This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Nonpropagating ghost in covariant f(Q)f(Q) gravity

Kun Hu [email protected] Institute of Astrophysics, Central China Normal University, Wuhan 430079, China    Makishi Yamakoshi [email protected] Department of Physics, Nagoya University, Nagoya 464-8602, Japan    Taishi Katsuragawa [email protected] Institute of Astrophysics, Central China Normal University, Wuhan 430079, China    Shin’ichi Nojiri [email protected] Department of Physics, Nagoya University, Nagoya 464-8602, Japan Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602, Japan    Taotao Qiu [email protected] School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
Abstract

f(Q)f(Q) gravity is an extension of the symmetric teleparallel equivalent to general relativity (STEGR). This work shows that based on the scalar-nonmetricity formulation, a scalar mode in f(Q)f(Q) gravity has a negative kinetic energy. This conclusion holds regardless of the coincident gauge frequently used in STEGR and f(Q)f(Q) gravity. To study the scalar mode, we further consider the covariant f(Q)f(Q) gravity as a special class in higher-order scalar tensor (HOST) theory and rewrite the four scalar fields, which play a role of the Stüeckelberg fields associated with the diffeomorphism, by vector fields. Applying the standard Arnowitt-Deser-Misner (ADM) formulation to the new formulation of the f(Q)f(Q) gravity, we demonstrate that the ghost scalar mode can be eliminated by the second-class constraints, thus ensuring that f(Q)f(Q) gravity is a healthy theory.

I Introduction

In recent years, gravitational theories with nonmetricity have been actively discussed Nester and Yo (1999); Beltrán Jiménez et al. (2018a, 2019); Rünkla and Vilson (2018); Beltrán Jiménez et al. (2020). These theories are written by the nonmetricity scalar QQ as the fundamental geometrical quantity and in Palatini formalism, where the connection is an independent variable in addition to the metric. Imposing that the Riemann tensor and torsion tensor vanish for the connection, one finds that the connection is written by the four scalar fields Blixt et al. (2023); Beltrán Jiménez and Koivisto (2022); Adak (2018); Tomonari and Bahamonde (2023). Moreover, one can choose specific scalar fields so that the connection vanishes, which is called the coincident gauge, and then the metric is only a dynamical variable in theory. It is known that in the coincident gauge, the theory with action linear to QQ is equivalent to general relativity (GR), and we call it symmetric teleparallel equivalent to general relativity (STEGR) Beltrán Jiménez et al. (2018b); Quiros (2022).

Teleparallelism is another well-known concept in the gravitational theory that does not rely on curvature, where the torsion scalar TT is the fundamental quantity Maluf (2013); Aldrovandi and Pereira (2013); Cai et al. (2016). By choosing the Weitzenböck connection, which corresponds to the coincident gauge in STEGR, the spin connection vanishes, and the tetrad is only a dynamical variable. The theory with action linear to TT is equivalent to GR, and we call it teleparallel equivalent to general relativity (TEGR) Maluf (2013); Krššák and Saridakis (2016). Compared with teleparallelism, we utilize symmetric teleparallelism in nonmetricity gravity to reflect the torsionless condition, that is, symmetric affine connection. Moreover, as in the way of extending GR to f(R)f(R) gravity characterized by the function of the curvature scalar, TEGR, and STEGR have been extended to f(T)f(T) and f(Q)f(Q) gravity whose actions include the arbitrary function of TT and QQ respectively Bahamonde et al. (2015); Cai et al. (2016); Krššák and Saridakis (2016); Bahamonde et al. (2023); Heisenberg (2019); Beltrán Jiménez et al. (2020); Harko et al. (2018); Järv et al. (2018); Rünkla and Vilson (2018); Capozziello et al. (2022, 2023). Those theories have been intensively examined as one of the modified gravity theories, and new degrees of freedom (DOF) introduced by the torsion or nonmetricity show various interesting phenomena; for instance, cosmological models Hu et al. (2023); Qiu et al. (2019); Nájera and Fajardo (2022); Li and Zhao (2022); Khyllep et al. (2021); Casalino et al. (2021); Sharma and Sur (2021, 2022, 2023); Mandal et al. (2020a, b); Mandal and Sahoo (2021); Arora and Sahoo (2022); Gadbail et al. (2022); Paliathanasis (2023a, b); Dimakis et al. (2022); Paliathanasis (2023c), black hole solutions Wang et al. (2022); Lin and Zhai (2021); D’Ambrosio et al. (2022); Bahamonde et al. (2022); Calzá and Sebastiani (2023), and gravitational waves Hohmann et al. (2018, 2019); Soudi et al. (2019); Abedi and Capozziello (2018).

Recently, the number of DOF in f(Q)f(Q) gravity has come into the spotlight Hu et al. (2022); D’Ambrosio et al. (2023); Tomonari and Bahamonde (2023); Heisenberg (2023); Paliathanasis et al. (2023); Dimakis et al. (2021). In our previous work Hu et al. (2022), we have shown there are eight DOFs in coincident f(Q)f(Q) gravity, and the scalar mode cannot propagate 111The conclusion in Ref. Hu et al. (2022) have been controversial and under active discussion recently. For example, see Refs. D’Ambrosio et al. (2023); Tomonari and Bahamonde (2023) for details.. However, the existing works on the Hamiltonian analysis rely on the specific gauge, the so-called coincident gauge. It is significant to confirm that there are no ghost modes with negative kinetic energy in the physical DOF without gauge fixing. This work mainly discusses the ghost scalar mode in the f(Q)f(Q) gravity. Moreover, we investigate the ADM formulation of f(Q)f(Q) gravity in the arbitrary gauge to consider the origin of the negative kinetic energy.

This paper is organized as follows: We introduce the underlying geometrical background of the f(Q)f(Q) gravity in Sec. II. We apply the conformal rescaling to the action and discuss the ghost scalar mode in the f(Q)f(Q) gravity by the scalar-nonmetricity formulation in Sec. III. In Sec. IV, we propose a new formulation of the f(Q)f(Q) gravity as the higher-order scalar-tensor theory. Finally, we conclude this paper and discuss the implications of ghost mode in Sec. V. Some mathematical details of the paper are given in the Appendices.

Throughout this paper, we use the leading letters of the Latin alphabet (a,b,c)\left(a,b,c\right) running from 0 to 33 to label the tangent space-time coordinates. The Latin indices (i,j,k)\left(i,j,k\right) running from 11 to 33 represent the ADM spatial indices, and the Greek indices (α,β,)\left(\alpha,\beta,\cdots\right) running from 0 to 33 does the space-time indices. For clarity of notation, we define symbols as in Table 1.

Table 1: Conventions and notations
{}μνα\left\{{}^{\,\alpha}_{\mu\nu}\right\} Levi-Civita connection
Γμνα\varGamma^{\alpha}_{\mu\nu} General affine Connection
μ\nabla_{\mu} Covariant derivative with respect to Levi-Civita connection
^α{\hat{\nabla}}_{\alpha} Covariant derivative with respect to general affine connection.
𝒟i\mathcal{D}_{i} Three dimensional covariant derivative with respect to hijh_{ij}
RR Curvature scalar with respect to general affine connection
\mathcal{R} Curvature scalar with respect to Levi-Civita connection
Q̊\mathring{Q} Nonmetricity scalar in coincident gauge

II Basics of f(Q)f(Q) Gravity and Coincident Gauge

We briefly review the basic structure of the f(Q)f(Q) gravity and symmetries. We discuss the four scalar fields in the affine connection and their role as the Stüeckelberg fields.

II.1 Geometrical foundations

A general affine connection Γμνα\varGamma^{\alpha}_{\,\mu\nu} can be decomposed into three parts:

Γμνα={}μνα+Kμνα+Lμνα.\displaystyle\varGamma^{\alpha}_{\,\mu\nu}=\left\{{}^{\,\alpha}_{\mu\nu}\right\}+K_{\,\mu\nu}^{\alpha}+L_{\,\mu\nu}^{\alpha}\,. (1)

Here, {}μνα\left\{{}^{\,\alpha}_{\mu\nu}\right\} is Levi-Civita connection

{}μνα=12gαλ(μgλν+νgμλλgμν),\displaystyle\left\{{}^{\,\alpha}_{\mu\nu}\right\}=\frac{1}{2}g^{\alpha\lambda}\left(\partial_{\mu}g_{\lambda\nu}+\partial_{\nu}g_{\mu\lambda}-\partial_{\lambda}g_{\mu\nu}\right)\,, (2)

KμναK_{\,\mu\nu}^{\alpha} is contortion

Kμνα=12gαλ(Tμλν+Tνλμ+Tλμν),\displaystyle K^{\alpha}_{\,\mu\nu}=\frac{1}{2}g^{\alpha\lambda}\left(T_{\mu\lambda\nu}+T_{\nu\lambda\mu}+T_{\lambda\mu\nu}\right)\,, (3)

and LμναL_{\,\mu\nu}^{\alpha} is disformation

Lμνα=12gαλ(QλμνQμλνQνλμ).\displaystyle L^{\alpha}_{\,\mu\nu}=\frac{1}{2}g^{\alpha\lambda}\left(Q_{\lambda\mu\nu}-Q_{\mu\lambda\nu}-Q_{\nu\lambda\mu}\right)\,. (4)

Torsion tensor TμνλT^{\lambda}_{\,\mu\nu} and nonmetricity tensor QαμνQ_{\alpha\mu\nu} are defined as

Tμνα\displaystyle T^{\alpha}_{\ \mu\nu} ΓμναΓνμα,\displaystyle\equiv\varGamma^{\alpha}_{\ \mu\nu}-\varGamma^{\alpha}_{\ \nu\mu}\,, (5)
Qαμν^αgμν=αgμνgνσΓμασgσμΓνασ.\displaystyle\begin{split}Q_{\alpha\mu\nu}&\equiv\hat{\nabla}_{\alpha}g_{\mu\nu}\\ &=\partial_{\alpha}g_{\mu\nu}-g_{\nu\sigma}\varGamma^{\sigma}_{\ \mu\alpha}-g_{\sigma\mu}\varGamma^{\sigma}_{\ \nu\alpha}\,.\end{split} (6)

Using two types of trace of nonmetricity tensor

QαQα,μμQ~αQμαμ,\displaystyle Q_{\alpha}\equiv Q_{\alpha}{}_{\mu}{}^{\mu}\,,\quad\tilde{Q}_{\alpha}\equiv Q^{\mu}_{\ \mu\alpha}\,, (7)

we define the nonmetricity conjugate

Pαμν=14Qαμν+12Q(μν)α+14(QαQ~α)gμν14gα(μQν),\displaystyle P^{\alpha\mu\nu}=-\frac{1}{4}Q^{\alpha\mu\nu}+\frac{1}{2}Q^{(\mu\nu)\alpha}+\frac{1}{4}\left(Q^{\alpha}-\tilde{Q}^{\alpha}\right)g^{\mu\nu}-\frac{1}{4}g^{\alpha(\mu}Q^{\nu)}\,, (8)

and nonmetricity scalar

Q=QαμνPαμν=14QαμνQαμν+12QνμαQαμν+14QαQα12Q~αQα.\displaystyle\begin{split}Q&=Q_{\alpha\mu\nu}P^{\alpha\mu\nu}\\ &=-\frac{1}{4}Q^{\alpha\mu\nu}Q_{\alpha\mu\nu}+\frac{1}{2}Q^{\nu\mu\alpha}Q_{\alpha\mu\nu}+\frac{1}{4}Q^{\alpha}Q_{\alpha}-\frac{1}{2}\tilde{Q}^{\alpha}Q_{\alpha}\,.\end{split} (9)

The action of STEGR is

S=d4x(gQαμνPαμν+λαRαβμν+βμνλaTμναμν).\displaystyle S=\int\mathrm{d}^{4}x\left(\sqrt{-g}Q_{\alpha\mu\nu}P^{\alpha\mu\nu}+\lambda_{\alpha}{}^{\beta\mu\nu}R^{\alpha}{}_{\beta\mu\nu}+\lambda_{a}{}^{\mu\nu}T^{\alpha}_{\ \mu\nu}\right)\,. (10)

Variation of the action (10) with respect to Lagrange multipliers λαβμν\lambda_{\alpha}{}^{\beta\mu\nu} and λaμν\lambda_{a}{}^{\mu\nu} generates the torsion-free condition

Tμνα=!0\displaystyle T^{\alpha}_{\,\mu\nu}\stackrel{{\scriptstyle!}}{{=}}0 (11)

and vanishing curvature

Rβμνα(Γ)μΓνβανΓμβα+ΓμλαΓνβλΓνλαΓμβλ=!0.\displaystyle{R}_{\ \beta\mu\nu}^{\alpha}(\varGamma)\equiv\partial_{\mu}\varGamma^{\alpha}_{\ \nu\beta}-\partial_{\nu}\varGamma_{\ \mu\beta}^{\alpha}+\varGamma_{\ \mu\lambda}^{\alpha}\varGamma_{\ \nu\beta}^{\lambda}-\varGamma_{\ \nu\lambda}^{\alpha}\varGamma_{\ \mu\beta}^{\lambda}\stackrel{{\scriptstyle!}}{{=}}0\,. (12)

The former demands the general affine connection to be symmetric to its lowered two indices, as the latter implies that the connection must have the form Γμνλ=(A1)αλμAνα\varGamma^{\lambda}_{\,\mu\nu}=(A^{-1})^{\lambda}_{\ \alpha}\partial_{\mu}A^{\alpha}_{\ \nu} Zhao (2022).

II.2 Coincident gauge

Combining two conditions on the affine connection as in Eqs. (11) and (12), we find that the matrix Aα=ββξαA^{\alpha}{}_{\beta}=\partial_{\beta}\xi^{\alpha}, and the affine connection consequently takes the following form:

Γμνλ=xλξα2ξαxμxν.\displaystyle\varGamma^{\lambda}_{\,\mu\nu}=\frac{\partial x^{\lambda}}{\partial\xi^{\alpha}}\frac{\partial^{2}\xi^{\alpha}}{\partial x^{\mu}\partial x^{\nu}}\,. (13)

Here, four scalar fields ξα(x)\xi^{\alpha}(x) are the arbitrary functions of coordinates. Note that the connection is symmetric with respect to two lower indices because two partial derivatives of ξα\xi^{\alpha} commute each other. Moreover, one finds AμαA^{\alpha}_{\mu} corresponds to the tetrad eμae^{a}_{\mu} for Weitzenböck connection in the teleparallel gravity.

A special choice ξα(x)=xα\xi^{\alpha}(x)=x^{\alpha} makes the connection vanish Γμνλ=0\varGamma^{\lambda}_{\ \mu\nu}=0. This choice is called the coincident gauge. Under the coincident gauge, the covariant derivative is replaced by the partial derivative αα\nabla_{\alpha}\mapsto\partial_{\alpha}, and the nonmetricity tensor QαμνQ_{\alpha\mu\nu}, deformation tensor LμναL^{\alpha}_{\,\mu\nu}, nonmetricity scalar QQ, and the traces QαQ_{\alpha}, Q~α\tilde{Q}_{\alpha} reduce to

QαμνQ̊αμν\displaystyle Q_{\alpha\mu\nu}\mapsto\mathring{Q}_{\alpha\mu\nu} =αgμν,\displaystyle=\partial_{\alpha}g_{\mu\nu}\,, (14)
LμναL̊μνα\displaystyle L^{\alpha}_{\,\mu\nu}\mapsto\mathring{L}_{\,\mu\nu}^{\alpha} ={}μνα,\displaystyle=-\left\{{}^{\,\alpha}_{\mu\nu}\right\}\,, (15)
QQ̊=gμν(L̊σμαL̊νασL̊σααL̊μνσ)=gμν({}σμα{}νασ{}σαα{}μνσ),\displaystyle\begin{split}Q\mapsto\mathring{Q}&=g^{\mu\nu}\left(\mathring{L}_{\ \sigma\mu}^{\alpha}\mathring{L}_{\ \nu\alpha}^{\sigma}-\mathring{L}_{\ \sigma\alpha}^{\alpha}\mathring{L}_{\ \mu\nu}^{\sigma}\right)\\ &=g^{\mu\nu}\left(\left\{{}^{\,\alpha}_{\sigma\mu}\right\}\left\{{}^{\,\sigma}_{\nu\alpha}\right\}-\left\{{}^{\,\alpha}_{\sigma\alpha}\right\}\left\{{}^{\,\sigma}_{\mu\nu}\right\}\right)\,,\end{split} (16)
QαQ~αQ̊αQ~̊α=gμνL̊μναgμαL̊μνν=gμν{}μνα+gμα{}μνν.\displaystyle\begin{split}Q^{\alpha}-\tilde{Q}^{\alpha}\mapsto\mathring{Q}^{\alpha}-\mathring{\tilde{Q}}^{\alpha}&=g^{\mu\nu}\mathring{L}^{\,\alpha}_{\,\mu\nu}-g^{\mu\alpha}\mathring{L}^{\,\nu}_{\,\mu\nu}\\ &=-g^{\mu\nu}\left\{{}^{\,\alpha}_{\mu\nu}\right\}+g^{\mu\alpha}\left\{{}^{\,\nu}_{\mu\nu}\right\}\,.\end{split} (17)

Writing the Einstein-Hilbert action as follows

𝒮EH=d4xggμνμν({}μνα)=d4xggμν({}σμα{}νασ{}σαα{}μνσ)+d4xα[g(gμν{}μναgμα{}μνν)]\displaystyle\begin{split}\mathcal{S}_{{\mathrm{EH}}}&=\int d^{4}x\,\sqrt{-g}\,g^{\mu\nu}\mathcal{R}_{\mu\nu}\left(\left\{{}^{\,\alpha}_{\mu\nu}\right\}\right)\\ &=\int d^{4}x\,\sqrt{-g}g^{\mu\nu}\left(\left\{{}^{\,\alpha}_{\sigma\mu}\right\}\left\{{}^{\,\sigma}_{\nu\alpha}\right\}-\left\{{}^{\,\alpha}_{\sigma\alpha}\right\}\left\{{}^{\,\sigma}_{\mu\nu}\right\}\right)\\ &\quad+\int d^{4}x\,\partial_{\alpha}\left[\sqrt{-g}\,(g^{\mu\nu}\left\{{}^{\,\alpha}_{\mu\nu}\right\}-g^{\mu\alpha}\left\{{}^{\,\nu}_{\mu\nu}\right\})\right]\,\end{split} (18)

we find that the Ricci scalar can be expressed by the nonmetricity scalar and divergence of two independent traces of the nonmetricity tensor, where the divergence term is reduced to the boundary term after the integration. This result indicates the equivalence between GR and STEGR up to the boundary term. Moreover, for general connection, we find the relation between \mathcal{R}:

=Qα(QαQ~α)\displaystyle\mathcal{R}=Q-{\nabla}_{\alpha}\left(Q^{\alpha}-\tilde{Q}^{\alpha}\right) (19)

II.3 Symmetry and Stüeckelberg field

Under the general coordinate transformation {Xμ}{xμ}\{X^{\mu}\}\rightarrow\{x^{\mu}\}, the connection is transformed as

Γμνλ(x)=xλXαXρxμXσxνΓρσα(X)+xλXα2Xαxμxν.\displaystyle\varGamma^{\lambda}_{\ \mu\nu}(x)=\frac{\partial x^{\lambda}}{\partial X^{\alpha}}\frac{\partial X^{\rho}}{\partial x^{\mu}}\frac{\partial X^{\sigma}}{\partial x^{\nu}}\varGamma^{\alpha}_{\ \rho\sigma}(X)+\frac{\partial x^{\lambda}}{\partial X^{\alpha}}\frac{\partial^{2}X^{\alpha}}{\partial x^{\mu}\partial x^{\nu}}~{}. (20)

Provided that the connection vanishes in the coordinate system {Xμ}\{X^{\mu}\}, the first term vanishes in Eq. (20), and the second term reproduces Eq. (13). Thus, we can identify a set of scalar fields {ξμ}\{\xi^{\mu}\} as such a special coordinate system {Xμ}\{X^{\mu}\}. Note that the above argument partially includes the definition of the local Lorentz frame, although the space-time is not necessarily flat in the current setup.

Equation (13) also suggests that the index of the scalar fields is contracted within the connection, and it does not show up as a free index. Therefore, one can expect that the index α\alpha in ξα\xi^{\alpha} is related to the inertial symmetry rather than the space-time index. To distinguish it from the space-time index, hereafter, we denote the scalar field as ξa\xi^{a}:

Γμνλ=xλξa2ξaxμxν.\displaystyle\varGamma^{\lambda}_{\,\mu\nu}=\frac{\partial x^{\lambda}}{\partial\xi^{a}}\frac{\partial^{2}\xi^{a}}{\partial x^{\mu}\partial x^{\nu}}\,. (21)

We can find that Eq. (21) is invariant under the following transformation for ξa\xi^{a}:

ξa(x)ξ¯a(x)=baξb(x)+ζa.\displaystyle\xi^{a}(x)\rightarrow\bar{\xi}^{a}(x)=\mathcal{M}^{a}_{\ b}\xi^{b}(x)+\zeta^{a}\,. (22)

Here, ba\mathcal{M}^{a}_{\ b} is a 4×44\times 4 nondegenerate constant matrix, and ζa\zeta^{a} is a constant vector. In the coincident gauge ξa=xa\xi^{a}=x^{a}, the above transformation leads to the linear transformation between two coordinate systems,

x¯a=baxb+ζa.\displaystyle\bar{x}^{a}=\mathcal{M}^{a}_{\ b}x^{b}+\zeta^{a}\,. (23)

Equation (23) represents the affine transformation, and the connection (21) is purely inertial, which always can transform to zero under Eq. (23). By imposing on the flat space-time, the Minkowski metric is invariant under the transformation, we find that matrix ba\mathcal{M}^{a}_{\ b} corresponds to the Lorentz transformation, and Eq. (23) is reduced to the Poincaré transformation in the coincident gauge.

Thus, any two different frames under the coincident gauge are related by transformation (23), naturally to introduce the metric fab(x)f_{ab}(x) in the coincident gauge. Under the coordinate transformation {ξa}{xμ}\{\xi^{a}\}\rightarrow\{x^{\mu}\}, the space-time metric is transformed as fab(x)gμν(x)f_{ab}(x)\rightarrow g_{\mu\nu}(x) written in terms of the Jacobi matrix:

gμν=ξaxμξbxνfab.\displaystyle g_{\mu\nu}=\frac{\partial\xi^{a}}{\partial x^{\mu}}\frac{\partial\xi^{b}}{\partial x^{\nu}}f_{ab}\,. (24)

We present an explicit example in Appendix A to better demonstrate how fabf_{ab} transforms under Eq. (24). It is apparent that ξa\xi^{a} plays a role in restoring the general covariance while fixing ξa\xi^{a} breaks the diffeomorphism explicitly. A similar structure can be found in the relation between the tetrad and metric if we read μξa=eμa\partial_{\mu}\xi^{a}=e^{a}_{\mu} and fab=ηabf_{ab}=\eta_{ab}. Moreover, Eq. (24) shows up in the mass term of the de Rham-Gabadadze-Tolley (dRGT) massive gravity de Rham et al. (2011, 2012); Hassan and Rosen (2011); Hinterbichler (2012); Molaee and Shirzad (2018) , and ξa=xa\xi^{a}=x^{a} is called the unitary gauge therein. The above arguments suggest that we can treat four scalar fields ξa\xi^{a} as the Stüeckelberg fields associated with the diffeomorphism as discussed in the dRGT massive gravity. Hereafter we will handle the generic ξa\xi^{a} to investigate the f(Q)f(Q) gravity in a covariant way.

III Ghost scalar field in f(Q)f(Q) gravity

In this section, we recall the scalar-nonmetricity formulation of f(Q)f(Q) gravity and apply the conformal re-scaling transformation to the action. We suggest that the scalar field is a ghost mode in the scalar-nonmetricity formulation.

III.1 f(Q)f(Q) gravity and scalar-nonmetricity formulation

Let us consider the f(Q)f(Q) gravity by replacing QQ with a function of QQ:

Sf(Q)=d4xgf(Q).\displaystyle S_{f(Q)}=\int d^{4}x\sqrt{-g}f(Q)\,. (25)

By introducing an auxiliary scalar field ϕ\phi, one can consider the following action

Sf(Q)=d4xg{f(ϕ)Q[ϕf(ϕ)f(ϕ)]}.\displaystyle S_{f(Q)}=\int d^{4}x\sqrt{-g}\left\{f^{\prime}(\phi)Q-\left[\phi f^{\prime}(\phi)-f(\phi)\right]\right\}\;. (26)

By varying the above action with respect to ϕ\phi, one gets f′′(ϕ)(Qϕ)=0f^{\prime\prime}(\phi)(Q-\phi)=0. Provided that f′′(ϕ)0f^{\prime\prime}(\phi)\neq 0, this equation implies ϕ=Q\phi=Q and restores the original action. Moreover, we can redefine the scalar field φf(ϕ)\varphi\equiv f^{\prime}(\phi) and V(φ)=ϕf(ϕ)f(ϕ)V(\varphi)=\phi f^{\prime}(\phi)-f(\phi). The Lagrangian density of our interest then takes the following form

Sf(Q)=d4xg[φQV(φ)].\displaystyle S_{f(Q)}=\int d^{4}x\sqrt{-g}\left[\varphi Q-V(\varphi)\right]~{}. (27)

Using Eq. (19), we obtain

Sf(Q)=d4xg[φV(φ)+φμ(QμQ~μ)].\displaystyle S_{f(Q)}=\int d^{4}x\sqrt{-g}\left[\varphi\mathcal{R}-V(\varphi)+\varphi\nabla_{\mu}\left(Q^{\mu}-\tilde{Q}^{\mu}\right)\right]~{}. (28)

The third term includes the covariant derivative with respect to the Levi-Civita connection μ\nabla_{\mu}, and we can utilize the ordinary formula for the divergence,

d4xgμAμ=d4xμ(gAμ),\displaystyle\int d^{4}x\sqrt{-g}~{}\nabla_{\mu}A^{\mu}=\int d^{4}x~{}\partial_{\mu}\left(\sqrt{-g}A^{\mu}\right)\,, (29)

and ignore the surface integration. The integration by parts reduces the original action (25) to the following form:

Sf(Q)=d4xg[φV(φ)μφ(QμQ~μ)].\displaystyle S_{f(Q)}=\int d^{4}x\sqrt{-g}\left[\varphi\mathcal{R}-V(\varphi)-\partial_{\mu}\varphi\cdot\left(Q^{\mu}-\tilde{Q}^{\mu}\right)\right]~{}. (30)

III.2 Conformal rescaling of f(Q)f(Q) gravity

We further deform Eq. (30), following the frame transformation established in f(R)f(R) gravity. We consider the following conformal transformation of the metric:

gμνgμν=eΦgμν,Φ=lnφ.\displaystyle g_{\mu\nu}\rightarrow g^{\prime}_{\mu\nu}=e^{-\Phi}g_{\mu\nu}\,,\quad\Phi=-\ln\varphi~{}.~{} (31)

It is worth mentioning that the affine connection is invariant under the transformation (31) since the connection is written in Eq. (21) by the Stüeckelberg field, which is independent of the metric. By the conformal transformation of metric, the Ricci scalar \mathcal{R} with respect to the Levi-Civita connection is transformed as

=\displaystyle\mathcal{R}= eΦ[3gμνμνΦ32gμν(μΦ)(νΦ)].\displaystyle\mathrm{e}^{-\Phi}\left[\mathcal{R}^{\prime}-3g^{\prime\mu\nu}\nabla^{\prime}_{\mu}\partial_{\nu}\Phi-\frac{3}{2}g^{\prime\mu\nu}\left(\partial_{\mu}\Phi\right)\left(\partial_{\nu}\Phi\right)\right]\,. (32)

Here, we denote by \nabla^{\prime} the covariant derivative with respect to the Levi-Civita connection after the transformation.

Moreover, by the transformation, the nonmetricity tensor QαβγQ_{\alpha\beta\gamma} and its traces QμQ^{\mu} and Q~μ\tilde{Q}^{\mu} are transformed as below:

QαβγQαβγ=^αgβγ=^α(eΦgβγ)=eΦQαβγgβγeΦαΦ,\displaystyle\begin{split}Q_{\alpha\beta\gamma}\rightarrow Q^{\prime}_{\alpha\beta\gamma}&=\hat{\nabla}_{\alpha}g^{\prime}_{\beta\gamma}\\ &=\hat{\nabla}_{\alpha}\left(e^{-\Phi}g_{\beta\gamma}\right)\\ &=e^{-\Phi}Q_{\alpha\beta\gamma}-g_{\beta\gamma}e^{-\Phi}\partial_{\alpha}\Phi\;,\end{split} (33)
QμQμ=gμαgβγQαβγ=e2Φgμαgβγ(eΦQαβγgβγeΦαΦ)=eΦQμ4eΦgμααΦ,\displaystyle\begin{split}Q^{\mu}\rightarrow Q^{\prime\mu}&=g^{\prime\mu\alpha}g^{\prime\beta\gamma}Q^{\prime}_{\alpha\beta\gamma}\\ &=e^{2\Phi}g^{\mu\alpha}g^{\beta\gamma}\left(e^{-\Phi}Q_{\alpha\beta\gamma}-g_{\beta\gamma}e^{-\Phi}\partial_{\alpha}\Phi\right)\\ &=e^{\Phi}Q^{\mu}-4e^{\Phi}g^{\mu\alpha}\partial_{\alpha}\Phi\;,\end{split} (34)
Q~μQ~μ=gμαgβγQβαγ=e2Φgμαgβγ(eΦQβαγgαγeΦβΦ)=eΦQ~μeΦgμααΦ.\displaystyle\begin{split}\tilde{Q}^{\mu}\rightarrow\tilde{Q}^{\prime\mu}&=g^{\prime\mu\alpha}g^{\prime\beta\gamma}Q^{\prime}_{\beta\alpha\gamma}\\ &=e^{2\Phi}g^{\mu\alpha}g^{\beta\gamma}\left(e^{-\Phi}Q_{\beta\alpha\gamma}-g_{\alpha\gamma}e^{-\Phi}\partial_{\beta}\Phi\right)\\ &=e^{\Phi}\tilde{Q}^{\mu}-e^{\Phi}g^{\mu\alpha}\partial_{\alpha}\Phi\;.\end{split} (35)

In Eq. (33), the general affine connection in the covariant derivative ^\hat{\nabla} are not transformed. From the above, we can rewrite the original nonmetricity tensor QQ by new ones QQ^{\prime} and scalar field Φ\Phi after the conformal transformation,

Qμ=eΦQμ+4gμααΦ=eΦQμ+4eΦgμααΦ,\displaystyle\begin{split}Q^{\mu}&=e^{-\Phi}Q^{\prime\mu}+4g^{\mu\alpha}\partial_{\alpha}\Phi\\ &=e^{-\Phi}Q^{\prime\mu}+4e^{-\Phi}g^{\prime\mu\alpha}\partial_{\alpha}\Phi\;,\end{split} (36)
Q~μ=eΦQ~μ+gμααΦ=eΦQ~μ+eΦgμααΦ.\displaystyle\begin{split}\tilde{Q}^{\mu}&=e^{-\Phi}\tilde{Q}^{\prime\mu}+g^{\mu\alpha}\partial_{\alpha}\Phi\\ &=e^{-\Phi}\tilde{Q}^{\prime\mu}+e^{-\Phi}g^{\prime\mu\alpha}\partial_{\alpha}\Phi\;.\end{split} (37)

Thus, the third term in Eq. (30) is given as

μφ(QμQ~μ)=eΦμΦeΦ(Qμ+4gμααΦQ~μgμααΦ)=e2Φ[μΦ(QμQ~μ)+3αΦαΦ].\displaystyle\begin{split}\partial_{\mu}\varphi\cdot\left(Q^{\mu}-\tilde{Q}^{\mu}\right)&=-e^{-\Phi}\partial_{\mu}\Phi\cdot e^{-\Phi}\left(Q^{\prime\mu}+4g^{\prime\mu\alpha}\partial_{\alpha}\Phi-\tilde{Q}^{\prime\mu}-g^{\prime\mu\alpha}\partial_{\alpha}\Phi\right)\\ &=-e^{-2\Phi}\left[\partial_{\mu}\Phi\cdot\left(Q^{\prime\mu}-\tilde{Q}^{\prime\mu}\right)+3\partial^{\alpha}\Phi\partial_{\alpha}\Phi\right]\;.\end{split} (38)

By substituting Eqs. (32) and (38) into Eq. (30), the action of f(Q)f(Q) gravity is written by the Einstein gravity with the minimally coupled scalar field:

S=d4xge2Φ{e2Φ[3gμνμνΦ32gμν(μΦ)(νΦ)]V(Φ)+e2Φ[μΦ(QμQ~μ)+3αΦαΦ]}=d4xg[+32αΦαΦU(Φ)+μΦ(QμQ~μ)].\displaystyle\begin{split}S&=\int d^{4}x\sqrt{-g^{\prime}}e^{2\Phi}\left\{\mathrm{e}^{-2\Phi}\left[\mathcal{R}^{\prime}-3g^{\prime\mu\nu}\nabla^{\prime}_{\mu}\partial_{\nu}\Phi-\frac{3}{2}g^{\prime\mu\nu}\left(\partial_{\mu}\Phi\right)\left(\partial_{\nu}\Phi\right)\right]\right.\\ &\qquad\qquad\qquad\qquad\qquad\left.-V(\Phi)+e^{-2\Phi}\left[\partial_{\mu}\Phi\cdot\left(Q^{\prime\mu}-\tilde{Q}^{\prime\mu}\right)+3\partial^{\alpha}\Phi\partial_{\alpha}\Phi\right]\right\}\\ &=\int d^{4}x\sqrt{-g^{\prime}}\,\left[\mathcal{R}^{\prime}+\frac{3}{2}\partial^{\alpha}\Phi\partial_{\alpha}\Phi-U(\Phi)+\partial_{\mu}\Phi\cdot\left(Q^{\prime\mu}-\tilde{Q}^{\prime\mu}\right)\right]\;.\end{split} (39)

Here, we defined U(Φ)e2ΦV(Φ)U(\Phi)\equiv e^{2\Phi}V(\Phi) and ignored the divergence term.

In Eq. (39), the sign of the kinetic term of scalar field Φ\Phi is positive, indicating that it is ghost mode. The conformal transformation of the first and second terms in Eq. (30) reproduces the minimally coupled scalar field Φ\Phi, which is the well-known result in f(R)f(R) gravity. However, since the third term, the nonmetricity tensor, in Eq. (30) gives rise to a new kinetic term with the opposite sign, the sign of the kinetic term of the scalar field is finally reversed.

As a classical theory, the ghost fields have negative kinetic energy and generate the instability of the system. In a quantum context, the energy is bounded below by the vacuum, even if there is a ghost. The ghosts, however, generate negative norm states, which give the negative probability; therefore, the existence of the ghosts conflicts with the Copenhagen interpretation of the quantum theory, and the theory is not physically acceptable. In the case of the gauge theory, if we quantize the system by using the BRS symmetry Becchi et al. (1976), the ghosts appear in the combinations of zero norm states in the physical states, which satisfy the constraints coming from the BRS symmetry or gauge symmetry, and therefore the negative norm states are eliminated Kugo and Ojima (1978, 1979). The situation in f(Q)f(Q) gravity could be similar. Although there appear to be ghosts even in f(Q)f(Q) gravity, the propagation of the ghost fields is excluded as the physical degrees of freedom by the constraints, as we will see in the next section.

IV Reformulation of f(Q)f(Q) gravity

In this section, we reformulate the action of f(Q)f(Q) gravity. Regarding the f(Q)f(Q) gravity as a higher-derivative scalar-tensor theories Belenchia et al. (2018); Langlois and Noui (2016); Gao et al. (2019); Kimura et al. (2017); Crisostomi et al. (2016); Ben Achour et al. (2016), we develop ADM formulation of the covariant action and discuss the origin of the ghost scalar mode.

IV.1 Scalar-vector-tensor formulation

The nonmetricity scalar QQ includes the metric and its first derivative as in Eqs. (6) and (9), while the connection includes the first and second derivatives of Stüeckelberg fields as in Eq. (21). Thus, the Lagrangian density of f(Q)f(Q) gravity (27) is symbolically given as

g(νξa,μνξa,gμν,βgμν).\displaystyle\sqrt{-g}\mathcal{L}\,\left(\partial_{\nu}\xi^{a},\partial_{\mu}\partial_{\nu}\xi^{a},g_{\mu\nu},\partial_{\beta}g_{\mu\nu}\right)\,. (40)

To handle the higher-order derivatives in the Lagrangian density, we can introduce new variables into the f(Q)f(Q) theory in a way that does not alter the theory Motohashi et al. (2016). By introducing four space-time vectors AμaA^{a}_{\;\mu} as new variables, we can rewrite the Lagrangian density (40) as 222 Taking the variation of (41) with respect to ωaν\omega_{\;a}^{\nu}, we can get νξa=Aνa\partial_{\nu}\xi^{a}=A_{\;\nu}^{a}. By inserting this relation back into the equation of motion, it is easy to check that the Lagrangian (41) is equivalent to (40).

geq=g(Aνa,μAνa,gμν,βgμν)+ωaν(νξaAνa).\displaystyle\sqrt{-g}\mathcal{L}^{eq}=\sqrt{-g}\mathcal{L}\,(A^{a}_{\;\nu},\partial_{\mu}A^{a}_{\;\nu},g_{\mu\nu},\partial_{\beta}g_{\mu\nu})+\omega_{\;a}^{\nu}(\partial_{\nu}\xi^{a}-A_{\;\nu}^{a})\,. (41)

We note that by rewriting νξa=Aνa\partial_{\nu}\xi^{a}=A_{\;\nu}^{a}, the affine connection Eq. (21) goes back the original form suggested by Eq. (12).

Using Eq. (41), we can reformulation the action Eq. (30) into following form 333We present the detail calculation in Appendix B,

Sf(Q)eq\displaystyle S_{f(Q)}^{eq} =d4x[g(φV)gαφ(QαQ~α)+ωaν(νξaAνa)]\displaystyle=\int d^{4}x\,\left[\sqrt{-g}\,\left(\varphi\mathcal{R}-V\right)-\sqrt{-g}\partial_{\alpha}\varphi\cdot\left(Q^{\alpha}-\tilde{Q}^{\alpha}\right)+\omega_{\;a}^{\nu}(\partial_{\nu}\xi^{a}-A_{\;\nu}^{a})\right]
=Sf(R)d4x{gαφ[gμν(A1)aαgμα(A1)aν]μAνaωaν(νξaAνa)}\displaystyle=S_{f(R)}-\int d^{4}x\,\left\{\sqrt{-g}\,\partial_{\alpha}\varphi\left[g^{\mu\nu}(A^{-1})^{\alpha}_{\ a}-g^{\mu\alpha}(A^{-1})^{\nu}_{\ a}\right]\cdot\nabla_{\mu}A^{a}_{\ \nu}-\omega^{\nu}_{\ a}\left(\partial_{\nu}\xi^{a}-A^{a}_{\ \nu}\right)\right\}
=Sf(R)d4x[gCaαμναφμAνaωaν(νξaAνa)].\displaystyle=S_{f(R)}-\int d^{4}x\,\left[\sqrt{-g}\,C_{a}^{\alpha\mu\nu}\partial_{\alpha}\varphi\nabla_{\mu}A^{a}_{\ \nu}-\omega^{\nu}_{\ a}\left(\partial_{\nu}\xi^{a}-A^{a}_{\ \nu}\right)\right]\,. (42)

To simplify the expression in Eq. (42), we defined a tensor CaαμνC_{a}^{\alpha\mu\nu} as

CaαμνgμνBaαgμαBaνwhereBaα=(A1)aα.\displaystyle C_{a}^{\alpha\mu\nu}\equiv g^{\mu\nu}B^{\alpha}_{\ a}-g^{\mu\alpha}B^{\nu}_{\ a}\quad\text{where}\quad B^{\alpha}_{\ a}=(A^{-1})^{\alpha}_{\ a}\,. (43)

Where the term Sf(R)S_{f(R)} in action (42) is the scalar-tensor description of f(R)f(R) gravity,

Sf(R)=d4xg[φV(φ)].\displaystyle S_{f(R)}=\int d^{4}x\,\sqrt{-g}\left[\varphi\mathcal{R}-V(\varphi)\right]\,. (44)

We note that the nonmetricity tensor in Eq. (30) induces the coupling between the scalar field φ\varphi and vector field AμaA^{a}_{\ \mu} in Eq. (42). This term corresponds to the origin of the ghost scalar mode after the conformal transformation of metric, as we observed in the previous section.

IV.2 3+13+1 decomposition of the action

In this subsection, we investigate the origin of the ghost mode under the Lagrangian formulation by performing the 3+13+1 decomposition of the action (42) in terms of ADM variables. We decompose space-time into 3-dimensional spacelike hypersurfaces Σt\Sigma_{t} and their normal vector nμn^{\mu}, which satisfies the normalization condition nμnμ=1n^{\mu}n_{\mu}=-1

nμ\displaystyle n_{\mu} =(N,0,0,0),nμ=(1/N,Ni/N).\displaystyle=\left(-N,0,0,0\right)\,,\ n^{\mu}=\left(1/N,-N^{i}/N\right)\,. (45)

NN is the lapse function and NiN^{i} is the shift vector lying on the Σt\Sigma_{t}. We also introduce the three-dimensional induced metric hμνh_{\mu\nu} defined by

hμν=gμν+nμnν=(NiNiNiNihij),hμν=gμν+nμnν=(000hij).\displaystyle\begin{split}h_{\mu\nu}&=g_{\mu\nu}+n_{\mu}n_{\nu}=\left(\begin{array}[]{cc}N_{i}N^{i}&N_{i}\\ N_{i}&h_{ij}\end{array}\right)\,,\\ h^{\mu\nu}&=g^{\mu\nu}+n^{\mu}n^{\nu}=\left(\begin{array}[]{cc}0&0\\ 0&h^{ij}\end{array}\right)\,.\end{split} (46)

Inversely, we can express the metric in terms of NN, NiN^{i}, and hijh_{ij},

gμν=(N2+NiNiNiNihij),gμν=(N2N2NiN2NihijNiNjN2).\displaystyle\begin{split}g_{\mu\nu}&=\left(\begin{array}[]{cc}-N^{2}+N_{i}N^{i}&N_{i}\\ N_{i}&h_{ij}\end{array}\right)\,,\\ g^{\mu\nu}&=\left(\begin{array}[]{cc}-N^{-2}&N^{-2}N^{i}\\ N^{-2}N^{i}&h^{ij}-\frac{N^{i}N^{j}}{N^{2}}\end{array}\right)\,.\end{split} (47)

Moreover, we can decompose the space-time vector AμaA_{\mu}^{a} into tangent A¯μa\bar{A}_{\mu}^{a} and normal part AaA_{*}^{a} separately:

Aμa=A¯μaAanμwithAa=Aαanα.\displaystyle A_{\mu}^{a}=\bar{A}_{\mu}^{a}-A_{*}^{a}n_{\mu}\quad\text{with}\quad A_{*}^{a}=A_{\alpha}^{a}n^{\alpha}\,. (48)

For the tangent part, we have A0a=A¯0a+AaNA_{0}^{a}=\bar{A}_{0}^{a}+A_{*}^{a}N and Aia=A¯iaA_{i}^{a}=\bar{A}_{i}^{a}. Provided by these two relations, the normal component of AμaA_{\mu}^{a} can be expressed by

Aa=A0an0+Aiani=1N(A¯0a+AaNNiA¯ia),\displaystyle\begin{split}A_{*}^{a}=&A_{0}^{a}\cdot n^{0}+A_{i}^{a}n^{i}\\ &=\frac{1}{N}(\bar{A}_{0}^{a}+A_{*}^{a}N-N^{i}\bar{A}_{i}^{a})\,,\end{split} (49)

from which we get the relation A¯0a=NiA¯ia\bar{A}_{0}^{a}=N^{i}\bar{A}_{i}^{a}. After straightforward calculations presented in Appendix C, one can obtain the different components of the covariant derivative of four vectors AμaA_{\mu}^{a}:

0A0a=NA˙a𝒦ij(AaNiNj+NA¯iaNj+NA¯jaNi)NiAa𝒟iNNiA¯ja𝒟iNjNA¯ia𝒟iN+NiA¯˙ia,iA0a=𝒦ij(AaNj+NA¯ja)+N𝒟iAa+Nj𝒟iA¯ja,0Aia=A¯˙ia𝒦ij(AaNj+NA¯ja)Aa𝒟iNA¯ja𝒟iNj,iAja=𝒟iA¯jaAa𝒦ij.\displaystyle\begin{split}\nabla_{0}A_{0}^{a}&=N\dot{A}_{*}^{a}-\mathcal{K}_{ij}\left(A_{*}^{a}N^{i}N^{j}+N\bar{A}^{ia}N^{j}+N\bar{A}^{ja}N^{i}\right)\\ &-N^{i}A^{a}_{\ast}\mathcal{D}_{i}N-N^{i}\bar{A}^{a}_{j}\mathcal{D}_{i}N^{j}-N\bar{A}^{ia}\mathcal{D}_{i}N+N^{i}\dot{\bar{A}}_{i}^{a}\,,\\ \nabla_{i}A_{0}^{a}&=-\mathcal{K}_{ij}\left(A_{*}^{a}N^{j}+N\bar{A}^{ja}\right)+N\mathcal{D}_{i}A_{*}^{a}+N^{j}\mathcal{D}_{i}\bar{A}_{j}^{a}\,,\\ \nabla_{0}A_{i}^{a}&=\dot{\bar{A}}_{i}^{a}-\mathcal{K}_{ij}\left(A_{*}^{a}N^{j}+N\bar{A}^{ja}\right)-A^{a}_{\ast}\mathcal{D}_{i}N-\bar{A}^{a}_{j}\mathcal{D}_{i}N^{j}\,,\\ \nabla_{i}A_{j}^{a}&=\mathcal{D}_{i}\bar{A}_{j}^{a}-A_{*}^{a}\mathcal{K}_{ij}\,.\end{split} (50)

Subsequently, by using the same approach, the 3+13+1 decomposition of BaαB_{a}^{\alpha} is given by

Ba0=Ba1N,Bai=B¯ai+BaNiN,\displaystyle B_{a}^{0}=-B_{a}^{*}\frac{1}{N}~{},~{}B_{a}^{i}=\bar{B}_{a}^{i}+B_{a}^{*}\frac{N^{i}}{N}~{},~{} (51)

the calculation details of Eq. (51) and the 3+13+1 decomposition of the interaction term CaαμνC_{a}^{\alpha\mu\nu} have also shown explicitly in Appendix C. It is worth mentioning that since the AaμA_{a}^{\mu} and BaμB_{a}^{\mu} are not independent space-time vectors, they are related by the BaμAνa=δνμB_{a}^{\mu}A_{\nu}^{a}=\delta^{\mu}_{\;\nu}, which lead to the following important relations:

AaBa=AαanαBaβnβ=δαβnαnβ=1,\displaystyle A_{*}^{a}B_{a}^{*}=A_{\alpha}^{a}n^{\alpha}B_{a}^{\beta}n_{\beta}=\delta_{\;\alpha}^{\beta}n^{\alpha}n_{\beta}=-1~{},~{} (52)

and

BaμAμa=Ba0A0a+BaiAia=B¯aiA¯iaBaAa=4,\displaystyle B_{a}^{\mu}A_{\mu}^{a}=B_{a}^{0}A_{0}^{a}+B_{a}^{i}A_{i}^{a}=\bar{B}_{a}^{i}\bar{A}_{i}^{a}-B_{a}^{*}A_{*}^{a}=4~{},~{} (53)

from which, one concludes that the tangent parts of those vectors also enjoy the relation B¯aiA¯ja=δji\bar{B}_{a}^{i}\bar{A}_{j}^{a}=\delta^{i}_{j}. In particular, we have

A¯jaBa=Aja(Baαnα)=δj0N=0.\displaystyle\bar{A}_{j}^{a}B_{a}^{*}=A_{j}^{a}(B_{a}^{\alpha}n_{\alpha})=-\delta_{j}^{0}N=0~{}.~{} (54)

It shows the tangent part of AaμA_{a}^{\mu} and the normal part of BaμB_{a}^{\mu} are orthogonal to each other and vice versa, i.e., AaB¯ai=0A_{*}^{a}\bar{B}_{a}^{i}=0. Putting together all our results and utilizing relation (52)-(54), we finally obtain the full 3+13+1 decomposition of the action (42),

f(Q)eq=f(R)int+ωaν(νξaAνa)=Nhφ((3)+𝒦ij𝒦ij𝒦2V(φ)φ)+hφ˙(1NB¯aiA¯˙ia+Ba𝒟iA¯ia+NiNB¯aj𝒟iA¯ja+1N𝒟iNi)+hA˙aB¯ai𝒟iφ+h𝒟iφ𝒟iN+hNiN(B¯ajA¯˙ja𝒟jNjNjB¯ak𝒟jA¯ka)𝒟iφhN(Ba𝒟iAa+B¯ai𝒟jA¯jaB¯ja𝒟iA¯ja)𝒟iφhNi(Ba𝒟jA¯ja𝒟iφ+B¯aj𝒟iAa𝒟jφ)+ωa0(ξ˙aNAaNiA¯ia)+ωai(DiξaA¯ia),\displaystyle\begin{split}\mathcal{L}^{eq}_{f(Q)}&=\,\mathcal{L}_{f(R)}-\mathcal{L}_{\text{int}}+\omega_{a}^{\nu}(\partial_{\nu}\xi^{a}-A_{\nu}^{a})\\ &=\,N\sqrt{h}\varphi\left({}^{(3)}\mathcal{R}+\mathcal{K}^{ij}\mathcal{K}_{ij}-\mathcal{K}^{2}-\frac{V(\varphi)}{\varphi}\right)\\ &\quad+\sqrt{h}\dot{\varphi}\left(-\frac{1}{N}\bar{B}^{i}_{a}\dot{\bar{A}}^{a}_{i}+B^{\ast}_{a}\mathcal{D}_{i}\bar{A}^{ia}+\frac{N^{i}}{N}\bar{B}^{j}_{a}\mathcal{D}_{i}\bar{A}^{a}_{j}+\frac{1}{N}\mathcal{D}_{i}N^{i}\right)+\sqrt{h}\dot{A}^{a}_{\ast}\bar{B}^{i}_{a}\mathcal{D}_{i}\varphi\\ &\quad+\sqrt{h}\mathcal{D}_{i}\varphi\mathcal{D}^{i}N+\sqrt{h}\frac{N^{i}}{N}\left(\bar{B}^{j}_{a}\dot{\bar{A}}^{a}_{j}-\mathcal{D}_{j}N^{j}-N^{j}\bar{B}^{k}_{a}\mathcal{D}_{j}\bar{A}^{a}_{k}\right)\mathcal{D}_{i}\varphi\\ &\quad-\sqrt{h}N\left(B^{\ast}_{a}\mathcal{D}^{i}A^{a}_{\ast}+\bar{B}^{i}_{a}\mathcal{D}^{j}\bar{A}^{a}_{j}-\bar{B}_{ja}\mathcal{D}^{i}\bar{A}^{ja}\right)\mathcal{D}_{i}\varphi\\ &\quad-\sqrt{h}N^{i}\left(B^{\ast}_{a}\mathcal{D}_{j}\bar{A}^{ja}\mathcal{D}_{i}\varphi+\bar{B}^{j}_{a}\mathcal{D}_{i}A^{a}_{\ast}\mathcal{D}_{j}\varphi\right)\\ &\quad+\omega_{a}^{0}\left(\dot{\xi}^{a}-NA_{*}^{a}-N^{i}\bar{A}^{a}_{i}\right)+\omega_{a}^{i}(D_{i}\xi^{a}-\bar{A}_{i}^{a})\,,\end{split} (55)

where 𝒦ij\mathcal{K}_{ij} is extrinsic curvature of the hypersurface,

𝒦ij=12N(h˙ijDiNjDjNi).\displaystyle\mathcal{K}_{ij}=\frac{1}{2N}\left(\dot{h}_{ij}-D_{i}N_{j}-D_{j}N_{i}\right)\,. (56)

In the Lagrangian formulation, the field equations obtained from (55) involve only first-order time derivatives of φ\varphi and Aa{A}_{*}^{a}. However, wave functions require second-order derivatives. In other words, the action (55) strongly indicates these scalar fields cannot propagate as physical DOF. Furthermore, we can glimpse the prospect of the Hamiltonian formulation. The canonical momentum variable with respect to the scalar field φ\varphi is given as

p=h[1NB¯aiA¯˙ia+Ba𝒟iA¯ia+NiNB¯aj𝒟iA¯ja+1N𝒟iNi].\displaystyle p=\sqrt{h}\left[-\frac{1}{N}\bar{B}^{i}_{a}\dot{\bar{A}}^{a}_{i}+B^{\ast}_{a}\mathcal{D}_{i}\bar{A}^{ia}+\frac{N^{i}}{N}\bar{B}^{j}_{a}\mathcal{D}_{i}\bar{A}^{a}_{j}+\frac{1}{N}\mathcal{D}_{i}N^{i}\right]\,. (57)

Moreover, we consider the constraint from the Lagrange multiplier ωaν\omega^{\nu}_{\ a}. We obtain μAνa=νAμa\nabla_{\mu}A^{a}_{\ \nu}=\nabla_{\nu}A^{a}_{\ \mu} after we use the constraint Aμa=μξaA^{a}_{\ \mu}=\partial_{\mu}\xi^{a} Langlois and Noui (2016). Since the dummy indices μ,ν\mu,\nu are symmetric, we find that iA0a\nabla_{i}A_{0}^{a} equals to 0Aia\nabla_{0}A_{i}^{a}, which induces a relation A¯˙ia=𝒟iA0a\dot{\bar{A}}_{i}^{a}=\mathcal{D}_{i}A_{0}^{a}. If we use A¯˙ia=𝒟iA0a\dot{\bar{A}}^{a}_{i}=\mathcal{D}_{i}A^{a}_{0} and 𝒟iA¯ja=𝒟jA¯ia\mathcal{D}_{i}\bar{A}^{a}_{j}=\mathcal{D}_{j}\bar{A}^{a}_{i}, Eq. (57) is reduced to the following form:

ph(BaDiA¯iaB¯aiDiAa),\displaystyle p\approx\sqrt{h}(B_{a}^{\ast}D_{i}\bar{A}^{ia}-\bar{B}_{a}^{i}D_{i}A_{*}^{a})~{}\,, (58)

which generates constraints between phase space variables on the hypersurfaces Σt\Sigma_{t}. In other words, we can eliminate the phase space variables φ\varphi and its corresponding conjugate momentum pp by using Eq. (58) and other constraints. It indicates that the ghost scalar mode discussed in Sec. III is nonphysical; thus, we can conclude that the covariant f(Q)f(Q) gravity theory is free from the ghosts.

V Conclusions and discussions

In this work, we have revisited the theoretical structure of the f(Q)f(Q) gravity and discussed the ghost scalar mode in the physical DOF. Four scalar fields ξa\xi^{a} in the affine connection play a role of the Stüeckelberg to restore the diffeomorphism, similar to the dRGT massive gravity, and the coincident gauge in the nonmetricity gravity corresponds to the unitary gauge in the dRGT massive gravity de Rham (2014); Hassan et al. (2012). In the covariant f(Q)f(Q) gravity, we have considered the scalar-nonmetricity formulation and conformal re-scaling of the metric, where this method was well established in f(R)f(R) gravity to study the scalar field in the theory. We have shown that the scalar field φ\varphi, which stems from the f(Q)f(Q) functional DOF, has the negative kinetic energy and is the ghost mode. This result is consistent with earlier work Beltrán Jiménez and Koivisto (2021), and the opposite sign in front of the kinetic term of the scalar field originates from the nonmetricity tensor when we rewrite the nonmetricity scalar by the Ricci scalar.

To further investigate the ghost mode, we have developed a new formulation of the f(Q)f(Q) gravity, inspired by the technique to address the higher derivative of the scalar field of the HOST theory. Introducing the vector field AμaA^{a}_{\mu} to rewrite the derivative of the four Stüeckelberg field μξa\partial_{\mu}\xi^{a}, we have shown that the covariant f(Q)f(Q) gravity written by the scalar field φ\varphi, vector fields AμaA^{a}_{\mu}, and the tensor field gμνg_{\mu\nu} can be equivalent to the HOST theory. The structure of the corresponding Lagrangian is relatively simple and explicit, equals to f(R)f(R) term plus an interaction term, which might be reminiscent of a special class of Horndeski theories in four dimensions, i.e., L4HL^{\text{H}}_{4} Horndeski (1974); Kobayashi (2019). However, it is worth mentioning that the nonquadratic interacting term in Lagrangian (42) might indicate that the vectors AμaA^{a}_{\mu} are nonpropagate modes. The coupling between the scalar and vector fields in the new formulation rephrases the opposite sign of the scalar field from the nonmetricity tensor. Moreover, we have also applied 3+13+1 decomposition to the new formulation of the f(Q)f(Q) gravity. By using ADM variables, we are able to write the full Lagrangian (42) in a relatively compact form, which significantly simplifies the computation of the Hamiltonian for further study. At last, we found that in the context of canonical structure, the ghost scalar mode can be removed by using constraints; thus, it ceases to propagate, and the theory is free from the ghost.

We make several remarks on the ghost scalar field in f(Q)f(Q) gravity. The ghost is a dynamical DOF with a negative norm and often cancels the physical DOF in quantum theory. Even in classical theory, if we consider the trace or determinant of the coefficients of the kinetic term, ghosts may lower the rank of the kinetic matrix. Therefore, if we incorrectly assume all the DOFs have the positive norm, the number of the DOFs looks different from what it really is. It is mandatory to handle the Hamiltonian analysis and to evaluate the physical DOF, assuming that ghost mode can exist in the theory. The new formulation we developed will be helpful to understand the theoretical structure of the covariant f(Q)f(Q) gravity. In the future, it would be necessary to confirm the conjecture that whether it suffers from Ostrogradsky instability brought by higher-order derivatives Kobayashi (2019); Gleyzes et al. (2015), and we need to check the DOF of covariant f(Q)f(Q) gravity by performing complete Hamiltonian analysis. Finally, we comment on the ghost mode at the quantum level. Although we have confirmed that the ghost scalar is not propagating at the classical level, such a ghost might propagate at the quantum level. Nonpropagation of the ghost scalar at the classical level relies on the symmetry μAνa=νAμa\nabla_{\mu}A^{a}_{\ \nu}=\nabla_{\nu}A^{a}_{\ \mu} after we use the constraint Aμa=μξaA^{a}_{\ \mu}=\partial_{\mu}\xi^{a}. It is intriguing to investigate the relation between the propagation of the ghost scalar and the symmetry induced by the constraint in terms of the quantum field theory.

Acknowledgements.
T.K. is supported by the National Key R&D Program of China (2021YFA0718500) and by Grant-in-Aid of Hubei Province Natural Science Foundation (2022CFB817). T.Q. and K.H. are supported by the National Key Research and Development Program of China under Grant No. 2021YFC2203100, and the National Science Foundation of China under Grant No. 11875141. S.N. was partially supported by the Maria de Maeztu Visiting Professorship at the Institute of Space Sciences, Barcelona.

Appendix A THE GENERAL COORDINATE TRANSFORMATION: AN EXAMPLE

One can use Eq. (24) to freely transform from tangent space-time coordinates to arbitrary space-time coordinates. In order to better illustrate this point, we consider the nonmetricity tensor.

Qαμν=^αgμν=αgμνgνσΓμασgσμΓνασ=αgμνgνσ(xσξc2ξcxμxα)gσμ(xσξc2ξcxνxα)=αgμν(ξaxνξbxσfab)xσξcαξcxμ(ξaxσξbxμfab)(xσξcαξcxν)=αgμνξcxνfacαξaxμξaxμfacαξcxν=αgμν(ξcxναξaxμ+ξaxμαξcxν)fac=αgμνα(ξcxνξaxμfac)+(αfac)ξcxνξaxμ=ξcxνξaxμξdxαQ̊dac.\displaystyle\begin{split}Q_{\alpha\mu\nu}&=\hat{\nabla}_{\alpha}g_{\mu\nu}=\partial_{\alpha}g_{\mu\nu}-g_{\nu\sigma}\varGamma_{\;\mu\alpha}^{\sigma}-g_{\sigma\mu}\varGamma_{\;\nu\alpha}^{\sigma}\\ &=\partial_{\alpha}g_{\mu\nu}-g_{\nu\sigma}\left(\frac{\partial x^{\sigma}}{\partial\xi^{c}}\frac{\partial^{2}\xi^{c}}{\partial x^{\mu}\partial x^{\alpha}}\right)-g_{\sigma\mu}\left(\frac{\partial x^{\sigma}}{\partial\xi^{c}}\frac{\partial^{2}\xi^{c}}{\partial x^{\nu}\partial x^{\alpha}}\right)\\ &=\partial_{\alpha}g_{\mu\nu}-\left(\frac{\partial\xi^{a}}{\partial x^{\nu}}\frac{\partial\xi^{b}}{\partial x^{\sigma}}f_{ab}\right)\frac{\partial x^{\sigma}}{\partial\xi^{c}}\cdot\partial_{\alpha}\frac{\partial\xi^{c}}{\partial x^{\mu}}-\left(\frac{\partial\xi^{a}}{\partial x^{\sigma}}\frac{\partial\xi^{b}}{\partial x^{\mu}}f_{ab}\right)\left(\frac{\partial x^{\sigma}}{\partial\xi^{c}}\cdot\partial_{\alpha}\frac{\partial\xi^{c}}{\partial x^{\nu}}\right)\\ &=\partial_{\alpha}g_{\mu\nu}-\frac{\partial\xi^{c}}{\partial x^{\nu}}f_{ac}\cdot\partial_{\alpha}\frac{\partial\xi^{a}}{\partial x^{\mu}}-\frac{\partial\xi^{a}}{\partial x^{\mu}}f_{ac}\cdot\partial_{\alpha}\frac{\partial\xi^{c}}{\partial x^{\nu}}\\ &=\partial_{\alpha}g_{\mu\nu}-\left(\frac{\partial\xi^{c}}{\partial x^{\nu}}\cdot\partial_{\alpha}\frac{\partial\xi^{a}}{\partial x^{\mu}}+\frac{\partial\xi^{a}}{\partial x^{\mu}}\cdot\partial_{\alpha}\frac{\partial\xi^{c}}{\partial x^{\nu}}\right)f_{ac}\\ &=\partial_{\alpha}g_{\mu\nu}-\partial_{\alpha}\left(\frac{\partial\xi^{c}}{\partial x^{\nu}}\frac{\partial\xi^{a}}{\partial x^{\mu}}f_{ac}\right)+\left(\partial_{\alpha}f_{ac}\right)\cdot\frac{\partial\xi^{c}}{\partial x^{\nu}}\frac{\partial\xi^{a}}{\partial x^{\mu}}\\ &=\frac{\partial\xi^{c}}{\partial x^{\nu}}\frac{\partial\xi^{a}}{\partial x^{\mu}}\frac{\partial\xi^{d}}{\partial x^{\alpha}}\mathring{Q}_{dac}\,.\end{split} (59)

We have used the condition Q̊abc=afbc\mathring{Q}_{abc}=\partial_{a}f_{bc} in the last step. One may notice Eq. (59) is nothing but the transformation of nonmetricity tensor between arbitrary gauge and coincident gauge.

Appendix B SCALAR-VECTOR-TENSOR REPRESENTATION OF f(Q)f(Q) GRAVITY

We show the calculation detail in Eq. (42) up to Sf(R)S_{f(R)} and Lagrange multiplier ωaν(νξaAνa)\omega_{\;a}^{\nu}(\partial_{\nu}\xi^{a}-A_{\;\nu}^{a}):

d4x[gαφ(QαQ~α)].\displaystyle\int d^{4}x\,\left[\sqrt{-g}\partial_{\alpha}\varphi\cdot(Q^{\alpha}-\tilde{Q}^{\alpha})\right]\,. (60)

Computing the integrand, we find the traces of the nonmetricity tensor are written by metric gμνg_{\mu\nu} and vector field AμaA^{a}_{\ \mu} as follows:

QαQ~α\displaystyle Q^{\alpha}-\tilde{Q}^{\alpha} =gβαgμν(βgμνμgβν)+[gμν(A1)aαgμα(A1)aν]μAνa.\displaystyle=g^{\beta\alpha}g^{\mu\nu}(\partial_{\beta}g_{\mu\nu}-\partial_{\mu}g_{\beta\nu})+\left[g^{\mu\nu}(A^{-1})_{\;a}^{\alpha}-g^{\mu\alpha}(A^{-1})_{\;a}^{\nu}\right]\partial_{\mu}A_{\;\nu}^{a}\,. (61)

Using the following two relations

βgμν=gλν{}μβλ+gλμ{}νβλ,μAνa=μAνa{}μναAαa,\displaystyle\begin{split}\partial_{\beta}g_{\mu\nu}&=g_{\lambda\nu}\left\{{}^{\,\lambda}_{\mu\beta}\right\}+g_{\lambda\mu}\left\{{}^{\,\lambda}_{\nu\beta}\right\}\,,\\ \nabla_{\mu}A_{\nu}^{a}&=\partial_{\mu}A_{\nu}^{a}-\left\{{}^{\,\alpha}_{\mu\nu}\right\}A_{\alpha}^{a}\,,\end{split} (62)

we can compute the first term in Eq. (61) as

gβαgμν(βgμνμgβν)=(gβαgμνgμαgβν)βgμν=(gβαgμνgμαgβν)(gλν{}μβλ+gλμ{}νβλ)=gβα{}λβλgβν{}νβα,\displaystyle\begin{split}g^{\beta\alpha}g^{\mu\nu}\left(\partial_{\beta}g_{\mu\nu}-\partial_{\mu}g_{\beta\nu}\right)&=\left(g^{\beta\alpha}g^{\mu\nu}-g^{\mu\alpha}g^{\beta\nu}\right)\partial_{\beta}g_{\mu\nu}\\ &=\left(g^{\beta\alpha}g^{\mu\nu}-g^{\mu\alpha}g^{\beta\nu}\right)\left(g_{\lambda\nu}\left\{{}^{\,\lambda}_{\mu\beta}\right\}+g_{\lambda\mu}\left\{{}^{\,\lambda}_{\nu\beta}\right\}\right)\\ &=g^{\beta\alpha}\left\{{}^{\,\lambda}_{\lambda\beta}\right\}-g^{\beta\nu}\left\{{}^{\,\alpha}_{\nu\beta}\right\}~{},\end{split} (63)

and the second term in Eq. (61) as

[gμν(A1)aαgμα(A1)aν]μAνa=[gμν(A1)aαgμα(A1)aν](μAνa+{}μνλAλa)=[gμν(A1)aα{}μνλAλagμα(A1)aν{}μνλAλa]+[gμν(A1)aαgμα(A1)aν]μAνa=gμν{}μναgμα{}μνν+[gμν(A1)aαgμα(A1)aν]μAνa.\displaystyle\begin{split}\left[g^{\mu\nu}(A^{-1})_{\,a}^{\alpha}-g^{\mu\alpha}(A^{-1})_{\,a}^{\nu}\right]\cdot\partial_{\mu}A_{\;\nu}^{a}&=\left[g^{\mu\nu}(A^{-1})_{\,a}^{\alpha}-g^{\mu\alpha}(A^{-1})_{\,a}^{\nu}\right]\cdot\left(\nabla_{\mu}A_{\;\nu}^{a}+\left\{{}^{\,\lambda}_{\mu\nu}\right\}A_{\,\lambda}^{a}\right)\\ &=\left[g^{\mu\nu}(A^{-1})_{\;a}^{\alpha}\cdot\left\{{}^{\,\lambda}_{\mu\nu}\right\}A_{\,\lambda}^{a}-g^{\mu\alpha}(A^{-1})_{\;a}^{\nu}\cdot\left\{{}^{\,\lambda}_{\mu\nu}\right\}A_{\,\lambda}^{a}\right]\\ &\qquad+\left[g^{\mu\nu}(A^{-1})_{\;a}^{\alpha}-g^{\mu\alpha}(A^{-1})_{\;a}^{\nu}\right]\cdot\nabla_{\mu}A_{\;\nu}^{a}\\ &=g^{\mu\nu}\cdot\left\{{}^{\,\alpha}_{\mu\nu}\right\}-g^{\mu\alpha}\cdot\left\{{}^{\,\nu}_{\mu\nu}\right\}\\ &\qquad+\left[g^{\mu\nu}(A^{-1})_{\;a}^{\alpha}-g^{\mu\alpha}(A^{-1})_{\;a}^{\nu}\right]\cdot\nabla_{\mu}A_{\;\nu}^{a}~{}.\end{split} (64)

Finally, we obtain

QαQ~α\displaystyle Q^{\alpha}-\tilde{Q}^{\alpha} =[gμν(A1)aαgμα(A1)aν]μAνa,\displaystyle=\left[g^{\mu\nu}(A^{-1})_{\;a}^{\alpha}-g^{\mu\alpha}(A^{-1})_{\;a}^{\nu}\right]\cdot\nabla_{\mu}A_{\;\nu}^{a}~{}, (65)

and thus

d4x[gαφ(QαQ~α)]=d4x[gαφ[gμν(A1)aαgμα(A1)aν]μAνa].\displaystyle\begin{split}\int d^{4}x\,\left[\sqrt{-g}\partial_{\alpha}\varphi\cdot(Q^{\alpha}-\tilde{Q}^{\alpha})\right]=\int d^{4}x\,\left[\sqrt{-g}\partial_{\alpha}\varphi\left[g^{\mu\nu}(A^{-1})_{\;a}^{\alpha}-g^{\mu\alpha}(A^{-1})_{\;a}^{\nu}\right]\cdot\nabla_{\mu}A_{\;\nu}^{a}\right]\,.\end{split} (66)

Appendix C ADM DECOMPOSITION OF THE ACTION

This Appendix aims to apply ADM decomposition to the action (42). In order to facilitate the calculation, we will divide our goal into two parts μAνa\nabla_{\mu}A_{\nu}^{a}, CaαμνC_{a}^{\alpha\mu\nu}, and compute them separately.

C.0.1 3+13+1 decomposition of μAνa\nabla_{\mu}A_{\nu}^{a}

Utilizing the expressions of the Christoffel symbols (2) in terms of ADM quantities (47), we have

{}00 0=1N(NiNj𝒦ij+N˙+Ni𝒟iN),{}00k=NNi(2hjkNjNkN2)𝒦ij+Nk˙NkNN˙+Ni𝒟iNk+N(hkiNkNiN2)𝒟iN,{}0i 0=1N(Nj𝒦ij+𝒟iN),{}0ij=N(hjkNjNkN2)𝒦ik+𝒟iNjNjN𝒟iN,{}ij 0=1N𝒦ij,{}ijk=NkN𝒦ij+3{}ijk.\displaystyle\begin{split}\left\{{}^{\,0}_{00}\right\}&=\frac{1}{N}\left(N^{i}N^{j}\mathcal{K}_{ij}+\dot{N}+N^{i}\mathcal{D}_{i}N\right)\,,\\ \left\{{}^{\,k}_{00}\right\}&=NN^{i}\left(2h^{jk}-\frac{N^{j}N^{k}}{N^{2}}\right)\mathcal{K}_{ij}+\dot{N^{k}}\\ &\qquad-\frac{N^{k}}{N}\dot{N}+N^{i}\mathcal{D}_{i}N^{k}+N\left(h^{ki}-\frac{N^{k}N^{i}}{N^{2}}\right)\mathcal{D}_{i}N\,,\\ \left\{{}^{\,0}_{0i}\right\}&=\frac{1}{N}\left(N^{j}\mathcal{K}_{ij}+\mathcal{D}_{i}N\right)\,,\\ \left\{{}^{\,j}_{0i}\right\}&=N\left(h^{jk}-\frac{N^{j}N^{k}}{N^{2}}\right)\mathcal{K}_{ik}+\mathcal{D}_{i}N^{j}-\frac{N^{j}}{N}\mathcal{D}_{i}N\,,\\ \left\{{}^{\,0}_{ij}\right\}&=\frac{1}{N}\mathcal{K}_{ij}\,,\\ \left\{{}^{\,k}_{ij}\right\}&=-\frac{N^{k}}{N}\mathcal{K}_{ij}+^{3}\left\{{}^{\,k}_{ij}\right\}\,.\end{split} (67)

where 𝒦ij\mathcal{K}_{ij} is extrinsic curvature of the hypersurface defined by Eq. (56). From these expressions, we compute each component of the covariant derivative of vector μAνa\nabla_{\mu}A_{\nu}^{a}:

0A0a=NA˙a𝒦ij(AaNiNj+NA¯iaNj+NA¯jaNi)NiAa𝒟iNNiA¯ja𝒟iNjNA¯ia𝒟iN+NiA¯˙ia,iA0a=𝒦ij(AaNj+NA¯ja)+N𝒟iAa+Nj𝒟iA¯ja,0Aia=A¯˙ia𝒦ij(AaNj+NA¯ja)Aa𝒟iNA¯ja𝒟iNj,iAja=𝒟iA¯jaAa𝒦ij.\displaystyle\begin{split}\nabla_{0}A_{0}^{a}&=N\dot{A}_{*}^{a}-\mathcal{K}_{ij}\left(A_{*}^{a}N^{i}N^{j}+N\bar{A}^{ia}N^{j}+N\bar{A}^{ja}N^{i}\right)\\ &-N^{i}A^{a}_{\ast}\mathcal{D}_{i}N-N^{i}\bar{A}^{a}_{j}\mathcal{D}_{i}N^{j}-N\bar{A}^{ia}\mathcal{D}_{i}N+N^{i}\dot{\bar{A}}_{i}^{a}\,,\\ \nabla_{i}A_{0}^{a}&=-\mathcal{K}_{ij}\left(A_{*}^{a}N^{j}+N\bar{A}^{ja}\right)+N\mathcal{D}_{i}A_{*}^{a}+N^{j}\mathcal{D}_{i}\bar{A}_{j}^{a}\,,\\ \nabla_{0}A_{i}^{a}&=\dot{\bar{A}}_{i}^{a}-\mathcal{K}_{ij}\left(A_{*}^{a}N^{j}+N\bar{A}^{ja}\right)-A^{a}_{\ast}\mathcal{D}_{i}N-\bar{A}^{a}_{j}\mathcal{D}_{i}N^{j}\,,\\ \nabla_{i}A_{j}^{a}&=\mathcal{D}_{i}\bar{A}_{j}^{a}-A_{*}^{a}\mathcal{K}_{ij}\,.\end{split} (68)

C.0.2 3+13+1 decomposition of BaαB_{a}^{\alpha} and CaαμνC_{a}^{\alpha\mu\nu}

First, we apply 3+13+1 decomposition to vector field BaαB_{a}^{\alpha}. From the property Baα=B¯aαBanαB_{a}^{\alpha}=\bar{B}_{a}^{\alpha}-B_{a}^{*}n^{\alpha}, we find

Ba0=B¯a0Ba1N,Bai=B¯ai+BaNiN.\displaystyle\begin{split}B_{a}^{0}=&\bar{B}_{a}^{0}-B_{a}^{*}\frac{1}{N}\,,\\ B_{a}^{i}=&\bar{B}_{a}^{i}+B_{a}^{*}\frac{N^{i}}{N}\,.\\ \end{split} (69)

The norm part of the vector BaαB_{a}^{\alpha} is given as

Ba=Baαnα=Ba0n0=N(B¯a0B1N)=NB¯a0+Ba,\displaystyle\begin{split}B_{a}^{*}&=B_{a}^{\alpha}n_{\alpha}=B_{a}^{0}n_{0}\\ &=-N\left(\bar{B}_{a}^{0}-B_{*}\frac{1}{N}\right)\\ &=-N\bar{B}_{a}^{0}+B_{a}^{*}\,,\end{split} (70)

from which we can conclude B¯a0=0\bar{B}_{a}^{0}=0. Thus, we obtain

Ba0=Ba1N,Bai=B¯ai+BaNiN.\displaystyle B_{a}^{0}=-B_{a}^{*}\frac{1}{N}\,,\ B_{a}^{i}=\bar{B}_{a}^{i}+B_{a}^{*}\frac{N^{i}}{N}\,. (71)

Inserting Eq. (71) into Eq. (43), we can compute each component of CaαμνC_{a}^{\alpha\mu\nu}:

Ca000=g00Ba0g00Ba0=0,Ca00i=g0iBa0g00Bai=NiN2Ba0+1N2Bai=1N2B¯ai,Ca0i0=gi0Ba0gi0Ba0=0,Cai00=g00Baig0iBa0=NiN2Ba01N2Bai=1N2B¯ai,Caij0=gj0BaigjiBa0=(hijNiNjN2)Ba0+NjN2Bai=hijNBa+NjN2B¯ai,Cai0j=g0jBaig0iBaj=NjN2BaiNiN2Baj=1N2(NjB¯aiNiB¯aj),Ca0ij=gijBa0gi0Baj=(hijNiNjN2)Ba0NiN2Baj=hijNBaNiN2B¯aj,Caijk=gjkBaigjiBak=(hjkNjNkN2)Bai(hijNiNjN2)Bak=1N(hjkNihijNk)Ba+(hjkNjNkN2)B¯ai(hijNiNjN2)B¯ak.\displaystyle\begin{split}C^{000}_{a}&=g^{00}B^{0}_{a}-g^{00}B^{0}_{a}=0\,,\\ C^{00i}_{a}&=g^{0i}B^{0}_{a}-g^{00}B^{i}_{a}=\frac{N^{i}}{N^{2}}B^{0}_{a}+\frac{1}{N^{2}}B^{i}_{a}=\frac{1}{N^{2}}\bar{B}^{i}_{a}\,,\\ C^{0i0}_{a}&=g^{i0}B^{0}_{a}-g^{i0}B^{0}_{a}=0\,,\\ C^{i00}_{a}&=g^{00}B^{i}_{a}-g^{0i}B^{0}_{a}=-\frac{N^{i}}{N^{2}}B^{0}_{a}-\frac{1}{N^{2}}B^{i}_{a}=-\frac{1}{N^{2}}\bar{B}^{i}_{a}\,,\\ C^{ij0}_{a}&=g^{j0}B^{i}_{a}-g^{ji}B^{0}_{a}=-\left(h^{ij}-\frac{N^{i}N^{j}}{N^{2}}\right)B^{0}_{a}+\frac{N^{j}}{N^{2}}B^{i}_{a}=\frac{h^{ij}}{N}B^{\ast}_{a}+\frac{N^{j}}{N^{2}}\bar{B}^{i}_{a}\,,\\ C^{i0j}_{a}&=g^{0j}B^{i}_{a}-g^{0i}B^{j}_{a}=\frac{N^{j}}{N^{2}}B^{i}_{a}-\frac{N^{i}}{N^{2}}B^{j}_{a}=\frac{1}{N^{2}}\left(N^{j}\bar{B}^{i}_{a}-N^{i}\bar{B}^{j}_{a}\right)\,,\\ C^{0ij}_{a}&=g^{ij}B^{0}_{a}-g^{i0}B^{j}_{a}=\left(h^{ij}-\frac{N^{i}N^{j}}{N^{2}}\right)B^{0}_{a}-\frac{N^{i}}{N^{2}}B^{j}_{a}=-\frac{h^{ij}}{N}B^{\ast}_{a}-\frac{N^{i}}{N^{2}}\bar{B}^{j}_{a}\,,\\ C^{ijk}_{a}&=g^{jk}B^{i}_{a}-g^{ji}B^{k}_{a}=\left(h^{jk}-\frac{N^{j}N^{k}}{N^{2}}\right)B^{i}_{a}-\left(h^{ij}-\frac{N^{i}N^{j}}{N^{2}}\right)B^{k}_{a}\\ &=\frac{1}{N}\left(h^{jk}N^{i}-h^{ij}N^{k}\right)B^{\ast}_{a}+\left(h^{jk}-\frac{N^{j}N^{k}}{N^{2}}\right)\bar{B}^{i}_{a}-\left(h^{ij}-\frac{N^{i}N^{j}}{N^{2}}\right)\bar{B}^{k}_{a}\,.\end{split} (72)

References