This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Normalizer decompositions of pp-local compact groups

Eva Belmont Department of Mathematics, University of California San Diego, La Jolla, CA, USA [email protected] Natàlia Castellana Departament de Matemàtiques, Universitat Autònoma de Barcelona, and Centre de Recerca Matemàtica, Barcelona, Spain [email protected] Jelena Grbić School of Mathematical Sciences, University of Southampton, Southampton, UK [email protected] Kathryn Lesh Department of Mathematics, Union College, Schenectady NY, USA [email protected]  and  Michelle Strumila School of Mathematics, Monash University, Clayton, Victoria, Australia [email protected]
Abstract.

We give a normalizer decomposition for a pp-local compact group (S,,)(S,{\mathcal{F}},{\mathcal{L}}) that describes ||\left|{\mathcal{L}}\right| as a homotopy colimit indexed over a finite poset. Our work generalizes the normalizer decompositions for finite groups due to Dwyer, for pp-local finite groups due to Libman, and for compact Lie groups in separate work due to Libman. Our approach gives a result in the Lie group case that avoids topological subtleties with Quillen’s Theorem A, because we work with discrete groups. We compute the normalizer decomposition for the pp-completed classifying spaces of U(p)\operatorname{U}(p) and SU(p){\operatorname{SU}(p)} and for the pp-compact groups of Aguadé  and Zabrodsky.

Key words and phrases:
Keywords: homotopy theory, fusion system, classifying space, Lie group, p-local compact group, homology decomposition
1991 Mathematics Subject Classification:
MSC 2020: Primary 55R35; Secondary 57T10.

1. Introduction

For a finite group GG, a prime pp, and a suitable collection 𝒞{\mathscr{C}} of subgroups of GG, Dwyer [Dwy97] gave a systematic approach to three homotopy colimit decompositions for BGp{BG}_{p}^{\wedge}. Two of them, the centralizer decomposition and the subgroup decomposition, are indexed by fusion and orbit categories whose objects are conjugacy classes of subgroups in 𝒞{\mathscr{C}}. The third is the normalizer decomposition,

BGp[hocolimδ]p,{BG}_{p}^{\wedge}\simeq{\big{[}\operatorname{hocolim}_{\,{\mathbb{P}}\in{\mathcal{I}}}\delta\big{]}}_{p}^{\wedge},

which is indexed over the finite poset {\mathcal{I}} whose objects are GG-conjugacy classes of chains =(H0Hk){\mathbb{P}}=(H_{0}\subsetneq\ldots\subsetneq H_{k}) for Hi𝒞H_{i}\in{\mathscr{C}} and δ()B(iNGHi)\delta({\mathbb{P}})\simeq B(\cap_{i}N_{G}H_{i}).

There are two more general contexts that are relevant to our work. First, the homotopy colimit decompositions were studied for compact Lie groups. Jackowski and McClure [JM92, Thm. 1.3] had given a centralizer decomposition for compact Lie groups with respect to the collection of elementary abelian pp-subgroups. Jackowski, McClure and Oliver described subgroup decompositions. Słomińska  [Sło01] gave a normalizer decomposition with this collection. Libman [Lib11, Thm. C] gave centralizer, subgroup, and normalizer decompositions with the collection of abelian pp-subgroups and the collection of pp-radical subgroups.

The second generalization of interest comes by replacing finite groups by pp-local finite groups. These objects are triples (S,,)(S,{\mathcal{F}},{\mathcal{L}}), where SS is a finite pp-group, and {\mathcal{F}} and {\mathcal{L}} are categories encoding data that mimics conjugations. One can define the classifying space ||p{\left|{\mathcal{L}}\right|}_{p}^{\wedge} of a pp-local finite group, and it behaves similarly to the pp-completed classifying space of a group. Every finite group gives rise to a pp-local finite group, but not every pp-local finite group comes from a group. Libman [Lib06] proved the existence of a normalizer decomposition for classifying spaces of pp-local finite groups.

We work with pp-local compact groups (Definition 2.11), which generalize compact Lie groups in the same way that pp-local finite groups generalize finite groups. The theory, developed in [BLO07], is in spirit analogous to that of pp-local finite groups, but with new challenges because of the non-finite context. The analogue of a finite pp-group is a discrete pp-toral group, namely an extension of a discrete torus (/p)r({\mathbb{Z}}/p^{\infty})^{r} by a finite pp-group. Studying Lie groups by way of their associated pp-local compact groups has the advantage of reducing to discrete (as opposed to topological) groups. Broto, Levi, and Oliver prove a subgroup decomposition for pp-local compact groups ([BLO07, Prop. 4.6], [LL15, Thm. B]).

Our first contribution is to adapt Libman’s work [Lib06] on pp-local finite groups to construct a normalizer decomposition for pp-local compact groups. One advantage of the normalizer decomposition of a pp-local compact group over the centralizer or subgroup decompositions is that the normalizer decomposition is indexed over a finite poset. In the statement below, the notation cr{\mathcal{F}}^{cr} refers to the subcategory of {\mathcal{F}} whose objects are {\mathcal{F}}-centric and {\mathcal{F}}-radical subgroups. The finite poset s¯dcr{{\overline{s}}d}{\mathcal{F}}^{cr} is defined in Definition 3.15.

Theorem 3.16.

Let (S,,)(S,{\mathcal{F}},{\mathcal{L}}) be a pp-local compact group. There is a functor δ:s¯dcrTop\delta\colon{{\overline{s}}d}{\mathcal{F}}^{cr}\longrightarrow\operatorname{Top} with an equivalence hocolims¯d(cr)δ||\operatorname{hocolim}_{{{\overline{s}}d}({\mathcal{F}}^{cr})}\delta\longrightarrow\left|{\mathcal{L}}\right| and a natural homotopy equivalence BAut()δ([])\operatorname{BAut}_{{\mathcal{L}}}({\mathbb{P}})\longrightarrow\delta([{\mathbb{P}}]) for each chain {\mathbb{P}}. Further, the group Aut()\operatorname{Aut}_{{\mathcal{L}}}({\mathbb{P}}) is a virtually discrete pp-toral group.

This statement is largely formal, as is most of the proof, but there are interesting challenges in computing the decomposition in cases of interest. Our first class of examples is given by pp-local compact groups arising from compact Lie groups. Theorem 3.16 takes place fully in the world of discrete pp-toral groups. To relate our underlying theory to the usual context of normalizers in compact Lie groups, we use our previous work [BCG+22] to rephrase the functor values in the resulting homotopy colimit as mod pp equivalent to classifying spaces of group-theoretic normalizers. In comparison to [Lib11], this approach gives a more formal proof of the basic decomposition result—essentially analogous to the finite case—because we do not have to address the topological issues in applying Quillen’s Theorem A. Instead, the topological issues can be neatly packaged into the functor values and understood on a uniform basis [BCG+22].

Let {\mathcal{R}} denote the collection of pp-toral subgroups of a compact Lie group GG that are both pp-centric and pp-stubborn in GG, and let s¯d{{\overline{s}}d}{\mathcal{R}} be the poset of GG-conjugacy classes of chains of proper inclusions of subgroups in {\mathcal{R}}.

Theorem 4.2.

Let GG be a compact Lie group and let (S,,)(S,{\mathcal{F}},{\mathcal{L}}) be the associated pp-local compact group. If PcrP\in{\mathcal{F}}^{cr}, let 𝐏{\bf P} denote its closure in GG. If =(P0Pk){\mathbb{P}}=(P_{0}\subsetneq\ldots\subsetneq P_{k}) is a proper chain of subgroups in cr{\mathcal{F}}^{cr}, then there is a natural weak mod pp equivalence

BAut()B(iNG(𝐏i)).\operatorname{BAut}_{{\mathcal{L}}}({\mathbb{P}})\simeq\operatorname{B}\!\big{(}\cap_{i}N_{G}({\bf P}_{i})\big{)}.

If in addition π0G\pi_{0}G is a pp-group, then the functor cr{\mathcal{F}}^{cr}\rightarrow{\mathcal{R}} given by P𝐏P\mapsto{\bf P} induces an isomorphism of posets s¯dcrs¯d{{\overline{s}}d}{\mathcal{F}}^{cr}\cong{{\overline{s}}d}{\mathcal{R}}.

In concert with Theorem 3.16, Theorem 4.2 tells us that when π0G\pi_{0}G is a pp-group, we can compute a normalizer decomposition for BGp{BG}_{p}^{\wedge} over a poset indexed by chains of pp-centric and pp-stubborn subgroups of GG, with values that are mod pp equivalent to intersections of normalizers of those subgroups. (See Remark 4.4 regarding the π0\pi_{0} hypothesis.) In Section 6, we compute the decomposition explicitly in the cases U(p)\operatorname{U}(p) and SU(p)\operatorname{SU}(p), expressing the classifying spaces of these groups as mod pp equivalent to a homotopy pushout diagram. We believe these decompositions are new for odd primes. In the case p=2p=2 we recover the theorem of Dwyer, Miller, and Wilkerson [DMW87], who gave mod 22 homotopy pushout decompositions of BSU(2)\operatorname{BSU}(2) and BSO(3)\operatorname{BSO}(3) using an ad hoc method.

Theorem 6.14.

Let 𝒰(SL2𝔽p)\operatorname{{\mathcal{U}}}(\operatorname{SL}_{2}\!{\mathbb{F}}_{p}) denote the group of upper triangular matrices in SL2𝔽p\operatorname{SL}_{2}\!{\mathbb{F}}_{p}, let TT denote the chosen maximal discrete pp-torus of SU(p){\operatorname{SU}(p)}, and let Γ\Gamma denote the extra-special pp-group of order p3p^{3} and exponent pp.

  1. (1)

    For odd primes, the homotopy pushout of the diagram below is mod pp equivalent to BSU(p)\operatorname{BSU}(p):

    B(Γ𝒰(SL2𝔽p))\textstyle{\operatorname{B}\!\left(\Gamma\rtimes\operatorname{{\mathcal{U}}}(\operatorname{SL}_{2}\!{\mathbb{F}}_{p})\right)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}B(TΣp)\textstyle{\operatorname{B}\!\left(T\rtimes\Sigma_{p}\right)}B(ΓSL2𝔽p).\textstyle{\operatorname{B}\!\left(\Gamma\rtimes\operatorname{SL}_{2}\!{\mathbb{F}}_{p}\right).}
  2. (2)

    [DMW87, Thm. 4.1] The homotopy pushout of the diagram below is mod 22 equivalent to BSU(2)\operatorname{BSU}(2):

    BQ16\textstyle{\operatorname{B}Q_{16}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}B(TΣ2)\textstyle{\operatorname{B}\!\left(T\rtimes\Sigma_{2}\right)}BO48,\textstyle{\operatorname{B}O_{48},}

    where Q16Q_{16} and O48O_{48} denote the quaternionic group of order 1616 and the binary octahedral group of order 4848, respectively.

The result for U(p)\operatorname{U}(p) is found in Theorem 6.7.

For our second class of examples, we turn to pp-compact groups, another generalization of classifying spaces of Lie groups introduced by Dwyer and Wilkerson [DW94a], which arose in the study of cohomology rings of loop spaces. Every pp-compact group has an associated pp-local compact group (S,,)(S,\mathcal{F},{\mathcal{L}}) [BLO07, Thm. 10.7], but not every pp-local compact group arises in this way. The classification of pp-compact groups in [AG09, AGMV08] builds these spaces out of compact Lie groups and a collection of exotic examples.

We apply Theorem 3.16 to the Aguadé–Zabrodsky pp-compact groups, which are closely related to BSU(p)p{\operatorname{BSU}(p)}_{p}^{\wedge}. They were first constructed in [Agu89] to have cohomology realizing certain invariants of polynomial rings. Our result is a homotopy pushout diagram for these spaces.

Theorem 7.1.

Let XX denote one of the Aguadé–Zabrodsky pp-compact groups X12X_{12} (with p=3p=3), X29X_{29} (with p=5p=5), X31X_{31} (with p=5p=5), or X34X_{34} (with p=7p=7). Let T(/p)p1T\cong({\mathbb{Z}}/{p}^{\infty})^{p-1} denote the maximal discrete pp-torus in the associated fusion system, and let GG be the Weyl group associated to XX. The homotopy pushout of the diagram

B(Γ𝒰(GL2𝔽p))\textstyle{\operatorname{B}\!\big{(}\Gamma\rtimes\operatorname{{\mathcal{U}}}(\operatorname{GL}_{2}\!{\mathbb{F}}_{p})\big{)}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}B(TG)\textstyle{\operatorname{B}\left(T\rtimes G\right)}B(ΓGL2𝔽p)\textstyle{\operatorname{B}\!\left(\Gamma\rtimes\operatorname{GL}_{2}\!{\mathbb{F}}_{p}\right)}

is homotopy equivalent to the nerve of the linking system associated to XX, and mod pp equivalent to BXBX itself.

Comparing to Theorem 6.14, above, we see that SL2𝔽p\operatorname{SL}_{2}\!{\mathbb{F}}_{p} is replaced by GL2𝔽p\operatorname{GL}_{2}\!{\mathbb{F}}_{p}, and Σp\Sigma_{p} (the Weyl group for SU(p){\operatorname{SU}(p)}) is replaced by GG (the new, enlarged Weyl group for XX).

Organization

In Section 2 we review the properties of fusion and linking systems in the setting of discrete pp-local compact groups. In Section 3 we establish the general normalizer decomposition for a pp-local compact group (Theorem 3.16), and we show that the spaces involved are classifying spaces of virtually discrete pp-toral groups. In Section 4, we turn to Lie groups and prove Theorem 4.2. The main issue to be addressed is the calculation of automorphisms in the linking system associated to a Lie group. The problem is that the model of the linking system associated to GG is not directly related to the transporter system. In Section 5 we prepare for application of the normalizer decompositions to U(p)\operatorname{U}(p) and SU(p){\operatorname{SU}(p)} by separating out some group-theoretic calculations. In Section 6 we use those calculations, in conjunction with Theorem 4.2, to give normalizer decompositions of U(p)\operatorname{U}(p) and SU(p){\operatorname{SU}(p)}. Finally, in Section 7 we leverage the results of Section 6 to give normalizer decompositions for the “exotic” Aguadé–Zabrodsky spaces.

Acknowledgements.

The first author was supported by NSF grant DMS-2204357 and by an AWM-NSF mentoring travel grant to work with the fourth author. The second author was partially supported by Spanish State Research Agency project PID2020-116481GB-I00, the Severo Ochoa and María de Maeztu Program for Centers and Units of Excellence in R&\&D (CEX2020-001084-M), and the CERCA Programme/Generalitat de Catalunya. The first, second and fourth authors acknowledge the support of the program “Higher algebraic structures in algebra, topology and geometry” at the Mittag-Leffler Institute in Spring 2022.

We thank the organizers of the Women in Topology III workshop, where this work was begun, as well as the Hausdorff Research Institute for Mathematics, where the workshop was held. The Women in Topology III workshop was supported by NSF grant DMS-1901795, the AWM ADVANCE grant NSF HRD-1500481, and Foundation Compositio Mathematica. The fifth author was also supported for the workshop by a Cheryl Praeger Travel Grant.

We are extremely grateful to Dave Benson for tutorials on group theory regarding Sections 5 and 6. Without this help, the results would have been much less tidily packaged. Needless to say, any remaining errors are our own.

2. Fusion systems and linking systems

We give a brief overview of the notion of a pp-local compact group given in the work of Broto, Levi and Oliver [BLO07]. Recall that a pp-toral group is an extension of a torus, (S1)r\left(S^{1}\right)^{r}, by a finite pp-group. We work with a discrete version of pp-toral groups. As usual, let /p{\mathbb{Z}}/{p}^{\infty} be the union of the cyclic pp-groups /pn{\mathbb{Z}}/p^{n} under the standard inclusions.

Definition 2.1.

A discrete pp-toral group is a group PP given by an extension

1(/p)rPπ0P1,1\longrightarrow\left({\mathbb{Z}}/{p}^{\infty}\right)^{r}\longrightarrow P\longrightarrow\pi_{0}P\longrightarrow 1,

where rr is a nonnegative integer and π0P\pi_{0}P is a finite pp-group. The identity component of PP is P0:=(/p)rP_{0}:=\left({\mathbb{Z}}/{p}^{\infty}\right)^{r}, and we call rr the rank of PP. We call π0P\pi_{0}P the set of components of PP.

Note that the identity component of a discrete pp-toral group is well defined because it is the characteristic subgroup consisting of infinitely pp-divisible elements.

Definition 2.2.

We define size(P)\operatorname{size}(P) of a discrete pp-toral group PP as the pair size(P)=(r,c)\operatorname{size}(P)=(r,c), where rr is the rank of PP and cc is the order of π0P\pi_{0}P, equipped with the lexicographic ordering (see [CLN07, A.5]).

Lemma 2.3.

If PPP\to P^{\prime} is a monomorphism of discrete pp-toral groups, then size(P)size(P)\operatorname{size}(P)\leq\operatorname{size}(P^{\prime}), with equality if and only if PPP\to P^{\prime} is an isomorphism.

Proof.

See [BLO07, after Definition 1.1]. ∎

Given two discrete pp-toral groups PP and QQ, let Hom(P,Q)\operatorname{Hom}(P,Q) denote the set of group homomorphisms from PP to QQ. If PP and QQ are subgroups of a larger group SS, then HomS(P,Q)\operatorname{Hom}_{S}(P,Q) denotes the set of those homomorphisms (necessarily monomorphisms) induced by conjugation by elements of SS.

The following definition is a straightforward generalization of the definition of fusion systems over finite pp-groups (see [BLO03]).

Definition 2.4.

[BLO07, Defn. 2.1] A fusion system \mathcal{F} over a discrete pp-toral group SS is a subcategory of the category of groups, defined as follows. The objects of {\mathcal{F}} are all of the subgroups of SS. The morphism sets Hom(P,Q)\operatorname{Hom}_{\mathcal{F}}(P,Q) contain only group monomorphisms, and satisfy the following conditions.

  • (a)

    HomS(P,Q)Hom(P,Q)\operatorname{Hom}_{S}(P,Q)\subseteq\operatorname{Hom}_{\mathcal{F}}(P,Q) for all P,QSP,Q\subseteq S. In particular, all subgroup inclusions are in {\mathcal{F}}.

  • (b)

    Every morphism in {\mathcal{F}} factors as the composite of an isomorphism in {\mathcal{F}} followed by a subgroup inclusion.

The same language of “outer automorphisms” is used for fusion systems as for groups. In particular, just as OutS(P):=AutS(P)/AutP(P)\operatorname{Out}_{S}(P):=\operatorname{Aut}_{S}(P)/\operatorname{Aut}_{P}(P), we define Out(P):=Aut(P)/AutP(P)\operatorname{Out}_{{\mathcal{F}}}(P):=\operatorname{Aut}_{{\mathcal{F}}}(P)/\operatorname{Aut}_{P}(P). In addition, we say that two subgroups P,PP,P^{\prime} of SS are {\mathcal{F}}-conjugate if there is an isomorphism PPP\cong P^{\prime} in {\mathcal{F}}.

In order for a fusion system to have good properties and model conjugacy relations among pp-subgroups of a group, it must satisfy an extra set of axioms, for “saturation.” The definition is given in [BLO07, §2], and we refer the reader to this source, as the definition is fairly long and technical, and we do not need to use any of the details.

Example 2.5.

We recall the fusion system S(G){\mathcal{F}}_{S}(G) that arises from a compact Lie group GG ([BLO07, §9]). Fix a choice of maximal torus 𝐓G{\bf T}\subseteq G. Let W:=NG(𝐓)/𝐓W:=N_{G}({\bf T})/{\bf T} denote the Weyl group, and fix a Sylow pp-subgroup WpWW_{p}\subseteq W. Let 𝐒{\bf S} denote the inverse image of WpW_{p} in NG(𝐓)N_{G}({\bf T}). Then 𝐒{\bf S} is a maximal pp-toral subgroup of GG, unique up to GG-conjugacy, and given by an extension

1𝐓𝐒Wp1.1\longrightarrow{\bf T}\longrightarrow{\bf S}\longrightarrow W_{p}\longrightarrow 1.

A maximal discrete pp-toral subgroup of GG is obtained by taking a maximal discrete pp-toral subgroup SS of 𝐒{\bf S}. All such choices are conjugate in 𝐒{\bf S} ([BLO07, proof of Prop. 9.3]), so SS necessarily contains the (unique) maximal discrete pp-toral subgroup TT of 𝐓{\bf T}, giving an extension

1TSWp1.1\longrightarrow T\longrightarrow S\longrightarrow W_{p}\longrightarrow 1.

The fusion system of GG, denoted S(G){\mathcal{F}}_{S}(G), has as its object set all subgroups of SS, and for P,QSP,Q\subseteq S, the morphisms are HomS(G)(P,Q):=HomG(P,Q)=NG(P,Q)/CGP\operatorname{Hom}_{{\mathcal{F}}_{S}(G)}(P,Q):=\operatorname{Hom}_{G}(P,Q)=N_{G}(P,Q)/C_{G}{P}.

The fusion system associated to a compact Lie group has the right technical property to be tractable.

Proposition 2.6.

[BLO07, Prop. 8.3] If GG is a compact Lie group with maximal discrete pp-toral subgroup SS, then the fusion system S(G){\mathcal{F}}_{S}(G) is saturated.

In general, a fusion system over a discrete pp-toral group SS will have an infinite number of isomorphism classes of objects (unless SS is finite). Fortunately, it turns out to be possible to restrict one’s attention to a smaller number of objects. The concepts of “{\mathcal{F}}-centric” and “{\mathcal{F}}-radical” play analogous roles in the theory of pp-local compact groups to their group-theoretic counterparts.

Definition 2.7.

Let {\mathcal{F}} be a fusion system over a discrete pp-toral group SS.

  1. (1)

    A subgroup PSP\subseteq S is called {\mathcal{F}}-centric if PP contains all elements of SS that centralize it, and likewise all {\mathcal{F}}-conjugates of PP contain their SS-centralizers.

  2. (2)

    A subgroup PSP\subseteq S is called {\mathcal{F}}-radical if Out(P)=Aut(P)/AutP(P)\operatorname{Out}_{{\mathcal{F}}}(P)=\operatorname{Aut}_{{\mathcal{F}}}(P)/\operatorname{Aut}_{P}(P) contains no nontrivial normal pp-subgroup.

Proposition 2.8.

[BLO07, Cor. 3.5] In a saturated fusion system {\mathcal{F}} over a discrete pp-toral group SS, there are only finitely many conjugacy classes of {\mathcal{F}}-centric {\mathcal{F}}-radical subgroups.

The saturated fusion system S(G){\mathcal{F}}_{S}(G) of the group GG does not contain enough information about GG to recover BGp{BG}_{p}^{\wedge}. For example, if GG is a finite pp-group, the fusion system can only detect G/Z(G)G/Z(G). We recall the definition of a centric linking system, a category associated to a saturated fusion system, whose nerve is mod pp equivalent to BGBG. Details on properties of linking systems can be found in the appendix of [BLO14]. We begin with the transporter category.

Definition 2.9.

If GG is a group and {\mathcal{H}} is a collection of subgroups of GG, the transporter category for {\mathcal{H}}, denoted 𝒯(G){\mathcal{T}}_{\mathcal{H}}(G), is the category whose object set is {\mathcal{H}}, and whose morphism sets are given by

Hom𝒯(G)(P,Q):={gG|gPg1Q}.\operatorname{Hom}_{{\mathcal{T}}_{\mathcal{H}}(G)}(P,Q):=\left\{g\in G\left|\,gPg^{-1}\subseteq Q\right.\right\}.

If SS is a subgroup of GG and {\mathcal{H}} is the set of all subgroups of SS, then we write 𝒯S(G){\mathcal{T}}_{S}(G) for the corresponding transporter category.

Definition 2.10.

[BLO07, Defn. 4.1] [BLO14, Defn. 1.9] Let {\mathcal{F}} be a fusion system over a discrete pp-toral group SS and let {\mathcal{H}} be the collection of {\mathcal{F}}-centric subgroups. A centric linking system associated to {\mathcal{F}} is a category {\mathcal{L}} whose objects are the subgroups in {\mathcal{H}}, together with a pair of functors

𝒯(S)𝛿𝜋{\mathcal{T}}_{\mathcal{H}}(S)\xrightarrow{\,\delta\,}{\mathcal{L}}\xrightarrow{\,\pi\,}{\mathcal{F}}

such that each object is isomorphic (in {\mathcal{L}}) to one that is fully centralized in {\mathcal{F}}, and such that the following conditions are satisfied.

  • (A)

    The functor δ\delta is the identity on objects, and π\pi is the inclusion on objects. For each pair of objects P,QP,Q\in{\mathcal{H}}, the centralizer Z(P)Z(P) acts freely on Hom(P,Q)\operatorname{Hom}_{{\mathcal{L}}}(P,Q) by precomposition through δ\delta, and πP,Q\pi_{P,Q} induces a bijection

    Hom(P,Q)/Z(P)Hom(P,Q).\operatorname{Hom}_{{\mathcal{L}}}(P,Q)/Z(P)\xrightarrow{\ \cong\ }\operatorname{Hom}_{{\mathcal{F}}}(P,Q).
  • (B)

    For each P,QP,Q\in{\mathcal{H}} and each gNS(P,Q)g\in N_{S}(P,Q), the map induced by the functor πP,Q:Hom(P,Q)Hom(P,Q)\pi_{P,Q}\colon\operatorname{Hom}_{{\mathcal{L}}}(P,Q)\rightarrow\operatorname{Hom}_{{\mathcal{F}}}(P,Q) sends the element δP,Q(g)Hom(P,Q)\delta_{P,Q}(g)\in\operatorname{Hom}_{{\mathcal{L}}}(P,Q) to cgHom(P,Q)c_{g}\in\operatorname{Hom}_{{\mathcal{F}}}(P,Q).

  • (C)

    For each fHom(P,Q)f\in\operatorname{Hom}_{{\mathcal{L}}}(P,Q) and each gPg\in P, the following square in {\mathcal{L}} commutes:

    P\textstyle{P\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}δP(g)\scriptstyle{\delta_{P}(g)}Q\textstyle{Q\ignorespaces\ignorespaces\ignorespaces\ignorespaces}δQ(π(f)(g))\scriptstyle{\delta_{Q}(\pi(f)(g))}P\textstyle{P\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}Q.\textstyle{Q.}
Definition 2.11.

[BLO07, Defn. 4.2] A pp-local compact group is a triple (S,,)(S,{\mathcal{F}},{\mathcal{L}}), where {\mathcal{F}} is a saturated fusion system over the discrete pp-toral group SS, and {\mathcal{L}} is a centric linking system associated to {\mathcal{F}}. The classifying space of (S,,)(S,{\mathcal{F}},{\mathcal{L}}) is defined as ||p{\left|{\mathcal{L}}\right|}_{p}^{\wedge}.

Broto, Levi, and Oliver, in [BLO07, §9], proved that a compact Lie group GG gives rise to a pp-local compact group (S,S(G),S(G))(S,{\mathcal{F}}_{S}(G),{\mathcal{L}}_{S}(G)) by giving a specific construction of S(G){\mathcal{L}}_{S}(G); they then prove that it gives a suitable model for the pp-completion of BGBG.

Theorem 2.12.

[BLO07, Thm. 9.10] Let GG be a compact Lie group, and fix a maximal discrete pp-toral subgroup SGS\subseteq G. Then there exists a centric linking system S(G){\mathcal{L}}_{S}(G) associated to S(G){\mathcal{F}}_{S}(G) such that |S(G)|pBGp{\left|{\mathcal{L}}_{S}(G)\right|}_{p}^{\wedge}\simeq{BG}_{p}^{\wedge}.

Thus any theorem about decompositions of ||\left|{\mathcal{L}}\right| for a pp-local compact group will also apply to Lie groups. For computational purposes, we will use an alternative, more concrete model for S(G){\mathcal{L}}_{S}(G) also described in [BLO07], which we detail in Section 4.

A key result in the theory of fusion systems is the existence and uniqueness (up to equivalence) of centric linking systems associated to a given saturated fusion system. For saturated fusion systems over a finite pp-group SS, the result was proven first in [Che13] using the new theory of localities. Another proof was given in [Oli13] using the obstruction theory developed in [BLO03]. Later, [LL15] extended the result to saturated fusion systems over discrete pp-toral groups.

Theorem 2.13.

[LL15] Let {\mathcal{F}} be a saturated fusion system over a discrete pp-toral group. Up to equivalence, there exists a unique centric linking system associated to {\mathcal{F}}.

3. The normalizer decomposition for pp-local compact groups

Throughout this section, we assume a fixed pp-local compact group (S,,)(S,{\mathcal{F}},{\mathcal{L}}) (Definition 2.11). We establish a normalizer decomposition that expresses the uncompleted nerve ||\left|{\mathcal{L}}\right| as a homotopy colimit indexed on a finite poset of chains. We start by introducing chains and their automorphisms. Next we prove that automorphism groups of chains in {\mathcal{L}} are virtually discrete pp-toral (Definition 3.9). Lastly, we prove the general, abstract normalizer decomposition result for a pp-local compact group (Theorem 3.16), which mostly proceeds analogously to the pp-local finite group case in [Lib06].

We begin in the fusion system. A chain in {\mathcal{F}} is given by a sequence =(P0P1Pk){\mathbb{P}}=(P_{0}\subseteq P_{1}\subseteq\ldots\subseteq P_{k}) of subgroups of SS. A chain is proper if the inclusions are all strict. If {\mathbb{P}}^{\prime} has the same length as {\mathbb{P}}, we say that {\mathbb{P}} and {\mathbb{P}}^{\prime} are {\mathcal{F}}-conjugate if there exists an isomorphism fHom(Pk,Pk)f\in\operatorname{Hom}_{\mathcal{F}}\left(P_{k},P^{\prime}_{k}\right) such that f(Pi)=Pif\left(P_{i}\right)=P^{\prime}_{i}.

Definition 3.1.

Let =(P0Pk){\mathbb{P}}=(P_{0}\subseteq\ldots\subseteq P_{k}) be a chain of {\mathcal{F}}-centric subgroups of SS. We define Aut\operatorname{Aut}_{{\mathcal{F}}}{\mathbb{P}} as the group of {\mathcal{F}}-automorphisms of PkP_{k} that restrict to an automorphism of PiP_{i} for each 0i<k0\leq i<k.

We would like to define Aut()\operatorname{Aut}_{\mathcal{L}}({\mathbb{P}}) for a chain {\mathbb{P}}, but first we need an analogue of the canonical subgroup inclusions used to define Aut()\operatorname{Aut}_{\mathcal{F}}({\mathbb{P}}). It is possible to construct compatible “distinguished inclusions” in {\mathcal{L}} with the property that they project to the subset inclusions in {\mathcal{F}} via π:\pi\colon{\mathcal{L}}\rightarrow{\mathcal{F}} (Definition 2.10).

Lemma 3.2.

[JLL12, Remark 1.6] Let {\mathcal{L}} be a centric linking system associated to a saturated fusion system {\mathcal{F}} on a discrete pp-toral group SS. There is a coherent collection of morphisms {ιPQHom(P,Q)|PQ}\left\{\iota\mkern 1.5mu_{P}^{Q}\in\operatorname{Hom}_{\mathcal{L}}(P,Q)\ \left|\,\mbox{{\large}}P\subseteq Q\right.\right\} with the following properties.

  1. (1)

    π(ιPQ)\pi\big{(}\iota\mkern 1.5mu_{P}^{Q}\big{)} is the inclusion morphism PQP\subseteq Q in {\mathcal{F}}.

  2. (2)

    ιPP=Id\iota\mkern 1.5mu_{P}^{P}=\mathrm{Id}.

  3. (3)

    If PQRP\subseteq Q\subseteq R are subgroups of SS, then ιQRιPQ=ιPR\iota\mkern 1.5mu_{Q}^{R}\circ\iota\mkern 1.5mu_{P}^{Q}=\iota\mkern 1.5mu_{P}^{R}.

The spaces in our decomposition of ||\left|{\mathcal{L}}\right| will be classifying spaces of automorphism groups in the linking system.

Definition 3.3.

[Lib06, Def. 1.4] Let =(P0Pk){\mathbb{P}}=(P_{0}\subseteq\ldots\subseteq P_{k}) be a chain of {\mathcal{F}}-centric subgroups of SS. Define Aut()\operatorname{Aut}_{\mathcal{L}}({\mathbb{P}}) to be the subgroup of i=0kAutPi\prod_{i=0}^{k}\operatorname{Aut}_{{\mathcal{L}}}P_{i} consisting of sequences (fi)(f_{i}) satisfying fi+1ιPiPi+1=ιPiPi+1fif_{i+1}\circ\iota_{P_{i}}^{P_{i+1}}=\iota_{P_{i}}^{P_{i+1}}\circ f_{i}. That is, each element of Aut()\operatorname{Aut}_{\mathcal{L}}({\mathbb{P}}) gives a commutative ladder

(3.4) P0ιP0P1f0P1ιP1P2f1ιPk2Pk1Pk1ιPk1Pkfk1PkfkP0ιP0P1P1ιP1P2ιPk2Pk1Pk1ιPk1PkPk.\begin{gathered}\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 12.18057pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&&&\\&&&&\crcr}}}\ignorespaces{\hbox{\kern-8.30452pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{P_{0}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 13.70395pt\raise 6.38916pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.9914pt\hbox{$\scriptstyle{\iota_{P_{0}}^{P_{1}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 32.30452pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 0.0pt\raise-19.5pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\cong}$}}}\kern 3.0pt}}}}}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-12.18057pt\raise-19.5pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{f_{0}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-29.16669pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 32.30452pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{P_{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 54.31299pt\raise 6.38916pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.9914pt\hbox{$\scriptstyle{\iota_{P_{1}}^{P_{2}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 72.91356pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 40.60904pt\raise-19.5pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\cong}$}}}\kern 3.0pt}}}}}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 28.42847pt\raise-19.5pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{f_{1}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 40.60904pt\raise-29.16669pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 72.91356pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\dots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 90.39632pt\raise 6.42917pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.9514pt\hbox{$\scriptstyle{\iota_{P_{k-2}}^{P_{k-1}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 110.41356pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 110.41356pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{P_{k-1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 136.65811pt\raise 6.42917pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.9514pt\hbox{$\scriptstyle{\iota_{P_{k-1}}^{P_{k}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 157.3698pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 121.19724pt\raise-17.05556pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\cong}$}}}\kern 3.0pt}}}}}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 105.475pt\raise-19.5pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.73611pt\hbox{$\scriptstyle{f_{k-1}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 121.19724pt\raise-29.16669pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 157.3698pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{P_{k}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 165.82014pt\raise-17.05556pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\cong}$}}}\kern 3.0pt}}}}}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 153.43124pt\raise-19.5pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.73611pt\hbox{$\scriptstyle{f_{k}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 165.82014pt\raise-29.16669pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-8.30452pt\raise-39.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{P_{0}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 13.70395pt\raise-45.38916pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.9914pt\hbox{$\scriptstyle{\iota_{P_{0}}^{P_{1}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 32.30452pt\raise-39.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 32.30452pt\raise-39.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{P_{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 54.31299pt\raise-45.38916pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.9914pt\hbox{$\scriptstyle{\iota_{P_{1}}^{P_{2}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 72.91356pt\raise-39.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 72.91356pt\raise-39.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\dots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 90.39632pt\raise-45.42915pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.9514pt\hbox{$\scriptstyle{\iota_{P_{k-2}}^{P_{k-1}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 110.41356pt\raise-39.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 110.41356pt\raise-39.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{P_{k-1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 135.96367pt\raise-45.42915pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.9514pt\hbox{$\scriptstyle{\iota_{P_{k-1}}^{P_{k}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 155.98091pt\raise-39.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 155.98091pt\raise-39.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{P_{k}.}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{gathered}

We pause for two basic lemmas that come up in lifting from the fusion system to the linking system, and in checking uniqueness properties. First, a factoring lemma follows directly from the axioms of a centric linking system.

Lemma 3.5.

Given a diagram in {\mathcal{F}} on the left, and a lift ψ~\widetilde{\psi} of ψ\psi to {\mathcal{L}}, there is a unique lift ϕ~\widetilde{\phi} of ϕ\phi making the diagram on the right commute in {\mathcal{L}}.

P\textstyle{P\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\subseteq}ϕ\scriptstyle{\phi}P\textstyle{P^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ψ\scriptstyle{\psi}Q\textstyle{Q\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\subseteq}Q\textstyle{Q^{\prime}}                  P\textstyle{P\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ιPP\scriptstyle{\iota_{P}^{P^{\prime}}}ϕ~\scriptstyle{\widetilde{\phi}}P\textstyle{P^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ψ~\scriptstyle{\widetilde{\psi}}Q\textstyle{Q\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ιQQ\scriptstyle{\iota_{Q}^{Q^{\prime}}}Q\textstyle{Q^{\prime}}
Proof.

This follows from applying [BLO07, Lemma 4.3] to PϕQQP\xrightarrow{\phi}Q\hookrightarrow Q^{\prime}. ∎

It follows from the factoring properties above that morphisms in a centric linking system have good categorical properties.

Lemma 3.6.

[JLL12, Cor. 1.8] Morphisms in a centric linking system are both categorical monomorphisms and categorical epimorphisms.

Returning to the study of automorphism groups of chains, we are able to relate the automorphism groups in the linking system to those in the fusion system.

Lemma 3.7.

Let =(P0Pk){\mathbb{P}}=(P_{0}\subseteq\ldots\subseteq P_{k}) be a chain of {\mathcal{F}}-centric subgroups. There is a short exact sequence

1Z(Pk)Aut()𝜋Aut()1.1\longrightarrow Z(P_{k})\longrightarrow\operatorname{Aut}_{\mathcal{L}}({\mathbb{P}})\xrightarrow{\ \pi\ }\operatorname{Aut}_{\mathcal{F}}({\mathbb{P}})\longrightarrow 1.
Proof.

The lemma follows from Lemma 3.5. Given an {\mathcal{F}}-automorphism of {\mathbb{P}}, we lift PkPkP_{k}\rightarrow P_{k} to {\mathcal{L}}, with Z(Pk)Z(P_{k}) choices for the lift by Definition 2.10(A) because PkP_{k} is {\mathcal{F}}-centric. Lemma 3.5 then guarantees unique compatible lifts to all of the smaller subgroups. ∎

Lemma 3.8.

The natural maps Aut()Aut(Pi)\operatorname{Aut}_{{\mathcal{L}}}({\mathbb{P}})\rightarrow\operatorname{Aut}_{{\mathcal{L}}}(P_{i}) are monomorphisms.

Proof.

The lemma is an immediate consequence of Lemma 3.6. An automorphism of a larger subgroup restricts uniquely (via the distinguished inclusions) to a smaller subgroup. And any particular element of AutPi\operatorname{Aut}_{{\mathcal{L}}}P_{i} may not extend to automorphisms of larger subgroups to give a commuting diagram (3.4), but if it does, then the extension is unique. ∎

We relate automorphism groups of chains in a linking system to virtually discrete pp-toral groups, which were studied in the context of linking systems in [LL15] and [Mol18].

Definition 3.9.

A virtually discrete pp-toral group is a discrete group that contains a normal discrete pp-torus of finite index.

Like discrete pp-toral groups, virtually discrete pp-toral groups have good inheritance properties.

Lemma 3.10.

If GG is a virtually discrete pp-toral group and HGH\subseteq G, then HH is also a virtually discrete pp-toral group.

Proof.

Let PGP\triangleleft G be a normal discrete pp-toral subgroup of GG of finite index, and let TPT_{P} be the identity component of PP. Then TPGT_{P}\triangleleft G and [G:TP][G:T_{P}] is finite.

Let THT_{H} denote the subgroup of TPHT_{P}\cap H consisting of infinitely pp-divisible elements. Because (TPH)H(T_{P}\cap H)\triangleleft H and THT_{H} is a characteristic subgroup of TPHT_{P}\cap H, we have THHT_{H}\triangleleft H. The result follows because H/THG/TPH/T_{H}\subseteq G/T_{P}, and the latter is finite. ∎

Automorphism groups of chains in {\mathcal{L}} take values in virtually discrete pp-toral groups.

Lemma 3.11.

Let {\mathbb{P}} be a chain of subgroups in cr{\mathcal{L}}^{cr}. Then Aut()\operatorname{Aut}_{\mathcal{L}}({\mathbb{P}}) is a virtually discrete pp-toral group.

Proof.

We first establish the result for a single {\mathcal{F}}-centric group PP. By Definition 2.10(C) (with P=QP=Q), the distinguished monomorphism δP\delta_{P} identifies PP with a normal subgroup of Aut(P)\operatorname{Aut}_{{\mathcal{L}}}(P). We have a ladder of short exact sequences

1\textstyle{1\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Z(P)\textstyle{Z(P)\ \ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}P\textstyle{P\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}δP\scriptstyle{\delta_{P}}AutP(P)\textstyle{\operatorname{Aut}_{P}(P)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ \ignorespaces\ignorespaces\ignorespaces\ignorespaces}1\textstyle{1}1\textstyle{1\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Z(P)\textstyle{Z(P)\ \ignorespaces\ignorespaces\ignorespaces\ignorespaces}Aut(P)\textstyle{\operatorname{Aut}_{{\mathcal{L}}}(P)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}π\scriptstyle{\pi}Aut(P)\textstyle{\operatorname{Aut}_{{\mathcal{F}}}(P)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1,\textstyle{1,}

and the cokernel of the right-hand column is Out(P)\operatorname{Out}_{\mathcal{F}}(P) (by definition). Hence we have a short exact sequence of groups

(3.12) 0PAut(P)Out(P)0,0\longrightarrow P\longrightarrow\operatorname{Aut}_{{\mathcal{L}}}(P)\longrightarrow\operatorname{Out}_{\mathcal{F}}(P)\longrightarrow 0,

where PAut(P)P\triangleleft\operatorname{Aut}_{\mathcal{L}}(P), and Out(P)\operatorname{Out}_{\mathcal{F}}(P) is finite by [BLO07, Prop. 2.3]. Since Aut(P)\operatorname{Aut}_{{\mathcal{L}}}(P) is an extension of a finite group by a discrete pp-toral group, Aut(P)\operatorname{Aut}_{{\mathcal{L}}}(P) is virtually discrete pp-toral.

The result follows for chains from Lemmas 3.8 and 3.10. ∎

With automorphism groups in place, we are ready to discuss the indexing category of the normalizer decomposition, following the work of Słomińska. We adapt the proof of [Lib06, Thm. 5.1].

Definition 3.13 ([Sło91], [Lib06, §4]).

A category 𝒜{\mathcal{A}} is an E-I category if all endomorphisms in 𝒜{\mathcal{A}} are isomorphisms, and 𝒜{\mathcal{A}} is heighted if there is a function h:ob(𝒜)h:\operatorname{ob}({\mathcal{A}})\to{\mathbb{N}} such that Hom𝒜(A,B)\operatorname{Hom}_{\mathcal{A}}(A,B)\neq\emptyset implies that h(A)h(B)h(A)\leq h(B), with equality if and only if ABA\cong B in 𝒜{\mathcal{A}}.

Let cr{\mathcal{F}}^{cr} (resp. cr{\mathcal{L}}^{cr}) denote the full subcategory of {\mathcal{F}} (resp. {\mathcal{L}}) consisting of the subgroups of SS that are both {\mathcal{F}}-centric and {\mathcal{F}}-radical. Recall that a chain of subgroups is “proper” if all of the inclusions are strict.

In Lemma 3.14 we check that cr{\mathcal{L}}^{cr} has the structure of Definition 3.13.

Lemma 3.14.

cr{\mathcal{L}}^{cr} has a finite number of isomorphism classes of objects, and is a heighted E-I category with height function size()\operatorname{size}(\text{--}) in Definition 2.2.

Proof.

Finiteness follows from Proposition 2.8. Definition 2.2 gives height function because projection to {\mathcal{F}} takes all morphisms in {\mathcal{L}} to group monomorphisms of discrete pp-toral groups, which must then have non-decreasing heights. Equality is achieved only for group isomorphisms, which lift to isomorphisms in {\mathcal{L}}. ∎

Definition 3.15.

The poset category s¯d(cr){{\overline{s}}d}({\mathcal{F}}^{cr}) has objects given by {\mathcal{F}}-conjugacy classes [][{\mathbb{P}}] of proper chains {\mathbb{P}} of objects of cr{\mathcal{F}}^{cr}. There is a morphism [][][{\mathbb{P}}]\rightarrow[{\mathbb{P}}^{\prime}] if and only if {\mathbb{P}}^{\prime} is {\mathcal{F}}-conjugate to a chain given by a subset of {\mathbb{P}}.

The abstract “normalizer decomposition theorem” expresses ||\left|{\mathcal{L}}\right| as a homotopy colimit over the finite poset s¯dcr{{\overline{s}}d}{\mathcal{F}}^{cr}.

Theorem 3.16.

Let (S,,)(S,{\mathcal{F}},{\mathcal{L}}) be a pp-local compact group. There is a functor δ:s¯dcrTop\delta\colon{{\overline{s}}d}{\mathcal{F}}^{cr}\longrightarrow\operatorname{Top} with an equivalence hocolims¯d(cr)δ||\operatorname{hocolim}_{{{\overline{s}}d}({\mathcal{F}}^{cr})}\delta\longrightarrow\left|{\mathcal{L}}\right| and a natural homotopy equivalence BAut()δ([])\operatorname{BAut}_{{\mathcal{L}}}({\mathbb{P}})\longrightarrow\delta([{\mathbb{P}}]) for each chain {\mathbb{P}}. Further, the group Aut()\operatorname{Aut}_{{\mathcal{L}}}({\mathbb{P}}) is a virtually discrete pp-toral group.

Proof.

By [BCL22], the map induced by the inclusion |cr||||{\mathcal{L}}^{cr}|\rightarrow|{\mathcal{L}}| is a homotopy equivalence. Hence it suffices to prove that there is a functor δ:s¯dcrTop\delta\colon{{\overline{s}}d}{\mathcal{F}}^{cr}\longrightarrow\operatorname{Top} with an equivalence hocolims¯d(cr)δ|cr|\operatorname{hocolim}_{{{\overline{s}}d}({\mathcal{F}}^{cr})}\delta\longrightarrow\left|{\mathcal{L}}^{cr}\right| and a natural equivalence BAut()δ([])\operatorname{BAut}_{{\mathcal{L}}}({\mathbb{P}})\longrightarrow\delta([{\mathbb{P}}]) for each chain {\mathbb{P}}. The proof of [Lib06, Thm 5.1] applies to cr{\mathcal{L}}^{cr} as written, because cr{\mathcal{L}}^{cr} is a finite heighted E-I category by Lemma 3.14. The second statement of the theorem is proved in Lemma 3.11. ∎

Remark 3.17.

If the maximal torus TT happens to be {\mathcal{F}}-centric and {\mathcal{F}}-radical, there is a simplification available for the indexing category in Theorem 3.16. Suppose that =(TP1Pk){\mathbb{P}}=(T\subsetneq P_{1}\subsetneq\ldots\subsetneq P_{k}) is a proper chain of {\mathcal{F}}-centric and {\mathcal{F}}-radical subgroups. Because TT is a characteristic subgroup of each of the PiP_{i}, there is an isomorphism

(3.18) Aut(P1Pk)Aut(TP1Pk)\operatorname{Aut}_{{\mathcal{F}}}(P_{1}\subsetneq\ldots\subsetneq P_{k})\cong\operatorname{Aut}_{{\mathcal{F}}}(T\subsetneq P_{1}\subsetneq\ldots\subsetneq P_{k})

and Lemma 3.7 gives an isomorphism

(3.19) Aut(P1Pk)Aut(TP1Pk)\operatorname{Aut}_{{\mathcal{L}}}(P_{1}\subsetneq\ldots\subsetneq P_{k})\cong\operatorname{Aut}_{{\mathcal{L}}}(T\subsetneq P_{1}\subsetneq\ldots\subsetneq P_{k})

(even an equality, if one uses Lemma 3.8 to regard both sides as subgroups of Aut(Pk)\operatorname{Aut}_{{\mathcal{L}}}(P_{k})). If the indexing poset s¯dcr{{\overline{s}}d}{\mathcal{F}}^{cr} is not too complicated, one may be able to collapse the two corresponding nodes in the diagram. We use this trick in Section 6 in our computations for U(p)\operatorname{U}(p) (see (6.4) versus (6.6), where we have collapsed the arrow 𝐒(𝐓𝐒){\bf S}\leftarrow({\bf T}\subset{\bf S}), and we use it again for the Aguadé–Zabrodsky pp-compact groups in Section 7.

4. Application to compact Lie groups

In this section, we study the application of our abstract normalizer decomposition (Theorem 3.16) to the case of pp-local compact groups that arise from compact Lie groups (Example 2.5). Recall that the decomposition for ||\left|{\mathcal{L}}\right| in Theorem 3.16 is given in terms of BAut()\operatorname{BAut}_{{\mathcal{L}}}({\mathbb{P}}) for proper chains =(P0Pk){\mathbb{P}}=\left(P_{0}\subsetneq\dots\subsetneq P_{k}\right) of subgroups that are \mathcal{F}-centric and \mathcal{F}-radical. There are similar concepts in the theory of compact Lie groups.

Definition 4.1.

Let GG be a compact Lie group with a pp-toral subgroup 𝐏{\bf P}.

  1. (1)

    𝐏{\bf P} is pp-centric in GG if 𝐏{\bf P} is a maximal pp-toral subgroup of CG(𝐏)C_{G}({\bf P}).

  2. (2)

    𝐏{\bf P} is pp-stubborn in GG if NG𝐏/𝐏N_{G}{\bf P}/{\bf P} is finite and contains no nontrivial normal pp-subgroup.

The following theorem is the main result for this section. It recovers a version of the normalizer decomposition for compact Lie groups that was described by Libman in [Lib11, §1.4]. Our approach via pp-local compact groups has the advantage that we do not need to address the delicate issues that were studied in [Lib11, §5] for the purpose of applying Quillen’s Theorem A in a topological setting.

Let {\mathcal{R}} denote the collection of pp-toral subgroups of GG that are both pp-centric and pp-stubborn in GG, and let s¯d{{\overline{s}}d}{\mathcal{R}} be the poset of GG-conjugacy classes of chains of proper inclusions of subgroups in {\mathcal{R}}.

Theorem 4.2.

Let GG be a compact Lie group and let (S,,)(S,{\mathcal{F}},{\mathcal{L}}) be the associated pp-local compact group. If PcrP\in{\mathcal{F}}^{cr}, let 𝐏{\bf P} denote its closure in GG. If =(P0Pk){\mathbb{P}}=(P_{0}\subsetneq\ldots\subsetneq P_{k}) is a proper chain of subgroups in cr{\mathcal{F}}^{cr}, then there is a natural weak mod pp equivalence

BAut()B(iNG(𝐏i)).\operatorname{BAut}_{{\mathcal{L}}}({\mathbb{P}})\simeq\operatorname{B}\!\big{(}\cap_{i}N_{G}({\bf P}_{i})\big{)}.

If in addition π0G\pi_{0}G is a pp-group, then the functor cr{\mathcal{F}}^{cr}\rightarrow{\mathcal{R}} given by P𝐏P\mapsto{\bf P} induces an isomorphism of posets s¯dcrs¯d{{\overline{s}}d}{\mathcal{F}}^{cr}\cong{{\overline{s}}d}{\mathcal{R}}.

The proof is at the end of the section and goes through several steps. First, with regard to the indexing category, we have the following result from a previous work.

Theorem 4.3.

[BCG+22, Thm. 4.3] Let 𝐒{\bf S} be a maximal pp-toral subgroup of a compact Lie group GG, and let SS be a maximal discrete pp-toral subgroup S𝐒S\subseteq{\bf S}. The closure map P𝐏P\mapsto{\bf P} defines an injective map of conjugacy classes of chains

The map is a one-to-one correspondence if π0G\pi_{0}G is a pp-group.

Remark 4.4.

If π0G\pi_{0}G is not a pp-group, one can still use Theorem 4.2 to identify the mod pp homotopy type of the functor values in the normalizer decomposition (Theorem 3.16), but one uses the image of the map in Theorem 4.3 as the indexing category, rather than s¯d{{\overline{s}}d}{\mathcal{R}}. The codomain of Theorem 4.3 is the starting point. A finite number of checks are necessary to see if pp-centric and pp-stubborn subgroups of GG have maximal discrete pp-toral subgroups that are S(G){\mathcal{F}}_{S}(G)-radical to determine the actual indexing category. (See the proof of [BCG+22, Thm. 4.3].)

The remainder of this section is devoted to establishing the weak mod pp equivalence BAut()B(iNG(𝐏i))\operatorname{BAut}_{{\mathcal{L}}}({\mathbb{P}})\simeq\operatorname{B}\!\big{(}\cap_{i}N_{G}({\bf P}_{i})\big{)} of Theorem 4.2. In particular, the strategy is to establish a zigzag of natural mod pp equivalences of functors of chains of subgroups (with the leftmost one being an equivalence by Theorem 3.16):

(4.5) BAut~S(G)()ppB(i=1kNG(Pi))pδ([])BAutS(G)()B(i=1kNG(𝐏i)).\begin{gathered}\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 15.29169pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\&&\crcr}}}\ignorespaces{\hbox{\kern-3.0pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 39.29169pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{BAut}_{\widetilde{{\mathcal{L}}}_{S}(G)}({\mathbb{P}})\quad\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 60.81519pt\raise-22.8945pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.80368pt\hbox{$\scriptstyle{\simeq_{p}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 74.27214pt\raise-38.50012pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 114.9677pt\raise 5.44257pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.80368pt\hbox{$\scriptstyle{\simeq_{p}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 134.13976pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 134.13976pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{B\big{(}\bigcap_{i=1}^{k}N_{G}(P_{i})\big{)}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 156.62401pt\raise-25.00012pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.80368pt\hbox{$\scriptstyle{\simeq_{p}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 170.08096pt\raise-37.00012pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-15.29169pt\raise-49.00012pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\delta([{\mathbb{P}}])}$}}}}}}}{\hbox{\kern 39.76392pt\raise-49.00012pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mbox{{\large}}\operatorname{BAut}_{{\mathcal{L}}_{S}(G)}({\mathbb{P}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\quad}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 21.80559pt\raise-53.62323pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.62312pt\hbox{$\scriptstyle{\simeq}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 15.2917pt\raise-49.00012pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 133.2526pt\raise-49.00012pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{B\big{(}\bigcap_{i=1}^{k}N_{G}({\bf P}_{i})\big{)}.}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{gathered}

The auxiliary category ~S(G)\widetilde{{\mathcal{L}}}_{S}(G) is a variant of the transporter system for GG and is used in the construction of S(G){\mathcal{L}}_{S}(G) in [BLO07, Prop. 9.12].

We begin with the left vertical arrow of diagram (4.5), which takes the bulk of the section. In addition to an abstract existence result in for a linking system associated to S(G){\mathcal{F}}_{S}(G) (Theorem 2.12), there is a construction in [BLO07, §9] of a more direct model for S(G){\mathcal{L}}_{S}(G) starting from the transporter category (Definition 2.9). A difficulty in the construction is that the axioms of a linking system require Hom(P,Q)\operatorname{Hom}_{{\mathcal{F}}}(P,Q) to be the orbits of a free Z(P)Z(P)-action on Hom(P,Q)\operatorname{Hom}_{{\mathcal{L}}}(P,Q). For this reason, the transporter system 𝒯S(G){\mathcal{T}}_{S}(G) itself cannot directly provide the linking system: getting to HomS(G)(P,Q)\operatorname{Hom}_{{\mathcal{F}}_{S}(G)}(P,Q) from Hom𝒯S(G)(P,Q)=NG(P,Q)\operatorname{Hom}_{{\mathcal{T}}_{S}(G)}(P,Q)=N_{G}(P,Q) would require taking the orbits by the action of the entire centralizer CGPC_{G}P, which in general contains elements of finite order prime to pp and elements of infinite order. The solution is to look at successive quotients of 𝒯S(G){\mathcal{T}}_{S}(G) (following [BLO07, p. 398]). We begin with a technical lemma.

Lemma 4.6.

Given an S(G){\mathcal{F}}_{S}(G)-centric subgroup PSP\subseteq S, the elements of CG(P)C_{G}(P) with finite order prime to pp form a normal subgroup of CG(P)C_{G}(P).

Proof.

Let 𝐏{\bf P} denote the closure of PP in GG. Because CG(P)=CG(𝐏)C_{G}(P)=C_{G}({\bf P}), we may as well assume that PP is a maximal discrete pp-toral subgroup of 𝐏{\bf P}, that is, that PP is “snugly embedded” in the sense of [BLO07, §9]. The first part of the proof of [BCG+22, Prop. 4.6] establishes that 𝐏{\bf P} is pp-centric in GG. Hence CG(P)/Z(𝐏)C_{G}(P)/Z({\bf P}) has no elements of order pp, and must be finite group of order prime to PP, call it FF^{\prime}.

Because 𝐏{\bf P} is pp-toral, Z(𝐏)Z({\bf P}) is the product of a torus and a finite pp-group. Let TpT_{p^{\prime}} denote the subgroup of Z(𝐏)Z({\bf P}) consisting of elements of finite order prime to pp, all of which are found in the torus. Setting Q:=CG(𝐏)/TpQ:=C_{G}({\bf P})/T_{p^{\prime}}, we have a map of central extensions

1\textstyle{1\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Tp\textstyle{\mbox{{\large}}T_{p^{\prime}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}CG(𝐏)\textstyle{C_{G}({\bf P})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Q\textstyle{Q\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1\textstyle{1}1\textstyle{1\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Z(𝐏)\textstyle{Z({\bf P})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}CG(𝐏)\textstyle{C_{G}({\bf P})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}F\textstyle{F^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}s\scriptstyle{s}1.\textstyle{1.}

Then ker(QF)=Z(𝐏)/Tp\ker(Q\twoheadrightarrow F^{\prime})=Z({\bf P})/T_{p^{\prime}} is central in Q=CG(𝐏)/TpQ=C_{G}({\bf P})/T_{p^{\prime}}, and further, this kernel is the product of a pp-torsion group and a rational vector space. As a result, QQ is a split central extension of FF^{\prime} and we have a section s:FQs\colon F^{\prime}\rightarrow Q. The preimage of s(F)Qs(F^{\prime})\triangleleft Q in CG(P)C_{G}(P) is normal and contains all elements of order prime to pp. ∎

Lemma 4.6 tells us that the elements of CG(P)=CG(𝐏)C_{G}(P)=C_{G}({\bf P}) of order prime to pp form a subgroup that we denote by νP\nu^{\prime}_{P}.

Corollary 4.7.

For an S(G){\mathcal{F}}_{S}(G)-centric subgroup PSP\subseteq S, the cokernel of the map Z(P)×νPCG(P)Z(P)\times\nu^{\prime}_{P}\rightarrow C_{G}(P) is a rational vector space.

Note that νP\nu^{\prime}_{P} is functorial in S(G){\mathcal{F}}_{S}(G)-centric subgroups PP. Further, since Z(P)Z(P) is centralized by νPCG(P)\nu^{\prime}_{P}\subseteq C_{G}(P), we can define a functor (𝒵×ν)(P):=Z(P)×νPCG(P)({\mathcal{Z}}\times\nu^{\prime})(P):=Z(P)\times\nu^{\prime}_{P}\subseteq C_{G}(P), consisting of all elements of finite order. There is a quotient map

𝒯S(G)/(𝒵×ν)fS(G){\mathcal{T}}_{S}(G)/({\mathcal{Z}}\times\nu^{\prime})\xrightarrow{f_{\infty}}{\mathcal{F}}_{S}(G)

that takes the quotient of NG(P,Q)/(Z(P)×νP)N_{G}(P,Q)/(Z(P)\times\nu^{\prime}_{P}) by the action of the rational vector space CG(P)/(Z(P)×νP)C_{G}(P)/(Z(P)\times\nu^{\prime}_{P}). A rigidification argument [BLO07, Lemma 9.11] shows that ff_{\infty} admits a functorial section ss; that is, it is possible to choose compatible splittings of the rational vector spaces CG(P)/(Z(P)×νP)C_{G}(P)/(Z(P)\times\nu^{\prime}_{P}) into CG(P)C_{G}(P).

Definition 4.8.

[BLO07, §9] Given a section ss of ff_{\infty}, the categories S(G){\mathcal{L}}_{S}(G) and ~S(G)\widetilde{{\mathcal{L}}}_{S}(G) are defined as successive pullbacks in the following diagram:

(4.9) ~S(G)S(G)S(G)s𝒯S(G)fν𝒯S(G)/νf𝒵𝒯S(G)/(𝒵×ν).f\begin{gathered}\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 16.30959pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\&&\crcr}}}\ignorespaces{\hbox{\kern-15.47626pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\widetilde{{\mathcal{L}}}_{S}(G)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 48.75778pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 0.0pt\raise-29.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 48.75778pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{{\mathcal{L}}_{S}(G)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 64.58125pt\raise-29.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 134.49554pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 134.49554pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{{\mathcal{F}}_{S}(G)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 150.45792pt\raise-17.5pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.50694pt\hbox{$\scriptstyle{s}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 150.45792pt\raise-29.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-16.30959pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{{\mathcal{T}}_{S}(G)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 21.79134pt\raise-46.1111pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{f_{\nu^{\prime}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 40.30959pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 40.30959pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{{\mathcal{T}}_{S}(G)/\nu^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 94.54042pt\raise-46.11388pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.74722pt\hbox{$\scriptstyle{f_{\mathcal{Z}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 112.85292pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 112.85292pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{{\mathcal{T}}_{S}(G)/({\mathcal{Z}}\times\nu^{\prime})\ignorespaces\ignorespaces\ignorespaces\ignorespaces.}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 132.8329pt\raise-17.5pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{f_{\infty}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 147.01347pt\raise-5.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\ignorespaces\end{gathered}
Proposition 4.10.

[BLO07, Prop. 9.12] S(G){\mathcal{L}}_{S}(G) is a centric linking system associated to  S(G){\mathcal{F}}_{S}(G).

Before continuing to general properties of ~\widetilde{{\mathcal{L}}}, we call out a special case that we will use for G=SU(p)G={\operatorname{SU}(p)} in Sections 6 and 7.

Lemma 4.11.

If PSP\subseteq S satisfies CG(P)=Z(P)C_{G}(P)=Z(P), then there is a natural identification

HomS(G)(P,Q)Hom𝒯S(G)(P,Q).\operatorname{Hom}_{{\mathcal{L}}_{S}(G)}(P,Q)\cong\operatorname{Hom}_{{\mathcal{T}}_{S}(G)}(P,Q).
Proof.

Under our assumption, νP\nu^{\prime}_{P} is trivial. In diagram (4.9), we first consider the fusion system S(G){\mathcal{F}}_{S}(G), where we have

HomS(G)(P,Q)\displaystyle\operatorname{Hom}_{{\mathcal{F}}_{S}(G)}(P,Q) =NG(P,Q)/CG(P)\displaystyle=N_{G}(P,Q)/C_{G}(P)
=NG(P,Q)/Z(P)\displaystyle=N_{G}(P,Q)/Z(P)
=Hom𝒯S(G)/(𝒵×ν)(P,Q).\displaystyle=\operatorname{Hom}_{{\mathcal{T}}_{S}(G)/({\mathcal{Z}}\times\nu^{\prime})}(P,Q).

Hence ff_{\infty} is the identity on morphism sets with PP as the domain, and so is ss. The middle vertical arrow becomes an isomorphism on morphism sets with PP as the domain. Likewise fνf_{\nu^{\prime}} is the identity on morphism sets with PP as the domain, which establishes the lemma. ∎

We resume our discussion of the general relationship of ~\widetilde{{\mathcal{L}}} to {\mathcal{L}} by checking that ~\widetilde{{\mathcal{L}}} still has the good categorical properties of {\mathcal{L}}.

Lemma 4.12.

All morphisms in the category ~S(G)\widetilde{{\mathcal{L}}}_{S}(G) are categorical monomorphisms and categorical epimorphisms.

Proof.

The result follows from the fact that ~S(G)\widetilde{{\mathcal{L}}}_{S}(G) is a pullback category of two categories that both have the desired properties (by Proposition 4.10 and Lemma 3.6 for S(G){\mathcal{L}}_{S}(G), and by direct computation for 𝒯S(G){\mathcal{T}}_{S}(G)). ∎

With the technical elements in hand, we consider the left vertical map in diagram (4.5), comparing automorphism groups of chains in ~\widetilde{{\mathcal{L}}} to those in {\mathcal{L}}. If =(P0Pk){\mathbb{P}}=(P_{0}\subseteq\dots\subseteq P_{k}) is a chain of S(G){\mathcal{F}}_{S}(G)-centric groups, then an element of Aut()\operatorname{Aut}_{{\mathcal{L}}}({\mathbb{P}}) is a diagram such as (3.4), and uses the distinguished inclusion morphisms of {\mathcal{L}} (Lemma 3.2). We define automorphisms of chains in ~S(G)\widetilde{{\mathcal{L}}}_{S}(G) in the same way, beginning with distinguished inclusions in ~S(G)\widetilde{{\mathcal{L}}}_{S}(G).

Definition 4.13.
  1. (1)

    If PQSP\subseteq Q\subseteq S are S(G){\mathcal{F}}_{S}(G)-centric, the “distinguished inclusion” ι~PQHom~S(G)(P,Q)\tilde{\iota}\,_{P}^{Q}\in\operatorname{Hom}_{\widetilde{{\mathcal{L}}}_{S}(G)}(P,Q) is defined by

    ι~PQ:=(ιPQ,e)Hom(P,Q)×NG(P,Q).\tilde{\iota}\,_{P}^{Q}:=(\iota_{P}^{Q},e)\in\operatorname{Hom}_{{\mathcal{L}}}(P,Q)\times N_{G}(P,Q).
  2. (2)

    If =(P0Pk){\mathbb{P}}=(P_{0}\subseteq\ldots\subseteq P_{k}) is a chain of S(G){\mathcal{F}}_{S}(G)-centric subgroups, then an element of f~=(f~i)Aut~S(G)(){\tilde{f}}=({\tilde{f}}_{i})\in\operatorname{Aut}_{\widetilde{{\mathcal{L}}}_{S}(G)}({\mathbb{P}}) is a commuting ladder

    P0\textstyle{P_{0}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ι~\scriptstyle{\tilde{\iota}}\scriptstyle{\cong}f~0\scriptstyle{{\tilde{f}}_{0}}P1\textstyle{P_{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ι~\scriptstyle{\tilde{\iota}}\scriptstyle{\cong}f~1\scriptstyle{{\tilde{f}}_{1}}\textstyle{\ldots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ι~\scriptstyle{\tilde{\iota}}Pk1\textstyle{P_{k-1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ι~\scriptstyle{\tilde{\iota}}\scriptstyle{\cong}f~k1\scriptstyle{{\tilde{f}}_{k-1}}Pk\textstyle{P_{k}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\cong}f~k\scriptstyle{{\tilde{f}}_{k}}P0\textstyle{P_{0}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ι~\scriptstyle{\tilde{\iota}}P1\textstyle{P_{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ι~\scriptstyle{\tilde{\iota}}\textstyle{\ldots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ι~\scriptstyle{\tilde{\iota}}Pk1\textstyle{P_{k-1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ι~\scriptstyle{\tilde{\iota}}Pk.\textstyle{P_{k}.}
Proposition 4.14.

Let GG be a compact Lie group and {\mathbb{P}} be a chain of S(G)\mathcal{F}_{S}(G)-centric S(G)\mathcal{F}_{S}(G)-radical subgroups. Then the induced map BAut~S(G)()BAutS(G)()\operatorname{BAut}_{\widetilde{{\mathcal{L}}}_{S}(G)}({\mathbb{P}})\rightarrow\operatorname{BAut}_{{\mathcal{L}}_{S}(G)}({\mathbb{P}}) from the pullback diagram (4.9) is a mod pp equivalence.

Proof.

By Lemma 3.8, the natural map Aut()Aut(P0)\operatorname{Aut}_{{\mathcal{L}}}({\mathbb{P}})\rightarrow\operatorname{Aut}_{{\mathcal{L}}}(P_{0}) is a monomorphism. Further, Aut~()Aut~(P0)\operatorname{Aut}_{\widetilde{{\mathcal{L}}}}({\mathbb{P}})\rightarrow\operatorname{Aut}_{\widetilde{{\mathcal{L}}}}(P_{0}) is likewise a monomorphism, by the same proof as that of Lemma 3.8 (but using Lemma 4.12 in place of Lemma 3.6).

Let K:=ker[Aut~()Aut()]K_{\mathbb{P}}:=\ker\big{[}\operatorname{Aut}_{\widetilde{{\mathcal{L}}}}({\mathbb{P}})\rightarrow\operatorname{Aut}_{{\mathcal{L}}}({\mathbb{P}})\big{]} and K0:=ker[Aut~(P0)Aut(P0)]K_{0}:=\ker\big{[}\operatorname{Aut}_{\widetilde{{\mathcal{L}}}}(P_{0})\rightarrow\operatorname{Aut}_{{\mathcal{L}}}(P_{0})\big{]}. We have a commuting diagram of short exact sequences

(4.15) 1KAut~()Aut()11K0Aut~(P0)Aut(P0)1.\begin{gathered}\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 5.5pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&&&\\&&&&\crcr}}}\ignorespaces{\hbox{\kern-5.5pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{1\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 31.49445pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 31.49445pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{K_{{\mathbb{P}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 41.00417pt\raise-30.55557pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 80.91006pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 80.91006pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mbox{{\Large}}\operatorname{Aut}_{\widetilde{{\mathcal{L}}}}({\mathbb{P}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 153.18585pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 101.89622pt\raise-5.88889pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@hook{1}}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 101.89622pt\raise-29.88889pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 153.18585pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mbox{{\large}}\operatorname{Aut}_{{\mathcal{L}}}({\mathbb{P}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 173.69978pt\raise-5.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@hook{1}}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 173.69978pt\raise-29.88889pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 221.50435pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 221.50435pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{1}$}}}}}}}{\hbox{\kern-5.5pt\raise-40.38889pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{1\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 29.5pt\raise-40.38889pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 29.5pt\raise-40.38889pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{K_{0}\ \ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 76.50833pt\raise-40.38889pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 76.50833pt\raise-40.38889pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\ \operatorname{Aut}_{\widetilde{{\mathcal{L}}}}(P_{0})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 151.28412pt\raise-40.38889pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 151.28412pt\raise-40.38889pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{Aut}_{{\mathcal{L}}}(P_{0})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 220.11545pt\raise-40.38889pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 220.11545pt\raise-40.38889pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{1.}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{gathered}

By pullback diagram (4.9), we know that K0νP0K_{0}\cong\nu^{\prime}_{P_{0}}, a finite group of order prime to pp. The map KK0K_{\mathbb{P}}\rightarrow K_{0} is a monomorphism, so KK_{\mathbb{P}} is finite of order prime to pp as well. The lemma follows by using the Serre spectral sequence for mod pp homology of the classifying spaces. ∎

Next we look at the top row of diagram (4.5). We need to compare Aut~S(G)()\operatorname{Aut}_{\widetilde{{\mathcal{L}}}_{S}(G)}({\mathbb{P}}) with the intersection of normalizers NG(Pi)\bigcap N_{G}(P_{i}).

Proposition 4.16.

Let GG be a compact Lie group and let {\mathbb{P}} be a chain of S(G){\mathcal{F}}_{S}(G)-centric S(G){\mathcal{F}}_{S}(G)-radical subgroups. Then the inclusion Aut~()Aut𝒯S(G)()=iNG(Pi)\operatorname{Aut}_{\widetilde{{\mathcal{L}}}}({\mathbb{P}})\subseteq\operatorname{Aut}_{{\mathcal{T}}_{S}(G)}({\mathbb{P}})=\bigcap_{i}N_{G}(P_{i}) induces a mod pp equivalence of classifying spaces.

Proof.

We use pullback diagram (4.9), which we reproduce here, applied to automorphism groups:

Aut~S(G)()AutS(G)()AutS(G)()s()Aut𝒯S(G)()fν()Aut𝒯S(G)/ν()f𝒵()Aut𝒯S(G)/(𝒵×ν)().f()\begin{gathered}\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 26.43877pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\&&\crcr}}}\ignorespaces{\hbox{\kern-26.43877pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{Aut}_{\widetilde{{\mathcal{L}}}_{S}(G)}({\mathbb{P}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 53.93413pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 0.0pt\raise-30.89444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 53.93413pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{Aut}_{{\mathcal{L}}_{S}(G)}({\mathbb{P}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 79.90067pt\raise-30.89444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 144.23573pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 144.23573pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{Aut}_{{\mathcal{F}}_{S}(G)}({\mathbb{P}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 170.28004pt\raise-18.69722pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{s({\mathbb{P}})}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 170.28004pt\raise-30.89444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-26.23875pt\raise-41.39444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{Aut}_{{\mathcal{T}}_{S}(G)}({\mathbb{P}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 26.71634pt\raise-47.89444pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{f_{\nu^{\prime}}({\mathbb{P}})}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 50.43877pt\raise-41.39444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 50.43877pt\raise-41.39444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{Aut}_{{\mathcal{T}}_{S}(G)/\nu^{\prime}}({\mathbb{P}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 109.94588pt\raise-47.89444pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{f_{\mathcal{Z}}({\mathbb{P}})}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 133.36256pt\raise-41.39444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 133.36256pt\raise-41.39444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{Aut}_{{\mathcal{T}}_{S}(G)/({\mathcal{Z}}\times\nu^{\prime})}({\mathbb{P}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces.}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 142.44667pt\raise-18.69722pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{f_{\infty}({\mathbb{P}})}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 166.8356pt\raise-6.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\ignorespaces\end{gathered}

Because ss is a section, the two ways around the outside of the rectangle from Aut~S(G)()\operatorname{Aut}_{\widetilde{{\mathcal{L}}}_{S}(G)}({\mathbb{P}}) to AutS(G)()\operatorname{Aut}_{{\mathcal{F}}_{S}(G)}({\mathbb{P}}) commute. Further, if =(P0Pk){\mathbb{P}}=(P_{0}\subseteq\ldots\subseteq P_{k}), then ker[Aut𝒯S(G)()AutS(G)()]CG(Pk)\ker\big{[}\operatorname{Aut}_{{\mathcal{T}}_{S}(G)}({\mathbb{P}})\rightarrow\operatorname{Aut}_{{\mathcal{F}}_{S}(G)}({\mathbb{P}})\big{]}\cong C_{G}(P_{k}), because the kernel consists of elements of GG that act trivially on all subgroups in {\mathbb{P}}. On the other hand, from the pullback diagrams, ker[Aut~S(G)()AutS(G)()]\ker\big{[}\operatorname{Aut}_{\widetilde{{\mathcal{L}}}_{S}(G)}({\mathbb{P}})\rightarrow\operatorname{Aut}_{{\mathcal{F}}_{S}(G)}({\mathbb{P}})\big{]} is a subgroup of CG(Pk)C_{G}(P_{k}), identified by the pullback diagram as Z(Pk)×νPkZ(P_{k})\times\nu^{\prime}_{P_{k}}.

Then we have a homotopy commutative diagram of horizontal fibrations

(4.17) B(Z(Pk)×νPk)BAut~S(G)()BAutS(G)()BCG(Pk)BAut𝒯S(G)()BAutS(G)().\begin{gathered}\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 34.17113pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\&&\crcr}}}\ignorespaces{\hbox{\kern-34.17113pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{B\big{(}Z(P_{k})\times\nu^{\prime}_{P_{k}}\big{)}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 58.17113pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 0.0pt\raise-31.64444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 58.17113pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{BAut}_{\widetilde{{\mathcal{L}}}_{S}(G)}({\mathbb{P}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 88.15157pt\raise-31.64444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 143.52089pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 143.52089pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{BAut}_{\mathcal{F}_{S}(G)}({\mathbb{P}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\hbox{\kern 1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}\hbox{\kern-1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}}}\ignorespaces{}{\hbox{\hbox{\kern 1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}\hbox{\kern-1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}}}{\hbox{\hbox{\kern 1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}\hbox{\kern-1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}}}{\hbox{\kern-22.51538pt\raise-42.14444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{BC_{G}(P_{k})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 58.37112pt\raise-42.14444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 58.37112pt\raise-42.14444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{BAut}_{{\mathcal{T}}_{S}(G)}({\mathbb{P}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 142.132pt\raise-42.14444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 142.132pt\raise-42.14444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{BAut}_{\mathcal{F}_{S}(G)}({\mathbb{P}}).}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{gathered}

Consider the leftmost vertical map. For an S(G){\mathcal{F}}_{S}(G)-centric subgroup PP, the Lyndon-Hochschild-Serre spectral sequence for mod pp homology corresponding to the short exact sequence

1Z(P)×νPCG(P)CG(P)/(Z(P)×νP)11\longrightarrow Z(P)\times\nu^{\prime}_{P}\longrightarrow C_{G}(P)\longrightarrow C_{G}(P)/(Z(P)\times\nu^{\prime}_{P})\longrightarrow 1

collapses because CG(P)/(Z(P)×νP)C_{G}(P)/(Z(P)\times\nu^{\prime}_{P}) is a rational vector space (Corollary 4.7). Thus the map of fibers in (4.17) is a mod pp equivalence. Comparing the Serre spectral sequences for mod pp homology for the fibrations in (4.17) gives the desired result.

Proof of Theorem 4.2.

In diagram (4.5) we have zigzag natural transformations that are mod pp equivalences by Proposition 4.14 (left vertical) and Proposition 4.16 (top row). The right vertical map in (4.5) is a mod pp equivalence by our previous work ([BCG+22] Thm 5.1, supported by Lemma 4.4).

Theorem 4.3 says exactly that if π0G\pi_{0}G is a pp-group, then there is an isomorphism of posets s¯d(cr)s¯d(){{\overline{s}}d}({\mathcal{F}}^{cr})\cong{{\overline{s}}d}({\mathcal{R}}) induced by taking every subgroup PP to its closure 𝐏{\bf P} in GG. ∎

5. Group-theoretic ingredients for U(p)\operatorname{U}(p) and SU(p){\operatorname{SU}(p)}

In this section, we make technical preparations for Section 6, where we apply our Lie group decomposition result (Theorem 4.2) to the examples of U(p)\operatorname{U}(p) and SU(p){\operatorname{SU}(p)}. Application of Theorem 4.2 requires knowing the normalizers of chains of pp-centric and pp-stubborn subgroups, so this section is devoted to detailed computations of such normalizers in U(p)\operatorname{U}(p) and SU(p){\operatorname{SU}(p)}. Results for SU(p){\operatorname{SU}(p)} are obtained by intersecting the results for U(p)\operatorname{U}(p) with SU(p){\operatorname{SU}(p)}. We focus on U(p)\operatorname{U}(p) and derive the results for SU(p){\operatorname{SU}(p)} at the end of the section. The results in this section are all known to experts. In particular, we are grateful to Dave Benson for tutorials in Bonn.

Because we have to compute normalizers of chains by intersecting normalizers of subgroups, we give very specific representations. Let Σp\Sigma_{p} act on the right of {1,2,,p}\{1,2,\ldots,p\}.

Definition 5.1.

Let ζ\zeta be a fixed pp-th root of unity, and let σΣp\sigma\in\Sigma_{p}.

  1. (1)

    ΣpU(p)\Sigma_{p}\subset\operatorname{U}(p) is represented by permutation matrices: σi,j=1\sigma_{i,j}=1 if (i)σ=j(i)\sigma=j.

  2. (2)

    AA is the p×pp\times p diagonal matrix with Aii=ζi1A_{ii}=\zeta^{i-1}.

  3. (3)

    BB represents the pp-cycle (1,2,,p)(1,2,\ldots,p), that is, Bi,i+1=1B_{i,i+1}=1.

Definition 5.1 identifies the specific representations we use of the subgroups of U(p)\operatorname{U}(p) required in Section 6 for the normalizer decomposition of U(p)\operatorname{U}(p). We fix the subgroup of diagonal matrices as our choice of maximal torus 𝐓{\bf T} of U(p)\operatorname{U}(p), and classical results establish that NU(p)𝐓𝐓ΣpN_{\operatorname{U}(p)}{\bf T}\cong{\bf T}\rtimes\Sigma_{p}. A maximal pp-toral subgroup 𝐒{\bf S} is given by 𝐓/p{\bf T}\rtimes{\mathbb{Z}}/p, with normalizer NU(p)𝐒𝐓NΣp/pN_{\operatorname{U}(p)}{\bf S}\cong{\bf T}\rtimes N_{\Sigma_{p}}{\mathbb{Z}}/p.

Definition 5.2.
  1. (1)

    𝐒:=𝐓B𝐓/p{\bf S}:={\bf T}\rtimes\langle B\rangle\cong{\bf T}\rtimes{\mathbb{Z}}/p is the chosen maximal pp-toral subgroup containing 𝐓{\bf T}.

  2. (2)

    𝚪U(p)\mathbf{\Gamma}\subset\operatorname{U}(p) is the subgroup of U(p)\operatorname{U}(p) generated by AA, BB and S1=Z(U(p))S^{1}=Z(U(p)).

The second group in Definition 5.2, 𝚪U(p)\mathbf{\Gamma}\subset\operatorname{U}(p), is the group denoted by ΓpU\Gamma^{U}_{p} in [Oli94, Defn. 1]. It is given by a central extension

(5.3) 1S1𝚪/p×/p1,1\rightarrow S^{1}\rightarrow\mathbf{\Gamma}\rightarrow{\mathbb{Z}}/p\times{\mathbb{Z}}/p\rightarrow 1,

where the factors of the quotient are represented by the matrices AA and BB (Definition 5.1). The commutator form is [A,B]=ζ1I[A,B]=\zeta^{-1}I. By [Oli94, Thm. 6(ii)] there is a short exact sequence

(5.4) 1𝚪NU(p)𝚪SL2𝔽p1.1\to\mathbf{\Gamma}\to N_{\operatorname{U}(p)}\mathbf{\Gamma}\to\operatorname{SL}_{2}\!{\mathbb{F}}_{p}\to 1.

We note that, conceptually, the quotient in (5.4) is actually Sp2𝔽p\operatorname{Sp}_{2}{\mathbb{F}}_{p}, the group of automorphisms of the symplectic form on 𝚪/S1\mathbf{\Gamma}/S^{1} given by the commutator. However, Sp2(𝔽p)SL2𝔽p\operatorname{Sp}_{2}({\mathbb{F}}_{p})\cong\operatorname{SL}_{2}\!{\mathbb{F}}_{p} and the latter expression is more convenient for us.

To apply Theorem 4.2 in Section 6, we need a group-theoretic understanding of NU(p)(𝚪)N_{\operatorname{U}(p)}(\mathbf{\Gamma}) and NU(p)(𝚪𝐒)N_{\operatorname{U}(p)}(\mathbf{\Gamma}\subseteq{\bf S}), and likewise of their counterparts in SU(p){\operatorname{SU}(p)}. For odd primes, our best tool for understanding the relationship of NU(p)(𝚪)N_{\operatorname{U}(p)}(\mathbf{\Gamma}) and NU(p)(𝚪𝐒)N_{\operatorname{U}(p)}(\mathbf{\Gamma}\subseteq{\bf S}) is to establish that (5.4) is split (Proposition 5.9).

Some initial ingredients are involved. We fix an odd prime pp. First, observe that SL2𝔽p\operatorname{SL}_{2}\!{\mathbb{F}}_{p} contains a central involution, namely the negative of the identity matrix. We choose a lift of this involution to NU(p)𝚪N_{\operatorname{U}(p)}\mathbf{\Gamma}.

Definition 5.5.

For odd primes, let τ:=(2,p)(3,p1)(p+12,p+32)Σp\tau:=(2,p)(3,p-1)\ldots(\frac{p+1}{2},\frac{p+3}{2})\in\Sigma_{p}.

With our conventions, τ\tau is represented by the permutation matrix with ones in the upper left-hand corner and on the sub-antidiagonal (Definition 5.1). This involution allows us to express NU(p)𝚪N_{\operatorname{U}(p)}\mathbf{\Gamma} as the product of two almost disjoint pieces.

Lemma 5.6.

For pp odd, 𝚪CU(p)(τ)=S1\mathbf{\Gamma}\cap C_{\operatorname{U}(p)}(\tau)=S^{1} and NU(p)𝚪=𝚪CNU(p)𝚪(τ)N_{\operatorname{U}(p)}\mathbf{\Gamma}=\mathbf{\Gamma}\cdot C_{N_{\operatorname{U}(p)}\mathbf{\Gamma}}(\tau).

Proof.

Direct computation shows that τ\tau acts on 𝚪\mathbf{\Gamma} by τAτ=A1\tau A\tau=A^{-1} and τBτ=B1\tau B\tau=B^{-1}; in particular, τNU(p)𝚪\tau\in N_{\operatorname{U}(p)}\mathbf{\Gamma}. To see that 𝚪CU(p)(τ)=S1\mathbf{\Gamma}\cap C_{\operatorname{U}(p)}(\tau)=S^{1}, observe that τ\tau acts freely on the set of non-identity elements of 𝚪/S1\mathbf{\Gamma}/S^{1}.

To address generation of NU(p)𝚪N_{\operatorname{U}(p)}\mathbf{\Gamma}, let 𝚪.2\mathbf{\Gamma}.2 (using Atlas notation) be the subgroup of NU(p)𝚪N_{\operatorname{U}(p)}\mathbf{\Gamma} generated by 𝚪\mathbf{\Gamma} and τ\tau. Because τ\tau acts on 𝚪\mathbf{\Gamma} by an involution, there is a short exact sequence

1𝚪𝚪.2/21.1\rightarrow\mathbf{\Gamma}\rightarrow\mathbf{\Gamma}.2\rightarrow{\mathbb{Z}}/2\rightarrow 1.

Every element of 𝚪.2\mathbf{\Gamma}.2 has the form γ\gamma or τγ\tau\gamma for some element γ𝚪\gamma\in\mathbf{\Gamma}.

To establish the lemma, we choose an arbitrary xNU(p)𝚪x\in N_{\operatorname{U}(p)}\mathbf{\Gamma} and construct y𝚪y\in\mathbf{\Gamma} and zCNU(p)𝚪(τ)z\in C_{N_{\operatorname{U}(p)}\mathbf{\Gamma}}(\tau) such that x=yzx=yz. Consider the relationship of xx to τ\tau: suppose that xτx1=α𝚪.2x\tau x^{-1}=\alpha\in\mathbf{\Gamma}.2. Because pp is odd, the subgroups S1τS^{1}\cdot\tau and S1αS^{1}\cdot\alpha are Sylow 22-toral subgroups of 𝚪.2\mathbf{\Gamma}.2, hence conjugate in 𝚪.2\mathbf{\Gamma}.2.

We can choose τγ𝚪.2\tau\gamma\in\mathbf{\Gamma}.2 such that cτγ(S1α)=S1τc_{\tau\gamma}(S^{1}\cdot\alpha)=S^{1}\cdot\tau. We would like to know that cτγ(α)=τc_{\tau\gamma}(\alpha)=\tau. Certainly cτγ(α)c_{\tau\gamma}(\alpha) is an involution in S1τS^{1}\cdot\tau, and since S1S^{1} is central we easily compute that the available involutions are I-I, τ\tau, and (I)τ(-I)\tau. By inspection the trace of τ\tau is 11, while the traces of I-I and (I)τ(-I)\tau are p-p and 1-1, respectively. Hence τ\tau is the only option for cτγ(α)c_{\tau\gamma}(\alpha).

Substituting xτx1x\tau x^{-1} for α\alpha in the equation (τγ)(α)(γ1τ)=τ(\tau\gamma)(\alpha)(\gamma^{-1}\tau)=\tau and simplifying gives x=γ1(γx)x=\gamma^{-1}(\gamma x) as the desired expression, so y=γ1𝚪y=\gamma^{-1}\in\mathbf{\Gamma} and z=γxCNU(p)𝚪(τ)z=\gamma x\in C_{N_{\operatorname{U}(p)}\mathbf{\Gamma}}(\tau). ∎

Lemma 5.6 tells us that to understand the structure of NU(p)𝚪N_{\operatorname{U}(p)}\mathbf{\Gamma}, we should focus on the structure of CNU(p)𝚪(τ)C_{N_{\operatorname{U}(p)}\mathbf{\Gamma}}(\tau).

Lemma 5.7.

For pp odd, there is an isomorphism

CNU(p)𝚪(τ)S1×SL2𝔽p.C_{N_{\operatorname{U}(p)}\mathbf{\Gamma}}(\tau)\cong S^{1}\times\operatorname{SL}_{2}\!{\mathbb{F}}_{p}.
Proof.

Because CNU(p)𝚪(τ)𝚪=S1C_{N_{\operatorname{U}(p)}\mathbf{\Gamma}}(\tau)\cap\mathbf{\Gamma}=S^{1} (Lemma 5.6), the short exact sequence in (5.4) restricts to a central extension

(5.8) 1S1CNU(p)𝚪(τ)SL2𝔽p1.1\rightarrow S^{1}\rightarrow C_{N_{\operatorname{U}(p)}\mathbf{\Gamma}}(\tau)\rightarrow\operatorname{SL}_{2}\!{\mathbb{F}}_{p}\rightarrow 1.

Such extensions are classified by

H2(SL2𝔽p;S1)H3(SL2𝔽p;).H^{2}(\operatorname{SL}_{2}\!{\mathbb{F}}_{p};S^{1})\cong H^{3}(\operatorname{SL}_{2}\!{\mathbb{F}}_{p};{\mathbb{Z}}).

However, H3(SL2𝔽p;)=0H^{3}(\operatorname{SL}_{2}\!{\mathbb{F}}_{p};{\mathbb{Z}})=0 by the universal coefficient theorem for cohomology because

  • Hom(H3(SL2𝔽p;),)=0\operatorname{Hom}\big{(}H_{3}(\operatorname{SL}_{2}\!{\mathbb{F}}_{p};{\mathbb{Z}}),{\mathbb{Z}}\big{)}=0 (the domain is a torsion group), and

  • the Schur multiplier H2(SL2𝔽p;)H_{2}(\operatorname{SL}_{2}\!{\mathbb{F}}_{p};{\mathbb{Z}}) is zero ([Ste16, p.52]).

Hence the central extension (5.8) splits, as required. ∎

Proposition 5.9.

If pp is odd, there is a splitting of the short exact sequence

1𝚪NU(p)𝚪SL2𝔽p1.1\to\mathbf{\Gamma}\to N_{\operatorname{U}(p)}\mathbf{\Gamma}\to\operatorname{SL}_{2}\!{\mathbb{F}}_{p}\to 1.
Proof.

Lemma 5.7 allows us to choose a splitting

SL2(𝔽p)\displaystyle\operatorname{SL}_{2}({\mathbb{F}}_{p}) CNU(p)𝚪(τ)NU(p)(𝚪).\displaystyle\longrightarrow C_{N_{\operatorname{U}(p)}\mathbf{\Gamma}}(\tau)\subset N_{\operatorname{U}(p)}(\mathbf{\Gamma}).

The intuition of Proposition 5.9 is that SL2𝔽p\operatorname{SL}_{2}\!{\mathbb{F}}_{p} acts on a two-dimensional vector space over 𝔽p{\mathbb{F}}_{p}, and 𝚪/Z(𝚪)𝔽p×𝔽p\mathbf{\Gamma}/Z(\mathbf{\Gamma})\cong{\mathbb{F}}_{p}\times{\mathbb{F}}_{p}, with basis elements given by AA and BB of Definition 5.1 (which commute once we kill the center. While the splitting of Lemma 5.7 is not constructive for the whole quotient SL2𝔽p\operatorname{SL}_{2}\!{\mathbb{F}}_{p}, our next task is to compute an explicit splitting for the subgroup of upper triangular matrices. This explicit computation is used to find the normalizer in U(p)\operatorname{U}(p) of the chain (𝚪𝐒)(\mathbf{\Gamma}\subset{\bf S}), the normalizer of the corresponding chain in SU(p){\operatorname{SU}(p)}, and related automorphism groups in the linking systems of the Aguadé–Zabrodsky pp-compact groups in Section 7. Our choice of the representations will lie not just in U(p)\operatorname{U}(p), but in SU(p){\operatorname{SU}(p)} for purposes of those later computations.

Definition 5.10.

Let 𝒰(SL2𝔽p)\operatorname{{\mathcal{U}}}(\operatorname{SL}_{2}\!{\mathbb{F}}_{p}) denote the group of upper triangular matrices in SL2𝔽p\operatorname{SL}_{2}\!{\mathbb{F}}_{p}, let d:=(1201)d:=\left(\begin{array}[]{cc}1&2\\ 0&1\end{array}\right) and let s:/p×SL2𝔽ps\colon{\mathbb{Z}}/p^{\times}\hookrightarrow\operatorname{SL}_{2}\!{\mathbb{F}}_{p} be the homomorphism ksk:=(k00k1)k\mapsto s_{k}:=\left(\begin{array}[]{cc}k&0\\ 0&k^{-1}\end{array}\right).

A quick computation establishes the following lemma.

Lemma 5.11.

The group 𝒰(SL2𝔽p)\operatorname{{\mathcal{U}}}(\operatorname{SL}_{2}\!{\mathbb{F}}_{p}) is generated by dd and {sk}\{s_{k}\}, which satisfy the relations dp=Id^{p}=I and skdsk1=dk2s_{k}\,d\,s_{k}^{-1}=\,d^{\,k^{2}}.

The next definition sets the notation for the representation of 𝒰(SL2𝔽p)\operatorname{{\mathcal{U}}}(\operatorname{SL}_{2}\!{\mathbb{F}}_{p}) that we will use.

Definition 5.12.

Let ζ\zeta denote the fixed pp-th root of unity.

  1. (1)

    Let DSU(p)D\in{\operatorname{SU}(p)} be the p×pp\times p diagonal matrix with Dii=ζ(i1)2D_{ii}=\zeta^{-(i-1)^{2}}.

  2. (2)

    For p2p\neq 2, let σ:(/p)×Σp\sigma\colon({\mathbb{Z}}/p)^{\times}\rightarrow\Sigma_{p} be the homomorphism defined by (i)σk=k(i1)+1(i)\sigma_{k}=k(i-1)+1. Let Cp1SU(p)C_{p-1}\subseteq{\operatorname{SU}(p)} denote the corresponding group of signed permutation matrices.

Lemma 5.13.

The group Cp1C_{p-1} normalizes D\langle D\rangle and DCp1CU(p)(τ)\langle D\rangle\rtimes C_{p-1}\subseteq C_{\operatorname{U}(p)}(\tau).

Proof.

Conjugating a diagonal matrix by a permutation matrix (given the convention of Definition 5.1) performs the permutation on the diagonal, so we obtain

(σkDσk1)ii=D(i)σk,(i)σk=ζ[k(i1)]2=(ζ(i1)2)k2=Diik2.\big{(}\sigma_{k}D\sigma_{k}^{-1}\big{)}_{ii}=D_{(i)\sigma_{k},(i)\sigma_{k}}=\zeta^{-[k(i-1)]^{2}}=\big{(}\zeta^{-(i-1)^{2}}\big{)}^{k^{2}}=D^{k^{2}}_{ii}.

Another easy computation establishes that τ\tau centralizes both Cp1C_{p-1} and D\langle D\rangle. (In fact, if ξ\xi generates /p×{\mathbb{Z}}/p^{\times}, then τ=σk\tau=\sigma_{k} for k=ξ(p1)/2k=\xi^{(p-1)/2}.) ∎

Corollary 5.14.

For pp odd, there is a homomorphism ρ:𝒰(SL2𝔽p)SU(p)\rho\colon\operatorname{{\mathcal{U}}}(\operatorname{SL}_{2}\!{\mathbb{F}}_{p})\rightarrow{\operatorname{SU}(p)} defined by ρ(d)=D\rho(d)=D and ρ(sk)=σk\rho(s_{k})=\sigma_{k}.

Proof.

The matrices σk\sigma_{k} and DD have the same order as their preimages, and the necessary conjugation relation is verified in the proof of Lemma 5.13. ∎

We are now able to explain the relationship of upper triangular 2×22\times 2 matrices to NU(p)𝚪N_{\operatorname{U}(p)}\mathbf{\Gamma}.

Lemma 5.15.

Let pp be odd. The image of ρ:𝒰(SL2𝔽p)SU(p)\rho:\operatorname{{\mathcal{U}}}(\operatorname{SL}_{2}\!{\mathbb{F}}_{p})\rightarrow{\operatorname{SU}(p)} normalizes 𝚪\mathbf{\Gamma}. For M𝒰(SL2𝔽p)M\in\operatorname{{\mathcal{U}}}(\operatorname{SL}_{2}\!{\mathbb{F}}_{p}), the action of ρ(M)\rho(M) on 𝚪/Z(𝚪)𝔽p×𝔽pA×B\mathbf{\Gamma}/Z(\mathbf{\Gamma})\cong{\mathbb{F}}_{p}\times{\mathbb{F}}_{p}\cong\langle A\rangle\times\langle B\rangle is via the linear transformation MM.

Proof.

The image of ρ\rho is generated by Cp1C_{p-1} and DD. The matrix σkCp1\sigma_{k}\in C_{p-1} conjugates AA to AkA^{k} and BB to B(k1modp)B^{(k^{-1}\operatorname{mod}p)}, so σk\sigma_{k} normalizes 𝚪\mathbf{\Gamma} and acts on the basis (A,B)(A,B) of 𝚪/Z(𝚪)\mathbf{\Gamma}/Z(\mathbf{\Gamma}) by sks_{k} (Definition 5.10). We can also compute DAD1=ADAD^{-1}=A and DBD1=ζA2BDBD^{-1}=\zeta A^{2}B, so DD normalizes 𝚪\mathbf{\Gamma} and acts on (A,B)(A,B) by d𝒰(SL2𝔽p)d\in\operatorname{{\mathcal{U}}}(\operatorname{SL}_{2}\!{\mathbb{F}}_{p}). ∎

Proposition 5.16.

For all primes, there is an extension

1𝚪NU(p)(𝚪𝐒)𝒰(SL2𝔽p)1.1\longrightarrow\mathbf{\Gamma}\longrightarrow N_{\operatorname{U}(p)}(\mathbf{\Gamma}\subset{\bf S})\longrightarrow\operatorname{{\mathcal{U}}}(\operatorname{SL}_{2}\!{\mathbb{F}}_{p})\longrightarrow 1.

For pp odd, the extension is split by ρ:𝒰(SL2𝔽p)SU(p)U(p)\rho\colon\operatorname{{\mathcal{U}}}(\operatorname{SL}_{2}\!{\mathbb{F}}_{p})\hookrightarrow{\operatorname{SU}(p)}\hookrightarrow\operatorname{U}(p).

Proof.

Let pp be odd. Given Lemma 5.15 we have only to verify that the image of ρ\rho normalizes 𝐒{\bf S}. Because σk\sigma_{k} is a (signed) permutation matrix, it normalizes 𝐓{\bf T}. Recall that 𝐒=𝐓B{\bf S}={\bf T}\rtimes\langle B\rangle (Definition 5.2) and σkBσk1=B(k1modp)\sigma_{k}B\sigma_{k}^{-1}=B^{{(k^{-1}\operatorname{mod}p)}}, and therefore σk\sigma_{k} normalizes 𝐒{\bf S}. Further, because DD is a diagonal matrix, D𝐒D\in{\bf S} and necessarily normalizes 𝐒{\bf S}. We conclude that im(ρ)NU(p)(𝚪𝐒)\operatorname{im}(\rho)\subseteq N_{\operatorname{U}(p)}(\mathbf{\Gamma}\subset{\bf S}).

We would like to know that 𝚪\mathbf{\Gamma} and the image of ρ\rho generate all of NU(p)(𝚪𝐒)N_{\operatorname{U}(p)}(\mathbf{\Gamma}\subset{\bf S}). We observe that ρ(𝒰(SL2𝔽p))CNU(p)𝚪(τ)\rho(\operatorname{{\mathcal{U}}}(\operatorname{SL}_{2}\!{\mathbb{F}}_{p}))\subseteq C_{N_{\operatorname{U}(p)}\mathbf{\Gamma}}(\tau) (Lemma 5.13) and ρ(𝒰(SL2𝔽p))S1=1\rho(\operatorname{{\mathcal{U}}}(\operatorname{SL}_{2}\!{\mathbb{F}}_{p}))\cap S^{1}=1, so ρ(𝒰(SL2𝔽p))𝚪=1\rho(\operatorname{{\mathcal{U}}}(\operatorname{SL}_{2}\!{\mathbb{F}}_{p}))\cap\mathbf{\Gamma}=1 by Lemma 5.6. Hence ρ\rho is a monomorphism.

Because upper triangular matrices form a maximal proper subgroup of SL2𝔽p\operatorname{SL}_{2}\!{\mathbb{F}}_{p}, either NU(p)(𝚪𝐒)/𝚪𝒰(SL2𝔽p)N_{\operatorname{U}(p)}(\mathbf{\Gamma}\subset{\bf S})/\mathbf{\Gamma}\cong\operatorname{{\mathcal{U}}}(\operatorname{SL}_{2}\!{\mathbb{F}}_{p}) or NU(p)(𝚪𝐒)/𝚪SL2𝔽pN_{\operatorname{U}(p)}(\mathbf{\Gamma}\subset{\bf S})/\mathbf{\Gamma}\cong\operatorname{SL}_{2}\!{\mathbb{F}}_{p}. The latter would require NU(p)(𝚪𝐒)=NU(p)(𝚪)N_{\operatorname{U}(p)}(\mathbf{\Gamma}\subset{\bf S})=N_{\operatorname{U}(p)}(\mathbf{\Gamma}), that is, NU(p)𝚪NU(p)𝐒N_{\operatorname{U}(p)}\mathbf{\Gamma}\subset N_{\operatorname{U}(p)}{\bf S}; in this situation, we would have a homomorphism

NU(p)(𝚪)/𝚪NU(p)(𝐒)/𝐒.N_{\operatorname{U}(p)}(\mathbf{\Gamma})/\mathbf{\Gamma}\rightarrow N_{\operatorname{U}(p)}({\bf S})/{\bf S}.

where the domain has order p(p21)p(p^{2}-1), the codomain has order p1p-1, and the kernel is N𝐒(𝚪)/𝚪N_{\bf S}(\mathbf{\Gamma})/\mathbf{\Gamma}, which is pp-toral ([JMO92, Lemma A.3]). This is impossible, so NU(p)(𝚪𝐒)/𝚪𝒰(SL2𝔽p)N_{\operatorname{U}(p)}(\mathbf{\Gamma}\subset{\bf S})/\mathbf{\Gamma}\cong\operatorname{{\mathcal{U}}}(\operatorname{SL}_{2}\!{\mathbb{F}}_{p}), as required.

For p=2p=2, we have to adjust the computation. In this special case, NU(2)𝐒=𝐒N_{\operatorname{U}(2)}{\bf S}={\bf S}, so NU(2)(𝚪𝐒)=N𝐒𝚪N_{\operatorname{U}(2)}(\mathbf{\Gamma}\subset{\bf S})=N_{{\bf S}}\mathbf{\Gamma}. We have an inclusion

N𝐒(𝚪)/𝚪NU(2)(𝚪)/𝚪SL2𝔽2Σ3.N_{{\bf S}}(\mathbf{\Gamma})/\mathbf{\Gamma}\subset N_{\operatorname{U}(2)}(\mathbf{\Gamma})/\mathbf{\Gamma}\cong\operatorname{SL}_{2}\!{\mathbb{F}}_{2}\cong\Sigma_{3}.

The 22-toral group N𝐒(𝚪)/𝚪N_{{\bf S}}(\mathbf{\Gamma})/\mathbf{\Gamma} is nontrivial because 𝚪𝐒\mathbf{\Gamma}\subsetneq{\bf S}. Hence N𝐒(𝚪)/𝚪/2𝒰(SL2𝔽2)N_{{\bf S}}(\mathbf{\Gamma})/\mathbf{\Gamma}\cong{\mathbb{Z}}/2\cong\operatorname{{\mathcal{U}}}(\operatorname{SL}_{2}\!{\mathbb{F}}_{2}). However, the extension is not split, because preimages of the generator of /2{\mathbb{Z}}/2 have order 44. ∎

For the prime 22, we define some additional specific elements in the normalizer of 𝚪\mathbf{\Gamma} and use them to identify the appropriate groups in this case.

Definition 5.17.

Let FF and HH denote the following elements of U(2)\operatorname{U}(2):

F:=(eπi/400eπi/4) and H:=(1/21/21/21/2).F:={\left(\begin{array}[]{cc}e^{\pi i/4}&0\\ 0&e^{-\pi i/4}\end{array}\right)}\ \mbox{ and }\ H:=\left(\begin{array}[]{cc}1/\sqrt{2}&-1/\sqrt{2}\\ 1/\sqrt{2}&1/\sqrt{2}\end{array}\right).
Lemma 5.18.

Let p=2p=2.

  1. (1)

    𝚪\mathbf{\Gamma} and FF generate NU(2)(𝚪𝐒)N_{\operatorname{U}(2)}(\mathbf{\Gamma}\subset{\bf S}), an extension of /2{\mathbb{Z}}/2 by 𝚪\mathbf{\Gamma}.

  2. (2)

    𝚪\mathbf{\Gamma}, FF, and HH generate NU(2)(𝚪)N_{\operatorname{U}(2)}(\mathbf{\Gamma}), an extension of Σ3\Sigma_{3} by 𝚪\mathbf{\Gamma}.

Proof.

From Proposition 5.16, we have a short exact sequence

1\textstyle{1\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝚪\textstyle{\mathbf{\Gamma}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}NU(2)(𝚪𝐒)\textstyle{N_{\operatorname{U}(2)}(\mathbf{\Gamma}\subset{\bf S})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}/2\textstyle{{\mathbb{Z}}/2\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1.\textstyle{1.}

We can check by computation that FF acts on 𝚪\mathbf{\Gamma} via the automorphism FAF1=AFAF^{-1}=A and FBF1=(iI)ABFBF^{-1}=(iI)AB. Proposition 5.16 establishes the value of NU(2)(𝚪𝐒)/𝚪N_{\operatorname{U}(2)}(\mathbf{\Gamma}\subset{\bf S})/\mathbf{\Gamma} as /2{\mathbb{Z}}/2, and direct computation establishes that F𝚪F\notin\mathbf{\Gamma} (for example because its trace is not zero) and F2=(iI)A𝚪F^{2}=(iI)A\in\mathbf{\Gamma}.

Likewise, by (5.4) (since SL2𝔽2Σ3\operatorname{SL}_{2}\!{\mathbb{F}}_{2}\cong\Sigma_{3}), we have a short exact sequence

1𝚪NU(2)(𝚪)Σ31.\begin{gathered}\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 5.5pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&&&\crcr}}}\ignorespaces{\hbox{\kern-5.5pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{1\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 29.5pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 29.5pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathbf{\Gamma}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 65.75pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 65.75pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{N_{\operatorname{U}(2)}(\mathbf{\Gamma})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 130.25833pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 130.25833pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\Sigma_{3}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 170.28055pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 170.28055pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{1.}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{gathered}

We can check that HAH1=BHAH^{-1}=B and HBH1=AHBH^{-1}=-A, so HH normalizes 𝚪\mathbf{\Gamma}. Since FF and HH represent different transpositions in Σ3\Sigma_{3}, we have found a generating set. ∎

In the final part of the section, we discuss the groups and normalizers for SU(p){\operatorname{SU}(p)} that correspond to Propositions 5.9 and 5.16. Unlike our work with U(p)\operatorname{U}(p), we move into a discrete setting for this part of our discussion. The reason is that because of special circumstances in the transporter system for SU(p)SU(p), it turns out that in Section 6 we will be able to work directly in the discrete setting, rather than the compact (continuous) setting we have to use for U(p)\operatorname{U}(p).

Definition 5.19.

Let pp be an odd prime. We define the following discrete pp-toral subgroups of SU(p){\operatorname{SU}(p)}.

  1. (1)

    TT is the set of p×pp\times p diagonal matrices of pp-power order and determinant 11, a discrete pp-torus of rank p1p-1.

  2. (2)

    S=TBT/pS=T\rtimes\langle B\rangle\cong T\rtimes{\mathbb{Z}}/p (Definition 5.1).

  3. (3)

    Γ=SU(p)𝚪\Gamma={\operatorname{SU}(p)}\cap\mathbf{\Gamma}.

For an expression of Γ\Gamma as a group extension, we replace (5.3) with a central extension in SU(p){\operatorname{SU}(p)}:

(5.20) 1/pΓ/p×/p1.1\rightarrow{\mathbb{Z}}/p\rightarrow\Gamma\rightarrow{\mathbb{Z}}/p\times{\mathbb{Z}}/p\rightarrow 1.

For pp odd, the matrices AA and BB of Definition 5.1 are in SU(p){\operatorname{SU}(p)} and still represent generators of the factors of the quotient. For p=2p=2, we replace AA and BB by A=iAA^{\prime}=iA and B=iBB^{\prime}=iB, respectively, which are both in SU(p){\operatorname{SU}(p)}. The commutator form remains the same. Note that Γ\Gamma is isomorphic to the (unique) extra-special pp-group of order p3p^{3} and exponent pp.

With regard to other ingredients in our calculations for U(p)\operatorname{U}(p), we replace τ\tau (Definition 5.5) with τ:=(I)τSU(p)\tau^{\prime}:=(-I)\tau\in{\operatorname{SU}(p)} when p1(mod4)p\equiv 1\pmod{4}. In Definition 5.12, we have already arranged to have DSU(p)D\in{\operatorname{SU}(p)} and Cp1SU(p)C_{p-1}\subset{\operatorname{SU}(p)}.

Proposition 5.21.

Let TT, SS, Γ\Gamma, and 𝒰(SL2𝔽p)\operatorname{{\mathcal{U}}}(\operatorname{SL}_{2}\!{\mathbb{F}}_{p}) be as defined above.

  1. (1)

    There is a short exact sequence

    1ΓNSU(p)ΓSL2𝔽p1,1\to\Gamma\to N_{{\operatorname{SU}(p)}}\Gamma\to\operatorname{SL}_{2}\!{\mathbb{F}}_{p}\to 1,

    and the sequence is split for odd primes. For p=2p=2, NSU(2)ΓO48N_{\operatorname{SU}(2)}\Gamma\cong O_{48}, the binary octahedral group of order 4848.

  2. (2)

    There is a short exact sequence

    1ΓNSU(p)(ΓS)𝒰(SL2𝔽p)1.1\to\Gamma\to N_{{\operatorname{SU}(p)}}(\Gamma\subset S)\to\operatorname{{\mathcal{U}}}(\operatorname{SL}_{2}\!{\mathbb{F}}_{p})\to 1.

    For odd primes, the extension is split by ρ:𝒰(SL2𝔽p)SU(p)\rho\colon\operatorname{{\mathcal{U}}}(\operatorname{SL}_{2}\!{\mathbb{F}}_{p})\hookrightarrow{\operatorname{SU}(p)}, where ρ\rho is defined in Corollary 5.14. For p=2p=2, NSU(p)(ΓS)Q16N_{{\operatorname{SU}(p)}}(\Gamma\subset S)\cong Q_{16}, the generalized quaternion group of order 1616.

Proof.

We first note that NSU(p)(Γ)=SU(p)NU(p)(𝚪)N_{{\operatorname{SU}(p)}}(\Gamma)={\operatorname{SU}(p)}\cap N_{\operatorname{U}(p)}(\mathbf{\Gamma}), because 𝚪=ΓS1\mathbf{\Gamma}=\Gamma\cdot S^{1}, and similarly NSU(p)(S)=SU(p)NU(p)(𝐒)N_{{\operatorname{SU}(p)}}(S)={\operatorname{SU}(p)}\cap N_{\operatorname{U}(p)}({\bf S}).

For the proof of (1), the replacement τ\tau^{\prime} for τ\tau defined above allows the proof of Proposition 5.9 (in particular, of Lemma 5.6) to go through as written. Therefore the splitting SL2𝔽pNU(p)(𝚪)\operatorname{SL}_{2}\!{\mathbb{F}}_{p}\rightarrow N_{\operatorname{U}(p)}(\mathbf{\Gamma}) can be taken to land in SU(p){\operatorname{SU}(p)}, and since the image normalizes 𝚪\mathbf{\Gamma}, it also normalizes Γ\Gamma, the subgroup of elements of determinant 11. When p=2p=2, it is well known that the elements of Γ\Gamma can be thought of as the corners of a unit cube in 2{\mathbb{C}}^{2}, and the symmetry group is (by definition) O48O_{48}.

Continuing to (2), the proofs of Lemma 5.15 and Proposition 5.16 apply as written, with the adaptations that we identify 𝚪/Z(𝚪)\mathbf{\Gamma}/Z(\mathbf{\Gamma}) with Γ/Z(Γ)\Gamma/Z(\Gamma) and replace 𝐓{\bf T} with TT, the elements of 𝐓{\bf T} of pp-power order and determinant 11. For p=2p=2, Lemma 5.18 likewise applies as written with the substitutions of SU(2)\operatorname{SU}(2), Γ\Gamma, SS, iAiA, and iBiB for U(2)\operatorname{U}(2), 𝚪\mathbf{\Gamma}, 𝐒{\bf S}, AA, and BB, respectively. To see that NSU(p)(ΓS)Q16N_{{\operatorname{SU}(p)}}(\Gamma\subset S)\cong Q_{16}, recall that F=(eπi/400eπi/4)NSU(p)(ΓS)F=\left(\begin{array}[]{cc}e^{\pi i/4}&0\\ 0&e^{-\pi i/4}\end{array}\right)\in N_{{\operatorname{SU}(p)}}(\Gamma\subset S) and (iA)(iB)=(0110)Γ(iA)(iB)=\left(\begin{array}[]{cc}0&-1\\ 1&0\end{array}\right)\in\Gamma are a well-known generating set for Q16Q_{16}. ∎

Remark 5.22.

Proposition 5.21 for p=2p=2 will be used in Section 6 to recover the homotopy pushout result of [DMW87, Thm. 4.1].

6. Decompositions of U(p)\operatorname{U}(p) and SU(p)\operatorname{SU}(p)

In this section we use Theorem 4.2, together with the results of Section 5 and [BCG+22], to obtain mod pp normalizer decompositions of BU(p)\operatorname{BU}(p) and BSU(p)\operatorname{BSU}(p), which appear in Theorems 6.7 and 6.14. The results for BSU(p)\operatorname{BSU}(p) for odd primes will be leveraged in Section 7 to construct a decomposition of the Aguadé–Zabrodsky exotic pp-compact groups.

Recall that we have chosen explicit representations of 𝐓{\bf T}, 𝐒{\bf S}, and their normalizers in U(p)\operatorname{U}(p) (Definitions 5.1 and 5.2). The torus, 𝐓{\bf T}, is given by diagonal matrices, ΣpU(p)\Sigma_{p}\subset\operatorname{U}(p) acts via permutation matrices, and NU(p)(𝐓)𝐓ΣpN_{\operatorname{U}(p)}({\bf T})\cong{\bf T}\rtimes\Sigma_{p}. We chose 𝐒𝐓/p{\bf S}\cong{\bf T}\rtimes{\mathbb{Z}}/p to be generated by 𝐓{\bf T} and the matrix BB representing the pp-cycle (1 2p)(1\ 2\ \ldots\ p). Further, NU(p)𝐒𝐓NΣp/pN_{\operatorname{U}(p)}{\bf S}\cong{\bf T}\rtimes N_{\Sigma_{p}}{\mathbb{Z}}/p [Oli94, Lemma 3], where NΣp/p=BCp1N_{\Sigma_{p}}{\mathbb{Z}}/p=\langle B\rangle\rtimes C_{p-1} (Definition 5.12).

Lemma 6.1.

For p5p\geq 5, there are three conjugacy classes of pp-centric and pp-stubborn subgroups of U(p)\operatorname{U}(p), which are represented by 𝐒{\bf S}, 𝐓{\bf T}, and 𝚪\mathbf{\Gamma}. For p=2,3p=2,3, there are only two such conjugacy classes, those of 𝐒{\bf S} and 𝚪\mathbf{\Gamma}.

Proof.

It follows from [Oli94, Thm. 6] that the stated groups are exactly the pp-stubborn subgroups of 𝐒{\bf S}. We check that they are also pp-centric. The groups 𝐒{\bf S} and 𝚪\mathbf{\Gamma} act irreducibly so their centralizers are both S1S^{1} [Oli94, Prop. 4], which is contained both 𝐒{\bf S} and 𝚪\mathbf{\Gamma}. Lastly, CU(p)(𝐓)=𝐓C_{\operatorname{U}(p)}({\bf T})={\bf T}, so indeed all three groups are pp-centric. ∎

To apply Theorem 4.2, we need to know not only the conjugacy classes of appropriate subgroups, but also the conjugacy classes of chains, which could theoretically be a finer distinction.

Proposition 6.2.

For p5p\geq 5, there are five U(p)\operatorname{U}(p)-conjugacy classes of chains of subgroups of pp-centric and pp-stubborn subgroups of 𝐒{\bf S}, represented by 𝐒{\bf S}, 𝐓{\bf T}, 𝚪\mathbf{\Gamma}, 𝐓𝐒{\bf T}\subset{\bf S}, and 𝚪𝐒\mathbf{\Gamma}\subset{\bf S}. For p=2,3p=2,3, there are three: 𝐒{\bf S}, 𝚪\mathbf{\Gamma}, and 𝚪𝐒\mathbf{\Gamma}\subset{\bf S}.

Proof.

Lemma 6.1 gives us the result for a chain with a single subgroup. A chain 𝐏0𝐏1{\bf P}_{0}\subsetneq{\bf P}_{1} has the form 𝐏𝐒{\bf P}\subsetneq{\bf S}, with 𝐏{\bf P} conjugate in U(p)\operatorname{U}(p) to 𝐓{\bf T} (if p5p\geq 5) or 𝚪\mathbf{\Gamma} (for any prime). If 𝐏{\bf P} is conjugate to 𝐓{\bf T}, then 𝐏=𝐓{\bf P}={\bf T}, so there is a unique chain of this type. We treat 𝐏𝚪{\bf P}\cong\mathbf{\Gamma} below. Lastly, since no conjugate of 𝚪\mathbf{\Gamma} is contained in 𝐓{\bf T} and vice-versa, there are no chains 𝐏0𝐏1𝐏2{\bf P}_{0}\subsetneq{\bf P}_{1}\subsetneq{\bf P}_{2} for any prime.

If 𝐏𝐒{\bf P}\subsetneq{\bf S} with 𝐏{\bf P} conjugate to 𝚪\mathbf{\Gamma} in U(p)\operatorname{U}(p), then we must show that the chain 𝐏𝐒{\bf P}\subsetneq{\bf S} is conjugate to 𝚪𝐒\mathbf{\Gamma}\subsetneq{\bf S}; that is, that there is some element uU(p)u\in\operatorname{U}(p) that conjugates 𝐏{\bf P} to Γ\Gamma and 𝐒{\bf S} to 𝐒{\bf S}. Our strategy is to show that the subgroup 𝐏𝐓{\bf P}\cap{\bf T} determines 𝐓{\bf T} (as CU(p)(𝐏𝐓)C_{\operatorname{U}(p)}({\bf P}\cap{\bf T})), and then adjust uu by an element of NU(p)𝚪N_{\operatorname{U}(p)}\mathbf{\Gamma} so that 𝐏{\bf P} is still mapped to 𝚪\mathbf{\Gamma}, but 𝐒{\bf S} is preserved.

First, we assert that 𝐏𝐓{\bf P}\cap{\bf T} is a subgroup of 𝐏{\bf P} of index pp. Since 𝐏/(𝐏𝐓)𝐒/𝐓/p{\bf P}/({\bf P}\cap{\bf T})\subseteq{\bf S}/{\bf T}\cong{\mathbb{Z}}/p, either [𝐏:𝐏𝐓]=1[{\bf P}:{\bf P}\cap{\bf T}]=1 or [𝐏:𝐏𝐓]=p[{\bf P}:{\bf P}\cap{\bf T}]=p. Since 𝐏{\bf P} is not abelian, we know that [𝐏:𝐏𝐓]1[{\bf P}:{\bf P}\cap{\bf T}]\neq 1, so [𝐏:𝐏𝐓]=p[{\bf P}:{\bf P}\cap{\bf T}]=p, and for the same reasons we know that [𝚪:𝚪𝐓]=p[\mathbf{\Gamma}:\mathbf{\Gamma}\cap{\bf T}]=p. (Indeed, 𝚪𝐓\mathbf{\Gamma}\cap{\bf T} is the product of S1S^{1} and the group of order pp generated by the matrix AA of Definition 5.1.)

Now suppose that 𝐏{\bf P} is conjugate to 𝚪\mathbf{\Gamma} by uU(p)u\in\operatorname{U}(p). We must prove that the chain 𝐏𝐒{\bf P}\subset{\bf S} is U(p)\operatorname{U}(p)-conjugate to the chain 𝚪𝐒\mathbf{\Gamma}\subset{\bf S}. First, observe that

[𝚪:𝚪𝐓]=p=[𝐏:𝐏𝐓]=[𝚪:cu(𝐏𝐓)],[\mathbf{\Gamma}:\mathbf{\Gamma}\cap{\bf T}]=p=[{\bf P}:{\bf P}\cap{\bf T}]=[\mathbf{\Gamma}:c_{u}({\bf P}\cap{\bf T})],

so both 𝚪𝐓\mathbf{\Gamma}\cap{\bf T} and cu(𝐏𝐓)c_{u}({\bf P}\cap{\bf T}) are subgroups of 𝚪\mathbf{\Gamma} of index pp. However, NU(p)𝚪N_{\operatorname{U}(p)}\mathbf{\Gamma} acts transitively on the set of subgroups of 𝚪\mathbf{\Gamma} of index pp, because NU(p)𝚪/𝚪SL2𝔽pN_{\operatorname{U}(p)}\mathbf{\Gamma}/\mathbf{\Gamma}\cong\operatorname{SL}_{2}\!{\mathbb{F}}_{p}. Let nNU(p)𝚪n\in N_{\operatorname{U}(p)}\mathbf{\Gamma} conjugate cu(𝐏𝐓)c_{u}({\bf P}\cap{\bf T}) to 𝚪𝐓\mathbf{\Gamma}\cap{\bf T}, so that cncuc_{n}\circ c_{u} conjugates (𝐏,𝐏𝐓)({\bf P},{\bf P}\cap{\bf T}) to (𝚪,𝚪𝐓)(\mathbf{\Gamma},\mathbf{\Gamma}\cap{\bf T}).

We claim that cncuc_{n}\circ c_{u} in fact conjugates 𝐒{\bf S} to 𝐒{\bf S}. First, we assert that CU(p)(𝐏𝐓)C_{\operatorname{U}(p)}({\bf P}\cap{\bf T}) and CU(p)(𝚪𝐓)C_{\operatorname{U}(p)}(\mathbf{\Gamma}\cap{\bf T}) are both maximal tori of 𝐒{\bf S}. This is because both 𝐏𝐓{\bf P}\cap{\bf T} and 𝚪𝐓\mathbf{\Gamma}\cap{\bf T} are isomorphic to S1×/pS^{1}\times{\mathbb{Z}}/p, where the second factor acts on p{\mathbb{C}}^{p} with pp distinct eigenvalues.

Since 𝐓{\bf T} centralizes 𝐏𝐓{\bf P}\cap{\bf T} and 𝚪𝐓\mathbf{\Gamma}\cap{\bf T}, we have CU(p)(𝐏𝐓)=𝐓=CU(p)(𝚪𝐓)C_{\operatorname{U}(p)}({\bf P}\cap{\bf T})={\bf T}=C_{\operatorname{U}(p)}(\mathbf{\Gamma}\cap{\bf T}). We know that cncuc_{n}\circ c_{u} maps CU(p)(𝐏𝐓)C_{\operatorname{U}(p)}({\bf P}\cap{\bf T}) to CU(p)(𝚪𝐓)C_{\operatorname{U}(p)}(\mathbf{\Gamma}\cap{\bf T}), so we conclude that cncuc_{n}\circ c_{u} maps 𝐓{\bf T} to itself, while still mapping 𝐏{\bf P} to 𝚪\mathbf{\Gamma}.

Lastly, 𝚪\mathbf{\Gamma} and 𝐓{\bf T} generate 𝐒{\bf S} (and the same for 𝐏{\bf P} and 𝐓{\bf T}). Hence cncuc_{n}\circ c_{u} conjugates 𝐏𝐒{\bf P}\subset{\bf S} to 𝚪𝐒\mathbf{\Gamma}\subset{\bf S}, which finishes the proof. ∎

Remark 6.3.

For purposes of the SU(p){\operatorname{SU}(p)} calculation later in the section, note that we can adjust uu and nn in the proof of Proposition 6.2 to be elements of SU(p){\operatorname{SU}(p)} if we wish.

As a result of Lemma 6.1 and Proposition 6.2, we find that for p5p\geq 5, the indexing poset of Theorem 4.2 for the normalizer decomposition of U(p)\operatorname{U}(p) is

(6.4) (𝚪𝐒)(𝐓𝐒)𝚪𝐒𝐓,\begin{gathered}\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 6.125pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&&\\&&&&\crcr}}}\ignorespaces{\hbox{\kern-3.0pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 30.125pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{(\mathbf{\Gamma}\subset{\bf S})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\kern 87.48618pt\raise-34.49695pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\kern 6.12502pt\raise-34.23286pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 90.26396pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 123.04175pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{({\bf T}\subset{\bf S})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\kern 184.15286pt\raise-33.34834pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\kern 99.04175pt\raise-34.68314pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern-6.125pt\raise-39.38887pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathbf{\Gamma}}$}}}}}}}{\hbox{\kern 43.80559pt\raise-39.38887pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 87.48618pt\raise-39.38887pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\bf S}$}}}}}}}{\hbox{\kern 138.5973pt\raise-39.38887pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 184.15286pt\raise-39.38887pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{{\bf T},}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{gathered}

while for p=2,3p=2,3 the diagram has just the left three nodes of the diagram above. We make one more simplification based on Remark 3.17.

Lemma 6.5.

For all primes, the homotopy colimit of the following diagram is mod pp equivalent to BU(p)BU(p):

(6.6)
BNU(p)(𝚪𝐒)BNU(p)(𝐓)BNU(p)(𝚪).
\begin{gathered}\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 30.97302pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\\crcr}}}\ignorespaces{\hbox{\kern-30.97302pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{BN_{\operatorname{U}(p)}(\mathbf{\Gamma}\subseteq{\bf S})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 0.0pt\raise-30.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 46.97302pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 35.97302pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 46.97302pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{BN_{\operatorname{U}(p)}({\bf T})}$}}}}}}}{\hbox{\kern-25.69522pt\raise-41.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{BN_{\operatorname{U}(p)}(\mathbf{\Gamma}).}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{gathered}
Proof.

We use Theorem 4.2. For p5p\geq 5, when the resulting diagram (6.4) has five nodes, we have NU(p)(𝐒)=NU(p)(𝐓𝐒)N_{\operatorname{U}(p)}({\bf S})=N_{\operatorname{U}(p)}({\bf T}\subset{\bf S}), which allows us to collapse that leg of the diagram.

For p=2,3p=2,3, diagram (6.4) has only three nodes, and the one labeled “𝐒{\bf S}” is assigned the classifying space of NU(p)𝐒N_{\operatorname{U}(p)}{\bf S}. However, when p=2,3p=2,3 we have NU(p)𝐒=NU(p)𝐓N_{\operatorname{U}(p)}{\bf S}=N_{\operatorname{U}(p)}{\bf T}, so we still obtain (6.6). ∎

The detailed group-theoretic calculations to identify the normalizers in Lemma 6.5 more specifically was done in Section 5, and we draw on them for the following theorem.

Theorem 6.7.

Let 𝒰(SL2𝔽p)\operatorname{{\mathcal{U}}}(\operatorname{SL}_{2}\!{\mathbb{F}}_{p}) denote the group upper triangular matrices in SL2𝔽p\operatorname{SL}_{2}\!{\mathbb{F}}_{p} and let 𝐓{\bf T} denote the fixed maximal torus of U(p)\operatorname{U}(p).

  1. (1)

    Let pp be an odd prime. The homotopy pushout of the diagram below is mod pp equivalent to BU(p)BU(p):

    B(𝚪𝒰(SL2𝔽p))\textstyle{B\left(\mathbf{\Gamma}\rtimes\operatorname{{\mathcal{U}}}(\operatorname{SL}_{2}\!{\mathbb{F}}_{p})\right)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}B(𝐓Σp)\textstyle{B\left({\bf T}\rtimes\Sigma_{p}\right)}B(𝚪SL2𝔽p).\textstyle{B\left(\mathbf{\Gamma}\rtimes\operatorname{SL}_{2}\!{\mathbb{F}}_{p}\right).}
  2. (2)

    Let p=2p=2 and let 𝚪.Σ2\mathbf{\Gamma}.\Sigma_{2} and 𝚪.Σ3\mathbf{\Gamma}.\Sigma_{3} denote the extensions in Lemma 5.18. The homotopy pushout of the diagram below is mod 22 equivalent to BU(2)BU(2):

    B(𝚪.Σ2)\textstyle{B\left(\mathbf{\Gamma}.\Sigma_{2}\right)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}B(𝐓Σ2)\textstyle{B\left({\bf T}\rtimes\Sigma_{2}\right)}B(𝚪.Σ3).\textstyle{B\left(\mathbf{\Gamma}.\Sigma_{3}\right).}
Proof.

Lemma 6.5 gives us a diagram whose homotopy colimit is mod pp equivalent to BU(p)\operatorname{BU}(p) for all primes, and the value of NU(p)𝐓N_{\operatorname{U}(p)}{\bf T} is classical. We have made explicit compatible choices of representatives for the conjugacy classes of chains in Proposition 6.2. With these choices we can consider a functor BAut()\operatorname{BAut}_{\mathcal{L}}({\mathbb{P}}) from the poset with the same homotopy colimit as δ([])\delta([{\mathbb{P}}]). For odd primes, the value B(𝚪𝒰(SL2𝔽p))B(\mathbf{\Gamma}\rtimes\operatorname{{\mathcal{U}}}(\operatorname{SL}_{2}\!{\mathbb{F}}_{p})) is provided by Proposition 5.16 and the value B(𝚪SL2𝔽p)B\left(\mathbf{\Gamma}\rtimes\operatorname{SL}_{2}\!{\mathbb{F}}_{p}\right) is provided by Proposition 5.9. For p=2p=2, the values are provided by Lemma 5.18. ∎

Remark 6.8.

We could write the entries at the middle and left nodes of Theorem 6.7 as the classifying spaces of central extensions of the finite groups 𝔽p2𝒰(SL2𝔽p){\mathbb{F}}_{p}^{2}\rtimes\operatorname{{\mathcal{U}}}(\operatorname{SL}_{2}\!{\mathbb{F}}_{p}) and 𝔽p2SL2𝔽p{\mathbb{F}}_{p}^{2}\rtimes\operatorname{SL}_{2}\!{\mathbb{F}}_{p}, respectively, by S1S^{1}.

In the rest of the section, we make adjustments to our calculation for U(p)\operatorname{U}(p) to give a result analogous to Theorem 6.7 for SU(p)\operatorname{SU}(p). In particular, we make adjustments to describe the relevant part of the linking system directly in terms of discrete pp-toral subgroups, something that is not possible for U(p)\operatorname{U}(p) because Z(U(p))Z(\operatorname{U}(p)) is not finite.

First we need to identify the chains of subgroups that form the indexing category. We begin with compact groups, and identify the conjugacy classes of subgroups of SU(p)\operatorname{SU}(p) that are pp-stubborn and pp-centric, so as to use Theorem 4.3. Let 𝐓SU(p):=SU(p)𝐓{\bf T}_{\operatorname{SU}(p)}:={\operatorname{SU}(p)}\cap{\bf T}, let 𝐒SU(p):=SU(p)𝐒{\bf S}_{\operatorname{SU}(p)}:={\operatorname{SU}(p)}\cap{\bf S}, and let Γ:=SU(p)𝚪\Gamma:={\operatorname{SU}(p)}\cap\mathbf{\Gamma}.

Lemma 6.9.

For p5p\geq 5, there are three conjugacy classes of pp-centric and pp-stubborn subgroups of SU(p){\operatorname{SU}(p)}, which are represented by 𝐒SU(p){\bf S}_{\operatorname{SU}(p)}, 𝐓SU(p){\bf T}_{\operatorname{SU}(p)}, and Γ\Gamma. For p=2,3p=2,3, there are only two such conjugacy classes, those of 𝐒SU(p){\bf S}_{\operatorname{SU}(p)} and Γ\Gamma.

Proof.

The lemma follows from Lemma 6.1 and [Oli94, Thm. 10]. ∎

Remark 6.10.

The group 𝐓SU(p){\bf T}_{\operatorname{SU}(p)} is represented by diagonal matrices with determinant 11. The group 𝐒SU(p)𝐓SU(p)Σp{\bf S}_{\operatorname{SU}(p)}\cong{\bf T}_{\operatorname{SU}(p)}\rtimes\Sigma_{p}, where Σp\Sigma_{p} acts through signed permutation matrices. The group Γ\Gamma is an extra-special pp-group

1/pΓ/p×/p1,1\rightarrow{\mathbb{Z}}/p\rightarrow\Gamma\rightarrow{\mathbb{Z}}/p\times{\mathbb{Z}}/p\rightarrow 1,

corresponding to the symplectic form. Recall that 𝚪\mathbf{\Gamma} was generated by matrices AA and BB, which have determinant 11 (see Definition 5.1), together with S1S^{1}. Similarly every element of Γ\Gamma can be written in the form (ζI)AiBj(\zeta I)A^{i}B^{j} where ζ\zeta is a pp-th root of unity (replace AA and BB with A=iAA^{\prime}=iA and B=iBB^{\prime}=iB for p=2p=2—see discussion following Definition 5.19).

Lemma 6.11.

For p5p\geq 5 there are five SU(p){\operatorname{SU}(p)}-conjugacy classes of chains of subgroups of pp-centric and pp-stubborn subgroups of 𝐒SU(p){\bf S}_{\operatorname{SU}(p)}; they are represented by 𝐒SU(p){\bf S}_{\operatorname{SU}(p)}, 𝐓SU(p){\bf T}_{\operatorname{SU}(p)}, Γ\Gamma, (𝐓SU(p)𝐒SU(p))({\bf T}_{\operatorname{SU}(p)}\subset{\bf S}_{\operatorname{SU}(p)}), and (Γ𝐒SU(p))(\Gamma\subset{\bf S}_{\operatorname{SU}(p)}). For p=2,3p=2,3, there are three: 𝐒SU(p){\bf S}_{\operatorname{SU}(p)}, Γ\Gamma, and (Γ𝐒SU(p))(\Gamma\subset{\bf S}_{\operatorname{SU}(p)}).

Proof.

The proof of Proposition 6.2 applies as written (see Remark 6.3). ∎

We have already defined maximal discrete pp-toral subgroups SS and TT of 𝐒SU(p){\bf S}_{\operatorname{SU}(p)} and 𝐓SU(p){\bf T}_{\operatorname{SU}(p)}, respectively, in Definition 5.19, and Γ\Gamma is a finite pp-group.

Proposition 6.12.

The subgroup SSU(p)S\subset{\operatorname{SU}(p)} is a maximal discrete pp-toral subgroup. The SU(p){\operatorname{SU}(p)}-conjugacy classes of chains of S(SU(p)){\mathcal{F}}_{S}({\operatorname{SU}(p)})-centric and S(SU(p)){\mathcal{F}}_{S}({\operatorname{SU}(p)})-radical subgroups of SS are represented by SS, Γ\Gamma, (ΓS)(\Gamma\subset S), and for p5p\geq 5 also TT and (TS)(T\subset S).

Proof.

First, SS, TT, and Γ\Gamma are all maximal in their closures, which are pp-centric and pp-stubborn. Because π0SU(p)\pi_{0}{\operatorname{SU}(p)} is a pp-group, the proof given of Theorem 4.3 in [BCG+22] establishes that SS, TT, and Γ\Gamma are S(SU(p)){\mathcal{F}}_{S}({\operatorname{SU}(p)})-centric and S(SU(p)){\mathcal{F}}_{S}({\operatorname{SU}(p)})-radical. The proposition then follows from Theorem 4.3. ∎

With the conjugacy classes of chains of S(G){\mathcal{F}}_{S}(G)-centric and S(G){\mathcal{F}}_{S}(G)-radical subgroups of SS in hand, we know that the indexing category for SU(p){\operatorname{SU}(p)} is exactly analogous to (6.4), with SS, TT, and Γ\Gamma replacing 𝐒{\bf S}, 𝐓{\bf T}, and 𝚪\mathbf{\Gamma}, respectively. Next we need to know the associated automorphism groups in the linking system. Unlike the situation for U(p)\operatorname{U}(p), for SU(p){\operatorname{SU}(p)} the transporter system is isomorphic to the linking system for most of the automorphism groups we need to calculate. As a result, the next lemma explicitly identifies automorphism groups in S(SU(p)){\mathcal{L}}_{S}({\operatorname{SU}(p)}).

Lemma 6.13.

Let =S(SU(p)){\mathcal{L}}={\mathcal{L}}_{S}({\operatorname{SU}(p)}).

  1. (1)

    Aut(Γ)NSU(p)Γ\operatorname{Aut}_{{\mathcal{L}}}(\Gamma)\cong N_{{\operatorname{SU}(p)}}\Gamma.

  2. (2)

    Aut(ΓS)NSU(p)(ΓS)\operatorname{Aut}_{{\mathcal{L}}}(\Gamma\subset S)\cong N_{{\operatorname{SU}(p)}}(\Gamma\subset S).

Proof.

To use Lemma 4.11 to identify automorphism groups in {\mathcal{L}} with normalizers in SU(p){\operatorname{SU}(p)}, we need to check that for P=Γ,SP=\Gamma,S, we have CSU(p)(P)=Z(P)C_{{\operatorname{SU}(p)}}(P)=Z(P). The subgroups Γ\Gamma and SS both act irreducibly on p{\mathbb{C}}^{p} ([Oli94, Thm. 6] applies), and hence CSU(p)(Γ)=CSU(p)(S)=Z(SU(p))/pC_{{\operatorname{SU}(p)}}(\Gamma)=C_{{\operatorname{SU}(p)}}(S)=Z({\operatorname{SU}(p)})\cong{\mathbb{Z}}/p, scalar matrices of order pp. And indeed, this group is exactly Z(Γ)=Z(S)Z(\Gamma)=Z(S).

In the next theorem, where we state the normalizer decomposition for SU(p){\operatorname{SU}(p)}, we observe that the upper right-hand corner is NSU(p)TN_{{\operatorname{SU}(p)}}T. Since 𝐓SU(p){\bf T}_{\operatorname{SU}(p)} is abelian, its maximal discrete pp-toral subgroup is unique, and in fact NSU(p)T=NSU(p)𝐓SU(p)N_{{\operatorname{SU}(p)}}T=N_{{\operatorname{SU}(p)}}{\bf T}_{\operatorname{SU}(p)}.

Theorem 6.14.

Let 𝒰(SL2𝔽p)\operatorname{{\mathcal{U}}}(\operatorname{SL}_{2}\!{\mathbb{F}}_{p}) denote the group of upper triangular matrices in SL2𝔽p\operatorname{SL}_{2}\!{\mathbb{F}}_{p}, let TT denote the chosen maximal discrete pp-torus of SU(p){\operatorname{SU}(p)}, and let Γ\Gamma denote the extra-special pp-group of order p3p^{3} and exponent pp.

  1. (1)

    For odd primes, the homotopy pushout of the diagram below is mod pp equivalent to BSU(p)\operatorname{BSU}(p):

    B(Γ𝒰(SL2𝔽p))\textstyle{\operatorname{B}\!\left(\Gamma\rtimes\operatorname{{\mathcal{U}}}(\operatorname{SL}_{2}\!{\mathbb{F}}_{p})\right)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}B(TΣp)\textstyle{\operatorname{B}\!\left(T\rtimes\Sigma_{p}\right)}B(ΓSL2𝔽p).\textstyle{\operatorname{B}\!\left(\Gamma\rtimes\operatorname{SL}_{2}\!{\mathbb{F}}_{p}\right).}
  2. (2)

    [DMW87, Thm. 4.1] The homotopy pushout of the diagram below is mod 22 equivalent to BSU(2)\operatorname{BSU}(2):

    BQ16\textstyle{\operatorname{B}Q_{16}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}B(TΣ2)\textstyle{\operatorname{B}\!\left(T\rtimes\Sigma_{2}\right)}BO48,\textstyle{\operatorname{B}O_{48},}

    where Q16Q_{16} and O48O_{48} denote the quaternionic group of order 1616 and the binary octahedral group of order 4848, respectively.

Proof.

For p5p\geq 5, Theorem 3.16 together with Proposition 6.12 give the following diagram as the one whose pushout is mod pp equivalent to BSU(p)B{\operatorname{SU}(p)} (with the homeomorphism of the third leg provided by Remark 3.17):

BAut(ΓS)BAut(TS)BAutΓBAutSBAutT.\begin{gathered}\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 18.20003pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&&\\&&&&\crcr}}}\ignorespaces{\hbox{\kern-3.0pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 42.20003pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{BAut}_{{\mathcal{L}}}(\Gamma\subset S)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\kern 128.6464pt\raise-29.28601pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\kern 17.36172pt\raise-29.28601pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 143.04385pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 188.45012pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{BAut}_{{\mathcal{L}}}(T\subset S)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\kern 276.6147pt\raise-29.28601pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 178.39046pt\raise-11.43301pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.575pt\hbox{$\scriptstyle{\cong}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 163.55748pt\raise-29.28601pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern-18.20003pt\raise-38.43599pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{BAut}_{{\mathcal{L}}}\Gamma}$}}}}}}}{\hbox{\kern 69.91881pt\raise-38.43599pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 127.63759pt\raise-38.43599pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{BAut}_{{\mathcal{L}}}S}$}}}}}}}{\hbox{\kern 216.61108pt\raise-38.43599pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 274.77205pt\raise-38.43599pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{BAut}_{{\mathcal{L}}}T.}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{gathered}

We can collapse the homeomorphism to obtain the diagram

(6.15) BAut(ΓS)BAutΓBAutT.\begin{gathered}\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 19.88893pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&&\crcr}}}\ignorespaces{\hbox{\kern-3.0pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 43.88893pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{BAut}_{{\mathcal{L}}}(\Gamma\subset S)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\kern 136.35341pt\raise-29.54001pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\kern 19.39774pt\raise-29.54001pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern-19.88893pt\raise-39.37332pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{BAut}_{{\mathcal{L}}}\Gamma}$}}}}}}}{\hbox{\kern 74.68753pt\raise-39.37332pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 135.48613pt\raise-39.37332pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{BAut}_{{\mathcal{L}}}T}$}}}}}}}\ignorespaces}}}}\ignorespaces.\end{gathered}

For p5p\geq 5, it follows from (3.12) that Aut(T)TΣp\operatorname{Aut}_{{\mathcal{L}}}(T)\cong T\rtimes\Sigma_{p}. For the other two nodes, we have actual equivalences to BNSU(p)ΓBN_{{\operatorname{SU}(p)}}\Gamma and BNSU(p)(ΓS)BN_{{\operatorname{SU}(p)}}(\Gamma\subset S) given by Lemma 6.13. The values of NSU(p)ΓN_{{\operatorname{SU}(p)}}\Gamma and NSU(p)(ΓS)N_{{\operatorname{SU}(p)}}(\Gamma\subset S) are given in Proposition 5.21, which proves the result for p5p\geq 5.

For p=2,3p=2,3, TT is not S(SU(p)){\mathcal{F}}_{S}({\operatorname{SU}(p)})-radical, so our indexing diagram only contains Γ\Gamma, (ΓS)(\Gamma\subset S), and SS. However, for p=2,3p=2,3 we have NSU(p)STNΣp/pNSU(p)TN_{{\operatorname{SU}(p)}}S\cong T\rtimes N_{\Sigma_{p}}{\mathbb{Z}}/p\cong N_{{\operatorname{SU}(p)}}T and (6.15) is still the correct diagram. ∎

7. Aguadé–Zabrodsky pp-compact groups

For all of this section, we assume that pp is an odd prime.

In Theorem 3.16, we gave a normalizer decomposition for classifying spaces of arbitrary pp-local compact groups (S,,)(S,{\mathcal{F}},{\mathcal{L}}), and our first examples, in Section 6, came from compact Lie groups. Another important class of examples of pp-local compact groups are those that arise from pp-compact groups (Definition 7.2), a class of loop spaces introduced in [DW94b] that generalizes pp-completed classifying spaces of connected compact Lie groups. Although there may be no underlying group, there are analogues of Sylow pp-subgroups and maximal tori, which allow one to construct a fusion system [BLO07, §10].

The goal of this section is to compute the normalizer decomposition for the particular pp-compact groups constructed in [Agu89], also called the Aguadé–Zabrodsky pp-compact groups. There are four such spaces—one at p=3p=3, two at p=5p=5, and one at p=7p=7. They are among the exotic examples of pp-compact groups in the classification of [AGMV08]. The Aguadé–Zabrodsky pp-compact groups are closely related to the special unitary groups at the corresponding primes: roughly speaking, they are obtained by enlarging the Weyl group of SU(p)\operatorname{SU}(p) to certain reflection groups. Our strategy is to exploit this connection, together with our calculations for SU(p)\operatorname{SU}(p) in Section 6. In particular, the fusion systems of the Aguadé–Zabrodsky pp-compact groups have the same objects as the fusion systems of the corresponding special unitary groups. The difference between the morphism sets can be described in terms of the action of Adams operations (Definition 7.8).

We describe the spaces below, and our main result is the following normalizer decomposition of these exotic pp-compact groups. Let 𝒰(GL2𝔽p)\operatorname{{\mathcal{U}}}(\operatorname{GL}_{2}\!{\mathbb{F}}_{p}) denote the subgroup of upper-triangular matrices in GL2𝔽p\operatorname{GL}_{2}\!{\mathbb{F}}_{p}. (The group Γ\Gamma is defined in Definition 5.19.)

Theorem 7.1.

Let XX denote one of the Aguadé–Zabrodsky pp-compact groups X12X_{12} (with p=3p=3), X29X_{29} (with p=5p=5), X31X_{31} (with p=5p=5), or X34X_{34} (with p=7p=7). Let T(/p)p1T\cong({\mathbb{Z}}/{p}^{\infty})^{p-1} denote the maximal discrete pp-torus in the associated fusion system, and let GG be the Weyl group associated to XX. The homotopy pushout of the diagram

B(Γ𝒰(GL2𝔽p))\textstyle{\operatorname{B}\!\big{(}\Gamma\rtimes\operatorname{{\mathcal{U}}}(\operatorname{GL}_{2}\!{\mathbb{F}}_{p})\big{)}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}B(TG)\textstyle{\operatorname{B}\left(T\rtimes G\right)}B(ΓGL2𝔽p)\textstyle{\operatorname{B}\!\left(\Gamma\rtimes\operatorname{GL}_{2}\!{\mathbb{F}}_{p}\right)}

is homotopy equivalent to the nerve of the linking system associated to XX, and mod pp equivalent to BXBX itself.

We begin our discussion by reviewing the relevant definitions regarding pp-compact groups, following [DW94b, §3].

Definition 7.2.

[DW94b, Defn. 2.3] A pp-compact group is a loop space (X,BX)(X,BX) such that H(X;𝔽p)H^{*}(X;{\mathbb{F}}_{p}) is a finite 𝔽p{\mathbb{F}}_{p}-vector space, together with a pointed pp-complete space BXBX and an equivalence XΩBXX\xrightarrow{\simeq}\Omega BX.

If GG is a connected compact Lie group, then (Gp,BGp)({G}_{p}^{\wedge},{BG}_{p}^{\wedge}) is a pp-compact group for any prime pp, since H(Ω(BGp);𝔽p)H(Gp;𝔽p)H^{*}(\Omega({BG}_{p}^{\wedge});{\mathbb{F}}_{p})\cong H^{*}({G}_{p}^{\wedge};{\mathbb{F}}_{p}) is finite. Not all pp-compact groups arise in this way, but they do possess analogous structures to those of compact Lie groups, and we discuss these next. The classification of pp-compact groups in terms of Weyl group data was achieved in [AGMV08, AG09].

To define a pp-local compact group associated to a pp-compact group, one needs a notion of discrete pp-toral subgroup.

Definition 7.3.
  1. (1)

    A discrete pp-toral subgroup (P,i)(P,i) of a pp-compact group XX is a discrete pp-toral group PP with a map Bi:BPpBXBi\colon{BP}_{p}^{\wedge}\rightarrow BX whose homotopy fiber has finite mod pp homology.

  2. (2)

    (T,i)(T,i) is a maximal discrete pp-torus for XX if TT is a discrete pp-torus, (T,i)(T,i) is a subgroup of XX, and for any other discrete pp-torus (A,j)(A,j) of XX, there is a group homomorphism f:ATf\colon A\to T such that BiBfBjBi\circ Bf\simeq Bj.

  3. (3)

    (S,i)(S,i) is a maximal discrete pp-toral subgroup of XX (or, a Sylow pp-subgroup of XX) if for any other discrete pp-toral subgroup (Q,j)(Q,j) of XX, there is a group homomorphism f:QSf\colon Q\to S such that BiBfBjBi\circ Bf\simeq Bj.

Theorem 7.4 ([BLO07, Prop. 10.1(a)]).

Any pp-compact group has a maximal discrete pp-torus and a maximal discrete pp-toral subgroup.

We fix a choice (S,ι)(S,\iota) of maximal discrete pp-toral subgroup of XX. If XX were a Lie group GG, then the maps in S(G){\mathcal{F}}_{S}(G) would be restrictions of conjugation maps GGG\to G, which induce a map BGBGBG\to BG homotopic to the identity. This observation motivates the definition of morphisms in a fusion system associated to a pp-compact group XX.

Definition 7.5 ([BLO07, Defn. 10.2]).

Let (X,BX)(X,BX) be a pp-compact group and let (S,ι)(S,\iota) with Bι:BSBXB\iota\colon BS\rightarrow BX be a choice of maximal discrete pp-toral subgroup. The associated fusion system X{\mathcal{F}}_{X} on SS has the following morphism sets: for P,QSP,Q\subseteq S, an element of HomX(P,Q)\operatorname{Hom}_{{\mathcal{F}}_{X}}(P,Q) consists of a group homomorphism f:PQf\colon P\to Q such that the diagram

BP\textstyle{BP\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Bf\scriptstyle{Bf}BιP\scriptstyle{B\iota_{P}}BX\textstyle{BX}BQ\textstyle{BQ\ignorespaces\ignorespaces\ignorespaces\ignorespaces}BιQ\scriptstyle{B\iota_{Q}}

commutes up to homotopy, where BιPB\iota_{P} denotes the composition BPBSBιBXBP\rightarrow BS\xrightarrow{B\iota}BX.

Theorem 7.6 ([BLO07, Prop. 10.5, Thm. 10.7]).

Let (X,BX)(X,BX) be a pp-compact group and let SXS\rightarrow X be a choice of a maximal discrete pp-toral subgroup. Then the fusion system X{\mathcal{F}}_{X} on SS is saturated, and there is a centric linking system X{\mathcal{L}}_{X} associated to X{\mathcal{F}}_{X} with |X|pBX.{\left|{\mathcal{L}}_{X}\right|}_{p}^{\wedge}\simeq BX.

Our interest is in the Aguadé–Zabrodsky pp-compact groups, constructed at specific primes pp by modifying BSU(p)p{\operatorname{BSU}(p)}_{p}^{\wedge} so that the Weyl group is enlarged.

Definition 7.7.

Continuing the notation of Definition 7.5, the Weyl group of BXBX is AutX(T)\operatorname{Aut}_{{\mathcal{F}}_{X}}(T) where TT is the maximal torus in SS.

The enlargement of the Weyl group of BSU(p)p{\operatorname{BSU}(p)}_{p}^{\wedge} gives a new Weyl group for the pp-compact group which contains Adams operations, well-known self maps of a discrete pp-torus whose definition we review next. Let T=(/p)rT=\left({\mathbb{Z}}/{p}^{\infty}\right)^{r} be a discrete pp-torus, and recall that Hom(/p,/p)^p\operatorname{Hom}({\mathbb{Z}}/{p}^{\infty},{\mathbb{Z}}/{p}^{\infty})\cong\widehat{{\mathbb{Z}}}_{p}, the pp-completion of the integers. For any ξ(p)×\xi\in({{\mathbb{Z}}}_{p}^{\wedge})^{\times}, the corresponding diagonal group isomorphism TTT\to T induces a self homotopy equivalence BTpBTp{BT}_{p}^{\wedge}\to{BT}_{p}^{\wedge}, which induces multiplication by ξ\xi on H(BT;^p)H^{*}(BT;\widehat{{\mathbb{Z}}}_{p}). Its restriction to the maximal discrete pp-torus TST\subset S is the ξ\xi-power automorphism (see [JLL12, Def. 2.3]).

Definition 7.8.

Let (X,BX)(X,BX) a pp-compact group. For ξ(p)×\xi\in({{\mathbb{Z}}}_{p}^{\wedge})^{\times}, an Adams operation ψξ:BXBX\psi^{\xi}\colon BX\to BX is a self-homotopy equivalence whose restriction to the maximal torus BTp{BT}_{p}^{\wedge} is homotopic to the self homotopy equivalence induced by ξHom(/p,/p)\xi\in\operatorname{Hom}({\mathbb{Z}}/{p}^{\infty},{\mathbb{Z}}/{p}^{\infty}).

For compact connected Lie groups, there is an existence result.

Theorem 7.9.

[JMO95, Cor. 3.5] Let GG be a compact connected Lie group. For all ξ(p)×\xi\in({{\mathbb{Z}}}_{p}^{\wedge})^{\times}, there is an unstable Adams operation map ψξ:BGpBGp\psi^{\xi}\colon{BG}_{p}^{\wedge}\to{BG}_{p}^{\wedge}.

Likewise there is an existence and uniqueness result for pp-local compact groups.

Theorem 7.10.

[AGMV08, AG09] For any connected pp-compact group, there exists exactly one unstable Adams operation of degree ξ\xi for every pp-adic unit ξ(^p)×\xi\in(\widehat{{\mathbb{Z}}}_{p})^{\times}.

In the context of pp-local compact groups, unstable Adams operations have been studied in [JLL12] and [LL17].

We turn to describing the structure of the Aguadé–Zabrodsky pp-compact groups, the four pp-compact groups whose normalizer decompositions we compute in this section. Let ω\omega denote the Teichmüller lift ω:/(p1)(/p)×^p\omega\colon{\mathbb{Z}}/(p-1)\cong({\mathbb{Z}}/p)^{\times}\to\widehat{{\mathbb{Z}}}_{p}, which identifies (p1)(p-1)-st roots of unity in ^p\widehat{{\mathbb{Z}}}_{p}.

Definition 7.11 ([Agu89, §10, p.37]).

For i=12,29,31,34i=12,29,31,34, let GiG_{i} denote the ii-th group in the list of Shephard-Todd [ST54], and let p12=3p_{12}=3, p29=5p_{29}=5, p31=5p_{31}=5, and p34=7p_{34}=7. Let BXiBX_{i} denote the homotopy colimit of the diagram

(7.12) (BTi)pGiGi/ΣpiBSU(pi)pZ(Gi),\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 43.81905pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\crcr}}}\ignorespaces{\hbox{\kern-16.92201pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{{(BT_{i})}_{p}^{\wedge}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{}{}{}{{}{{}{{}{{}{{}}{}{{}{{}{{}}{}{{}{{}{{}}{}{{}{{}}}}}}}}}}}{}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{{}}{{}{}{}{}}{}}}}\ignorespaces{}\ignorespaces{}{}{}{}{{}{{}}}\ignorespaces\ignorespaces{\hbox{\kern-43.81905pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.73215pt\hbox{$\scriptstyle{G_{i}}$}}}\kern 3.0pt}}}}}}\ignorespaces{}{}{}{}{{}{{}}{}{{}}{}{{}}{}{{}{{}}{}{{}}{}{{}{{}}{}{{}}{}{{}{{}}{}{{}}}}}}{\hbox{\kern-16.91747pt\raise-4.34645pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{}{{}}{{}{}{}{}\lx@xy@spline@}{}}}}\ignorespaces{}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{{}}{{}{}{}{}}{}}}}\ignorespaces{}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 31.64587pt\raise 6.58318pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.66682pt\hbox{$\scriptstyle{G_{i}/\Sigma_{p_{i}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 70.92201pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 40.92201pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 70.92201pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{{B\operatorname{SU}(p_{i})}_{p}^{\wedge}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{}{}{}{{}{{}{{}{{}{{}}{}{{}}{}{{}{{}{{}{{}}{}{{}}{}{{}}}}}}}}}{}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{{}}{{}{}{}{}}{}}}}\ignorespaces{}\ignorespaces{}{}{}{}{{}{{}}}\ignorespaces\ignorespaces{\hbox{\kern 128.00732pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{Z(G_{i})}$}}}\kern 3.0pt}}}}}}\ignorespaces{}{}{}{}{{}{{}}{}{{}}{}{{}}{}{{}{{}{{}}{}{{}}{}{{}}{}{{}{{}{{}}}}}}}{\hbox{\kern 115.61493pt\raise-5.39755pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{}{{}}{{}{}{}{}\lx@xy@spline@}{}}}}\ignorespaces{}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{{}}{{}{}{}{}}{}}}}\ignorespaces{}\ignorespaces}}}}\ignorespaces,

where TiT_{i} is a maximal discrete pp-torus of SU(pi)\operatorname{SU}(p_{i}) and the arrow labeled Gi/ΣpiG_{i}/\Sigma_{p_{i}} indicates that the morphism set between the two nodes is isomorphic, as a GiG_{i}-set via precomposition, to the quotient Gi/ΣpiG_{i}/\Sigma_{p_{i}}. The group Z(Gi)/(pi1)Z(G_{i})\cong{\mathbb{Z}}/(p_{i}-1) acts on BSU(pi)p{B\operatorname{SU}(p_{i})}_{p}^{\wedge} via unstable Adams operations ψω(k)\psi^{\omega(k)}, and GiG_{i} acts on (BTi)p{(BT_{i})}_{p}^{\wedge} via its representation as a pp-adic reflection group.

To simplify notation, we fix the value of the index ii in Definition 7.11 and suppress subscripts, writing simply XX and BXBX for the corresponding Aguadé–Zabrodsky space and its classifying space, pp for the prime, and GG for the Weyl group GiG_{i}.

Automorphisms of BTp{BT}_{p}^{\wedge} that correspond to conjugation by elements of SU(p)\operatorname{SU}(p) act trivially on the morphism set G/ΣpG/\Sigma_{p}, since such conjugations induce maps of BSU(p)\operatorname{BSU}(p) that are homotopic to the identity. On the other hand, the Adams operations act on BSU(p)p{BSU(p)}_{p}^{\wedge} by maps that are not homotopic to the identity [JMO92, Thm. 1]. We summarize the properties of Aguadé–Zabrodsky pp-compact groups that we need.

Theorem 7.13 ([Agu89]).

Let BXBX denote one of the Aguadé–Zabrodsky pp-compact groups (Definition 7.11). Then BXBX is a pp-compact group with Weyl group GG. Moreover:

  1. (1)

    The map BSU(p)pBX{\operatorname{BSU}(p)}_{p}^{\wedge}\to BX of pp-compact groups is a monomorphism; that is, the homotopy fiber has finite mod pp homology.

  2. (2)

    If SS is a Sylow pp-subgroup of SU(p)\operatorname{SU}(p), then the composition BSBSU(p)BSU(p)pBXBS\to\operatorname{BSU}(p)\to{\operatorname{BSU}(p)}_{p}^{\wedge}\to BX is a Sylow pp-subgroup of XX.

  3. (3)

    The center Z(G)=/(p1)GZ(G)={\mathbb{Z}}/(p-1)\subset G acts on BTp{BT}_{p}^{\wedge} via Adams operations.

Once we fix a Sylow pp-subgroup of SU(p)\operatorname{SU}(p), we will fix the corresponding one for XX using Theorem 7.13(2). We then simplify the notation by writing SU(p){\mathcal{F}}_{\operatorname{SU}(p)} and X{\mathcal{F}}_{X} for the corresponding fusion systems S(SU(p)){\mathcal{F}}_{S}({\operatorname{SU}(p)}) and S(X){\mathcal{F}}_{S}(X). Likewise, we write SU(p){\mathcal{L}}_{{\operatorname{SU}(p)}} and X{\mathcal{L}}_{X} for the associated linking systems.

Let (S,X)(S,{\mathcal{F}}_{X}) denote the fusion system associated to BXBX that is provided by Theorem 7.6 and has the same Sylow pp-subgroup as the fusion system (S,SU(p))(S,{\mathcal{F}}_{\operatorname{SU}(p)}) for SU(p)\operatorname{SU}(p) studied in Section 6. Our next goal is to relate the two fusion systems; the crucial input is Theorem 7.16, which says that the difference between SU(p){\mathcal{F}}_{\operatorname{SU}(p)} and X{\mathcal{F}}_{X} is entirely described by the automorphisms of Z(S)Z(S). When applied to the subgroups of interest (Corollary 7.18), these automorphisms consist of the Adams operations.

We need a restriction of a fusion system for the purpose of comparing SU(p){\mathcal{F}}_{\operatorname{SU}(p)} and X{\mathcal{F}}_{X}. The following definition is specialized from [BLO14, Defn. 2.1].

Definition 7.14.

Given a saturated fusion system {\mathcal{F}} over a discrete pp-toral group SS, let C(Z(S))C_{\mathcal{F}}(Z(S)) denote the following fusion system:

  • objects of C(Z(S))C_{\mathcal{F}}(Z(S)) are subgroups PP with Z(S)PSZ(S)\subseteq P\subseteq S

  • morphisms of C(Z(S))C_{\mathcal{F}}(Z(S)) are morphisms in {\mathcal{F}} that restrict to the identity on Z(S)Z(S).

Proposition 7.15.

[BLO14, Thm. 2.3] C(Z(S))C_{\mathcal{F}}(Z(S)) is a saturated fusion system over SS.

Definition 7.14 gives us exactly the concept we need to identify SU(p){\mathcal{F}}_{{\operatorname{SU}(p)}} inside X{\mathcal{F}}_{X}.

Theorem 7.16.

[CC17, §5.2] Let XX denote an Aguadé–Zabrodsky pp-compact group with fusion system (S,X)(S,{\mathcal{F}}_{X}). Then there is an isomorphism of fusion systems

CX(Z(S))SU(p).C_{{\mathcal{F}}_{X}}(Z(S))\cong{\mathcal{F}}_{\operatorname{SU}(p)}.

Moreover, the X{\mathcal{F}}_{X}-centric subgroups of SS coincide with the SU(p){\mathcal{F}}_{\operatorname{SU}(p)}-centric subgroups of SS, and likewise the X{\mathcal{F}}_{X}-radical subgroups of SS coincide with the SU(p){\mathcal{F}}_{\operatorname{SU}(p)}-radical subgroups of SS.

Our goal is to obtain a homotopy colimit decomposition of BXBX using Theorem 3.16 with the same indexing category as for SU(p)\operatorname{SU}(p) (see Lemma 6.11). For computational purposes, we use the explicit discrete pp-toral representations from Section 6.

Lemma 7.17.

Let X{\mathcal{H}}_{X} denote the collection of X{\mathcal{F}}_{X}-centric, X{\mathcal{F}}_{X}-radical subgroups of SS, and analogously for SU(p){\mathcal{H}}_{\operatorname{SU}(p)}. Then s¯dX=s¯dSU(p){{\overline{s}}d}{\mathcal{H}}_{X}={{\overline{s}}d}{\mathcal{H}}_{\operatorname{SU}(p)}.

Proof.

By Theorem 7.16, a subgroup PSP\subseteq S is X{\mathcal{F}}_{X}-centric and X{\mathcal{F}}_{X}-radical if and only if it is SU(p){\mathcal{F}}_{\operatorname{SU}(p)}-centric and SU(p){\mathcal{F}}_{\operatorname{SU}(p)}-radical. If two chains are conjugate in SU(p){\mathcal{F}}_{\operatorname{SU}(p)}, then they are also conjugate in the larger fusion system X{\mathcal{F}}_{X}. No new conjugacies of chains are possible in X{\mathcal{F}}_{X} because the chains are all group-theoretically distinct. ∎

Corollary 7.18.

The indexing category s¯dX{{\overline{s}}d}{\mathcal{H}}_{X} has objects SS, Γ\Gamma, (ΓS)(\Gamma\subset S), and for p5p\geq 5 also TT and TST\subset S.

Proof.

The corollary follows from Lemma 7.17 and Proposition 6.12. ∎

In order to use our abstract decomposition result, Theorem 3.16, we will compute AutX()\operatorname{Aut}_{{\mathcal{L}}_{X}}({\mathbb{P}}) for chains X{\mathbb{P}}\in\mathcal{H}_{X} by relating these groups to AutSU(p)()\operatorname{Aut}_{{\mathcal{L}}_{\operatorname{SU}(p)}}({\mathbb{P}}). By a counting argument, we compute Aut(Γ)\operatorname{Aut}(\Gamma), the full abstract automorphism group of Γ\Gamma.

Lemma 7.19.

The abstract automorphism group Aut(Γ)\operatorname{Aut}(\Gamma) is isomorphic to Aff2𝔽p=(𝔽p)2GL2𝔽p\operatorname{Aff}_{2}{\mathbb{F}}_{p}=({\mathbb{F}}_{p})^{2}\rtimes\operatorname{GL}_{2}\!{\mathbb{F}}_{p}. In particular, with the representation of Γ\Gamma in (5.20), we can take the map Aut(Γ)GL2𝔽p\operatorname{Aut}(\Gamma)\rightarrow\operatorname{GL}_{2}\!{\mathbb{F}}_{p} to be the representation given by the action of Aut(Γ)\operatorname{Aut}(\Gamma) on Γ/Z(Γ)(𝔽p)2A×B\Gamma/Z(\Gamma)\cong({\mathbb{F}}_{p})^{2}\cong\langle A\rangle\times\langle B\rangle; that is, AA and BB represent the basis of (𝔽p)2({\mathbb{F}}_{p})^{2} on which GL2𝔽p\operatorname{GL}_{2}\!{\mathbb{F}}_{p} acts.

Proof.

As preliminary, suppose that ff is an automorphism of Γ\Gamma that fixes the center Z(Γ)Z(\Gamma) and passes to the identity on Γ/Z(Γ)A×B\Gamma/Z(\Gamma)\cong\langle A\rangle\times\langle B\rangle. Then for some i,ji,j, we have f(A)=ζiAf(A)=\zeta^{i}A and f(B)=ζjBf(B)=\zeta^{j}B. Such automorphisms are realized for all ii and jj by inner automorphisms of Γ\Gamma because ABA1=ζ1BABA^{-1}=\zeta^{-1}B and BAB1=ζABAB^{-1}=\zeta A. Conversely, since [A,B]Z(Γ)[A,B]\in Z(\Gamma), inner automorphisms of Γ\Gamma pass to the identity automorphism on Γ/Z(Γ)\Gamma/Z(\Gamma).

We assert that there is a short exact sequence

(7.20) 1\textstyle{1\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Γ/(Z(Γ))\textstyle{\Gamma\ignorespaces\ignorespaces\ignorespaces\ignorespaces/(Z(\Gamma))}Aut(Γ)\textstyle{\operatorname{Aut}(\Gamma)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Aut(Γ/Z(Γ))\textstyle{\operatorname{Aut}(\Gamma/Z(\Gamma))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1.\textstyle{1.}

The inclusion is via inner automorphisms, and Aut(Γ)Aut(Γ/Z(Γ))\operatorname{Aut}(\Gamma)\rightarrow\operatorname{Aut}(\Gamma/Z(\Gamma)) is the natural induced map since any group automorphism must stabilize the center. The action of Γ\Gamma on itself by conjugation passes to the identity automorphism on Γ/Z(Γ)\Gamma/Z(\Gamma) as indicated above.

It remains to show that the second map in (7.20) is a split epimorphism. Identifying Γ/Z(Γ)𝔽p×𝔽p\Gamma/Z(\Gamma)\cong{\mathbb{F}}_{p}\times{\mathbb{F}}_{p} with A×B\langle A\rangle\times\langle B\rangle as above, we observe that for any element of Aut(Γ/Z(Γ))GL2𝔽p\operatorname{Aut}(\Gamma/Z(\Gamma))\cong\operatorname{GL}_{2}\!{\mathbb{F}}_{p}, there is a unique automorphism of Z(Γ)Z(\Gamma) that causes the commutator on Γ\Gamma to be preserved, which is sufficient to give an automorphism of Γ\Gamma. Further, uniqueness guarantees that the preimages assemble into a subgroup of Aut(Γ)\operatorname{Aut}(\Gamma), i.e. that the short exact sequence is split by a group homomorphism. The lemma follows. ∎

As in the case of SU(p){\operatorname{SU}(p)}, we only need to compute the automorphism groups in X{\mathcal{L}}_{X} of a subset of the chains named in Corollary 7.18, namely Γ\Gamma and (ΓS)(\Gamma\subset S), and we begin with the fusion system. Any automorphism of Γ\Gamma (or of SS) restricts to an automorphism of the group’s center, Z(Γ)=Z(S)=Z(SU(p))/pZ(\Gamma)=Z(S)=Z({\operatorname{SU}(p)})\cong{\mathbb{Z}}/p. It is helpful to call out what the fusion system automorphisms are doing to the center of these groups.

Definition 7.21.

Let RΓ:AutX(Γ)Aut(/p){\rm{R}}_{\Gamma}\colon\operatorname{Aut}_{{\mathcal{F}}_{X}}(\Gamma)\rightarrow\operatorname{Aut}({\mathbb{Z}}/p) by restriction to Z(Γ)Z(\Gamma), and define RΓS:AutX(ΓS)Aut(/p){\rm{R}}_{\Gamma\subset S}\colon\operatorname{Aut}_{{\mathcal{F}}_{X}}(\Gamma\subset S)\rightarrow\operatorname{Aut}({\mathbb{Z}}/p) similarly.

Lemma 7.22.

The homomorphisms RΓS{\rm{R}}_{\Gamma\subset S} and RΓ{\rm{R}}_{\Gamma} are surjective.

Proof.

We need only prove the result for RΓS{\rm{R}}_{\Gamma\subset S}. Let ξ/p×Aut(/p)\xi\in{\mathbb{Z}}/p^{\times}\cong\operatorname{Aut}({\mathbb{Z}}/p) be a generator; we seek an element of AutX(ΓS)\operatorname{Aut}_{\mathcal{F}_{X}}(\Gamma\subset S) that has order p1p-1 and whose restriction to Z(SU(p))/pZ(\operatorname{SU}(p))\cong{\mathbb{Z}}/p is ξAut(/p)\xi\in\operatorname{Aut}({\mathbb{Z}}/p).

Let ψξ\psi^{\xi} be an unstable Adams operation on BSU(p)p{\operatorname{BSU}(p)}_{p}^{\wedge} (see Theorem 7.8) whose restriction to TT is xxξx\mapsto x^{\xi}. By [JLL12, Prop. 3.5], ψξ\psi^{\xi} restricts to an automorphism of ψξ:SS\psi^{\xi}\colon S\to S which is in X{\mathcal{F}}_{X} by Definition 7.5. Possibly ψξ\psi^{\xi} does not stabilize Γ\Gamma, so suppose that ψξ\psi^{\xi} takes (ΓS)(\Gamma\subset S) to some (ΓS)(\Gamma^{\prime}\subset S). By Proposition 6.12, there exists xSU(p)x\in\operatorname{SU}(p) such that cx(ΓS)=(ΓS)c_{x}(\Gamma^{\prime}\subset S)=(\Gamma\subset S). Then one can consider the automorphism ϕ:=cxψξX\phi:=c_{x}\circ\psi^{\xi}\in{\mathcal{F}}_{X}, which still stabilizes SS and also restricts to an automorphism of Γ\Gamma. We have R(ϕ)=R(ψξ)=ξ{\rm{R}}(\phi)={\rm{R}}(\psi^{\xi})=\xi (because conjugation by an element of SU(p){\operatorname{SU}(p)} fixes /p=Z(SU(p)){\mathbb{Z}}/p=Z({\operatorname{SU}(p)})), and ϕAutX(ΓS)\phi\in\operatorname{Aut}_{{\mathcal{F}}_{X}}(\Gamma\subset S), showing that RΓS{\rm{R}}_{\Gamma\subset S} is surjective. ∎

Lemma 7.22 shows that all of the Adams operations extend to automorphisms of the chains that are relevant for our decomposition and allows us to extract the full fusion system automorphism groups.

Proposition 7.23.

Let 𝒰(GL2𝔽p)GL2𝔽p\operatorname{{\mathcal{U}}}(\operatorname{GL}_{2}\!{\mathbb{F}}_{p})\subset\operatorname{GL}_{2}\!{\mathbb{F}}_{p} denote the subgroup of upper triangular matrices.

  1. (1)

    AutX(Γ)Aff2𝔽p=(𝔽p)2GL2𝔽p\operatorname{Aut}_{{\mathcal{F}}_{X}}(\Gamma)\cong\operatorname{Aff}_{2}{\mathbb{F}}_{p}=({\mathbb{F}}_{p})^{2}\rtimes\operatorname{GL}_{2}\!{\mathbb{F}}_{p}.

  2. (2)

    AutX(ΓS)(𝔽p)2𝒰(GL2𝔽p)\operatorname{Aut}_{{\mathcal{F}}_{X}}(\Gamma\subset S)\cong({\mathbb{F}}_{p})^{2}\rtimes\operatorname{{\mathcal{U}}}(\operatorname{GL}_{2}\!{\mathbb{F}}_{p}).

Proof.

For the first statement, we will use a counting argument. By Proposition 7.16, we have ker(RΓ)=AutSU(p)(Γ)\ker({\rm{R}}_{\Gamma})=\operatorname{Aut}_{{\mathcal{F}}_{\operatorname{SU}(p)}}(\Gamma). Since RΓ{\rm{R}}_{\Gamma} is surjective by Lemma 7.22, we have a short exact sequence

(7.24) 1AutSU(p)(Γ)AutX(Γ)RΓAut(/p)1.1\longrightarrow\operatorname{Aut}_{{\mathcal{F}}_{\operatorname{SU}(p)}}(\Gamma)\longrightarrow\operatorname{Aut}_{{\mathcal{F}}_{X}}(\Gamma)\xrightarrow{\ {\rm{R}}_{\Gamma}\ }\operatorname{Aut}({\mathbb{Z}}/p)\longrightarrow 1.

We know that AutSU(p)(Γ)\operatorname{Aut}_{{\mathcal{F}}_{{\operatorname{SU}(p)}}}(\Gamma), which is given by NSU(p)(Γ)/CSU(p)(Γ)N_{{\operatorname{SU}(p)}}(\Gamma)/C_{{\operatorname{SU}(p)}}(\Gamma), has p3(p21)p^{3}(p^{2}-1) elements (Proposition 5.21 and CSU(p)(Γ)=Z(SU(p))/pC_{{\operatorname{SU}(p)}}(\Gamma)=Z({\operatorname{SU}(p)})\cong{\mathbb{Z}}/p). Hence AutX(Γ)\operatorname{Aut}_{{\mathcal{F}}_{X}}(\Gamma) has (p1)p3(p21)(p-1)\cdot p^{3}(p^{2}-1) elements. As a result, Lemma 7.19 tells us that AutX(Γ)\operatorname{Aut}_{\mathcal{F}_{X}}(\Gamma) must be the full abstract automorphism group of Γ\Gamma, i.e. AutX(Γ)=(𝔽p)2GL2𝔽p\operatorname{Aut}_{\mathcal{F}_{X}}(\Gamma)=({\mathbb{F}}_{p})^{2}\rtimes\operatorname{GL}_{2}\!{\mathbb{F}}_{p}, completing the proof of (1).

For (ΓS)(\Gamma\subset S) we begin in a similar way. By Proposition 7.16, ker(RΓS)=AutSU(p)(ΓS)\ker({\rm{R}}_{\Gamma\subset S})=\operatorname{Aut}_{{\mathcal{F}}_{\operatorname{SU}(p)}}(\Gamma\subset S). By Lemma 7.22 we have a short exact sequence

(7.25) 1AutSU(p)(ΓS)AutX(ΓS)RΓSAut(/p)1.1\longrightarrow\operatorname{Aut}_{{\mathcal{F}}_{\operatorname{SU}(p)}}(\Gamma\subset S)\longrightarrow\operatorname{Aut}_{{\mathcal{F}}_{X}}(\Gamma\subset S)\xrightarrow{\ {\rm{R}}_{\Gamma\subset S}}\operatorname{Aut}({\mathbb{Z}}/p)\longrightarrow 1.

By Proposition 5.21 we have

AutSU(p)(ΓS)(𝔽p)2𝒰(SL2𝔽p),\operatorname{Aut}_{{\mathcal{F}}_{\operatorname{SU}(p)}}(\Gamma\subset S)\cong({\mathbb{F}}_{p})^{2}\rtimes\operatorname{{\mathcal{U}}}(\operatorname{SL}_{2}\!{\mathbb{F}}_{p}),

where the matrices AA and BB represent the basis of (𝔽p)2({\mathbb{F}}_{p})^{2} and 𝒰(SL2𝔽p)\operatorname{{\mathcal{U}}}(\operatorname{SL}_{2}\!{\mathbb{F}}_{p}) acts on this basis in the standard way.

The quotient group in (7.25) is generated by ϕAutX(ΓS)\phi\in\operatorname{Aut}_{{\mathcal{F}}_{X}}(\Gamma\subset S) constructed in Lemma 7.22. We know that ϕ\phi acts as ()ξ(-)^{\xi} on TT (by construction) and as the identity on S/TS/T (by [JLL12, Lemma 2.5]). Hence we have ϕ(A)=Aξ\phi(A)=A^{\xi} and ϕ(B)=ζiAjB\phi(B)=\zeta^{i}A^{j}B for some jj. Thus ϕ\phi corresponds in AutX(Γ)/Γ\operatorname{Aut}_{{\mathcal{F}}_{X}}(\Gamma)/\Gamma to a matrix (ξj01)\begin{pmatrix}\xi&j\\ 0&1\end{pmatrix}, an upper triangular matrix of determinant ξ\xi. Thus the matrices representing 𝒰(SL2𝔽p)\operatorname{{\mathcal{U}}}(\operatorname{SL}_{2}\!{\mathbb{F}}_{p}) and ϕ\phi generate 𝒰(GL2𝔽p)\operatorname{{\mathcal{U}}}(\operatorname{GL}_{2}\!{\mathbb{F}}_{p}). ∎

Proposition 7.23 gives the relevant automorphism groups of chains in the fusion system X{\mathcal{F}}_{X}. The next task is to lift them to the linking system X{\mathcal{L}}_{X}.

Proposition 7.26.
  1. (1)

    AutX(Γ)ΓGL2𝔽p\operatorname{Aut}_{{\mathcal{L}}_{X}}(\Gamma)\cong\Gamma\rtimes\operatorname{GL}_{2}\!{\mathbb{F}}_{p}

  2. (2)

    AutX(ΓS)Γ𝒰(GL2𝔽p)\operatorname{Aut}_{{\mathcal{L}}_{X}}(\Gamma\subset S)\cong\Gamma\rtimes\operatorname{{\mathcal{U}}}(\operatorname{GL}_{2}\!{\mathbb{F}}_{p}).

Proof.

By Definition 2.10(C), Γ\Gamma is normal in both AutX(Γ)\operatorname{Aut}_{{\mathcal{L}}_{X}}(\Gamma) and AutSU(p)(Γ)\operatorname{Aut}_{{\mathcal{L}}_{{\operatorname{SU}(p)}}}(\Gamma), so we compare the two quotients in diagram (7.27) below. By Lemma 6.13 and Proposition 5.21, we have AutSU(p)(Γ)/ΓSL2𝔽p\operatorname{Aut}_{{\mathcal{L}}_{\operatorname{SU}(p)}}(\Gamma)/\Gamma\cong\operatorname{SL}_{2}\!{\mathbb{F}}_{p}. By Lemma 7.19 and Proposition 7.23,

AutX(Γ)/Γ\displaystyle\operatorname{Aut}_{{\mathcal{L}}_{X}}(\Gamma)/\Gamma [AutX(Γ)/Z(Γ)]/[Γ/Z(Γ)]\displaystyle\cong[\operatorname{Aut}_{{\mathcal{L}}_{X}}(\Gamma)/Z(\Gamma)]/[\Gamma/Z(\Gamma)]
AutX(Γ)/(Γ/Z(Γ))\displaystyle\cong\operatorname{Aut}_{{\mathcal{F}}_{X}}\!\big{(}\Gamma)/(\Gamma/Z(\Gamma)\big{)}
GL2𝔽p.\displaystyle\cong\operatorname{GL}_{2}\!{\mathbb{F}}_{p}.

Hence we can compare the automorphism groups in SU(p){\mathcal{L}}_{{\operatorname{SU}(p)}} and X{\mathcal{L}}_{X} with a commutative ladder of short exact sequences, where the first row is split by Proposition 5.21:

(7.27) 1ΓAutSU(p)(Γ)SL2𝔽p11ΓAutX(Γ)GL2𝔽p1.\begin{gathered}\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 5.5pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&&&\\&&&&\crcr}}}\ignorespaces{\hbox{\kern-5.5pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{1\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 29.5pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 29.5pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\Gamma\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\hbox{\kern 1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}\hbox{\kern-1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}}}\ignorespaces{}{\hbox{\hbox{\kern 1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}\hbox{\kern-1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}}}{\hbox{\hbox{\kern 1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}\hbox{\kern-1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 65.75pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 65.75pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{Aut}_{{\mathcal{L}}_{\operatorname{SU}(p)}}(\Gamma)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 139.64479pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 90.12448pt\raise-30.45999pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 139.64479pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{SL}_{2}\!{\mathbb{F}}_{p}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 153.78693pt\raise-31.12668pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 194.46379pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{}{}{{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}}{}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{{}}{{}{}{}}{}}}}\ignorespaces{}\ignorespaces{}{}{}{{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}}{\hbox{\kern 110.70291pt\raise 10.50032pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{}{{}}{{}{}{}\lx@xy@spline@}{}}}}\ignorespaces{}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{{}}{{}{}{}}{}}}}\ignorespaces{}{\hbox{\kern 194.46379pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{1}$}}}}}}}{\hbox{\kern-5.5pt\raise-40.95999pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{1\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 29.5pt\raise-40.95999pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 29.5pt\raise-40.95999pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\Gamma\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 68.43723pt\raise-40.95999pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 68.43723pt\raise-40.95999pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{Aut}_{{\mathcal{L}}_{X}}(\Gamma)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 138.49896pt\raise-40.95999pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 138.49896pt\raise-40.95999pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{GL}_{2}\!{\mathbb{F}}_{p}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 193.07489pt\raise-40.95999pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 193.07489pt\raise-40.95999pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{1.}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{gathered}

We want to show that the second row of (7.27) is also split. The extension is classified by an element of H2(GL2𝔽p;Z(Γ))H2(GL2𝔽p;/p)H^{2}(\operatorname{GL}_{2}\!{\mathbb{F}}_{p};Z(\Gamma))\cong H^{2}(\operatorname{GL}_{2}\!{\mathbb{F}}_{p};{\mathbb{Z}}/p). Further, the classifying element is in the kernel of the restriction H2(GL2𝔽p;/p)H2(SL2𝔽p;/p)H^{2}(\operatorname{GL}_{2}\!{\mathbb{F}}_{p};{\mathbb{Z}}/p)\rightarrow H^{2}(\operatorname{SL}_{2}\!{\mathbb{F}}_{p};{\mathbb{Z}}/p) because the top extension is split. However, the restriction map is injective, because SL2𝔽pGL2𝔽p\operatorname{SL}_{2}\!{\mathbb{F}}_{p}\subset\operatorname{GL}_{2}\!{\mathbb{F}}_{p} is a subgroup of index prime to pp. Hence the lower short exact sequence is also split, which establishes (1).

For (2), let Z:=Z(Γ)=Z(S)Z:=Z(\Gamma)=Z(S). Note that AutX(Γ)\operatorname{Aut}_{{\mathcal{F}}_{X}}(\Gamma) is the quotient of AutX(Γ)\operatorname{Aut}_{{\mathcal{L}}_{X}}(\Gamma) by ZZ (=Z(Γ)=Z(\Gamma)), and likewise by Lemma 3.7 AutX(ΓS)\operatorname{Aut}_{{\mathcal{F}}_{X}}(\Gamma\subset S) is the quotient of AutX(ΓS)\operatorname{Aut}_{{\mathcal{L}}_{X}}(\Gamma\subset S) by ZZ (=Z(S)=Z(S)). This gives the following commutative square:

(7.28) AutX(ΓS)πAutX(Γ)πAutX(ΓS)AutX(Γ).\begin{gathered}\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 34.20802pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\crcr}}}\ignorespaces{\hbox{\kern-34.20802pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{Aut}_{{\mathcal{L}}_{X}}(\Gamma\subset S)\ \ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 34.20804pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@hook{1}}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 59.6747pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 0.0pt\raise-18.00665pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.50694pt\hbox{$\scriptstyle{\pi}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-30.00665pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\lower-3.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 59.6747pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{Aut}_{{\mathcal{L}}_{X}}(\Gamma)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 81.36195pt\raise-18.00665pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.50694pt\hbox{$\scriptstyle{\pi}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 81.36195pt\raise-30.00665pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\lower-3.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-31.78581pt\raise-40.50665pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{Aut}_{{\mathcal{F}}_{X}}(\Gamma\subset S)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 31.78581pt\raise-40.50665pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@hook{1}}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 58.20802pt\raise-40.50665pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 58.20802pt\raise-40.50665pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{Aut}_{{\mathcal{F}}_{X}}(\Gamma).}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{gathered}

Here the top horizontal arrow is a monomorphism by Lemma 3.8, and the bottom horizontal arrow is a monomorphism as well. While this is not quite enough to say that (7.28) is a pullback square, it is enough to guarantee a monomorphism from AutX(ΓS)\operatorname{Aut}_{{\mathcal{L}}_{X}}(\Gamma\subset S) into the pullback of the other three corners. We collect the values of those groups from (1) and from Proposition 7.23 and compute the pullback to obtain the diagram

(7.29) AutX(ΓS)Γ𝒰(GL2𝔽p)πΓGL2𝔽pπ(𝔽p)2𝒰(GL2𝔽p)(𝔽p)2GL2𝔽p.\begin{gathered}\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 34.20802pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\&&\crcr}}}\ignorespaces{\hbox{\kern-34.20802pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{Aut}_{{\mathcal{L}}_{X}}(\Gamma\subset S)\ \ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 34.20804pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@hook{1}}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 61.43349pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 61.43349pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\Gamma\rtimes\operatorname{{\mathcal{U}}}(\operatorname{GL}_{2}\!{\mathbb{F}}_{p})\ \ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 128.53722pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@hook{1}}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 162.87704pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 94.98535pt\raise-17.17555pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.50694pt\hbox{$\scriptstyle{\pi}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 94.98535pt\raise-28.8511pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\lower-3.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 162.87704pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\Gamma\rtimes\operatorname{GL}_{2}\!{\mathbb{F}}_{p}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 186.29pt\raise-17.07277pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.50694pt\hbox{$\scriptstyle{\pi}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 186.29pt\raise-28.8511pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\lower-3.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-3.0pt\raise-41.15555pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 58.20802pt\raise-41.15555pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{({\mathbb{F}}_{p})^{2}\rtimes\operatorname{{\mathcal{U}}}(\operatorname{GL}_{2}\!{\mathbb{F}}_{p})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 155.76268pt\raise-41.15555pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 155.76268pt\raise-41.15555pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{({\mathbb{F}}_{p})^{2}\rtimes\operatorname{GL}_{2}\!{\mathbb{F}}_{p}.}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{gathered}

The result now follows from a counting argument, because AutX(ΓS)\operatorname{Aut}_{{\mathcal{L}}_{X}}(\Gamma\subset S) and (𝔽p)2𝒰(GL2𝔽p)({\mathbb{F}}_{p})^{2}\rtimes\operatorname{{\mathcal{U}}}(\operatorname{GL}_{2}\!{\mathbb{F}}_{p}) each have pp times as many elements as (𝔽p)2𝒰(GL2𝔽p)({\mathbb{F}}_{p})^{2}\rtimes\operatorname{{\mathcal{U}}}(\operatorname{GL}_{2}\!{\mathbb{F}}_{p}), by observation and by (7.28), respectively. ∎

The arguments in Propositions 7.23 and 7.26 cannot be generalized to compute AutX(T)\operatorname{Aut}_{{\mathcal{L}}_{X}}(T), since they used the fact that Z(Γ)=Z(S)Z(\Gamma)=Z(S). However, this remaining case follows easily from results in the literature.

Lemma 7.30.

There is an isomorphism AutX(T)TG\operatorname{Aut}_{{\mathcal{L}}_{X}}(T)\cong T\rtimes G.

Proof.

From equation (3.12), we have a short exact sequence

TAutX(T)OutX(T)T\to\operatorname{Aut}_{{\mathcal{L}}_{X}}(T)\to\operatorname{Out}_{{\mathcal{F}}_{X}}(T)

where OutX(T)=AutX(T)=G\operatorname{Out}_{{\mathcal{F}}_{X}}(T)=\operatorname{Aut}_{{\mathcal{F}}_{X}}(T)=G by Theorem 7.13. This exact sequence describes the normalizer of the maximal torus in the pp-compact group, which by [And99, Theorem 1.2] splits. ∎

Proof of Theorem 7.1.

Combining Theorem 3.16 and Theorem 7.6, we have an equivalence BX(colims¯dXδ)pBX\simeq{(\operatorname{colim}\,_{{{\overline{s}}d}{\mathcal{H}}_{X}}\delta)}_{p}^{\wedge}, with a natural equivalence BAut()δ([])\operatorname{BAut}_{\mathcal{L}}({\mathbb{P}})\to\delta([{\mathbb{P}}]). We fix a choice for conjugacy classes of chains (see Proposition 6.12). By Lemma 7.17 and Proposition 6.12, the indexing category s¯dX{{\overline{s}}d}{\mathcal{H}}_{X} is

(ΓS)(TS)ΓST,\begin{gathered}\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 6.125pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&&\\&&&&\crcr}}}\ignorespaces{\hbox{\kern-3.0pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 30.125pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{(\Gamma\subset S)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\kern 94.19434pt\raise-34.4309pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\kern 6.12502pt\raise-34.57979pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 97.5485pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 130.90265pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{(T\subset S)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\kern 195.95462pt\raise-33.57066pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\kern 106.90265pt\raise-34.46812pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern-6.125pt\raise-39.38887pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\Gamma}$}}}}}}}{\hbox{\kern 47.15967pt\raise-39.38887pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 94.19434pt\raise-39.38887pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{S}$}}}}}}}{\hbox{\kern 148.42863pt\raise-39.38887pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 195.95462pt\raise-39.38887pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{T,}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{gathered}

but (3.19) says that the colimit of δ\delta over s¯dX{{\overline{s}}d}{\mathcal{H}}_{X} simplifies to a pushout

BAutX(Γ)BAutX(ΓS)BAutX(T).\operatorname{BAut}_{{\mathcal{L}}_{X}}(\Gamma)\longleftarrow\operatorname{BAut}_{{\mathcal{L}}_{X}}(\Gamma\subset S)\longrightarrow\operatorname{BAut}_{{\mathcal{L}}_{X}}(T).

The theorem now follows from the identifications of these terms in Proposition 7.26 and Lemma 7.30. ∎

References

  • [AG09] Kasper K. S. Andersen and Jesper Grodal, The classification of 2-compact groups, J. Amer. Math. Soc. 22 (2009), no. 2, 387–436. MR 2476779
  • [AGMV08] K. K. S. Andersen, J. Grodal, J. M. Møller, and A. Viruel, The classification of pp-compact groups for pp odd, Ann. of Math. (2) 167 (2008), no. 1, 95–210. MR 2373153
  • [Agu89] J. Aguadé, Constructing modular classifying spaces, Israel J. Math. 66 (1989), no. 1-3, 23–40. MR 1017153
  • [And99] Kasper K. S. Andersen, The normalizer splitting conjecture for pp-compact groups, vol. 161, 1999, Algebraic topology (Kazimierz Dolny, 1997), pp. 1–16. MR 1713198
  • [BCG+22] Eva Belmont, Natàlia Castellana, Jelena Grbić, Kathryn Lesh, and Michelle Strumila, Normalizers of chains of discrete pp-toral subgroups in compact Lie groups, Topology Appl. 316 (2022), Paper No. 108101, 17. MR 4438946
  • [BCL22] Eva Belmont, Natàlia Castellana, and Kathryn Lesh, Subgroup collections controlling the homotopy type of a pp-local compact group, https://arxiv.org/abs/2210.00952, 2022.
  • [BLO03] Carles Broto, Ran Levi, and Bob Oliver, The homotopy theory of fusion systems, J. Amer. Math. Soc. 16 (2003), no. 4, 779–856. MR 1992826
  • [BLO07] by same author, Discrete models for the pp-local homotopy theory of compact Lie groups and pp-compact groups, Geom. Topol. 11 (2007), 315–427. MR 2302494
  • [BLO14] by same author, An algebraic model for finite loop spaces, Algebr. Geom. Topol. 14 (2014), no. 5, 2915–2981. MR 3276851
  • [CC17] José Cantarero and Natàlia Castellana, Unitary embeddings of finite loop spaces, Forum Math. 29 (2017), no. 2, 287–311. MR 3619114
  • [Che13] Andrew Chermak, Fusion systems and localities, Acta Math. 211 (2013), no. 1, 47–139. MR 3118305
  • [CLN07] Natàlia Castellana, Ran Levi, and Dietrich Notbohm, Homology decompositions for pp-compact groups, Adv. Math. 216 (2007), no. 2, 491–534. MR 2351369
  • [DMW87] William G. Dwyer, Haynes R. Miller, and Clarence W. Wilkerson, The homotopic uniqueness of BS3BS^{3}, Algebraic topology, Barcelona, 1986, Lecture Notes in Math., vol. 1298, Springer, Berlin, 1987, pp. 90–105. MR 928825
  • [DW94a] W. G. Dwyer and C. W. Wilkerson, Homotopy fixed-point methods for Lie groups and finite loop spaces, Ann. of Math. (2) 139 (1994), no. 2, 395–442. MR 1274096
  • [DW94b] by same author, Homotopy fixed-point methods for Lie groups and finite loop spaces, Ann. of Math. (2) 139 (1994), no. 2, 395–442. MR 1274096
  • [Dwy97] W. G. Dwyer, Homology decompositions for classifying spaces of finite groups, Topology 36 (1997), no. 4, 783–804. MR 1432421
  • [JLL12] Fabien Junod, Ran Levi, and Assaf Libman, Unstable Adams operations on pp-local compact groups, Algebr. Geom. Topol. 12 (2012), no. 1, 49–74. MR 2889545
  • [JM92] Stefan Jackowski and James McClure, Homotopy decomposition of classifying spaces via elementary abelian subgroups, Topology 31 (1992), no. 1, 113–132. MR 1153240
  • [JMO92] Stefan Jackowski, James McClure, and Bob Oliver, Homotopy classification of self-maps of BGBG via GG-actions I,II, Ann. of Math. (2) 135 (1992), no. 1, 183–270. MR 1147962 (93e:55019a)
  • [JMO95] by same author, Self-homotopy equivalences of classifying spaces of compact connected Lie groups, Fund. Math. 147 (1995), no. 2, 99–126. MR 1341725
  • [Lib06] Assaf Libman, The normaliser decomposition for pp-local finite groups, Algebr. Geom. Topol. 6 (2006), 1267–1288. MR 2253446
  • [Lib11] by same author, Orbit spaces, Quillen’s theorem A and Minami’s formula for compact Lie groups, Fund. Math. 213 (2011), no. 2, 115–167. MR 2800583 (2012f:55010)
  • [LL15] Ran Levi and Assaf Libman, Existence and uniqueness of classifying spaces for fusion systems over discrete pp-toral groups, J. Lond. Math. Soc. (2) 91 (2015), no. 1, 47–70. MR 3338608
  • [LL17] by same author, Groups of unstable Adams operations on pp-local compact groups, Algebr. Geom. Topol. 17 (2017), no. 1, 355–418. MR 3604380
  • [Mol18] Rémi Molinier, Control of fixed points over discrete pp-toral groups, and existence and uniqueness of linking systems, J. Algebra 499 (2018), 43–73. MR 3758494
  • [Oli94] Bob Oliver, pp-stubborn subgroups of classical compact Lie groups, J. Pure Appl. Algebra 92 (1994), no. 1, 55–78. MR 1259669 (94k:57055)
  • [Oli13] by same author, Existence and uniqueness of linking systems: Chermak’s proof via obstruction theory, Acta Math. 211 (2013), no. 1, 141–175. MR 3118306
  • [Sło91] Jolanta Słomińska, Homotopy colimits on E-I-categories, Algebraic topology Poznań 1989, Lecture Notes in Math., vol. 1474, Springer, Berlin, 1991, pp. 273–294. MR 1133907
  • [Sło01] by same author, Homotopy decompositions of orbit spaces and the Webb conjecture, Fund. Math. 169 (2001), no. 2, 105–137. MR 1852376
  • [ST54] G. C. Shephard and J. A. Todd, Finite unitary reflection groups, Canad. J. Math. 6 (1954), 274–304. MR 59914
  • [Ste16] Robert Steinberg, Lectures on Chevalley groups, University Lecture Series, vol. 66, American Mathematical Society, Providence, RI, 2016, Notes prepared by John Faulkner and Robert Wilson, Revised and corrected edition of the 1968 original [ MR0466335], With a foreword by Robert R. Snapp. MR 3616493