This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Normal extensions of πŠπ“π\mathbf{KTB} of codimension 3

James Koussas Department of Mathematics and Statistics
La Trobe University
Melbourne, Australia
   Tomasz Kowalski Department of Mathematics and Statistics
La Trobe University
Melbourne, Australia
   Yutaka Miyazaki Osaka University of Economics and Law
Osaka, Japan
   Michael Stevens Research School of Information Sciences and Engineering
Australian National University
Canberra, Australia
Abstract

It is known that in the lattice of normal extensions of the logic πŠπ“π\mathbf{KTB} there are unique logics of codimensions 11 and 22, namely, the logic of a single reflexive point, and the logic of the total relation on two points. A natural question arises about the cardinality of the set of normal extensions of πŠπ“π\mathbf{KTB} of codimension 33. Generalising two finite examples found by a computer search, we construct an uncountable family of (countable) graphs, and prove that certain frames based on these produce a continuum of normal extensions of πŠπ“π\mathbf{KTB} of codimension 33. We use algebraic methods, which in this case turn out to be better suited to the task than frame-theoretic ones.

keywords:
Normal extensions, KTB-algebras, Subvarieties

1 Introduction

The Kripke semantics of πŠπ“π\mathbf{KTB} is the class of reflexive and symmetric frames, that is, frames whose accessibility relation is a tolerance. Since irreflexivity is not modally definable, it can be argued that πŠπ“π\mathbf{KTB} is the logic of simple graphs. Yet πŠπ“π\mathbf{KTB} is much less investigated that its transitive cousins, and in fact certain tools working very well for transitive logics (for example, canonical formulas) have no πŠπ“π\mathbf{KTB} counterparts working nearly as well. Among the articles dealing specifically with πŠπ“π\mathbf{KTB} and its extensions, Kripke incompleteness in various guises was investigated inΒ [15] andΒ [6], interpolation inΒ [7] andΒ [9], normal forms inΒ [16], and splittings inΒ [17], [10] andΒ [8]. In the present article we focus on the upper part of the lattice of normal (axiomatic) extensions of πŠπ“π\mathbf{KTB}, or viewed dually, the lower part of the lattice of subvarieties of the corresponding variety of modal algebras.

The article is centred around a single construction, so it is structured rather simply: in the present section we give necessary preliminaries, in SectionΒ 2 we outline the history of the problem, in SectionΒ 3 we present the main construction and in SectionΒ 4 we draw the conclusion that there are uncountably many extensions of πŠπ“π\mathbf{KTB} of codimension 3.

Although we will use algebraic methods, we wish to move rather freely between graphs, frames and algebras. To make these transitions smooth we now establish a few conventions, the general principle behind them being that italic capitals stand for graphs, blackboard bold capitals for Kripke frames, and boldface capitals for algebras. With every simple graph G=⟨V;E⟩G=\langle V;E\rangle, finite or infinite, we associate a Kripke frame 𝔾\mathbb{G} with the same universe and the reflexive closure of EE as the accessibility relation. For example, 𝕂i\mathbb{K}_{i} will be a looped version of KiK_{i}, the complete graph on ii vertices. Thus, 𝕂1\mathbb{K}_{1} is a single reflexive point, and 𝕂2\mathbb{K}_{2} a two-element cluster. We will refer to these frames simply as graphs, unless the context calls for disambiguation. For a graph 𝔾\mathbb{G}, we will write 𝖒𝗆​(𝔾)\mathsf{Cm}(\mathbb{G}), to denote its complex algebra. The figure below illustrates our conventions.

Figure 1: Diagrams of K2K_{2}, 𝕂2\mathbb{K}_{2} and 𝖒𝗆​(𝕂2)\mathsf{Cm}(\mathbb{K}_{2}).

If 𝔾\mathbb{G} is infinite, 𝖒𝗆​(𝔾)\mathsf{Cm}(\mathbb{G}) will typically be too big for our purposes, but certain special subalgebras of 𝖒𝗆​(𝔾)\mathsf{Cm}(\mathbb{G}) will play a critical role. These algebras are mathematically the same as general (descriptive) frames over 𝔾\mathbb{G}, so the machinery of bounded morphisms reduces in these cases to verifying whether the identity map is one. The identity map is of course frame-theoretically invisible, so all that remains is algebra. This is essentially why algebraic methods are better suited to the task.

We assume familiarity with the basics of universal algebra and model theory. To be more precise, ultraproducts and ŁoΕ› Theorem, JΓ³nsson’s Lemma for congruence-distributive varieties, and some consequences of the congruence extension property will suffice. All of these concepts are covered in [1] and [3]. Our algebraic notation is standard: we use upright I\mathop{\textup{I}}, H\mathop{\textup{H}}, S\mathop{\textup{S}}, P\mathop{\textup{P}}, and PU\mathop{\textup{P}_{\textup{U}}} for the usual class operators of taking isomorphic copies, homomorphic images, subalgebras, direct products and ultraproducts, respectively. We also write Si(π’ž)\mathop{\textup{Si}}(\mathcal{C}) for the class of subdirectly irreducible algebras in π’ž\mathcal{C}. The variety generated by a class of algebras π’ž\mathcal{C} we denote by Var(π’ž)\mathop{\textup{Var}}(\mathcal{C}), so Var\mathop{\textup{Var}} is a shorthand for HSP\mathop{\textup{HSP}}. When we deal with Boolean algebras of sets, we use the standard set theoretical βˆͺ\cup and ∩\cap, and we write ∼X{\sim}X instead of Β¬X\neg X for the complement of XX.

1.1 πŠπ“π\mathbf{KTB}-algebras

A πŠπ“π\mathbf{KTB}-algebra is an algebraic structure 𝐀=⟨A;∨,∧,Β¬,β—‡,0,1⟩\mathbf{A}=\langle A;\vee,\wedge,\neg,\Diamond,0,1\rangle such that ⟨A;∨,∧,Β¬,0,1⟩\langle A;\vee,\wedge,\neg,0,1\rangle is a Boolean algebra, and β—‡\Diamond a unary operation satisfying the following conditions:

  1. \normalshape(1)

    ◇​0=0\Diamond 0=0,

  2. \normalshape(2)

    ◇​(x∨y)=◇​xβˆ¨β—‡β€‹y\Diamond(x\vee y)=\Diamond x\vee\Diamond y,

  3. \normalshape(3)

    x⩽◇​xx\leqslant\Diamond x,

  4. \normalshape(4)

    x⩽░​◇​xx\leqslant\Box\Diamond x,

where β–‘\Box, as usual, stands for ¬◇​¬\neg\Diamond\neg The last two conditions can be rendered as identities and so the class of πŠπ“π\mathbf{KTB}-algebras is a variety, which we will denote by ℬ\mathcal{B}. The inequality (iv) is also equivalent to:

xβˆ§β—‡β€‹y=0⇔◇​x∧y=0.x\wedge\Diamond y=0\iff\Diamond x\wedge y=0.

Therefore, β—‡\Diamond is a self-conjugate operator in the sense of [4], [5] and so ℬ\mathcal{B} is a variety of self-conjugate Boolean Algebras with Operators (BAOs). Incidentally, the equational axiomatisation above is equivalent to the quasiequational one below:

  1. (1)

    xβ©½yβŸΉβ—‡β€‹x⩽◇​yx\leqslant y\Longrightarrow\Diamond x\leqslant\Diamond y,

  2. (2)

    x⩽◇​xx\leqslant\Diamond x,

  3. (3)

    x⩽░​◇​xx\leqslant\Box\Diamond x.

For completeness, we include the following well known propositions (see [4], [13], [1] and [3] for proofs and useful exercises). The first two deal with πŠπ“π\mathbf{KTB}-algebras, and the third one recalls some crucial facts from universal algebra.

Proposition 1.1.

For any graph G=⟨V;E⟩G=\langle V;E\rangle, the algebra 𝖒𝗆​(𝔾)\mathsf{Cm}(\mathbb{G}) is a πŠπ“π\mathbf{KTB}-algebra. The class of all such algebras generates the variety ℬ\mathcal{B}.

Proposition 1.2.

The variety ℬ\mathcal{B} is congruence distributive and has the congruence extension property.

Proposition 1.3.

Let 𝒱\mathcal{V} be a variety of algebras, and π’ž\mathcal{C} a subclass of 𝒱\mathcal{V}.

  1. \normalshape(1)

    If 𝒱\mathcal{V} has the congruence extension property, 𝐀\mathbf{A} is a simple algebra in 𝒱\mathcal{V} and 𝐁∈IS(𝐀)\mathbf{B}\in\mathop{\textup{IS}}(\mathbf{A}), then 𝐁\mathbf{B} is simple.

  2. \normalshape(2)

    If 𝒱\mathcal{V} has the congruence extension property, then HS(π’ž)=SH(π’ž)\mathop{\textup{HS}}(\mathcal{C})=\mathop{\textup{SH}}(\mathcal{C}).

  3. \normalshape(3)

    If 𝒱\mathcal{V} is congruence distributive, then Si(Var(π’ž))=Si(HSPU(π’ž))\mathop{\textup{Si}}(\mathop{\textup{Var}}(\mathcal{C}))=\mathop{\textup{Si}}(\mathop{\textup{HSP}_{\textup{U}}}(\mathcal{C})).

  4. \normalshape(4)

    We have 𝒱=Var(Si(𝒱))\mathcal{V}=\mathop{\textup{Var}}(\mathop{\textup{Si}}(\mathcal{V})).

As usual, we define the term operations β—‡n\Diamond^{n}, one for each nn, recursively, putting β—‡0​x=x\Diamond^{0}x=x and β—‡n+1​x=◇​◇n​x\Diamond^{n+1}x=\Diamond\Diamond^{n}x.

Definition 1.4.

Let B=⟨B;∨,∧,Β¬,β—‡,0,1βŸ©βˆˆβ„¬\textup{{B}}=\langle B;\vee,\wedge,\neg,\Diamond,0,1\rangle\in\mathcal{B}. Then the map Ξ³:Bβ†’B\gamma\colon B\to B given by γ​(x)=░​◇​x\gamma(x)=\Box\Diamond x is a closure operator on 𝐁\mathbf{B}, which we call the natural closure operator on B.

The following properties of natural closure operators will be useful.

Lemma 1.5.

Let B=⟨B;∨,∧,Β¬,β—‡,0,1βŸ©βˆˆβ„¬\textup{{B}}=\langle B;\vee,\wedge,\neg,\Diamond,0,1\rangle\in\mathcal{B} and let Ξ³\gamma denote the natural closure operator on B.

  1. (i)

    If x∈Bx\in B is Ξ³\gamma-closed, then Β¬x=◇​¬◇​x\neg x=\Diamond\neg\Diamond x and ◇​¬x=β—‡2​¬◇​x\Diamond\neg x=\Diamond^{2}\neg\Diamond x.

  2. (ii)

    If x∈Bx\in B, then ◇​γ​(x)=◇​x\Diamond\gamma(x)=\Diamond x.

Proof 1.6.

Let x∈Bx\in B. If xx is Ξ³\gamma-closed, then x=░​◇​xx=\Box\Diamond x, thus Β¬x=◇​¬◇​x\neg x=\Diamond\neg\Diamond x and so ◇​¬x=β—‡2​¬◇​x\Diamond\neg x=\Diamond^{2}\neg\Diamond x, hence (i) holds.

As Ξ³\gamma is a closure operator, we have x⩽γ​(x)x\leqslant\gamma(x), hence ◇​x⩽◇​γ​(x)\Diamond x\leqslant\Diamond\gamma(x). Similarly, ¬◇​x⩽γ​(¬◇​x)=░​◇​¬◇​x=¬◇​░​◇​x=¬◇​γ​(x)\neg\Diamond x\leqslant\gamma(\neg\Diamond x)=\Box\Diamond\neg\Diamond x=\neg\Diamond\Box\Diamond x=\neg\Diamond\gamma(x), so ◇​γ​(x)⩽◇​x\Diamond\gamma(x)\leqslant\Diamond x. Thus, ◇​γ​(x)=◇​x\Diamond\gamma(x)=\Diamond x, hence (ii) holds.

Lemma 1.7.

Let B=⟨B;∨,∧,Β¬,β—‡,0,1βŸ©βˆˆβ„¬\textup{{B}}=\langle B;\vee,\wedge,\neg,\Diamond,0,1\rangle\in\mathcal{B} and let Ξ³\gamma be the natural closure operator of B. If BβŠ§βˆƒx:xβ‰ 0&◇​xβ‰ 1\textup{{B}}\models\exists x\colon x\neq 0\mathrel{\&}\Diamond x\neq 1 and BβŠ§βˆ€x:xβ‰ 0β†’β—‡n​x=1\textup{{B}}\models\forall x\colon x\neq 0\to\Diamond^{n}x=1, for some nβˆˆΟ‰βˆ–{0}n\in\omega\setminus\{0\}, then there is a Ξ³\gamma-closed y∈By\in B with ◇​yβ‰ 1\Diamond y\neq 1 and β—‡2​y=1\Diamond^{2}y=1.

Proof 1.8.

Let xx be a witness of βˆƒx:xβ‰ 0&◇​xβ‰ 1\exists x\colon x\neq 0\mathrel{\&}\Diamond x\neq 1 in 𝐁\mathbf{B}. By assumption, BβŠ§βˆ€x:xβ‰ 0β†’β—‡n​x=1\textbf{B}\models\forall x\colon x\neq 0\to\Diamond^{n}x=1, so we must have β—‡n​x=1\Diamond^{n}x=1. Hence, there is some m∈{1,…,nβˆ’1}m\in\{1,\dots,n-1\} with β—‡m​xβ‰ 1\Diamond^{m}x\neq 1 and β—‡m+1​x=1\Diamond^{m+1}x=1. By Lemma 1.5(ii), ◇​γ​(β—‡mβˆ’1​x)=β—‡m​xβ‰ 1\Diamond\gamma(\Diamond^{m-1}x)=\Diamond^{m}x\neq 1 and β—‡m+1​x=1\Diamond^{m+1}x=1. Since γ​(β—‡mβˆ’1​x)\gamma(\Diamond^{m-1}x) is Ξ³\gamma-closed, putting y=γ​(β—‡mβˆ’1​(x))y=\gamma(\Diamond^{m-1}(x)), we get a Ξ³\gamma-closed y∈By\in B with ◇​yβ‰ 1\Diamond y\neq 1 and β—‡2​y=1\Diamond^{2}y=1, as required.

2 The history of the problem

A logic LL is said to have codimension nn, in some lattice Ξ›\Lambda of logics, if there exists a descending chain L0≻⋯≻LnL_{0}\succ\dots\succ L_{n} of logics from Ξ›\Lambda, such that L0L_{0} is inconsistent, Ln=LL_{n}=L, and Liβˆ’1L_{i-1} covers LiL_{i} for each i∈{0,…,n}i\in\{0,\dots,n\}. Lattices of nonclassical logics are typically very complicated, so looking at logics of small codimensions is one way of analysing these lattices. In particular, finding the smallest nn for which there are uncountably many logics of codimension nn in Ξ›\Lambda indicates at which level the lattice gets really badly complicated.

Let NExt​(πŠπ“π)\mathrm{NExt}(\mathbf{KTB}) stand for the lattice of normal extensions of πŠπ“π\mathbf{KTB}, where we identify logics with their sets of theorems. We intend to show that for Ξ›=NExt​(πŠπ“π)\Lambda=\mathrm{NExt}(\mathbf{KTB}) the smallest such nn is 33.

Remark 2.1.

If we identified logics with their consequence operations, rather than their sets of theorems, NExt​(πŠπ“π)\mathrm{NExt}(\mathbf{KTB}) would be the the lattice of normal axiomatic extensions of πŠπ“π\mathbf{KTB}. Let us call the lattice of all normal extensions of πŠπ“π\mathbf{KTB}, whether axiomatic or not, CNExt​(πŠπ“π)\mathrm{CNExt}(\mathbf{KTB}). Then NExt​(πŠπ“π)\mathrm{NExt}(\mathbf{KTB}) is a subposet of CNExt​(πŠπ“π)\mathrm{CNExt}(\mathbf{KTB}). However, the codimension of a logic L∈NExt​(πŠπ“π)L\in\mathrm{NExt}(\mathbf{KTB}) can be smaller in NExt​(πŠπ“π)\mathrm{NExt}(\mathbf{KTB}) than the codimension of LL in CNExt​(πŠπ“π)\mathrm{CNExt}(\mathbf{KTB}). It follows from results of Blanco, Campercholi and Vaggione (see TheoremΒ 1 inΒ [2]) that for any logic L∈NExt​(πŠπ“π)L\in\mathrm{NExt}(\mathbf{KTB}) of codimension at least 2, NExt​(L)\mathrm{NExt}(L) is strictly contained in CNExt​(L)\mathrm{CNExt}(L).

Let Subv​(ℬ)\mathrm{Subv}(\mathcal{B}) stand for the lattice of subvarieties of ℬ\mathcal{B}. Then, the usual dual isomorphism between NExt​(πŠπ“π)\mathrm{NExt}(\mathbf{KTB}) and Subv​(ℬ)\mathrm{Subv}(\mathcal{B}) holds, and therefore logics of codimension nn in NExt​(πŠπ“π)\mathrm{NExt}(\mathbf{KTB}) correspond to varieties of height nn in Subv​(ℬ)\mathrm{Subv}(\mathcal{B}). The next theorem gives a complete picture of Subv​(ℬ)\mathrm{Subv}(\mathcal{B}) up to height 2, and therefore, dually, of NExt​(πŠπ“π)\mathrm{NExt}(\mathbf{KTB}) down to codimension 2. The second statement in the theorem is due to the third author (seeΒ [17]).

Theorem 1.

The lattice Subv​(ℬ)\mathrm{Subv}(\mathcal{B}) has exactly one atom, namely Var(𝖒𝗆​(𝕂1))\mathop{\textup{Var}}(\mathsf{Cm}(\mathbb{K}_{1})). This atom in turn has exactly one cover, namely Var(𝖒𝗆​(𝕂2))\mathop{\textup{Var}}(\mathsf{Cm}(\mathbb{K}_{2})).

A natural question then arises about the cardinality of the β€œset” of varieties covering Var(𝖒𝗆​(𝕂2))\mathop{\textup{Var}}(\mathsf{Cm}(\mathbb{K}_{2})). It is easy to show that this β€œset” is infinite: countably many varieties covering Var(𝖒𝗆​(𝕂2))\mathop{\textup{Var}}(\mathsf{Cm}(\mathbb{K}_{2})) were constructed by the second and fourth author in an unpublished noteΒ [12], using certain finite graphs. But finite graphs clearly could not suffice for a construction of uncountably many varieties covering Var(𝖒𝗆​(𝕂2))\mathop{\textup{Var}}(\mathsf{Cm}(\mathbb{K}_{2})). A construction of an appropriate uncountable family of countably infinite graphs began by finding two finite ones, called below 𝔾1\mathbb{G}_{1} and 𝔾2\mathbb{G}_{2}:

Figure 2: Graph drawings of 𝔾1\mathbb{G}_{1} and 𝔾2\mathbb{G}_{2} (with loops omitted).

These were found by the second and fourth authors through a computer search, performed with the help of Brendan McKay’s nauty (seeΒ [14]). All non-isomorphic graphs with up to 13 vertices were generated, and checked for the property of not admitting any bounded morphism, except the identity map, the constant map onto 𝕂1\mathbb{K}_{1}, and a bounded morphism onto 𝕂2\mathbb{K}_{2}. By finiteness, this is sufficient (and also necessary) for the logic of such a graph 𝔾\mathbb{G} to be of codimension 3, or, equivalently, for Var(𝖒𝗆​(𝔾))\mathop{\textup{Var}}(\mathsf{Cm}(\mathbb{G})) to be a cover of Var(𝖒𝗆​(𝕂2))\mathop{\textup{Var}}(\mathsf{Cm}(\mathbb{K}_{2})).

Two of these graphs are depicted in FigureΒ 2. They were the only ones that revealed a workable family resemblance to one another. They were also so different from the finite graphs considered inΒ [12] as to be completely unexpected to the finders. Verifying by hand that the bounded morphism condition mentioned above indeed holds, is tedious but not difficult, and so it was proved that Var(𝖒𝗆​(𝔾1))\mathop{\textup{Var}}(\mathsf{Cm}(\mathbb{G}_{1})) and Var(𝖒𝗆​(𝔾2))\mathop{\textup{Var}}(\mathsf{Cm}(\mathbb{G}_{2})) indeed cover Var(𝖒𝗆​(𝕂2))\mathop{\textup{Var}}(\mathsf{Cm}(\mathbb{K}_{2})), confirming the computer-assisted finding.

Extending the zigzaging pattern infinitely to the right is then a no-brainer, and a suitable twisting of the zigzag produces an uncountable family of pairwise non-isomorphic graphs. The next step is to take certain subalgebras of the complex algebras of these infinite graphs (unlike in the finite case, the full complex algebras may not do), and prove that the varieties they generate are pairwise distinct and cover Var(𝖒𝗆​(𝕂2))\mathop{\textup{Var}}(\mathsf{Cm}(\mathbb{K}_{2})). The three last authors did produce a rough approximation to a proof, which was convincing enough (for them) to announce the result (seeΒ [11]). However, the full proof was never published, and in fact it did not exist, as the details were never satisfactorily verified. The three authors dispersed around the globe and the proof was left unfinished. It took about 10 years, and the first author, to produce a complete proof. We are going to present it now.

3 Construction

Before we begin, we make one more remark on the methods. The construction presented below may at first glance suggest that the reasoning about ultrapowers, which will play an important part in the proofs, is not necessary, because everything that could go wrong in an ultrapower already goes wrong in the original algebra. Were it so, the proofs could be greatly simplified, but unfortunately the first glance is misleading. There exists an infinite πŠπ“π\mathbf{KTB}-algebra 𝐀\mathbf{A} such that HS​(𝐀)\textup{HS}(\mathbf{A}) does not contain 𝖒𝗆​(𝕂3)\mathsf{Cm}(\mathbb{K}_{3}), but HSPU​(𝐀)\textup{HSP}_{\textup{U}}(\mathbf{A}) does, so 𝐀\mathbf{A} does not generate a cover of Var​(𝕂2)\textup{Var}(\mathbb{K}_{2}). Considering ultrapowers is necessary, at least in principle.

Now, for the construction. Firstly, we will need the following Lemma, which is an easy consequence of PropositionΒ 1.3(iii).

Lemma 3.1.

We have Si(Var(𝖒𝗆​(𝕂2)))=I({𝖒𝗆​(𝕂1),𝖒𝗆​(𝕂2)})\mathop{\textup{Si}}(\mathop{\textup{Var}}(\mathsf{Cm}(\mathbb{K}_{2})))=\mathop{\textup{I}}(\{\mathsf{Cm}(\mathbb{K}_{1}),\mathsf{Cm}(\mathbb{K}_{2})\}).

Next, we state a sufficient set of conditions for an algebra in ℬ\mathcal{B} to generate a variety of height 3.

Lemma 3.2.

Let π€βˆˆβ„¬\mathbf{A}\in\mathcal{B} and assume that 𝐀\mathbf{A} has the following properties:

  1. \normalshape(1)

    𝐀\mathbf{A} is infinite;

  2. \normalshape(2)

    𝖒𝗆​(𝕂2)∈IS(𝐀)\mathsf{Cm}(\mathbb{K}_{2})\in\mathop{\textup{IS}}(\mathbf{A});

  3. \normalshape(3)

    every member of PU(𝐀)\mathop{\textup{P}}_{\textup{U}}(\mathbf{A}) is simple;

  4. \normalshape(4)

    for all 𝐁∈ISPU(𝐀)\mathbf{B}\in\mathop{\textup{ISP}}_{\textup{U}}(\mathbf{A}), we have 𝐁≅𝖒𝗆​(𝕂1)\mathbf{B}\cong\mathsf{Cm}(\mathbb{K}_{1}), 𝐁≅𝖒𝗆​(𝕂2)\mathbf{B}\cong\mathsf{Cm}(\mathbb{K}_{2}) or π€βˆˆIS(𝐁)\mathbf{A}\in\mathop{\textup{IS}}(\mathbf{B}).

Then Var(𝐀)\mathop{\textup{Var}}(\mathbf{A}) is of height 3.

Proof 3.3.

Based on (iii), HPU(𝐀)=I({𝐓}βˆͺPU(𝐀))\mathop{\textup{HP}}_{\mathrm{U}}(\mathbf{A})=\mathop{\textup{I}}(\{\mathbf{T}\}\cup\mathop{\textup{P}}_{\textup{U}}(\mathbf{A})), for some trivial π“βˆˆβ„¬\mathbf{T}\in\mathcal{B}. So, by Proposition 1.3, Si(Var(𝐀))=Si(HSPU(𝐀))=Si(SHPU(𝐀))=ISPU(𝐀)\mathop{\textup{Si}}(\mathop{\textup{Var}}(\mathbf{A}))=\mathop{\textup{Si}}(\mathop{\textup{HSP}}_{\mathrm{U}}(\mathbf{A}))=\mathop{\textup{Si}}(\mathop{\textup{SHP}}_{\mathrm{U}}(\mathbf{A}))=\mathop{\textup{ISP}}_{\mathrm{U}}(\mathbf{A}). Clearly, π€βˆˆISPU(𝐀)\mathbf{A}\in\mathop{\textup{ISP}}_{\mathrm{U}}(\mathbf{A}), so (i), (ii) and Lemma 3.1 tell us that Var(𝐀)\mathop{\textup{Var}}(\mathbf{A}) properly extends Var(𝖒𝗆​(𝕂2))\mathop{\textup{Var}}(\mathsf{Cm}(\mathbb{K}_{2})). Let 𝒱\mathcal{V} be a variety with Var(𝖒𝗆​(𝕂2))βŠ†π’±βŠ†Var(𝐀)\mathop{\textup{Var}}(\mathsf{Cm}(\mathbb{K}_{2}))\subseteq\mathcal{V}\subseteq\mathop{\textup{Var}}(\mathbf{A}). Since π’±βŠ†Var(𝐀)\mathcal{V}\subseteq\mathop{\textup{Var}}(\mathbf{A}), we have Si(𝒱)βŠ†Si(Var(𝐀))=ISPU(𝐀)\mathop{\textup{Si}}(\mathcal{V})\subseteq\mathop{\textup{Si}}(\mathop{\textup{Var}}(\mathbf{A}))=\mathop{\textup{ISP}}_{\mathrm{U}}(\mathbf{A}). Combining this with (iv) and Lemma 3.1, we find that Si(𝒱)βŠ†Si(𝖒𝗆​(𝕂2))\mathop{\textup{Si}}(\mathcal{V})\subseteq\mathop{\textup{Si}}(\mathsf{Cm}(\mathbb{K}_{2})) or π€βˆˆIS(𝒱)=𝒱\mathbf{A}\in\mathop{\textup{IS}}(\mathcal{V})=\mathcal{V}. So, by Proposition 1.3, we must have 𝒱=Var(𝖒𝗆​(𝕂2))\mathcal{V}=\mathop{\textup{Var}}(\mathsf{Cm}(\mathbb{K}_{2})) or 𝒱=Var(𝐀)\mathcal{V}=\mathop{\textup{Var}}(\mathbf{A}). Hence, Var(𝐀)\mathop{\textup{Var}}(\mathbf{A}) covers Var(𝖒𝗆​(𝕂2))\mathop{\textup{Var}}(\mathsf{Cm}(\mathbb{K}_{2})), so Var(𝐀)\mathop{\textup{Var}}(\mathbf{A}) has height 3, as claimed.

Our construction of a continuum of subvarieties of ℬ\mathcal{B} of height 3 begins with the following definition.

Definition 3.4.

Let 𝔼\mathbb{E} denote the set of positive even numbers, let A={a}A=\{a\}, B={b1,b2,b3}B=\{b_{1},b_{2},b_{3}\}, C={c1,c2}C=\{c_{1},c_{2}\}, D={d}D=\{d\}, U={ui∣iβˆˆΟ‰βˆ–{0}}U=\{u_{i}\mid i\in\omega\setminus\{0\}\} and L={β„“i∣iβˆˆΟ‰}L=\{\ell_{i}\mid i\in\omega\} be pairwise disjoint, and assume that uiβ‰ uju_{i}\neq u_{j}, β„“iβ‰ β„“j\ell_{i}\neq\ell_{j}, biβ‰ bjb_{i}\neq b_{j} and ciβ‰ cjc_{i}\neq c_{j} whenever iβ‰ ji\neq j. Now, define Ui:={ui}U_{i}\mathrel{\mathop{:}}=\{u_{i}\}, for all iβˆˆΟ‰βˆ–{0}i\in\omega\setminus\{0\}, Li:={β„“i}L_{i}\mathrel{\mathop{:}}=\{\ell_{i}\}, for all iβˆˆΟ‰i\in\omega, Bi:={bi}B_{i}\mathrel{\mathop{:}}=\{b_{i}\}, for all i∈{1,2,3}i\in\{1,2,3\}, Ci:={ci}C_{i}\mathrel{\mathop{:}}=\{c_{i}\}, for all i∈{1,2}i\in\{1,2\}, and P:={b1,c1,d}P\mathrel{\mathop{:}}=\{b_{1},c_{1},d\}. For each NβŠ†π”ΌN\subseteq\mathbb{E}, let 𝔽N\mathbb{F}_{N} be the graph ⟨W;RN⟩\langle W;R_{N}\rangle, where W:=AβˆͺBβˆͺCβˆͺDβˆͺUβˆͺLW\mathrel{\mathop{:}}=A\cup B\cup C\cup D\cup U\cup L and RNR_{N} is the relation defined by

xRNy⇔x=y​ or ​{x,y}={{a,bi},Β for some ​i∈{1,2,3},{bi,ci},Β for some ​i∈{1,2},{c1,d},{β„“0,β„“1},{a,β„“i},Β for some ​iβˆˆΟ‰,{β„“i,ui},Β for some ​iβˆˆΟ‰βˆ–{0},{β„“i,uiβˆ’1},Β for some ​iβˆˆπ”Ό,{β„“i,ui+1},Β for some ​i∈N​ orΒ {β„“i+1,ui},Β for some ​iβˆˆπ”Όβˆ–N.x\mathrel{R_{N}}y\iff x=y\textrm{ or }\{x,y\}=\begin{cases}\{a,b_{i}\},\textrm{ for some }i\in\{1,2,3\},\\ \{b_{i},c_{i}\},\textrm{ for some }i\in\{1,2\},\\ \{c_{1},d\},\\ \{\ell_{0},\ell_{1}\},\\ \{a,\ell_{i}\},\textrm{ for some }i\in\omega,\\ \{\ell_{i},u_{i}\},\textrm{ for some }i\in\omega\setminus\{0\},\\ \{\ell_{i},u_{i-1}\},\textrm{ for some }i\in\mathbb{E},\\ \{\ell_{i},u_{i+1}\},\textrm{ for some }i\in N\textrm{ or }\\ \{\ell_{i+1},u_{i}\},\textrm{ for some }i\in\mathbb{E}\setminus N.\end{cases}

As usual with graphs, a picture is worth a thousand words. Certainly it is worth all the words of the definition above. Here it is.

u1u_{1}u2u_{2}u3u_{3}u4u_{4}u5u_{5}β„“0\ell_{0}β„“1\ell_{1}β„“2\ell_{2}β„“3\ell_{3}β„“4\ell_{4}β„“5\ell_{5}aab1b_{1}c1c_{1}ddb2b_{2}c2c_{2}b3b_{3}
u1u_{1}u2u_{2}u3u_{3}u4u_{4}u5u_{5}β„“0\ell_{0}β„“1\ell_{1}β„“2\ell_{2}β„“3\ell_{3}β„“4\ell_{4}β„“5\ell_{5}aab1b_{1}c1c_{1}ddb2b_{2}c2c_{2}b3b_{3}
Figure 3: Graph drawings of (finite sections of) π”½βˆ…\mathbb{F}_{\varnothing} and 𝔽{2,4}\mathbb{F}_{\{2,4\}} (with loops omitted).

Accordingly, in the proofs, we will frequently refer to Fig.Β 3, as well as to Fig.Β 4 below, rather than to DefinitionΒ 3.4. Next, we define the algebras essential to our construction. The notation is as in DefinitionΒ 3.4.

Definition 3.5.

For each NβŠ†π”ΌN\subseteq\mathbb{E}, let 𝐃N\mathbf{D}_{N} be the subalgebra of Cm​(𝔽N)\textsf{Cm}(\mathbb{F}_{N}) generated by DD and let DND_{N} be the universe of 𝐃N\mathbf{D}_{N}.

From now on, we will use β—‡N\Diamond_{N} to stand for RNβˆ’1R_{N}^{-1}, and we will omit the subscript NN if there is no danger of confusion.

Lemma 3.6.

Let NβŠ†π”ΌN\subseteq\mathbb{E}. Then A,B1,B3,C1,D,Li,Uj,B2βˆͺL,C2βˆͺU∈DNA,B_{1},B_{3},C_{1},D,L_{i},U_{j},B_{2}\cup L,C_{2}\cup U\in D_{N}, for all iβˆˆΟ‰i\in\omega and all jβˆˆΟ‰βˆ–{0}j\in\omega\setminus\{0\}.

Proof 3.7.

By definition, D∈DND\in D_{N}. So, based on Fig. 3, C1=◇​D∩∼D∈DNC_{1}=\Diamond D\cap{\sim}D\in D_{N}. Similarly, B1=◇​C1βˆ©βˆΌβ—‡β€‹D∈DNB_{1}=\Diamond C_{1}\cap{\sim}\Diamond D\in D_{N} and C2βˆͺU=βˆΌβ—‡4D∈DNC_{2}\cup U={\sim}\Diamond^{4}D\in D_{N}, hence we have A=◇​B1βˆ©βˆΌβ—‡β€‹C1∈DNA=\Diamond B_{1}\cap{\sim}\Diamond C_{1}\in D_{N} and B3=∼(β—‡2(C2βˆͺU)βˆͺβ—‡2D)∈DNB_{3}={\sim}(\Diamond^{2}(C_{2}\cup U)\cup\Diamond^{2}D)\in D_{N}. From this, it follows that L0=∼(B3βˆͺβ—‡(C2βˆͺU)βˆͺβ—‡3D)∈DNL_{0}={\sim}(B_{3}\cup\Diamond(C_{2}\cup U)\cup\Diamond^{3}D)\in D_{N}, so we have B2βˆͺL=(◇​(C2βˆͺU)βˆͺL0)∩∼(C2βˆͺU)∈DNB_{2}\cup L=(\Diamond(C_{2}\cup U)\cup L_{0})\cap{\sim}(C_{2}\cup U)\in D_{N}. Similarly, we must have L1=◇​L0∩∼(AβˆͺL0)∈DNL_{1}=\Diamond L_{0}\cap{\sim}(A\cup L_{0})\in D_{N}, which implies that U1=◇​L1βˆ©βˆΌβ—‡β€‹A∈DNU_{1}=\Diamond L_{1}\cap{\sim}\Diamond A\in D_{N}.

It remains to establish that Li,Uj∈DNL_{i},U_{j}\in D_{N}, for all iβˆˆΟ‰i\in\omega and all jβˆˆΟ‰βˆ–{0}j\in\omega\setminus\{0\}; we proceed by induction. Assume that Li,Ui∈DNL_{i},U_{i}\in D_{N}, for some odd iβˆˆΟ‰i\in\omega.

uiu_{i}ui+1u_{i+1}ui+2u_{i+2}ui+3u_{i+3}β„“i\ell_{i}β„“i+1\ell_{i+1}β„“i+2\ell_{i+2}β„“i+3\ell_{i+3}aa
uiu_{i}ui+1u_{i+1}ui+2u_{i+2}ui+3u_{i+3}β„“i\ell_{i}β„“i+1\ell_{i+1}β„“i+2\ell_{i+2}β„“i+3\ell_{i+3}aa
Figure 4: Graph drawings for Lemma 3.6.

Firstly, assume that i+1βˆ‰Ni+1\notin N. By Fig. 4, Li+1=◇​Uiβˆ©βˆΌβ—‡β€‹Li∈DNL_{i+1}=\Diamond U_{i}\cap{\sim}\Diamond L_{i}\in D_{N}, which implies that Ui+1=◇​Li+1∩∼(◇​AβˆͺUi)∈DNU_{i+1}=\Diamond L_{i+1}\cap{\sim}(\Diamond A\cup U_{i})\in D_{N}. This implies that Li+2=◇​Ui+1βˆ©βˆΌβ—‡β€‹Li+1∈DNL_{i+2}=\Diamond U_{i+1}\cap{\sim}\Diamond L_{i+1}\in D_{N}, so Ui+2=◇​Li+2∩∼(◇​AβˆͺUi+1)∈DNU_{i+2}=\Diamond L_{i+2}\cap{\sim}(\Diamond A\cup U_{i+1})\in D_{N}. Thus, Li+1,Li+2,Ui+1,Ui+2∈DNL_{i+1},L_{i+2},U_{i+1},U_{i+2}\in D_{N} if i+1βˆ‰Ni+1\notin N.

Next, assume that i+1∈Ni+1\in N. From Fig. 4, Li+1=◇​Uiβˆ©βˆΌβ—‡β€‹Li∈DNL_{i+1}=\Diamond U_{i}\cap{\sim}\Diamond L_{i}\in D_{N}, so we have Ui+1βˆͺUi+2=◇​Li+1∩∼(◇​AβˆͺUi)∈DNU_{i+1}\cup U_{i+2}=\Diamond L_{i+1}\cap{\sim}(\Diamond A\cup U_{i})\in D_{N}. Using these results, we find that we must have Li+2βˆͺLi+3=◇​(Ui+1βˆͺUi+2)βˆ©βˆΌβ—‡β€‹Li+1∈DNL_{i+2}\cup L_{i+3}=\Diamond(U_{i+1}\cup U_{i+2})\cap{\sim}\Diamond L_{i+1}\in D_{N}. From this, it follows that Ui+2=(Ui+1βˆͺUi+2)βˆ©β—‡β€‹(Li+2βˆͺLi+3)∈DNU_{i+2}=(U_{i+1}\cup U_{i+2})\cap\Diamond(L_{i+2}\cup L_{i+3})\in D_{N}, which implies that Ui+1=(Ui+1βˆͺUi+2)∩∼Ui+2∈DNU_{i+1}=(U_{i+1}\cup U_{i+2})\cap{\sim}U_{i+2}\in D_{N}. From these results, X:=β—‡(Li+2βˆͺLi+3)∩∼(β—‡AβˆͺUi+2)∈DNX\mathrel{\mathop{:}}=\Diamond(L_{i+2}\cup L_{i+3})\cap{\sim}(\Diamond A\cup U_{i+2})\in D_{N}. Based on Fig 4, we must have ui+3∈Xu_{i+3}\in X and a,β„“i+2,ui+2βˆ‰Xa,\ell_{i+2},u_{i+2}\notin X, hence β„“i+2βˆ‰β—‡β€‹X\ell_{i+2}\notin\Diamond X and β„“i+3βˆˆβ—‡β€‹X\ell_{i+3}\in\Diamond X. Thus, Li+2=(Li+2βˆͺLi+3)βˆ©βˆΌβ—‡β€‹X∈DNL_{i+2}=(L_{i+2}\cup L_{i+3})\cap{\sim}\Diamond X\in D_{N}, so Li+1,Li+2,Ui+1,Ui+2∈DNL_{i+1},L_{i+2},U_{i+1},U_{i+2}\in D_{N} if i+1∈Ni+1\in N.

In every case, we have Li+1,Li+2,Ui+1,Ui+2∈DNL_{i+1},L_{i+2},U_{i+1},U_{i+2}\in D_{N}. Hence, by induction, Ui,Lj∈DNU_{i},L_{j}\in D_{N}, for all iβˆˆΟ‰i\in\omega and all jβˆˆΟ‰βˆ–{0}j\in\omega\setminus\{0\}, so we are done.

Corollary 3.8.

Let NβŠ†π”ΌN\subseteq\mathbb{E}. Then the algebra 𝐃N\mathbf{D}_{N} is infinite.

Lemma 3.9.

Let NβŠ†π”ΌN\subseteq\mathbb{E}. Then Cm​(𝕂2)∈IS(𝐃N)\textup{{Cm}}(\mathbb{K}_{2})\in\mathop{\textup{IS}}(\mathbf{D}_{N}).

Proof 3.10.

From Lemma 3.6, it follows that X:=BβˆͺDβˆͺL∈DNX\mathrel{\mathop{:}}=B\cup D\cup L\in D_{N}. Based on Fig. 1 and Fig. 4, the subalgebra of 𝐃N\mathbf{D}_{N} generated by XX is isomorphic to 𝖒𝗆​(𝕂2)\mathsf{Cm}(\mathbb{K}_{2}), hence 𝖒𝗆​(𝕂2)∈IS(𝐃N)\mathsf{Cm}(\mathbb{K}_{2})\in\mathop{\textup{IS}}(\mathbf{D}_{N}), as claimed.

Based on Fig 4, if NβŠ†π”ΌN\subseteq\mathbb{E}, then every vertex other than dd is joined to aa by a path of length of at most 22 in 𝔽N\mathbb{F}_{N}, so 𝐃NβŠ§βˆ€x:xβ‰ 0β†’β—‡5​x=1\mathbf{D}_{N}\models\forall x\colon x\neq 0\to\Diamond^{5}x=1. The following Lemma is an easy consequence of this observation and Łoś’s Theorem.

Lemma 3.11.

Let NβŠ†π”ΌN\subseteq\mathbb{E}. Then every member of PU(𝐃N)\mathop{\textup{P}}_{\textup{U}}(\mathbf{D}_{N}) is simple.

Lemma 3.12.

Let NβŠ†π”ΌN\subseteq\mathbb{E}, let FF be an ultrafilter over a set II and let 𝐒\mathbf{S} be a subalgebra of 𝐃NI/F\mathbf{D}_{N}^{I}/F. If π’βŠ§βˆ€x:xβ‰ 0→◇​x=1\mathbf{S}\models\forall x\colon x\neq 0\to\Diamond x=1, then 𝐒≅Cm​(𝕂1)\mathbf{S}\cong\textup{{Cm}}(\mathbb{K}_{1}) or 𝐒≅Cm​(𝕂2)\mathbf{S}\cong\textup{{Cm}}(\mathbb{K}_{2}).

Proof 3.13.

Let SS be the universe of 𝐒\mathbf{S} and define a map XΒ―:Iβ†’DN\bar{X}\colon I\to D_{N} by i↦Xi\mapsto X, for each X∈DNX\in D_{N}. Suppose, for a contradiction, that there exist X,Y∈DNIX,Y\in D_{N}^{I} with X/F,Y/F∈Sβˆ–{βˆ…Β―/F,WΒ―/F}X/F,Y/F\in S\setminus\{\bar{\varnothing}/F,\bar{W}/F\}, X/Fβ‰ Y/FX/F\neq Y/F and X/Fβ‰ Β¬Y/FX/F\neq\neg Y/F. Clearly, we must have {i∈I∣d∈X(i)}βˆͺ{i∈I∣d∈∼X(i)}=I∈F\{i\in I\mid d\in X(i)\}\cup\{i\in I\mid d\in{\sim}X(i)\}=I\in F, which implies that {i∈I∣d∈X​(i)}∈F\{i\in I\mid d\in X(i)\}\in F or {i∈I∣d∈∼X(i)}∈F\{i\in I\mid d\in{\sim}X(i)\}\in F. Similarly, {i∈I∣d∈Y​(i)}∈F\{i\in I\mid d\in Y(i)\}\in F or {i∈I∣d∈∼Y(i)}∈F\{i\in I\mid d\in{\sim}Y(i)\}\in F. Without loss of generality, we can assume that both {i∈I∣d∈X​(i)}∈F\{i\in I\mid d\in X(i)\}\in F and {i∈I∣d∈Y​(i)}∈F\{i\in I\mid d\in Y(i)\}\in F, since we can interchange XX with Β¬X\neg X and YY with Β¬Y\neg Y (if necessary).

Clearly, Β¬X/Fβ‰ βˆ…Β―/F\neg X/F\neq\bar{\varnothing}/F and Β¬Y/Fβ‰ βˆ…Β―/F\neg Y/F\neq\bar{\varnothing}/F, so ◇​¬X/F=WΒ―/F=◇​¬Y/F\Diamond\neg X/F=\bar{W}/F=\Diamond\neg Y/F, since π’βŠ§βˆ€x:xβ‰ 0→◇​x=1\mathbf{S}\models\forall x\colon x\neq 0\to\Diamond x=1. We have {i∈I∣d∈X​(i)}∈F\{i\in I\mid d\in X(i)\}\in F and {i∈I∣d∈Y​(i)}∈F\{i\in I\mid d\in Y(i)\}\in F, so {i∈I∣dβˆ‰βˆΌX(i)}∈F\{i\in I\mid d\notin{\sim}X(i)\}\in F and {i∈I∣dβˆ‰βˆΌY(i)}∈F\{i\in I\mid d\notin{\sim}Y(i)\}\in F. By Fig. 3, {i∈I∣c1∈∼X(i)}∈F\{i\in I\mid c_{1}\in{\sim}X(i)\}\in F and {i∈I∣c1∈∼Y(i)}∈F\{i\in I\mid c_{1}\in{\sim}Y(i)\}\in F. Thus, {i∈I∣c1,dβˆ‰X​(i)∩∼Y​(i)}∈F\{i\in I\mid c_{1},d\notin X(i)\cap{\sim}Y(i)\}\in F and {i∈I∣c1,dβˆ‰βˆΌX(i)∩Y(i)}∈F\{i\in I\mid c_{1},d\notin{\sim}X(i)\cap Y(i)\}\in F. By Fig. 3, {i∈I∣dβˆ‰β—‡β€‹(X∧¬Y)​(i)}∈F\{i\in I\mid d\notin\Diamond(X\wedge\neg Y)(i)\}\in F and {i∈I∣dβˆ‰β—‡β€‹(Β¬X∧Y)​(i)}∈F\{i\in I\mid d\notin\Diamond(\neg X\wedge Y)(i)\}\in F, hence ◇​(X/F∧¬Y/F)β‰ WΒ―/F\Diamond(X/F\wedge\neg Y/F)\neq\bar{W}/F and ◇​(Β¬X/F∧Y/F)β‰ WΒ―/F\Diamond(\neg X/F\wedge Y/F)\neq\bar{W}/F. Since X/Fβ‰ Y/FX/F\neq Y/F and X/Fβ‰ Β¬Y/FX/F\neq\neg Y/F, it follows that X/F∧¬Y/Fβ‰ βˆ…Β―/FX/F\wedge\neg Y/F\neq\bar{\varnothing}/F or Β¬X/F∧Y/Fβ‰ βˆ…/F\neg X/F\wedge Y/F\neq\varnothing/F, so this contradicts the fact that π’βŠ§βˆ€x:xβ‰ 0→◇​x=1\mathbf{S}\models\forall x\colon x\neq 0\to\Diamond x=1. Thus, we must have |S|β©½4|S|\leqslant 4. Since π’βŠ§βˆ€x:xβ‰ 0→◇​x=1\mathbf{S}\models\forall x\colon x\neq 0\to\Diamond x=1 and 𝐃N\mathbf{D}_{N} has no trivial subalgebras, this implies that 𝐒≅Cm​(𝕂1)\mathbf{S}\cong\textsf{Cm}(\mathbb{K}_{1}) or 𝐒≅Cm​(𝕂2)\mathbf{S}\cong\textsf{Cm}(\mathbb{K}_{2}), as claimed.

Lemma 3.14.

Let NβŠ†π”ΌN\subseteq\mathbb{E}, let Ξ³\gamma be the natural closure operator of 𝐃N\mathbf{D}_{N} and let XX be a Ξ³\gamma-closed element of DND_{N} with ◇​Xβ‰ W\Diamond X\neq W and β—‡2​X=W\Diamond^{2}X=W. Then β—‡βˆΌXβ‰ W\Diamond{\sim}X\neq W.

Proof 3.15.

Firstly, assume that a∈Xa\in X. Based on Fig. 3, we have a,b3βˆˆβ—‡β€‹Xa,b_{3}\in\Diamond X, hence a,b3βˆ‰βˆΌβ—‡Xa,b_{3}\notin{\sim}\Diamond X. So, by LemmaΒ 1.5(i), b3βˆ‰β—‡βˆΌβ—‡X=∼Xb_{3}\notin\Diamond{\sim}\Diamond X={\sim}X, hence a,b3∈Xa,b_{3}\in X. By Fig. 3, b3βˆ‰β—‡βˆΌXb_{3}\notin\Diamond{\sim}X, which implies that β—‡βˆΌXβ‰ W\Diamond{\sim}X\neq W if a∈Xa\in X.

Now, assume that aβˆ‰Xa\notin X. We claim that aβˆˆβ—‡β€‹Xa\in\Diamond X; suppose that aβˆ‰β—‡β€‹Xa\notin\Diamond X. By Fig. 3, we have b3βˆ‰Xb_{3}\notin X, hence a,b3βˆ‰Xa,b_{3}\notin X and aβˆ‰β—‡β€‹Xa\notin\Diamond X. Thus, b3βˆ‰β—‡β€‹Xb_{3}\notin\Diamond X, which contradicts the fact that β—‡2​X=W\Diamond^{2}X=W. It follows that aβˆˆβ—‡β€‹Xa\in\Diamond X, as claimed. By Fig. 3, we must have b2∈Xb_{2}\in X or c2∈Xc_{2}\in X, as aβˆ‰Xa\notin X and β—‡2​X=W\Diamond^{2}X=W. Hence, a,b2,c2βˆˆβ—‡β€‹Xa,b_{2},c_{2}\in\Diamond X, so by LemmaΒ 1.5(i), we have c2βˆ‰β—‡2βˆΌβ—‡β€‹X=β—‡βˆΌXc_{2}\notin\Diamond^{2}{\sim}\Diamond X=\Diamond{\sim}X. From this, it follows that β—‡βˆΌXβ‰ W\Diamond{\sim}X\neq W if aβˆ‰Xa\notin X, so β—‡βˆΌXβ‰ W\Diamond{\sim}X\neq W, as claimed.

Lemma 3.16.

Let NβŠ†π”ΌN\subseteq\mathbb{E}, let FF be an ultrafilter over a set II, let 𝐒\mathbf{S} be a subalgebra of 𝐃NI/F\mathbf{D}_{N}^{I}/F, let SS be the universe of 𝐒\mathbf{S}, let XΒ―:Iβ†’DNI\bar{X}\colon I\to D_{N}^{I} be defined by i↦Xi\mapsto X, for each X∈DNX\in D_{N}, let Ξ³\gamma be the natural closure operator of 𝐒\mathbf{S} and let X∈DNIX\in D_{N}^{I} with X/F∈SX/F\in S and X/Fβ‰ βˆ…Β―/FX/F\neq\bar{\varnothing}/F.

  1. \normalshape(1)

    If {i∈I∣P∩X​(i)=βˆ…}∈F\{i\in I\mid P\cap X(i)=\varnothing\}\in F, then DΒ―/F∈S\bar{D}/F\in S.

  2. \normalshape(2)

    If {i∈I∣PβŠ†β—‡β€‹X​(i)}∈F\{i\in I\mid P\subseteq\Diamond X(i)\}\in F and ◇​X/Fβ‰ WΒ―/F\Diamond X/F\neq\bar{W}/F, then D¯∈S\bar{D}\in S.

  3. \normalshape(3)

    If {i∈I∣PβŠ†β—‡βˆΌX​(i)}∈F\{i\in I\mid P\subseteq\Diamond{\sim}X(i)\}\in F, ◇​X/Fβ‰ WΒ―/F\Diamond X/F\neq\bar{W}/F, β—‡2​X/F=WΒ―/F\Diamond^{2}X/F=\bar{W}/F and X/FX/F is Ξ³\gamma-closed, then DΒ―/F∈S\bar{D}/F\in S.

Proof 3.17.

Assume that {i∈I∣P∩X​(i)=βˆ…}∈F\{i\in I\mid P\cap X(i)=\varnothing\}\in F. By Fig. 3, if Y∈DNβˆ–{βˆ…}Y\in D_{N}\setminus\{\varnothing\} with Y∩P=βˆ…Y\cap P=\varnothing, then β—‡2Y=∼D\Diamond^{2}Y={\sim}D, β—‡3Y=∼D\Diamond^{3}Y={\sim}D or β—‡4Y=∼D\Diamond^{4}Y={\sim}D. Thus, {i∈I∣D=βˆΌβ—‡2X(i)}βˆͺ{i∈I∣D=βˆΌβ—‡3X(i)}βˆͺ{i∈I∣D=βˆΌβ—‡4X(i)}=I∈F\{i\in I\mid D={\sim}\Diamond^{2}X(i)\}\cup\{i\in I\mid D={\sim}\Diamond^{3}X(i)\}\cup\{i\in I\mid D={\sim}\Diamond^{4}X(i)\}=I\in F, so we must have {i∈I∣D=βˆΌβ—‡2X(i)}∈F\{i\in I\mid D={\sim}\Diamond^{2}X(i)\}\in F, {i∈I∣D=βˆΌβ—‡3X(i)}∈F\{i\in I\mid D={\sim}\Diamond^{3}X(i)\}\in F or {i∈I∣D=βˆΌβ—‡4X(i)}∈F\{i\in I\mid D={\sim}\Diamond^{4}X(i)\}\in F. Clearly, this implies that Β¬β—‡2​X/F=DΒ―/F\neg\Diamond^{2}X/F=\bar{D}/F, Β¬β—‡3​X/F=DΒ―/F\neg\Diamond^{3}X/F=\bar{D}/F or Β¬β—‡4​X/F=DΒ―/F\neg\Diamond^{4}X/F=\bar{D}/F, so (i) holds.

Now, to prove (ii), assume that we have {i∈I∣PβŠ†β—‡β€‹X​(i)}∈F\{i\in I\mid P\subseteq\Diamond X(i)\}\in F and ◇​X/Fβ‰ WΒ―/F\Diamond X/F\neq\bar{W}/F. Then {i∈I∣Pβˆ©βˆΌβ—‡β€‹X​(i)=βˆ…}∈F\{i\in I\mid P\cap{\sim}\Diamond X(i)=\varnothing\}\in F, ¬◇​X/Fβ‰ βˆ…Β―/F\neg\Diamond X/F\neq\bar{\varnothing}/F and ¬◇​X/F∈S\neg\Diamond X/F\in S. By the previous result, DΒ―/F∈S\bar{D}/F\in S, so (ii) holds.

To prove (iii), assume that {i∈I∣PβŠ†β—‡βˆΌX​(i)}∈F\{i\in I\mid P\subseteq\Diamond{\sim}X(i)\}\in F, ◇​X/Fβ‰ WΒ―/F\Diamond X/F\neq\bar{W}/F, β—‡2​X/F=WΒ―/F\Diamond^{2}X/F=\bar{W}/F and X/FX/F is Ξ³\gamma-closed. From Lemma 3.14 and Łoś’s Theorem, it follows that ◇​¬X/Fβ‰ WΒ―/F\Diamond\neg X/F\neq\bar{W}/F. So, based on the previous result, DΒ―/F∈S\bar{D}/F\in S. Thus, the three required results hold.

Lemma 3.18.

Let NβŠ†π”ΌN\subseteq\mathbb{E}, let FF be an ultrafilter over a set II and let 𝐒\mathbf{S} be a subalgebra of 𝐃NI/F\mathbf{D}_{N}^{I}/F. If π’βŠ§βˆƒx:xβ‰ 0&◇​xβ‰ 1\mathbf{S}\models\exists x\colon x\neq 0\mathrel{\&}\Diamond x\neq 1, then 𝐃N∈IS(𝐒)\mathbf{D}_{N}\in\mathop{\textup{IS}}(\mathbf{S}).

Proof 3.19.

Let SS be the universe of 𝐒\mathbf{S}, let Ξ³\gamma be the natural closure operator of 𝐒\mathbf{S} and define a map XΒ―:Iβ†’DN\bar{X}\colon I\to D_{N} by i↦Xi\mapsto X, for each X∈DNX\in D_{N}. Since DD generates 𝐃N\mathbf{D}_{N} and the natural diagonal map embeds 𝐃N\mathbf{D}_{N} into 𝐃NI/F\mathbf{D}_{N}^{I}/F, it will be enough to show that DΒ―/F∈S\bar{D}/F\in S.

By Lemma 1.7, there is some X∈DNIX\in D_{N}^{I} such that X/F∈SX/F\in S, ◇​X/Fβ‰ WΒ―/F\Diamond X/F\neq\bar{W}/F, β—‡2​X/F=WΒ―/F\Diamond^{2}X/F=\bar{W}/F and X/FX/F is Ξ³\gamma-closed, as π’βŠ§βˆƒx:xβ‰ 0&◇​xβ‰ 1\mathbf{S}\models\exists x\colon x\neq 0\mathrel{\&}\Diamond x\neq 1 and π’βŠ§βˆ€x:xβ‰ 0β†’β—‡5​x=1\mathbf{S}\models\forall x\colon x\neq 0\to\Diamond^{5}x=1. If YβŠ†WY\subseteq W, we either have c2∈Yc_{2}\in Y or c2∈∼Yc_{2}\in{\sim}Y, so by Fig. 3, we must have PβŠ†β—‡β€‹YP\subseteq\Diamond Y or PβŠ†β—‡βˆΌYP\subseteq\Diamond{\sim}Y if YβŠ†WY\subseteq W. From this, it follows that {i∈I∣PβŠ†β—‡β€‹X​(i)}βˆͺ{i∈I∣PβŠ†β—‡βˆΌX​(i)}=I∈F\{i\in I\mid P\subseteq\Diamond X(i)\}\cup\{i\in I\mid P\subseteq\Diamond{\sim}X(i)\}=I\in F, so {i∈I∣PβŠ†β—‡β€‹X​(i)}∈F\{i\in I\mid P\subseteq\Diamond X(i)\}\in F or {i∈I∣PβŠ†β—‡βˆΌX​(i)}∈F\{i\in I\mid P\subseteq\Diamond{\sim}X(i)\}\in F. By Lemma 3.16, DΒ―/F∈S\bar{D}/F\in S and we are done.

Lemma 3.20.

Let NβŠ†π”ΌN\subseteq\mathbb{E}. Then Var(𝐃N)\mathop{\textup{Var}}(\mathbf{D}_{N}) is of height 3.

Proof 3.21.

By CorollaryΒ 3.8 and LemmaΒ 3.9, 𝐃N\mathbf{D}_{N} is infinite and 𝖒𝗆​(𝕂2)∈IS​(DN)\mathsf{Cm}(\mathbb{K}_{2})\in\textup{IS}(\textbf{D}_{N}). By LemmaΒ 3.11, each element of PU​(DN)\textup{P}_{\textrm{U}}(\textbf{D}_{N}) is simple. By LemmasΒ 3.12 and 3.18, we must have 𝐁≅Cm​(𝕂1)\mathbf{B}\cong\textsf{Cm}(\mathbb{K}_{1}), 𝐁≅Cm​(𝕂2)\mathbf{B}\cong\textsf{Cm}(\mathbb{K}_{2}) or 𝐃N∈IS​(𝐁)\mathbf{D}_{N}\in\textup{IS}(\mathbf{B}) if 𝐁∈ISPU​(D𝐍)\bf{B}\in\textup{ISP}_{\textrm{U}}(\textbf{D}_{N}). So, by LemmaΒ 3.2, Var​(𝐃N)\textup{Var}(\mathbf{D}_{N}) has height 3, as claimed.

Now it remains to show that for distinct N,MβŠ†π”ΌN,M\subseteq\mathbb{E}, the varieties Var(𝐃N)\mathop{\textup{Var}}(\mathbf{D}_{N}) and Var(𝐃M)\mathop{\textup{Var}}(\mathbf{D}_{M}) are distinct.

Lemma 3.22.

Let NβŠ†π”ΌN\subseteq\mathbb{E} and let X∈DNβˆ–{βˆ…}X\in D_{N}\setminus\{\varnothing\} with β—‡N4​Xβ‰ W\Diamond_{N}^{4}X\neq W. Then X=DX=D or β—‡N4X=∼D\Diamond_{N}^{4}X={\sim}D.

Proof 3.23.

Based on Fig. 3, if aβˆˆβ—‡β€‹Xa\in\Diamond X or c2∈Xc_{2}\in X, then we must have β—‡4​X=W\Diamond^{4}X=W, hence XβŠ†UβˆͺC2βˆͺDX\subseteq U\cup C_{2}\cup D. By Fig. 3, β—‡4​D=Wβˆ–(C2βˆͺU)β‰ W\Diamond^{4}D=W\setminus(C_{2}\cup U)\neq W. Similarly, β—‡4​X=W\Diamond^{4}X=W if d∈Xd\in X and X∩(C2βˆͺU)β‰ βˆ…X\cap(C_{2}\cup U)\neq\varnothing, and β—‡4X=∼D\Diamond^{4}X={\sim}D if XβŠ†C2βˆͺUX\subseteq C_{2}\cup U. Since β—‡4​Xβ‰ W\Diamond^{4}X\neq W, we must have X=DX=D or β—‡4X=∼D\Diamond^{4}X={\sim}D, as claimed.

Lemma 3.24.

Let M,NβŠ†π”ΌM,N\subseteq\mathbb{E} and let u:𝐃M→𝐃Nu\colon\mathbf{D}_{M}\to\mathbf{D}_{N} be an embedding. Then u​(D)=Du(D)=D.

Proof 3.25.

Suppose, for a contradiction, that u​(D)β‰ Du(D)\neq D. Since uu is an embedding, u​(D)β‰ βˆ…u(D)\neq\varnothing. Based on Fig. 3, β—‡N4​u​(D)=u​(β—‡M4​D)=u​(Wβˆ–(C2βˆͺU))β‰ W\Diamond_{N}^{4}u(D)=u(\Diamond_{M}^{4}D)=u(W\setminus(C_{2}\cup U))\neq W, since uu is an embedding. So, by Lemma 3.22, we must have β—‡N4u(D)=∼D\Diamond_{N}^{4}u(D)={\sim}D. By Lemma 3.6, we have U1∈DMU_{1}\in D_{M} and (C1βˆͺU)βˆ–U1=(C1βˆͺU)∩∼U1∈DM(C_{1}\cup U)\setminus U_{1}=(C_{1}\cup U)\cap{\sim}U_{1}\in D_{M}. Now,

u(U1)βˆͺu((C2βˆͺU)βˆ–U1)=u(C2βˆͺU)=u(βˆΌβ—‡M4D)=βˆΌβ—‡N4u(D)=D,u(U_{1})\cup u((C_{2}\cup U)\setminus U_{1})=u(C_{2}\cup U)=u({\sim}\Diamond_{M}^{4}D)={\sim}\Diamond_{N}^{4}u(D)=D,

hence we must have u​(U1)=D=u​((C2βˆͺU)βˆ–U)u(U_{1})=D=u((C_{2}\cup U)\setminus U), u​(U1)=βˆ…=u​(βˆ…)u(U_{1})=\varnothing=u(\varnothing) or u​((C2βˆͺU)βˆ–U1)=βˆ…=u​(βˆ…)u((C_{2}\cup U)\setminus U_{1})=\varnothing=u(\varnothing), which contradicts the fact that uu is an embedding. Thus, u​(D)=Du(D)=D, as claimed.

Lemma 3.26.

Let M,NβŠ†π”ΌM,N\subseteq\mathbb{E} with Mβ‰ NM\neq N. Then Var(𝐃M)β‰ Var(𝐃N)\mathop{\textup{Var}}(\mathbf{D}_{M})\neq\mathop{\textup{Var}}(\mathbf{D}_{N}).

Proof 3.27.

Suppose, for a contradiction, that we have Var(𝐃M)=Var(𝐃N)\mathop{\textup{Var}}(\mathbf{D}_{M})=\mathop{\textup{Var}}(\mathbf{D}_{N}). By LemmasΒ 3.11 andΒ 3.18, there are embeddings u:𝐃M→𝐃Nu\colon\mathbf{D}_{M}\to\mathbf{D}_{N} and v:𝐃N→𝐃Mv\colon\mathbf{D}_{N}\to\mathbf{D}_{M}. As Mβ‰ NM\neq N, we have (Mβˆ–N)βˆͺ(Nβˆ–M)β‰ βˆ…(M\setminus N)\cup(N\setminus M)\neq\varnothing. Let i:=min⁑((Mβˆ–N)βˆͺ(Nβˆ–M))i:=\min((M\setminus N)\cup(N\setminus M)). Without loss of generality, we can assume that i∈Mi\in M, since we can interchange MM with NN (if necessary). From the proof of LemmaΒ 3.6, there are unary terms tAt_{A}, tLit_{L_{i}} and tUiβˆ’1t_{U_{i-1}} with tA𝐃M​(D)=A=tA𝐃N​(D)t_{A}^{\mathbf{D}_{M}}(D)=A=t_{A}^{\mathbf{D}_{N}}(D), tLi𝐃M​(D)=Li=tLi𝐃N​(D)t_{L_{i}}^{\mathbf{D}_{M}}(D)=L_{i}=t_{L_{i}}^{\mathbf{D}_{N}}(D) and tUiβˆ’1𝐃M​(D)=Uiβˆ’1=tUiβˆ’1𝐃N​(D)t_{U_{i-1}}^{\mathbf{D}_{M}}(D)=U_{i-1}=t_{U_{i-1}}^{\mathbf{D}_{N}}(D), since ii is the minimum of (Mβˆ–N)βˆͺ(Nβˆ–M)(M\setminus N)\cup(N\setminus M). Now, let t​(x)t(x) be the unary term defined by

t(x):=β—‡tLi(x)∧¬(tA(x)∨tLi(x)∨tUiβˆ’1(x)).t(x)\mathrel{\mathop{:}}=\Diamond t_{L_{i}}(x)\wedge\neg(t_{A}(x)\vee t_{L_{i}}(x)\vee t_{U_{i-1}}(x)).

Based on Fig.Β 3 and Fig.Β 4, we have t𝐃M​(D)=Uit^{\mathbf{D}_{M}}(D)=U_{i} and t𝐃N​(D)=UiβˆͺUi+1t^{\mathbf{D}_{N}}(D)=U_{i}\cup U_{i+1}. Using Lemma 3.22, we find that

v​(Ui)βˆͺv​(Ui+1)=v​(t𝐃N​(D))=t𝐃M​(v​(D))=t𝐃M​(D)=Ui,v(U_{i})\cup v(U_{i+1})=v(t^{\mathbf{D}_{N}}(D))=t^{\mathbf{D}_{M}}(v(D))=t^{\mathbf{D}_{M}}(D)=U_{i},

so we have v​(Ui)=Ui=v​(Ui+1)v(U_{i})=U_{i}=v(U_{i+1}), v​(Ui)=βˆ…=v​(βˆ…)v(U_{i})=\varnothing=v(\varnothing) or v​(Ui+1)=βˆ…=v​(βˆ…)v(U_{i+1})=\varnothing=v(\varnothing). This contradicts the injectivity of vv, so Var(𝐃M)β‰ Var(𝐃N)\mathop{\textup{Var}}(\mathbf{D}_{M})\neq\mathop{\textup{Var}}(\mathbf{D}_{N}), as claimed.

4 Conclusion

We have constructed a continuum of subvarieties of ℬ\mathcal{B} of height 3. Our main result follows immediately.

Theorem 4.1.

The class of normal axiomatic extensions of πŠπ“π\mathbf{KTB} of codimension 33 is of size continuum.

It will be of interest to see what our result implies about subquasivarieties of ℬ\mathcal{B} of small height, or, equivalently, about logics in CNExt​(πŠπ“π)\mathrm{CNExt}(\mathbf{KTB}) of small codimension (see RemarkΒ 2.1). However, from Blanco, Campercholi and VaggioneΒ [2] it follows that even the lattice of subquasivarieties of Var(𝖒𝗆​(𝕂2))\mathop{\textup{Var}}(\mathsf{Cm}(\mathbb{K}_{2})) is not a chain, so the lattice of subquasivarieties of Var(𝐃N)\mathop{\textup{Var}}(\mathbf{D}_{N}) may be already quite complex, in particular, it may be of height strictly greater than 3.

Acknowledgment

This is a pre-print of a paper contributed to Advances in Modal Logic 2018. The final authenticated version is available online at: http://www.aiml.net/volumes/volume12/Koussas-Kowalski-Miyazaki-Stevens.pdf.

References

  • [1] Bergman, C., β€œUniversal algbera. Fundamentals and selected topics,” Pure and Applied Mathematics 301, CRC Press, Boca Raton, 2012, xii+308 pp.
  • [2] Blanco, J., M.Β Campercholi and D.Β Vaggione, The subquasivariety lattice of a discriminator variety, Adv. Math. 159 (2001), pp.Β 18–50.
  • [3] Burris, S. and H.Β P. Sankappanavar, β€œA course in universal algebra,” Graduate Texts in Mathematics 78, Springer-Verlag, New York-Berlin, 1981, xvi+276 pp.
  • [4] JΓ³nsson, B. and A.Β Tarski, Boolean algebras with operators. I, Amer. J. Math. 73 (1951), pp.Β 891–939.
  • [5] JΓ³nsson, B. and A.Β Tarski, Boolean algebras with operators. II, Amer. J. Math. 74 (1952), pp.Β 127–162.
  • [6] Kostrzycka, Z., On non-compact logics in NEXT(KTB), MLQ Math. Log. Q. 54 (2008), pp.Β 617–624.
  • [7] Kostrzycka, Z., On interpolation and HalldΓ©n-completeness in next(ktb), Bull. Sect. Logic Univ. ŁódΕΊ 41 (2012), pp.Β 23–32.
  • [8] Kostrzycka, Z., All splitting logics in the lattice N​E​X​T​(K​T​B​.3′​A)NEXT(KTB.3^{\prime}A), Sci. Issues Jan DΕ‚ugosz Univ. Czest. Math. 21 (2016), pp.Β 31–61.
  • [9] Kostrzycka, Z., Interpolation in normal extensions of the Brouwer logic, Bull. Sect. Logic Univ. ŁódΕΊ 45 (2016), pp.Β 171–184.
  • [10] Kowalski, T. and Y.Β Miyazaki, All splitting logics in the lattice NExt(KTB), in: Towards mathematical philosophy, Trends Log. Stud. Log. Libr. 28, Springer, Dordrecht, 2009 pp. 53–67.
  • [11] Kowalski, T., Y.Β Miyazaki and M.Β Stevens, Quasi-p morphisms and small varieties of KTB-algebras, http://people.maths.ox.ac.uk/~hap/tancl07/tancl07-kowalski.pdf, TACL’07, Oxford, 2–5 August 2007.
  • [12] Kowalski, T. and M.Β Stevens, Minimal varieties of KTB-algebras (2005), unpublished note.
  • [13] Kracht, M., β€œTools and techniques in modal logic,” Studies in Login and the Foundations of Mathematics 142, North Holland Publishing Co., Amsterdam, 1999, xiv+559 pp.
  • [14] McKay, B. and A.Β Piperno, nauty and Traces, https://users.cecs.anu.edu.au/~bdm/nauty/.
  • [15] Miyazaki, Y., Kripke incomplete logics containing KTB, Studia Logica 85 (2007), pp.Β 303–317.
  • [16] Miyazaki, Y., Normal forms for modal logics KB and KTB, Bull. Sect. Logic Univ. ŁódΕΊ 36 (2007), pp.Β 183–193.
  • [17] Miyazaki, Y., A splitting logic in NExt(KTB), Studia Logica 85 (2007), pp.Β 381–394.