This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Normalized ground states solutions for nonautonomous Choquard equationsthanks: ThisworkwaspartiallysupportedbyNSFC(11901532,11901531).

Huxiao Luo, Lushun Wang
Department of Mathematics, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
Corresponding author. E-mail: [email protected] (H. Luo), [email protected] (L. Wang).

Abstract: In this paper, we study normalized ground state solutions for the following nonautonomous Choquard equation:

{Δuλu=(1|x|μA|u|p)A|u|p2u,N|u|2𝑑x=c,uH1(N,),\left\{\begin{array}[]{ll}\begin{aligned} &-\Delta u-\lambda u=\left(\frac{1}{|x|^{\mu}}\ast A|u|^{p}\right)A|u|^{p-2}u,\\ &\int_{\mathbb{R}^{N}}|u|^{2}dx=c,\quad u\in H^{1}(\mathbb{R}^{N},\mathbb{R}),\end{aligned}\end{array}\right.

where c>0c>0, 0<μ<N0<\mu<N, λ\lambda\in\mathbb{R}, AC1(N,)A\in C^{1}(\mathbb{R}^{N},\mathbb{R}). For p(2,μ,p¯)p\in(2_{*,\mu},\bar{p}), we prove that the Choquard equation possesses ground state normalized solutions, and the set of ground states is orbitally stable. For p(p¯,2μ)p\in(\bar{p},2^{*}_{\mu}), we find a normalized solution, which is not a global minimizer. 2μ2^{*}_{\mu} and 2,μ2_{*,\mu} are the upper and lower critical exponents due to the Hardy-Littlewood-Sobolev inequality, respectively. p¯\bar{p} is L2L^{2}-critical exponent. Our results generalize and extend some related results.

Keywords: Nonautonomous Choquard equation; Variational methods; Normalized solution; Orbitally stable.

MSC(2010): 35J50; 58E30

1 Introduction

Consider the time dependent nonautonomous Choquard equation

{itψ=Δψ(1|x|μA|ψ|p)A|ψ|p2ψ,t,xN,ψ(0,x)=ψ0(x)H1(N,),\left\{\begin{array}[]{ll}\begin{aligned} &i\partial_{t}\psi=-\Delta\psi-\left(\frac{1}{|x|^{\mu}}\ast A|\psi|^{p}\right)A|\psi|^{p-2}\psi,\quad t\in\mathbb{R},~{}x\in\mathbb{R}^{N},\\ &\psi(0,x)=\psi_{0}(x)\in H^{1}(\mathbb{R}^{N},\mathbb{C}),\end{aligned}\end{array}\right. (1.1)

where NN\in\mathbb{N} denotes space dimension, 0<μ<N0<\mu<N, AL(N,)A\in L^{\infty}(\mathbb{R}^{N},\mathbb{R}), p(2,μ,2μ)p\in(2_{*,\mu},2^{*}_{\mu}), where

{2,μ:=2NμN,2μ:=2Nμ(N2)+={2NμN2ifN3,+ifN=1,2.\left\{\begin{array}[]{ll}\begin{aligned} &2_{*,\mu}:=\frac{2N-\mu}{N},\\ &2^{*}_{\mu}:=\frac{2N-\mu}{(N-2)_{+}}=\left\{\begin{array}[]{ll}\begin{aligned} &\frac{2N-\mu}{N-2}~{}\text{if}~{}N\geq 3,\\ &+\infty~{}\text{if}~{}N=1,2.\end{aligned}\end{array}\right.\end{aligned}\end{array}\right.

Equation (1.1)(\ref{t1.1.0}) has several physical origins. In particular, when N=3N=3, p=2p=2, μ=1\mu=1 and A(x)1A(x)\equiv 1, (1.1) appeared at least as early as in 1954, in a work by S. I. Pekar [10, 18] describing the quantum mechanics of a polaron at rest. In 1976, P. Choquard [12] used (1.1)(\ref{t1.1.0}) to describe an electron trapped in its own hole, in a certain approximation to Hartree-Fock theory of one component plasma. Twenty years later, R. Penrose proposed (1.1)(\ref{t1.1.0}) as a model of self-gravitating matter, in a programme in which quantum state reduction is understood as a gravitational phenomenon, see [16].

For our setting, A(x)A(x) is a real-valued bounded function and not necessarily a constant function. However, according to [4, 8], by testing equation (1.1) against ψ¯\bar{\psi} (the complex conjugate of ψ\psi) and tψ¯\partial_{t}\bar{\psi}, it is easy to obtain the conservation property of mass N|ψ|2𝑑x\int_{\mathbb{R}^{N}}|\psi|^{2}dx and of energy

12N|ψ|2𝑑x12pN(|x|μA|ψ|p)A|ψ|p𝑑x.\frac{1}{2}\int_{\mathbb{R}^{N}}|\nabla\psi|^{2}dx-\frac{1}{2p}\int_{\mathbb{R}^{N}}(|x|^{-\mu}\ast A|\psi|^{p})A|\psi|^{p}dx.

And similar to [8, Theorem 1.1], for 0<μ<min{N,4}0<\mu<\min\{N,4\} and 2p<2μ2\leq p<2^{*}_{\mu}, we have from Hardy-Littlewood-Sobolev inequality and Hölder inequality that

(|x|μA|u|p)A|u|p2u(|x|μA|v|p)A|v|p2v2Np2Np2N+μC(u2Np2Nμ2p2+v2Np2Nμ2p2)uv2Np2Nμ,\|(|x|^{-\mu}\ast A|u|^{p})A|u|^{p-2}u-(|x|^{-\mu}\ast A|v|^{p})A|v|^{p-2}v\|_{\frac{2Np}{2Np-2N+\mu}}\leq C(\|u\|^{2p-2}_{\frac{2Np}{2N-\mu}}+\|v\|^{2p-2}_{\frac{2Np}{2N-\mu}})\|u-v\|_{\frac{2Np}{2N-\mu}},

where q\|\cdot\|_{q} denotes the usual norm of the Lebesgue space Lq(N,)L^{q}(\mathbb{R}^{N},\mathbb{R}). Then by Strichartz estimate and fixed point argument [4, Theorem 3.3.9], (1.1) is local well-posedness in H1(N,)H^{1}(\mathbb{R}^{N},\mathbb{C}). Moreover, if 2p<p¯2\leq p<\bar{p}, it is standard to get global existence by the conservation of mass and energy and Gagliardo-Nirenberg inequality of convolutional type, see [8, Theorem 1.2]. Here, p¯:=2Nμ+2N\bar{p}:=\frac{2N-\mu+2}{N} denotes the L2L^{2}-critical (mass-critical) exponent.

In general, equation (1.1) admits special regular solutions, which are called solitary (standing) waves. More precisely, these solutions have the form ψ(t,x)=eiλtu(x)\psi(t,x)=e^{-i\lambda t}u(x), where λ-\lambda\in\mathbb{R} is the frequency and u(x)u(x) solves the following elliptic equation

{Δuλu=(1|x|μA|u|p)A|u|p2uinN,N|u|2𝑑x=N|ψ0|2𝑑x:=c,uH1(N,).\left\{\begin{array}[]{ll}\begin{aligned} &-\Delta u-\lambda u=\left(\frac{1}{|x|^{\mu}}\ast A|u|^{p}\right)A|u|^{p-2}u\quad\text{in}~{}\mathbb{R}^{N},\\ &\int_{\mathbb{R}^{N}}|u|^{2}dx=\int_{\mathbb{R}^{N}}|\psi_{0}|^{2}dx:=c,\\ &u\in H^{1}(\mathbb{R}^{N},\mathbb{R}).\end{aligned}\end{array}\right. (P)

Here the constraint N|u|2𝑑x=c\int_{\mathbb{R}^{N}}|u|^{2}dx=c is natural due to the conservation of mass.

To study (P) variationally, we need to recall the following Hardy–Littlewood–Sobolev inequality [13, Theorem 4.3].

Lemma 1.1.

(Hardy–Littlewood–Sobolev inequality.) Let s,r>1s,r>1 and 0<μ<N0<\mu<N with 1/s+μ/N+1/r=21/s+\mu/N+1/r=2, fLs(N,)f\in L^{s}(\mathbb{R}^{N},\mathbb{R}) and hLr(N,)h\in L^{r}(\mathbb{R}^{N},\mathbb{R}). There exists a sharp constant C(N,μ,s,r)C(N,\mu,s,r), independent of f,hf,h, such that

NNf(x)h(y)|xy|μ𝑑x𝑑yC(N,μ,s,r)fshr.\int_{\mathbb{R}^{N}}\int_{\mathbb{R}^{N}}\frac{f(x)h(y)}{|x-y|^{\mu}}dxdy\leq C(N,\mu,s,r)\|f\|_{s}\|h\|_{r}. (1.2)

If A(x)A(x) is bounded in N\mathbb{R}^{N}, then by (1.2) and Sobolev inequality, the integral

NNA(x)|u(x)|pA(y)|u(y)|p|xy|μdxdy\int_{\mathbb{R}^{N}}\int_{\mathbb{R}^{N}}\frac{A(x)|u(x)|^{p}A(y)|u(y)|^{p}}{|x-y|^{\mu}}\mathrm{d}x\mathrm{d}y

is well defined in H1(N,)H^{1}(\mathbb{R}^{N},\mathbb{R}) for

2,μ=2NμNp2μ=2Nμ(N2)+.2_{*,\mu}=\frac{2N-\mu}{N}\leq p\leq 2^{*}_{\mu}=\frac{2N-\mu}{(N-2)_{+}}.

As a result, the functional I:H1(N,)I:H^{1}(\mathbb{R}^{N},\mathbb{R})\mapsto\mathbb{R},

I(u):=12N|u|2dx12pNNA(x)|u(x)|pA(y)|u(y)|p|xy|μdxdyI(u):=\frac{1}{2}\int_{\mathbb{R}^{N}}|\nabla u|^{2}\mathrm{d}x-\frac{1}{2p}\int_{\mathbb{R}^{N}}\int_{\mathbb{R}^{N}}\frac{A(x)|u(x)|^{p}A(y)|u(y)|^{p}}{|x-y|^{\mu}}\mathrm{d}x\mathrm{d}y (1.3)

is well defined. Furthermore, by a standard argument, we have IC1(H1(N,),)I\in C^{1}(H^{1}(\mathbb{R}^{N},\mathbb{R}),\mathbb{R}).

Due to the constraint N|u|2𝑑x=c\int_{\mathbb{R}^{N}}|u|^{2}dx=c, the solution for (P) is called normalized solution, which can be found by looking for critical points of the functional II on the constraint

𝒮(c)={uH1(N,):N|u|2𝑑x=c}.\mathcal{S}(c)=\left\{u\in H^{1}\left(\mathbb{R}^{N},\mathbb{R}\right):\int_{\mathbb{R}^{N}}|u|^{2}dx=c\right\}.

In this situation, the frequency λ-\lambda\in\mathbb{R} can no longer be fixed but instead appears as a Lagrange multiplier, and each critical point uc𝒮(c)u_{c}\in\mathcal{S}(c) of I|𝒮(c)I|_{\mathcal{S}(c)} corresponds a Lagrange multiplier λc\lambda_{c}\in\mathbb{R} such that (uc,λc)(u_{c},\lambda_{c}) solves (weakly) (P). Due to physical application, we are particularly interested in normalized ground state solutions, defined as follows:

Definition 1.2.

For any fixed c>0c>0, we say that uc𝒮(c)u_{c}\in\mathcal{S}(c) is a normalized ground state solution to (P) if I|𝒮(c)(uc)=0I^{\prime}|_{\mathcal{S}(c)}(u_{c})=0 and

I(uc)=inf{I(u):u𝒮(c),I|𝒮(c)(u)=0}.I(u_{c})=\inf\{I(u):u\in\mathcal{S}(c),I^{\prime}|_{\mathcal{S}(c)}(u)=0\}.

For any c>0c>0, we set

σ(c):=infu𝒮(c)I(u).\sigma(c):=\inf\limits_{u\in\mathcal{S}(c)}I(u).

If the minimizers of σ(c)\sigma(c) exist, then all minimizers are critical points of I|𝒮(c)I|_{\mathcal{S}(c)} as well as normalized ground state solutions to (P).

Remark 1.

If σ(c)\sigma(c) admits a global minimizer, then this definition of ground states naturally extends the notion of ground states from linear quantum mechanics.

There is a lot of literature studying ground states to the autonomous Choquard equations. For example, the existence of ground states to the autonomous Choquard equation

Δuλu=(1|x|μ|u|p)|u|p2uinN-\Delta u-\lambda u=\left(\frac{1}{|x|^{\mu}}\ast|u|^{p}\right)|u|^{p-2}u\quad\text{in}~{}\mathbb{R}^{N} (1.4)

is established by Moroz and Van Schaftingen [17] under λ=1\lambda=-1 and 2,μ<p<2μ2_{*,\mu}<p<2^{*}_{\mu}. In [19], Ye obtained sharp existence results of the normalized solution to (1.4). Precisely,

  • (i)

    If p(2,μ,p¯)p\in\left(2_{*,\mu},\bar{p}\right), σ(c)\sigma(c) has at least one minimizer for each c>0c>0 and σ(c)>\sigma(c)>-\infty;

  • (ii)

    If p(p¯,2μ)p\in\left(\bar{p},2^{*}_{\mu}\right), σ(c)\sigma(c) has no minimizer for each c>0c>0 and σ(c)=\sigma(c)=-\infty;

  • (iii)

    The L2L^{2}-critical case p=p¯p=\bar{p} is complicated, see [19] for details.

As far as we know, normalized solution of nonautonomous Choquard equation (P) has not been studied. In this paper, we are interested in normalized solutions for the nonautonomous Choquard equation (P) under two cases: (i) L2L^{2}-subcritical case, i.e., p(2,μ,p¯)p\in(2_{*,\mu},\bar{p}); (ii) L2L^{2}-supercritical case, i.e., p(p¯,2μ)p\in(\bar{p},2^{*}_{\mu}).

For the L2L^{2}-subcritical case, we generalize the result in [19] to the nonautonomous setting.

Theorem 1.3.

Let N1N\geq 1, 0<μ<N0<\mu<N and 2,μ<p<p¯2_{*,\mu}<p<\bar{p}. Suppose that

  • (A1A_{1})

    AC1(N,)A\in C^{1}(\mathbb{R}^{N},\mathbb{R}), lim|x|+A(x):=A(0,+)\lim\limits_{|x|\to+\infty}A(x):=A_{\infty}\in(0,+\infty), and A(x)AA(x)\geq A_{\infty} for all xNx\in\mathbb{R}^{N};

  • (A2A_{2})

    there exists a constant ϱ>0\varrho>0 such that tNμ+2ϱ(p1)2A(tx)t^{\frac{N-\mu+2\varrho(p-1)}{2}}A(tx) is nondecreasing on t(0,+)t\in(0,+\infty) for every xNx\in\mathbb{R}^{N}.

Then II admits a critical point u¯c\bar{u}_{c} on 𝒮(c)\mathcal{S}(c) which is a negative global minimum of II. Moreover, for the above critical point u¯c\bar{u}_{c}, there exists Lagrange multiplier λc\lambda_{c} such that (u¯c,λc)(\bar{u}_{c},\lambda_{c}) is a solution of (P)(\ref{1.1.0}).

Remark 2.

For autonomous situation A1A\equiv 1, Ye [19] proved that the Lagrange multiplier λc<0\lambda_{c}<0. However, in our nonautonomous setting, we cannot be sure that Lagrange multiplier λc\lambda_{c} is negative due to the complexity in the Pohožaev identity of nonautonomous equation.

Compared with [19], the proof of Theorem 1.3 is more complex due to more general nonlinearity in (P). The main difficulty is to prove the compactness of a minimizing sequence of σ(c)=infu𝒮(c)I\sigma(c)=\inf\limits_{u\in\mathcal{S}(c)}I. To do that, inspired by [1, 7, 14, 15], we shall establish the following subadditivity inequality:

σ(c)<σ(α)+σ(cα),0<α<c\sigma(c)<\sigma(\alpha)+\sigma(c-\alpha),\quad\forall 0<\alpha<c (1.5)

with the help of the scaling

sus:=sϱu(x/s).s\mapsto u_{s}:=s^{\varrho}u(x/s). (1.6)

Let ZcZ_{c} denote the set of the normalized ground state solutions for (1.1). We also interest in the stability and instability of normalized ground state solutions, defined as follows:

Definition 1.4.

ZcZ_{c} is orbitally stable if for every ε>0\varepsilon>0 there exists δ>0\delta>0 such that, for any ψ0H1(N,)\psi_{0}\in H^{1}(\mathbb{R}^{N},\mathbb{C}) with infuZcψ0uH1(N,)<δ\inf\limits_{u\in Z_{c}}\|\psi_{0}-u\|_{H^{1}(\mathbb{R}^{N},\mathbb{C})}<\delta, we have

infuZcψ(t,)uH1(N,)<εt>0,\inf\limits_{u\in Z_{c}}\|\psi(t,\cdot)-u\|_{H^{1}(\mathbb{R}^{N},\mathbb{C})}<\varepsilon\quad\forall t>0,

where ψ(t,)\psi(t,\cdot) denotes the solution to (1.1) with initial datum ψ0\psi_{0}. A standing wave eiλtue^{-i\lambda t}u is strongly unstable if for every ε>0\varepsilon>0 there exists ψ0H1(N,)\psi_{0}\in H^{1}(\mathbb{R}^{N},\mathbb{C}) such that uψ0H1(N,)<ε\|u-\psi_{0}\|_{H^{1}(\mathbb{R}^{N},\mathbb{C})}<\varepsilon, and ψ(t,)\psi(t,\cdot) blows-up in finite time.

Following the same argument as in [5], we can deduce that ZcZ_{c} is orbitally stable provided that any minimizing sequence to σ(c)\sigma(c) is compact in H1(N,)H^{1}(\mathbb{R}^{N},\mathbb{R}).

Note that due to the presence of the coefficients A(x)A(x) in (P), our minimization problems are not invariant by the action of the translations. To overcome this difficult, we adopt the method of studying the nonautonomous Schrödinger equation in [2]. The main point is the analysis of the compactness of minimizing sequences to suitable constrained minimization problem related to (P).

More precisely,

Theorem 1.5.

Let N1N\geq 1, 0<μ<20<\mu<2, 2p<p¯2\leq p<\bar{p}. Suppose that

  • (A1A^{\prime}_{1})

    AL(N,)A\in L^{\infty}(\mathbb{R}^{N},\mathbb{R}), A(x)0A(x)\geq 0 for almost every xNx\in\mathbb{R}^{N}, and there is A0>0A_{0}>0 such that meas{A(x)>A0}(0,+)meas\{A(x)>A_{0}\}\in(0,+\infty).

Then there exists c0>0c_{0}>0 such that all the minimizing sequences for I|𝒮(c)I|_{\mathcal{S}(c)} are compact in H1(N,)H^{1}(\mathbb{R}^{N},\mathbb{R}) provided that c>c0c>c_{0}. In particular, ZcZ_{c} is a nonempty compact set and it is orbitally stable.

Remark 3.

The condition 0<μ<20<\mu<2 in Theorem 1.5 is to ensure 2<p¯=2Nμ+2N2<\bar{p}=\frac{2N-\mu+2}{N}. If p<2p<2, the nonlocal term (|x|μA|ψ|p)A|ψ|p2ψ\left(|x|^{-\mu}\ast A|\psi|^{p}\right)A|\psi|^{p-2}\psi in dispersion equation (1.1) is singular, the existence of local-well posedness of (1.1) is invalid, similar to the autonomous equation (A1A\equiv 1) in [8].

In the second part of this article, we consider the L2L^{2}-supercritical case. Since σ(c)=\sigma(c)=-\infty for p(p¯,2μ)p\in(\bar{p},2^{*}_{\mu}), it is impossible to search for a minimum of II on 𝒮(c)\mathcal{S}(c). So it is nature to look for a critical point of II having a minimax characterization. For example, for the following Schrödinger equation

Δuλu=f(u),uH1(N,),-\Delta u-\lambda u=f(u),~{}~{}u\in H^{1}(\mathbb{R}^{N},\mathbb{R}),

Jeanjean [9] constructed mountain-pass geometrical structure on 𝒮(c)×\mathcal{S}(c)\times\mathbb{R} to an auxiliary functional

I~(u,t)=e2t2N|u|2dx1etNNF(etN2u)dx,\tilde{I}(u,t)=\frac{e^{2t}}{2}\int_{\mathbb{R}^{N}}|\nabla u|^{2}\mathrm{d}x-\frac{1}{e^{tN}}\int_{\mathbb{R}^{N}}F\left(e^{\frac{tN}{2}}u\right)\mathrm{d}x, (1.7)

where F(u)=0uf(t)𝑑tF(u)=\int_{0}^{u}f(t)dt. Then applying the Ekeland principle to the auxiliary functional, the author obtained a sequence {(vn,sn)}𝒮(c)×\{(v_{n},s_{n})\}\subset\mathcal{S}(c)\times\mathbb{R} which can be used to construct a bounded Palais-Smale sequence {un}𝒮(c)\{u_{n}\}\subset\mathcal{S}(c) for II at the M-P level.

By using Jeanjean’s method [9], Li and Ye [11] obtained the normalized solutions to the Choquard equation:

Δuλu=(|x|μF(u))f(u),-\Delta u-\lambda u=\left(|x|^{-\mu}\ast F(u)\right)f(u), (1.8)

where λ\lambda\in\mathbb{R}, N3N\geq 3, μ(0,N)\mu\in(0,N), and F(u)F(u) behaves like |u|p|u|^{p} for 2Nμ+2N<p<2NμN2\frac{2N-\mu+2}{N}<p<\frac{2N-\mu}{N-2}.

However, for nonautonomous equation (P), the method of constructing a Pohoz̆aev-Palais-Smale sequence in [9] fails. To overcome this difficulty, we adopt the method in [7]. More precisely, we assume that

  • (A3A_{3})

    t(Np2N+μ)A(tx)2A(tx)(tx)t\mapsto(Np-2N+\mu)A(tx)-2\nabla A(tx)\cdot(tx) is nonincreasing on (0,)(0,\infty) for every xNx\in\mathbb{R}^{N};

  • (A4A_{4})

    t2p(Np2N+μ)2A(tx)t^{\frac{2p-(Np-2N+\mu)}{2}}A(tx) is strictly increasing on t(0,)t\in(0,\infty) for every xNx\in\mathbb{R}^{N}.

Besides AA\equivconstant, there are indeed many functions which satisfy (A1),(A3)(A_{1}),(A_{3}) and (A4)(A_{4}). For example

  • (ii)

    A1(x)=1+beτ|x|A_{1}(x)=1+be^{-\tau|x|} with 0<be2p(Np2N+μ)20<b\leq e\cdot\frac{2p-(Np-2N+\mu)}{2} and τ>0\tau>0;

  • (iiii)

    A2(x)=1+b1+|x|A_{2}(x)=1+\frac{b}{1+|x|} with 0<b2[2p(Np2N+μ)]0<b\leq 2[2p-(Np-2N+\mu)].

Under (A1),(A3)(A_{1}),(A_{3}) and (A4)(A_{4}), we shall establish the existence of normalized ground state solutions to the nonautonomous Choquard equation (P) by taking a minimum on the manifold

(c)={u𝒮(c):J(u):=ddtI(ut)|t=1=0},\mathcal{M}(c)=\left\{u\in\mathcal{S}(c):J(u):=\left.\frac{\mathrm{d}}{\mathrm{d}t}I\left(u^{t}\right)\right|_{t=1}=0\right\}, (1.9)

where ut(x):=tN/2u(tx)u^{t}(x):=t^{N/2}u(tx) for all t>0t>0 and xNx\in\mathbb{R}^{N}, and ut𝒮(c)u^{t}\in\mathcal{S}(c) if u𝒮(c)u\in\mathcal{S}(c).

Theorem 1.6.

Suppose that N1N\geq 1, 0<μ<N0<\mu<N, p¯<p<2μ\bar{p}<p<2^{*}_{\mu}, (A1),(A3)(A_{1}),(A_{3}) and (A4)(A_{4}) hold. Then for any c>0c>0, (P) has a couple of solutions (u¯c,λc)𝒮(c)×\left(\overline{u}_{c},\lambda_{c}\right)\in\mathcal{S}(c)\times\mathbb{R} such that

I(u¯c)=infu(c)I(u)=infu𝒮(c)maxt>0I(ut)>0.I\left(\overline{u}_{c}\right)=\inf_{u\in\mathcal{M}(c)}I(u)=\inf_{u\in\mathcal{S}(c)}\max_{t>0}I\left(u^{t}\right)>0.

To address the lack of compactness, we should consider the limit equation of (P):

Δuλu=A2(|x|μ|u|p)|u|p2u,uH1(N).-\Delta u-\lambda u=A_{\infty}^{2}\left(|x|^{-\mu}\ast|u|^{p}\right)|u|^{p-2}u,~{}~{}u\in H^{1}(\mathbb{R}^{N}). (P0)

The energy functional is defined as follows:

I(u)=12N|u|2dxA22pNN|u(x)|p|u(y)|p|xy|μdxdy.I_{\infty}(u)=\frac{1}{2}\int_{\mathbb{R}^{N}}|\nabla u|^{2}\mathrm{d}x-\frac{A_{\infty}^{2}}{2p}\int_{\mathbb{R}^{N}}\int_{\mathbb{R}^{N}}\frac{|u(x)|^{p}|u(y)|^{p}}{|x-y|^{\mu}}\mathrm{d}x\mathrm{d}y. (1.10)

Similar to (1.9), we define

(c)={u𝒮(c):J(u):=ddtI(ut)|t=1=0}.\mathcal{M}_{\infty}(c)=\left\{u\in\mathcal{S}(c):J_{\infty}(u):=\left.\frac{\mathrm{d}}{\mathrm{d}t}I_{\infty}\left(u^{t}\right)\right|_{t=1}=0\right\}. (1.11)
Remark 4.

Compared to [7], the main difficulty in our nonlocal setting: When proving that infu(c)I(u)\inf_{u\in\mathcal{M}(c)}I(u) can be achieved, it needs to be compared (P) with the limit equation. The difference between II and II_{\infty} is more complicated than that of the Schrödinger equation.

Finally, we give our future research directions about this article:
For A1A\equiv 1 and p¯<p<2μ\bar{p}<p<2^{*}_{\mu}, by using the blow up for a class of initial data with nonnegative energy, Chen and Guo [6] proved that the standing wave of (1.1) must be strongly unstable. For nonautonomous situation (AA\not\equivconstant), the method in [6] is invalid. We will study the problem in the future.

This paper is organized as follows. In section 2, we prove Theorem 1.3 and Theorem 1.5. In section 3, we show Theorem 1.6.

In this paper, we make use of the following notation:
\diamondsuit C,Ci,i=1,2,,C,C_{i},i=1,2,\cdot\cdot\cdot, will be repeatedly used to denote various positive constants whose exact values are irrelevant.
\diamondsuit

2={2NN2ifN3+ifN=1,22^{*}=\left\{\begin{array}[]{ll}\begin{aligned} &\frac{2N}{N-2}~{}&\text{if}~{}N\geq 3\\ &+\infty~{}&\text{if}~{}N=1,2\end{aligned}\end{array}\right.

denotes the Sobolev critical exponent.
\diamondsuit o(1)o(1) denotes the infinitesimal as n+n\to+\infty.
\diamondsuit For the sake of simplicity, integrals over the whole N\mathbb{R}^{N} will be often written \int.


2 L2L^{2}-subcritical case

First, we prove a nonlocal version of Brezis-Lieb lemma, which will be used in the proof below both L2L^{2}-subcritical case and L2L^{2}-supercritical case. We need the following classical Brezis-Lieb lemma [3].

Lemma 2.1.

([3]) Let NN\in\mathbb{N} and q[2,2]q\in[2,2^{*}]. If unuu_{n}\rightharpoonup u in H1(N,)H^{1}(\mathbb{R}^{N},\mathbb{R}), then

|unu|q𝑑x|un|q𝑑x=|u|q𝑑x+o(1).\displaystyle\int|u_{n}-u|^{q}dx-\int|u_{n}|^{q}dx=\int|u|^{q}dx+o(1). (2.1)
Lemma 2.2.

Let NN\in\mathbb{N}, μ(0,N)\mu\in(0,N), p[2,μ,2μ]p\in[2_{*,\mu},2^{*}_{\mu}], and A,BL(N,)A,B\in L^{\infty}(\mathbb{R}^{N},\mathbb{R}). If unuu_{n}\rightharpoonup u in H1(N,)H^{1}(\mathbb{R}^{N},\mathbb{R}), then

(|x|μA|unu|p)B|unu|p𝑑x(|x|μA|un|p)B|un|p𝑑x\displaystyle\int(|x|^{-\mu}\ast A|u_{n}-u|^{p})B|u_{n}-u|^{p}dx-\int(|x|^{-\mu}\ast A|u_{n}|^{p})B|u_{n}|^{p}dx (2.2)
=\displaystyle= (|x|μA|u|p)B|u|p𝑑x+o(1).\displaystyle\int(|x|^{-\mu}\ast A|u|^{p})B|u|^{p}dx+o(1).
Proof.

For every nn\in\mathbb{N}, one has

(|x|μA|un|p)B|un|p𝑑xN(|x|μA|unu|p)B|unu|p𝑑x\displaystyle\int(|x|^{-\mu}\ast A|u_{n}|^{p})B|u_{n}|^{p}dx-\int_{\mathbb{R}^{N}}(|x|^{-\mu}\ast A|u_{n}-u|^{p})B|u_{n}-u|^{p}dx
=\displaystyle= (|x|μA(|un|p|unu|p))B(|un|p|unu|p)𝑑x\displaystyle\int(|x|^{-\mu}\ast A(|u_{n}|^{p}-|u_{n}-u|^{p}))B(|u_{n}|^{p}-|u_{n}-u|^{p})dx
+2(|x|μA(|un|p|unu|p))B|unu|p𝑑x\displaystyle+2\int(|x|^{-\mu}\ast A(|u_{n}|^{p}-|u_{n}-u|^{p}))B|u_{n}-u|^{p}dx
(|x|μA|un|p)B|unu|p𝑑x\displaystyle-\int(|x|^{-\mu}\ast A|u_{n}|^{p})B|u_{n}-u|^{p}dx
+(|x|μA|unu|p)B|un|p𝑑x\displaystyle+\int(|x|^{-\mu}\ast A|u_{n}-u|^{p})B|u_{n}|^{p}dx
:=\displaystyle:= I1+I2+I3+I4.\displaystyle I_{1}+I_{2}+I_{3}+I_{4}.

By the classical Brezis-Lieb lemma with q=2Np2Nμq=\frac{2Np}{2N-\mu}, we have |unu|p|un|p|u|p|u_{n}-u|^{p}-|u_{n}|^{p}\to|u|^{p}, strongly in L2N2Nμ(N)L^{\frac{2N}{2N-\mu}}(\mathbb{R}^{N}) as nn\to\infty. Then, Hardy-Littlewood-Sobolev inequality implies that

|x|μA(|unu|p|un|p)|x|μA|u|pinL2Nμ(N,)asn.|x|^{-\mu}\ast A(|u_{n}-u|^{p}-|u_{n}|^{p})\to|x|^{-\mu}\ast A|u|^{p}~{}~{}\text{in}~{}L^{\frac{2N}{\mu}}(\mathbb{R}^{N},\mathbb{R})~{}\text{as}~{}n\to\infty.

Thus

I1(|x|μA|u|p)B|u|p𝑑xasn.I_{1}\to\int(|x|^{-\mu}\ast A|u|^{p})B|u|^{p}dx~{}\text{as}~{}n\to\infty.

On the other hand, I2I_{2}, I3I_{3} and I4I_{4} both converge to 0 since that |unu|p0|u_{n}-u|^{p}\rightharpoonup 0 weakly in L2N2Nμ(N,)L^{\frac{2N}{2N-\mu}}(\mathbb{R}^{N},\mathbb{R}), |x|μA|un|p|x|^{-\mu}\ast A|u_{n}|^{p} and B|un|pB|u_{n}|^{p} are bounded in L2Nμ(N,)L^{\frac{2N}{\mu}}(\mathbb{R}^{N},\mathbb{R}). Thus, (2.2) holds. \Box


2.1 The proof of Theorem 1.3

In this section, we prove Theorem 1.3 under the conditions (A1)(A_{1})-(A2)(A_{2}) and p(2,μ,p¯)p\in(2_{*,\mu},\bar{p}). Since A(x)AA(x)\equiv A_{\infty} satisfies (A1)(A_{1})-(A2)(A_{2}), all the following conclusions on II are also true for II_{\infty}.

For u𝒮(c)u\in\mathcal{S}(c), set us(x)=sN2u(sx)u^{s}(x)=s^{\frac{N}{2}}u(sx) s>0\forall s>0. Then

us22=u22=c,us22=s2u22,\|u^{s}\|_{2}^{2}=\|u\|_{2}^{2}=c,\quad\|\nabla u^{s}\|_{2}^{2}=s^{2}\|\nabla u\|_{2}^{2},
I(us)=12s2u2212psNp2N+μA(s1x)|u(x)|pA(s1y)|u(y)|p|xy|μ𝑑x𝑑y.I(u^{s})=\frac{1}{2}s^{2}\|\nabla u\|_{2}^{2}-\frac{1}{2p}s^{Np-2N+\mu}\int\int\frac{A(s^{-1}x)|u(x)|^{p}A(s^{-1}y)|u(y)|^{p}}{|x-y|^{\mu}}dxdy. (2.3)

and

J(u)=\displaystyle J(u)= dI(us)ds|s=1\displaystyle\frac{dI(u^{s})}{ds}|_{s=1} (2.4)
=\displaystyle= u2212p[(Np2N+μ)A(x)2A(x)x]A(y)|u(x)|p|u(y)|p|xy|μ𝑑x𝑑y.\displaystyle\|\nabla u\|_{2}^{2}-\frac{1}{2p}\int\int\frac{\left[(Np-2N+\mu)A(x)-2\nabla A(x)\cdot x\right]A(y)|u(x)|^{p}|u(y)|^{p}}{|x-y|^{\mu}}dxdy.
Lemma 2.3.

For any c>0c>0, σ(c)=infu𝒮(c)I(u)\sigma(c)=\inf\limits_{u\in\mathcal{S}(c)}I(u) is well defined and σ(c)<0\sigma(c)<0.

Proof.

By the Gagliardo-Nirenberg inequality

uqC(N,q)u2N(q2)2qu21N(q2)2qq(2,2),\|u\|_{q}\leq C(N,q)\|\nabla u\|_{2}^{\frac{N(q-2)}{2q}}\|u\|_{2}^{1-\frac{N(q-2)}{2q}}~{}\forall q\in(2,2^{*}), (2.5)

Hardy–Littlewood–Sobolev inequality and (A1)(A_{1}), for u𝒮(c)u\in\mathcal{S}(c) we have

I(u)12u22C(N,μ)u2Np2Nμ2p12u22C(N,μ,p)c2Nμ(N2)p2u2Np2N+μ.I(u)\geq\frac{1}{2}\|\nabla u\|_{2}^{2}-C(N,\mu)\|u\|_{\frac{2Np}{2N-\mu}}^{2p}\geq\frac{1}{2}\|\nabla u\|_{2}^{2}-C(N,\mu,p)c^{\frac{2N-\mu-(N-2)p}{2}}\|\nabla u\|^{Np-2N+\mu}_{2}. (2.6)

Since

p<p¯Np2N+μ<2,p<\bar{p}\Rightarrow Np-2N+\mu<2,

thus II is bounded from below on 𝒮(c)\mathcal{S}(c) for any c>0c>0, and σ(c)\sigma(c) is well defined. For any c>0c>0, we can choose a function u0𝒞0(N,[M,M])u_{0}\in\mathcal{C}^{\infty}_{0}(\mathbb{R}^{N},[-M,M]) satisfying u022=c\|u_{0}\|_{2}^{2}=c for some constant M>0M>0. Then it follows from (A1)(A_{1}) and (2.3)(\ref{I2}) that

I(u0t)t22u022A2tNp2N+μ2p|u0(x)|p|u0(y)|p|xy|μ𝑑x𝑑y,t(0,1].I({u_{0}}^{t})\leq\frac{t^{2}}{2}\|\nabla u_{0}\|_{2}^{2}-\frac{A_{\infty}^{2}t^{Np-2N+\mu}}{2p}\int\int\frac{|u_{0}(x)|^{p}|u_{0}(y)|^{p}}{|x-y|^{\mu}}dxdy,\quad\forall t\in(0,1]. (2.7)

Since 0<Np2N+μ<20<Np-2N+\mu<2, (2.7)(\ref{c3.3}) implies that I(u0t)<0I({u_{0}}^{t})<0 for small t(0,1)t\in(0,1). Jointly with the fact that u0t2=u02\|{u_{0}}^{t}\|_{2}=\|u_{0}\|_{2}, we obtain

σ(c)inft(0,1]I(u0t)<0.\sigma(c)\leq\inf\limits_{t\in(0,1]}I({u_{0}}^{t})<0.

\Box

Lemma 2.4.

σ(c)\sigma(c) is continuous on (0,+)(0,+\infty).

Proof.

For any c>0c>0, let cn>0c_{n}>0 and cncc_{n}\to c. For every nn\in\mathbb{N}, let un𝒮(cn)u_{n}\in\mathcal{S}(c_{n}) such that I(un)<σ(cn)+1n<1nI(u_{n})<\sigma(c_{n})+\frac{1}{n}<\frac{1}{n}. Then (2.6)(\ref{c3.1}) implies that {un}\{u_{n}\} is bounded in H1(N,)H^{1}(\mathbb{R}^{N},\mathbb{R}). Moreover, we have

σ(c)\displaystyle\sigma(c) I(ccnun)\displaystyle\leq I\left(\sqrt{\frac{c}{c_{n}}}u_{n}\right) (2.8)
=c2cnun22cp2pcnpA(x)|un(x)|pA(y)|un(y)|p|xy|μ𝑑x𝑑y\displaystyle=\frac{c}{2c_{n}}\left\|\nabla u_{n}\right\|_{2}^{2}-\frac{c^{p}}{2pc_{n}^{p}}\int\int\frac{A(x)|u_{n}(x)|^{p}A(y)|u_{n}(y)|^{p}}{|x-y|^{\mu}}dxdy
=I(un)+o(1)σ(cn)+o(1).\displaystyle=I\left(u_{n}\right)+o(1)\leq\sigma\left(c_{n}\right)+o(1).

On the other hand, given a minimizing sequence {vn}𝒮(c)\{v_{n}\}\subset\mathcal{S}(c) for II, we have

σ(cn)I(cncvn)I(vn)+o(1)=σ(c)+o(1),\sigma\left(c_{n}\right)\leq I\left(\sqrt{\frac{c_{n}}{c}}v_{n}\right)\leq I\left(v_{n}\right)+o(1)=\sigma(c)+o(1),

which together with (2.8)(\ref{c3.4}), implies that limn+σ(cn)=σ(c)\lim\limits_{n\to+\infty}\sigma(c_{n})=\sigma(c). \Box

From [14, 15], we know that subadditivity inequality implies the compactness of the minimizing sequence for σ(c)\sigma(c) (up to translations). Although II is not invariant by translations, by using the following subadditivity inequality and comparing with the limit equation we can still verify that σ(c)\sigma(c) has a minimizer.

Lemma 2.5.

For each c>0c>0,

σ(c)<σ(α)+σ(cα),0<α<c.\sigma(c)<\sigma(\alpha)+\sigma(c-\alpha),\quad\forall 0<\alpha<c. (2.9)
Proof.

Letting {un}𝒮(c)\{u_{n}\}\subset\mathcal{S}(c) be such that I(un)σ(c)I(u_{n})\to\sigma(c), it follows from (2.6)(\ref{c3.1}) and Lemma 2.3 that σ(c)<0\sigma(c)<0, and {un}\{u_{n}\} is bounded in H1(N,)H^{1}(\mathbb{R}^{N},\mathbb{R}). Now, we claim that there exists a constant ρ0>0\rho_{0}>0 such that

lim infnun2>ρ0.\liminf_{n\rightarrow\infty}\left\|\nabla u_{n}\right\|_{2}>\rho_{0}. (2.10)

Otherwise, if (2.10)(\ref{c3.6}) is not true, then up to a subsequence, un20\|\nabla u_{n}\|_{2}\to 0, and so (2.6)(\ref{c3.1}) yields

0>σ(c)=limn+I(un)=0.0>\sigma(c)=\lim\limits_{n\to+\infty}I(u_{n})=0.

This contradiction shows that (2.10)(\ref{c3.6}) holds.

Let unt=tϱun(x/t){u_{n}}_{t}=t^{\varrho}u_{n}(x/t) t>0\forall t>0, the constant ϱ\varrho is given in the condition (A2)(A_{2}). Then by (A2)(A_{2}), we have

I(unt)\displaystyle I\left({u_{n}}_{t}\right) =I(tϱun(x/t))\displaystyle=I\left(t^{\varrho}u_{n}(x/t)\right) (2.11)
=t2ϱ+N22un22t2Nμ+2ϱp2pA(tx)|un(x)|pA(ty)|un(y)|p|xy|μ𝑑x𝑑y\displaystyle=\frac{t^{2\varrho+N-2}}{2}\left\|\nabla u_{n}\right\|_{2}^{2}-\frac{t^{2N-\mu+2\varrho p}}{2p}\int\int\frac{A(tx)\left|u_{n}(x)\right|^{p}A(ty)\left|u_{n}(y)\right|^{p}}{|x-y|^{\mu}}dxdy
t2ϱ+N22un22t2ϱ+N2pA(x)|un(x)|pA(y)|un(y)|p|xy|μ𝑑x𝑑y\displaystyle\leq\frac{t^{2\varrho+N-2}}{2}\left\|\nabla u_{n}\right\|_{2}^{2}-\frac{t^{2\varrho+N}}{2p}\int\int\frac{A(x)\left|u_{n}(x)\right|^{p}A(y)\left|u_{n}(y)\right|^{p}}{|x-y|^{\mu}}dxdy
=t2ϱ+NI(un)+t2ρ+N(t21)2un22,t>1.\displaystyle=t^{2\varrho+N}I\left(u_{n}\right)+\frac{t^{2\rho+N}\left(t^{-2}-1\right)}{2}\left\|\nabla u_{n}\right\|_{2}^{2},\quad\forall t>1.

Since unt22=t2ϱ+Nun22=t2ϱ+Nc\|{u_{n}}_{t}\|_{2}^{2}=t^{2\varrho+N}\|u_{n}\|_{2}^{2}=t^{2\varrho+N}c for all t>0t>0, then it follows from (2.10)(\ref{c3.6}) and (2.11)(\ref{c3.7}) that

σ(t2ϱ+Nc)\displaystyle\sigma\left(t^{2\varrho+N}c\right) I(unt)t2ϱ+Nσ(c)+t2ϱ+N(t21)2ρ02+o(1),t>1,\displaystyle\leq I\left({u_{n}}_{t}\right)\leq t^{2\varrho+N}\sigma(c)+\frac{t^{2\varrho+N}\left(t^{-2}-1\right)}{2}\rho_{0}^{2}+o(1),\quad\forall t>1,

which implies

σ(tc)<tσ(c),t>1.\sigma(tc)<t\sigma(c),~{}~{}\forall t>1. (2.12)

Moreover, it follows from (2.12)(\ref{c3.8}) that

σ(c)=αcσ(c)+cαcσ(c)<σ(α)+σ(cα),0<α<c.\sigma(c)=\frac{\alpha}{c}\sigma(c)+\frac{c-\alpha}{c}\sigma(c)<\sigma(\alpha)+\sigma(c-\alpha),\quad\forall 0<\alpha<c.

This completes the proof. \Box

Lemma 2.6.

σ(c)σ(c)\sigma(c)\leq\sigma_{\infty}(c) for any c>0c>0.

Proof.

Let c>0c>0 be given and let {un}𝒮(c)\{u_{n}\}\subset\mathcal{S}(c) be such that I(un)σ(c)I_{\infty}(u_{n})\to\sigma_{\infty}(c). Since AA(x)A_{\infty}\leq A(x) for all xNx\in\mathbb{R}^{N}, it follows from (1.3)(\ref{I}) that

σ(c)I(un)I(un)=σ(c)+o(1),\sigma(c)\leq I(u_{n})\leq I_{\infty}(u_{n})=\sigma_{\infty}(c)+o(1),

which implies that σ(c)σ(c)\sigma(c)\leq\sigma_{\infty}(c) for any c>0c>0. \Box

Lemma 2.7.

For each c>0c>0, σ(c)\sigma(c) has a minimizer.

Proof.

In view of Lemma 2.3, we have σ(c)<0\sigma(c)<0. Let {un}𝒮(c)\{u_{n}\}\subset\mathcal{S}(c) be such that I(un)σ(c)I(u_{n})\to\sigma(c). Then (2.6)(\ref{c3.1}) implies that {un}\{u_{n}\} is bounded in H1(N,)H^{1}(\mathbb{R}^{N},\mathbb{R}). We then may assume that for some u¯H1(N,)\bar{u}\in H^{1}(\mathbb{R}^{N},\mathbb{R}) such that up to a subsequence, unu¯u_{n}\rightharpoonup\bar{u} in H1(N,)H^{1}(\mathbb{R}^{N},\mathbb{R}).

Case (i): u¯=0\bar{u}=0. Then un0u_{n}\to 0 in Llocs(N,)L^{s}_{\text{loc}}(\mathbb{R}^{N},\mathbb{R}) for 1s<21\leq s<2^{*} and un0u_{n}\to 0 a.e. in N\mathbb{R}^{N}. By (A1)(A_{1}), it is easy to check that

(A2A(x)A(y))|un(x)|p|un(y)|p|xy|μ𝑑x𝑑y0asn.\int\int\frac{\left(A_{\infty}^{2}-A(x)A(y)\right)|u_{n}(x)|^{p}|u_{n}(y)|^{p}}{|x-y|^{\mu}}dxdy\to 0\quad\text{as}~{}n\to\infty. (2.13)

Then (1.3), (1.10), and (2.13) imply

I(un)σ(c)asn.I_{\infty}(u_{n})\to\sigma(c)\quad\text{as}~{}n\to\infty. (2.14)

Next, we show that

δ:=lim supn+supyNB1(y)|un|2𝑑x>0.\delta:=\limsup\limits_{n\to+\infty}\sup\limits_{y\in\mathbb{R}^{N}}\int_{B_{1}(y)}|u_{n}|^{2}dx>0. (2.15)

In fact, if δ=0\delta=0, by Lions’ concentration compactness principle [14, 15], we have un0u_{n}\to 0 in Lq(N,)L^{q}(\mathbb{R}^{N},\mathbb{R}) for 2<q<22<q<2^{*}, and so (A1)(A_{1}) and (A2)(A_{2}) imply that

A(x)A(y)|un(x)|p|un(y)|p|xy|μ𝑑x𝑑y0asn.\int\int\frac{A(x)A(y)|u_{n}(x)|^{p}|u_{n}(y)|^{p}}{|x-y|^{\mu}}dxdy\to 0\quad\text{as}~{}n\to\infty.

Then by (1.3), we have

0>σ(c)=limn+I(un)=limn+12un220,0>\sigma(c)=\lim\limits_{n\to+\infty}I(u_{n})=\lim\limits_{n\to+\infty}\frac{1}{2}\|u_{n}\|_{2}^{2}\geq 0,

which is impossible. Hence, we have δ>0\delta>0, and there exists a sequence {yn}N\{y_{n}\}\subset\mathbb{R}^{N} such that

B1(yn)|un|2𝑑x>δ2.\int_{B_{1}(y_{n})}|u_{n}|^{2}dx>\frac{\delta}{2}. (2.16)

Let u^n(x)=un(x+yn)\hat{u}_{n}(x)=u_{n}(x+y_{n}). Then (2.14) leads to

u^n𝒮(c),I(u^n)σ(c).\hat{u}_{n}\in\mathcal{S}(c),\quad I_{\infty}(\hat{u}_{n})\to\sigma(c). (2.17)

In view of (2.16), we may assume that there exists u^H1(N,){0}\hat{u}\in H^{1}(\mathbb{R}^{N},\mathbb{R})\setminus\{0\} such that, passing to a subsequence,

u^nu^inH1(N,),u^nu^inLlocq(N,)q[1,2),u^nu^a.e.inN.\hat{u}_{n}\rightharpoonup\hat{u}~{}\text{in}~{}H^{1}(\mathbb{R}^{N},\mathbb{R}),\quad\hat{u}_{n}\to\hat{u}~{}\text{in}~{}L^{q}_{\text{loc}}(\mathbb{R}^{N},\mathbb{R})~{}\forall q\in[1,2^{*}),\quad\hat{u}_{n}\to\hat{u}~{}a.e.~{}\text{in}~{}\mathbb{R}^{N}. (2.18)

Then it follows from (2.17), (2.18), Lemmas 2.4, 2.6 and 2.2 that

σ(c)\displaystyle\sigma_{\infty}(c)\geq σ(c)=limn+I(u^n)=I(u^)+limn+I(u^nu^)\displaystyle\sigma(c)=\lim\limits_{n\to+\infty}I_{\infty}(\hat{u}_{n})=I_{\infty}(\hat{u})+\lim\limits_{n\to+\infty}I_{\infty}(\hat{u}_{n}-\hat{u}) (2.19)
\displaystyle\geq σ(u^22)+limn+σ(u^nu^22)=σ(u^22)+σ(cu^22).\displaystyle\sigma_{\infty}(\|\hat{u}\|_{2}^{2})+\lim\limits_{n\to+\infty}\sigma_{\infty}(\|\hat{u}_{n}-\hat{u}\|_{2}^{2})=\sigma_{\infty}(\|\hat{u}\|_{2}^{2})+\sigma_{\infty}(c-\|\hat{u}\|_{2}^{2}).

If u^22<c\|\hat{u}\|_{2}^{2}<c, then (2.19) and Lemma 2.5 imply

σ(c)σ(u^22)+σ(cu^22)>σ(c),\sigma_{\infty}(c)\geq\sigma_{\infty}(\|\hat{u}\|_{2}^{2})+\sigma_{\infty}(c-\|\hat{u}\|_{2}^{2})>\sigma_{\infty}(c),

which is impossible. This shows u^22=c\|\hat{u}\|_{2}^{2}=c. Then we have u^nu^\hat{u}_{n}\to\hat{u} in Lq(N,)L^{q}(\mathbb{R}^{N},\mathbb{R}) for 2q<22\leq q<2^{*}. From this, the weak semicontinuity of norm and (2.19), we derive

σ(c)=limn+I(u^n)I(u^)σ(c),\sigma(c)=\lim\limits_{n\to+\infty}I(\hat{u}_{n})\geq I(\hat{u})\geq\sigma(c),

which leads to σ(c)=I(u^)\sigma(c)=I(\hat{u}). Hence, u^\hat{u} is a minimizer of σ(c)\sigma(c) for any c>0c>0.

Case (ii): u¯0\bar{u}\neq 0. Then unu¯u_{n}\to\bar{u} in Llocq(N,)L^{q}_{\text{loc}}(\mathbb{R}^{N},\mathbb{R}) for 1q<21\leq q<2^{*} and unu¯u_{n}\to\bar{u} a.e. in N\mathbb{R}^{N}. By Lemmas 2.4 and 2.2, we have

σ(c)=\displaystyle\sigma(c)= limn+I(u¯n)=I(u¯)+limn+I(u¯nu¯)\displaystyle\lim\limits_{n\to+\infty}I(\bar{u}_{n})=I(\bar{u})+\lim\limits_{n\to+\infty}I(\bar{u}_{n}-\bar{u}) (2.20)
\displaystyle\geq σ(u¯22)+limn+σ(u¯nu¯22)=σ(u¯22)+σ(cu¯22).\displaystyle\sigma(\|\bar{u}\|_{2}^{2})+\lim\limits_{n\to+\infty}\sigma(\|\bar{u}_{n}-\bar{u}\|_{2}^{2})=\sigma(\|\bar{u}\|_{2}^{2})+\sigma(c-\|\bar{u}\|_{2}^{2}).

If u¯22<c\|\bar{u}\|_{2}^{2}<c, then (2.20) and Lemma 2.5 imply

σ(c)σ(u¯22)+σ(cu¯22)>σ(c),\sigma(c)\geq\sigma(\|\bar{u}\|_{2}^{2})+\sigma(c-\|\bar{u}\|_{2}^{2})>\sigma(c),

which is impossible. This shows u¯22=c\|\bar{u}\|_{2}^{2}=c. Then we have u¯nu¯\bar{u}_{n}\to\bar{u} in Lq(N,)L^{q}(\mathbb{R}^{N},\mathbb{R}) for 2q<22\leq q<2^{*}. From this, the weak semicontinuity of norm and (2.19), we have

σ(c)=limn+I(u¯n)I(u¯)σ(c),\sigma(c)=\lim\limits_{n\to+\infty}I(\bar{u}_{n})\geq I(\bar{u})\geq\sigma(c),

which leads to σ(c)=I(u¯)\sigma(c)=I(\bar{u}). Hence, u¯\bar{u} is a minimizer of σ(c)\sigma(c) for any c>0c>0. \Box

Proof of Theorem 1.3. For any c>0c>0, from Lemma 2.7, there exists u¯c𝒮(c)\bar{u}_{c}\in\mathcal{S}(c) such that I(u¯c)=σ(c)I(\bar{u}_{c})=\sigma(c). In view of the Lagrange multiplier theorem, there exists λc\lambda_{c}\in\mathbb{R} such that

I(u¯c)=λcu¯c.I^{\prime}(\bar{u}_{c})=\lambda_{c}\bar{u}_{c}.

Therefore, (u¯c,λc)(\bar{u}_{c},\lambda_{c}) is a solution of (P). \Box


2.2 The proof of Theorem 1.5

In this section, under condition (A1)(A^{\prime}_{1}) and p(2,p¯)p\in(2,\bar{p}), we prove Theorem 1.5 by using the following abstract variational principle [2, Proposition 1.2].

Proposition 1.

([2, Proposition 1.2]) Let \mathcal{H}, 1\mathcal{H}_{1} and 2\mathcal{H}_{2} be three Hilbert spaces such that

1,2\mathcal{H}\subset\mathcal{H}_{1},\quad\mathcal{H}\subset\mathcal{H}_{2}

and

C1(u12+u22)u2C2(u12+u22)u.C_{1}\left(\|u\|^{2}_{\mathcal{H}_{1}}+\|u\|^{2}_{\mathcal{H}_{2}}\right)\leq\|u\|^{2}_{\mathcal{H}}\leq C_{2}\left(\|u\|^{2}_{\mathcal{H}_{1}}+\|u\|^{2}_{\mathcal{H}_{2}}\right)~{}~{}\forall u\in\mathcal{H}.

For given c>0c>0, let W,T:W,T:\mathcal{H}\mapsto\mathbb{R} such that:
(1) T(0)=0T(0)=0;
(2) TT is weakly continuous;
(3) T(νu)ν2T(u)T(\nu u)\leq\nu^{2}T(u) and W(νu)ν2W(u)W(\nu u)\leq\nu^{2}W(u), ν1,u\forall\nu\geq 1,~{}u\in\mathcal{H};
(4) If unuu_{n}\rightharpoonup u in \mathcal{H} and unuu_{n}\to u in 2\mathcal{H}_{2}, then W(un)W(u)W(u_{n})\to W(u);
(5) If unuu_{n}\rightharpoonup u in \mathcal{H}, then W(unu)+W(u)=W(un)+o(1)W(u_{n}-u)+W(u)=W(u_{n})+o(1);
(6) <ςW+T(c)<ςW(c)-\infty<\varsigma^{W+T}(c)<\varsigma^{W}(c), where

ςW+T(c):=infuB2(c)(12u12+W(u)+T(u)),\displaystyle\varsigma^{W+T}(c):=\inf\limits_{u\in B_{\mathcal{H}_{2}}(c)\cap\mathcal{H}}\left(\frac{1}{2}\|u\|^{2}_{\mathcal{H}_{1}}+W(u)+T(u)\right), (2.21)
ςW(c):=infuB2(c)(12u12+W(u)),\varsigma^{W}(c):=\inf\limits_{u\in B_{\mathcal{H}_{2}}(c)\cap\mathcal{H}}\left(\frac{1}{2}\|u\|^{2}_{\mathcal{H}_{1}}+W(u)\right),

and

B2(c):={u2:u22=c};B_{\mathcal{H}_{2}}(c):=\{u\in\mathcal{H}_{2}:\|u\|_{\mathcal{H}_{2}}^{2}=c\};

(7) For every sequence {un}B2(c)\{u_{n}\}\subset B_{\mathcal{H}_{2}}(c)\cap\mathcal{H} such that un\|u_{n}\|_{\mathcal{H}}\to\infty, we have

12un12+W(un)+T(un)asn.\frac{1}{2}\|u_{n}\|_{\mathcal{H}_{1}}^{2}+W(u_{n})+T(u_{n})\to\infty~{}\text{as}~{}n\to\infty.

Then every minimizing sequence for (2.21), i.e.,

unB2(c)and12un12+W(un)+T(un)ςW+T(c),u_{n}\in B_{\mathcal{H}_{2}}(c)\cap\mathcal{H}~{}~{}\text{and}~{}~{}\frac{1}{2}\|u_{n}\|^{2}_{\mathcal{H}_{1}}+W(u_{n})+T(u_{n})\to\varsigma^{W+T}(c),

is compact in \mathcal{H}.

Lemma 2.8.

Assume that A(x)A(x), A0A_{0} and pp are as in Theorem 1.5. Then there exists c0>0c_{0}>0 such that:

σA(x),A(y)(c)<σmin{A(x),A0},A(y)(c)c>c0,\sigma^{A(x),A(y)}(c)<\sigma^{\min\{A(x),A_{0}\},A(y)}(c)~{}~{}\forall~{}c>c_{0},

where

σA(x),A(y)(c):=infu𝒮(c)[12|u|2dx12pA(x)|u(x)|pA(y)|u(y)|p|xy|μdxdy]=σ(c)\sigma^{A(x),A(y)}(c):=\inf\limits_{u\in\mathcal{S}(c)}\left[\frac{1}{2}\int|\nabla u|^{2}\mathrm{d}x-\frac{1}{2p}\int\int\frac{A(x)|u(x)|^{p}A(y)|u(y)|^{p}}{|x-y|^{\mu}}\mathrm{d}x\mathrm{d}y\right]=\sigma(c)

and

σmin{A(x),A0},A(y)(c):=infu𝒮(c)[12|u|2dx12pmin{A(x),A0}|u(x)|pA0|u(y)|p|xy|μdxdy].\sigma^{\min\{A(x),A_{0}\},A(y)}(c):=\inf\limits_{u\in\mathcal{S}(c)}\left[\frac{1}{2}\int|\nabla u|^{2}\mathrm{d}x-\frac{1}{2p}\int\int\frac{\min\{A(x),A_{0}\}|u(x)|^{p}A_{0}|u(y)|^{p}}{|x-y|^{\mu}}\mathrm{d}x\mathrm{d}y\right].
Proof.

Since AL(N,)A\in L^{\infty}(\mathbb{R}^{N},\mathbb{R}), then by Lebesgue derivation Theorem that

limδ0δNBδ(x0)|A(x)A(x0)|2N2Nμ𝑑x=0for almost each x0N.\lim\limits_{\delta\to 0}\delta^{-N}\int_{B_{\delta}(x_{0})}|A(x)-A(x_{0})|^{\frac{2N}{2N-\mu}}dx=0~{}~{}\text{for~{}almost~{}each~{}}x_{0}\in\mathbb{R}^{N}.

By condition (A1)(A^{\prime}_{1}) we have meas{xN:A(x)>A0}>0meas\{x\in\mathbb{R}^{N}:A(x)>A_{0}\}>0, then we deduce that there exists x~{xN:A(x)>A0}\tilde{x}\in\{x\in\mathbb{R}^{N}:A(x)>A_{0}\} such that

limδ0δNBδ(x~)|A(x)A(x~)|2N2Nμ𝑑x=0.\lim\limits_{\delta\to 0}\delta^{-N}\int_{B_{\delta}(\tilde{x})}|A(x)-A(\tilde{x})|^{\frac{2N}{2N-\mu}}dx=0.

For simplicity we can assume that x~0\tilde{x}\equiv 0, hence we have

limδ0δNBδ(0)|A(x)A(0)|2N2Nμ𝑑x=0withA(0)>A0.\lim\limits_{\delta\to 0}\delta^{-N}\int_{B_{\delta}(0)}|A(x)-A(0)|^{\frac{2N}{2N-\mu}}dx=0~{}\text{with}~{}A(0)>A_{0}. (2.22)

By Lemma 2.7, there exists a minimizer u0H1(N,)u_{0}\in H^{1}(\mathbb{R}^{N},\mathbb{R}) for σA0(1)\sigma^{A_{0}}(1). It is easy to check that

u0c:=u0(x/ca)cbis a minimizer for σA0(c),u_{0}^{c}:=u_{0}(x/c^{a})c^{-b}~{}\text{is~{}a~{}minimizer~{}for~{}}\sigma^{A_{0}}(c), (2.23)

where

a:=p1N(p2)+μ2,b:=N+2μ2N(p2)+2μ4.a:=\frac{p-1}{N(p-2)+\mu-2},\quad b:=\frac{N+2-\mu}{2N(p-2)+2\mu-4}.

Notice that by p<p¯=2+2μNp<\bar{p}=2+\frac{2-\mu}{N}, we have

a<0andb<0.a<0~{}~{}\text{and}~{}~{}b<0.

We claim that there is c0>0c_{0}>0 such that

σA(x),A(y)(c)<σA0,A(y)(c)c>c0.\sigma^{A(x),A(y)}(c)<\sigma^{A_{0},A(y)}(c)~{}\forall~{}c>c_{0}. (2.24)

On the other hand 0min{A(x),A0}A00\leq\min\{A(x),A_{0}\}\leq A_{0} implies that

σA0,A(y)(c)σA(x),A(y)(c).\sigma^{A_{0},A(y)}(c)\leq\sigma^{A(x),A(y)}(c). (2.25)

By combining (2.24) and (2.25) we get the desired result.

Next we prove (2.24). Due to (2.23) it is sufficient to prove the following inequality:

12u0c2212pA(x)|u0c(x)|pA(y)|u0c(y)|p|xy|μ𝑑x𝑑y\displaystyle\frac{1}{2}\|\nabla u_{0}^{c}\|_{2}^{2}-\frac{1}{2p}\int\int\frac{A(x)|u_{0}^{c}(x)|^{p}A(y)|u_{0}^{c}(y)|^{p}}{|x-y|^{\mu}}dxdy
<\displaystyle< 12u0c22A02p|u0c(x)|pA(y)|u0c(y)|p|xy|μ𝑑x𝑑y\displaystyle\frac{1}{2}\|\nabla u_{0}^{c}\|_{2}^{2}-\frac{A_{0}}{2p}\int\int\frac{|u_{0}^{c}(x)|^{p}A(y)|u_{0}^{c}(y)|^{p}}{|x-y|^{\mu}}dxdy

or equivalently

I(c)+II(c):=\displaystyle I(c)+II(c):= (2.26)
A0A(0)2p|u0c(x)|p|u0c(y)|p|xy|μ𝑑x𝑑y+12p(A(0)A(x))|u0c(x)|pA(y)|u0c(y)|p|xy|μ𝑑x𝑑y\displaystyle\frac{A_{0}-A(0)}{2p}\int\int\frac{|u_{0}^{c}(x)|^{p}|u_{0}^{c}(y)|^{p}}{|x-y|^{\mu}}dxdy+\frac{1}{2p}\int\int\frac{(A(0)-A(x))|u_{0}^{c}(x)|^{p}A(y)|u_{0}^{c}(y)|^{p}}{|x-y|^{\mu}}dxdy
<\displaystyle< 0.\displaystyle 0.

By A0<A(0)A_{0}<A(0) we can fix R0>0R_{0}>0 such that

A0A(0)2p|u0(x)|p|u0(y)|p|xy|μ𝑑x𝑑y\displaystyle\frac{A_{0}-A(0)}{2p}\int\int\frac{|u_{0}(x)|^{p}|u_{0}(y)|^{p}}{|x-y|^{\mu}}dxdy (2.27)
+12μ2NpA2μ2Nu02Np2Nμp(|x|R0|u0(x)|2Np2Nμ𝑑x)2Nμ2N\displaystyle+\frac{1}{2^{\frac{\mu}{2N}}p}\|A\|_{\infty}^{2-\frac{\mu}{2N}}\|u_{0}\|_{\frac{2Np}{2N-\mu}}^{p}\left(\int_{|x|\geq R_{0}}|u_{0}(x)|^{\frac{2Np}{2N-\mu}}dx\right)^{\frac{2N-\mu}{2N}}
=\displaystyle= ε0<0.\displaystyle-\varepsilon_{0}<0.

By calculation, we get

I(c)=A0A(0)2pc(2Nμ)a2pb|u0(x)|p|u0(y)|p|xy|μ𝑑x𝑑y.I(c)=\frac{A_{0}-A(0)}{2p}c^{(2N-\mu)a-2pb}\int\int\frac{|u_{0}(x)|^{p}|u_{0}(y)|^{p}}{|x-y|^{\mu}}dxdy.

And by (2.22) and Hardy-Littlewood-Sobolev inequality we have

II(c)=\displaystyle II(c)= 12p(A(0)A(x))|u0c(x)|pA(y)|u0c(y)|p|xy|μ𝑑x𝑑y\displaystyle\frac{1}{2p}\int\int\frac{(A(0)-A(x))|u_{0}^{c}(x)|^{p}A(y)|u_{0}^{c}(y)|^{p}}{|x-y|^{\mu}}dxdy
\displaystyle\leq A2pu0c2Np2Nμp(|A(0)A(x)|2N2Nμ|u0c(x)|2Np2Nμ𝑑x)2Nμ2N\displaystyle\frac{\|A\|_{\infty}}{2p}\|u^{c}_{0}\|_{\frac{2Np}{2N-\mu}}^{p}\left(\int|A(0)-A(x)|^{\frac{2N}{2N-\mu}}|u_{0}^{c}(x)|^{\frac{2Np}{2N-\mu}}dx\right)^{\frac{2N-\mu}{2N}}
\displaystyle\leq A2pc(2Nμ)a2pb2u02Np2Nμp\displaystyle\frac{\|A\|_{\infty}}{2p}c^{\frac{(2N-\mu)a-2pb}{2}}\|u_{0}\|_{\frac{2Np}{2N-\mu}}^{p}
(2AcNa2Np2Nμb|x|R0|u0(x)|2Np2Nμdx\displaystyle\cdot\left(2\|A\|_{\infty}c^{Na-\frac{2Np}{2N-\mu}b}\int_{|x|\geq R_{0}}|u_{0}(x)|^{\frac{2Np}{2N-\mu}}dx\right.
+cNapbu0cNa|x|R0ca|A(0)A(x)|2N2Nμdx)2Nμ2N\displaystyle\left.+c^{Na-pb}\|u_{0}\|_{\infty}c^{-Na}\int_{|x|\leq R_{0}c^{a}}|A(0)-A(x)|^{\frac{2N}{2N-\mu}}dx\right)^{\frac{2N-\mu}{2N}}
=\displaystyle= A2pu02Np2Nμpc(2Nμ)a2pb(2A|x|R0|u0(x)|2Np2Nμ𝑑x)2Nμ2N\displaystyle\frac{\|A\|_{\infty}}{2p}\|u_{0}\|_{\frac{2Np}{2N-\mu}}^{p}c^{(2N-\mu)a-2pb}\left(2\|A\|_{\infty}\int_{|x|\geq R_{0}}|u_{0}(x)|^{\frac{2Np}{2N-\mu}}dx\right)^{\frac{2N-\mu}{2N}}
+c(2Nμ)a2pb+μ2Npbo(1),\displaystyle+c^{(2N-\mu)a-2pb+\frac{\mu}{2N}pb}o(1),

where limco(1)=0\lim\limits_{c\to\infty}o(1)=0. Therefore, by (2.27) we have

I(c)+II(c)\displaystyle I(c)+II(c)\leq c(2Nμ)a2pb[A0A(0)2p|u0(x)|p|u0(y)|p|xy|μdxdy\displaystyle c^{(2N-\mu)a-2pb}\left[\frac{A_{0}-A(0)}{2p}\int\int\frac{|u_{0}(x)|^{p}|u_{0}(y)|^{p}}{|x-y|^{\mu}}dxdy\right.
+12μ2NpA2μ2Nu02Np2Nμp(|x|R0|u0(x)|2Np2Nμdx)2Nμ2N+cμ2Npbo(1)]\displaystyle\left.+\frac{1}{2^{\frac{\mu}{2N}}p}\|A\|_{\infty}^{2-\frac{\mu}{2N}}\|u_{0}\|_{\frac{2Np}{2N-\mu}}^{p}\left(\int_{|x|\geq R_{0}}|u_{0}(x)|^{\frac{2Np}{2N-\mu}}dx\right)^{\frac{2N-\mu}{2N}}+c^{\frac{\mu}{2N}pb}o(1)\right]
=c(2Nμ)a2pb(ε0+o(1)),\displaystyle=c^{(2N-\mu)a-2pb}(-\varepsilon_{0}+o(1)),

which implies (2.26) for cc large enough, and in turn it is equivalent (2.24). \Box

Proof of Theorem 1.5. It is sufficient to show that any minimizing sequence for σ(c)=σA(x),A(y)(c)\sigma(c)=\sigma^{A(x),A(y)}(c) is compact in H1(N,)H^{1}(\mathbb{R}^{N},\mathbb{R}). We use Proposition 1 to prove this by choosing

=H1(N,),1=𝒟1,2(N,),2=L2(N,),\displaystyle\mathcal{H}=H^{1}(\mathbb{R}^{N},\mathbb{R}),\quad\mathcal{H}_{1}=\mathcal{D}^{1,2}(\mathbb{R}^{N},\mathbb{R}),\quad\mathcal{H}_{2}=L^{2}(\mathbb{R}^{N},\mathbb{R}),
W(u)=12pNNmin{A(x),A0}|u(x)|pA(y)|u(y)|p|xy|μ𝑑x𝑑y,\displaystyle W(u)=-\frac{1}{2p}\int_{\mathbb{R}^{N}}\int_{\mathbb{R}^{N}}\frac{\min\{A(x),A_{0}\}|u(x)|^{p}A(y)|u(y)|^{p}}{|x-y|^{\mu}}dxdy,
T(u)=12pA(x)A0yN(A(x)A0)|u(x)|pA(y)|u(y)|p|xy|μ𝑑x𝑑y.\displaystyle T(u)=-\frac{1}{2p}\int_{A(x)\geq A_{0}}\int_{y\in\mathbb{R}^{N}}\frac{(A(x)-A_{0})|u(x)|^{p}A(y)|u(y)|^{p}}{|x-y|^{\mu}}dxdy.

Then

W(u)+T(u)=12pNNA(x)|u(x)|pA(y)|u(y)|p|xy|μ𝑑x𝑑y\displaystyle W(u)+T(u)=-\frac{1}{2p}\int_{\mathbb{R}^{N}}\int_{\mathbb{R}^{N}}\frac{A(x)|u(x)|^{p}A(y)|u(y)|^{p}}{|x-y|^{\mu}}dxdy

and ςW+T(c)=σ(c)\varsigma^{W+T}(c)=\sigma(c).

It is easy to verify that the conditions (1), (3) in Proposition 1 hold. The left hand side inequality in (6) follows from Lemma 2.3; The right hand side inequality in (6) follows from Lemma 2.8 provided that c>c0c>c_{0}, where c0c_{0} comes from (2.24). Since

p<p¯2>Np2N+μ,p<\bar{p}\Rightarrow 2>Np-2N+\mu,

then (2.6) implies (7). (5) follows from Lemma 2.2.

Next, we prove (2). Let unuu_{n}\rightharpoonup u in H1(N,)H^{1}(\mathbb{R}^{N},\mathbb{R}), then {unu}\{u_{n}-u\} is bounded in H1(N,)H^{1}(\mathbb{R}^{N},\mathbb{R}). By (A1)(A^{\prime}_{1}), {xN:A(x)A0}\{x\in\mathbb{R}^{N}:A(x)\geq A_{0}\} is bounded in N\mathbb{R}^{N}, and thus by Rellich Compactness Theorem

A(x)A0|un(x)u(x)|2Np2Nμ𝑑x0.\int_{A(x)\geq A_{0}}|u_{n}(x)-u(x)|^{\frac{2Np}{2N-\mu}}dx\to 0.

Then, by Lemma 2.2 (Brezis-Lieb lemma of nonlocal version) and Hardy-Littlewood-Sobolev inequality, we have

|T(un)T(u)|=\displaystyle|T(u_{n})-T(u)|= 12p|A(x)A0yN(A(x)A0)A(y)(|un(x)|p|un(y)|p|u(x)|p|u(y)|p)|xy|μ𝑑x𝑑y|\displaystyle\frac{1}{2p}\left|\int_{A(x)\geq A_{0}}\int_{y\in\mathbb{R}^{N}}\frac{(A(x)-A_{0})A(y)(|u_{n}(x)|^{p}|u_{n}(y)|^{p}-|u(x)|^{p}|u(y)|^{p})}{|x-y|^{\mu}}dxdy\right|
\displaystyle\leq A2p|A(x)A0yN(|un(x)|p|un(y)|p|u(x)|p|u(y)|p)|xy|μ𝑑x𝑑y|\displaystyle\frac{\|A\|_{\infty}^{2}}{p}\left|\int_{A(x)\geq A_{0}}\int_{y\in\mathbb{R}^{N}}\frac{(|u_{n}(x)|^{p}|u_{n}(y)|^{p}-|u(x)|^{p}|u(y)|^{p})}{|x-y|^{\mu}}dxdy\right|
=\displaystyle= A2p|A(x)A0yN|un(x)u(x)|p|un(y)u(y)|p|xy|μ𝑑x𝑑y+o(1)|\displaystyle\frac{\|A\|_{\infty}^{2}}{p}\left|\int_{A(x)\geq A_{0}}\int_{y\in\mathbb{R}^{N}}\frac{|u_{n}(x)-u(x)|^{p}|u_{n}(y)-u(y)|^{p}}{|x-y|^{\mu}}dxdy+o(1)\right|
\displaystyle\leq C|A(x)A0|un(x)u(x)|2Np2Nμ𝑑x|2Nμ2Nunu2Np2Nμp+o(1)\displaystyle C\left|\int_{A(x)\geq A_{0}}|u_{n}(x)-u(x)|^{\frac{2Np}{2N-\mu}}dx\right|^{\frac{2N-\mu}{2N}}\|u_{n}-u\|^{p}_{\frac{2Np}{2N-\mu}}+o(1)
0.\displaystyle\to 0.

Thus TT is weakly continuous, i.e., (2) holds.

Finally we shall verify (4). Let unuu_{n}\rightharpoonup u in H1(N,)H^{1}(\mathbb{R}^{N},\mathbb{R}) and unuu_{n}\to u in L2(N,)L^{2}(\mathbb{R}^{N},\mathbb{R}). Then we have

unuinLq(N,)2q<2.u_{n}\to u~{}~{}\text{in}~{}L^{q}(\mathbb{R}^{N},\mathbb{R})~{}~{}\forall 2\leq q<2^{*}.

Then, Lemma 2.2 and Hardy-Littlewood-Sobolev inequality imply

|W(un)W(u)|\displaystyle|W(u_{n})-W(u)|\leq A22p|NN(|un(x)|p|un(y)|p|u(x)|p|u(y)|p)|xy|μ𝑑x𝑑y|\displaystyle\frac{\|A\|_{\infty}^{2}}{2p}\left|\int_{\mathbb{R}^{N}}\int_{\mathbb{R}^{N}}\frac{(|u_{n}(x)|^{p}|u_{n}(y)|^{p}-|u(x)|^{p}|u(y)|^{p})}{|x-y|^{\mu}}dxdy\right|
\displaystyle\leq Cunu2Np2Nμ2p+o(1)0.\displaystyle C\|u_{n}-u\|^{2p}_{\frac{2Np}{2N-\mu}}+o(1)\to 0.

Thus (4) holds. \Box


3 L2L^{2}-supercritical case


We prove Theorem 1.6 in this section. Our method is derived from [7]. (A1)(A_{1}), (A3)(A_{3}) and (A4)(A_{4}) hold with p¯<p<2μ\bar{p}<p<2^{*}_{\mu}. Since A(x)AA(x)\equiv A_{\infty} satisfies (A1)(A_{1}), (A3)(A_{3}) and (A4)(A_{4}), all the following conclusions on II are also true for II_{\infty}.

Lemma 3.1.

We have

ψ(t,x):=2tNp2N+μ2[A(x)A(tx)]+4(tNp2N+μ21)Np2N+μA(x)x0,t>0,xN;\begin{array}[]{ll}\psi(t,x):=&-2t^{-\frac{Np-2N+\mu}{2}}[A(x)-A(tx)]\\ &+\frac{4(t^{-\frac{Np-2N+\mu}{2}}-1)}{Np-2N+\mu}\nabla A(x)\cdot x\geq 0,\quad~{}\forall t>0,x\in\mathbb{R}^{N};\end{array} (3.1)
tA(tx)is nonincreasing on(0,),xN;t\mapsto A(tx)~{}\text{is~{}nonincreasing~{}on}~{}(0,\infty),\quad\forall x\in\mathbb{R}^{N}; (3.2)
A(x)x0,xN, and A(x)x0, as |x|.-\nabla A(x)\cdot x\geq 0,\quad\forall x\in\mathbb{R}^{N},\text{ and }-\nabla A(x)\cdot x\rightarrow 0,\quad\text{ as }|x|\rightarrow\infty. (3.3)
Proof.

First, for any xNx\in\mathbb{R}^{N}, by (A3)(A_{3}), we have

dψ(t,x)dt=\displaystyle\frac{d\psi(t,x)}{dt}= t1Np2N+μ2{[(Np2N+μ)A(x)2A(x)x]\displaystyle t^{-1-\frac{Np-2N+\mu}{2}}\big{\{}[(Np-2N+\mu)A(x)-2\nabla A(x)\cdot x]
[(Np2N+μ)A(tx)2A(tx)(tx)]}\displaystyle-[(Np-2N+\mu)A(tx)-2\nabla A(tx)\cdot(tx)]\big{\}}
{0,t1,0,0<t<1,\displaystyle\quad\quad\left\{\begin{array}[]{ll}\begin{aligned} &\geq 0,~{}~{}~{}t\geq 1,\\ &\leq 0,~{}~{}~{}0<t<1,\end{aligned}\end{array}\right.

which implies that ψ(t,x)ψ(1,x)=0\psi(t,x)\geq\psi(1,x)=0 for all t>0t>0 and xNx\in\mathbb{R}^{N} , i.e., (3.1)(\ref{c2.3}) holds.

Next, let t+t\to+\infty in (3.1)(\ref{c2.3}), we have A(x)x0-\nabla A(x)\cdot x\geq 0 for all xNx\in\mathbb{R}^{N}, which leads to (3.2)(\ref{c2.4}). Last, let t=1/2t=1/2 in (3.1)(\ref{c2.3}), then one has

0A(x)x2Np2N+μ2(Np2N+μ)[A(x)A(x/2)]2(2Np2N+μ21)0,as|x|+.0\leq-\nabla A(x)\cdot x\leq-\frac{2^{\frac{Np-2N+\mu}{2}}(Np-2N+\mu)[A(x)-A(x/2)]}{2(2^{\frac{Np-2N+\mu}{2}}-1)}\to 0,\quad\text{as}~{}|x|\to+\infty.

This shows (3.3)(\ref{c2.5}) holds. \Box

Lemma 3.2.

For u(c)u\in\mathcal{M}(c), I(u)>I(ut)I(u)>I\left(u^{t}\right) for all t(0,1)(1,+)t\in(0,1)\cup(1,+\infty), where ut(x)=tN2u(tx)u^{t}(x)=t^{\frac{N}{2}}u(tx).

Proof.

By p(2Nμ+2N,2Nμ(N2)+)p\in\left(\frac{2N-\mu+2}{N},\frac{2N-\mu}{(N-2)_{+}}\right), (A1)(A_{1}) and (3.3)(\ref{c2.5}), for u(c)u\in\mathcal{M}(c), we have

I(u)=\displaystyle I(u)= I(u)12J(u)\displaystyle I(u)-\frac{1}{2}J(u)
=\displaystyle= 14p[(Np2N+μ2)A(x)2A(x)x]A(y)|u(x)|p|u(y)|p|xy|μ𝑑x𝑑y>0.\displaystyle\frac{1}{4p}\int\int\frac{\left[(Np-2N+\mu-2)A(x)-2\nabla A(x)\cdot x\right]A(y)|u(x)|^{p}|u(y)|^{p}}{|x-y|^{\mu}}dxdy>0.

Fix a u(c)u\in\mathcal{M}(c), let

g(t,u):=\displaystyle g(t,u):= I(u)I(ut)=1t22u2212pA(x)|u(x)|pA(y)|u(y)|p|xy|μ𝑑x𝑑y\displaystyle I(u)-I(u^{t})=\frac{1-t^{2}}{2}\|\nabla u\|_{2}^{2}-\frac{1}{2p}\int\int\frac{A(x)|u(x)|^{p}A(y)|u(y)|^{p}}{|x-y|^{\mu}}dxdy (3.4)
+tNp2N+μ2pA(t1x)|u(x)|pA(t1y)|u(y)|p|xy|μ𝑑x𝑑y.\displaystyle+\frac{t^{Np-2N+\mu}}{2p}\int\int\frac{A(t^{-1}x)|u(x)|^{p}A(t^{-1}y)|u(y)|^{p}}{|x-y|^{\mu}}dxdy.

Then we have

g(0,u)=I(u)>0,g(1,u)=0,g(+,u)=+.g(0,u)=I(u)>0,\quad g(1,u)=0,\quad g(+\infty,u)=+\infty. (3.5)

By (2.3)(\ref{I2}), we have

dg(t,u)dt=t(u22h(t,u)),dg(t,u)dt|t=1=J(u)=0,\displaystyle\frac{dg(t,u)}{dt}=-t\left(\|\nabla u\|_{2}^{2}-h(t,u)\right),\quad\frac{dg(t,u)}{dt}|_{t=1}=-J(u)=0,

where

h(t,u)=\displaystyle h(t,u)= tNp2N+μ22p\displaystyle\frac{t^{Np-2N+\mu-2}}{2p}\cdot
[(Np2N+μ)A(t1x)2(A(t1x)(t1x))]A(t1y)|u(x)|p|u(y)|p|xy|μ𝑑x𝑑y.\displaystyle\int\int\frac{\left[(Np-2N+\mu)A(t^{-1}x)-2\left(\nabla A(t^{-1}x)\cdot(t^{-1}x)\right)\right]A(t^{-1}y)|u(x)|^{p}|u(y)|^{p}}{|x-y|^{\mu}}dxdy.

Using (A1)(A_{1}), (A3)(A_{3}) and Lemma 3.1, we have

h(0,u)=0;h(t,u)+ast+;\displaystyle h(0,u)=0;\quad h(t,u)\to+\infty~{}\text{as}~{}t\to+\infty; (3.6)
 the function th(t,u)strictly increasing on(0,+).\displaystyle t\mapsto h(t,u)~{}\text{strictly~{}increasing~{}on}~{}(0,+\infty).

Then by (3.6)(\ref{2.15}), t=1t=1 is the unique solution of equation dg(t,u)dt=0\frac{dg(t,u)}{dt}=0. This together with (3.5)(\ref{2.14}) implies the conclusion. \Box

Lemma 3.3.

For any u𝒮(c)u\in\mathcal{S}(c), there exists a unique tu>0t_{u}>0 such that utu(c)u^{t_{u}}\in\mathcal{M}(c).

Proof.

Let u𝒮(c)u\in\mathcal{S}(c) be fixed and define a function ζ(t):=I(ut)\zeta(t):=I(u^{t}) on (0,)(0,\infty). By (2.4)(\ref{J}), we have

J(ut)=\displaystyle J(u^{t})= u22t2h(t,u).\displaystyle\|\nabla u\|_{2}^{2}-t^{2}h(t,u). (3.7)

Clearly, by (2.3)(\ref{I2}) and (3.7)(\ref{2.7.1}), we have

ζ(t)=0\displaystyle\zeta^{\prime}(t)=0 J(ut)=0ut.\displaystyle\Longleftrightarrow J(u^{t})=0~{}\Longleftrightarrow~{}u^{t}\in\mathcal{M}.

It is easy to verify that limt0ζ(t)=0\lim\limits_{t\to 0}\zeta(t)=0, ζ(t)>0\zeta(t)>0 for t>0t>0 small and ζ(t)<0\zeta(t)<0 for tt large. Therefore maxt[0,)ζ(t)\max\limits_{t\in[0,\infty)}\zeta(t) is achieved at some tu>0t_{u}>0 so that ζ(tu)=0\zeta^{\prime}(t_{u})=0 and utuu^{t_{u}}\in\mathcal{M}. And we have from (3.6)(\ref{2.15}) and (3.7)(\ref{2.7.1}) that tut_{u} is unique for any uS(c)u\in S(c). \Box

Combining Lemma 3.2 and Lemma 3.3, we get the following result.

Lemma 3.4.
infu(c)I(u)=m(c)=infu𝒮(c)maxt>0I(ut).\inf_{u\in\mathcal{M}(c)}I(u)=m(c)=\inf_{u\in\mathcal{S}(c)}\max_{t>0}I\left(u^{t}\right).
Lemma 3.5.

The function cm(c)c\mapsto m(c) is nonincreasing on (0,)(0,\infty). In particular, if m(c)m(c) is achieved, then m(c)>m(c)m(c)>m(c^{\prime}) for any c>cc^{\prime}>c.

Proof.

For any c2>c1>0c_{2}>c_{1}>0, it follows that there exists {un}(c1)\{u_{n}\}\subset\mathcal{M}(c_{1}) such that

I(un)<m(c1)+1n.I(u_{n})<m(c_{1})+\frac{1}{n}.

Let ξ:=c2/c1(1,+)\xi:=\sqrt{c_{2}/c_{1}}\in(1,+\infty) and vn(x):=ξ(2N)/2un(ξ1x)v_{n}(x):=\xi^{(2-N)/2}u_{n}(\xi^{-1}x). Then vn22=c2\|v_{n}\|_{2}^{2}=c_{2} and vn2=un2\|\nabla v_{n}\|_{2}=\|\nabla u_{n}\|_{2}. By Lemma 3.3, there exists tn>0t_{n}>0 such that vntn(c2)v_{n}^{t_{n}}\in\mathcal{M}(c_{2}). Then it follows from (A4)(A_{4}), (2.3)(\ref{I2}), and Lemma 3.2 that

m(c2)\displaystyle m\left(c_{2}\right)\leq I(vntn)=I(untn)+tnNp2N+μ2p\displaystyle I\left(v_{n}^{t_{n}}\right)=I\left(u_{n}^{t_{n}}\right)+\frac{t_{n}^{Np-2N+\mu}}{2p}\cdot
[A(tn1x)A(tn1y)ξ(2N)p+2NμA(ξtn1x)A(ξtn1y)]|un(x)|p|un(y)|p|xy|μ𝑑x𝑑y\displaystyle\int\int\frac{\left[A\left(t_{n}^{-1}x\right)A\left(t_{n}^{-1}y\right)-\xi^{(2-N)p+2N-\mu}A\left(\xi t_{n}^{-1}x\right)A\left(\xi t_{n}^{-1}y\right)\right]|u_{n}(x)|^{p}|u_{n}(y)|^{p}}{|x-y|^{\mu}}dxdy
\displaystyle\leq I(untn)I(un)<m(c1)+1n,\displaystyle I\left(u_{n}^{t_{n}}\right)\leq I\left(u_{n}\right)<m\left(c_{1}\right)+\frac{1}{n},

which shows that m(c2)m(c1)m(c_{2})\leq m(c_{1}) by letting n+n\to+\infty.

Next, we assume that m(c)m(c) is achieved, i.e., there exists u~(c)\tilde{u}\in\mathcal{M}(c) such that I(u~)=m(c)I(\tilde{u})=m(c). For any given c>cc^{\prime}>c. Let ξ~=c/c(1,+)\tilde{\xi}=c^{\prime}/c\in(1,+\infty) and v~(x):=ξ~(2N)/2u~(ξ~1x)\tilde{v}(x):=\tilde{\xi}^{(2-N)/2}\tilde{u}(\tilde{\xi}^{-1}x). Then u~22=c\|\tilde{u}\|_{2}^{2}=c^{\prime} and u~22=v~22\|\tilde{u}\|_{2}^{2}=\|\tilde{v}\|_{2}^{2}. By Lemma 3.3, there exists t0>0t_{0}>0 such that v~t0(c)\tilde{v}^{t_{0}}\in\mathcal{M}(c^{\prime}). Then it follows from (A4)(A_{4}), (2.3)(\ref{I2}), and Lemma 3.2 that

m(c)\displaystyle m\left(c^{\prime}\right)\leq I(v~t0)=I(u~t0)+t0Np2N+μ2p\displaystyle I\left(\tilde{v}^{t_{0}}\right)=I\left(\tilde{u}^{t_{0}}\right)+\frac{t_{0}^{Np-2N+\mu}}{2p}\cdot
[A(t01x)A(t01y)ξ~(2N)p+2NμA(ξ~t01x)A(ξ~t01y)]|u~(x)|p|u~(y)|p|xy|μ𝑑x𝑑y\displaystyle\int\int\frac{\left[A\left(t_{0}^{-1}x\right)A\left(t_{0}^{-1}y\right)-\tilde{\xi}^{(2-N)p+2N-\mu}A\left(\tilde{\xi}t_{0}^{-1}x\right)A\left(\tilde{\xi}t_{0}^{-1}y\right)\right]|\tilde{u}(x)|^{p}|\tilde{u}(y)|^{p}}{|x-y|^{\mu}}dxdy
<\displaystyle< I(u~t0)I(u~)=m(c),\displaystyle I\left(\tilde{u}^{t_{0}}\right)\leq I\left(\tilde{u}\right)=m\left(c\right),

which shows that m(c)<m(c)m(c^{\prime})<m(c).

\Box

Lemma 3.6.

(i) There exists ρ0>0\rho_{0}>0 such that u2ρ0\|\nabla u\|_{2}\geq\rho_{0}, u(c)\forall u\in\mathcal{M}(c);
(ii) m(c)=infu(c)I(u)>0m(c)=\inf\limits_{u\in\mathcal{M}(c)}I(u)>0.

Proof.

(i) For u(c)u\in\mathcal{M}(c),

u22=12p[(Np2N+μ)A(x)2A(x)x]A(y)|u(x)|p|u(y)|p|xy|μ𝑑x𝑑y.\|\nabla u\|_{2}^{2}=\frac{1}{2p}\int\int\frac{\left[(Np-2N+\mu)A(x)-2\nabla A(x)\cdot x\right]A(y)|u(x)|^{p}|u(y)|^{p}}{|x-y|^{\mu}}dxdy.

By (A1)(A_{1}), Lemma 3.1, and Hardy–Littlewood–Sobolev inequality,

u22C|u(x)|p|u(y)|p|xy|μdxdyC(N,μ)u2Np2Nμ2p.\|\nabla u\|_{2}^{2}\leq C\int\int\frac{|u(x)|^{p}|u(y)|^{p}}{|x-y|^{\mu}}\mathrm{d}x\mathrm{d}y\leq C(N,\mu)\|u\|_{\frac{2Np}{2N-\mu}}^{2p}.

On the other hand, we have from Gagliardo-Nirenberg inequality that

usC(N,s)u2N(s2)2su22N(N2)s2s,uH1(N,),s[2,2).\displaystyle\|u\|_{s}\leq C(N,s)\|\nabla u\|_{2}^{\frac{N(s-2)}{2s}}\|u\|_{2}^{\frac{2N-(N-2)s}{2s}},\quad\forall u\in H^{1}(\mathbb{R}^{N},\mathbb{R}),\quad s\in\left[2,2^{*}\right).

Therefore,

u2Np2N+μ2C(N,p,μ)u2Np2N+μ2p=C(N,p,μ)cNp2N+μ2p2.\|\nabla u\|_{2}^{Np-2N+\mu-2}\geq C(N,p,\mu)\|u\|_{2}^{Np-2N+\mu-2p}=C(N,p,\mu)c^{\frac{Np-2N+\mu-2p}{2}}. (3.8)

Since Np2N+μ>2Np-2N+\mu>2, there exists

ρ0=C(N,p,μ)1Np2N+μ2cNp2N+μ2p2(Np2N+μ2)>0\rho_{0}=C(N,p,\mu)^{\frac{1}{Np-2N+\mu-2}}c^{\frac{Np-2N+\mu-2p}{2(Np-2N+\mu-2)}}>0

such that u2ρ0\|\nabla u\|_{2}\geq\rho_{0}.

(ii) For u(c)u\in\mathcal{M}(c), it follows from (A(x)x)A(y)0-\left(\nabla A(x)\cdot x\right)A(y)\geq 0 that

I(u)\displaystyle I(u) =I(u)1Np2N+μJ(u)\displaystyle=I(u)-\frac{1}{Np-2N+\mu}J(u) (3.9)
=(121Np2N+μ)u221(Np2N+μ)p(A(x)x)A(y)|u(x)|p|u(y)|p|xy|μ𝑑x𝑑y\displaystyle=\left(\frac{1}{2}-\frac{1}{Np-2N+\mu}\right)\|\nabla u\|_{2}^{2}-\frac{1}{(Np-2N+\mu)p}\int\int\frac{\left(\nabla A(x)\cdot x\right)A(y)|u(x)|^{p}|u(y)|^{p}}{|x-y|^{\mu}}dxdy
(121Np2N+μ)ρ02.\displaystyle\geq\left(\frac{1}{2}-\frac{1}{Np-2N+\mu}\right)\rho_{0}^{2}.

Therefore m(c)=infu(c)I(u)>0m(c)=\inf\limits_{u\in\mathcal{M}(c)}I(u)>0. \Box

By Lemma 3.4, we have

m(c)m(c).m(c)\leq m_{\infty}(c). (3.10)

With the help of (3.10), we can show the following lemma.

Lemma 3.7.

m(c)m(c) is achieved.

Proof.

By Lemmas 3.3 and 3.6, we have we have (c)\mathcal{M}(c)\neq\emptyset and m(c)>0m(c)>0. Let {un}(c)\{u_{n}\}\subset\mathcal{M}(c) be such that I(un)m(c)I(u_{n})\to m(c). Since J(un)=0J(u_{n})=0, it follows from (3.9)(\ref{2.10.ii}) that

m(c)+o(1)=I(un)(121Np2N+μ)un22.m(c)+o(1)=I(u_{n})\geq\left(\frac{1}{2}-\frac{1}{Np-2N+\mu}\right)\|\nabla u_{n}\|_{2}^{2}.

This shows that {un2}\{\|\nabla u_{n}\|_{2}\} is bounded. Passing to a subsequence, we have

unu¯ in H1(N,),unu¯ in Llocs(N,) for 2s<2,and unu¯a.e. in N.u_{n}\rightharpoonup\bar{u}\text{ in }H^{1}(\mathbb{R}^{N},\mathbb{R}),\quad u_{n}\to\bar{u}\text{ in }L^{s}_{\text{loc}}(\mathbb{R}^{N},\mathbb{R})\text{ for }2\leq s<2^{*},\quad\text{and }u_{n}\to\bar{u}~{}a.e.\text{ in }\mathbb{R}^{N}.

Case (i) u¯=0\bar{u}=0. Let BR(0)B_{R}(0) be a ball in N\mathbb{R}^{N} with the origin as its center and RR as its radius, by Lemma 2.1 and Hardy–Littlewood–Sobolev inequality, we have

|(A(x)x)A(y)|un(x)|p|un(y)|p|xy|μ𝑑x𝑑y|\displaystyle\left|\int\int\frac{(\nabla A(x)\cdot x)A(y)|u_{n}(x)|^{p}|u_{n}(y)|^{p}}{|x-y|^{\mu}}dxdy\right| (3.11)
=\displaystyle= |(xBR(0)+xBRc(0))(A(x)x)A(y)|un(x)|p|un(y)|p|xy|μ𝑑x𝑑y|\displaystyle\left|\int\left(\int_{x\in B_{R}(0)}+\int_{x\in B^{c}_{R}(0)}\right)\frac{(\nabla A(x)\cdot x)A(y)|u_{n}(x)|^{p}|u_{n}(y)|^{p}}{|x-y|^{\mu}}dxdy\right|
\displaystyle\leq [(xBR(0)+xBRc(0))|A(x)x|2N2Nμ|un(x)|2Np2Nμdx]2Nμ2N\displaystyle\left[\left(\int_{x\in B_{R}(0)}+\int_{x\in B^{c}_{R}(0)}\right)\left|\nabla A(x)\cdot x\right|^{\frac{2N}{2N-\mu}}|u_{n}(x)|^{\frac{2Np}{2N-\mu}}dx\right]^{\frac{2N-\mu}{2N}}
[|A(y)|2N2Nμ|un(y)|2Np2Nμ𝑑y]2Nμ2N\displaystyle\cdot\left[\int|A(y)|^{\frac{2N}{2N-\mu}}|u_{n}(y)|^{\frac{2Np}{2N-\mu}}dy\right]^{\frac{2N-\mu}{2N}}
\displaystyle\to 0,asR,n.\displaystyle 0,\quad\text{as}~{}R\to\infty,~{}n\to\infty.

Similarly, by lim|x|A(x)=A\lim\limits_{|x|\to\infty}A(x)=A_{\infty}, we have

(A2A(x)A(y))|un(x)|p|un(y)|p|xy|μ𝑑x𝑑y\displaystyle\int\int\frac{(A_{\infty}^{2}-A(x)A(y))|u_{n}(x)|^{p}|u_{n}(y)|^{p}}{|x-y|^{\mu}}dxdy (3.12)
=\displaystyle= A(AA(x))|un(x)|p|un(y)|p|xy|μ𝑑x𝑑y+A(x)(AA(y))|un(x)|p|un(y)|p|xy|μ𝑑x𝑑y\displaystyle\int\int\frac{A_{\infty}(A_{\infty}-A(x))|u_{n}(x)|^{p}|u_{n}(y)|^{p}}{|x-y|^{\mu}}dxdy+\int\int\frac{A(x)(A_{\infty}-A(y))|u_{n}(x)|^{p}|u_{n}(y)|^{p}}{|x-y|^{\mu}}dxdy
=\displaystyle= (xBR(0)+xBRc(0))A(AA(x))|un(x)|p|un(y)|p|xy|μ𝑑x𝑑y\displaystyle\int\left(\int_{x\in B_{R}(0)}+\int_{x\in B^{c}_{R}(0)}\right)\frac{A_{\infty}(A_{\infty}-A(x))|u_{n}(x)|^{p}|u_{n}(y)|^{p}}{|x-y|^{\mu}}dxdy
+(yBR(0)+yBRc(0))A(x)(AA(y))|un(x)|p|un(y)|p|xy|μ𝑑x𝑑y\displaystyle+\int\left(\int_{y\in B_{R}(0)}+\int_{y\in B^{c}_{R}(0)}\right)\frac{A(x)(A_{\infty}-A(y))|u_{n}(x)|^{p}|u_{n}(y)|^{p}}{|x-y|^{\mu}}dxdy
\displaystyle\to 0,asR,n.\displaystyle 0,\quad\text{as}~{}R\to\infty,~{}n\to\infty.

Therefore, as nn\to\infty, it follows from (3.11) and (3.12) that

I(un)m(c),J(un)0.I_{\infty}(u_{n})\to m(c),\quad J_{\infty}(u_{n})\to 0. (3.13)

where

J(un)=dI(unt)dt|t=1=un22Np2N+μ2pA2|un(x)|p|un(y)|p|xy|μ𝑑x𝑑y.\displaystyle J_{\infty}(u_{n})=\frac{dI_{\infty}(u_{n}^{t})}{dt}|_{t=1}=\|\nabla u_{n}\|_{2}^{2}-\frac{Np-2N+\mu}{2p}\int\int\frac{A_{\infty}^{2}|u_{n}(x)|^{p}|u_{n}(y)|^{p}}{|x-y|^{\mu}}dxdy.

By Lemma 3.6-(i) and (3.13)(\ref{c2.26}), we have

ρ02un22=Np2N+μ2pA2|un(x)|p|un(y)|p|xy|μ𝑑x𝑑y+o(1).\rho_{0}^{2}\leq\|\nabla u_{n}\|_{2}^{2}=\frac{Np-2N+\mu}{2p}\int\int\frac{A_{\infty}^{2}|u_{n}(x)|^{p}|u_{n}(y)|^{p}}{|x-y|^{\mu}}dxdy+o(1). (3.14)

Using (3.14)(\ref{c2.27}) and Lions’ concentration compactness principle [14, 15], we can easily prove that there exist δ>0\delta>0 and {yn}N\{y_{n}\}\subset\mathbb{R}^{N} such that B1(yn)|un|2𝑑x>δ2.\int_{B_{1}(y_{n})}|u_{n}|^{2}dx>\frac{\delta}{2}. Let u^n(x)=un(x+yn)\hat{u}_{n}(x)=u_{n}(x+y_{n}). Then u^n=un\|\hat{u}_{n}\|=\|u_{n}\|, B1(0)|u^n|2𝑑x>δ2,\int_{B_{1}(0)}|\hat{u}_{n}|^{2}dx>\frac{\delta}{2}, and

I(u^n)m(c),J(u^n)0.I_{\infty}(\hat{u}_{n})\to m(c),~{}~{}J_{\infty}(\hat{u}_{n})\to 0. (3.15)

Therefore, there exists u^H1(N,){0}\hat{u}\in H^{1}(\mathbb{R}^{N},\mathbb{R})\setminus\{0\} such that, passing to a subsequence, as nn\to\infty,

u^nu^inH1(N,),u^nu^inLlocq(N,)forq[1,2),u^nu^a.e. onN.\hat{u}_{n}\rightharpoonup\hat{u}~{}~{}\text{in}~{}H^{1}(\mathbb{R}^{N},\mathbb{R}),\quad\hat{u}_{n}\to\hat{u}~{}~{}\text{in}~{}L^{q}_{\text{loc}}(\mathbb{R}^{N},\mathbb{R})~{}\text{for}~{}q\in[1,2^{*}),\quad\hat{u}_{n}\to\hat{u}~{}~{}\text{a.e.~{}on}~{}\mathbb{R}^{N}. (3.16)

Let wn=u^nu^w_{n}=\hat{u}_{n}-\hat{u}. Then (3.16)(\ref{2.11.4}) and Lemma 2.2 yield

I(u^n)=I(u^)+I(wn)+o(1),J(u^n)=J(u^)+J(wn)+o(1).I_{\infty}(\hat{u}_{n})=I_{\infty}(\hat{u})+I_{\infty}(w_{n})+o(1),~{}~{}J_{\infty}(\hat{u}_{n})=J_{\infty}(\hat{u})+J_{\infty}(w_{n})+o(1). (3.17)

Set

Ψ(u):=I(u)12J(u)=Np2N+μ24pA2|u(x)|p|u(y)|p|xy|μ𝑑x𝑑y,uH1(N,).\Psi_{\infty}(u):=I_{\infty}(u)-\frac{1}{2}J_{\infty}(u)=\frac{Np-2N+\mu-2}{4p}\int\int\frac{A_{\infty}^{2}|u(x)|^{p}|u(y)|^{p}}{|x-y|^{\mu}}dxdy,\quad\forall u\in H^{1}(\mathbb{R}^{N},\mathbb{R}).

Then by (3.9)(\ref{2.10.ii}), (3.15)(\ref{2.11.3}) and (3.17)(\ref{2.11.5}), we have

m(c)Ψ(u^)+o(1)=Ψ(wn)\displaystyle m(c)-\Psi_{\infty}(\hat{u})+o(1)=\Psi_{\infty}(w_{n}) (3.18)

and

J(wn)=J(u^)+o(1).J_{\infty}(w_{n})=-J_{\infty}(\hat{u})+o(1). (3.19)

By a standard argument [7, Lemma 2.15], we have

I(u^)=m(c),J(u^)=0.I_{\infty}(\hat{u})=m(c),~{}~{}J_{\infty}(\hat{u})=0. (3.20)

By Lemma 3.3, there exists t~>0\tilde{t}>0 such that u^t~(c)\hat{u}^{\tilde{t}}\in\mathcal{M}(c), moreover, it follows from (A1)(A_{1}), (3.20)(\ref{2.11.8}), and Lemma 3.2 that

m(c)I(u^t~)I(u^t~)I(u^)=m(c).m(c)\leq I\left(\hat{u}^{\tilde{t}}\right)\leq I_{\infty}\left(\hat{u}^{\tilde{t}}\right)\leq I_{\infty}(\hat{u})=m(c).

This shows that m(c)m(c) is achieved at u^t~(c)\hat{u}^{\tilde{t}}\in\mathcal{M}(c).

Case (ii) u¯0\bar{u}\neq 0. Let vn=unu¯v_{n}=u_{n}-\bar{u}. Then vn0v_{n}\rightharpoonup 0 in H1(N,)H^{1}(\mathbb{R}^{N},\mathbb{R}). By Lemma 2.2, we have

I(un)=I(u¯)+I(vn)+o(1),J(un)=J(u¯)+J(vn)+o(1).I(u_{n})=I(\bar{u})+I(v_{n})+o(1),~{}~{}J(u_{n})=J(\bar{u})+J(v_{n})+o(1). (3.21)

For uH1(N,)u\in H^{1}(\mathbb{R}^{N},\mathbb{R}), set

Ψ(u):=I(u)12J(u)=14p[(Np2N+μ2)A(x)2A(x)x]A(y)|u(x)|p|u(y)|p|xy|μ𝑑x𝑑y.\begin{array}[]{ll}\Psi(u):&\displaystyle=I(u)-\frac{1}{2}J(u)\vspace{0.2cm}\\ &\displaystyle=\frac{1}{4p}\int\int\frac{\left[(Np-2N+\mu-2)A(x)-2\nabla A(x)\cdot x\right]A(y)|u(x)|^{p}|u(y)|^{p}}{|x-y|^{\mu}}dxdy.\end{array} (3.22)

Then it follows from (A1)(A_{1}) and Lemma 3.1 that Ψ(u)>0\Psi(u)>0 for uH1(N,){0}u\in H^{1}(\mathbb{R}^{N},\mathbb{R})\setminus\{0\}. Using the same argument in [7, Lemma 2.15], we have

I(u¯)=m(c),J(u¯)=0,u¯22=c.I(\bar{u})=m(c),~{}~{}J(\bar{u})=0,~{}~{}\|\bar{u}\|_{2}^{2}=c. (3.23)

This completes the conclusion. \Box

Lemma 3.8.

If u¯(c)\bar{u}\in\mathcal{M}(c) and I(u¯)=m(c)I(\bar{u})=m(c), then u¯\bar{u} is a critical point of I|S(c)I|_{S(c)}.

Proof.

By a similar deformation argument in [7, Lemma 2.16], we get the conclusion. \Box

Proof of Theorem 1.6. For any c>0c>0, in view of Lemmas 3.7 and 3.8, there exists u¯c(c)\overline{u}_{c}\in\mathcal{M}(c) such that I(u¯c)=m(c),I|𝒮(c)(u¯c)=0.I\left(\overline{u}_{c}\right)=m(c),\left.\quad I\right|_{\mathcal{S}(c)}^{\prime}\left(\overline{u}_{c}\right)=0. In view of the Lagrange multiplier theorem, there exists λc\lambda_{c}\in\mathbb{R} such that I(u¯c)=λcu¯c.I^{\prime}\left(\overline{u}_{c}\right)=\lambda_{c}\overline{u}_{c}. Therefore, (u¯c,λc)(\overline{u}_{c},\lambda_{c}) is a solution of (P). \Box


References

  • [1] J. Bellazzini and G. Siciliano, Scaling properties of functionals and existence of constrained minimizers, J. Funct. Anal., 261 (2011), pp. 2486–2507.
  • [2] J. Bellazzini and N. Visciglia, On the orbital stability for a class of nonautonomous nls, Indiana University mathematics journal, (2010), pp. 1211–1230.
  • [3] V. I. Bogachev and M. A. S. Ruas, Measure theory, vol. 1, Springer, 2007.
  • [4] T. Cazenave, Semilinear Schrodinger Equations, vol. 10, American Mathematical Soc., 2003.
  • [5] T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys., 85 (1982), pp. 549–561.
  • [6] J. Chen and B. Guo, Strong instability of standing waves for a nonlocal schrödinger equation, Physica D: Nonlinear Phenomena, 227 (2007), pp. 142–148.
  • [7] S. Chen and X. Tang, Normalized solutions for nonautonomous Schrödinger equations on a suitable manifold, J. Geom. Anal., 30 (2020), pp. 1637–1660.
  • [8] B. Feng and X. Yuan, On the cauchy problem for the schrödinger-hartree equation, Evolution Equations & Control Theory, 4 (2015), p. 431.
  • [9] L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal., 28 (1997), pp. 1633–1659.
  • [10] E. Lenzmann, Uniqueness of ground states for pseudorelativistic Hartree equations, Anal. PDE, 2 (2009), pp. 1–27.
  • [11] G.-B. Li and H.-Y. Ye, The existence of positive solutions with prescribed L2L^{2}-norm for nonlinear Choquard equations, J. Math. Phys., 55 (2014), pp. 121501, 19.
  • [12] E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Studies in Appl. Math., 57 (1976/77), pp. 93–105.
  • [13] E. H. Lieb and M. Loss, Analysis, vol. 14 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, second ed., 2001.
  • [14] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), pp. 109–145.
  • [15]  , The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), pp. 223–283.
  • [16] I. M. Moroz, R. Penrose, and P. Tod, Spherically-symmetric solutions of the Schrödinger-Newton equations, vol. 15, 1998, pp. 2733–2742. Topology of the Universe Conference (Cleveland, OH, 1997).
  • [17] V. Moroz and J. Van Schaftingen, Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013), pp. 153–184.
  • [18] S. I. Pekar, Untersuchungen über die Elektronentheorie der Kristalle, Akademie-verlag, 1954.
  • [19] H. Ye, Mass minimizers and concentration for nonlinear Choquard equations in N\mathbb{R}^{N}, Topol. Methods Nonlinear Anal., 48 (2016), pp. 393–417.