This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Normalizer decompositions of pp-local compact groups

Eva Belmont Department of Mathematics, University of California San Diego, La Jolla, CA, USA [email protected] Natàlia Castellana Departament de Matemàtiques, Universitat Autònoma de Barcelona, and Centre de Recerca Matemàtica, Barcelona, Spain [email protected] Jelena Grbić School of Mathematical Sciences, University of Southampton, Southampton, UK [email protected] Kathryn Lesh Department of Mathematics, Union College, Schenectady NY, USA [email protected]  and  Michelle Strumila School of Mathematics, Monash University, Clayton, Victoria, Australia [email protected]
Abstract.

We give a normalizer decomposition for a pp-local compact group (S,,)(S,{\mathcal{F}},{\mathcal{L}}) that describes ||\left|{\mathcal{L}}\right| as a homotopy colimit indexed over a finite poset. Our work generalizes the normalizer decompositions for finite groups due to Dwyer, for pp-local finite groups due to Libman, and for compact Lie groups in separate work due to Libman. Our approach gives a result in the Lie group case that avoids topological subtleties with Quillen’s Theorem A, because we work with discrete groups. We compute the normalizer decomposition for the pp-completed classifying spaces of U(p)\operatorname{U}(p) and SU(p){\operatorname{SU}(p)} and for the pp-compact groups of Aguadé  and Zabrodsky.

Key words and phrases:
Keywords: homotopy theory, fusion system, classifying space, Lie group, p-local compact group, homology decomposition
1991 Mathematics Subject Classification:
MSC 2020: Primary 55R35; Secondary 57T10.

1. Introduction

For a finite group GG, a prime pp, and a suitable collection 𝒞{\mathscr{C}} of subgroups of GG, Dwyer [Dwyer-Homology] gave a systematic approach to three homotopy colimit decompositions for BGp{BG}_{p}^{\wedge}. Two of them, the centralizer decomposition and the subgroup decomposition, are indexed by fusion and orbit categories whose objects are conjugacy classes of subgroups in 𝒞{\mathscr{C}}. The third is the normalizer decomposition,

BGp[hocolimδ]p,{BG}_{p}^{\wedge}\simeq{\big{[}\operatorname{hocolim}_{\,{\mathbb{P}}\in{\mathcal{I}}}\delta\big{]}}_{p}^{\wedge},

which is indexed over the finite poset {\mathcal{I}} whose objects are GG-conjugacy classes of chains =(H0Hk){\mathbb{P}}=(H_{0}\subsetneq\ldots\subsetneq H_{k}) for Hi𝒞H_{i}\in{\mathscr{C}} and δ()B(iNGHi)\delta({\mathbb{P}})\simeq B(\cap_{i}N_{G}H_{i}).

There are two more general contexts that are relevant to our work. First, the homotopy colimit decompositions were studied for compact Lie groups. Jackowski and McClure [jackowski-mcclure, Thm. 1.3] had given a centralizer decomposition for compact Lie groups with respect to the collection of elementary abelian pp-subgroups. Jackowski, McClure and Oliver described subgroup decompositions. Słomińska  [slominska-webb-conj] gave a normalizer decomposition with this collection. Libman [Libman-Minami, Thm. C] gave centralizer, subgroup, and normalizer decompositions with the collection of abelian pp-subgroups and the collection of pp-radical subgroups.

The second generalization of interest comes by replacing finite groups by pp-local finite groups. These objects are triples (S,,)(S,{\mathcal{F}},{\mathcal{L}}), where SS is a finite pp-group, and {\mathcal{F}} and {\mathcal{L}} are categories encoding data that mimics conjugations. One can define the classifying space ||p{\left|{\mathcal{L}}\right|}_{p}^{\wedge} of a pp-local finite group, and it behaves similarly to the pp-completed classifying space of a group. Every finite group gives rise to a pp-local finite group, but not every pp-local finite group comes from a group. Libman [Libman-normalizer] proved the existence of a normalizer decomposition for classifying spaces of pp-local finite groups.

We work with pp-local compact groups (Definition 2.11), which generalize compact Lie groups in the same way that pp-local finite groups generalize finite groups. The theory, developed in [BLO-Discrete], is in spirit analogous to that of pp-local finite groups, but with new challenges because of the non-finite context. The analogue of a finite pp-group is a discrete pp-toral group, namely an extension of a discrete torus (/p)r({\mathbb{Z}}/p^{\infty})^{r} by a finite pp-group. Studying Lie groups by way of their associated pp-local compact groups has the advantage of reducing to discrete (as opposed to topological) groups. Broto, Levi, and Oliver prove a subgroup decomposition for pp-local compact groups ([BLO-Discrete, Prop. 4.6], [LL-ExistenceL, Thm. B]).

Our first contribution is to adapt Libman’s work [Libman-normalizer] on pp-local finite groups to construct a normalizer decomposition for pp-local compact groups. One advantage of the normalizer decomposition of a pp-local compact group over the centralizer or subgroup decompositions is that the normalizer decomposition is indexed over a finite poset. In the statement below, the notation cr{\mathcal{F}}^{cr} refers to the subcategory of {\mathcal{F}} whose objects are {\mathcal{F}}-centric and {\mathcal{F}}-radical subgroups. The finite poset s¯dcr{{\overline{s}}d}{\mathcal{F}}^{cr} is defined in Definition 3.15.

Theorem 3.16.

Let (S,,)(S,{\mathcal{F}},{\mathcal{L}}) be a pp-local compact group. There is a functor δ:s¯dcrTop\delta\colon{{\overline{s}}d}{\mathcal{F}}^{cr}\longrightarrow\operatorname{Top} with an equivalence hocolims¯d(cr)δ||\operatorname{hocolim}_{{{\overline{s}}d}({\mathcal{F}}^{cr})}\delta\longrightarrow\left|{\mathcal{L}}\right| and a natural homotopy equivalence BAut()δ([])\operatorname{BAut}_{{\mathcal{L}}}({\mathbb{P}})\longrightarrow\delta([{\mathbb{P}}]) for each chain {\mathbb{P}}. Further, the group Aut()\operatorname{Aut}_{{\mathcal{L}}}({\mathbb{P}}) is a virtually discrete pp-toral group.

This statement is largely formal, as is most of the proof, but there are interesting challenges in computing the decomposition in cases of interest. Our first class of examples is given by pp-local compact groups arising from compact Lie groups. Theorem 3.16 takes place fully in the world of discrete pp-toral groups. To relate our underlying theory to the usual context of normalizers in compact Lie groups, we use our previous work [WIT-normalizers] to rephrase the functor values in the resulting homotopy colimit as mod pp equivalent to classifying spaces of group-theoretic normalizers. In comparison to [Libman-Minami], this approach gives a more formal proof of the basic decomposition result—essentially analogous to the finite case—because we do not have to address the topological issues in applying Quillen’s Theorem A. Instead, the topological issues can be neatly packaged into the functor values and understood on a uniform basis [WIT-normalizers].

Let {\mathcal{R}} denote the collection of pp-toral subgroups of a compact Lie group GG that are both pp-centric and pp-stubborn in GG, and let s¯d{{\overline{s}}d}{\mathcal{R}} be the poset of GG-conjugacy classes of chains of proper inclusions of subgroups in {\mathcal{R}}.

Theorem 4.2.

Let GG be a compact Lie group and let (S,,)(S,{\mathcal{F}},{\mathcal{L}}) be the associated pp-local compact group. If PcrP\in{\mathcal{F}}^{cr}, let 𝐏{\bf P} denote its closure in GG. If =(P0Pk){\mathbb{P}}=(P_{0}\subsetneq\ldots\subsetneq P_{k}) is a proper chain of subgroups in cr{\mathcal{F}}^{cr}, then there is a natural weak mod pp equivalence

BAut()B(iNG(𝐏i)).\operatorname{BAut}_{{\mathcal{L}}}({\mathbb{P}})\simeq\operatorname{B}\!\big{(}\cap_{i}N_{G}({\bf P}_{i})\big{)}.

If in addition π0G\pi_{0}G is a pp-group, then the functor cr{\mathcal{F}}^{cr}\rightarrow{\mathcal{R}} given by P𝐏P\mapsto{\bf P} induces an isomorphism of posets s¯dcrs¯d{{\overline{s}}d}{\mathcal{F}}^{cr}\cong{{\overline{s}}d}{\mathcal{R}}.

In concert with Theorem 3.16, Theorem 4.2 tells us that when π0G\pi_{0}G is a pp-group, we can compute a normalizer decomposition for BGp{BG}_{p}^{\wedge} over a poset indexed by chains of pp-centric and pp-stubborn subgroups of GG, with values that are mod pp equivalent to intersections of normalizers of those subgroups. (See Remark 4.4 regarding the π0\pi_{0} hypothesis.) In Section LABEL:sec:U(p)_SU(p), we compute the decomposition explicitly in the cases U(p)\operatorname{U}(p) and SU(p)\operatorname{SU}(p), expressing the classifying spaces of these groups as mod pp equivalent to a homotopy pushout diagram. We believe these decompositions are new for odd primes. In the case p=2p=2 we recover the theorem of Dwyer, Miller, and Wilkerson [DMW1], who gave mod 22 homotopy pushout decompositions of BSU(2)\operatorname{BSU}(2) and BSO(3)\operatorname{BSO}(3) using an ad hoc method.

Theorem LABEL:theorem:_SU(p)_decomposition.

Let 𝒰(SL2𝔽p)\operatorname{{\mathcal{U}}}(\operatorname{SL}_{2}\!{\mathbb{F}}_{p}) denote the group of upper triangular matrices in SL2𝔽p\operatorname{SL}_{2}\!{\mathbb{F}}_{p}, let TT denote the chosen maximal discrete pp-torus of SU(p){\operatorname{SU}(p)}, and let Γ\Gamma denote the extra-special pp-group of order p3p^{3} and exponent pp.

  1. (1)

    For odd primes, the homotopy pushout of the diagram below is mod pp equivalent to BSU(p)\operatorname{BSU}(p):

    B(Γ𝒰(SL2𝔽p))\textstyle{\operatorname{B}\!\left(\Gamma\rtimes\operatorname{{\mathcal{U}}}(\operatorname{SL}_{2}\!{\mathbb{F}}_{p})\right)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}B(TΣp)\textstyle{\operatorname{B}\!\left(T\rtimes\Sigma_{p}\right)}B(ΓSL2𝔽p).\textstyle{\operatorname{B}\!\left(\Gamma\rtimes\operatorname{SL}_{2}\!{\mathbb{F}}_{p}\right).}
  2. (2)

    [DMW1, Thm. 4.1] The homotopy pushout of the diagram below is mod 22 equivalent to BSU(2)\operatorname{BSU}(2):

    BQ16\textstyle{\operatorname{B}Q_{16}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}B(TΣ2)\textstyle{\operatorname{B}\!\left(T\rtimes\Sigma_{2}\right)}BO48,\textstyle{\operatorname{B}O_{48},}

    where Q16Q_{16} and O48O_{48} denote the quaternionic group of order 1616 and the binary octahedral group of order 4848, respectively.

The result for U(p)\operatorname{U}(p) is found in Theorem LABEL:theorem:_U(p)_decomposition.

For our second class of examples, we turn to pp-compact groups, another generalization of classifying spaces of Lie groups introduced by Dwyer and Wilkerson [dwyer-wilkerson], which arose in the study of cohomology rings of loop spaces. Every pp-compact group has an associated pp-local compact group (S,,)(S,\mathcal{F},{\mathcal{L}}) [BLO-Discrete, Thm. 10.7], but not every pp-local compact group arises in this way. The classification of pp-compact groups in [Andersen-Grodal-2compact, AGMV-pcompact] builds these spaces out of compact Lie groups and a collection of exotic examples.

We apply Theorem 3.16 to the Aguadé–Zabrodsky pp-compact groups, which are closely related to BSU(p)p{\operatorname{BSU}(p)}_{p}^{\wedge}. They were first constructed in [aguade-modular] to have cohomology realizing certain invariants of polynomial rings. Our result is a homotopy pushout diagram for these spaces.

Theorem LABEL:theorem:_pushout_for_AZ.

Let XX denote one of the Aguadé–Zabrodsky pp-compact groups X12X_{12} (with p=3p=3), X29X_{29} (with p=5p=5), X31X_{31} (with p=5p=5), or X34X_{34} (with p=7p=7). Let T(/p)p1T\cong({\mathbb{Z}}/{p}^{\infty})^{p-1} denote the maximal discrete pp-torus in the associated fusion system, and let GG be the Weyl group associated to XX. The homotopy pushout of the diagram

B(Γ𝒰(GL2𝔽p))\textstyle{\operatorname{B}\!\big{(}\Gamma\rtimes\operatorname{{\mathcal{U}}}(\operatorname{GL}_{2}\!{\mathbb{F}}_{p})\big{)}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}B(TG)\textstyle{\operatorname{B}\left(T\rtimes G\right)}B(ΓGL2𝔽p)\textstyle{\operatorname{B}\!\left(\Gamma\rtimes\operatorname{GL}_{2}\!{\mathbb{F}}_{p}\right)}

is homotopy equivalent to the nerve of the linking system associated to XX, and mod pp equivalent to BXBX itself.

Comparing to Theorem LABEL:theorem:_SU(p)_decomposition, above, we see that SL2𝔽p\operatorname{SL}_{2}\!{\mathbb{F}}_{p} is replaced by GL2𝔽p\operatorname{GL}_{2}\!{\mathbb{F}}_{p}, and Σp\Sigma_{p} (the Weyl group for SU(p){\operatorname{SU}(p)}) is replaced by GG (the new, enlarged Weyl group for XX).

Organization

In Section 2 we review the properties of fusion and linking systems in the setting of discrete pp-local compact groups. In Section 3 we establish the general normalizer decomposition for a pp-local compact group (Theorem 3.16), and we show that the spaces involved are classifying spaces of virtually discrete pp-toral groups. In Section 4, we turn to Lie groups and prove Theorem 4.2. The main issue to be addressed is the calculation of automorphisms in the linking system associated to a Lie group. The problem is that the model of the linking system associated to GG is not directly related to the transporter system. In Section 5 we prepare for application of the normalizer decompositions to U(p)\operatorname{U}(p) and SU(p){\operatorname{SU}(p)} by separating out some group-theoretic calculations. In Section LABEL:sec:U(p)_SU(p) we use those calculations, in conjunction with Theorem 4.2, to give normalizer decompositions of U(p)\operatorname{U}(p) and SU(p){\operatorname{SU}(p)}. Finally, in Section LABEL:sec:AZ we leverage the results of Section LABEL:sec:U(p)_SU(p) to give normalizer decompositions for the “exotic” Aguadé–Zabrodsky spaces.

Acknowledgements.

The first author was supported by NSF grant DMS-2204357 and by an AWM-NSF mentoring travel grant to work with the fourth author. The second author was partially supported by Spanish State Research Agency project PID2020-116481GB-I00, the Severo Ochoa and María de Maeztu Program for Centers and Units of Excellence in R&\&D (CEX2020-001084-M), and the CERCA Programme/Generalitat de Catalunya. The first, second and fourth authors acknowledge the support of the program “Higher algebraic structures in algebra, topology and geometry” at the Mittag-Leffler Institute in Spring 2022.

We thank the organizers of the Women in Topology III workshop, where this work was begun, as well as the Hausdorff Research Institute for Mathematics, where the workshop was held. The Women in Topology III workshop was supported by NSF grant DMS-1901795, the AWM ADVANCE grant NSF HRD-1500481, and Foundation Compositio Mathematica. The fifth author was also supported for the workshop by a Cheryl Praeger Travel Grant.

We are extremely grateful to Dave Benson for tutorials on group theory regarding Sections 5 and LABEL:sec:U(p)_SU(p). Without this help, the results would have been much less tidily packaged. Needless to say, any remaining errors are our own.

2. Fusion systems and linking systems

We give a brief overview of the notion of a pp-local compact group given in the work of Broto, Levi and Oliver [BLO-Discrete]. Recall that a pp-toral group is an extension of a torus, (S1)r\left(S^{1}\right)^{r}, by a finite pp-group. We work with a discrete version of pp-toral groups. As usual, let /p{\mathbb{Z}}/{p}^{\infty} be the union of the cyclic pp-groups /pn{\mathbb{Z}}/p^{n} under the standard inclusions.

Definition 2.1.

A discrete pp-toral group is a group PP given by an extension

1(/p)rPπ0P1,1\longrightarrow\left({\mathbb{Z}}/{p}^{\infty}\right)^{r}\longrightarrow P\longrightarrow\pi_{0}P\longrightarrow 1,

where rr is a nonnegative integer and π0P\pi_{0}P is a finite pp-group. The identity component of PP is P0:=(/p)rP_{0}:=\left({\mathbb{Z}}/{p}^{\infty}\right)^{r}, and we call rr the rank of PP. We call π0P\pi_{0}P the set of components of PP.

Note that the identity component of a discrete pp-toral group is well defined because it is the characteristic subgroup consisting of infinitely pp-divisible elements.

Definition 2.2.

We define size(P)\operatorname{size}(P) of a discrete pp-toral group PP as the pair size(P)=(r,c)\operatorname{size}(P)=(r,c), where rr is the rank of PP and cc is the order of π0P\pi_{0}P, equipped with the lexicographic ordering (see [CLN, A.5]).

Lemma 2.3.

If PPP\to P^{\prime} is a monomorphism of discrete pp-toral groups, then size(P)size(P)\operatorname{size}(P)\leq\operatorname{size}(P^{\prime}), with equality if and only if PPP\to P^{\prime} is an isomorphism.

Proof.

See [BLO-Discrete, after Definition 1.1]. ∎

Given two discrete pp-toral groups PP and QQ, let Hom(P,Q)\operatorname{Hom}(P,Q) denote the set of group homomorphisms from PP to QQ. If PP and QQ are subgroups of a larger group SS, then HomS(P,Q)\operatorname{Hom}_{S}(P,Q) denotes the set of those homomorphisms (necessarily monomorphisms) induced by conjugation by elements of SS.

The following definition is a straightforward generalization of the definition of fusion systems over finite pp-groups (see [BLO-Finite]).

Definition 2.4.

[BLO-Discrete, Defn. 2.1] A fusion system \mathcal{F} over a discrete pp-toral group SS is a subcategory of the category of groups, defined as follows. The objects of {\mathcal{F}} are all of the subgroups of SS. The morphism sets Hom(P,Q)\operatorname{Hom}_{\mathcal{F}}(P,Q) contain only group monomorphisms, and satisfy the following conditions.

  • (a)

    HomS(P,Q)Hom(P,Q)\operatorname{Hom}_{S}(P,Q)\subseteq\operatorname{Hom}_{\mathcal{F}}(P,Q) for all P,QSP,Q\subseteq S. In particular, all subgroup inclusions are in {\mathcal{F}}.

  • (b)

    Every morphism in {\mathcal{F}} factors as the composite of an isomorphism in {\mathcal{F}} followed by a subgroup inclusion.

The same language of “outer automorphisms” is used for fusion systems as for groups. In particular, just as OutS(P):=AutS(P)/AutP(P)\operatorname{Out}_{S}(P):=\operatorname{Aut}_{S}(P)/\operatorname{Aut}_{P}(P), we define Out(P):=Aut(P)/AutP(P)\operatorname{Out}_{{\mathcal{F}}}(P):=\operatorname{Aut}_{{\mathcal{F}}}(P)/\operatorname{Aut}_{P}(P). In addition, we say that two subgroups P,PP,P^{\prime} of SS are {\mathcal{F}}-conjugate if there is an isomorphism PPP\cong P^{\prime} in {\mathcal{F}}.

In order for a fusion system to have good properties and model conjugacy relations among pp-subgroups of a group, it must satisfy an extra set of axioms, for “saturation.” The definition is given in [BLO-Discrete, §2], and we refer the reader to this source, as the definition is fairly long and technical, and we do not need to use any of the details.

Example 2.5.

We recall the fusion system S(G){\mathcal{F}}_{S}(G) that arises from a compact Lie group GG ([BLO-Discrete, §9]). Fix a choice of maximal torus 𝐓G{\bf T}\subseteq G. Let W:=NG(𝐓)/𝐓W:=N_{G}({\bf T})/{\bf T} denote the Weyl group, and fix a Sylow pp-subgroup WpWW_{p}\subseteq W. Let 𝐒{\bf S} denote the inverse image of WpW_{p} in NG(𝐓)N_{G}({\bf T}). Then 𝐒{\bf S} is a maximal pp-toral subgroup of GG, unique up to GG-conjugacy, and given by an extension

1𝐓𝐒Wp1.1\longrightarrow{\bf T}\longrightarrow{\bf S}\longrightarrow W_{p}\longrightarrow 1.

A maximal discrete pp-toral subgroup of GG is obtained by taking a maximal discrete pp-toral subgroup SS of 𝐒{\bf S}. All such choices are conjugate in 𝐒{\bf S} ([BLO-Discrete, proof of Prop. 9.3]), so SS necessarily contains the (unique) maximal discrete pp-toral subgroup TT of 𝐓{\bf T}, giving an extension

1TSWp1.1\longrightarrow T\longrightarrow S\longrightarrow W_{p}\longrightarrow 1.

The fusion system of GG, denoted S(G){\mathcal{F}}_{S}(G), has as its object set all subgroups of SS, and for P,QSP,Q\subseteq S, the morphisms are HomS(G)(P,Q):=HomG(P,Q)=NG(P,Q)/CGP\operatorname{Hom}_{{\mathcal{F}}_{S}(G)}(P,Q):=\operatorname{Hom}_{G}(P,Q)=N_{G}(P,Q)/C_{G}{P}.

The fusion system associated to a compact Lie group has the right technical property to be tractable.

Proposition 2.6.

[BLO-Discrete, Prop. 8.3] If GG is a compact Lie group with maximal discrete pp-toral subgroup SS, then the fusion system S(G){\mathcal{F}}_{S}(G) is saturated.

In general, a fusion system over a discrete pp-toral group SS will have an infinite number of isomorphism classes of objects (unless SS is finite). Fortunately, it turns out to be possible to restrict one’s attention to a smaller number of objects. The concepts of “{\mathcal{F}}-centric” and “{\mathcal{F}}-radical” play analogous roles in the theory of pp-local compact groups to their group-theoretic counterparts.

Definition 2.7.

Let {\mathcal{F}} be a fusion system over a discrete pp-toral group SS.

  1. (1)

    A subgroup PSP\subseteq S is called {\mathcal{F}}-centric if PP contains all elements of SS that centralize it, and likewise all {\mathcal{F}}-conjugates of PP contain their SS-centralizers.

  2. (2)

    A subgroup PSP\subseteq S is called {\mathcal{F}}-radical if Out(P)=Aut(P)/AutP(P)\operatorname{Out}_{{\mathcal{F}}}(P)=\operatorname{Aut}_{{\mathcal{F}}}(P)/\operatorname{Aut}_{P}(P) contains no nontrivial normal pp-subgroup.

Proposition 2.8.

[BLO-Discrete, Cor. 3.5] In a saturated fusion system {\mathcal{F}} over a discrete pp-toral group SS, there are only finitely many conjugacy classes of {\mathcal{F}}-centric {\mathcal{F}}-radical subgroups.

The saturated fusion system S(G){\mathcal{F}}_{S}(G) of the group GG does not contain enough information about GG to recover BGp{BG}_{p}^{\wedge}. For example, if GG is a finite pp-group, the fusion system can only detect G/Z(G)G/Z(G). We recall the definition of a centric linking system, a category associated to a saturated fusion system, whose nerve is mod pp equivalent to BGBG. Details on properties of linking systems can be found in the appendix of [BLO-LoopSpaces]. We begin with the transporter category.

Definition 2.9.

If GG is a group and {\mathcal{H}} is a collection of subgroups of GG, the transporter category for {\mathcal{H}}, denoted 𝒯(G){\mathcal{T}}_{\mathcal{H}}(G), is the category whose object set is {\mathcal{H}}, and whose morphism sets are given by

Hom𝒯(G)(P,Q):={gG|gPg1Q}.\operatorname{Hom}_{{\mathcal{T}}_{\mathcal{H}}(G)}(P,Q):=\left\{g\in G\left|\,gPg^{-1}\subseteq Q\right.\right\}.

If SS is a subgroup of GG and {\mathcal{H}} is the set of all subgroups of SS, then we write 𝒯S(G){\mathcal{T}}_{S}(G) for the corresponding transporter category.

Definition 2.10.

[BLO-Discrete, Defn. 4.1] [BLO-LoopSpaces, Defn. 1.9] Let {\mathcal{F}} be a fusion system over a discrete pp-toral group SS and let {\mathcal{H}} be the collection of {\mathcal{F}}-centric subgroups. A centric linking system associated to {\mathcal{F}} is a category {\mathcal{L}} whose objects are the subgroups in {\mathcal{H}}, together with a pair of functors

𝒯(S)δπ{\mathcal{T}}_{\mathcal{H}}(S)\xrightarrow{\,\delta\,}{\mathcal{L}}\xrightarrow{\,\pi\,}{\mathcal{F}}

such that each object is isomorphic (in {\mathcal{L}}) to one that is fully centralized in {\mathcal{F}}, and such that the following conditions are satisfied.

  • (A)

    The functor δ\delta is the identity on objects, and π\pi is the inclusion on objects. For each pair of objects P,QP,Q\in{\mathcal{H}}, the centralizer Z(P)Z(P) acts freely on Hom(P,Q)\operatorname{Hom}_{{\mathcal{L}}}(P,Q) by precomposition through δ\delta, and πP,Q\pi_{P,Q} induces a bijection

    Hom(P,Q)/Z(P)Hom(P,Q).\operatorname{Hom}_{{\mathcal{L}}}(P,Q)/Z(P)\xrightarrow{\ \cong\ }\operatorname{Hom}_{{\mathcal{F}}}(P,Q).
  • (B)

    For each P,QP,Q\in{\mathcal{H}} and each gNS(P,Q)g\in N_{S}(P,Q), the map induced by the functor πP,Q:Hom(P,Q)Hom(P,Q)\pi_{P,Q}\colon\operatorname{Hom}_{{\mathcal{L}}}(P,Q)\rightarrow\operatorname{Hom}_{{\mathcal{F}}}(P,Q) sends the element δP,Q(g)Hom(P,Q)\delta_{P,Q}(g)\in\operatorname{Hom}_{{\mathcal{L}}}(P,Q) to cgHom(P,Q)c_{g}\in\operatorname{Hom}_{{\mathcal{F}}}(P,Q).

  • (C)

    For each fHom(P,Q)f\in\operatorname{Hom}_{{\mathcal{L}}}(P,Q) and each gPg\in P, the following square in {\mathcal{L}} commutes:

    P\textstyle{P\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}δP(g)\scriptstyle{\delta_{P}(g)}Q\textstyle{Q\ignorespaces\ignorespaces\ignorespaces\ignorespaces}δQ(π(f)(g))\scriptstyle{\delta_{Q}(\pi(f)(g))}P\textstyle{P\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}Q.\textstyle{Q.}
Definition 2.11.

[BLO-Discrete, Defn. 4.2] A pp-local compact group is a triple (S,,)(S,{\mathcal{F}},{\mathcal{L}}), where {\mathcal{F}} is a saturated fusion system over the discrete pp-toral group SS, and {\mathcal{L}} is a centric linking system associated to {\mathcal{F}}. The classifying space of (S,,)(S,{\mathcal{F}},{\mathcal{L}}) is defined as ||p{\left|{\mathcal{L}}\right|}_{p}^{\wedge}.

Broto, Levi, and Oliver, in [BLO-Discrete, §9], proved that a compact Lie group GG gives rise to a pp-local compact group (S,S(G),S(G))(S,{\mathcal{F}}_{S}(G),{\mathcal{L}}_{S}(G)) by giving a specific construction of S(G){\mathcal{L}}_{S}(G); they then prove that it gives a suitable model for the pp-completion of BGBG.

Theorem 2.12.

[BLO-Discrete, Thm. 9.10] Let GG be a compact Lie group, and fix a maximal discrete pp-toral subgroup SGS\subseteq G. Then there exists a centric linking system S(G){\mathcal{L}}_{S}(G) associated to S(G){\mathcal{F}}_{S}(G) such that |S(G)|pBGp{\left|{\mathcal{L}}_{S}(G)\right|}_{p}^{\wedge}\simeq{BG}_{p}^{\wedge}.

Thus any theorem about decompositions of ||\left|{\mathcal{L}}\right| for a pp-local compact group will also apply to Lie groups. For computational purposes, we will use an alternative, more concrete model for S(G){\mathcal{L}}_{S}(G) also described in [BLO-Discrete], which we detail in Section 4.

A key result in the theory of fusion systems is the existence and uniqueness (up to equivalence) of centric linking systems associated to a given saturated fusion system. For saturated fusion systems over a finite pp-group SS, the result was proven first in [Chermak] using the new theory of localities. Another proof was given in [Oliver-ExistenceL] using the obstruction theory developed in [BLO-Finite]. Later, [LL-ExistenceL] extended the result to saturated fusion systems over discrete pp-toral groups.

Theorem 2.13.

[LL-ExistenceL] Let {\mathcal{F}} be a saturated fusion system over a discrete pp-toral group. Up to equivalence, there exists a unique centric linking system associated to {\mathcal{F}}.

3. The normalizer decomposition for pp-local compact groups

Throughout this section, we assume a fixed pp-local compact group (S,,)(S,{\mathcal{F}},{\mathcal{L}}) (Definition 2.11). We establish a normalizer decomposition that expresses the uncompleted nerve ||\left|{\mathcal{L}}\right| as a homotopy colimit indexed on a finite poset of chains. We start by introducing chains and their automorphisms. Next we prove that automorphism groups of chains in {\mathcal{L}} are virtually discrete pp-toral (Definition 3.9). Lastly, we prove the general, abstract normalizer decomposition result for a pp-local compact group (Theorem 3.16), which mostly proceeds analogously to the pp-local finite group case in [Libman-normalizer].

We begin in the fusion system. A chain in {\mathcal{F}} is given by a sequence =(P0P1Pk){\mathbb{P}}=(P_{0}\subseteq P_{1}\subseteq\ldots\subseteq P_{k}) of subgroups of SS. A chain is proper if the inclusions are all strict. If {\mathbb{P}}^{\prime} has the same length as {\mathbb{P}}, we say that {\mathbb{P}} and {\mathbb{P}}^{\prime} are {\mathcal{F}}-conjugate if there exists an isomorphism fHom(Pk,Pk)f\in\operatorname{Hom}_{\mathcal{F}}\left(P_{k},P^{\prime}_{k}\right) such that f(Pi)=Pif\left(P_{i}\right)=P^{\prime}_{i}.

Definition 3.1.

Let =(P0Pk){\mathbb{P}}=(P_{0}\subseteq\ldots\subseteq P_{k}) be a chain of {\mathcal{F}}-centric subgroups of SS. We define Aut\operatorname{Aut}_{{\mathcal{F}}}{\mathbb{P}} as the group of {\mathcal{F}}-automorphisms of PkP_{k} that restrict to an automorphism of PiP_{i} for each 0i<k0\leq i<k.

We would like to define Aut()\operatorname{Aut}_{\mathcal{L}}({\mathbb{P}}) for a chain {\mathbb{P}}, but first we need an analogue of the canonical subgroup inclusions used to define Aut()\operatorname{Aut}_{\mathcal{F}}({\mathbb{P}}). It is possible to construct compatible “distinguished inclusions” in {\mathcal{L}} with the property that they project to the subset inclusions in {\mathcal{F}} via π:\pi\colon{\mathcal{L}}\rightarrow{\mathcal{F}} (Definition 2.10).

Lemma 3.2.

[JLL, Remark 1.6] Let {\mathcal{L}} be a centric linking system associated to a saturated fusion system {\mathcal{F}} on a discrete pp-toral group SS. There is a coherent collection of morphisms {ιPQHom(P,Q)|PQ}\left\{\iota\mkern 1.5mu_{P}^{Q}\in\operatorname{Hom}_{\mathcal{L}}(P,Q)\ \left|\,\mbox{{\large}}P\subseteq Q\right.\right\} with the following properties.

  1. (1)

    π(ιPQ)\pi\big{(}\iota\mkern 1.5mu_{P}^{Q}\big{)} is the inclusion morphism PQP\subseteq Q in {\mathcal{F}}.

  2. (2)

    ιPP=Id\iota\mkern 1.5mu_{P}^{P}=\mathrm{Id}.

  3. (3)

    If PQRP\subseteq Q\subseteq R are subgroups of SS, then ιQRιPQ=ιPR\iota\mkern 1.5mu_{Q}^{R}\circ\iota\mkern 1.5mu_{P}^{Q}=\iota\mkern 1.5mu_{P}^{R}.

The spaces in our decomposition of ||\left|{\mathcal{L}}\right| will be classifying spaces of automorphism groups in the linking system.

Definition 3.3.

[Libman-normalizer, Def. 1.4] Let =(P0Pk){\mathbb{P}}=(P_{0}\subseteq\ldots\subseteq P_{k}) be a chain of {\mathcal{F}}-centric subgroups of SS. Define Aut()\operatorname{Aut}_{\mathcal{L}}({\mathbb{P}}) to be the subgroup of i=0kAutPi\prod_{i=0}^{k}\operatorname{Aut}_{{\mathcal{L}}}P_{i} consisting of sequences (fi)(f_{i}) satisfying fi+1ιPiPi+1=ιPiPi+1fif_{i+1}\circ\iota_{P_{i}}^{P_{i+1}}=\iota_{P_{i}}^{P_{i+1}}\circ f_{i}. That is, each element of Aut()\operatorname{Aut}_{\mathcal{L}}({\mathbb{P}}) gives a commutative ladder

(3.4) P0ιP0P1f0P1ιP1P2f1ιPk2Pk1Pk1ιPk1Pkfk1PkfkP0ιP0P1P1ιP1P2ιPk2Pk1Pk1ιPk1PkPk.\begin{gathered}\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 12.18057pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&&&\\&&&&\crcr}}}\ignorespaces{\hbox{\kern-8.30452pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{P_{0}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 13.70395pt\raise 6.38916pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.9914pt\hbox{$\scriptstyle{\iota_{P_{0}}^{P_{1}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 32.30452pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 0.0pt\raise-19.5pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\cong}$}}}\kern 3.0pt}}}}}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-12.18057pt\raise-19.5pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{f_{0}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-29.16669pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 32.30452pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{P_{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 54.31299pt\raise 6.38916pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.9914pt\hbox{$\scriptstyle{\iota_{P_{1}}^{P_{2}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 72.91356pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 40.60904pt\raise-19.5pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\cong}$}}}\kern 3.0pt}}}}}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 28.42847pt\raise-19.5pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{f_{1}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 40.60904pt\raise-29.16669pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 72.91356pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\dots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 90.39632pt\raise 6.42917pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.9514pt\hbox{$\scriptstyle{\iota_{P_{k-2}}^{P_{k-1}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 110.41356pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 110.41356pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{P_{k-1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 136.65811pt\raise 6.42917pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.9514pt\hbox{$\scriptstyle{\iota_{P_{k-1}}^{P_{k}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 157.3698pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 121.19724pt\raise-17.05556pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\cong}$}}}\kern 3.0pt}}}}}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 105.475pt\raise-19.5pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.73611pt\hbox{$\scriptstyle{f_{k-1}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 121.19724pt\raise-29.16669pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 157.3698pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{P_{k}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 165.82014pt\raise-17.05556pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\cong}$}}}\kern 3.0pt}}}}}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 153.43124pt\raise-19.5pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.73611pt\hbox{$\scriptstyle{f_{k}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 165.82014pt\raise-29.16669pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-8.30452pt\raise-39.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{P_{0}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 13.70395pt\raise-45.38916pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.9914pt\hbox{$\scriptstyle{\iota_{P_{0}}^{P_{1}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 32.30452pt\raise-39.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 32.30452pt\raise-39.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{P_{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 54.31299pt\raise-45.38916pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.9914pt\hbox{$\scriptstyle{\iota_{P_{1}}^{P_{2}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 72.91356pt\raise-39.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 72.91356pt\raise-39.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\dots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 90.39632pt\raise-45.42915pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.9514pt\hbox{$\scriptstyle{\iota_{P_{k-2}}^{P_{k-1}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 110.41356pt\raise-39.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 110.41356pt\raise-39.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{P_{k-1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 135.96367pt\raise-45.42915pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.9514pt\hbox{$\scriptstyle{\iota_{P_{k-1}}^{P_{k}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 155.98091pt\raise-39.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 155.98091pt\raise-39.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{P_{k}.}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{gathered}

We pause for two basic lemmas that come up in lifting from the fusion system to the linking system, and in checking uniqueness properties. First, a factoring lemma follows directly from the axioms of a centric linking system.

Lemma 3.5.

Given a diagram in {\mathcal{F}} on the left, and a lift ψ~\widetilde{\psi} of ψ\psi to {\mathcal{L}}, there is a unique lift ϕ~\widetilde{\phi} of ϕ\phi making the diagram on the right commute in {\mathcal{L}}.

P\textstyle{P\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\subseteq}ϕ\scriptstyle{\phi}P\textstyle{P^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ψ\scriptstyle{\psi}Q\textstyle{Q\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\subseteq}Q\textstyle{Q^{\prime}}                  P\textstyle{P\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ιPP\scriptstyle{\iota_{P}^{P^{\prime}}}ϕ~\scriptstyle{\widetilde{\phi}}P\textstyle{P^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ψ~\scriptstyle{\widetilde{\psi}}Q\textstyle{Q\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ιQQ\scriptstyle{\iota_{Q}^{Q^{\prime}}}Q\textstyle{Q^{\prime}}
Proof.

This follows from applying [BLO-Discrete, Lemma 4.3] to PϕQQP\xrightarrow{\phi}Q\hookrightarrow Q^{\prime}. ∎

It follows from the factoring properties above that morphisms in a centric linking system have good categorical properties.

Lemma 3.6.

[JLL, Cor. 1.8] Morphisms in a centric linking system are both categorical monomorphisms and categorical epimorphisms.

Returning to the study of automorphism groups of chains, we are able to relate the automorphism groups in the linking system to those in the fusion system.

Lemma 3.7.

Let =(P0Pk){\mathbb{P}}=(P_{0}\subseteq\ldots\subseteq P_{k}) be a chain of {\mathcal{F}}-centric subgroups. There is a short exact sequence

1Z(Pk)Aut()πAut()1.1\longrightarrow Z(P_{k})\longrightarrow\operatorname{Aut}_{\mathcal{L}}({\mathbb{P}})\xrightarrow{\ \pi\ }\operatorname{Aut}_{\mathcal{F}}({\mathbb{P}})\longrightarrow 1.
Proof.

The lemma follows from Lemma 3.5. Given an {\mathcal{F}}-automorphism of {\mathbb{P}}, we lift PkPkP_{k}\rightarrow P_{k} to {\mathcal{L}}, with Z(Pk)Z(P_{k}) choices for the lift by Definition 2.10(A) because PkP_{k} is {\mathcal{F}}-centric. Lemma 3.5 then guarantees unique compatible lifts to all of the smaller subgroups. ∎

Lemma 3.8.

The natural maps Aut()Aut(Pi)\operatorname{Aut}_{{\mathcal{L}}}({\mathbb{P}})\rightarrow\operatorname{Aut}_{{\mathcal{L}}}(P_{i}) are monomorphisms.

Proof.

The lemma is an immediate consequence of Lemma 3.6. An automorphism of a larger subgroup restricts uniquely (via the distinguished inclusions) to a smaller subgroup. And any particular element of AutPi\operatorname{Aut}_{{\mathcal{L}}}P_{i} may not extend to automorphisms of larger subgroups to give a commuting diagram (3.4), but if it does, then the extension is unique. ∎

We relate automorphism groups of chains in a linking system to virtually discrete pp-toral groups, which were studied in the context of linking systems in [LL-ExistenceL] and [Molinier].

Definition 3.9.

A virtually discrete pp-toral group is a discrete group that contains a normal discrete pp-torus of finite index.

Like discrete pp-toral groups, virtually discrete pp-toral groups have good inheritance properties.

Lemma 3.10.

If GG is a virtually discrete pp-toral group and HGH\subseteq G, then HH is also a virtually discrete pp-toral group.

Proof.

Let PGP\triangleleft G be a normal discrete pp-toral subgroup of GG of finite index, and let TPT_{P} be the identity component of PP. Then TPGT_{P}\triangleleft G and [G:TP][G:T_{P}] is finite.

Let THT_{H} denote the subgroup of TPHT_{P}\cap H consisting of infinitely pp-divisible elements. Because (TPH)H(T_{P}\cap H)\triangleleft H and THT_{H} is a characteristic subgroup of TPHT_{P}\cap H, we have THHT_{H}\triangleleft H. The result follows because H/THG/TPH/T_{H}\subseteq G/T_{P}, and the latter is finite. ∎

Automorphism groups of chains in {\mathcal{L}} take values in virtually discrete pp-toral groups.

Lemma 3.11.

Let {\mathbb{P}} be a chain of subgroups in cr{\mathcal{L}}^{cr}. Then Aut()\operatorname{Aut}_{\mathcal{L}}({\mathbb{P}}) is a virtually discrete pp-toral group.

Proof.

We first establish the result for a single {\mathcal{F}}-centric group PP. By Definition 2.10(C) (with P=QP=Q), the distinguished monomorphism δP\delta_{P} identifies PP with a normal subgroup of Aut(P)\operatorname{Aut}_{{\mathcal{L}}}(P). We have a ladder of short exact sequences

1\textstyle{1\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Z(P)\textstyle{Z(P)\ \ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}P\textstyle{P\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}δP\scriptstyle{\delta_{P}}AutP(P)\textstyle{\operatorname{Aut}_{P}(P)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ \ignorespaces\ignorespaces\ignorespaces\ignorespaces}1\textstyle{1}1\textstyle{1\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Z(P)\textstyle{Z(P)\ \ignorespaces\ignorespaces\ignorespaces\ignorespaces}Aut(P)\textstyle{\operatorname{Aut}_{{\mathcal{L}}}(P)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}π\scriptstyle{\pi}Aut(P)\textstyle{\operatorname{Aut}_{{\mathcal{F}}}(P)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1,\textstyle{1,}

and the cokernel of the right-hand column is Out(P)\operatorname{Out}_{\mathcal{F}}(P) (by definition). Hence we have a short exact sequence of groups

(3.12) 0PAut(P)Out(P)0,0\longrightarrow P\longrightarrow\operatorname{Aut}_{{\mathcal{L}}}(P)\longrightarrow\operatorname{Out}_{\mathcal{F}}(P)\longrightarrow 0,

where PAut(P)P\triangleleft\operatorname{Aut}_{\mathcal{L}}(P), and Out(P)\operatorname{Out}_{\mathcal{F}}(P) is finite by [BLO-Discrete, Prop. 2.3]. Since Aut(P)\operatorname{Aut}_{{\mathcal{L}}}(P) is an extension of a finite group by a discrete pp-toral group, Aut(P)\operatorname{Aut}_{{\mathcal{L}}}(P) is virtually discrete pp-toral.

The result follows for chains from Lemmas 3.8 and 3.10. ∎

With automorphism groups in place, we are ready to discuss the indexing category of the normalizer decomposition, following the work of Słomińska. We adapt the proof of [Libman-normalizer, Thm. 5.1].

Definition 3.13 ([Slominska-hocolim], [Libman-normalizer, §4]).

A category 𝒜{\mathcal{A}} is an E-I category if all endomorphisms in 𝒜{\mathcal{A}} are isomorphisms, and 𝒜{\mathcal{A}} is heighted if there is a function h:ob(𝒜)h:\operatorname{ob}({\mathcal{A}})\to{\mathbb{N}} such that Hom𝒜(A,B)\operatorname{Hom}_{\mathcal{A}}(A,B)\neq\emptyset implies that h(A)h(B)h(A)\leq h(B), with equality if and only if ABA\cong B in 𝒜{\mathcal{A}}.

Let cr{\mathcal{F}}^{cr} (resp. cr{\mathcal{L}}^{cr}) denote the full subcategory of {\mathcal{F}} (resp. {\mathcal{L}}) consisting of the subgroups of SS that are both {\mathcal{F}}-centric and {\mathcal{F}}-radical. Recall that a chain of subgroups is “proper” if all of the inclusions are strict.

In Lemma 3.14 we check that cr{\mathcal{L}}^{cr} has the structure of Definition 3.13.

Lemma 3.14.

cr{\mathcal{L}}^{cr} has a finite number of isomorphism classes of objects, and is a heighted E-I category with height function size()\operatorname{size}(\text{--}) in Definition 2.2.

Proof.

Finiteness follows from Proposition 2.8. Definition 2.2 gives height function because projection to {\mathcal{F}} takes all morphisms in {\mathcal{L}} to group monomorphisms of discrete pp-toral groups, which must then have non-decreasing heights. Equality is achieved only for group isomorphisms, which lift to isomorphisms in {\mathcal{L}}. ∎

Definition 3.15.

The poset category s¯d(cr){{\overline{s}}d}({\mathcal{F}}^{cr}) has objects given by {\mathcal{F}}-conjugacy classes [][{\mathbb{P}}] of proper chains {\mathbb{P}} of objects of cr{\mathcal{F}}^{cr}. There is a morphism [][][{\mathbb{P}}]\rightarrow[{\mathbb{P}}^{\prime}] if and only if {\mathbb{P}}^{\prime} is {\mathcal{F}}-conjugate to a chain given by a subset of {\mathbb{P}}.

The abstract “normalizer decomposition theorem” expresses ||\left|{\mathcal{L}}\right| as a homotopy colimit over the finite poset s¯dcr{{\overline{s}}d}{\mathcal{F}}^{cr}.

Theorem 3.16.

Let (S,,)(S,{\mathcal{F}},{\mathcal{L}}) be a pp-local compact group. There is a functor δ:s¯dcrTop\delta\colon{{\overline{s}}d}{\mathcal{F}}^{cr}\longrightarrow\operatorname{Top} with an equivalence hocolims¯d(cr)δ||\operatorname{hocolim}_{{{\overline{s}}d}({\mathcal{F}}^{cr})}\delta\longrightarrow\left|{\mathcal{L}}\right| and a natural homotopy equivalence BAut()δ([])\operatorname{BAut}_{{\mathcal{L}}}({\mathbb{P}})\longrightarrow\delta([{\mathbb{P}}]) for each chain {\mathbb{P}}. Further, the group Aut()\operatorname{Aut}_{{\mathcal{L}}}({\mathbb{P}}) is a virtually discrete pp-toral group.

Proof.

By [WIT-centric-radical], the map induced by the inclusion |cr||||{\mathcal{L}}^{cr}|\rightarrow|{\mathcal{L}}| is a homotopy equivalence. Hence it suffices to prove that there is a functor δ:s¯dcrTop\delta\colon{{\overline{s}}d}{\mathcal{F}}^{cr}\longrightarrow\operatorname{Top} with an equivalence hocolims¯d(cr)δ|cr|\operatorname{hocolim}_{{{\overline{s}}d}({\mathcal{F}}^{cr})}\delta\longrightarrow\left|{\mathcal{L}}^{cr}\right| and a natural equivalence BAut()δ([])\operatorname{BAut}_{{\mathcal{L}}}({\mathbb{P}})\longrightarrow\delta([{\mathbb{P}}]) for each chain {\mathbb{P}}. The proof of [Libman-normalizer, Thm 5.1] applies to cr{\mathcal{L}}^{cr} as written, because cr{\mathcal{L}}^{cr} is a finite heighted E-I category by Lemma 3.14. The second statement of the theorem is proved in Lemma 3.11. ∎

Remark 3.17.

If the maximal torus TT happens to be {\mathcal{F}}-centric and {\mathcal{F}}-radical, there is a simplification available for the indexing category in Theorem 3.16. Suppose that =(TP1Pk){\mathbb{P}}=(T\subsetneq P_{1}\subsetneq\ldots\subsetneq P_{k}) is a proper chain of {\mathcal{F}}-centric and {\mathcal{F}}-radical subgroups. Because TT is a characteristic subgroup of each of the PiP_{i}, there is an isomorphism

(3.18) Aut(P1Pk)Aut(TP1Pk)\operatorname{Aut}_{{\mathcal{F}}}(P_{1}\subsetneq\ldots\subsetneq P_{k})\cong\operatorname{Aut}_{{\mathcal{F}}}(T\subsetneq P_{1}\subsetneq\ldots\subsetneq P_{k})

and Lemma 3.7 gives an isomorphism

(3.19) Aut(P1Pk)Aut(TP1Pk)\operatorname{Aut}_{{\mathcal{L}}}(P_{1}\subsetneq\ldots\subsetneq P_{k})\cong\operatorname{Aut}_{{\mathcal{L}}}(T\subsetneq P_{1}\subsetneq\ldots\subsetneq P_{k})

(even an equality, if one uses Lemma 3.8 to regard both sides as subgroups of Aut(Pk)\operatorname{Aut}_{{\mathcal{L}}}(P_{k})). If the indexing poset s¯dcr{{\overline{s}}d}{\mathcal{F}}^{cr} is not too complicated, one may be able to collapse the two corresponding nodes in the diagram. We use this trick in Section LABEL:sec:U(p)_SU(p) in our computations for U(p)\operatorname{U}(p) (see (LABEL:eq:_W_shape) versus (LABEL:diagram:_for_Up), where we have collapsed the arrow 𝐒(𝐓𝐒){\bf S}\leftarrow({\bf T}\subset{\bf S}), and we use it again for the Aguadé–Zabrodsky pp-compact groups in Section LABEL:sec:AZ.

4. Application to compact Lie groups

In this section, we study the application of our abstract normalizer decomposition (Theorem 3.16) to the case of pp-local compact groups that arise from compact Lie groups (Example 2.5). Recall that the decomposition for ||\left|{\mathcal{L}}\right| in Theorem 3.16 is given in terms of BAut()\operatorname{BAut}_{{\mathcal{L}}}({\mathbb{P}}) for proper chains =(P0Pk){\mathbb{P}}=\left(P_{0}\subsetneq\dots\subsetneq P_{k}\right) of subgroups that are \mathcal{F}-centric and \mathcal{F}-radical. There are similar concepts in the theory of compact Lie groups.

Definition 4.1.

Let GG be a compact Lie group with a pp-toral subgroup 𝐏{\bf P}.

  1. (1)

    𝐏{\bf P} is pp-centric in GG if 𝐏{\bf P} is a maximal pp-toral subgroup of CG(𝐏)C_{G}({\bf P}).

  2. (2)

    𝐏{\bf P} is pp-stubborn in GG if NG𝐏/𝐏N_{G}{\bf P}/{\bf P} is finite and contains no nontrivial normal pp-subgroup.

The following theorem is the main result for this section. It recovers a version of the normalizer decomposition for compact Lie groups that was described by Libman in [Libman-Minami, §1.4]. Our approach via pp-local compact groups has the advantage that we do not need to address the delicate issues that were studied in [Libman-Minami, §5] for the purpose of applying Quillen’s Theorem A in a topological setting.

Let {\mathcal{R}} denote the collection of pp-toral subgroups of GG that are both pp-centric and pp-stubborn in GG, and let s¯d{{\overline{s}}d}{\mathcal{R}} be the poset of GG-conjugacy classes of chains of proper inclusions of subgroups in {\mathcal{R}}.

Theorem 4.2.

Let GG be a compact Lie group and let (S,,)(S,{\mathcal{F}},{\mathcal{L}}) be the associated pp-local compact group. If PcrP\in{\mathcal{F}}^{cr}, let 𝐏{\bf P} denote its closure in GG. If =(P0Pk){\mathbb{P}}=(P_{0}\subsetneq\ldots\subsetneq P_{k}) is a proper chain of subgroups in cr{\mathcal{F}}^{cr}, then there is a natural weak mod pp equivalence

BAut()B(iNG(𝐏i)).\operatorname{BAut}_{{\mathcal{L}}}({\mathbb{P}})\simeq\operatorname{B}\!\big{(}\cap_{i}N_{G}({\bf P}_{i})\big{)}.

If in addition π0G\pi_{0}G is a pp-group, then the functor cr{\mathcal{F}}^{cr}\rightarrow{\mathcal{R}} given by P𝐏P\mapsto{\bf P} induces an isomorphism of posets s¯dcrs¯d{{\overline{s}}d}{\mathcal{F}}^{cr}\cong{{\overline{s}}d}{\mathcal{R}}.

The proof is at the end of the section and goes through several steps. First, with regard to the indexing category, we have the following result from a previous work.

Theorem 4.3.

[WIT-normalizers, Thm. 4.3] Let 𝐒{\bf S} be a maximal pp-toral subgroup of a compact Lie group GG, and let SS be a maximal discrete pp-toral subgroup S𝐒S\subseteq{\bf S}. The closure map P𝐏P\mapsto{\bf P} defines an injective map of conjugacy classes of chains

The map is a one-to-one correspondence if π0G\pi_{0}G is a pp-group.

Remark 4.4.

If π0G\pi_{0}G is not a pp-group, one can still use Theorem 4.2 to identify the mod pp homotopy type of the functor values in the normalizer decomposition (Theorem 3.16), but one uses the image of the map in Theorem 4.3 as the indexing category, rather than s¯d{{\overline{s}}d}{\mathcal{R}}. The codomain of Theorem 4.3 is the starting point. A finite number of checks are necessary to see if pp-centric and pp-stubborn subgroups of GG have maximal discrete pp-toral subgroups that are S(G){\mathcal{F}}_{S}(G)-radical to determine the actual indexing category. (See the proof of [WIT-normalizers, Thm. 4.3].)

The remainder of this section is devoted to establishing the weak mod pp equivalence BAut()B(iNG(𝐏i))\operatorname{BAut}_{{\mathcal{L}}}({\mathbb{P}})\simeq\operatorname{B}\!\big{(}\cap_{i}N_{G}({\bf P}_{i})\big{)} of Theorem 4.2. In particular, the strategy is to establish a zigzag of natural mod pp equivalences of functors of chains of subgroups (with the leftmost one being an equivalence by Theorem 3.16):

(4.5) BAut~S(G)()ppB(i=1kNG(Pi))pδ([])BAutS(G)()B(i=1kNG(𝐏i)).\begin{gathered}\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 15.29169pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\&&\crcr}}}\ignorespaces{\hbox{\kern-3.0pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 39.29169pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{BAut}_{\widetilde{{\mathcal{L}}}_{S}(G)}({\mathbb{P}})\quad\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 60.81519pt\raise-22.8945pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.80368pt\hbox{$\scriptstyle{\simeq_{p}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 74.27214pt\raise-38.50012pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 114.9677pt\raise 5.44257pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.80368pt\hbox{$\scriptstyle{\simeq_{p}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 134.13976pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 134.13976pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{B\big{(}\bigcap_{i=1}^{k}N_{G}(P_{i})\big{)}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 156.62401pt\raise-25.00012pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.80368pt\hbox{$\scriptstyle{\simeq_{p}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 170.08096pt\raise-37.00012pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-15.29169pt\raise-49.00012pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\delta([{\mathbb{P}}])}$}}}}}}}{\hbox{\kern 39.76392pt\raise-49.00012pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mbox{{\large}}\operatorname{BAut}_{{\mathcal{L}}_{S}(G)}({\mathbb{P}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\quad}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 21.80559pt\raise-53.62323pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.62312pt\hbox{$\scriptstyle{\simeq}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 15.2917pt\raise-49.00012pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 133.2526pt\raise-49.00012pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{B\big{(}\bigcap_{i=1}^{k}N_{G}({\bf P}_{i})\big{)}.}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{gathered}

The auxiliary category ~S(G)\widetilde{{\mathcal{L}}}_{S}(G) is a variant of the transporter system for GG and is used in the construction of S(G){\mathcal{L}}_{S}(G) in [BLO-Discrete, Prop. 9.12].

We begin with the left vertical arrow of diagram (4.5), which takes the bulk of the section. In addition to an abstract existence result in for a linking system associated to S(G){\mathcal{F}}_{S}(G) (Theorem 2.12), there is a construction in [BLO-Discrete, §9] of a more direct model for S(G){\mathcal{L}}_{S}(G) starting from the transporter category (Definition 2.9). A difficulty in the construction is that the axioms of a linking system require Hom(P,Q)\operatorname{Hom}_{{\mathcal{F}}}(P,Q) to be the orbits of a free Z(P)Z(P)-action on Hom(P,Q)\operatorname{Hom}_{{\mathcal{L}}}(P,Q). For this reason, the transporter system 𝒯S(G){\mathcal{T}}_{S}(G) itself cannot directly provide the linking system: getting to HomS(G)(P,Q)\operatorname{Hom}_{{\mathcal{F}}_{S}(G)}(P,Q) from Hom𝒯S(G)(P,Q)=NG(P,Q)\operatorname{Hom}_{{\mathcal{T}}_{S}(G)}(P,Q)=N_{G}(P,Q) would require taking the orbits by the action of the entire centralizer CGPC_{G}P, which in general contains elements of finite order prime to pp and elements of infinite order. The solution is to look at successive quotients of 𝒯S(G){\mathcal{T}}_{S}(G) (following [BLO-Discrete, p. 398]). We begin with a technical lemma.

Lemma 4.6.

Given an S(G){\mathcal{F}}_{S}(G)-centric subgroup PSP\subseteq S, the elements of CG(P)C_{G}(P) with finite order prime to pp form a normal subgroup of CG(P)C_{G}(P).

Proof.

Let 𝐏{\bf P} denote the closure of PP in GG. Because CG(P)=CG(𝐏)C_{G}(P)=C_{G}({\bf P}), we may as well assume that PP is a maximal discrete pp-toral subgroup of 𝐏{\bf P}, that is, that PP is “snugly embedded” in the sense of [BLO-Discrete, §9]. The first part of the proof of [WIT-normalizers, Prop. 4.6] establishes that 𝐏{\bf P} is pp-centric in GG. Hence CG(P)/Z(𝐏)C_{G}(P)/Z({\bf P}) has no elements of order pp, and must be finite group of order prime to PP, call it FF^{\prime}.

Because 𝐏{\bf P} is pp-toral, Z(𝐏)Z({\bf P}) is the product of a torus and a finite pp-group. Let TpT_{p^{\prime}} denote the subgroup of Z(𝐏)Z({\bf P}) consisting of elements of finite order prime to pp, all of which are found in the torus. Setting Q:=CG(𝐏)/TpQ:=C_{G}({\bf P})/T_{p^{\prime}}, we have a map of central extensions

1\textstyle{1\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Tp\textstyle{\mbox{{\large}}T_{p^{\prime}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}CG(𝐏)\textstyle{C_{G}({\bf P})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Q\textstyle{Q\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1\textstyle{1}1\textstyle{1\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Z(𝐏)\textstyle{Z({\bf P})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}CG(𝐏)\textstyle{C_{G}({\bf P})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}F\textstyle{F^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}s\scriptstyle{s}1.\textstyle{1.}

Then ker(QF)=Z(𝐏)/Tp\ker(Q\twoheadrightarrow F^{\prime})=Z({\bf P})/T_{p^{\prime}} is central in Q=CG(𝐏)/TpQ=C_{G}({\bf P})/T_{p^{\prime}}, and further, this kernel is the product of a pp-torsion group and a rational vector space. As a result, QQ is a split central extension of FF^{\prime} and we have a section s:FQs\colon F^{\prime}\rightarrow Q. The preimage of s(F)Qs(F^{\prime})\triangleleft Q in CG(P)C_{G}(P) is normal and contains all elements of order prime to pp. ∎

Lemma 4.6 tells us that the elements of CG(P)=CG(𝐏)C_{G}(P)=C_{G}({\bf P}) of order prime to pp form a subgroup that we denote by νP\nu^{\prime}_{P}.

Corollary 4.7.

For an S(G){\mathcal{F}}_{S}(G)-centric subgroup PSP\subseteq S, the cokernel of the map Z(P)×νPCG(P)Z(P)\times\nu^{\prime}_{P}\rightarrow C_{G}(P) is a rational vector space.

Note that νP\nu^{\prime}_{P} is functorial in S(G){\mathcal{F}}_{S}(G)-centric subgroups PP. Further, since Z(P)Z(P) is centralized by νPCG(P)\nu^{\prime}_{P}\subseteq C_{G}(P), we can define a functor (𝒵×ν)(P):=Z(P)×νPCG(P)({\mathcal{Z}}\times\nu^{\prime})(P):=Z(P)\times\nu^{\prime}_{P}\subseteq C_{G}(P), consisting of all elements of finite order. There is a quotient map

𝒯S(G)/(𝒵×ν)fS(G){\mathcal{T}}_{S}(G)/({\mathcal{Z}}\times\nu^{\prime})\xrightarrow{f_{\infty}}{\mathcal{F}}_{S}(G)

that takes the quotient of NG(P,Q)/(Z(P)×νP)N_{G}(P,Q)/(Z(P)\times\nu^{\prime}_{P}) by the action of the rational vector space CG(P)/(Z(P)×νP)C_{G}(P)/(Z(P)\times\nu^{\prime}_{P}). A rigidification argument [BLO-Discrete, Lemma 9.11] shows that ff_{\infty} admits a functorial section ss; that is, it is possible to choose compatible splittings of the rational vector spaces CG(P)/(Z(P)×νP)C_{G}(P)/(Z(P)\times\nu^{\prime}_{P}) into CG(P)C_{G}(P).

Definition 4.8.

[BLO-Discrete, §9] Given a section ss of ff_{\infty}, the categories S(G){\mathcal{L}}_{S}(G) and ~S(G)\widetilde{{\mathcal{L}}}_{S}(G) are defined as successive pullbacks in the following diagram:

(4.9) ~S(G)S(G)S(G)s𝒯S(G)fν𝒯S(G)/νf𝒵𝒯S(G)/(𝒵×ν).f\begin{gathered}\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 16.30959pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\&&\crcr}}}\ignorespaces{\hbox{\kern-15.47626pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\widetilde{{\mathcal{L}}}_{S}(G)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 48.75778pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 0.0pt\raise-29.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 48.75778pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{{\mathcal{L}}_{S}(G)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 64.58125pt\raise-29.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 134.49554pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 134.49554pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{{\mathcal{F}}_{S}(G)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 150.45792pt\raise-17.5pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.50694pt\hbox{$\scriptstyle{s}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 150.45792pt\raise-29.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-16.30959pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{{\mathcal{T}}_{S}(G)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 21.79134pt\raise-46.1111pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{f_{\nu^{\prime}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 40.30959pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 40.30959pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{{\mathcal{T}}_{S}(G)/\nu^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 94.54042pt\raise-46.11388pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.74722pt\hbox{$\scriptstyle{f_{\mathcal{Z}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 112.85292pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 112.85292pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{{\mathcal{T}}_{S}(G)/({\mathcal{Z}}\times\nu^{\prime})\ignorespaces\ignorespaces\ignorespaces\ignorespaces.}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 132.8329pt\raise-17.5pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{f_{\infty}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 147.01347pt\raise-5.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\ignorespaces\end{gathered}
Proposition 4.10.

[BLO-Discrete, Prop. 9.12] S(G){\mathcal{L}}_{S}(G) is a centric linking system associated to  S(G){\mathcal{F}}_{S}(G).

Before continuing to general properties of ~\widetilde{{\mathcal{L}}}, we call out a special case that we will use for G=SU(p)G={\operatorname{SU}(p)} in Sections LABEL:sec:U(p)_SU(p) and LABEL:sec:AZ.

Lemma 4.11.

If PSP\subseteq S satisfies CG(P)=Z(P)C_{G}(P)=Z(P), then there is a natural identification

HomS(G)(P,Q)Hom𝒯S(G)(P,Q).\operatorname{Hom}_{{\mathcal{L}}_{S}(G)}(P,Q)\cong\operatorname{Hom}_{{\mathcal{T}}_{S}(G)}(P,Q).
Proof.

Under our assumption, νP\nu^{\prime}_{P} is trivial. In diagram (4.9), we first consider the fusion system S(G){\mathcal{F}}_{S}(G), where we have

HomS(G)(P,Q)\displaystyle\operatorname{Hom}_{{\mathcal{F}}_{S}(G)}(P,Q) =NG(P,Q)/CG(P)\displaystyle=N_{G}(P,Q)/C_{G}(P)
=NG(P,Q)/Z(P)\displaystyle=N_{G}(P,Q)/Z(P)
=Hom𝒯S(G)/(𝒵×ν)(P,Q).\displaystyle=\operatorname{Hom}_{{\mathcal{T}}_{S}(G)/({\mathcal{Z}}\times\nu^{\prime})}(P,Q).

Hence ff_{\infty} is the identity on morphism sets with PP as the domain, and so is ss. The middle vertical arrow becomes an isomorphism on morphism sets with PP as the domain. Likewise fνf_{\nu^{\prime}} is the identity on morphism sets with PP as the domain, which establishes the lemma. ∎

We resume our discussion of the general relationship of ~\widetilde{{\mathcal{L}}} to {\mathcal{L}} by checking that ~\widetilde{{\mathcal{L}}} still has the good categorical properties of {\mathcal{L}}.

Lemma 4.12.

All morphisms in the category ~S(G)\widetilde{{\mathcal{L}}}_{S}(G) are categorical monomorphisms and categorical epimorphisms.

Proof.

The result follows from the fact that ~S(G)\widetilde{{\mathcal{L}}}_{S}(G) is a pullback category of two categories that both have the desired properties (by Proposition 4.10 and Lemma 3.6 for S(G){\mathcal{L}}_{S}(G), and by direct computation for 𝒯S(G){\mathcal{T}}_{S}(G)). ∎

With the technical elements in hand, we consider the left vertical map in diagram (4.5), comparing automorphism groups of chains in ~\widetilde{{\mathcal{L}}} to those in {\mathcal{L}}. If =(P0Pk){\mathbb{P}}=(P_{0}\subseteq\dots\subseteq P_{k}) is a chain of S(G){\mathcal{F}}_{S}(G)-centric groups, then an element of Aut()\operatorname{Aut}_{{\mathcal{L}}}({\mathbb{P}}) is a diagram such as (3.4), and uses the distinguished inclusion morphisms of {\mathcal{L}} (Lemma 3.2). We define automorphisms of chains in ~S(G)\widetilde{{\mathcal{L}}}_{S}(G) in the same way, beginning with distinguished inclusions in ~S(G)\widetilde{{\mathcal{L}}}_{S}(G).

Definition 4.13.
  1. (1)

    If PQSP\subseteq Q\subseteq S are S(G){\mathcal{F}}_{S}(G)-centric, the “distinguished inclusion” ι~PQHom~S(G)(P,Q)\tilde{\iota}\,_{P}^{Q}\in\operatorname{Hom}_{\widetilde{{\mathcal{L}}}_{S}(G)}(P,Q) is defined by

    ι~PQ:=(ιPQ,e)Hom(P,Q)×NG(P,Q).\tilde{\iota}\,_{P}^{Q}:=(\iota_{P}^{Q},e)\in\operatorname{Hom}_{{\mathcal{L}}}(P,Q)\times N_{G}(P,Q).
  2. (2)

    If =(P0Pk){\mathbb{P}}=(P_{0}\subseteq\ldots\subseteq P_{k}) is a chain of S(G){\mathcal{F}}_{S}(G)-centric subgroups, then an element of f~=(f~i)Aut~S(G)(){\tilde{f}}=({\tilde{f}}_{i})\in\operatorname{Aut}_{\widetilde{{\mathcal{L}}}_{S}(G)}({\mathbb{P}}) is a commuting ladder

    P0\textstyle{P_{0}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ι~\scriptstyle{\tilde{\iota}}\scriptstyle{\cong}f~0\scriptstyle{{\tilde{f}}_{0}}P1\textstyle{P_{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ι~\scriptstyle{\tilde{\iota}}\scriptstyle{\cong}f~1\scriptstyle{{\tilde{f}}_{1}}\textstyle{\ldots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ι~\scriptstyle{\tilde{\iota}}Pk1\textstyle{P_{k-1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ι~\scriptstyle{\tilde{\iota}}\scriptstyle{\cong}f~k1\scriptstyle{{\tilde{f}}_{k-1}}Pk\textstyle{P_{k}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\cong}f~k\scriptstyle{{\tilde{f}}_{k}}P0\textstyle{P_{0}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ι~\scriptstyle{\tilde{\iota}}P1\textstyle{P_{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ι~\scriptstyle{\tilde{\iota}}\textstyle{\ldots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ι~\scriptstyle{\tilde{\iota}}Pk1\textstyle{P_{k-1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ι~\scriptstyle{\tilde{\iota}}Pk.\textstyle{P_{k}.}
Proposition 4.14.

Let GG be a compact Lie group and {\mathbb{P}} be a chain of S(G)\mathcal{F}_{S}(G)-centric S(G)\mathcal{F}_{S}(G)-radical subgroups. Then the induced map BAut~S(G)()BAutS(G)()\operatorname{BAut}_{\widetilde{{\mathcal{L}}}_{S}(G)}({\mathbb{P}})\rightarrow\operatorname{BAut}_{{\mathcal{L}}_{S}(G)}({\mathbb{P}}) from the pullback diagram (4.9) is a mod pp equivalence.

Proof.

By Lemma 3.8, the natural map Aut()Aut(P0)\operatorname{Aut}_{{\mathcal{L}}}({\mathbb{P}})\rightarrow\operatorname{Aut}_{{\mathcal{L}}}(P_{0}) is a monomorphism. Further, Aut~()Aut~(P0)\operatorname{Aut}_{\widetilde{{\mathcal{L}}}}({\mathbb{P}})\rightarrow\operatorname{Aut}_{\widetilde{{\mathcal{L}}}}(P_{0}) is likewise a monomorphism, by the same proof as that of Lemma 3.8 (but using Lemma 4.12 in place of Lemma 3.6).

Let K:=ker[Aut~()Aut()]K_{\mathbb{P}}:=\ker\big{[}\operatorname{Aut}_{\widetilde{{\mathcal{L}}}}({\mathbb{P}})\rightarrow\operatorname{Aut}_{{\mathcal{L}}}({\mathbb{P}})\big{]} and K0:=ker[Aut~(P0)Aut(P0)]K_{0}:=\ker\big{[}\operatorname{Aut}_{\widetilde{{\mathcal{L}}}}(P_{0})\rightarrow\operatorname{Aut}_{{\mathcal{L}}}(P_{0})\big{]}. We have a commuting diagram of short exact sequences

(4.15) 1KAut~()Aut()11K0Aut~(P0)Aut(P0)1.\begin{gathered}\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 5.5pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&&&\\&&&&\crcr}}}\ignorespaces{\hbox{\kern-5.5pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{1\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 31.49445pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 31.49445pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{K_{{\mathbb{P}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 41.00417pt\raise-30.55557pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 80.91006pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 80.91006pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mbox{{\Large}}\operatorname{Aut}_{\widetilde{{\mathcal{L}}}}({\mathbb{P}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 153.18585pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 101.89622pt\raise-5.88889pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@hook{1}}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 101.89622pt\raise-29.88889pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 153.18585pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mbox{{\large}}\operatorname{Aut}_{{\mathcal{L}}}({\mathbb{P}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 173.69978pt\raise-5.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@hook{1}}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 173.69978pt\raise-29.88889pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 221.50435pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 221.50435pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{1}$}}}}}}}{\hbox{\kern-5.5pt\raise-40.38889pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{1\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 29.5pt\raise-40.38889pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 29.5pt\raise-40.38889pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{K_{0}\ \ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 76.50833pt\raise-40.38889pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 76.50833pt\raise-40.38889pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\ \operatorname{Aut}_{\widetilde{{\mathcal{L}}}}(P_{0})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 151.28412pt\raise-40.38889pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 151.28412pt\raise-40.38889pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{Aut}_{{\mathcal{L}}}(P_{0})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 220.11545pt\raise-40.38889pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 220.11545pt\raise-40.38889pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{1.}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{gathered}

By pullback diagram (4.9), we know that K0νP0K_{0}\cong\nu^{\prime}_{P_{0}}, a finite group of order prime to pp. The map KK0K_{\mathbb{P}}\rightarrow K_{0} is a monomorphism, so KK_{\mathbb{P}} is finite of order prime to pp as well. The lemma follows by using the Serre spectral sequence for mod pp homology of the classifying spaces. ∎

Next we look at the top row of diagram (4.5). We need to compare Aut~S(G)()\operatorname{Aut}_{\widetilde{{\mathcal{L}}}_{S}(G)}({\mathbb{P}}) with the intersection of normalizers NG(Pi)\bigcap N_{G}(P_{i}).

Proposition 4.16.

Let GG be a compact Lie group and let {\mathbb{P}} be a chain of S(G){\mathcal{F}}_{S}(G)-centric S(G){\mathcal{F}}_{S}(G)-radical subgroups. Then the inclusion Aut~()Aut𝒯S(G)()=iNG(Pi)\operatorname{Aut}_{\widetilde{{\mathcal{L}}}}({\mathbb{P}})\subseteq\operatorname{Aut}_{{\mathcal{T}}_{S}(G)}({\mathbb{P}})=\bigcap_{i}N_{G}(P_{i}) induces a mod pp equivalence of classifying spaces.

Proof.

We use pullback diagram (4.9), which we reproduce here, applied to automorphism groups:

Aut~S(G)()AutS(G)()AutS(G)()s()Aut𝒯S(G)()fν()Aut𝒯S(G)/ν()f𝒵()Aut𝒯S(G)/(𝒵×ν)().f()\begin{gathered}\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 26.43877pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\&&\crcr}}}\ignorespaces{\hbox{\kern-26.43877pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{Aut}_{\widetilde{{\mathcal{L}}}_{S}(G)}({\mathbb{P}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 53.93413pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 0.0pt\raise-30.89444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 53.93413pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{Aut}_{{\mathcal{L}}_{S}(G)}({\mathbb{P}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 79.90067pt\raise-30.89444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 144.23573pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 144.23573pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{Aut}_{{\mathcal{F}}_{S}(G)}({\mathbb{P}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 170.28004pt\raise-18.69722pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{s({\mathbb{P}})}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 170.28004pt\raise-30.89444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-26.23875pt\raise-41.39444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{Aut}_{{\mathcal{T}}_{S}(G)}({\mathbb{P}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 26.71634pt\raise-47.89444pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{f_{\nu^{\prime}}({\mathbb{P}})}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 50.43877pt\raise-41.39444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 50.43877pt\raise-41.39444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{Aut}_{{\mathcal{T}}_{S}(G)/\nu^{\prime}}({\mathbb{P}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 109.94588pt\raise-47.89444pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{f_{\mathcal{Z}}({\mathbb{P}})}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 133.36256pt\raise-41.39444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 133.36256pt\raise-41.39444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{Aut}_{{\mathcal{T}}_{S}(G)/({\mathcal{Z}}\times\nu^{\prime})}({\mathbb{P}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces.}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 142.44667pt\raise-18.69722pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{f_{\infty}({\mathbb{P}})}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 166.8356pt\raise-6.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\ignorespaces\end{gathered}

Because ss is a section, the two ways around the outside of the rectangle from Aut~S(G)()\operatorname{Aut}_{\widetilde{{\mathcal{L}}}_{S}(G)}({\mathbb{P}}) to AutS(G)()\operatorname{Aut}_{{\mathcal{F}}_{S}(G)}({\mathbb{P}}) commute. Further, if =(P0Pk){\mathbb{P}}=(P_{0}\subseteq\ldots\subseteq P_{k}), then ker[Aut𝒯S(G)()AutS(G)()]CG(Pk)\ker\big{[}\operatorname{Aut}_{{\mathcal{T}}_{S}(G)}({\mathbb{P}})\rightarrow\operatorname{Aut}_{{\mathcal{F}}_{S}(G)}({\mathbb{P}})\big{]}\cong C_{G}(P_{k}), because the kernel consists of elements of GG that act trivially on all subgroups in {\mathbb{P}}. On the other hand, from the pullback diagrams, ker[Aut~S(G)()AutS(G)()]\ker\big{[}\operatorname{Aut}_{\widetilde{{\mathcal{L}}}_{S}(G)}({\mathbb{P}})\rightarrow\operatorname{Aut}_{{\mathcal{F}}_{S}(G)}({\mathbb{P}})\big{]} is a subgroup of CG(Pk)C_{G}(P_{k}), identified by the pullback diagram as Z(Pk)×νPkZ(P_{k})\times\nu^{\prime}_{P_{k}}.

Then we have a homotopy commutative diagram of horizontal fibrations

(4.17) B(Z(Pk)×νPk)BAut~S(G)()BAutS(G)()BCG(Pk)BAut𝒯S(G)()BAutS(G)().\begin{gathered}\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 34.17113pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\&&\crcr}}}\ignorespaces{\hbox{\kern-34.17113pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{B\big{(}Z(P_{k})\times\nu^{\prime}_{P_{k}}\big{)}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 58.17113pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 0.0pt\raise-31.64444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 58.17113pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{BAut}_{\widetilde{{\mathcal{L}}}_{S}(G)}({\mathbb{P}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 88.15157pt\raise-31.64444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 143.52089pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 143.52089pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{BAut}_{\mathcal{F}_{S}(G)}({\mathbb{P}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\hbox{\kern 1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}\hbox{\kern-1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}}}\ignorespaces{}{\hbox{\hbox{\kern 1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}\hbox{\kern-1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}}}{\hbox{\hbox{\kern 1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}\hbox{\kern-1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}}}{\hbox{\kern-22.51538pt\raise-42.14444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{BC_{G}(P_{k})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 58.37112pt\raise-42.14444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 58.37112pt\raise-42.14444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{BAut}_{{\mathcal{T}}_{S}(G)}({\mathbb{P}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 142.132pt\raise-42.14444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 142.132pt\raise-42.14444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{BAut}_{\mathcal{F}_{S}(G)}({\mathbb{P}}).}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{gathered}

Consider the leftmost vertical map. For an S(G){\mathcal{F}}_{S}(G)-centric subgroup PP, the Lyndon-Hochschild-Serre spectral sequence for mod pp homology corresponding to the short exact sequence

1Z(P)×νPCG(P)CG(P)/(Z(P)×νP)11\longrightarrow Z(P)\times\nu^{\prime}_{P}\longrightarrow C_{G}(P)\longrightarrow C_{G}(P)/(Z(P)\times\nu^{\prime}_{P})\longrightarrow 1

collapses because CG(P)/(Z(P)×νP)C_{G}(P)/(Z(P)\times\nu^{\prime}_{P}) is a rational vector space (Corollary 4.7). Thus the map of fibers in (4.17) is a mod pp equivalence. Comparing the Serre spectral sequences for mod pp homology for the fibrations in (4.17) gives the desired result.

Proof of Theorem 4.2.

In diagram (4.5) we have zigzag natural transformations that are mod pp equivalences by Proposition 4.14 (left vertical) and Proposition 4.16 (top row). The right vertical map in (4.5) is a mod pp equivalence by our previous work ([WIT-normalizers] Thm 5.1, supported by Lemma 4.4).

Theorem 4.3 says exactly that if π0G\pi_{0}G is a pp-group, then there is an isomorphism of posets s¯d(cr)s¯d(){{\overline{s}}d}({\mathcal{F}}^{cr})\cong{{\overline{s}}d}({\mathcal{R}}) induced by taking every subgroup PP to its closure 𝐏{\bf P} in GG. ∎

5. Group-theoretic ingredients for U(p)\operatorname{U}(p) and SU(p){\operatorname{SU}(p)}

In this section, we make technical preparations for Section LABEL:sec:U(p)_SU(p), where we apply our Lie group decomposition result (Theorem 4.2) to the examples of U(p)\operatorname{U}(p) and SU(p){\operatorname{SU}(p)}. Application of Theorem 4.2 requires knowing the normalizers of chains of pp-centric and pp-stubborn subgroups, so this section is devoted to detailed computations of such normalizers in U(p)\operatorname{U}(p) and SU(p){\operatorname{SU}(p)}. Results for SU(p){\operatorname{SU}(p)} are obtained by intersecting the results for U(p)\operatorname{U}(p) with SU(p){\operatorname{SU}(p)}. We focus on U(p)\operatorname{U}(p) and derive the results for SU(p){\operatorname{SU}(p)} at the end of the section. The results in this section are all known to experts. In particular, we are grateful to Dave Benson for tutorials in Bonn.

Because we have to compute normalizers of chains by intersecting normalizers of subgroups, we give very specific representations. Let Σp\Sigma_{p} act on the right of {1,2,,p}\{1,2,\ldots,p\}.

Definition 5.1.

Let ζ\zeta be a fixed pp-th root of unity, and let σΣp\sigma\in\Sigma_{p}.

  1. (1)

    ΣpU(p)\Sigma_{p}\subset\operatorname{U}(p) is represented by permutation matrices: σi,j=1\sigma_{i,j}=1 if (i)σ=j(i)\sigma=j.

  2. (2)

    AA is the p×pp\times p diagonal matrix with Aii=ζi1A_{ii}=\zeta^{i-1}.

  3. (3)

    BB represents the pp-cycle (1,2,,p)(1,2,\ldots,p), that is, Bi,i+1=1B_{i,i+1}=1.

Definition 5.1 identifies the specific representations we use of the subgroups of U(p)\operatorname{U}(p) required in Section LABEL:sec:U(p)_SU(p) for the normalizer decomposition of U(p)\operatorname{U}(p). We fix the subgroup of diagonal matrices as our choice of maximal torus 𝐓{\bf T} of U(p)\operatorname{U}(p), and classical results establish that NU(p)𝐓𝐓ΣpN_{\operatorname{U}(p)}{\bf T}\cong{\bf T}\rtimes\Sigma_{p}. A maximal pp-toral subgroup 𝐒{\bf S} is given by 𝐓/p{\bf T}\rtimes{\mathbb{Z}}/p, with normalizer NU(p)𝐒𝐓NΣp/pN_{\operatorname{U}(p)}{\bf S}\cong{\bf T}\rtimes N_{\Sigma_{p}}{\mathbb{Z}}/p.

Definition 5.2.
  1. (1)

    𝐒:=𝐓B𝐓/p{\bf S}:={\bf T}\rtimes\langle B\rangle\cong{\bf T}\rtimes{\mathbb{Z}}/p is the chosen maximal pp-toral subgroup containing 𝐓{\bf T}.

  2. (2)

    𝚪U(p)\mathbf{\Gamma}\subset\operatorname{U}(p) is the subgroup of U(p)\operatorname{U}(p) generated by AA, BB and S1=Z(U(p))S^{1}=Z(U(p)).

The second group in Definition 5.2, 𝚪U(p)\mathbf{\Gamma}\subset\operatorname{U}(p), is the group denoted by ΓUp\Gamma^{U}_{p} in [Oliver-p-stubborn, Defn. 1]. It is given by a central extension

(5.3) 1S1𝚪/p×/p1,1\rightarrow S^{1}\rightarrow\mathbf{\Gamma}\rightarrow{\mathbb{Z}}/p\times{\mathbb{Z}}/p\rightarrow 1,

where the factors of the quotient are represented by the matrices AA and BB (Definition 5.1). The commutator form is [A,B]=ζ1I[A,B]=\zeta^{-1}I. By [Oliver-p-stubborn, Thm. 6(ii)] there is a short exact sequence

(5.4) 1𝚪NU(p)𝚪SL2𝔽p1.1\to\mathbf{\Gamma}\to N_{\operatorname{U}(p)}\mathbf{\Gamma}\to\operatorname{SL}_{2}\!{\mathbb{F}}_{p}\to 1.

We note that, conceptually, the quotient in (5.4) is actually Sp2𝔽p\operatorname{Sp}_{2}{\mathbb{F}}_{p}, the group of automorphisms of the symplectic form on 𝚪/S1\mathbf{\Gamma}/S^{1} given by the commutator. However, Sp2(𝔽p)SL2𝔽p\operatorname{Sp}_{2}({\mathbb{F}}_{p})\cong\operatorname{SL}_{2}\!{\mathbb{F}}_{p} and the latter expression is more convenient for us.

To apply Theorem 4.2 in Section LABEL:sec:U(p)_SU(p), we need a group-theoretic understanding of NU(p)(𝚪)N_{\operatorname{U}(p)}(\mathbf{\Gamma}) and NU(p)(𝚪𝐒)N_{\operatorname{U}(p)}(\mathbf{\Gamma}\subseteq{\bf S}), and likewise of their counterparts in SU(p){\operatorname{SU}(p)}. For odd primes, our best tool for understanding the relationship of NU(p)(𝚪)N_{\operatorname{U}(p)}(\mathbf{\Gamma}) and NU(p)(𝚪𝐒)N_{\operatorname{U}(p)}(\mathbf{\Gamma}\subseteq{\bf S}) is to establish that (5.4) is split (Proposition 5.9).

Some initial ingredients are involved. We fix an odd prime pp. First, observe that SL2𝔽p\operatorname{SL}_{2}\!{\mathbb{F}}_{p} contains a central involution, namely the negative of the identity matrix. We choose a lift of this involution to NU(p)𝚪N_{\operatorname{U}(p)}\mathbf{\Gamma}.

Definition 5.5.

For odd primes, let τ:=(2,p)(3,p1)(p+12,p+32)Σp\tau:=(2,p)(3,p-1)\ldots(\frac{p+1}{2},\frac{p+3}{2})\in\Sigma_{p}.

With our conventions, τ\tau is represented by the permutation matrix with ones in the upper left-hand corner and on the sub-antidiagonal (Definition 5.1). This involution allows us to express NU(p)𝚪N_{\operatorname{U}(p)}\mathbf{\Gamma} as the product of two almost disjoint pieces.

Lemma 5.6.

For pp odd, 𝚪CU(p)(τ)=S1\mathbf{\Gamma}\cap C_{\operatorname{U}(p)}(\tau)=S^{1} and NU(p)𝚪=𝚪CNU(p)𝚪(τ)N_{\operatorname{U}(p)}\mathbf{\Gamma}=\mathbf{\Gamma}\cdot C_{N_{\operatorname{U}(p)}\mathbf{\Gamma}}(\tau).

Proof.

Direct computation shows that τ\tau acts on 𝚪\mathbf{\Gamma} by τAτ=A1\tau A\tau=A^{-1} and τBτ=B1\tau B\tau=B^{-1}; in particular, τNU(p)𝚪\tau\in N_{\operatorname{U}(p)}\mathbf{\Gamma}. To see that 𝚪CU(p)(τ)=S1\mathbf{\Gamma}\cap C_{\operatorname{U}(p)}(\tau)=S^{1}, observe that τ\tau acts freely on the set of non-identity elements of 𝚪/S1\mathbf{\Gamma}/S^{1}.

To address generation of NU(p)𝚪N_{\operatorname{U}(p)}\mathbf{\Gamma}, let 𝚪.2\mathbf{\Gamma}.2 (using Atlas notation) be the subgroup of NU(p)𝚪N_{\operatorname{U}(p)}\mathbf{\Gamma} generated by 𝚪\mathbf{\Gamma} and τ\tau. Because τ\tau acts on 𝚪\mathbf{\Gamma} by an involution, there is a short exact sequence

1𝚪𝚪.2/21.1\rightarrow\mathbf{\Gamma}\rightarrow\mathbf{\Gamma}.2\rightarrow{\mathbb{Z}}/2\rightarrow 1.

Every element of 𝚪.2\mathbf{\Gamma}.2 has the form γ\gamma or τγ\tau\gamma for some element γ𝚪\gamma\in\mathbf{\Gamma}.

To establish the lemma, we choose an arbitrary xNU(p)𝚪x\in N_{\operatorname{U}(p)}\mathbf{\Gamma} and construct y𝚪y\in\mathbf{\Gamma} and zCNU(p)𝚪(τ)z\in C_{N_{\operatorname{U}(p)}\mathbf{\Gamma}}(\tau) such that x=yzx=yz. Consider the relationship of xx to τ\tau: suppose that xτx1=α𝚪.2x\tau x^{-1}=\alpha\in\mathbf{\Gamma}.2. Because pp is odd, the subgroups S1τS^{1}\cdot\tau and S1αS^{1}\cdot\alpha are Sylow 22-toral subgroups of 𝚪.2\mathbf{\Gamma}.2, hence conjugate in 𝚪.2\mathbf{\Gamma}.2.

We can choose τγ𝚪.2\tau\gamma\in\mathbf{\Gamma}.2 such that cτγ(S1α)=S1τc_{\tau\gamma}(S^{1}\cdot\alpha)=S^{1}\cdot\tau. We would like to know that cτγ(α)=τc_{\tau\gamma}(\alpha)=\tau. Certainly cτγ(α)c_{\tau\gamma}(\alpha) is an involution in S1τS^{1}\cdot\tau, and since S1S^{1} is central we easily compute that the available involutions are I-I, τ\tau, and (I)τ(-I)\tau. By inspection the trace of τ\tau is 11, while the traces of I-I and (I)τ(-I)\tau are p-p and 1-1, respectively. Hence τ\tau is the only option for cτγ(α)c_{\tau\gamma}(\alpha).

Substituting xτx1x\tau x^{-1} for α\alpha in the equation (τγ)(α)(γ1τ)=τ(\tau\gamma)(\alpha)(\gamma^{-1}\tau)=\tau and simplifying gives x=γ1(γx)x=\gamma^{-1}(\gamma x) as the desired expression, so y=γ1𝚪y=\gamma^{-1}\in\mathbf{\Gamma} and z=γxCNU(p)𝚪(τ)z=\gamma x\in C_{N_{\operatorname{U}(p)}\mathbf{\Gamma}}(\tau). ∎

Lemma 5.6 tells us that to understand the structure of NU(p)𝚪N_{\operatorname{U}(p)}\mathbf{\Gamma}, we should focus on the structure of CNU(p)𝚪(τ)C_{N_{\operatorname{U}(p)}\mathbf{\Gamma}}(\tau).

Lemma 5.7.

For pp odd, there is an isomorphism

CNU(p)𝚪(τ)S1×SL2𝔽p.C_{N_{\operatorname{U}(p)}\mathbf{\Gamma}}(\tau)\cong S^{1}\times\operatorname{SL}_{2}\!{\mathbb{F}}_{p}.
Proof.

Because CNU(p)𝚪(τ)𝚪=S1C_{N_{\operatorname{U}(p)}\mathbf{\Gamma}}(\tau)\cap\mathbf{\Gamma}=S^{1} (Lemma 5.6), the short exact sequence in (5.4) restricts to a central extension

(5.8) 1S1CNU(p)𝚪(τ)SL2𝔽p1.1\rightarrow S^{1}\rightarrow C_{N_{\operatorname{U}(p)}\mathbf{\Gamma}}(\tau)\rightarrow\operatorname{SL}_{2}\!{\mathbb{F}}_{p}\rightarrow 1.

Such extensions are classified by

H2(SL2𝔽p;S1)H3(SL2𝔽p;).H^{2}(\operatorname{SL}_{2}\!{\mathbb{F}}_{p};S^{1})\cong H^{3}(\operatorname{SL}_{2}\!{\mathbb{F}}_{p};{\mathbb{Z}}).

However, H3(SL2𝔽p;)=0H^{3}(\operatorname{SL}_{2}\!{\mathbb{F}}_{p};{\mathbb{Z}})=0 by the universal coefficient theorem for cohomology because

  • Hom(H3(SL2𝔽p;),)=0\operatorname{Hom}\big{(}H_{3}(\operatorname{SL}_{2}\!{\mathbb{F}}_{p};{\mathbb{Z}}),{\mathbb{Z}}\big{)}=0 (the domain is a torsion group), and

  • the Schur multiplier H2(SL2𝔽p;)H_{2}(\operatorname{SL}_{2}\!{\mathbb{F}}_{p};{\mathbb{Z}}) is zero ([steinberg-chevalley, p.52]).

Hence the central extension (5.8) splits, as required. ∎

Proposition 5.9.

If pp is odd, there is a splitting of the short exact sequence

1𝚪NU(p)𝚪SL2𝔽p1.1\to\mathbf{\Gamma}\to N_{\operatorname{U}(p)}\mathbf{\Gamma}\to\operatorname{SL}_{2}\!{\mathbb{F}}_{p}\to 1.
Proof.

Lemma 5.7 allows us to choose a splitting

SL2(𝔽p)\displaystyle\operatorname{SL}_{2}({\mathbb{F}}_{p}) CNU(p)𝚪(τ)NU(p)(𝚪).\displaystyle\longrightarrow C_{N_{\operatorname{U}(p)}\mathbf{\Gamma}}(\tau)\subset N_{\operatorname{U}(p)}(\mathbf{\Gamma}).

The intuition of Proposition 5.9 is that SL2𝔽p\operatorname{SL}_{2}\!{\mathbb{F}}_{p} acts on a two-dimensional vector space over 𝔽p{\mathbb{F}}_{p}, and 𝚪/Z(𝚪)𝔽p×𝔽p\mathbf{\Gamma}/Z(\mathbf{\Gamma})\cong{\mathbb{F}}_{p}\times{\mathbb{F}}_{p}, with basis elements given by AA and BB of Definition 5.1 (which commute once we kill the center. While the splitting of Lemma 5.7 is not constructive for the whole quotient SL2𝔽p\operatorname{SL}_{2}\!{\mathbb{F}}_{p}, our next task is to compute an explicit splitting for the subgroup of upper triangular matrices. This explicit computation is used to find the normalizer in U(p)\operatorname{U}(p) of the chain (𝚪𝐒)(\mathbf{\Gamma}\subset{\bf S}), the normalizer of the corresponding chain in SU(p){\operatorname{SU}(p)}, and related automorphism groups in the linking systems of the Aguadé–Zabrodsky pp-compact groups in Section LABEL:sec:AZ. Our choice of the representations will lie not just in U(p)\operatorname{U}(p), but in SU(p){\operatorname{SU}(p)} for purposes of those later computations.

Definition 5.10.

Let 𝒰(SL2𝔽p)\operatorname{{\mathcal{U}}}(\operatorname{SL}_{2}\!{\mathbb{F}}_{p}) denote the group of upper triangular matrices in SL2𝔽p\operatorname{SL}_{2}\!{\mathbb{F}}_{p}, let d:=(1201)d:=\left(\begin{array}[]{cc}1&2\\ 0&1\end{array}\right) and let s:/p×SL2𝔽ps\colon{\mathbb{Z}}/p^{\times}\hookrightarrow\operatorname{SL}_{2}\!{\mathbb{F}}_{p} be the homomorphism ksk:=