}^{m}\sum_{j=1}^{n}y_{i}a_{ij}X_{ij}x_{j}\bigr{\}}\cdot\mathbf{1}_{\{\max_{k,l}|X_{kl}|\leq M\}}
=𝔼supyBqm,xBpn{i=1mj=1nyiaijXij𝟏{|Xij|M}xj}𝟏{maxk,l|Xkl|M}\displaystyle=\mathbb{E}\sup_{y\in B_{q^{*}}^{m},x\in B_{p}^{n}}\bigl{\{}\sum_{i=1}^{m}\sum_{j=1}^{n}y_{i}a_{ij}X_{ij}\mathbf{1}_{\{|X_{ij}|\leq M\}}x_{j}\bigr{\}}\cdot\mathbf{1}_{\{\max_{k,l}|X_{kl}|\leq M\}}
=𝔼X^A:npmq𝟏{maxk,l|Xkl|M}𝔼X^A:npmq\displaystyle=\mathbb{E}\|\widehat{X}_{A}\colon\ell^{n}_{p}\to\ell^{m}_{q}\|\mathbf{1}_{\{\max_{k,l}|X_{kl}|\leq M\}}\leq\mathbb{E}\|\widehat{X}_{A}\colon\ell^{n}_{p}\to\ell^{m}_{q}\|
r,K,Lq1/rln(en)1/pAA:np/2mq/21/2\displaystyle\lesssim_{r,K,L}\ q^{1/r}\ln(en)^{1/p^{*}}\|A\mathbin{\circ}A\colon\ell^{n}_{p/2}\to\ell^{m}_{q/2}\|^{1/2}
+Mln(en)1/2+1/p(AA)T:mq/2np/21/2\displaystyle\qquad\qquad\ +M\ln(en)^{1/2+1/p^{*}}\|(A\mathbin{\circ}A)^{T}\colon\ell^{m}_{q^{*}/2}\to\ell^{n}_{p^{*}/2}\|^{1/2}
r,K,Lq1/rln(en)1/pAA:np/2mq/21/2\displaystyle\lesssim_{r,K,L}\ q^{1/r}\ln(en)^{1/p^{*}}\|A\mathbin{\circ}A\colon\ell^{n}_{p/2}\to\ell^{m}_{q/2}\|^{1/2}
+ln(mn)1/rln(en)1/2+1/p(AA)T:mq/2np/21/2.\displaystyle\qquad\qquad\ +\ln(mn)^{1/r}\ln(en)^{1/2+1/p^{*}}\|(A\mathbin{\circ}A)^{T}\colon\ell^{m}_{q^{*}/2}\to\ell^{n}_{p^{*}/2}\|^{1/2}.

For the second summand we write, using the Cauchy–Schwarz inequality and then Lemma 4.3 and Lemma 2.22 (with k=mnk=mn and v=4/rv=4/r; recall that M=(4Lln(mn)/r)1/rM=(4L\ln(mn)/r)^{1/r}),

𝔼XA:npmq𝟏{maxk,l|Xkl|>M}\displaystyle\mathbb{E}\|X_{A}\colon\ell^{n}_{p}\to\ell^{m}_{q}\|\mathbf{1}_{\{\max_{k,l}|X_{kl}|>M\}}
(𝔼XA:npmq2)1/2(maxkm,ln|Xkl|>M)1/2\displaystyle\leq\bigl{(}\mathbb{E}\|X_{A}\colon\ell^{n}_{p}\to\ell^{m}_{q}\|^{2}\bigr{)}^{1/2}\mathbb{P}(\max_{k\leq m,l\leq n}|X_{kl}|>M)^{1/2}
r,K,L(m+n)1/rAA:np/2mq/21/2(mn)2/r+1/2\displaystyle\lesssim_{r,K,L}(m+n)^{1/r}\|A\mathbin{\circ}A\colon\ell^{n}_{p/2}\to\ell^{m}_{q/2}\|^{1/2}\cdot(mn)^{-2/r+1/2}
rAA:np/2mq/21/2.\displaystyle\lesssim_{r}\|A\mathbin{\circ}A\colon\ell^{n}_{p/2}\to\ell^{m}_{q/2}\|^{1/2}.

Combinging the above three inequalities ends the proof. ∎

5. Lower bounds and further discussion of conjectures

5.1. Lower bounds

Let us first provide lower bounds showing that the upper bounds obtained above are indeed sharp (up to logarithms).

Proposition 5.1.

Let X=(Xij)im,jnX=(X_{ij})_{i\leq m,j\leq n} be a random matrix with independent mean-zero entries satisfying 𝔼|Xij|c\mathbb{E}|X_{ij}|\geq c for some c(0,)c\in(0,\infty). Then, for all 1p,q1\leq p,q\leq\infty,

𝔼XA:pnqmc22AA:np/2mq/21/2.\mathbb{E}\|X_{A}\colon\ell_{p}^{n}\to\ell_{q}^{m}\|\geq\frac{c}{2\sqrt{2}}\|A\mathbin{\circ}A\colon\ell^{n}_{p/2}\to\ell^{m}_{q/2}\|^{1/2}.

Using duality (1.12) we immediately obtain the following corollary.

Corollary 5.2.

Let X=(Xij)im,jnX=(X_{ij})_{i\leq m,j\leq n} be as in Proposition 5.1. Then, for all 1p,q1\leq p,q\leq\infty,

𝔼XA:pnqmc22(AA)T:mq/2np/21/2.\mathbb{E}\|X_{A}\colon\ell_{p}^{n}\to\ell_{q}^{m}\|\geq\frac{c}{2\sqrt{2}}\|(A\mathbin{\circ}A)^{T}\colon\ell^{m}_{q^{*}/2}\to\ell^{n}_{p^{*}/2}\|^{1/2}.
Proof of Proposition 5.1.

Let \|\cdot\| denote the operator norm from pn\ell_{p}^{n} to qm\ell_{q}^{m}. For i{1,,m}i\in\{1,\dots,m\} and j{1,,n}j\in\{1,\dots,n\}, let us denote by EijE_{ij} the m×nm\times n matrix with entry 11 at the intersection of iith row and jjth column and with all other entries 0. By the symmetrization trick described in Remark 3.4, it suffices to consider matrices XX with symmetric entries and prove the assertion with a twice better constant c/2c/\sqrt{2} (note that, also by Remark 3.4, the lower bound for the absolute first moment of the symmetrized entries does not change and is still equal to cc).

If XX has symmetric independent entries, it has the same distribution as (εij|Xij|)ij(\varepsilon_{ij}|X_{ij}|)_{ij}, where εij\varepsilon_{ij}, imi\leq m, jnj\leq n, are i.i.d. Rademacher random variables, independent of all other random variables. Hence, by Jensen’s inequality and the contraction principle (Lemma 2.7 applied with αij=1/𝔼|Xij|1/c\alpha_{ij}=1/\mathbb{E}|X_{ij}|\leq 1/c and xij=aij𝔼|Xij|Eijx_{ij}=a_{ij}\mathbb{E}|X_{ij}|E_{ij}), we get

𝔼i=1mj=1nXijaijEij\displaystyle\mathbb{E}\Bigl{\|}\sum_{i=1}^{m}\sum_{j=1}^{n}X_{ij}a_{ij}E_{ij}\Bigr{\|} =𝔼i,jεij|Xij|aijEij𝔼i,jεij𝔼|Xij|aijEij\displaystyle=\mathbb{E}\Bigl{\|}\sum_{i,j}\varepsilon_{ij}|X_{ij}|a_{ij}E_{ij}\Bigr{\|}\geq\mathbb{E}\Bigl{\|}\sum_{i,j}\varepsilon_{ij}\mathbb{E}|X_{ij}|a_{ij}E_{ij}\Bigr{\|}
(5.1) c𝔼i,jεijaijEij.\displaystyle\geq c\ \mathbb{E}\Bigl{\|}\sum_{i,j}\varepsilon_{ij}a_{ij}E_{ij}\Bigr{\|}.

Thus, it suffices to estimate from below 𝔼i,jεijaijEij\ \mathbb{E}\|\sum_{i,j}\varepsilon_{ij}a_{ij}E_{ij}\|.

Since the q\ell_{q} norm is unconditional, we obtain from the inequalities of Jensen and Khintchine (see [26]) that

𝔼i=1mj=1nεijaijEij\displaystyle\mathbb{E}\Bigl{\|}\sum_{i=1}^{m}\sum_{j=1}^{n}\varepsilon_{ij}a_{ij}E_{ij}\Bigr{\|} =𝔼supxBpn(j=1naijεijxj)i=1mq=𝔼supxBpn(|j=1naijεijxj|)i=1mq\displaystyle=\mathbb{E}\sup_{x\in B_{p}^{n}}\Bigl{\|}\bigl{(}\sum_{j=1}^{n}a_{ij}\varepsilon_{ij}x_{j}\bigr{)}_{i=1}^{m}\Bigr{\|}_{q}=\mathbb{E}\sup_{x\in B_{p}^{n}}\Bigl{\|}\Bigl{(}\bigl{|}\sum_{j=1}^{n}a_{ij}\varepsilon_{ij}x_{j}\bigr{|}\Bigr{)}_{i=1}^{m}\Bigr{\|}_{q}
supxBpn(𝔼|j=1naijεijxj|)i=1mq\displaystyle\geq\sup_{x\in B_{p}^{n}}\Bigl{\|}\Bigl{(}\mathbb{E}\bigl{|}\sum_{j=1}^{n}a_{ij}\varepsilon_{ij}x_{j}\bigr{|}\Bigr{)}_{i=1}^{m}\Bigr{\|}_{q}
Khintchine’sinequality12supxBpn((j=1naij2xj2)1/2)i=1mq\displaystyle\mathop{\geq}^{\text{Khintchine's}}_{\text{inequality}}\frac{1}{\sqrt{2}}\sup_{x\in B_{p}^{n}}\Bigl{\|}\Bigl{(}\bigl{(}\sum_{j=1}^{n}a_{ij}^{2}x_{j}^{2}\bigr{)}^{1/2}\Bigr{)}_{i=1}^{m}\Bigr{\|}_{q}
=12supzBp/2n(j=1naij2zj)i=1mq/21/2=12AA:np/2mq/21/2.\displaystyle=\frac{1}{\sqrt{2}}\sup_{z\in B_{p/2}^{n}}\Bigl{\|}\Bigl{(}\sum_{j=1}^{n}a_{ij}^{2}z_{j}\Bigr{)}_{i=1}^{m}\Bigr{\|}_{q/2}^{1/2}=\frac{1}{\sqrt{2}}\|A\mathbin{\circ}A\colon\ell^{n}_{p/2}\to\ell^{m}_{q/2}\|^{1/2}.

This together with the estimate in (5.1) yields the assertion. ∎

Since GA:pnqmmaxi,j|aijgij|\|G_{A}\colon\ell_{p}^{n}\to\ell_{q}^{m}\|\geq\max_{i,j}|a_{ij}g_{ij}|, it suffices to prove the following proposition in order to provide the lower bound in Conjecture 1.

Proposition 5.3.

For the m×nm\times n Gaussian matrix GAG_{A}, we have

(5.2) 𝔼GA:pnqmp,q{maxjnln(j+1)bjif pq2,maximln(i+1)diif  2pq,0otherwise,\mathbb{E}\|G_{A}\colon\ell_{p}^{n}\to\ell_{q}^{m}\|\gtrsim_{p,q}\begin{cases}\max_{j\leq n}\sqrt{\ln(j+1)}b_{j}^{\downarrow{}}&\text{if }\ p\leq q\leq 2,\\ \max_{i\leq m}\sqrt{\ln(i+1)}d_{i}^{\downarrow{}}&\text{if }\ 2\leq p\leq q,\\ 0&\text{otherwise,}\end{cases}

where bj=(aij)im2q/(2q)b_{j}=\|(a_{ij})_{i\leq m}\|_{2q/(2-q)} and di=(aij)jn2p/(p2)d_{i}=\|(a_{ij})_{j\leq n}\|_{2p/(p-2)}.

Proof.

Since B1nBpnB_{1}^{n}\subset B_{p}^{n} for p1p\geq 1 and the bjb_{j}’s do not depend on pp, it suffices to prove the first part of the assertion (in the range pq2p\leq q\leq 2) only in the case p=1q2p=1\leq q\leq 2. In this case (5.2) follows by Propostion 1.10.

The assertion in the range 2pq2\leq p\leq q follows by duality (1.12). ∎

5.2. The proof of Inequalities (1.13) and (1.11)

Let us now show that in the case q<pq<p, the third term on the right-hand side in Conjecture 1 is not needed. To this end it suffices to prove (1.13) only in the case q<2q<2, since the case p>2p>2 follows by duality (1.12).

Proposition 5.4.

Whenever 1q<p1\leq q<p\leq\infty and q<2q<2, we have

(5.3) D2=(AA)T:mq/2np/21/2p,qmaxjnln(j+1)bj,D_{2}=\|(A\mathbin{\circ}A)^{T}\colon\ell^{m}_{q^{*}/2}\to\ell^{n}_{p^{*}/2}\|^{1/2}\gtrsim_{p,q}\max_{j\leq n}\sqrt{\ln(j+1)}b_{j}^{\downarrow{}},

where bj=(aij)im2q/(2q)b_{j}=\|(a_{ij})_{i\leq m}\|_{2q/(2-q)}.

Proof.

Since the right-hand side of (5.3) does not depend on pp, and the left-hand side is non-decreasing with pp, we may consider only the case 1q<p21\leq q<p\leq 2. By permuting the columns of AA we may and do assume without loss of generality that the sequence (bj)j(b_{j})_{j} is non-increasing.

Fix j0nj_{0}\leq n. Let rr be the midpoint of the non-empty interval (2pp,2qq)(\frac{2-p}{p},\frac{2-q}{q}). Take x=(xj)jnx=(x_{j})_{j\leq n} with xj=1jrx_{j}=\frac{1}{j^{r}}. Since rp/(2p)>1rp/(2-p)>1, we have

j=1nxjp/(2p)j=11jrp/(2p)=C(p,q)<,\sum_{j=1}^{n}x_{j}^{p/(2-p)}\leq\sum_{j=1}^{\infty}\frac{1}{j^{rp/{(2-p)}}}=C(p,q)<\infty,

so xC(p,q)Bnp/(2p)=C(p,q)Bn(p/2)x\in C^{\prime}(p,q)B^{n}_{p/(2-p)}=C^{\prime}(p,q)B^{n}_{(p^{\ast}/2)^{\ast}}. Therefore, the inequality (q/2)=q/(2q)1(q^{\ast}/2)^{\ast}=q/(2~{}-~{}q)\geq~{}1 and the facts that bjbj0b_{j}\geq b_{j_{0}} for all jj0j\leq j_{0}, and that r<(2q)/qr<(2-q)/q imply

D22\displaystyle D_{2}^{2} =supzB(p/2)n(i=1m(j=1naij2zj)(q/2))1/(q/2)p,q(i=1m(j=1j0aij2jr)q/(2q))(2q)/q\displaystyle=\sup_{z\in B_{(p^{\ast}/2)^{\ast}}^{n}}\biggl{(}\sum_{i=1}^{m}\Bigl{(}\sum_{j=1}^{n}a_{ij}^{2}z_{j}\Bigr{)}^{(q^{\ast}/2)^{\ast}}\biggr{)}^{1/(q^{\ast}/2)^{\ast}}\gtrsim_{p,q}\biggl{(}\sum_{i=1}^{m}\Bigl{(}\sum_{j=1}^{j_{0}}a_{ij}^{2}j^{-r}\Bigr{)}^{q/(2-q)}\biggr{)}^{(2-q)/q}
(i=1mj=1j0aij2q/(2q)jrq/(2q))(2q)/q=(j=1j0bj2q/(q2)jrq/(2q))(2q)/q\displaystyle\geq\Bigl{(}\sum_{i=1}^{m}\sum_{j=1}^{j_{0}}a_{ij}^{2q/(2-q)}j^{-{rq/(2-q)}}\Bigr{)}^{(2-q)/q}=\Bigl{(}\sum_{j=1}^{j_{0}}b_{j}^{2q/(q-2)}j^{-{rq/(2-q)}}\Bigr{)}^{(2-q)/q}
bj02j0r+(2q)/qp,qbj02ln(j0+1).\displaystyle\geq b_{j_{0}}^{2}j_{0}^{-r+(2-q)/q}\gtrsim_{p,q}b_{j_{0}}^{2}\ln(j_{0}+1).

Taking the maximum over all j0nj_{0}\leq n completes the proof. ∎

Now we turn to the proof of (1.11). Note that it suffices to prove only the first two-sided inequality in (1.11), since the second one follows from it by duality (1.12).

Proposition 5.5.

For all 1p,q1\leq p,q\leq\infty, we have

(5.4) AA:np/2mq/21/2+𝔼maxim,jn|aijgij|qAA:np/2mq/21/2+maxim,jnln(j+1)aij,\|A\mathbin{\circ}A\colon\ell^{n}_{p/2}\to\ell^{m}_{q/2}\|^{1/2}+\mathbb{E}\max_{i\leq m,j\leq n}|a_{ij}g_{ij}|\\ \asymp_{q}\|A\mathbin{\circ}A\colon\ell^{n}_{p/2}\to\ell^{m}_{q/2}\|^{1/2}+\max_{i\leq m,j\leq n}\sqrt{\ln(j+1)}a_{ij}^{\prime},

where the matrix (aij)i,j(a_{ij}^{\prime})_{i,j} is obtained by permuting the columns of the matrix (|aij|)i,j(|a_{ij}|)_{i,j} in such a way that maxiai1maxiain\max_{i}a_{i1}^{\prime}\geq\dots\geq\max_{i}a_{in}^{\prime}.

Proof.

By permuting the columns of the matrix AA, we can assume that the sequence (maxim|aij|)j=1n(\max_{i\leq m}|a_{ij}|)_{j=1}^{n} is non-increasing. We have

(5.5) 𝔼maxim,jn|aijgij|𝔼maxjn(maxim|aijgij|𝔼maxim|aijgij|)+maxjn𝔼maxim|aijgij|.\mathbb{E}\max_{i\leq m,j\leq n}|a_{ij}g_{ij}|\leq\mathbb{E}\max_{j\leq n}\Big{(}\max_{i\leq m}|a_{ij}g_{ij}|-\mathbb{E}\max_{i\leq m}|a_{ij}g_{ij}|\Big{)}\\ +\max_{j\leq n}\mathbb{E}\max_{i\leq m}|a_{ij}g_{ij}|.

The function ymaxim|aijyi|y\mapsto\max_{i\leq m}|a_{ij}y_{i}| is maxim|aij|\max_{i\leq m}|a_{ij}|-Lipschitz with respect to the Euclidean norm on m\mathbb{R}^{m}, so by Gaussian concentration (see, e.g., [41, Chapter 5.1]),

(maxim|aijgij|𝔼maxim|aijgij|t)exp(t22maxim|aij|)\mathbb{P}\bigl{(}\max_{i\leq m}|a_{ij}g_{ij}|-\mathbb{E}\max_{i\leq m}|a_{ij}g_{ij}|\geq t\bigr{)}\leq\exp\Bigl{(}-\frac{t^{2}}{2\max_{i\leq m}|a_{ij}|}\Bigr{)}

for all t0t\geq 0, jnj\leq n. Thus, Lemma 2.11 and inequality (5.5) imply

(5.6) 𝔼maxim,jn|aijgij|maxjn(ln(j+1)maxim|aij|)+maxjn𝔼maxim|aijgij|.\displaystyle\mathbb{E}\max_{i\leq m,j\leq n}|a_{ij}g_{ij}|\lesssim\max_{j\leq n}\Big{(}\sqrt{\ln(j+1)}\max_{i\leq m}|a_{ij}|\Big{)}+\max_{j\leq n}\mathbb{E}\max_{i\leq m}|a_{ij}g_{ij}|.

We have

maxjn𝔼maxim|aijgij|\displaystyle\max_{j\leq n}\mathbb{E}\max_{i\leq m}|a_{ij}g_{ij}| maxjn𝔼(i=1m|aijgij|q)1/qγqmaxjn(aij)iq\displaystyle\leq\max_{j\leq n}\mathbb{E}\Big{(}\sum_{i=1}^{m}|a_{ij}g_{ij}|^{q}\Big{)}^{1/q}\leq\gamma_{q}\max_{j\leq n}\|(a_{ij})_{i}\|_{q}
=γqmaxjn(aij2)iq/21/2γqAA:np/2mq/21/2,\displaystyle=\gamma_{q}\max_{j\leq n}\|(a_{ij}^{2})_{i}\|_{q/2}^{1/2}\leq\gamma_{q}\|A\mathbin{\circ}A\colon\ell^{n}_{p/2}\to\ell^{m}_{q/2}\|^{1/2},

which, together with (5.6), provides the asserted upper bound.

On the other hand, if (al)lmn(a_{l}^{\downarrow{}})_{l\leq mn} denotes the non-increasing rearrangement of the sequence of all absolute values of entries of AA, then Lemma 2.12 implies

𝔼maxjnmaxim|aijgij|maxlmnln(l+1)al\displaystyle\mathbb{E}\max_{j\leq n}\max_{i\leq m}|a_{ij}g_{ij}|\gtrsim\max_{l\leq mn}\sqrt{\ln(l+1)}a_{l}^{\downarrow{}} maxjnln(j+1)aj\displaystyle\geq\max_{j\leq n}\sqrt{\ln(j+1)}a_{j}^{\downarrow{}}
maxjn(ln(j+1)maximaij),\displaystyle\geq\max_{j\leq n}\Big{(}\sqrt{\ln(j+1)}\max_{i\leq m}a_{ij}^{\prime}\Big{)},

which provides the asserted lower bound. ∎

Note that the above proof shows in fact that

maxjn(aij)iq+𝔼maxim,jn|aijgij|qmaxjn(aij)iq+maxim,jnln(j+1)aij,\max_{j\leq n}\|(a_{ij})_{i}\|_{q}+\mathbb{E}\max_{i\leq m,j\leq n}|a_{ij}g_{ij}|\\ \asymp_{q}\max_{j\leq n}\|(a_{ij})_{i}\|_{q}+\max_{i\leq m,j\leq n}\sqrt{\ln(j+1)}a_{ij}^{\prime},

so

(5.7) maxjn(aij)iq+maxim(aij)jp+maxjn,imln(i+1)aijqmaxjn(aij)iq+maxim(aij)jp+maxim,jnln(j+1)aij,\max_{j\leq n}\|(a_{ij})_{i}\|_{q}+\max_{i\leq m}\|(a_{ij})_{j}\|_{p^{\ast}}+\max_{j\leq n,i\leq m}\sqrt{\ln(i+1)}a_{ij}^{\prime\prime}\\ \asymp_{q}\max_{j\leq n}\|(a_{ij})_{i}\|_{q}+\max_{i\leq m}\|(a_{ij})_{j}\|_{p^{\ast}}+\max_{i\leq m,j\leq n}\sqrt{\ln(j+1)}a_{ij}^{\prime},

where the matrix (aij)i,j(a_{ij}^{\prime\prime})_{i,j} is obtained by permuting the rows of the matrix (|aij|)i,j(|a_{ij}|)_{i,j} in such a way that maxja1jmaxjamj\max_{j}a_{1j}^{\prime\prime}\geq\dots\geq\max_{j}a_{mj}^{\prime\prime}.

5.3. Counterexample to a seemingly natural conjecture

In this subsection we provide an example showing that for any pq<2p\leq q<2 the bound

𝔼GA:pnqmp,qAA:np/2mq/21/2\displaystyle\mathbb{E}\|G_{A}\colon\ell_{p}^{n}\to\ell_{q}^{m}\|\lesssim_{p,q}\|A\mathbin{\circ}A\colon\ell^{n}_{p/2}\to\ell^{m}_{q/2}\|^{1/2} +(AA)T:mq/2np/21/2\displaystyle+\|(A\mathbin{\circ}A)^{T}\colon\ell^{m}_{q^{*}/2}\to\ell^{n}_{p^{*}/2}\|^{1/2}
(5.8) +𝔼maxim,jn|aijgij|.\displaystyle+\mathbb{E}\max_{i\leq m,j\leq n}|a_{ij}g_{ij}|.

cannot hold. By duality (1.12), it also cannot hold for any 2<pq2<p\leq q. This explains that Conjecture 1 cannot be simplified into a form like on the right-hand side of (1.8).

Let pq<2p\leq q<2, k,Nk,N\in\mathbb{N}, and let A1,,ANA_{1},\ldots,A_{N} be k×kk\times k matrices with all entries equal to one. Consider a block matrix

A=(A1A200AN)A=\begin{pmatrix}\begin{matrix}A_{1}&\\ &A_{2}\end{matrix}&0\\ 0&\begin{matrix}\ddots&\\ &A_{N}\end{matrix}\end{pmatrix}

of size kN×kNkN\times kN, with blocks A1,ANA_{1},\ldots A_{N} on the diagonal and with all other entries equal to 0.

Note that since pq2p\leq q\leq 2,

AA:kNp/2kNq/2\displaystyle\|A\mathbin{\circ}A\colon\ell^{kN}_{p/2}\to\ell^{kN}_{q/2}\| =maxlNAlAl:kp/2kq/2=A1A1:kp/2kq/2\displaystyle=\max_{l\leq N}\|A_{l}\mathbin{\circ}A_{l}\colon\ell^{k}_{p/2}\to\ell^{k}_{q/2}\|=\|A_{1}\mathbin{\circ}A_{1}\colon\ell^{k}_{p/2}\to\ell^{k}_{q/2}\|
=supxBp/2k(i=1k|j=1kxi|q/2)2/q=supxBp/2kk2/q|i=1kxi|=k2/q,\displaystyle=\sup_{x\in B_{p/2}^{k}}\Bigl{(}\sum_{i=1}^{k}\Bigl{|}\sum_{j=1}^{k}x_{i}\Bigr{|}^{q/2}\Bigr{)}^{2/q}=\sup_{x\in B_{p/2}^{k}}k^{2/q}\Bigl{|}\sum_{i=1}^{k}x_{i}\Bigr{|}=k^{2/q},

and similarly, since 2qp2\leq q^{\ast}\leq p^{\ast},

(AA)T:kNq/2kNp/2=(A1A1)T:kq/2kp/2=k2/p+12/q.\|(A\mathbin{\circ}A)^{T}\colon\ell^{kN}_{q^{\ast}/2}\to\ell^{kN}_{p^{\ast}/2}\|=\|(A_{1}\mathbin{\circ}A_{1})^{T}\colon\ell^{k}_{q^{\ast}/2}\to\ell^{k}_{p^{\ast}/2}\|=k^{2/p^{\ast}+1-2/q^{\ast}}.

The two bounds above and Lemma 2.10 imply that the right-hand side of (5.8) is bounded from above by

(5.9) C(k1/q+k1/p+1/21/q+ln(kN)).C\Bigl{(}k^{1/q}+k^{1/p^{\ast}+1/2-1/q^{\ast}}+\sqrt{\ln(kN)}\Bigr{)}.

On the other hand, since for all jkNj\leq kN, (aij)i2q/(2q)=k(2q)/(2q)\|(a_{ij})_{i}\|_{2q/(2-q)}=k^{(2-q)/(2q)}, we obtain from the lower bound (5.2) that

(5.10) 𝔼GA:pkNqkNln(kN)k(2q)/(2q).\mathbb{E}\|G_{A}\colon\ell_{p}^{kN}\to\ell_{q}^{kN}\|\gtrsim\sqrt{\ln(kN)}k^{(2-q)/(2q)}.

If we take NeekN\asymp e^{e^{k}}, then (5.10) is of larger order than (5.9) as kk\to\infty, so (5.8) cannot hold.

5.4. Discussion of another natural conjecture

In this subsection we prove all the assertions of Remark 1.1. We begin by showing that for every 1p2q1\leq p\leq 2\leq q\leq\infty,

(5.11) D1+D2+𝔼maxi,j|aijgij|p,q𝔼maxim(aijgij)jp+𝔼maxjn(aijgij)iq,D_{1}+D_{2}+\mathbb{E}\max_{i,j}|a_{ij}g_{ij}|\asymp_{p,q}\mathbb{E}\max_{i\leq m}\|(a_{ij}g_{ij})_{j}\|_{p^{\ast}}+\mathbb{E}\max_{j\leq n}\|(a_{ij}g_{ij})_{i}\|_{q},

and, in the case p,q2p,q\geq 2,

(5.12) 𝔼maxim(aijgij)jp+𝔼maxjn(aijgij)iqp,qmaxim(aij)jp+maxjn(aij)iq+maximln(i+1)di,\mathbb{E}\max_{i\leq m}\|(a_{ij}g_{ij})_{j}\|_{p^{\ast}}+\mathbb{E}\max_{j\leq n}\|(a_{ij}g_{ij})_{i}\|_{q}\\ \lesssim_{p,q}\max_{i\leq m}\|(a_{ij})_{j}\|_{p^{\ast}}+\max_{j\leq n}\|(a_{ij})_{i}\|_{q}+\max_{i\leq m}\sqrt{\ln(i+1)}d_{i}^{\downarrow{}},

where D1=AA:np/2mq/21/2D_{1}=\|A\mathbin{\circ}A\colon\ell^{n}_{p/2}\to\ell^{m}_{q/2}\|^{1/2}, D2=(AA)T:mq/2np/21/2D_{2}=\|(A\mathbin{\circ}A)^{T}\colon\ell^{m}_{q^{*}/2}\to\ell^{n}_{p^{*}/2}\|^{1/2}, and di=(aij)jn2p/(p2)d_{i}=\|(a_{ij})_{j\leq n}\|_{2p/(p-2)}. In other words, (5.11) shows that Conjecture 1 is equivalent to (1.15) as long as 1p2q1\leq p\leq 2\leq q\leq\infty.

Proof of (5.11) and (5.12).

Fix imi\leq m and let f(x)=(aijxj)jpf(x)=\|(a_{ij}x_{j})_{j}\|_{p^{\ast}} for xnx\in\mathbb{R}^{n}. For p2p\geq 2 we have p(2/p)=2p/(p2)p^{\ast}(2/p^{\ast})^{\ast}=2p/(p-2). Thus ff is Lipschitz continuous with constant LiL_{i} equal to

supxB2n(j=1n|aijxj|p)1/p=supyB2/pn(j=1n|aij|pyj)1/p={maxjn|aij|if p2,(aij)j2p/(p2)if p2.\sup_{x\in B_{2}^{n}}\Bigl{(}\sum_{j=1}^{n}|a_{ij}x_{j}|^{p^{\ast}}\Bigr{)}^{1/p^{\ast}}=\sup_{y\in B_{2/p^{\ast}}^{n}}\Bigl{(}\sum_{j=1}^{n}|a_{ij}|^{p^{\ast}}y_{j}\Bigr{)}^{1/p^{\ast}}=\begin{cases}\max_{j\leq n}|a_{ij}|&\text{if }\ p\leq 2,\\ \|(a_{ij})_{j}\|_{{2p/(p-2)}}&\text{if }\ p\geq 2.\end{cases}

Therefore, the Gaussian concentration inequality (see, e.g., [41, Chapter 5.1]) implies that for every t0t\geq 0 and every imi\leq m,

((aijgij)jp𝔼(aijgij)jpt)et2/2Li2,\mathbb{P}\Bigl{(}\|(a_{ij}g_{ij})_{j}\|_{p^{\ast}}-\mathbb{E}\|(a_{ij}g_{ij})_{j}\|_{p^{\ast}}\geq t\Bigr{)}\leq e^{-t^{2}/2L_{i}^{2}},

so by Lemma 2.11 we get

(5.13) 𝔼maxim((aijgij)jp𝔼(aijgij)jp){maximmaxjnln(i+1)aijif p2,maximln(i+1)diif p2,\mathbb{E}\max_{i\leq m}\Bigl{(}\|(a_{ij}g_{ij})_{j}\|_{p^{\ast}}-\mathbb{E}\|(a_{ij}g_{ij})_{j}\|_{p^{\ast}}\Bigr{)}\\ \lesssim\begin{cases}\max_{i\leq m}\max_{j\leq n}\sqrt{\ln(i+1)}a_{ij}^{\prime\prime}&\text{if }\ p\leq 2,\\ \max_{i\leq m}\sqrt{\ln(i+1)}d_{i}^{\downarrow{}}&\text{if }\ p\geq 2,\end{cases}

where the matrix (aij)i,j(a_{ij}^{\prime\prime})_{i,j} is obtained by permuting the rows of the matrix (|aij|)i,j(|a_{ij}|)_{i,j} in such a way that maxja1jmaxjamj\max_{j}a_{1j}^{\prime\prime}\geq\dots\geq\max_{j}a_{mj}^{\prime\prime}.

Moreover, by Jensen’s inequality,

𝔼(aijgij)jp(𝔼(aijgij)jpp)1/p=(𝔼j=1n|aijgij|p)1/p=γp(aij)jp.\mathbb{E}\|(a_{ij}g_{ij})_{j}\|_{p^{\ast}}\leq\bigl{(}\mathbb{E}\|(a_{ij}g_{ij})_{j}\|_{p^{\ast}}^{p^{\ast}}\bigr{)}^{1/p^{\ast}}=\Bigl{(}\mathbb{E}\sum_{j=1}^{n}|a_{ij}g_{ij}|^{p^{\ast}}\Bigr{)}^{1/p^{\ast}}=\gamma_{p^{\ast}}\|(a_{ij})_{j}\|_{p^{\ast}}.

This together with the triangle inequality and (5.13) implies

𝔼maxim(aijgij)jppmaxim(aij)jp+{maximmaxjnln(i+1)aijif p2,maximln(i+1)diif p2,\mathbb{E}\max_{i\leq m}\|(a_{ij}g_{ij})_{j}\|_{p^{\ast}}\lesssim_{p}\max_{i\leq m}\|(a_{ij})_{j}\|_{p^{\ast}}+\begin{cases}\max_{i\leq m}\max_{j\leq n}\sqrt{\ln(i+1)}a_{ij}^{\prime\prime}&\text{if }\ p\leq 2,\\ \max_{i\leq m}\sqrt{\ln(i+1)}d_{i}^{\downarrow{}}&\text{if }\ p\geq 2,\end{cases}

and, by duality,

𝔼maxjn(aijgij)iqqmaxjn(aij)iq+{maxjnmaximln(j+1)aijif q2,maxjnln(j+1)bjif q2,\mathbb{E}\max_{j\leq n}\|(a_{ij}g_{ij})_{i}\|_{q}\lesssim_{q}\max_{j\leq n}\|(a_{ij})_{i}\|_{q}+\begin{cases}\max_{j\leq n}\max_{i\leq m}\sqrt{\ln(j+1)}a_{ij}^{\prime}&\text{if }\ q\geq 2,\\ \max_{j\leq n}\sqrt{\ln(j+1)}b_{j}^{\downarrow{}}&\text{if }\ q\leq 2,\end{cases}

where bj=(aij)i)2q/(2q)b_{j}=\|(a_{ij})_{i})\|_{2q/(2-q)}, and the matrix (aij)i,j(a_{ij}^{\prime})_{i,j} is obtained by permuting the columns of the matrix (|aij|)i,j(|a_{ij}|)_{i,j} in such a way that maxiai1maxiain\max_{i}a_{i1}^{\prime}\geq\dots\geq\max_{i}a_{in}^{\prime}. This, together with Lemma 2.1 and (5.4) yields in the case p2qp\leq 2\leq q,

𝔼maxim(aijgij)jp+𝔼maxjn(aijgij)iqp,qD1+D2+𝔼maxi,j|aijgij|,\mathbb{E}\max_{i\leq m}\|(a_{ij}g_{ij})_{j}\|_{p^{\ast}}+\mathbb{E}\max_{j\leq n}\|(a_{ij}g_{ij})_{i}\|_{q}\lesssim_{p,q}D_{1}+D_{2}+\mathbb{E}\max_{i,j}|a_{ij}g_{ij}|,

what implies the lower bound of (5.11). In the case 2<p,q2<p,q we additionally use (5.7) and the simple observation that

maximmaxjnln(i+1)aijmaximln(i+1)di\max_{i\leq m}\max_{j\leq n}\sqrt{\ln(i+1)}a_{ij}^{\prime\prime}\leq\max_{i\leq m}\sqrt{\ln(i+1)}d_{i}^{\downarrow{}}

to get (5.12).

Now we move to the proof of the upper bound of (5.11) in the case p2qp\leq 2\leq q. Since the pn\ell_{p^{\ast}}^{n} norm is unconditional, we have by Jensen’s inequality and Lemma 2.1

𝔼maxim(aijgij)jp=𝔼maxim(|aijgij|)jp\displaystyle\mathbb{E}\max_{i\leq m}\|(a_{ij}g_{ij})_{j}\|_{p^{\ast}}=\mathbb{E}\max_{i\leq m}\|(|a_{ij}g_{ij}|)_{j}\|_{p^{\ast}} maxim(|aij|𝔼|gij|)jp\displaystyle\geq\max_{i\leq m}\|(|a_{ij}|\mathbb{E}|g_{ij}|)_{j}\|_{p^{\ast}}
=2/πmaxim(|aij|)jp=2/πD2,\displaystyle=\sqrt{2/\pi}\max_{i\leq m}\|(|a_{ij}|)_{j}\|_{p^{\ast}}=\sqrt{2/\pi}D_{2},

and dually

𝔼maxjn(aijgij)iq2/πD1.\mathbb{E}\max_{j\leq n}\|(a_{ij}g_{ij})_{i}\|_{q}\geq\sqrt{2/\pi}D_{1}.

Moreover, since q\|\cdot\|_{q}\geq\|\cdot\|_{\infty},

𝔼maxjn(aijgij)iq𝔼maxjmaxi|aijgij|,\mathbb{E}\max_{j\leq n}\|(a_{ij}g_{ij})_{i}\|_{q}\geq\mathbb{E}\max_{j}\max_{i}|a_{ij}g_{ij}|,

which finishes the proof of the upper bound of (5.11). ∎

Next, for every pair (p,q)[1,]2(p,q)\in[1,\infty]^{2} which does not satisfy the condition 1p2q1\leq p\leq 2\leq q\leq\infty we shall give examples of m,nm,n\in\mathbb{N}, and m×nm\times n matrices AA, for which

(5.14) 𝔼GA:pnqm𝔼maxim(aijgij)jp+𝔼maxjn(aijgij)iq\mathbb{E}\|G_{A}\colon\ell_{p}^{n}\to\ell_{q}^{m}\|\gg\mathbb{E}\max_{i\leq m}\|(a_{ij}g_{ij})_{j}\|_{p^{\ast}}+\mathbb{E}\max_{j\leq n}\|(a_{ij}g_{ij})_{i}\|_{q}

when m,nm,n\to\infty. This shows that the natural conjecture (1.15) is wrong outside the range 1p2q1\leq p\leq 2\leq q\leq\infty. The case p=2=qp=2=q, when (1.15) is valid (cf. (1.4)), is in a sense a boundary case, for which (1.15) (i.e., a natural generalization of (1.4)) may hold.

Example 5.6 (for (5.14) in the case q<pq<p.).

Let m=nm=n, and A=IdnA=\operatorname{Id}_{n}. Then by Lemmas 2.10 and 2.12 we have

𝔼maxim(aijgij)jp+𝔼maxjn(aijgij)iq=2maxin|gii|lnn,\mathbb{E}\max_{i\leq m}\|(a_{ij}g_{ij})_{j}\|_{p^{\ast}}+\mathbb{E}\max_{j\leq n}\|(a_{ij}g_{ij})_{i}\|_{q}=2\max_{i\leq n}|g_{ii}|\asymp\sqrt{\ln n},

whereas Proposition 5.1 and our assumption p/q>1p/q>1 imply

𝔼GA:pnqn\displaystyle\mathbb{E}\|G_{A}\colon\ell_{p}^{n}\to\ell_{q}^{n}\| Idn:p/2nq/2n1/2=supxBp/2n(i=1n|xi|q/2)1/q\displaystyle\gtrsim\|\operatorname{Id}_{n}\colon\ell_{p/2}^{n}\to\ell_{q/2}^{n}\|^{1/2}=\sup_{x\in B_{p/2}^{n}}\Bigl{(}\sum_{i=1}^{n}|x_{i}|^{q/2}\Bigr{)}^{1/q}
=(supyBp/qni=1n|yi|)1/q=(n1/(p/q))1/qlnn.\displaystyle=\Bigl{(}\sup_{y\in B_{p/q}^{n}}\sum_{i=1}^{n}|y_{i}|\Bigr{)}^{1/q}=\bigl{(}n^{1/(p/q)^{*}}\bigr{)}^{1/q}\gg\sqrt{\ln n}.

Since cases 2<pq2<p\leq q and pq<2p\leq q<2 are dual (see (1.12)), we give an example for which (5.14) holds only in the first case.

Example 5.7 (for (5.14) in the case 2<pq2<p\leq q.).

Fix pp and qq satisfying 2<pq2<p\leq q. Let m,nm,n\to\infty be such that m1/qn1/pm^{1/q}\gg n^{1/p^{\ast}}, and let AA be an m×nm\times n matrix with all entries equal to 11. For p>2p>2 we have 2(p/2)=2p/(p2)2(p/2)^{\ast}=2p/(p-2). This together with (5.12) implies

𝔼maxim(aijgij)jp+𝔼maxjn(aijgij)iq\displaystyle\mathbb{E}\max_{i\leq m}\|(a_{ij}g_{ij})_{j}\|_{p^{\ast}}+\mathbb{E}\max_{j\leq n}\|(a_{ij}g_{ij})_{i}\|_{q}
p,qmaxim(aij)jp+maxjn(aij)iq+maximln(i+1)di\displaystyle\lesssim_{p,q}\max_{i\leq m}\|(a_{ij})_{j}\|_{p^{\ast}}+\max_{j\leq n}\|(a_{ij})_{i}\|_{q}+\max_{i\leq m}\sqrt{\ln(i+1)}d_{i}^{\downarrow{}}
=n1/p+m1/q+ln(m+1)n(p2)/2pm1/q+lnmn12(p/2).\displaystyle=n^{1/p^{\ast}}+m^{1/q}+\sqrt{\ln(m+1)}n^{(p-2)/2p}\lesssim m^{1/q}+\sqrt{\ln m}\,n^{\frac{1}{2(p/2)^{\ast}}}.

On the other hand, Proposition 5.1 and our assumption p/2>1p/2>1 imply

𝔼GA:pnqn\displaystyle\mathbb{E}\|G_{A}\colon\ell_{p}^{n}\to\ell_{q}^{n}\| A:p/2nq/2n1/2=supxBp/2n(i=1m|j=1nxj|q/2)1/q\displaystyle\gtrsim\|A\colon\ell_{p/2}^{n}\to\ell_{q/2}^{n}\|^{1/2}=\sup_{x\in B_{p/2}^{n}}\Bigl{(}\sum_{i=1}^{m}\Bigl{|}\sum_{j=1}^{n}x_{j}\Bigr{|}^{q/2}\Bigr{)}^{1/q}
=m1/qsupxBp/2n(|j=1nxj|)1/2=m1/qn12(p/2)m1/q+lnmn12(p/2).\displaystyle=m^{1/q}\sup_{x\in B_{p/2}^{n}}\Bigl{(}\Bigl{|}\sum_{j=1}^{n}x_{j}\Bigr{|}\Bigr{)}^{1/2}=m^{1/q}n^{\frac{1}{2(p/2)^{\ast}}}\gg m^{1/q}+\sqrt{\ln m}\,n^{\frac{1}{2(p/2)^{\ast}}}.

5.5. Infinite dimensional Gaussian operators

In this subsection we prove Proposition 1.2 concerning infinite dimensional Gaussian operators. It allows us to see that Conjecture 1 implies Conjecture 2.

Proof of Proposition 1.2.

We adapt the proof of [40, Corollary 1.2] to prove Proposition 1.2 in the case p2qp\leq 2\leq q – remaining cases may be proven similarly. Fix 1p2q1\leq p\leq 2\leq q\leq\infty for which (1.14) holds and a deterministic infinite matrix A=(aij)i,jA=(a_{ij})_{i,j\in\mathbb{N}}. Using the monotone convergence theorem one can show that a matrix B=(bij)i,jB=(b_{ij})_{i,j\in\mathbb{N}} defines a bounded operator between p()\ell_{p}(\mathbb{N}) and q()\ell_{q}(\mathbb{N}) if an only if supn(bij)i,jn:pnqn<\sup_{n\in\mathbb{N}}\|(b_{ij})_{i,j\leq n}\colon\ell_{p}^{n}\to\ell_{q}^{n}\|<\infty. Interpreting B:p()q()\|B\colon\ell_{p}(\mathbb{N})\to\ell_{q}(\mathbb{N})\| as infinity for matrices which do not define a bounded operator, we have

𝔼GA:p()q()=𝔼supxBp(i=1|j=1aijgijxj|q)1/q\displaystyle\mathbb{E}\|G_{A}\colon\ell_{p}(\mathbb{N})\to\ell_{q}(\mathbb{N})\|=\mathbb{E}\sup_{x\in B_{p}^{\infty}}\biggl{(}\sum_{i=1}^{\infty}\Bigl{|}\sum_{j=1}^{\infty}a_{ij}g_{ij}x_{j}\Bigr{|}^{q}\biggr{)}^{1/q}
=𝔼limnsupxBpn(i=1n|j=1naijgijxj|q)1/q\displaystyle=\mathbb{E}\lim_{n\to\infty}\sup_{x\in B_{p}^{n}}\biggl{(}\sum_{i=1}^{n}\Bigl{|}\sum_{j=1}^{n}a_{ij}g_{ij}x_{j}\Bigr{|}^{q}\biggr{)}^{1/q} =limn𝔼supxBpn(i=1n|j=1naijgijxj|q)1/q\displaystyle=\lim_{n\to\infty}\mathbb{E}\sup_{x\in B_{p}^{n}}\biggl{(}\sum_{i=1}^{n}\Bigl{|}\sum_{j=1}^{n}a_{ij}g_{ij}x_{j}\Bigr{|}^{q}\biggr{)}^{1/q}
=limn𝔼(gijaij)i,jn:pnqn\displaystyle=\lim_{n\to\infty}\mathbb{E}\bigl{\|}(g_{ij}a_{ij})_{i,j\leq n}\colon\ell_{p}^{n}\to\ell_{q}^{n}\bigr{\|}

and similarly

AA:p/2()q/2()\displaystyle\|A\mathbin{\circ}A\colon\ell_{p/2}(\mathbb{N})\to\ell_{q/2}(\mathbb{N})\| =limn(aij2)i,jn:np/2nq/2,\displaystyle=\lim_{n\to\infty}\|(a_{ij}^{2})_{i,j\leq n}\colon\ell^{n}_{p/2}\to\ell^{n}_{q/2}\|,
(AA)T:q/2()p/2()\displaystyle\|(A\mathbin{\circ}A)^{T}\colon\ell_{q^{*}/2}(\mathbb{N})\to\ell_{p^{*}/2}(\mathbb{N})\| =limn(aji2)i,jn:nq/2np/2,\displaystyle=\lim_{n\to\infty}\|(a_{ji}^{2})_{i,j\leq n}\colon\ell^{n}_{q^{*}/2}\to\ell^{n}_{p^{*}/2}\|,
and
𝔼supi,j|aijgij|\displaystyle\mathbb{E}\sup_{i,j\in\mathbb{N}}|a_{ij}g_{ij}| =limn𝔼supi,jn|aijgij|.\displaystyle=\lim_{n\to\infty}\mathbb{E}\sup_{i,j\leq n}|a_{ij}g_{ij}|.

Therefore, (1.14) implies the following: 𝔼GA:p()q()<\mathbb{E}\|G_{A}\colon\ell_{p}(\mathbb{N})\to\ell_{q}(\mathbb{N})\|<\infty if and only if AA:p/2()q/2()<\|A\mathbin{\circ}A\colon\ell_{p/2}(\mathbb{N})\to\ell_{q/2}(\mathbb{N})\|<\infty, (AA)T:q/2()p/2()<\|(A\mathbin{\circ}A)^{T}\colon\ell_{q^{*}/2}(\mathbb{N})\to\ell_{p^{*}/2}(\mathbb{N})\|<\infty, and 𝔼supi,j|aijgij|<\mathbb{E}\sup_{i,j\in\mathbb{N}}|a_{ij}g_{ij}|<\infty. It thus suffices to prove the following claim: GA:p()q()<\|G_{A}\colon\ell_{p}(\mathbb{N})\to\ell_{q}(\mathbb{N})\|<\infty almost surely if and only if 𝔼GA:p()q()<\mathbb{E}\|G_{A}\colon\ell_{p}(\mathbb{N})\to\ell_{q}(\mathbb{N})\|<\infty.

If (GA:p()q()<)<1\mathbb{P}(\|G_{A}\colon\ell_{p}(\mathbb{N})\to\ell_{q}(\mathbb{N})\|<\infty)<1, then (GA:p()q()=)>0\mathbb{P}(\|G_{A}\colon\ell_{p}(\mathbb{N})\to\ell_{q}(\mathbb{N})\|=\infty)>0, so 𝔼GA:p()q()=\mathbb{E}\|G_{A}\colon\ell_{p}(\mathbb{N})\to\ell_{q}(\mathbb{N})\|=\infty.

Assume now that (GA:p()q()<)=1\mathbb{P}(\|G_{A}\colon\ell_{p}(\mathbb{N})\to\ell_{q}(\mathbb{N})\|<\infty)=1. By (4.23) and (4.24) we know that for every nn\in\mathbb{N} there exist finite sets SnS_{n} and TnT_{n} such that

GA:p()q()\displaystyle\|G_{A}\colon\ell_{p}(\mathbb{N})\to\ell_{q}(\mathbb{N})\| =supnsupxBpn,yBqni=1nj=1nyiaijgijxj\displaystyle=\sup_{n\in\mathbb{N}}\sup_{x\in B_{p}^{n},y\in B_{q^{\ast}}^{n}}\sum_{i=1}^{n}\sum_{j=1}^{n}y_{i}a_{ij}g_{ij}x_{j}
supnsupxSn,yTni=1nj=1nyiaijgijxja.s.\displaystyle\asymp\sup_{n}\sup_{x\in S_{n},y\in T_{n}}\sum_{i=1}^{n}\sum_{j=1}^{n}y_{i}a_{ij}g_{ij}x_{j}\qquad\text{a.s.}

In particular, there exist Gaussian random variables (Γk)k(\Gamma_{k})_{k\in\mathbb{N}} such that

GA:p()q()supkΓka.s.\|G_{A}\colon\ell_{p}(\mathbb{N})\to\ell_{q}(\mathbb{N})\|\asymp\sup_{k\in\mathbb{N}}\Gamma_{k}\qquad\text{a.s.}

Therefore, we may apply [35, (1.2)] to see that there exists ε>0\varepsilon>0 such that 𝔼exp(εGA:p()q()2)<\mathbb{E}\exp(\varepsilon\|G_{A}\colon\ell_{p}(\mathbb{N})\to\ell_{q}(\mathbb{N})\|^{2})<\infty, so 𝔼GA:p()q()<\mathbb{E}\|G_{A}\colon\ell_{p}(\mathbb{N})\to\ell_{q}(\mathbb{N})\|<\infty, which completes the proof of the claim. ∎

Acknowledgments

R. Adamczak is partially supported by the National Science Center, Poland via the Sonata Bis grant no. 2015/18/E/ST1/00214. R. Adamczak was partially supported by by the WTZ Grant PL 06/2018 of the OeAD. J. Prochno and M. Strzelecka are — and M. Strzelecki was — supported by the Austrian Science Fund (FWF) Project P32405 Asymptotic Geometric Analysis and Applications. M. Strzelecka was partially supported by the National Science Center, Poland, via the Maestro grant no. 2015/18/A/ST1/00553.

References

  • [1] D. Achlioptas and F. Mcsherry, Fast computation of low-rank matrix approximations, J. ACM 54 (2007), no. 2, 9–es.
  • [2] R. Adamczak, R. Latała, A. E. Litvak, A. Pajor, and N. Tomczak-Jaegermann, Chevet type inequality and norms of submatrices, Studia Math. 210 (2012), no. 1, 35–56. MR 2949869
  • [3] R. Adamczak, R. Latała, Z. Puchała, and K. Życzkowski, Asymptotic entropic uncertainty relations, J. Math. Phys. 57 (2016), no. 3, 032204, 24. MR 3478525
  • [4] N. Ailon and B. Chazelle, The fast Johnson-Lindenstrauss transform and approximate nearest neighbors, SIAM J. Comput. 39 (2009), no. 1, 302–322. MR 2506527
  • [5] G. Akemann, J. Baik, and P. Di Francesco (eds.), The Oxford handbook of random matrix theory, Oxford University Press, Oxford, 2015.
  • [6] G. W. Anderson, A. Guionnet, and O. Zeitouni, An introduction to random matrices, Cambridge Studies in Advanced Mathematics, vol. 118, Cambridge University Press, Cambridge, 2010. MR 2760897
  • [7] A. S. Bandeira and R. van Handel, Sharp nonasymptotic bounds on the norm of random matrices with independent entries, Ann. Probab. 44 (2016), no. 4, 2479–2506. MR 3531673
  • [8] G. Bennett, Schur multipliers, Duke Math. J. 44 (1977), no. 3, 603–639. MR 493490
  • [9] G. Bennett, V. Goodman, and C. M. Newman, Norms of random matrices, Pacific J. Math. 59 (1975), no. 2, 359–365. MR 393085
  • [10] Y. Benyamini and Y. Gordon, Random factorization of operators between Banach spaces, J. Analyse Math. 39 (1981), 45–74. MR 632456
  • [11] S. Boucheron, G. Lugosi, and P. Massart, Concentration inequalities, Oxford University Press, Oxford, 2013, A nonasymptotic theory of independence, With a foreword by Michel Ledoux. MR 3185193
  • [12] J. Bourgain, S. Dirksen, and J. Nelson, Toward a unified theory of sparse dimensionality reduction in Euclidean space, Geom. Funct. Anal. 25 (2015), no. 4, 1009–1088. MR 3385629
  • [13] B. Carl, B. Maurey, and J. Puhl, Grenzordnungen von absolut-(r,p)(r,\,p)-summierenden Operatoren, Math. Nachr. 82 (1978), 205–218. MR 498116
  • [14] D. Chafaï, O. Guédon, G. Lecué, and A. Pajor, Interactions between compressed sensing random matrices and high dimensional geometry, Panoramas et Synthèses [Panoramas and Syntheses], vol. 37, Société Mathématique de France, Paris, 2012. MR 3113826
  • [15] K. R. Davidson and S. J. Szarek, Local operator theory, random matrices and Banach spaces, Handbook of the geometry of Banach spaces, Vol. I, North-Holland, Amsterdam, 2001, pp. 317–366. MR 1863696
  • [16] S. Foucart and H. Rauhut, A mathematical introduction to compressive sensing, Applied and Numerical Harmonic Analysis, Birkhäuser/Springer, New York, 2013. MR 3100033
  • [17] O. Friedland and P. Youssef, Approximating matrices and convex bodies, Int. Math. Res. Not. IMRN (2019), no. 8, 2519–2537. MR 3942169
  • [18] E. D. Gluskin, Norms of random matrices and diameters of finite-dimensional sets, Mat. Sb. (N.S.) 120(162) (1983), no. 2, 180–189, 286. MR 687610
  • [19] E. D. Gluskin and S. Kwapień, Tail and moment estimates for sums of independent random variables with logarithmically concave tails, Studia Math. 114 (1995), no. 3, 303–309. MR 1338834
  • [20] H. H. Goldstine and J. von Neumann, Numerical inverting of matrices of high order. II, Proc. Amer. Math. Soc. 2 (1951), 188–202. MR 41539
  • [21] Y. Gordon, Some inequalities for Gaussian processes and applications, Israel J. Math. 50 (1985), no. 4, 265–289. MR 800188
  • [22] Y. Gordon, A. E. Litvak, C. Schütt, and E. M. Werner, Geometry of spaces between polytopes and related zonotopes, Bull. Sci. Math. 126 (2002), no. 9, 733–762. MR 1941083
  • [23] O. Guédon, A. Hinrichs, A. E. Litvak, and J. Prochno, On the expectation of operator norms of random matrices, Geometric aspects of functional analysis, Lecture Notes in Math., vol. 2169, Springer, Cham, 2017, pp. 151–162. MR 3645120
  • [24] O. Guédon, S. Mendelson, A. Pajor, and N. Tomczak-Jaegermann, Majorizing measures and proportional subsets of bounded orthonormal systems, Rev. Mat. Iberoam. 24 (2008), no. 3, 1075–1095. MR 2490210
  • [25] O. Guédon and M. Rudelson, LpL_{p}-moments of random vectors via majorizing measures, Adv. Math. 208 (2007), no. 2, 798–823. MR 2304336
  • [26] U. Haagerup, The best constants in the Khintchine inequality, Studia Math. 70 (1981), no. 3, 231–283 (1982). MR 654838
  • [27] A. Hinrichs, D. Krieg, E. Novak, J. Prochno, and M. Ullrich, On the power of random information, Multivariate Algorithms and Information-Based Complexity (F. J. Hickernell and P. Kritzer, eds.), De Gruyter, Berlin/Boston, 1994, pp. 43–64.
  • [28] by same author, Random sections of ellipsoids and the power of random information, Trans. Amer. Math. Soc. 374 (2021), no. 12, 8691–8713. MR 4337926
  • [29] A. Hinrichs, J. Prochno, and M. Sonnleitner, Random sections of p\ell_{p}-ellipsoids, optimal recovery and Gelfand numbers of diagonal operators, 2021.
  • [30] A. Hinrichs, J. Prochno, and J. Vybíral, Gelfand numbers of embeddings of Schatten classes, Math. Ann. 380 (2021), no. 3-4, 1563–1593. MR 4297193
  • [31] P. Hitczenko, S. J. Montgomery-Smith, and K. Oleszkiewicz, Moment inequalities for sums of certain independent symmetric random variables, Studia Math. 123 (1997), no. 1, 15–42. MR 1438303
  • [32] W. Hoeffding, Probability inequalities for sums of bounded random variables, J. Amer. Statist. Assoc. 58 (1963), 13–30. MR 144363
  • [33] D. Krieg and M. Ullrich, Function values are enough for L2L_{2}-approximation, Found. Comput. Math. 21 (2021), no. 4, 1141–1151. MR 4298242
  • [34] S. Kwapień, Decoupling inequalities for polynomial chaos, Ann. Probab. 15 (1987), no. 3, 1062–1071. MR 893914
  • [35] H. J. Landau and L. A. Shepp, On the supremum of a Gaussian process, Sankhyā Ser. A 32 (1970), 369–378. MR 286167
  • [36] R. Latała, Tail and moment estimates for sums of independent random vectors with logarithmically concave tails, Studia Math. 118 (1996), no. 3, 301–304. MR 1388035
  • [37] by same author, Some estimates of norms of random matrices, Proc. Amer. Math. Soc. 133 (2005), no. 5, 1273–1282. MR 2111932
  • [38] R. Latała and M. Strzelecka, Comparison of weak and strong moments for vectors with independent coordinates, Mathematika 64 (2018), no. 1, 211–229. MR 3778221
  • [39] R. Latała and W. Świątkowski, Norms of randomized circulant matrices, Electron. J. Probab. 27 (2022), Paper No. 80, 23. MR 4441144
  • [40] R. Latała, R. van Handel, and P. Youssef, The dimension-free structure of nonhomogeneous random matrices, Invent. Math. 214 (2018), no. 3, 1031–1080. MR 3878726
  • [41] M. Ledoux, The concentration of measure phenomenon, Mathematical Surveys and Monographs, vol. 89, American Mathematical Society, Providence, RI, 2001. MR 1849347
  • [42] by same author, Deviation inequalities on largest eigenvalues, Geometric aspects of functional analysis, Lecture Notes in Math., vol. 1910, Springer, Berlin, 2007, pp. 167–219. MR 2349607
  • [43] M. Ledoux and M. Talagrand, Probability in Banach spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 23, Springer-Verlag, Berlin, 1991, Isoperimetry and processes. MR 1102015
  • [44] N. Linial, E. London, and Y. Rabinovich, The geometry of graphs and some of its algorithmic applications, Combinatorica 15 (1995), no. 2, 215–245. MR 1337355
  • [45] D. Matlak, Oszacowania norm macierzy losowych, Master’s thesis, Uniwersytet Warszawski, 2017.
  • [46] A. Naor, O. Regev, and T. Vidick, Efficient rounding for the noncommutative Grothendieck inequality, Theory Comput. 10 (2014), 257–295. MR 3267842
  • [47] Z. Puchała, Ł. Rudnicki, and K. Życzkowski, Majorization entropic uncertainty relations, J. Phys. A 46 (2013), no. 27, 272002, 12. MR 3081910
  • [48] H. Rauhut, Compressive sensing and structured random matrices, Theoretical foundations and numerical methods for sparse recovery, Radon Ser. Comput. Appl. Math., vol. 9, Walter de Gruyter, Berlin, 2010, pp. 1–92. MR 2731597
  • [49] S. Riemer and C. Schütt, On the expectation of the norm of random matrices with non-identically distributed entries, Electron. J. Probab. 18 (2013), no. 29, 13. MR 3035757
  • [50] M. Rudelson and R. Vershynin, Sampling from large matrices: an approach through geometric functional analysis, J. ACM 54 (2007), no. 4, Art. 21, 19. MR 2351844
  • [51] Y. Seginer, The expected norm of random matrices, Combin. Probab. Comput. 9 (2000), no. 2, 149–166. MR 1762786
  • [52] D. Slepian, The one-sided barrier problem for Gaussian noise, Bell System Tech. J. 41 (1962), 463–501. MR 133183
  • [53] A. M.-C. So, Moment inequalities for sums of random matrices and their applications in optimization, Math. Program. 130 (2011), no. 1, Ser. A, 125–151. MR 2853163
  • [54] D. A. Spielman and S.-H. Teng, Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems, Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory of Computing (New York, NY, USA), STOC ’04, Association for Computing Machinery, 2004, p. 81–90.
  • [55] M. Strzelecka, Estimates of norms of log-concave random matrices with dependent entries, Electron. J. Probab. 24 (2019), Paper No. 107, 15. MR 4017125
  • [56] M. Talagrand, A new look at independence, Ann. Probab. 24 (1996), no. 1, 1–34. MR 1387624
  • [57] J. A. Tropp, Norms of random submatrices and sparse approximation, C. R. Math. Acad. Sci. Paris 346 (2008), no. 23-24, 1271–1274. MR 2473306
  • [58] by same author, On the conditioning of random subdictionaries, Appl. Comput. Harmon. Anal. 25 (2008), no. 1, 1–24. MR 2419702
  • [59] by same author, User-friendly tail bounds for sums of random matrices, Foundations of Computational Mathematics 12 (2012), no. 4, 389–434.
  • [60] by same author, An introduction to matrix concentration inequalities, Foundations and Trends® in Machine Learning 8 (2015), no. 1-2, 1–230.
  • [61] R. van Handel, On the spectral norm of Gaussian random matrices, Trans. Amer. Math. Soc. 369 (2017), no. 11, 8161–8178. MR 3695857
  • [62] by same author, Structured random matrices, Convexity and concentration, IMA Vol. Math. Appl., vol. 161, Springer, New York, 2017, pp. 107–156. MR 3837269
  • [63] R. Vershynin, Introduction to the non-asymptotic analysis of random matrices, Compressed sensing, Cambridge Univ. Press, Cambridge, 2012, pp. 210–268. MR 2963170
  • [64] by same author, High-dimensional probability, Cambridge Series in Statistical and Probabilistic Mathematics, vol. 47, Cambridge University Press, Cambridge, 2018, An introduction with applications in data science, With a foreword by Sara van de Geer. MR 3837109
  • [65] J. von Neumann and H. H. Goldstine, Numerical inverting of matrices of high order, Bull. Amer. Math. Soc. 53 (1947), no. 11, 1021–1099.
  • [66] E. P. Wigner, Characteristic vectors of bordered matrices with infinite dimensions, Ann. of Math. (2) 62 (1955), 548–564. MR 77805
  • [67] by same author, Characteristic vectors of bordered matrices with infinite dimensions. II, Ann. of Math. (2) 65 (1957), 203–207. MR 83848
  • [68] by same author, On the distribution of the roots of certain symmetric matrices, Ann. of Math. (2) 67 (1958), 325–327. MR 95527
  • [69] J. Wishart, The generalised product moment distribution in samples from a normal multivariate population, Biometrika 20A (1928), no. 1/2, 32–52.