This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Nonlocal Trace Spaces and Extension Results for Nonlocal Calculus

Qiang Du [email protected] Xiaochuan Tian [email protected] Cory Wright [email protected] Yue Yu [email protected]
Abstract

For a given Lipschitz domain Ω\Omega, it is a classical result that the trace space of W1,p(Ω)W^{1,p}(\Omega) is W11/p,p(Ω)W^{1-1/p,p}(\partial\Omega), namely any W1,p(Ω)W^{1,p}(\Omega) function has a well-defined W11/p,p(Ω)W^{1-1/p,p}(\partial\Omega) trace on its codimension-1 boundary Ω\partial{\Omega} and any W11/p,p(Ω)W^{1-1/p,p}(\partial\Omega) function on Ω\partial{\Omega} can be extended to a W1,p(Ω)W^{1,p}(\Omega) function. Recently, [26] characterizes the trace space for nonlocal Dirichlet problems involving integrodifferential operators with infinite interaction ranges, where the boundary datum is provided on the whole complement of the given domain \dΩ{}^{d}\backslash{\Omega}. In this work, we study function spaces for nonlocal Dirichlet problems with a finite range of nonlocal interactions, which naturally serves a bridging role between the classical local PDE problem and the nonlocal problem with infinite interaction ranges. For these nonlocal Dirichlet problems, the boundary conditions are normally imposed on a region with finite thickness volume which lies outside of the domain. We introduce a function space on the volumetric boundary region that serves as a trace space for these nonlocal problems and study the related extension results. Moreover, we discuss the consistency of the new nonlocal trace space with the classical W11/p,p(Ω)W^{1-1/p,p}(\partial\Omega) space as the size of nonlocal interaction tends to zero. In making this connection, we conduct an investigation on the relations between nonlocal interactions on a larger domain and the induced interactions on its subdomain. The various forms of trace, embedding and extension theorems may then be viewed as consequences in different scaling limits.

keywords:
Trace Theorem; Nonlocal Function Space; Inverse Trace Theorem; Trace Space; Finite Nonlocal Interactions; Extension Operator.
MSC:
[2010] 46E35 , 47G10 , 35A23 , 35R11

1 Introduction

In [30], Gagliardo characterizes the trace space of the Sobolev space W1,p(Ω)W^{1,p}(\Omega) (p>1p>1) for a given bounded Lipschitz domain Ωd\Omega\subset\mathbb{R}^{d}. The result consists of the following two parts. First, the trace operator TT from W1,p(Ω)W^{1,p}(\Omega) to W11/p,p(Ω)W^{1-1/p,p}(\partial\Omega) is linear and continuous, and conversely, one can define a continuous linear extension operator EE from W11/p,p(Ω)W^{1-1/p,p}(\partial\Omega) to W1,p(Ω)W^{1,p}(\Omega). Our goal in this work is to study the trace spaces of some nonlocal function spaces denoted by {𝒮δβ(Ω^)}δ>0\{\mathcal{S}^{\,\beta}_{\delta}(\hat{\Omega})\}_{\delta>0} related to the Dirichlet energies of a class of nonlocal problems. Here, δ>0\delta>0 represents the horizon parameter that characterizes the ranges of nonlocal interactions, and Ω^=ΩΩδ\hat{\Omega}=\Omega\cup\Omega_{\delta} with Ωδ:={𝒙d\Ω:dist(𝒙,Ω)<δ}\Omega_{\delta}:=\left\{\bm{x}\in\mathbb{R}^{d}\backslash\Omega:\text{dist}(\bm{x},\partial\Omega)<\delta\right\} being viewed as a nonlocal “boundary” set of the given domain Ω\Omega. The function space 𝒮δβ(Ω^)\mathcal{S}^{\,\beta}_{\delta}(\hat{\Omega}) is defined as the completion of C1(Ω^¯)C^{1}(\overline{\hat{\Omega}}) with respect to the norm

𝒮δβ(Ω^)=(Lp(Ω^)p+||𝒮δβ(Ω^)p)1/p,\displaystyle\|\cdot\|_{\mathcal{S}^{\,\beta}_{\delta}(\hat{\Omega})}=(\|\cdot\|_{L^{p}(\hat{\Omega})}^{p}+|\cdot|^{p}_{\mathcal{S}^{\,\beta}_{\delta}(\hat{\Omega})})^{1/p}, (1.1)

with the associated semi-norm ||𝒮δβ(Ω^)|\cdot|_{\mathcal{S}^{\,\beta}_{\delta}(\hat{\Omega})} given by

|u|𝒮δβ(Ω^)p=Ω^Ω^γδβ(|𝒚𝒙|)|u(𝒚)u(𝒙)|p𝑑𝒚𝑑𝒙.\displaystyle|u|^{p}_{\mathcal{S}^{\,\beta}_{\delta}(\hat{\Omega})}=\int_{\hat{\Omega}}\int_{\hat{\Omega}}{{\gamma}^{\,\beta}_{\delta}}(|\bm{y}-\bm{x}|)|u(\bm{y})-u(\bm{x})|^{p}d\bm{y}d\bm{x}\,. (1.2)

Notice that the space 𝒮δβ\mathcal{S}^{\,\beta}_{\delta} also depends on pp, and we always assume p>1p>1 in this paper. The kernel function γδβ{{\gamma}^{\,\beta}_{\delta}} in (1.2), for δ>0\delta>0 and β[0,d+p)\beta\in[0,d+p) is taken as

γδβ(|𝒚𝒙|)=Cd,p,βδd+pβ1|𝒚𝒙|β1{|𝒚𝒙|<δ},{{\gamma}^{\,\beta}_{\delta}}(|\bm{y}-\bm{x}|)=\frac{C_{d,p,\,\beta}}{\delta^{d+p-\beta}}\frac{1}{|\bm{y}-\bm{x}|^{\,\beta}}1_{\{|\bm{y}-\bm{x}|<\delta\}}, (1.3)

where for any δ\delta, 1{|𝒚𝒙|<δ}1_{\{|\bm{y}-\bm{x}|<\delta\}} denotes the characteristic function on the set {|𝒚𝒙|<δ}\{|\bm{y}-\bm{x}|<\delta\}, and Cd,p,βC_{d,p,\,\beta} normalizes the pthp^{th} moment of γδβ\gamma_{\delta}^{\,\beta}. In particular, we have

Cd,p,β=sd11(d+pβ),C_{d,p,\,\beta}=s^{-1}_{d-1}(d+p-\beta),

where sd1s_{d-1} denotes the area of the d1d-1-sphere since

d1δd+pβ1|𝒛|β1{|𝒛|<δ}|𝒛|p𝑑𝒛=1δd+pβB(𝟎,δ)|𝒛|pβ𝑑𝒛=sd1δd+pβ0δrd+pβ1𝑑r=sd1d+pβ.\int_{{}^{d}}\frac{1}{\delta^{d+p-\beta}}\frac{1}{|\bm{z}|^{\,\beta}}1_{\{|\bm{z}|<\delta\}}|\bm{z}|^{p}d\bm{z}=\frac{1}{\delta^{d+p-\beta}}\int_{B(\bm{0},\delta)}|\bm{z}|^{p-\beta}d\bm{z}=\frac{s_{d-1}}{\delta^{d+p-\beta}}\int_{0}^{\delta}r^{d+p-\beta-1}dr=\frac{s_{d-1}}{d+p-\beta}.

We note that, for different δ>0\delta>0, γδβ{{\gamma}^{\,\beta}_{\delta}} can be obtained from a rescaling of a given δ\delta-independent nonnegative kernel γβ{\gamma}^{\,\beta} defined on (0,1)(0,1) by:

γδβ(|𝒚𝒙|)=1δd+pγβ(|𝒚𝒙|δ),where γβ(|𝒚𝒙|)=Cd,p,β|𝒚𝒙|β1{|𝒚𝒙|<1}.{{\gamma}^{\,\beta}_{\delta}}(|\bm{y}-\bm{x}|)=\frac{1}{\delta^{d+p}}{\gamma}^{\,\beta}\left(\frac{|\bm{y}-\bm{x}|}{\delta}\right)\,,\quad\text{where }{\gamma}^{\,\beta}(|\bm{y}-\bm{x}|)=\frac{C_{d,p,\,\beta}}{|\bm{y}-\bm{x}|^{\,\beta}}1_{\{|\bm{y}-\bm{x}|<1\}}. (1.4)

It is easy to see that the nonlocal function space 𝒮δβ(Ω^)\mathcal{S}^{\,\beta}_{\delta}(\hat{\Omega}) contains all pp-integrable functions on Ω^\hat{\Omega} with finite norms with respect to 𝒮δβ(Ω^)\|\cdot\|_{\mathcal{S}^{\,\beta}_{\delta}(\hat{\Omega})}. Moreover, for any finite and given δ>0\delta>0, the kernel γδβ{{\gamma}^{\,\beta}_{\delta}} is integrable for β[0,d)\beta\in[0,d) and the corresponding space 𝒮δβ(Ω^)\mathcal{S}^{\,\beta}_{\delta}(\hat{\Omega}) is equivalent to the Lp(Ω^)L^{p}(\hat{\Omega}) space; while γδβ{{\gamma}^{\,\beta}_{\delta}} is non-integrable for β(d,d+p)\beta\in(d,d+p) and 𝒮δβ(Ω^)\mathcal{S}^{\,\beta}_{\delta}(\hat{\Omega}) is equivalent to the standard fractional Sobolev space W(βd)/p,p(Ω^)W^{(\beta-d)/p,p}(\hat{\Omega}). Moreover, we have the convergence of the space 𝒮δβ(Ω^)\mathcal{S}^{\,\beta}_{\delta}(\hat{\Omega}) to the local limit W1,p(Ω)W^{1,p}(\Omega) as δ0\delta\to 0, see e.g., discussions in [13, 50, 44, 28].

Given any domain Ω\Omega, let 𝒯δβ(Ω)\mathcal{T}^{\,\beta}_{\delta}({\Omega}) denote the space of all Lp(Ω)L^{p}({\Omega})-functions uu with the norm defined as

u𝒯δβ(Ω):=(1δuLp(Ω)p+|u|𝒯δβ(Ω)p)1/p.\|u\|_{\mathcal{T}^{\,\beta}_{\delta}({\Omega})}:=\left(\frac{1}{\delta}\|u\|^{p}_{L^{p}({\Omega})}+|u|^{p}_{\mathcal{T}^{\,\beta}_{\delta}({\Omega})}\right)^{1/p}\,. (1.5)

Here the semi-norm is defined as

|u|𝒯δβ(Ω):=(δβ2ΩΩ|u(𝒚)u(𝒙)|p(|𝒚𝒙|δ)d+p2(|𝒚𝒙|δ)β𝑑𝒚𝑑𝒙)1/p,\left|u\right|_{\mathcal{T}^{\,\beta}_{\delta}({\Omega})}:=\left(\delta^{\,\beta-2}\int_{{\Omega}}\int_{{\Omega}}\frac{|u(\bm{y})-u(\bm{x})|^{p}}{(|\bm{y}-\bm{x}|\vee\delta)^{d+p-2}(|\bm{y}-\bm{x}|\wedge\delta)^{\,\beta}}\,d\bm{y}d\bm{x}\right)^{1/p}, (1.6)

where ab:=min(a,b)a\wedge b:=\min(a,b) and ab:=max(a,b)a\vee b:=\max(a,b). Our main result is to show that 𝒯δβ(Ωδ)\mathcal{T}^{\,\beta}_{\delta}(\Omega_{\delta}) is the trace space of 𝒮δβ(Ω^)\mathcal{S}^{\,\beta}_{\delta}(\hat{\Omega}), i.e., to establish the existence of trace operator TT and extension operator EE that define continuous linear maps in between 𝒮δβ(Ω^)\mathcal{S}^{\,\beta}_{\delta}(\hat{\Omega}) and 𝒯δβ(Ωδ)\mathcal{T}^{\,\beta}_{\delta}(\Omega_{\delta}).

For the ease of presentations, in the following we denote:

L=(0,L)×d1,a=(a,0)×d1, for a<0, and aL=(a,L)×d1, for a<L.\mathcal{R}^{L}=(0,L)\times^{d-1},\,\mathcal{R}_{a}=(a,0)\times^{d-1},\text{ for }a<0,\,\text{ and }\mathcal{R}_{a}^{L}=(a,L)\times\mathbb{R}^{d-1},\text{ for }a<L. (1.7)

and we note that when Ω=(0,)×d1={\Omega}=(0,\infty)\times^{d-1}=\mathcal{R}^{\infty}, we have Ωδ=δ{\Omega}_{\delta}=\mathcal{R}_{-\delta} and Ω^=δ\hat{{\Omega}}=\mathcal{R}_{-\delta}^{\infty}. With these notations, we first show the main results on half spaces as follows.

Theorem 1.1 (Trace theorem on half spaces).

Let δ>0\delta>0 and β[0,d+p)\beta\in[0,d+p), then there exists a constant CC independent of δ\delta and β\beta such that for any u𝒮δβ(δ)u\in\mathcal{S}^{\,\beta}_{\delta}(\mathcal{R}_{-\delta}^{\infty}),

1δuLp(δ)pC|d+pβ|1uLp(δ)p1|u|𝒮δβ(δ)C|d+pβ|1(uLp(δ)p+|u|𝒮δβ(δ)p),\frac{1}{\delta}\|u\|^{p}_{L^{p}(\mathcal{R}_{-\delta})}\leq C|d+p-\beta|^{-1}\|u\|^{p-1}_{L^{p}(\mathcal{R}_{-\delta}^{\infty})}{\left|u\right|}_{\mathcal{S}^{\,\beta}_{\delta}(\mathcal{R}_{-\delta}^{\infty})}\leq C|d+p-\beta|^{-1}\left(\|u\|^{p}_{L^{p}(\mathcal{R}_{-\delta}^{\infty})}+{\left|u\right|}^{p}_{\mathcal{S}^{\,\beta}_{\delta}(\mathcal{R}_{-\delta}^{\infty})}\right),
|u|𝒯δβ(δ)pC|d+pβ|1|u|𝒮δβ(δ)p,{\left|u\right|}^{p}_{\mathcal{T}^{\,\beta}_{\delta}(\mathcal{R}_{-\delta})}\leq C|d+p-\beta|^{-1}{\left|u\right|}^{p}_{\mathcal{S}^{\,\beta}_{\delta}(\mathcal{R}_{-\delta}^{\infty})},

and therefore

u𝒯δβ(δ)C|d+pβ|1/pu𝒮δβ(δ).\|u\|_{\mathcal{T}^{\,\beta}_{\delta}(\mathcal{R}_{-\delta})}\leq C|d+p-\beta|^{-1/p}\|u\|_{\mathcal{S}^{\,\beta}_{\delta}(\mathcal{R}_{-\delta}^{\infty})}.
Theorem 1.2 (Inverse trace theorem on half spaces).

Let δ(0,M)\delta\in(0,M) for some fixed number M>0M>0, β[0,d+p)\beta\in[0,d+p), and βd\beta\neq d, then there exists an extension operator E:𝒯δβ(δ)𝒮δβ(δ)E:\mathcal{T}^{\,\beta}_{\delta}(\mathcal{R}_{-\delta})\to\mathcal{S}^{\,\beta}_{\delta}(\mathcal{R}_{-\delta}^{\infty}) such that

Eu𝒮δβ(δ)C|dβ|1/pu𝒯δβ(δ),u𝒯δβ(δ)\|Eu\|_{\mathcal{S}^{\,\beta}_{\delta}(\mathcal{R}_{-\delta}^{\infty})}\leq C|d-\beta|^{-1/p}\|u\|_{\mathcal{T}^{\,\beta}_{\delta}(\mathcal{R}_{-\delta})}\,,{\quad\forall u\in\mathcal{T}^{\,\beta}_{\delta}(\mathcal{R}_{-\delta})}

where CC is a constant independent of δ\delta, β\beta and u𝒯δβ(δ)u\in\mathcal{T}^{\,\beta}_{\delta}(\mathcal{R}_{-\delta}).

Using partition of unity techniques, the above trace theorems in special domains can then be extended to more general domains. which are stated in the theorems below.

Theorem 1.3 (General trace and inverse trace theorems).

Assume that Ω\Omega is a bounded and simply connected Lipschitz domain in d\mathbb{R}^{d} and Ωδ:={𝐱d\Ω:dist(𝐱,Ω)<δ}\Omega_{\delta}:=\{\bm{x}\in^{d}\backslash{\Omega}:\text{dist}(\bm{x},{\Omega})<\delta\} is its nonlocal boundary set. There exists a constant ϵ\epsilon depending on the domain Ω\Omega, such that for any δ(0,ϵ)\delta\in(0,\epsilon) and β\beta,

u𝒯δβ(Ωδ)C1|d+pβ|1/pu𝒮δβ(Ω^),u𝒮δβ(Ω^),\|u\|_{\mathcal{T}^{\,\beta}_{\delta}(\Omega_{\delta})}\leq C_{1}|d+p-\beta|^{-1/p}\|u\|_{\mathcal{S}^{\,\beta}_{\delta}(\hat{\Omega})},{\quad\forall u\in\mathcal{S}^{\,\beta}_{\delta}(\hat{\Omega}),}

On the other hand, for any δ(0,ϵ)\delta\in(0,\epsilon), β[0,d+p)\beta\in[0,d+p) and βd\beta\neq d, there exists an extension operator E:𝒯δβ(Ωδ)𝒮δβ(Ω^)E:\mathcal{T}^{\,\beta}_{\delta}(\Omega_{\delta})\to\mathcal{S}^{\,\beta}_{\delta}(\hat{\Omega}) such that

Eu𝒮δβ(Ω^)C2|dβ|1/p(u𝒯δβ(Ωδ)+|d+pβ|1/puLp(Ωδ)),u𝒯δβ(Ωδ).\|Eu\|_{\mathcal{S}^{\,\beta}_{\delta}(\hat{\Omega})}\leq C_{2}|d-\beta|^{-1/p}\left(\|u\|_{\mathcal{T}_{\delta}^{\,\beta}(\Omega_{\delta})}+|d+p-\beta|^{-1/p}\|u\|_{L^{p}(\Omega_{\delta})}\right)\,,{\quad\forall u\in\mathcal{T}^{\,\beta}_{\delta}(\Omega_{\delta}).}

Here C1C_{1}, C2C_{2} are constants independent of δ\delta, β\beta.

The paper is organized as follows. In Section 2 we discuss the motivation of this work, together with additional definitions and notation relevant to our main results. To provide some insights on the various nonlocal spaces under consideration, we also investigate their scaling properties and consistency with the classical trace spaces in the local limit, as δ0\delta\rightarrow 0. Moreover, in making these connections, our study also represents an investigation on the relations between nonlocal interactions on a larger domain and the induced interactions on a subdomain of a smaller size or dimension. This further leads to a new way of viewing the various forms of trace, embedding and extension theorems in different function spaces as consequences in different scaling limits, further illustrating the contributions of our study. Sections 3-5 contain the proofs of the aforementioned trace theorems. In particular, to show these trace theorems, while following the footsteps of the proofs for the local trace theorems, we take into account the effect of nonlocal interactions. In Section 3 we provide the proof of Theorem 1.1 with a special case δ=1\delta=1 first, which captures the intrinsic effect of nonlocal interactions defined on a larger domain for subdomains. We then extend the results to cases with general δ>0\delta>0 using a scaling argument. For the inverse trace theorem, in Section 4 we present the proof of Theorem 1.2 by constructing an extension operator based on the Whitney decomposition. Then, in Section 5 we prove Theorem 1.3 for the general bounded simply connected Lipschitz domain Ω{\Omega} using partition of unity techniques. Lastly, Section 6 summarizes our findings and discusses future research directions.

2 Motivation and Notation

In this section, we first make a few comments on the motivation of our work. We then investigate the consistency and connection between our nonlocal trace space with the trace space in the classical calculus in Section 2.3. We also provide notations and several useful lemmas for the later proofs, including some scaling properties in Section 2.4 and the Whitney decomposition of L\mathcal{R}^{L} in Section 2.6.

2.1 Local, nonlocal and fractional modeling

A major motivation of our work comes from nonlocal modeling that are represented by integro-differential equations, in particular, equations involving nonlocal interactions with a finite interaction length. The latter have drawn much attention recently in modelling certain physical systems where the classical models are not most effective. Comparing with the classical local partial differential equation (PDE) models, these equations have the ability to describe these physical phenomena in a setting with reduced regularity requirements allowing singularities and discontinuities to naturally occur [23, 32, 29]. On the other hand, when comparing with the nonlocal integro-differential equations characterized by an infinite lengthscale, compactly supported nonlocal models are computationally more efficient and therefore a more feasible choice for scientific and engineering applications. These extra flexibility and efficiency allow this framework to be used in many different situations involving physical discontinuity such as dynamic fracture [55, 56, 36, 33, 18, 67, 65, 62], corrosion models [16, 17, 37, 40], and heat conduction [7]. The development in this subject has also produced other applications in image processing [41] and population models [14] among many other different fields which can be further seen in [8]. Particularly, nonlocal problems with boundary constraints have become of recent interest in works such as [39, 9, 47, 42, 25, 43, 49, 48, 59, 63, 64, 66]. In nonlocal models, the boundary conditions are normally not imposed on a sharp interface. Rather, they are imposed on a region with non-zero volume which lies outside of the domain, and treating the nonlocal boundary problem improperly can cause artificial phenomena such as a “surface” or “skin” effect [10, 34, 51, 15]. Differs from the local problems, in some nonlocal problems boundary effects play a major role. For example, in nonlocal minimal surface problems, the “stickiness” effect arises and the boundary datum may not be attained continuously [21, 12]. All the above examples indicate that studying the nonlocal boundary conditions and the associated nonlocal trace spaces are critical for the development of nonlocal models.

In this work, we aim to introduce a function space that serves as a trace space for nonlocal problems with constant finite interaction length (the so-called interaction radius or horizon δ\delta), and study related extension results. Extension and trace theorems are well-known in the study of classical local problems with boundary constraints. For the case of Sobolev spaces of integer order, these results are well-established long time ago (see, e.g., [1, 57]). For Sobolev spaces with fractional order of differentiability, which can be seen as one type of nonlocal problems with infinite interaction length, the trace space and extension results are studied in [38, 26, 11, 53]. The latter can be useful in studying nonlocal problems with non-homongeneous boundary data, such as those associated with the nonlocal Laplacian and nonlocal pp-Laplacian, see for example [2, 3, 4, 11, 20, 52]. In [24, 61, 27], trace theorems are developed for nonlocal problems with varying influence horizon δ(𝒙)\delta(\bm{x}), where δ(𝒙)0\delta(\bm{x})\rightarrow 0 as 𝒙\bm{x} approaches the boundary, in a way that the trace spaces of classical Sobolev spaces are recovered. The trace results are also applied to the study of the coupling of nonlocal and local models [60]. To our best knowledge, the definition of trace space and extension results for nonlocal problems with constant finite horizon have not been dealt with so far. These results would extend the knowledge on the trace space in nonlocal calculus and its connection with the trace space in classical calculus. Moreover, the trace theorem and the inverse trace theorem would also provide important mathematical tools for developing well-posed nonlocal models with volumetric boundary conditions, such as discussed in [63].

2.2 Nonlocal Space 𝒮δβ(Ω)\mathcal{S}^{\,\beta}_{\delta}(\Omega), Associated Nonlocal Problems and Their Local Limits

Before discussing their connections in the following sections, in this section we introduce the classical and nonlocal Laplacian operators and their corresponding nonlocal function spaces relevant to this paper. The discussions in this subsection are restricted to the Hilbert space setting where p=2p=2.

Given a scalar function u(𝒙):Ωu(\bm{x}):{\Omega}\rightarrow, the classical Laplacian operator is defined as Δu:=u\Delta u:=\nabla\cdot\nabla u and boundary value problems on the domain Ω{\Omega} related to Δ\Delta are often associated with the Sobolev space H1(Ω)H^{1}({\Omega}) with its norm defined by

uH1(Ω):=(uL2(Ω)2+|u|H1(Ω)2)1/2.{\left|\left|u\right|\right|}_{H^{1}({\Omega})}:=\left({\left|\left|u\right|\right|}^{2}_{L^{2}({\Omega})}+{\left|u\right|}^{2}_{H^{1}({\Omega})}\right)^{1/2}.

On the other hand, when incorporating long-range interactions into the model such that where every point 𝒙Ω\bm{x}\in{\Omega} is interacting with a finite neighborhood of points, a nonlocal Laplacian operator is then given by

[u](𝒙):=CΩ^γ(𝒙,𝒚)(u(𝒚)u(𝒙))𝑑𝒚,𝒙Ω,\mathcal{L}[u](\bm{x}):=C\int_{\hat{{\Omega}}}\gamma(\bm{x},\bm{y})(u(\bm{y})-u(\bm{x}))d\bm{y},\quad\bm{x}\in{\Omega},

where γ(𝒙,𝒚)\gamma(\bm{x},\bm{y}) is a kernel function that will be prescribed shortly, Ω^=ΩΩI\hat{{\Omega}}={\Omega}\cup{\Omega}_{I} and

ΩI:={𝒚d\Ω such that γ(𝒙,𝒚)0 for some 𝒙Ω}{\Omega}_{I}:=\{\bm{y}\in^{d}\backslash{\Omega}\text{ such that }\gamma(\bm{x},\bm{y})\neq 0\text{ for some }\bm{x}\in{\Omega}\}

is the interaction domain of Ω{\Omega}. The nonlocal Laplacian operator is associated with the following nonlocal norm

u𝒮(Ω^):=(uL2(Ω^)2+|u|𝒮(Ω^)2)1/2 where |u|𝒮(Ω^)2:=C2Ω^Ω^γ(𝒙,𝒚)(u(𝒚)u(𝒙))2𝑑𝒚𝑑𝒙.{\left|\left|u\right|\right|}_{\mathcal{S}(\hat{{\Omega}})}:=\left({\left|\left|u\right|\right|}^{2}_{L^{2}(\hat{{\Omega}})}+{\left|u\right|}^{2}_{\mathcal{S}(\hat{{\Omega}})}\right)^{1/2}\text{ where }{\left|u\right|}^{2}_{\mathcal{S}(\hat{{\Omega}})}:=\frac{C}{2}\int_{\hat{{\Omega}}}\int_{\hat{{\Omega}}}\gamma(\bm{x},\bm{y})(u(\bm{y})-u(\bm{x}))^{2}d\bm{y}d\bm{x}.

In this paper we further assume that such neighborhood is a Euclidean ball surrounding 𝒙\bm{x}, i.e., B(𝒙,δ):={𝒚d:|𝒚𝒙|<δ}B(\bm{x},\delta):=\{\bm{y}\in^{d}:|\bm{y}-\bm{x}|<\delta\}. Here δ\delta is the interaction radius or horizon. This fact has implications on the boundary conditions that are prescribed on a collar of thickness δ\delta outside the domain Ω{\Omega}, that we have the interaction domain ΩI=Ωδ:={𝒚d\Ω:dist(𝒚,Ω)<δ}{\Omega}_{I}={\Omega}_{\delta}{:=\{\bm{y}\in\mathbb{R}^{d}\backslash\Omega:\text{dist}(\bm{y},\partial\Omega)<\delta}\}. In particular, we can take a popular class of kernels γ(𝒙,𝒚)=γδβ(|𝒚𝒙|)\gamma(\bm{x},\bm{y})={\gamma}_{\delta}^{\,\beta}({\left|\bm{y}-\bm{x}\right|}) as in (1.3). We note that when the constant C=Cdiff=2dC=C^{\text{diff}}=2d, we have the following property

CdiffB(𝒙,δ)γδβ(|𝒚𝒙|)|𝒚𝒙|2d𝒚=2d𝒙d,C^{\text{diff}}\int_{B(\bm{x},\delta)}\gamma^{\,\beta}_{\delta}(|\bm{y}-\bm{x}|)|\bm{y}-\bm{x}|^{2}d\bm{y}=2d\quad{\forall\bm{x}\in^{d}}, (2.1)

since the pthp^{th} moment of kernel γδβ\gamma_{\delta}^{\,\beta} in (1.3) is normalized to 11. Then it is well-known (see, e.g., [23]) that the nonlocal diffusion operator converge to its local for all counterpart pointwise: for any uC(d)u\in C^{\infty}(^{d}) and 𝒙d\bm{x}\in^{d},

[u](𝒙)=CdiffB(𝒙,δ)(u(𝒚)u(𝒙))γδβ(|𝒚𝒙|)𝑑𝒚δ0Δu(𝒙).\mathcal{L}[u](\bm{x})=C^{\text{diff}}\int_{B(\bm{x},\delta)}(u(\bm{y})-u(\bm{x}))\gamma^{\,\beta}_{\delta}(|\bm{y}-\bm{x}|)d\bm{y}\overset{\delta\rightarrow 0}{\longrightarrow}\Delta u(\bm{x}).

Moreover, when uH1(Ω)u\in H^{1}({\Omega}), its nonlocal norm converges to the H1H^{1} norm:

u𝒮δβ(Ω)δ0uH1(Ω).\|u\|_{\mathcal{S}^{\,\beta}_{\delta}({\Omega})}\overset{\delta\rightarrow 0}{\longrightarrow}\|u\|_{H^{1}({\Omega})}.

Naturally, we can extend the above conclusion to more general cases of nonlocal and local pp-Laplacians corresponding to p>1p>1.

2.3 Nonlocal Space 𝒯δβ(Ωδ)\mathcal{T}^{\,\beta}_{\delta}(\Omega_{\delta}) and Connection to Classical Local Trace Spaces

First of all, we may view (1.6) as a nonlocal counterpart of the classical trace semi-norm

|u|W11/p,p(Ω):=(ΩΩ|u(𝒚)u(𝒙)|p|𝒚𝒙|d+p2𝑑𝒚𝑑𝒙)1/p|u|_{W^{1-1/p,p}(\partial{\Omega})}:=\left(\int_{\partial{\Omega}}\int_{\partial{\Omega}}\dfrac{|u(\bm{y})-u(\bm{x})|^{p}}{|\bm{y}-\bm{x}|^{d+p-2}}d\bm{y}d\bm{x}\right)^{1/p}

and seek a nonlocal analog of the classical trace theorem. The relation between the classical W11/p,p(Ω)W^{1-1/p,p}(\partial\Omega) trace space and the new nonlocal trace space 𝒯δβ(Ωδ)\mathcal{T}^{\,\beta}_{\delta}(\Omega_{\delta}) can be seen from the limiting process as δ0\delta\to 0 in the following proposition. In the rest of the paper, we use fgf\lesssim g if fCgf\leq Cg for a generic constant C>0C>0 independent of δ\delta and β\beta. We also write fgf\approx g if fgf\lesssim g and gfg\lesssim f.

Proposition 2.4.

Let ={0}×d1\partial\mathcal{R}=\{0\}\times\mathbb{R}^{d-1} and δ\mathcal{R}_{-\delta} be defined as in (1.7) for δ(0,1)\delta\in(0,1), then

|u|𝒯δβ(δ)pδ0|u|W11/p,p()p,|u|^{p}_{\mathcal{T}^{\,\beta}_{\delta}(\mathcal{R}_{-\delta})}\xrightarrow{\delta\to 0}|u|^{p}_{W^{1-1/p,p}(\partial\mathcal{R})},

for any uCc1([1,0]×Bd1(𝟎,M))u\in C^{1}_{c}\left([-1,0]\times B^{d-1}(\bm{0},M)\right) for some M>0M>0. Here Bd1(𝒙¯,r)B^{d-1}(\overline{\bm{x}},r) denotes the ball centered at 𝒙¯\overline{\bm{x}} with radius rr in d-1.

Proof.

In this proof, we denote any point 𝒙d\bm{x}\in\mathbb{R}^{d} by 𝒙=(x~,𝒙¯)×d1{\bm{x}=}(\tilde{x},\overline{\bm{x}})\in\mathbb{R}\times\mathbb{R}^{d-1}. Similarly 𝒚d\bm{y}\in\mathbb{R}^{d} is also denoted by (y~,𝒚¯)×d1(\tilde{y},\overline{\bm{y}})\in\mathbb{R}\times\mathbb{R}^{d-1}. We first have the estimate

|δβ2δδ|u(𝒚)u(𝒙)|p(|𝒚𝒙|δ)d+p2(|𝒚𝒙|δ)β𝑑𝒚𝑑𝒙|u(𝒚)u(𝒙)|p|𝒚𝒙|d+p2𝑑𝒚𝑑𝒙|\displaystyle\left|\delta^{\,\beta-2}\int_{\mathcal{R}_{-\delta}}\int_{\mathcal{R}_{-\delta}}\frac{|u(\bm{y})-u(\bm{x})|^{p}}{(|{\bm{y}}-{\bm{x}}|\vee\delta)^{d+p-2}(|\bm{y}-\bm{x}|\wedge\delta)^{\,\beta}}\,d\bm{y}d\bm{x}-\int_{\partial\mathcal{R}}\int_{\partial\mathcal{R}}\dfrac{|u({\bm{y}})-u({\bm{x}})|^{p}}{|{\bm{y}}-{\bm{x}}|^{d+p-2}}d{\bm{y}}d{\bm{x}}\right|
=\displaystyle= |δ2δδ\B(𝒙,δ)|u(𝒚)u(𝒙)|p|𝒚𝒙|d+p2d𝒚d𝒙+δβdpδδB(𝒙,δ)|u(𝒚)u(𝒙)|p|𝒚𝒙|βd𝒚d𝒙\displaystyle\left|\delta^{\,-2}\int_{\mathcal{R}_{-\delta}}\int_{{\mathcal{R}_{-\delta}}\backslash B(\bm{x},\delta)}\frac{|u(\bm{y})-u(\bm{x})|^{p}}{|{\bm{y}}-{\bm{x}}|^{d+p-2}}\,d\bm{y}d\bm{x}+\delta^{\,\beta-d-p}\int_{\mathcal{R}_{-\delta}}\int_{{\mathcal{R}_{-\delta}}\cap B(\bm{x},\delta)}\frac{|u(\bm{y})-u(\bm{x})|^{p}}{|\bm{y}-\bm{x}|^{\,\beta}}\,d\bm{y}d\bm{x}\right.
d1d1|u(0,𝒚¯)u(0,𝒙¯)|p|𝒚¯𝒙¯|d+p2d𝒚¯d𝒙¯|\displaystyle\left.\qquad-\int_{{}^{d-1}}\int_{{}^{d-1}}\dfrac{|u(0,\overline{\bm{y}})-u(0,\overline{\bm{x}})|^{p}}{|\overline{\bm{y}}-\overline{\bm{x}}|^{d+p-2}}d\overline{\bm{y}}d\overline{\bm{x}}\right|
\displaystyle\leq |δβdpδδB(𝒙,δ)|u(𝒚)u(𝒙)|p|𝒚𝒙|βd𝒚d𝒙δdpδδB(𝒙,δ)|u(𝒚)u(𝒙)|pd𝒚d𝒙|A1\displaystyle\left|\delta^{\,\beta-d-p}\int_{\mathcal{R}_{-\delta}}\int_{{\mathcal{R}_{-\delta}}\cap B(\bm{x},\delta)}\frac{|u(\bm{y})-u(\bm{x})|^{p}}{|{\bm{y}}-{\bm{x}}|^{\,\beta}}\,d\bm{y}d\bm{x}-\delta^{\,-d-p}\int_{\mathcal{R}_{-\delta}}\int_{{\mathcal{R}_{-\delta}}\cap B(\bm{x},\delta)}|u(\bm{y})-u(\bm{x})|^{p}\,d\bm{y}d\bm{x}\right|~{}~{}~{}~{}\leftarrow\;A_{1}
+|δ2δδ|u(𝒚)u(𝒙)|p(|𝒚𝒙|δ)d+p2d𝒚d𝒙δ2d1δ0d1δ0|u(0,𝒚¯)u(0,𝒙¯)|p(|𝒚𝒙|δ)d+p2dy~d𝒚¯dx~d𝒙¯|A2\displaystyle+\left|\delta^{\,-2}\int_{\mathcal{R}_{-\delta}}\int_{\mathcal{R}_{-\delta}}\frac{|u(\bm{y})-u(\bm{x})|^{p}}{(|{\bm{y}}-{\bm{x}}|\vee\delta)^{d+p-2}}\,d\bm{y}d\bm{x}-\delta^{\,-2}\int_{{}^{d-1}}\int_{-\delta}^{0}\int_{{}^{d-1}}\int_{-\delta}^{0}\frac{|u(0,\overline{\bm{y}})-u(0,\overline{\bm{x}})|^{p}}{(|{\bm{y}}-{\bm{x}}|\vee\delta)^{d+p-2}}\,d\tilde{y}d\overline{\bm{y}}d\tilde{x}d\overline{\bm{x}}\right|~{}~{}~{}~{}~{}~{}~{}~{}~{}\leftarrow\;A_{2}
+|δ2d1δ0d1δ0|u(0,𝒚¯)u(0,𝒙¯)|p(|𝒚𝒙|δ)d+p2dy~d𝒚¯dx~d𝒙¯d1d1|u(0,𝒚¯)u(0,𝒙¯)|p|𝒚¯𝒙¯|d+p2d𝒚¯d𝒙¯|.A3\displaystyle+\left|\delta^{\,-2}\int_{{}^{d-1}}\int_{-\delta}^{0}\int_{{}^{d-1}}\int_{-\delta}^{0}\frac{|u(0,\overline{\bm{y}})-u(0,\overline{\bm{x}})|^{p}}{(|{\bm{y}}-{\bm{x}}|\vee\delta)^{d+p-2}}\,d\tilde{y}d\overline{\bm{y}}d\tilde{x}d\overline{\bm{x}}-\int_{{}^{d-1}}\int_{{}^{d-1}}\dfrac{|u(0,\overline{\bm{y}})-u(0,\overline{\bm{x}})|^{p}}{|\overline{\bm{y}}-\overline{\bm{x}}|^{d+p-2}}d\overline{\bm{y}}d\overline{\bm{x}}\right|.~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\leftarrow\;A_{3}

To estimate the A1A_{1} part, we first note that uC1([1,0]×Bd1(𝟎,M))u\in C^{1}([-1,0]\times B^{d-1}(\bm{0},M)) implies

|u(𝒚)u(𝒙)|C~|𝒚𝒙|{\left|{u}(\bm{y})-{u}(\bm{x})\right|}\leq\tilde{C}{\left|\bm{y}-\bm{x}\right|} (2.2)

for a constant C~\tilde{C} independent of δ\delta, 𝒙\bm{x}, and 𝒚\bm{y}. Notice also that supp(u)[1,0]×Bd1(𝟎,M)\text{supp}({u})\subseteq[-1,0]\times B^{d-1}(\bm{0},M) for some M>0M>0. Therefore

A1=\displaystyle A_{1}= δdpδδB(𝒙,δ)|u(𝒚)u(𝒙)|p|δβ|𝒚𝒙|β1|𝑑𝒚𝑑𝒙\displaystyle\delta^{\,-d-p}\int_{\mathcal{R}_{-\delta}}\int_{\mathcal{R}_{-\delta}\cap B(\bm{x},\delta)}{|{u}(\bm{y})-{u}(\bm{x})|^{p}}\left|\dfrac{\delta^{\,\beta}}{|\bm{y}-\bm{x}|^{\,\beta}}-1\right|\,d\bm{y}d\bm{x}
\displaystyle\leq Cδdp+10δrd1+p|δβrβ1|𝑑rCδdp+1(δd+pd+pβ+δd+pd+p)Cδδ00.\displaystyle C\delta^{\,-d-p+1}{\int_{0}^{\delta}}r^{d-1+p}\left|\dfrac{\delta^{\,\beta}}{r^{\,\beta}}-1\right|\,dr\leq C\delta^{\,-d-p+1}\left(\dfrac{\delta^{d+p}}{d+p-\beta}+\dfrac{\delta^{d+p}}{d+p}\right)\leq C\delta\xrightarrow{\delta\to 0}0.

For the A2A_{2} part, we first want to show for any 𝒙=(x~,𝒙¯)δ\bm{x}=(\tilde{x},\overline{\bm{x}})\in\mathcal{R}_{-\delta} and 𝒚=(y~,𝒚¯)δ\bm{y}=(\tilde{y},\overline{\bm{y}})\in\mathcal{R}_{-\delta}, we have

||u(y~,𝒚¯)u(x~,𝒙¯)|p|u(0,𝒚¯)u(0,𝒙¯)|p|{max(δ|𝒚𝒙|p1,δp), when 𝒙,𝒚(δ,0)×Bd1(𝟎,2M),δ, when 𝒙(δ,0)×Bd1(𝟎,M),𝒚Ωδ\(δ,0)×Bd1(𝟎,2M) or vice verse,=0, else.\begin{split}&\left||u(\tilde{y},\overline{\bm{y}})-u(\tilde{x},\overline{\bm{x}})|^{p}-|u(0,\overline{\bm{y}})-u(0,\overline{\bm{x}})|^{p}\right|\\ &\left\{\begin{aligned} &\lesssim\,\max(\delta{\left|\bm{y}-\bm{x}\right|}^{p-1},\delta^{p}),\quad\text{ when }\bm{x},\bm{y}\in(-\delta,0)\times B^{d-1}(\bm{0},2M),\\ &\lesssim\,\delta,\quad\text{ when }\bm{x}\in(-\delta,0)\times B^{d-1}(\bm{0},M),\,\bm{y}\in{\Omega}_{\delta}\backslash(-\delta,0)\times B^{d-1}(\bm{0},2M)\text{ or vice verse},\\ &=0,\,\quad\text{ else}.\end{aligned}\right.\end{split} (2.3)

To show (2.3), we can first assume |u(y~,𝒚¯)u(x~,𝒙¯)||u(0,𝒚¯)u(0,𝒙¯)||u(\tilde{y},\overline{\bm{y}})-u(\tilde{x},\overline{\bm{x}})|\geq|u(0,\overline{\bm{y}})-u(0,\overline{\bm{x}})| and u(0,𝒚¯)u(0,𝒙¯)0u(0,\overline{\bm{y}})-u(0,\overline{\bm{x}})\geq 0 without loss of generality. Then by rewriting u(y~,𝒚¯)u(x~,𝒙¯)u(\tilde{y},\overline{\bm{y}})-u(\tilde{x},\overline{\bm{x}}) as (u(y~,𝒚¯)u(0,𝒚¯)(u(x~,𝒙¯)u(0,𝒙¯)))+u(0,𝒚¯)u(0,𝒙¯)\left(u(\tilde{y},\overline{\bm{y}})-u(0,\overline{\bm{y}})-(u(\tilde{x},\overline{\bm{x}})-u(0,\overline{\bm{x}}))\right)+u(0,\overline{\bm{y}})-u(0,\overline{\bm{x}}) and the fact that

|u(y~,𝒚¯)u(0,𝒚¯)(u(x~,𝒙¯)u(0,𝒙¯))|C~(|y~|+|x~|)2δC~,\left|u(\tilde{y},\overline{\bm{y}})-u(0,\overline{\bm{y}})-(u(\tilde{x},\overline{\bm{x}})-u(0,\overline{\bm{x}}))\right|\leq\tilde{C}(|\tilde{y}|+|\tilde{x}|)\leq 2\delta\tilde{C},

we can estimate u(y~,𝒚¯)u(x~,𝒙¯)u(\tilde{y},\overline{\bm{y}})-u(\tilde{x},\overline{\bm{x}}) by two different cases where u(0,𝒚¯)u(0,𝒙¯)>4δC~u(0,\overline{\bm{y}})-u(0,\overline{\bm{x}})>4\delta\tilde{C} or 0u(0,𝒚¯)u(0,𝒙¯)4δC~0\leq u(0,\overline{\bm{y}})-u(0,\overline{\bm{x}})\leq 4\delta\tilde{C}. If u(0,𝒚¯)u(0,𝒙¯)>4δC~u(0,\overline{\bm{y}})-u(0,\overline{\bm{x}})>4\delta\tilde{C}, then we must have u(y~,𝒚¯)u(x~,𝒙¯)>0u(\tilde{y},\overline{\bm{y}})-u(\tilde{x},\overline{\bm{x}})>0 and therefore

|u(y~,𝒚¯)u(x~,𝒙¯)|p|u(0,𝒚¯)u(0,𝒙¯)|pCp(|u(y~,𝒚¯)u(x~,𝒙¯)|p1+|u(0,𝒚¯)u(0,𝒙¯)|p1)|u(y~,𝒚¯)u(0,𝒚¯)(u(x~,𝒙¯)u(0,𝒙¯))|δmin(|𝒚𝒙|p1,up1)δmin(|𝒚𝒙|p1,1).\begin{split}&|u(\tilde{y},\overline{\bm{y}})-u(\tilde{x},\overline{\bm{x}})|^{p}-|u(0,\overline{\bm{y}})-u(0,\overline{\bm{x}})|^{p}\\ \leq&Cp(|u(\tilde{y},\overline{\bm{y}})-u(\tilde{x},\overline{\bm{x}})|^{p-1}+|u(0,\overline{\bm{y}})-u(0,\overline{\bm{x}})|^{p-1})\left|u(\tilde{y},\overline{\bm{y}})-u(0,\overline{\bm{y}})-(u(\tilde{x},\overline{\bm{x}})-u(0,\overline{\bm{x}}))\right|\\ \lesssim&\delta\min(|\bm{y}-\bm{x}|^{p-1},\|u\|^{p-1}_{\infty})\lesssim\delta\min(|\bm{y}-\bm{x}|^{p-1},1).\end{split}

On the other hand if 0u(0,𝒚¯)u(0,𝒙¯)4δC~0\leq u(0,\overline{\bm{y}})-u(0,\overline{\bm{x}})\leq 4\delta\tilde{C}, then we have |u(y~,𝒚¯)u(x~,𝒙¯)|6δC~|u(\tilde{y},\overline{\bm{y}})-u(\tilde{x},\overline{\bm{x}})|\leq 6\delta\tilde{C}. Therefore, (2.3) is true and this leads to

A2\displaystyle A_{2}\lesssim |δ2(δ,0)×Bd1(𝟎,2M)(δ,0)×Bd1(𝟎,2M)max(δ|𝒚𝒙|p1,δp)(|𝒚𝒙|δ)d+p2𝑑𝒚𝑑𝒙|\displaystyle\left|\delta^{\,-2}\int_{(-\delta,0)\times B^{d-1}(\bm{0},2M)}\int_{(-\delta,0)\times B^{d-1}(\bm{0},2M)}\frac{\max(\delta{\left|\bm{y}-\bm{x}\right|}^{p-1},\delta^{p})}{(|{\bm{y}}-{\bm{x}}|\vee\delta)^{d+p-2}}\,d\bm{y}d\bm{x}\right|
+|δ2(δ,0)×Bd1(𝟎,M)δ\(δ,0)×Bd1(𝟎,2M)δ(|𝒚𝒙|δ)d+p2𝑑𝒚𝑑𝒙|\displaystyle\hskip 85.35826pt+\left|\delta^{\,-2}\int_{(-\delta,0)\times B^{d-1}(\bm{0},M)}\int_{\mathcal{R}_{-\delta}\backslash(-\delta,0)\times B^{d-1}(\bm{0},2M)}\frac{\delta}{(|{\bm{y}}-{\bm{x}}|\vee\delta)^{d+p-2}}\,d\bm{y}d\bm{x}\right|
\displaystyle\lesssim δ1((δ,0)×Bd1(𝟎,2M)Bd1(𝟎,2M)δ0max(1(|𝒚¯𝒙¯|δ)d1,δp1(|𝒚¯𝒙¯|δ)d+p2)dy~d𝒚¯d𝒙\displaystyle\,\delta^{\,-1}\left(\int_{(-\delta,0)\times B^{d-1}(\bm{0},2M)}\int_{B^{d-1}(\bm{0},2M)}\int_{-\delta}^{0}\max\left(\frac{1}{(|\overline{\bm{y}}-\overline{\bm{x}}|\vee\delta)^{d-1}},\frac{\delta^{p-1}}{(|\overline{\bm{y}}-\overline{\bm{x}}|\vee\delta)^{d+p-2}}\right)\,d\tilde{y}d\overline{\bm{y}}d\bm{x}\right.
+(δ,0)×Bd1(𝟎,M)d1\Bd1(𝒙¯,M)δ01|𝒚¯𝒙¯|d+p2dy~d𝒚¯d𝒙)\displaystyle\hskip 85.35826pt+\left.\int_{(-\delta,0)\times B^{d-1}(\bm{0},M)}\int_{\mathbb{R}^{d-1}\backslash B^{d-1}(\overline{\bm{x}},M)}\int_{-\delta}^{0}\frac{1}{|\overline{\bm{y}}-\overline{\bm{x}}|^{d+p-2}}\,d\tilde{y}d\overline{\bm{y}}d\bm{x}\right)
\displaystyle\lesssim δ(1log(δ))δ00.\displaystyle\,\delta(1-\log(\delta))\xrightarrow{\delta\to 0}0.

Lastly, for A3A_{3} we note that

|𝒚¯𝒙¯||𝒚¯𝒙¯|δ|𝒚𝒙|δ|𝒚¯𝒙¯|+δ,{\left|\overline{\bm{y}}-\overline{\bm{x}}\right|}\leq{\left|\overline{\bm{y}}-\overline{\bm{x}}\right|}\vee\delta\leq{\left|\bm{y}-\bm{x}\right|}\vee\delta\leq{\left|\overline{\bm{y}}-\overline{\bm{x}}\right|}+\delta,

and therefore

1|𝒚¯𝒙¯|d+p21(|𝒚𝒙|δ)d+p21|𝒚¯𝒙¯|d+p21(|𝒚¯𝒙¯|+δ)d+p2.\frac{1}{|\overline{\bm{y}}-\overline{\bm{x}}|^{d+p-2}}-\frac{1}{({\left|\bm{y}-\bm{x}\right|}\vee\delta)^{d+p-2}}\leq\frac{1}{|\overline{\bm{y}}-\overline{\bm{x}}|^{d+p-2}}-\frac{1}{(|\overline{\bm{y}}-\overline{\bm{x}}|+\delta)^{d+p-2}}.

With the fact that

limδ0(2d2|u(0,𝒚¯)u(0,𝒙¯)|p|𝒚¯𝒙¯|d+p2𝑑𝒚¯𝑑𝒙¯2d2|u(0,𝒚¯)u(0,𝒙¯)|p(|𝒚¯𝒙¯|+δ)d+p2𝑑𝒚¯𝑑𝒙¯)=0,\displaystyle\lim_{\delta\to 0}\left(\iint_{{{}^{2d-2}}}\dfrac{|u(0,\overline{\bm{y}})-u(0,\overline{\bm{x}})|^{p}}{|\overline{\bm{y}}-\overline{\bm{x}}|^{d+p-2}}d\overline{\bm{y}}d\overline{\bm{x}}-\iint_{{{}^{2d-2}}}\frac{|u(0,\overline{\bm{y}})-u(0,\overline{\bm{x}})|^{p}}{(|\overline{\bm{y}}-\overline{\bm{x}}|+\delta)^{d+p-2}}\,d\overline{\bm{y}}d\overline{\bm{x}}\right)=0\,,

where the limits are achieved by the dominated convergence theorem, we then obtain

A3=\displaystyle A_{3}= |d1d1|u(0,𝒚¯)u(0,𝒙¯)|p|𝒚¯𝒙¯|d+p2𝑑𝒚¯𝑑𝒙¯δ2d1δ0d1δ0|u(0,𝒚¯)u(0,𝒙¯)|p(|𝒚𝒙|δ)d+p2𝑑y~𝑑𝒚¯𝑑x~𝑑𝒙¯|\displaystyle\left|\int_{{}^{d-1}}\int_{{}^{d-1}}\dfrac{|u(0,\overline{\bm{y}})-u(0,\overline{\bm{x}})|^{p}}{|\overline{\bm{y}}-\overline{\bm{x}}|^{d+p-2}}d\overline{\bm{y}}d\overline{\bm{x}}-\delta^{-2}\int_{{}^{d-1}}\int_{-\delta}^{0}\int_{{}^{d-1}}\int_{-\delta}^{0}\frac{|u(0,\overline{\bm{y}})-u(0,\overline{\bm{x}})|^{p}}{(|{\bm{y}}-{\bm{x}}|\vee\delta)^{d+p-2}}\,d\tilde{y}d\overline{\bm{y}}d\tilde{x}d\overline{\bm{x}}\right|
=\displaystyle= |δ2d1δ0d1δ0|u(0,𝒚¯)u(0,𝒙¯)|p|𝒚¯𝒙¯|d+p2|u(0,𝒚¯)u(0,𝒙¯)|p(|𝒚𝒙|δ)d+p2dy~d𝒚¯dx~d𝒙¯|\displaystyle\left|\delta^{-2}\int_{{}^{d-1}}\int_{-\delta}^{0}\int_{{}^{d-1}}\int_{-\delta}^{0}\dfrac{|u(0,\overline{\bm{y}})-u(0,\overline{\bm{x}})|^{p}}{|\overline{\bm{y}}-\overline{\bm{x}}|^{d+p-2}}-\frac{|u(0,\overline{\bm{y}})-u(0,\overline{\bm{x}})|^{p}}{(|{\bm{y}}-{\bm{x}}|\vee\delta)^{d+p-2}}\,d\tilde{y}d\overline{\bm{y}}d\tilde{x}d\overline{\bm{x}}\right|
\displaystyle\leq |d1d1|u(0,𝒚¯)u(0,𝒙¯)|p|𝒚¯𝒙¯|d+p2𝑑𝒚¯𝑑𝒙¯d1d1|u(0,𝒚¯)u(0,𝒙¯)|p(|𝒚¯𝒙¯|+δ)d+p2𝑑𝒚¯𝑑𝒙¯|δ00.\displaystyle\left|\int_{{}^{d-1}}\int_{{}^{d-1}}\dfrac{|u(0,\overline{\bm{y}})-u(0,\overline{\bm{x}})|^{p}}{|\overline{\bm{y}}-\overline{\bm{x}}|^{d+p-2}}d\overline{\bm{y}}d\overline{\bm{x}}-\int_{{}^{d-1}}\int_{{}^{d-1}}\frac{|u(0,\overline{\bm{y}})-u(0,\overline{\bm{x}})|^{p}}{(|\overline{\bm{y}}-\overline{\bm{x}}|+\delta)^{d+p-2}}\,d\overline{\bm{y}}d\overline{\bm{x}}\right|\overset{\delta\rightarrow 0}{\longrightarrow}0.

2.4 Change of Variables and Scaling Identities

To further understand the trace theorem and nonlocal spaces of a given δ\delta and the connections with existing studies in the literature, we consider some scaling identities here. We recall the notation introduced in (1.7) so that for any 𝒙1L\bm{x}\in\mathcal{R}_{-1}^{L}, we have δ𝒙δLδ\delta\bm{x}\in\mathcal{R}_{-\delta}^{L\delta}, which leads to the following scaling argument:

Lemma 2.5.

Given L>0L>0, for any uu in 𝒮δβ(δL){\mathcal{S}^{\,\beta}_{\delta}(\mathcal{R}_{-\delta}^{L})} or 𝒯δβ(δ)\mathcal{T}^{\,\beta}_{\delta}(\mathcal{R}_{-\delta}), let v(𝐱):=u(δ𝐱)v(\bm{x}):=u(\delta\bm{x}), then vv belongs to 𝒮1β(1L/δ){\mathcal{S}^{\,\beta}_{1}(\mathcal{R}_{-1}^{L/\delta})} or 𝒯1β(1)\mathcal{T}^{\,\beta}_{1}(\mathcal{R}_{-1}) and we have respectively

δdp|v|𝒮1β(1L/δ)p=|u|𝒮δβ(δL)p,δdp|v|𝒯1β(1)p=|u|𝒯δβ(δ)p,\delta^{d-p}{\left|v\right|}^{p}_{\mathcal{S}^{\,\beta}_{1}(\mathcal{R}_{-1}^{L/\delta})}={\left|u\right|}^{p}_{\mathcal{S}^{\,\beta}_{\delta}(\mathcal{R}_{-\delta}^{L})},\quad\delta^{d-p}{\left|v\right|}^{p}_{\mathcal{T}^{\,\beta}_{1}(\mathcal{R}_{-1})}={\left|u\right|}^{p}_{\mathcal{T}^{\,\beta}_{\delta}(\mathcal{R}_{-\delta})},
δdvLp(1L/δ)p=uLp(δL)p,δdvLp(1)p=uLp(δ)p.\delta^{d}{\left|\left|v\right|\right|}^{p}_{L^{p}(\mathcal{R}_{-1}^{L/\delta})}={\left|\left|u\right|\right|}^{p}_{L^{p}(\mathcal{R}_{-\delta}^{L})},\quad\delta^{d}{\left|\left|v\right|\right|}^{p}_{L^{p}(\mathcal{R}_{-1})}={\left|\left|u\right|\right|}^{p}_{L^{p}(\mathcal{R}_{-\delta})}.

Moreover, the above results also hold for L=L=\infty:

δdp|v|𝒮1β(1)p=|u|𝒮δβ(δ)p,δdvLp(1)p=uLp(δ)p.\delta^{d-p}{\left|v\right|}^{p}_{\mathcal{S}^{\,\beta}_{1}(\mathcal{R}_{-1}^{\infty})}={\left|u\right|}^{p}_{\mathcal{S}^{\,\beta}_{\delta}(\mathcal{R}_{-\delta}^{\infty})},\quad\delta^{d}{\left|\left|v\right|\right|}^{p}_{L^{p}(\mathcal{R}_{-1}^{\infty})}={\left|\left|u\right|\right|}^{p}_{L^{p}(\mathcal{R}_{-\delta}^{\infty})}.
Proof.

The proof is obtained by a change of variables. In particular, denoting 𝒘=𝒚/δ\bm{w}=\bm{y}/\delta and 𝒛=𝒙/δ\bm{z}=\bm{x}/\delta, we have

|u|𝒮δβ(δL)p=\displaystyle{\left|u\right|}^{p}_{\mathcal{S}^{\,\beta}_{\delta}(\mathcal{R}_{-\delta}^{L})}= δLδLγδβ(|𝒚𝒙|)|u(𝒚)u(𝒙)|p𝑑𝒚𝑑𝒙\displaystyle\int_{\mathcal{R}_{-\delta}^{L}}\int_{\mathcal{R}_{-\delta}^{L}}\gamma^{\,\beta}_{\delta}(|\bm{y}-\bm{x}|)|u(\bm{y})-u(\bm{x})|^{p}d\bm{y}d\bm{x}
=\displaystyle= δdpδLδLγ1β(|𝒚𝒙|δ)|v(𝒚δ)v(𝒙δ)|p𝑑𝒚𝑑𝒙\displaystyle\delta^{-d-p}\int_{\mathcal{R}_{-\delta}^{L}}\int_{\mathcal{R}_{-\delta}^{L}}\gamma^{\,\beta}_{1}\left(\frac{|\bm{y}-\bm{x}|}{\delta}\right)\left|v\left(\frac{\bm{y}}{\delta}\right)-v\left(\frac{\bm{x}}{\delta}\right)\right|^{p}d\bm{y}d\bm{x}
=\displaystyle= δdp1L/δ1L/δγ1β(|𝒘𝒛|)|v(𝒘)v(𝒛)|p𝑑𝒘𝑑𝒛=δdp|v|𝒮1β(1L/δ)p.\displaystyle\delta^{d-p}\int_{\mathcal{R}_{-1}^{L/\delta}}\int_{\mathcal{R}_{-1}^{L/\delta}}\gamma^{\,\beta}_{1}\left(|\bm{w}-\bm{z}|\right)|v(\bm{w})-v(\bm{z})|^{p}d\bm{w}d\bm{z}=\delta^{d-p}{\left|v\right|}^{p}_{\mathcal{S}^{\,\beta}_{1}(\mathcal{R}_{-1}^{L/\delta})}. (2.4)

Similarly, for the trace norm we have

|u|𝒯δβ(δ)p=\displaystyle{\left|u\right|}^{p}_{\mathcal{T}^{\,\beta}_{\delta}(\mathcal{R}_{-\delta})}= δβ2δδ|u(𝒚)u(𝒙)|p(|𝒚𝒙|δ)d+p2(|𝒚𝒙|δ)β𝑑𝒚𝑑𝒙\displaystyle\delta^{\,\beta-2}\int_{\mathcal{R}_{-\delta}}\int_{\mathcal{R}_{-\delta}}\frac{|u(\bm{y})-u(\bm{x})|^{p}}{(|\bm{y}-\bm{x}|{\vee}\delta)^{d+p-2}(|\bm{y}-\bm{x}|\wedge\delta)^{\,\beta}}\,d\bm{y}d\bm{x}
=\displaystyle= δdpδδ|v(𝒚δ)v(𝒙δ)|p(|𝒚𝒙|δ1)d+p2(|𝒚𝒙|δ1)β𝑑𝒚𝑑𝒙\displaystyle\delta^{-d-p}\int_{\mathcal{R}_{-\delta}}\int_{\mathcal{R}_{-\delta}}\frac{\left|v\left(\frac{\bm{y}}{\delta}\right)-v\left(\frac{\bm{x}}{\delta}\right)\right|^{p}}{\left(\frac{|\bm{y}-\bm{x}|}{\delta}{\vee}1\right)^{d+p-2}\left(\frac{|\bm{y}-\bm{x}|}{\delta}\wedge 1\right)^{\,\beta}}\,d\bm{y}d\bm{x}
=\displaystyle= δdp11(v(𝒘)v(𝒛))p(|𝒘𝒛|1)d+p2(|𝒘𝒛|1)β𝑑𝒘𝑑𝒛=δdp|v|𝒯1β(1)p.\displaystyle\delta^{d-p}\int_{\mathcal{R}_{-1}}\int_{\mathcal{R}_{-1}}\frac{(v(\bm{w})-v(\bm{z}))^{p}}{(|\bm{w}-\bm{z}|{\vee}1)^{d+p-2}(|\bm{w}-\bm{z}|\wedge 1)^{\,\beta}}\,d\bm{w}d\bm{z}=\delta^{d-p}{\left|v\right|}^{p}_{\mathcal{T}^{\,\beta}_{1}(\mathcal{R}_{-1})}.

All other identities can be proved similarly. ∎

2.5 Equivalent Semi-norms

We now introduce a lemma that allows us to compare the nonlocal spaces 𝒮δβ\mathcal{S}_{\delta}^{\,\beta} with different sizes of δ\delta.

Lemma 2.6.

Let α(0,1]\alpha\in(0,1] and UdU\subseteq\mathbb{R}^{d} a convex domain. There exists C1=C1(d,p)>0C_{1}=C_{1}(d,p)>0 and C2=C2(d,p,α)>0C_{2}=C_{2}(d,p,\alpha)>0 such that for any u𝒮δβ(U)u\in\mathcal{S}_{\delta}^{\beta}(U),

C1|u|𝒮δβ(U)|u|𝒮αδβ(U)C2|u|𝒮δβ(U).C_{1}|u|_{\mathcal{S}_{\delta}^{\,\beta}(U)}\leq|u|_{\mathcal{S}_{\alpha\delta}^{\,\beta}(U)}\leq C_{2}|u|_{\mathcal{S}_{\delta}^{\,\beta}(U)}.
Proof.

First, note that

|u|𝒮δβ(U)p=UUγδβ(|𝒚𝒙|)|u(𝒚)u(𝒙)|p𝑑𝒚𝑑𝒙.|u|_{\mathcal{S}_{\delta}^{\,\beta}(U)}^{p}=\int_{U}\int_{U}\gamma^{\,\beta}_{\delta}(|\bm{y}-\bm{x}|)|u(\bm{y})-u(\bm{x})|^{p}d\bm{y}d\bm{x}.

Choose an mm\in\mathbb{N} with 1m<α1m1\dfrac{1}{m}<\alpha\leq\dfrac{1}{m-1}. Notice that m2m\geq 2 for α(0,1]\alpha\in(0,1]. We split u(𝒚)u(𝒙)u(\bm{y})-u(\bm{x}) into the following

u(𝒚)u(𝒙)=i=1m(u(𝒙+im(𝒚𝒙))u(𝒙+i1m(𝒚𝒙))).u(\bm{y})-u(\bm{x})=\sum_{i=1}^{m}\left(u\left(\bm{x}+\frac{i}{m}(\bm{y}-\bm{x})\right)-u\left(\bm{x}+\frac{i-1}{m}(\bm{y}-\bm{x})\right)\right).

Since UU is convex by assumption, for any 𝒙U\bm{x}\in U and 𝒚U\bm{y}\in U, we have 𝒙+im(𝒚𝒙)U\bm{x}+\frac{i}{m}(\bm{y}-\bm{x})\in U for each 0im0\leq i\leq m and so uu is well defined at these points. Now, applying the inequality |i=1mai|pmp1i=1m|ai|p\left|\sum_{i=1}^{m}a_{i}\right|^{p}\leq m^{p-1}\sum_{i=1}^{m}|a_{i}|^{p}, we have

UUγδβ(|𝒚𝒙|)|u(𝒚)u(𝒙)|p𝑑𝒚𝑑𝒙\displaystyle\int_{U}\int_{U}\gamma^{\,\beta}_{\delta}(|\bm{y}-\bm{x}|)|u(\bm{y})-u(\bm{x})|^{p}d\bm{y}d\bm{x} mp1i=1mUUγδβ(|𝒚𝒙|)|u(𝒙+im(𝒚𝒙))u(𝒙+i1m(𝒚𝒙))|p𝑑𝒚𝑑𝒙.\displaystyle\leq m^{p-1}\sum_{i=1}^{m}\int_{U}\int_{U}\gamma_{\delta}^{\,\beta}(|\bm{y}-\bm{x}|)\left|u\left(\bm{x}+\frac{i}{m}(\bm{y}-\bm{x})\right)-u\left(\bm{x}+\frac{i-1}{m}(\bm{y}-\bm{x})\right)\right|^{p}d\bm{y}d\bm{x}.

Notice that by the change of variables 𝒘=𝒙+im(𝒚𝒙)U\bm{w}=\bm{x}+\frac{i}{m}(\bm{y}-\bm{x})\in U and 𝒛=𝒙+i1m(𝒚𝒙)U\bm{z}=\bm{x}+\frac{i-1}{m}(\bm{y}-\bm{x})\in U we have |𝒘𝒛|=|𝒚𝒙|/m|\bm{w}-\bm{z}|=|\bm{y}-\bm{x}|/m and the Jacobian matrix

(𝒘,𝒛)(𝒚,𝒙)=(imId(1im)Idi1mId(1i1m)Id),\frac{\partial(\bm{w},\bm{z})}{\partial(\bm{y},\bm{x})}=\begin{pmatrix}\frac{i}{m}I_{d}&(1-\frac{i}{m})I_{d}\\ \frac{i-1}{m}I_{d}&(1-\frac{i-1}{m})I_{d}\end{pmatrix}, (2.5)

where Idd×dI_{d}\in\mathbb{R}^{d\times d} is the identity matrix. Thus |det((𝒘,𝒛)/(𝒚,𝒙))|=|det((im(1i1m)i1m(1im))Id)|=md|\text{det}(\partial(\bm{w},\bm{z})/\partial(\bm{y},\bm{x}))|=|\text{det}((\frac{i}{m}(1-\frac{i-1}{m})-\frac{i-1}{m}(1-\frac{i}{m}))I_{d})|=m^{-d} and then

UUγδβ(|𝒚𝒙|)|u(𝒚)u(𝒙)|p𝑑𝒚𝑑𝒙\displaystyle\int_{U}\int_{U}\gamma^{\,\beta}_{\delta}(|\bm{y}-\bm{x}|)|u(\bm{y})-u(\bm{x})|^{p}d\bm{y}d\bm{x} mpUUγδβ(m|𝒘𝒛|)|u(𝒘)u(𝒛)|pmd𝑑𝒘𝑑𝒛\displaystyle\leq m^{p}\int_{U}\int_{U}\gamma_{\delta}^{\,\beta}(m|\bm{w}-\bm{z}|)\left|u(\bm{w})-u\left(\bm{z}\right)\right|^{p}m^{d}d\bm{w}d\bm{z}
=UUCd,p,β(δ/m)d+pβ1|𝒘𝒛|β1|𝒘𝒛|<δ/m|u(𝒘)u(𝒛)|p𝑑𝒘𝑑𝒛\displaystyle=\int_{U}\int_{U}\frac{C_{d,p,\,\beta}}{(\delta/m)^{d+p-\beta}}\frac{1}{|\bm{w}-\bm{z}|^{\beta}}1_{|\bm{w}-\bm{z}|<\delta/m}\left|u(\bm{w})-u\left(\bm{z}\right)\right|^{p}d\bm{w}d\bm{z}
(mm1)d+pβ|u|𝒮αδβ(U)p2d+pβ|u|𝒮αδβ(U)p2d+p|u|𝒮αδβ(U)p,\displaystyle\leq\left(\frac{m}{m-1}\right)^{d+p-\beta}|u|^{p}_{\mathcal{S}_{\alpha\delta}^{\,\beta}(U)}\leq 2^{d+p-\beta}|u|^{p}_{\mathcal{S}_{\alpha\delta}^{\,\beta}(U)}\leq{2^{d+p}|u|^{p}_{\mathcal{S}_{\alpha\delta}^{\,\beta}(U)}},

where we have used 1/m<α1/(m1)1/m<\alpha\leq 1/(m-1) and m2m\geq 2. So the left half of the inequality is true with C1=2d/p1C_{1}=2^{-d/p-1}.

Lastly, the right half of the inequality is true with C2=αd/p1C_{2}=\alpha^{-d/p-1}, since

|u|𝒮αδβ(U)p=UUCd,p,β(αδ)d+pβ1|𝒚𝒙|β1|𝒚𝒙|<αδ|u(𝒚)u(𝒙)|p𝑑𝒚𝑑𝒙αdp+βUUCd,p,βδd+pβ1|𝒚𝒙|β1|𝒚𝒙|<δ|u(𝒚)u(𝒙)|p𝑑𝒚𝑑𝒙αdp|u|𝒮δβ(U)p.\begin{split}&|u|^{p}_{\mathcal{S}_{\alpha\delta}^{\,\beta}(U)}=\int_{U}\int_{U}\frac{C_{d,p,\,\beta}}{(\alpha\delta)^{d+p-\beta}}\frac{1}{|\bm{y}-\bm{x}|^{\beta}}1_{|\bm{y}-\bm{x}|<\alpha\delta}\left|u(\bm{y})-u\left(\bm{x}\right)\right|^{p}d\bm{y}d\bm{x}\\ \leq&\alpha^{-d-p+\beta}\int_{U}\int_{U}\frac{C_{d,p,\,\beta}}{\delta^{d+p-\beta}}\frac{1}{|\bm{y}-\bm{x}|^{\beta}}1_{|\bm{y}-\bm{x}|<\delta}\left|u(\bm{y})-u\left(\bm{x}\right)\right|^{p}d\bm{y}d\bm{x}\leq\alpha^{-d-p}|u|^{p}_{\mathcal{S}_{\delta}^{\,\beta}(U)}.\end{split}

2.6 Dyadic Cubes and Whitney Type Decomposition

The proof of Theorem 1.2 relies on extension results of Whitney type, the subject of which can be found in [58]. Here we focus on defining Whitney type decompositions for the half space :=+d\mathcal{R}^{\infty}:=\mathbb{R}^{d}_{+} and its subdomain L=(0,L)×d1\mathcal{R}^{L}=(0,L)\times\mathbb{R}^{d-1}. For any d+d\in\mathbb{Z}_{+}, we define 𝒬d\mathscr{Q}_{d} the collection of dyadic cubes in d\mathbb{R}^{d}, i.e., the cubes of the form Q=2kI(𝐦)Q=2^{-k}I(\mathbf{m}) where kk\in\mathbb{Z} and I(𝐦)=((0,1]d+𝐦)I(\mathbf{m})=((0,1]^{d}+\mathbf{m}) is the shifted unit cube for 𝐦d\mathbf{m}\in\mathbb{Z}^{d}. Let l(Q)l(Q) denote the side length of the cube Q𝒬dQ\in\mathscr{Q}_{d}, and 𝒬d,k\mathscr{Q}_{d,k} the collection of cubes Q𝒬dQ\in\mathscr{Q}_{d} with l(Q)=2kl(Q)=2^{-k}. For L=(0,L)×d1\mathcal{R}^{L}=(0,L)\times\mathbb{R}^{d-1}, we now define two types of decomposition of the domain L\mathcal{R}^{L} using the dyadic cubes for L=2mL=2^{m} (m+m\in\mathbb{Z}_{+}), which will be useful in Section 4 to prove the inverse trace result. For any kk\in\mathbb{Z}, we define 𝒲k=Q𝒬d1,k(2k,2k+1]×Q\mathscr{W}_{k}=\bigcup_{Q\in\mathscr{Q}_{d-1,k}}(2^{-k},2^{-k+1}]\times Q.

  • 1.

    Type I decomposition. Let L=2mL=2^{m} for some m+{0}m\in\mathbb{Z}_{+}\cup\{0\} and 𝒲0¯=Q𝒬d1,0(0,1]×Q\overline{\mathscr{W}_{0}}=\bigcup_{Q\in\mathscr{Q}_{d-1,0}}(0,1]\times Q, then

    𝒲I(L):=m+1k0,k𝒲k𝒲0¯\mathscr{W}^{I}(\mathcal{R}^{L}):=\bigcup_{-m+1\leq k\leq 0,\,k\in\mathbb{Z}}\mathscr{W}_{k}\cup\overline{\mathscr{W}_{0}} (2.6)
  • 2.

    Type II decomposition. Let L=2mL=2^{m} for some m+{0}m\in\mathbb{Z}_{+}\cup\{0\}, then we define

    𝒲II(L):=m+1k,k𝒲k\mathscr{W}^{II}(\mathcal{R}^{L}):=\bigcup_{-m+1\leq k,\,k\in\mathbb{Z}}\mathscr{W}_{k} (2.7)

Naturally, we will write 𝒲I()=k{0}𝒲k𝒲0¯\mathscr{W}^{I}(\mathcal{R}^{\infty})=\bigcup_{k\in\mathbb{Z}_{-}\cup\{0\}}\mathscr{W}_{k}\cup\overline{\mathscr{W}_{0}} and 𝒲II()=k𝒲k\mathscr{W}^{II}(\mathcal{R}^{\infty})=\bigcup_{k\in\mathbb{Z}}\mathscr{W}_{k}. Notice that 𝒲II()\mathscr{W}^{II}(\mathcal{R}^{\infty}) coincides with the classical Whitney decomposition of the half space, where the length of each cube is proportional to the distance between the cube and the boundary of the domain. This type of decomposition is also used to prove the classical and fractional extension results [26, 38]. The Type I decomposition, however, has a special set 𝒲0¯\overline{\mathscr{W}_{0}} which touches the boundary {0}×d1\{0\}\times\mathbb{R}^{d-1} and it is used later to construct extension operator for the case β<d\beta<d.

3 Nonlocal Trace Theorem

In this section we consider the trace theorem on half spaces and provide the proof for Theorem 1.1. We recall that the result stated corresponds to Ω==(0,)×d1\Omega=\mathcal{R}^{\infty}=(0,\infty)\times\mathbb{R}^{d-1}, Ωδ=δ=(δ,0)×d1\Omega_{\delta}=\mathcal{R}_{-\delta}=(-\delta,0)\times\mathbb{R}^{d-1} and Ω^=δ\hat{{\Omega}}=\mathcal{R}_{-\delta}^{\infty}. In particular, with the help of the scaling arguments in Lemma 2.5, we first prove the results for the special case δ=1\delta=1, then extend the results to general δ\delta. Since C1(δ¯)𝒮δβ(δ)C^{1}(\overline{\mathcal{R}_{-\delta}^{\infty}})\cap\mathcal{S}^{\,\beta}_{\delta}(\mathcal{R}_{-\delta}^{\infty}) forms a dense set in 𝒮δβ(δ)\mathcal{S}^{\,\beta}_{\delta}(\mathcal{R}_{-\delta}^{\infty}), it suffices to prove the conclusion for uC1(δ¯)𝒮δβ(δ)u\in C^{1}(\overline{\mathcal{R}_{-\delta}^{\infty}})\cap\mathcal{S}^{\,\beta}_{\delta}(\mathcal{R}_{-\delta}^{\infty}), which is the case presented in the proofs.

When δ=1\delta=1, we will prove the following theorem:

Theorem 3.7 (Trace theorem on half spaces when δ=1\delta=1).

Let β[0,d+p)\beta\in[0,d+p), then there exist a generic constants CC depending only on dd and pp, such that for any u𝒮1β(1)u\in\mathcal{S}^{\,\beta}_{1}(\mathcal{R}_{-1}^{\infty}) and any τ>0\tau>0,

uLp(1)p\displaystyle\|u\|^{p}_{L^{p}(\mathcal{R}_{-1})} C|d+pβ|1uLp(1)p1|u|𝒮1β(1)C|d+pβ|1(τ1uLp(1)p+τp1|u|𝒮1β(1)p),\displaystyle\leq C|d+p-\beta|^{-1}\|u\|^{p-1}_{L^{p}(\mathcal{R}_{-1}^{\infty})}{\left|u\right|}_{\mathcal{S}^{\,\beta}_{1}(\mathcal{R}_{-1}^{\infty})}\leq C|d+p-\beta|^{-1}{\left(\tau^{-1}\|u\|^{p}_{L^{p}(\mathcal{R}_{-1}^{\infty})}+\tau^{p-1}{\left|u\right|}^{p}_{\mathcal{S}^{\,\beta}_{1}(\mathcal{R}_{-1}^{\infty})}\right)}, (3.1)
|u|𝒯1β(1)p\displaystyle{\left|u\right|}^{p}_{\mathcal{T}^{\,\beta}_{1}(\mathcal{R}_{-1})} C|d+pβ|1|u|𝒮1β(1)p.\displaystyle\leq C|d+p-\beta|^{-1}{\left|u\right|}^{p}_{\mathcal{S}^{\,\beta}_{1}(\mathcal{R}_{-1}^{\infty})}. (3.2)

To prove Theorem 3.7, for any 𝒌=(k1,k2,,kd)d\bm{k}=(k_{1},k_{2},\cdots,k_{d})\in\mathbb{Z}^{d}, we define the (hyper)cube associated with 𝒌\bm{k} by I(𝒌)=(0,1)d+p2+𝒌=i=1d(ki,ki+1)I(\bm{k})=(0,1)^{d+p-2}+{\bm{k}}=\prod_{i=1}^{d}(k_{i},k_{i}+1). Now for any 𝒉=(h1,h2,,hd)d\bm{h}=(h_{1},h_{2},\cdots,h_{d})\in\mathbb{R}^{d}, we write [𝒉]:=([h1],[h2],,[hd])[\bm{h}]:=([h_{1}],[h_{2}],\cdots,[h_{d}]), where

[hi]={hiif hi0hiif hi<0[h_{i}]=\left\{\begin{aligned} \lfloor h_{i}\rfloor\quad&\text{if }h_{i}\geq 0\\ \lceil h_{i}\rceil\quad&\text{if }h_{i}<0\end{aligned}\right.

for i{1,2,,d}i\in\{1,2,\cdots,d\}. Then for all 𝒙I(𝒌)\bm{x}\in I(\bm{k}), we have 𝒙+[𝒉]I(𝒌+[𝒉])\bm{x}+[\bm{h}]\in I(\bm{k}+[\bm{h}]). Notice that I(𝒌+[𝒉])I(\bm{k}+[\bm{h}]) has non-trivial intersections with the set {𝒙+𝒉:𝒙I(𝒌)}\{\bm{x}+\bm{h}:\bm{x}\in I(\bm{k})\}. Now we use D(𝒌,[𝒉])D(\bm{k},[\bm{h}]) to denote the union of all (hyper)cubes in d\mathbb{R}^{d} that have non-trivial intersections with the diagonal line from the center of I(𝒌)I(\bm{k}) to the center of I(𝒌+[𝒉])I(\bm{k}+[\bm{h}]). Then we have the following lemma.

Lemma 3.8.

Let u𝒮10(d)u\in\mathcal{S}_{1}^{0}(\mathbb{R}^{d}), then for any 𝐡d\bm{h}\in\mathbb{R}^{d}, we have

1(|𝒉|+1)p1I(𝒌)|u(𝒙)u(𝒙+𝒉)|p𝑑𝒙CD(𝒌,[𝒉])|𝒚𝒙|<d+1|u(𝒙)u(𝒚)|p𝑑𝒚𝑑𝒙,\frac{1}{\left(|\bm{h}|+1\right)^{p-1}}\int_{I(\bm{k})}|u(\bm{x})-u(\bm{x}+\bm{h})|^{p}d\bm{x}\leq C\int_{D(\bm{k},[\bm{h}])}\int_{|\bm{y}-\bm{x}|<d+1}|u(\bm{x})-u(\bm{y})|^{p}d\bm{y}d\bm{x},

where CC is a constant only dependent on dd and pp.

Proof.

Let mm be the number of (hyper)cubes in the set D(𝒌,[𝒉])D(\bm{k},[\bm{h}]). Then we know that m|[𝒉]|l1+1|𝒉|l1+1d|𝒉|+1m\leq|[\bm{h}]|_{l_{1}}+1\leq|\bm{h}|_{l_{1}}+1\leq\sqrt{d}|\bm{h}|+1. We denote these (hyper)cubes by I(𝒌+𝒏(i))I(\bm{k}+\bm{n}^{(i)}), where 𝒏(i)d\bm{n}^{(i)}\in\mathbb{Z}^{d} for each i{0,1,,m1}i\in\{0,1,\cdots,m-1\} with 𝒏(0)=𝟎\bm{n}^{(0)}=\bf{0} and 𝒏(m1)=[𝒉]\bm{n}^{(m-1)}=[\bm{h}]. Moreover, |𝒏(i)𝒏(i+1)|l1=1|\bm{n}^{(i)}-\bm{n}^{(i+1)}|_{l_{1}}=1 for i{0,1,,m2}i\in\{0,1,\cdots,m-2\}. Therefore, we can connect 𝒙(0):=𝒙\bm{x}^{(0)}:=\bm{x} and 𝒙(m):=𝒙+𝒉\bm{x}^{(m)}:=\bm{x}+\bm{h} by the points 𝒙(i)I(𝒌+𝒏(i))\bm{x}^{(i)}\in I(\bm{k}+\bm{n}^{(i)}) for i=1,2,,m1i=1,2,\cdots,m-1. Then

|u(𝒙)u(𝒙+𝒉)|p|i=0m1(u(𝒙(i))u(𝒙(i+1)))|pmp1i=0m1|u(𝒙(i))u(𝒙(i+1))|p.|u(\bm{x})-u(\bm{x}+\bm{h})|^{p}\leq\left|\sum_{i=0}^{m-1}\left(u(\bm{x}^{(i)})-u(\bm{x}^{(i+1)})\right)\right|^{p}\leq m^{p-1}\sum_{i=0}^{m-1}|u(\bm{x}^{(i)})-u(\bm{x}^{(i+1)})|^{p}.

Now integrate the above equation with respect to 𝒙(i)\bm{x}^{(i)} over I(𝒌+𝒏(i))I(\bm{k}+\bm{n}^{(i)}) for each i=0,1,,m1i=0,1,\cdots,m-1, we get

I(𝒌)|u(𝒙)u(𝒙+𝒉)|p𝑑xmp1[i=0m2I(𝒌+𝒏(i))I(𝒌+𝒏(i+1))|u(𝒙(i))u(𝒙(i+1))|p𝑑𝒙(i+1)𝑑𝒙(i)+I(𝒌+𝒏(m1))I(𝒌)|u(𝒙(m1))u(𝒙+𝒉)|p𝑑𝒙𝑑𝒙(m1)]mp1i=0m1I(𝒌+𝒏(i))B(𝒙,d+1)|u(𝒙)u(𝒚)|p𝑑𝒚𝑑𝒙mp1D(𝒌,[𝒉])B(𝒙,d+1)|u(𝒙)u(𝒚)|p𝑑𝒚𝑑𝒙.\begin{split}&\int_{I(\bm{k})}|u(\bm{x})-u(\bm{x}+\bm{h})|^{p}dx\\ \leq&m^{p-1}\left[\sum_{i=0}^{m-2}\int_{I(\bm{k}+\bm{n}^{(i)})}\int_{I(\bm{k}+\bm{n}^{(i+1)})}\left|u(\bm{x}^{(i)})-u(\bm{x}^{(i+1)})\right|^{p}d\bm{x}^{(i+1)}d\bm{x}^{(i)}+\int_{I(\bm{k}+\bm{n}^{(m-1)})}\int_{I(\bm{k})}\left|u(\bm{x}^{(m-1)})-u(\bm{x}+\bm{h})\right|^{p}d\bm{x}d\bm{x}^{(m-1)}\right]\\ \leq&m^{p-1}\sum_{i=0}^{m-1}\int_{I(\bm{k}+\bm{n}^{(i)})}\int_{B(\bm{x},d+1)}\left|u(\bm{x})-u(\bm{y})\right|^{p}d\bm{y}d\bm{x}\leq m^{p-1}\int_{D(\bm{k},[\bm{h}])}\int_{B(\bm{x},d+1)}|u(\bm{x})-u(\bm{y})|^{p}d\bm{y}d\bm{x}.\end{split}

where B(𝒙,r)B(\bm{x},r) denotes the ball of radius rr in d\mathbb{R}^{d}. The lemma is then a result of the above estimate and the fact that md|𝒉|+1m\leq\sqrt{d}|\bm{h}|+1. ∎

Lemma 3.8 has the following implication.

Corollary 3.9.

For any m+m\in\mathbb{Z}_{+} and any u𝒮10(1m)u\in\mathcal{S}_{1}^{0}(\mathcal{R}_{-1}^{m}), we have

d110|u(x~,𝒙¯)u(x~+m,𝒙¯)|p𝑑x~𝑑𝒙¯Cmp1|u|𝒮10(1m)p,\displaystyle\int_{\mathbb{R}^{d-1}}\int_{-1}^{0}|u(\tilde{x},\overline{\bm{x}})-u(\tilde{x}+m,\overline{\bm{x}})|^{p}d\tilde{x}d\overline{\bm{x}}\leq Cm^{p-1}|u|^{p}_{\mathcal{S}_{1}^{0}(\mathcal{R}_{-1}^{m})}, (3.3)

where CC is a constant that depends only on dd and pp.

Proof.

For m+m\in\mathbb{Z}_{+}, we use Lemma 3.8 with 𝒉=(m,0,,0)\bm{h}=(m,0,\cdots,0) to obtain

d110|u(x~,𝒙¯)u(x~+m,𝒙¯)|p𝑑x~𝑑𝒙¯=𝒌¯d1I(𝒌¯)10|u(x~,𝒙¯)u(x~+m,𝒙¯)|p𝑑x~𝑑𝒙¯C(m+1)p1𝒌¯d1(1,m)×I(𝒌¯)|𝒚𝒙|<d+1|u(𝒙)u(𝒚)|p𝑑𝒚𝑑𝒙=C(m+1)p11m|𝒚𝒙|<d+1|u(𝒙)u(𝒚)|p𝑑𝒚𝑑𝒙Cmp1|u|𝒮10(1m)p,\begin{split}\int_{\mathbb{R}^{d-1}}\int_{-1}^{0}|u(\tilde{x},\overline{\bm{x}})-u(\tilde{x}+m,\overline{\bm{x}})|^{p}d\tilde{x}d\overline{\bm{x}}&=\sum_{\overline{\bm{k}}\in\mathbb{Z}^{d-1}}\int_{I(\overline{\bm{k}})}\int_{-1}^{0}|u(\tilde{x},\overline{\bm{x}})-u(\tilde{x}+m,\overline{\bm{x}})|^{p}d\tilde{x}d\overline{\bm{x}}\\ &\leq C(m+1)^{p-1}\sum_{\overline{\bm{k}}\in\mathbb{Z}^{d-1}}\int_{(-1,m)\times I(\overline{\bm{k}})}\int_{|\bm{y}-\bm{x}|<d+1}|u(\bm{x})-u(\bm{y})|^{p}d\bm{y}d\bm{x}\\ &=C(m+1)^{p-1}\int_{\mathcal{R}_{-1}^{m}}\int_{|\bm{y}-\bm{x}|<d+1}|u(\bm{x})-u(\bm{y})|^{p}d\bm{y}d\bm{x}\leq Cm^{p-1}|u|^{p}_{\mathcal{S}_{1}^{0}(\mathcal{R}_{-1}^{m})},\end{split}

where we have use Lemma 2.6 in the last step of the above estimate. ∎

Lastly, we can show the LpL^{p} estimate in Theorem 3.7. Note that

|u|𝒮10(1)p=Cd,p,0111{|𝒚𝒙|<1}|u(𝒚)u(𝒙)|p𝑑𝒚𝑑𝒙11Cd,p,01{|𝒚𝒙|<1}|𝒚𝒙|β|u(𝒚)u(𝒙)|p𝑑𝒚𝑑𝒙C|d+pβ|1|u|𝒮1β(1)p,\begin{split}|u|^{p}_{\mathcal{S}^{0}_{1}(\mathcal{R}_{-1}^{\infty})}=C_{d,p,0}\int_{\mathcal{R}_{-1}^{\infty}}\int_{\mathcal{R}_{-1}^{\infty}}1_{\{|\bm{y}-\bm{x}|<1\}}\left|u(\bm{y})-u(\bm{x})\right|^{p}d\bm{y}d\bm{x}&\leq\int_{\mathcal{R}_{-1}^{\infty}}\int_{\mathcal{R}_{-1}^{\infty}}\dfrac{C_{d,p,0}1_{\{|\bm{y}-\bm{x}|<1\}}}{|\bm{y}-\bm{x}|^{\,\beta}}\left|u(\bm{y})-u(\bm{x})\right|^{p}d\bm{y}d\bm{x}\\ &\leq C|d+p-\beta|^{-1}|u|^{p}_{\mathcal{S}^{\,\beta}_{1}(\mathcal{R}_{-1}^{\infty})},\end{split} (3.4)

where CC only depends on dd and pp. Therefore it suffices to prove the LpL^{p} estimate with β=0\beta=0 and then invoke the above inequality for general β\beta.

Lemma 3.10 (A nonlocal embedding lemma).

For any u𝒮10(1)u\in\mathcal{S}^{0}_{1}(\mathcal{R}_{-1}^{\infty}) and L>0L>0,

uLp(1)pC[L1uLp(1L)p+Lp1|u|𝒮10(1L)p],\|u\|^{p}_{L^{p}(\mathcal{R}_{-1})}\leq C\left[L^{-1}\|u\|^{p}_{L^{p}(\mathcal{R}_{-1}^{L})}+L^{p-1}|u|^{p}_{\mathcal{S}^{0}_{1}(\mathcal{R}_{-1}^{L})}\right], (3.5)

where CC is a constant independent of uu and LL.

Proof.

First, if L<1L<1, then (3.5) is trivially satisfied. Now we assume L1L\geq 1, then 1LL2L1\leq\lfloor L\rfloor\leq L\leq 2\lfloor L\rfloor. For any m+m\in\mathbb{Z}_{+}, we have

|u(x~,𝒙¯)|p2p1[|u(x~,𝒙¯)u(x~+m,𝒙¯)|p+|u(x~+m,𝒙¯)|p].|u(\tilde{x},\overline{\bm{x}})|^{p}\leq 2^{p-1}\left[|u(\tilde{x},\overline{\bm{x}})-u(\tilde{x}+m,\overline{\bm{x}})|^{p}+|u(\tilde{x}+m,\overline{\bm{x}})|^{p}\right].

Therefore, combining the above inequality with Corollary 3.9, we get

uLp(1)p=d110|u(x~,𝒙¯)|p𝑑x~𝑑𝒙¯2p1[d110|u(x~,𝒙¯)u(x~+m,𝒙¯)|p𝑑x~𝑑𝒙¯+d110|u(x~+m,𝒙¯)|p𝑑x~𝑑𝒙¯]C[mp1|u|𝒮10(1m)p+d1m1m|u(x~,𝒙¯)|p𝑑x~𝑑𝒙¯].\begin{split}\|u\|^{p}_{L^{p}(\mathcal{R}_{-1})}=\int_{\mathbb{R}^{d-1}}\int_{-1}^{0}|u(\tilde{x},\overline{\bm{x}})|^{p}d\tilde{x}d\overline{\bm{x}}&\leq 2^{p-1}\left[\int_{\mathbb{R}^{d-1}}\int_{-1}^{0}|u(\tilde{x},\overline{\bm{x}})-u(\tilde{x}+m,\overline{\bm{x}})|^{p}d\tilde{x}d\overline{\bm{x}}+\int_{\mathbb{R}^{d-1}}\int_{-1}^{0}|u(\tilde{x}+m,\overline{\bm{x}})|^{p}d\tilde{x}d\overline{\bm{x}}\right]\\ &\leq C\left[m^{p-1}|u|^{p}_{\mathcal{S}_{1}^{0}(\mathcal{R}_{-1}^{m})}+\int_{\mathbb{R}^{d-1}}\int_{m-1}^{m}|u(\tilde{x},\overline{\bm{x}})|^{p}d\tilde{x}d\overline{\bm{x}}\right].\end{split}

Take a summation of the above inequality for mm from 11 to L\lfloor L\rfloor, we get

LuLp(1)pCLp|u|𝒮10(1L)p+uLp(1L)p,\lfloor L\rfloor\|u\|^{p}_{L^{p}(\mathcal{R}_{-1})}\leq C\lfloor L\rfloor^{p}|u|^{p}_{\mathcal{S}_{1}^{0}(\mathcal{R}_{-1}^{\lfloor L\rfloor})}+\|u\|^{p}_{L^{p}(\mathcal{R}_{-1}^{\lfloor L\rfloor})},

which implies equation (3.5). ∎

In the following we proceed to show the proof of (3.2). In a similar spirit to Corollary 3.9 but with a more refined consideration than the application of a direct Hölder’s inequality, we first state an intermediate result.

Lemma 3.11.

There exists a positive constant CC depending only on dd and pp such that for any positive integer mm and for any u𝒮1 0(1)u\in\mathcal{S}^{\,0}_{1}(\mathcal{R}_{-1}^{\infty}), the following estimate holds:

1(mm+1|u(x~,𝒙¯)u(z~,𝒙¯)|𝑑z~)p𝑑𝒙\displaystyle\int_{\mathcal{R}_{-1}}\left(\int_{m}^{m+1}|u(\tilde{x},\overline{\bm{x}})-u(\tilde{z},\overline{\bm{x}})|d\tilde{z}\right)^{p}d{\bm{x}}
\displaystyle\leq C|u|𝒮10(1)p+C(1m((l~,l~+2)×d1B(𝒛,d+1)1|u(𝒘)u(𝒛)|p𝑑𝒘𝑑𝒛)1/p𝑑l~)p.\displaystyle C|u|^{p}_{\mathcal{S}_{1}^{0}(\mathcal{R}_{-1}^{\infty})}+C\left(\int_{-1}^{m}\left(\int_{(\lfloor\tilde{l}\rfloor,\lfloor\tilde{l}\rfloor+2)\times^{d-1}}\int_{B(\bm{z},d+1)\cap\mathcal{R}_{-1}^{\infty}}{\left|u(\bm{w})-u(\bm{z})\right|}^{p}d\bm{w}d\bm{z}\right)^{1/p}d\tilde{l}\right)^{p}.
Proof.

For z~I(m):=(m,m+1)\tilde{z}\in{I}{(m)}:=(m,m+1), let us consider the covering of the path from x~\tilde{x} to z~\tilde{z} given by I(i):=(i,i+1)I(i):=\left({i},{i+1}\right) for i=0,,mi=0,\cdots,m. We take z~(i)I(i)\tilde{z}^{(i)}\in I(i) for i{0,1,,m1}i\in\{0,1,\cdots,m-1\} and set z~(m):=z~\tilde{z}^{(m)}:=\tilde{z}. Then, since

|u(x~,𝒙¯)u(z~,𝒙¯)||u(x~,𝒙¯)u(z~(0),𝒙¯)|+i=0m1|u(z~(i),𝒙¯)u(z~(i+1),𝒙¯)|,\displaystyle|u(\tilde{x},\overline{\bm{x}})-u(\tilde{z},\overline{\bm{x}})|\leq|u(\tilde{x},\overline{\bm{x}})-u(\tilde{z}^{(0)},\overline{\bm{x}})|+\sum_{i=0}^{m-1}|u(\tilde{z}^{(i)},\overline{\bm{x}})-u(\tilde{z}^{(i+1)},\overline{\bm{x}})|,

integrating the above inequality over I(i)I{(i)} with respect to z~(i)\tilde{z}^{(i)} for each i=0,,mi=0,\cdots,m, and taking both sides to the power of pp yields:

(I(m)|u(x~,𝒙¯)u(z~,𝒙¯)|𝑑z~)p\displaystyle\left(\int_{I{(m)}}|u(\tilde{x},\overline{\bm{x}})-u(\tilde{z},\overline{\bm{x}})|d\tilde{z}\right)^{p}
\displaystyle\leq 2p1(I(0)|u(x~,𝒙¯)u(z~(0),𝒙¯)|𝑑z~(0))p+2p1(i=0m1I(i)I(i+1)|u(z~(i),𝒙¯)u(z~(i+1),𝒙¯)|𝑑z~(i+1)𝑑z~(i))p.\displaystyle 2^{p-1}\left(\int_{I{(0)}}|u(\tilde{x},\overline{\bm{x}})-u(\tilde{z}^{(0)},\overline{\bm{x}})|d\tilde{z}^{(0)}\right)^{p}+2^{p-1}\left(\sum_{i=0}^{m-1}\int_{I{(i)}}\int_{I{(i+1)}}|u(\tilde{z}^{(i)},\overline{\bm{x}})-u(\tilde{z}^{(i+1)},\overline{\bm{x}})|d\tilde{z}^{(i+1)}d\tilde{z}^{(i)}\right)^{p}.

Now, we integrate the above inequality over 1\mathcal{R}_{-1} with respect to 𝒙{\bm{x}}:

1(I(m)|u(x~,𝒙¯)u(z~,𝒙¯)|𝑑z~)p𝑑𝒙2p11(I(0)|u(x~,𝒙¯)u(z~(0),𝒙¯)|𝑑z~(0))p𝑑𝒙\displaystyle\int_{\mathcal{R}_{-1}}\left(\int_{I{(m)}}|u(\tilde{x},\overline{\bm{x}})-u(\tilde{z},\overline{\bm{x}})|d\tilde{z}\right)^{p}d{\bm{x}}\leq 2^{p-1}\int_{\mathcal{R}_{-1}}\left(\int_{I{(0)}}{\left|u(\tilde{x},\overline{\bm{x}})-u(\tilde{z}^{(0)},\overline{\bm{x}})\right|}d\tilde{z}^{(0)}\right)^{p}d{\bm{x}}
+2p11(i=0m1I(i)I(i+1)|u(z~(i),𝒙¯)u(z~(i+1),𝒙¯)|𝑑z~(i+1)𝑑z~(i))p𝑑𝒙.\displaystyle\qquad\qquad\qquad\quad+2^{p-1}\int_{\mathcal{R}_{-1}}\left(\sum_{i=0}^{m-1}\int_{I{(i)}}\int_{I{(i+1)}}{\left|u(\tilde{z}^{(i)},\overline{\bm{x}})-u(\tilde{z}^{(i+1)},\overline{\bm{x}})\right|}d\tilde{z}^{(i+1)}d\tilde{z}^{(i)}\right)^{p}d{\bm{x}}. (3.6)

For the first term above,

1(I(0)|u(x~,𝒙¯)u(z~(0),𝒙¯)|𝑑z~(0))p𝑑𝒙\displaystyle\int_{\mathcal{R}_{-1}}\left(\int_{I{(0)}}{\left|u(\tilde{x},\overline{\bm{x}})-u(\tilde{z}^{(0)},\overline{\bm{x}})\right|}d\tilde{z}^{(0)}\right)^{p}d{\bm{x}}\leq d11001|u(x~,𝒙¯)u(z~(0),𝒙¯)|p𝑑z~(0)𝑑x~𝑑𝒙¯\displaystyle\int_{{}^{d-1}}\int_{-1}^{0}\int_{0}^{1}{\left|u(\tilde{x},\overline{\bm{x}})-u(\tilde{z}^{(0)},\overline{\bm{x}})\right|}^{p}d\tilde{z}^{(0)}d{\tilde{x}}d\overline{\bm{x}}
=\displaystyle= 01d110|u(x~,𝒙¯)u(z~(0),𝒙¯)|p𝑑x~𝑑𝒙¯𝑑z~(0)\displaystyle\int_{0}^{1}\int_{{}^{d-1}}\int_{-1}^{0}{\left|u(\tilde{x},\overline{\bm{x}})-u(\tilde{z}^{(0)},\overline{\bm{x}})\right|}^{p}d{\tilde{x}}d\overline{\bm{x}}d\tilde{z}^{(0)}
\displaystyle\leq C|u|𝒮10(1)p,\displaystyle C|u|^{p}_{\mathcal{S}_{1}^{0}(\mathcal{R}_{-1}^{\infty})},

where the last step is obtained by Corollary 3.9. For the second term in (3.6) we use the Minkowski’s integral inequality [54] and Lemma 3.8:

1(i=0m1I(i)I(i+1)|u(z~(i),𝒙¯)u(z~(i+1),𝒙¯)|𝑑z~(i+1)𝑑z~(i))p𝑑𝒙\displaystyle\int_{\mathcal{R}_{-1}}\left(\sum_{i=0}^{m-1}\int_{I{(i)}}\int_{I{(i+1)}}{\left|u(\tilde{z}^{(i)},\overline{\bm{x}})-u(\tilde{z}^{(i+1)},\overline{\bm{x}})\right|}d\tilde{z}^{(i+1)}d\tilde{z}^{(i)}\right)^{p}d{\bm{x}}
\displaystyle\leq C(i=0m1I(i)(d1(I(i+1)|u(z~(i),𝒙¯)u(z~(i+1),𝒙¯)|𝑑z~(i+1))p𝑑𝒙¯)1/p𝑑z~(i))p\displaystyle C\left(\sum_{i=0}^{m-1}\int_{I{(i)}}\left(\int_{{}^{d-1}}\left(\int_{I{(i+1)}}{\left|u(\tilde{z}^{(i)},\overline{\bm{x}})-u(\tilde{z}^{(i+1)},\overline{\bm{x}})\right|}d\tilde{z}^{(i+1)}\right)^{p}d\overline{\bm{x}}\right)^{1/p}d\tilde{z}^{(i)}\right)^{p}
\displaystyle\leq C(i=0m1I(i)(𝒌¯d1I(𝒌¯)I(i+1)|u(z~(i),𝒙¯)u(z~(i+1),𝒙¯)|p𝑑z~(i+1)𝑑𝒙¯)1/p𝑑z~(i))p\displaystyle C\left(\sum_{i=0}^{m-1}\int_{I{(i)}}\left(\sum_{\overline{\bm{k}}\in\mathbb{Z}^{d-1}}\int_{I(\overline{\bm{k}})}\int_{I{(i+1)}}{\left|u(\tilde{z}^{(i)},\overline{\bm{x}})-u(\tilde{z}^{(i+1)},\overline{\bm{x}})\right|}^{p}d\tilde{z}^{(i+1)}d\overline{\bm{x}}\right)^{1/p}d\tilde{z}^{(i)}\right)^{p}
\displaystyle\leq C(1m(𝒌¯d1I(𝒌¯)l~+1l~+2|u(w~+(l~w~),𝒙¯)u(w~,𝒙¯)|p𝑑w~𝑑𝒙¯)1/p𝑑l~)p\displaystyle C\left(\int_{-1}^{m}\left(\sum_{\overline{\bm{k}}\in\mathbb{Z}^{d-1}}\int_{I(\overline{\bm{k}})}\int_{\lfloor\tilde{l}\rfloor+1}^{\lfloor\tilde{l}\rfloor+2}{\left|u(\tilde{w}+(\tilde{l}-\tilde{w}),\overline{\bm{x}})-u(\tilde{w},\overline{\bm{x}})\right|}^{p}d\tilde{w}d\overline{\bm{x}}\right)^{1/p}d\tilde{l}\right)^{p}
\displaystyle\leq C(1m(𝒌¯d1D((l~+1,𝒌¯),([l~w~],𝟎))B(𝒛,d+1)1|u(𝒘)u(𝒛)|p𝑑𝒘𝑑𝒛)1/p𝑑l~)p\displaystyle C\left(\int_{-1}^{m}\left(\sum_{\overline{\bm{k}}\in\mathbb{Z}^{d-1}}\int_{D((\lfloor\tilde{l}\rfloor+1,\overline{\bm{k}}),([\tilde{l}-\tilde{w}],\bm{0}))}\int_{B(\bm{z},d+1)\cap\mathcal{R}_{-1}^{\infty}}{\left|u(\bm{w})-u(\bm{z})\right|}^{p}d\bm{w}d\bm{z}\right)^{1/p}d\tilde{l}\right)^{p}
\displaystyle\leq C(1m(𝒌¯d1D((l~+1,𝒌¯),(1,𝟎))B(𝒛,d+1)1|u(𝒘)u(𝒛)|p𝑑𝒘𝑑𝒛)1/p𝑑l~)p\displaystyle C\left(\int_{-1}^{m}\left(\sum_{\overline{\bm{k}}\in\mathbb{Z}^{d-1}}\int_{D((\lfloor\tilde{l}\rfloor+1,\overline{\bm{k}}),(-1,\bm{0}))}\int_{B(\bm{z},d+1)\cap\mathcal{R}_{-1}^{\infty}}{\left|u(\bm{w})-u(\bm{z})\right|}^{p}d\bm{w}d\bm{z}\right)^{1/p}d\tilde{l}\right)^{p}
\displaystyle\leq C(1m((l~,l~+2)×d1B(𝒛,d+1)1|u(𝒘)u(𝒛)|p𝑑𝒘𝑑𝒛)1/p𝑑l~)p.\displaystyle C\left(\int_{-1}^{m}\left(\int_{(\lfloor\tilde{l}\rfloor,\lfloor\tilde{l}\rfloor+2)\times^{d-1}}\int_{B(\bm{z},d+1)\cap\mathcal{R}_{-1}^{\infty}}{\left|u(\bm{w})-u(\bm{z})\right|}^{p}d\bm{w}d\bm{z}\right)^{1/p}d\tilde{l}\right)^{p}.

In the above derivation, we have used the fact that [l~w~]=0[\tilde{l}-\tilde{w}]=0 or 1-1 for w~(l~+1,l~+2)\tilde{w}\in({\lfloor\tilde{l}\rfloor+1},{\lfloor\tilde{l}\rfloor+2}) and therefore, the corresponding sets of (hyper)cube, as defined earlier, satisfy D((l~+1,𝒌¯),([l~w~],𝟎))D((l~+1,𝒌¯),(1,𝟎))D((\lfloor\tilde{l}\rfloor+1,\overline{\bm{k}}),([\tilde{l}-\tilde{w}],\bm{0}))\subset D((\lfloor\tilde{l}\rfloor+1,\overline{\bm{k}}),(-1,\bm{0})). ∎

Remark 1.

We note that the terms in the inequality of the above lemma are well defined by Hölder’s inequality. Indeed, it is easy to see that

(1m((l~,l~+2)×d1B(𝒛,d+1)1|u(𝒘)u(𝒛)|p𝑑𝒘𝑑𝒛)1/p𝑑l~)pCmp1|u|𝒮1 0(1)p,\left(\int_{-1}^{m}\left(\int_{(\lfloor\tilde{l}\rfloor,\lfloor\tilde{l}\rfloor+2)\times^{d-1}}\int_{B(\bm{z},d+1)\cap\mathcal{R}_{-1}^{\infty}}{\left|u(\bm{w})-u(\bm{z})\right|}^{p}d\bm{w}d\bm{z}\right)^{1/p}d\tilde{l}\right)^{p}\leq Cm^{p-1}{\left|u\right|}^{p}_{\mathcal{S}^{\,0}_{1}(\mathcal{R}_{-1}^{\infty})},

for a positive constant CC depending only on dd and pp. Our goal is, however, to show a much refined bound so that the dependence on mm in the above inequality can be dropped.

Next, we derive a result that helps us to obtain an estimate related to the second term in the above lemma. For 𝒙=(x~,𝒙¯)\bm{x}=(\tilde{x},\overline{\bm{x}}), 𝒚=(y~,𝒚¯)1\bm{y}=(\tilde{y},\overline{\bm{y}})\in\mathcal{R}_{-1}, we present some lemmas to bound the estimates on the nonlocal differences from 𝒙\bm{x} to (z~,𝒙¯)(\tilde{z},\overline{\bm{x}}) and the nonlocal difference from (z~,𝒙¯)(\tilde{z},\overline{\bm{x}}) to (z~,𝒚¯)(\tilde{z},\overline{\bm{y}}), respectively. For any 𝒙1\bm{x}\in\mathcal{R}_{-1}, we let 𝒌(𝒙)\bm{k}(\bm{x}) be an integer lattice point associated with 𝒙\bm{x} such that I(𝒌(𝒙))I(\bm{k}(\bm{x})) be a (hyper)cube containing 𝒙\bm{x}. Note that the association may not be unique if 𝒙\bm{x} is on the boundary of some open (hyper)cube I(𝒌)I(\bm{k}), integer lattice point. In such a case, we may select any of the neighboring I(𝒌)I(\bm{k}) to be the associated (hyper)cube. Naturally, if 𝒙\bm{x} is an integer lattice point itself, we can use the default choice I(𝒙)I(\bm{x}). For 𝒉¯d1\overline{\bm{h}}\in^{d-1}, we let D(𝒌(𝒙),[(0,𝒉¯)])D(\bm{k}(\bm{x}),[(0,\overline{\bm{h}})]) be the collection of (hyper)cubes associated with 𝒌(𝒙)\bm{k}(\bm{x}) and 𝒉=(0,𝒉¯)\bm{h}=(0,\overline{\bm{h}}) defined previously. We denote m=m(𝒙,𝒉¯)m=m(\bm{x},\overline{\bm{h}}) as the number of (hyper)cubes in D(𝒌(𝒙),[(0,𝒉¯)])D(\bm{k}(\bm{x}),[(0,\overline{\bm{h}})]). We again use I(m):=(m,m+1){I}{(m)}:=(m,m+1) for any integer mm.

Lemma 3.12.

There exists a positive constant CC depending only on dd and pp such that for any u𝒮1 0(1)u\in\mathcal{S}^{\,0}_{1}(\mathcal{R}_{-1}^{\infty}) and any 𝐱1\bm{x}\in\mathcal{R}_{-1}, the following holds:

d1(1m(𝒙,𝒉¯)((l~,l~+2)×d1B(𝒛,d+1)1|u(𝒘)u(𝒛)|p𝑑𝒘𝑑𝒛)1/p𝑑l~)pd𝒉¯(|𝒉¯|+1)d+p2C|u|𝒮1 0(1)p.\int_{{}^{d-1}}\left(\int_{-1}^{{m(\bm{x},\overline{\bm{h}})}}\left(\int_{(\lfloor\tilde{l}\rfloor,\lfloor\tilde{l}\rfloor+2)\times^{d-1}}\int_{B(\bm{z},d+1)\cap\mathcal{R}_{-1}^{\infty}}{\left|u(\bm{w})-u(\bm{z})\right|}^{p}d\bm{w}d\bm{z}\right)^{1/p}d\tilde{l}\right)^{p}\frac{d\overline{\bm{h}}}{\left({\left|\overline{\bm{h}}\right|}+1\right)^{d+p-2}}\leq C{\left|u\right|}^{p}_{\mathcal{S}^{\,0}_{1}(\mathcal{R}_{-1}^{\infty})}. (3.7)
Proof.

we write 𝒉¯\overline{\bm{h}} in the spherical coordinate to get

d1(1m(𝒙,𝒉¯)((l~,l~+2)×d1B(𝒛,d+1)1|u(𝒘)u(𝒛)|p𝑑𝒘𝑑𝒛)1/p𝑑l~)pd𝒉¯(|𝒉¯|+1)d+p2\displaystyle\int_{{}^{d-1}}\left(\int_{-1}^{{m(\bm{x},\overline{\bm{h}})}}\left(\int_{(\lfloor\tilde{l}\rfloor,\lfloor\tilde{l}\rfloor+2)\times^{d-1}}\int_{B(\bm{z},d+1)\cap\mathcal{R}_{-1}^{\infty}}{\left|u(\bm{w})-u(\bm{z})\right|}^{p}d\bm{w}d\bm{z}\right)^{1/p}d\tilde{l}\right)^{p}\frac{d\overline{\bm{h}}}{\left({\left|\overline{\bm{h}}\right|}+1\right)^{d+p-2}}
\displaystyle\leq C0(1(r+1)d11((l~,l~+2)×d1B(𝒛,d+1)1|u(𝒘)u(𝒛)|p𝑑𝒘𝑑𝒛)1/p𝑑l~)prd2dr(r+1)d+p2\displaystyle C\int_{0}^{\infty}\left(\int_{-1}^{(r+1)\sqrt{d-1}-1}\left(\int_{(\lfloor\tilde{l}\rfloor,\lfloor\tilde{l}\rfloor+2)\times^{d-1}}\int_{B(\bm{z},d+1)\cap\mathcal{R}_{-1}^{\infty}}{\left|u(\bm{w})-u(\bm{z})\right|}^{p}d\bm{w}d\bm{z}\right)^{1/p}d\tilde{l}\right)^{p}r^{d-2}\frac{dr}{\left(r+1\right)^{d+p-2}}
\displaystyle\leq C0(0r^((l^1,l^+1)×d1B(𝒛,d+1)1|u(𝒘)u(𝒛)|p𝑑𝒘𝑑𝒛)1/p𝑑l^)pdr^r^p\displaystyle C\int_{0}^{\infty}\left(\int_{0}^{\hat{r}}\left(\int_{(\lfloor\hat{l}\rfloor-1,\lfloor\hat{l}\rfloor+1)\times^{d-1}}\int_{B(\bm{z},d+1)\cap\mathcal{R}_{-1}^{\infty}}{\left|u(\bm{w})-u(\bm{z})\right|}^{p}d\bm{w}d\bm{z}\right)^{1/p}d\hat{l}\right)^{p}\frac{d\hat{r}}{\hat{r}^{p}}
\displaystyle\leq C0r^p(0r^f(l^)𝑑l^)p𝑑r^\displaystyle C\int_{0}^{\infty}\hat{r}^{-p}\left(\int_{0}^{\hat{r}}f(\hat{l})d\hat{l}\right)^{p}d\hat{r}

where

l^:=l~+1,r^:=(r+1)d1,f(l^):=((l^1,l^+1)×d1B(𝒛,d+1)1|u(𝒘)u(𝒛)|p𝑑𝒘𝑑𝒛)1/p,\hat{l}:=\tilde{l}+1,\;\hat{r}:=(r+1)\sqrt{d-1},\;f(\hat{l}):=\left(\int_{(\lfloor\hat{l}\rfloor-1,\lfloor\hat{l}\rfloor+1)\times^{d-1}}\int_{B(\bm{z},d+1)\cap\mathcal{R}_{-1}^{\infty}}{\left|u(\bm{w})-u(\bm{z})\right|}^{p}d\bm{w}d\bm{z}\right)^{1/p},

and we have used the fact that m(𝒙,𝒉¯)|𝒉¯|l1+1d1|𝒉¯|+1d1(|𝒉¯|+1)1{m(\bm{x},\overline{\bm{h}})}\leq|\overline{\bm{h}}|_{l_{1}}+1\leq\sqrt{d-1}|\overline{\bm{h}}|+1\leq\sqrt{d-1}(|\overline{\bm{h}}|+1)-1.

Using the Hardy’s inequality [35, 5, 6]:

0xp(0xf(y)𝑑y)p𝑑x(pp1)p0(f(y))p𝑑y,\int_{0}^{\infty}x^{-p}\left(\int_{0}^{x}f(y)dy\right)^{p}dx\leq\left(\frac{p}{p-1}\right)^{p}\int_{0}^{\infty}(f(y))^{p}dy,

we get

d1(1m(𝒙,𝒉¯)((l~,l~+2)×d1B(𝒛,d+1)1|u(𝒘)u(𝒛)|p𝑑𝒘𝑑𝒛)1/p𝑑l~)pd𝒉¯(|𝒉¯|+1)d+p2\displaystyle\int_{{}^{d-1}}\left(\int_{-1}^{{m(\bm{x},\overline{\bm{h}})}}\left(\int_{(\lfloor\tilde{l}\rfloor,\lfloor\tilde{l}\rfloor+2)\times^{d-1}}\int_{B(\bm{z},d+1)\cap\mathcal{R}_{-1}^{\infty}}{\left|u(\bm{w})-u(\bm{z})\right|}^{p}d\bm{w}d\bm{z}\right)^{1/p}d\tilde{l}\right)^{p}\frac{d\overline{\bm{h}}}{\left({\left|\overline{\bm{h}}\right|}+1\right)^{d+p-2}}
\displaystyle\leq C0(l^1,l^+1)×d1B(𝒛,d+1)1|u(𝒘)u(𝒛)|p𝑑𝒘𝑑𝒛𝑑l^\displaystyle C\int_{0}^{\infty}\int_{(\lfloor\hat{l}\rfloor-1,\lfloor\hat{l}\rfloor+1)\times^{d-1}}\int_{B(\bm{z},d+1)\cap\mathcal{R}_{-1}^{\infty}}{\left|u(\bm{w})-u(\bm{z})\right|}^{p}d\bm{w}d\bm{z}d\hat{l}
\displaystyle\leq C1B(𝒛,d+1)1|u(𝒘)u(𝒛)|p𝑑𝒘𝑑𝒛C|u|𝒮d+10(1)pC|u|𝒮10(1)p.\displaystyle C\int_{\mathcal{R}_{-1}^{\infty}}\int_{B(\bm{z},d+1)\cap\mathcal{R}_{-1}^{\infty}}{\left|u(\bm{w})-u(\bm{z})\right|}^{p}d\bm{w}d\bm{z}\leq C|{u}|^{p}_{\mathcal{S}^{0}_{d+1}(\mathcal{R}_{-1}^{\infty})}\leq C|{u}|^{p}_{\mathcal{S}^{0}_{1}(\mathcal{R}_{-1}^{\infty})}. (3.8)

With the above lemma, we can then bound the nonlocal difference from 𝒙=(x~,𝒙¯)\bm{x}=(\tilde{x},\overline{\bm{x}}) to (z~,𝒙¯)(\tilde{z},\overline{\bm{x}}) with the trace semi-norm. Such an estimate can be seen as the norm of the nonlocal variations along the normal direction (with respect to the strip domain) being controlled by the nonlocal semin-norm for 𝒮1 0(1)\mathcal{S}^{\,0}_{1}(\mathcal{R}_{-1}^{\infty}).

Lemma 3.13.

There exists a positive constant CC depending only on dd and pp such that for any u𝒮1 0(1)u\in\mathcal{S}^{\,0}_{1}(\mathcal{R}_{-1}^{\infty}), the following holds:

d11(I(m(𝒙,𝒉¯))|u(x~,𝒙¯)u(z~,𝒙¯)|𝑑z~)p𝑑𝒙d𝒉¯(|𝒉¯|+1)d+p2C|u|𝒮1 0(1)p.\int_{{}^{d-1}}\int_{\mathcal{R}_{-1}}\left(\int_{{I(m(\bm{x},\overline{\bm{h}}))}}|u(\tilde{x},\overline{\bm{x}})-u(\tilde{z},\overline{\bm{x}})|d\tilde{z}\right)^{p}d{\bm{x}}\frac{d\overline{\bm{h}}}{\left({\left|\overline{\bm{h}}\right|}+1\right)^{d+p-2}}\leq C{\left|u\right|}^{p}_{\mathcal{S}^{\,0}_{1}(\mathcal{R}_{-1}^{\infty})}. (3.9)
Proof.

With Lemma 3.11 we have

d11(I(m(𝒙,𝒉¯))|u(x~,𝒙¯)u(z~,𝒙¯)|𝑑z~)p𝑑𝒙d𝒉¯(|𝒉¯|+1)d+p2\displaystyle\int_{{}^{d-1}}\int_{\mathcal{R}_{-1}}\left(\int_{I{(m(\bm{x},\overline{\bm{h}}))}}|u(\tilde{x},\overline{\bm{x}})-u(\tilde{z},\overline{\bm{x}})|d\tilde{z}\right)^{p}d{\bm{x}}\frac{d\overline{\bm{h}}}{\left({\left|\overline{\bm{h}}\right|}+1\right)^{d+p-2}}
\displaystyle\leq C|u|𝒮10(1)p+Cd1(1m(𝒙,𝒉¯)((l~,l~+2)×d1B(𝒛,d+1)1|u(𝒘)u(𝒛)|p𝑑𝒘𝑑𝒛)1/p𝑑l~)pd𝒉¯(|𝒉¯|+1)d+p2.\displaystyle C|u|^{p}_{\mathcal{S}_{1}^{0}(\mathcal{R}_{-1}^{\infty})}+C\int_{{}^{d-1}}\left(\int_{-1}^{{m(\bm{x},\overline{\bm{h}})}}\left(\int_{(\lfloor\tilde{l}\rfloor,\lfloor\tilde{l}\rfloor+2)\times^{d-1}}\int_{B(\bm{z},d+1)\cap\mathcal{R}_{-1}^{\infty}}{\left|u(\bm{w})-u(\bm{z})\right|}^{p}d\bm{w}d\bm{z}\right)^{1/p}d\tilde{l}\right)^{p}\frac{d\overline{\bm{h}}}{\left({\left|\overline{\bm{h}}\right|}+1\right)^{d+p-2}}.

Now, combining with Lemma 3.12, the proof is complete. ∎

Remark 2.

Apply a similar argument to the nonlocal difference from 𝒚=(y~,𝒚¯)\bm{y}=(\tilde{y},\overline{\bm{y}}) to (z~,𝒚¯)(\tilde{z},\overline{\bm{y}}), we can similarly obtain:

d11(I(m(𝒚,𝒉¯))|u(y~,𝒚¯)u(z~,𝒚¯)|𝑑z~)p𝑑𝒚d𝒉¯(|𝒉¯|+1)d+p2C|u|𝒮1 0(1)p\int_{{}^{d-1}}\int_{\mathcal{R}_{-1}}\left(\int_{{I{(m(\bm{y},\overline{\bm{h}}))}}}|u(\tilde{y},\overline{\bm{y}})-u(\tilde{z},\overline{\bm{y}})|d\tilde{z}\right)^{p}d{\bm{y}}\frac{d\overline{\bm{h}}}{\left({\left|\overline{\bm{h}}\right|}+1\right)^{d+p-2}}\leq C{\left|u\right|}^{p}_{\mathcal{S}^{\,0}_{1}(\mathcal{R}_{-1}^{\infty})} (3.10)

where CC is a positive constant depending only on dd and pp.

We now proceed to investigate the nonlocal difference from (z~,𝒙¯)(\tilde{z},\overline{\bm{x}}) to (z~,𝒚¯)(\tilde{z},\overline{\bm{y}}) in the following lemma, which can be seen analogously as the norm of the nonlocal tangential variations being controlled by the nonlocal semin-norm:

Lemma 3.14.

There exists a positive constant CC depending on dd and pp such that for any u𝒮1 0(1)u\in\mathcal{S}^{\,0}_{1}(\mathcal{R}_{-1}^{\infty}) , the following estimate holds:

d1d1I(m(𝒙,𝒉¯))|u(z~,𝒙¯)u(z~,𝒙¯+𝒉¯)|p𝑑z~𝑑𝒙¯d𝒉¯(|𝒉¯|+1)d+p2C|u|𝒮1 0(1)p.\int_{{}^{d-1}}\int_{{}^{d-1}}\int_{{I{(m(\bm{x},\overline{\bm{h}}))}}}|u(\tilde{z},\overline{\bm{x}})-u(\tilde{z},\overline{\bm{x}}+\overline{\bm{h}})|^{p}d\tilde{z}d\overline{\bm{x}}\frac{d\overline{\bm{h}}}{\left({\left|\overline{\bm{h}}\right|}+1\right)^{d+p-2}}\leq C{\left|u\right|}^{p}_{\mathcal{S}^{\,0}_{1}(\mathcal{R}_{-1}^{\infty})}. (3.11)
Proof.

For notation simplicity, we drop the dependence of mm on its argument in the derivation here. First notice that from Lemma 3.8 we have

d1I(m)|u(z~,𝒙¯)u(z~,𝒙¯+𝒉¯)|p𝑑z~𝑑𝒙¯=𝒌¯d1I(𝒌¯)I(m)|u(z~,𝒙¯)u(z~,𝒙¯+𝒉¯)|p𝑑z~𝑑𝒙¯C(|𝒉¯|+1)p1𝒌¯d1D((m,𝒌¯),(0,[𝒉¯]))B(𝒛,d+1)1|u(𝒘)u(𝒛)|p𝑑𝒘𝑑𝒛C(|𝒉¯|+1)pI(m)×d1B(𝒛,d+1)1|u(𝒘)u(𝒛)|p𝑑𝒘𝑑𝒛.\begin{split}\int_{\mathbb{R}^{d-1}}\int_{I{(m)}}|u(\tilde{z},\overline{\bm{x}})-u(\tilde{z},\overline{\bm{x}}+\overline{\bm{h}})|^{p}d\tilde{z}d\overline{\bm{x}}&=\sum_{\overline{\bm{k}}\in\mathbb{Z}^{d-1}}\int_{I(\overline{\bm{k}})}\int_{I{(m)}}|u(\tilde{z},\overline{\bm{x}})-u(\tilde{z},\overline{\bm{x}}+\overline{\bm{h}})|^{p}d\tilde{z}d\overline{\bm{x}}\\ &\leq C(|\overline{\bm{h}}|+1)^{p-1}\sum_{\overline{\bm{k}}\in\mathbb{Z}^{d-1}}\int_{D((m,\overline{\bm{k}}),(0,[\overline{\bm{h}}]))}\int_{B(\bm{z},d+1)\cap\mathcal{R}_{-1}^{\infty}}|u(\bm{w})-u(\bm{z})|^{p}d\bm{w}d\bm{z}\\ &\leq C(|\overline{\bm{h}}|+1)^{p}\int_{I{(m)}\times\mathbb{R}^{d-1}}\int_{B(\bm{z},d+1)\cap\mathcal{R}_{-1}^{\infty}}|u(\bm{w})-u(\bm{z})|^{p}d\bm{w}d\bm{z}.\end{split}

The last inequality in the above estimate is due to the fact that there are at most |[𝒉¯]|l1+1d1|𝒉¯|+1|[\overline{\bm{h}}]|_{l_{1}}+1\leq\sqrt{d-1}|\overline{\bm{h}}|+1 (hyper)cubes in the set D((m,𝒌¯),(0,[𝒉¯]))D((m,\overline{\bm{k}}),(0,[\overline{\bm{h}}])). Therefore,

d1d1I(m)|u(z~,𝒙¯)u(z~,𝒙¯+𝒉¯)|p𝑑z~𝑑𝒙¯d𝒉¯(|𝒉¯|+1)d+p2Cd1d𝒉¯(|𝒉¯|+1)d2I(m)×d1B(𝒛,d+1)1|u(𝒘)u(𝒛)|p𝑑𝒘𝑑𝒛C0rd2(r+1)d2𝑑rI(m)×d1B(𝒛,d+1)1|u(𝒘)u(𝒛)|p𝑑𝒘𝑑𝒛C|u|𝒮10(1)p,\begin{split}&\int_{\mathbb{R}^{d-1}}\int_{\mathbb{R}^{d-1}}\int_{I{(m)}}|u(\tilde{z},\overline{\bm{x}})-u(\tilde{z},\overline{\bm{x}}+\overline{\bm{h}})|^{p}d\tilde{z}d\overline{\bm{x}}\frac{d\overline{\bm{h}}}{\left({\left|\overline{\bm{h}}\right|}+1\right)^{d+p-2}}\\ \leq&C\int_{\mathbb{R}^{d-1}}\frac{d\overline{\bm{h}}}{\left({\left|\overline{\bm{h}}\right|}+1\right)^{d-2}}\int_{I{(m)}\times\mathbb{R}^{d-1}}\int_{B(\bm{z},d+1)\cap\mathcal{R}_{-1}^{\infty}}|u(\bm{w})-u(\bm{z})|^{p}d\bm{w}d\bm{z}\\ \leq&C\int_{0}^{\infty}\frac{r^{d-2}}{(r+1)^{d-2}}dr\int_{I{(m)}\times\mathbb{R}^{d-1}}\int_{B(\bm{z},d+1)\cap\mathcal{R}_{-1}^{\infty}}|u(\bm{w})-u(\bm{z})|^{p}d\bm{w}d\bm{z}\leq C|u|^{p}_{\mathcal{S}_{1}^{0}(\mathcal{R}_{-1}^{\infty})},\end{split}

where we have also used Lemma 2.6 in the last inequality. ∎

We now have the following lemma for the trace semi-norm:

Lemma 3.15.

There exist a positive constant CC depending only dd and pp such that for any u𝒮1β(1)u\in\mathcal{S}^{\,\beta}_{1}(\mathcal{R}_{-1}^{\infty}),

|u|𝒯1β(1)pC|d+pβ|1|u|𝒮1β(1)p.{\left|u\right|}^{p}_{\mathcal{T}^{\,\beta}_{1}(\mathcal{R}_{-1})}\leq C|d+p-\beta|^{-1}{\left|u\right|}^{p}_{\mathcal{S}^{\,\beta}_{1}(\mathcal{R}_{-1}^{\infty})}\,. (3.12)
Proof.

We first note that

11B(𝒙,1)|u(𝒚)u(𝒙)|p(|𝒚𝒙|1)d+p2(|𝒚𝒙|1)β𝑑𝒚𝑑𝒙=11B(𝒙,1)|u(𝒚)u(𝒙)|p|𝒚𝒙|β𝑑𝒚𝑑𝒙C|d+pβ|1|u|𝒮1β(1)p.\displaystyle\int_{\mathcal{R}_{-1}}\int_{\mathcal{R}_{-1}\cap B(\bm{x},1)}\frac{|u(\bm{y})-u(\bm{x})|^{p}}{(|\bm{y}-\bm{x}|\vee 1)^{d+p-2}(|\bm{y}-\bm{x}|\wedge 1)^{\,\beta}}\,d\bm{y}d\bm{x}=\int_{\mathcal{R}_{-1}}\int_{\mathcal{R}_{-1}\cap B(\bm{x},1)}\frac{|u(\bm{y})-u(\bm{x})|^{p}}{|\bm{y}-\bm{x}|^{\,\beta}}\,d\bm{y}d\bm{x}\leq C|d+p-\beta|^{-1}|{u}|^{p}_{\mathcal{S}^{\,\beta}_{1}(\mathcal{R}_{-1}^{\infty})}.

Moreover, we note that |𝒚¯𝒙¯|+12|𝒚𝒙|=2(|𝒚𝒙|1){\left|\overline{\bm{y}}-\overline{\bm{x}}\right|}+1\leq 2{\left|\bm{y}-\bm{x}\right|}=2({\left|\bm{y}-\bm{x}\right|}\vee 1) for 𝒚1(1\B(𝒙,1))\bm{y}\in\mathcal{R}_{-1}\cap(\mathcal{R}_{-1}\backslash B(\bm{x},1)), it then suffices to show

11\B(𝒙,1)|u(y~,𝒚¯)u(x~,𝒙¯)|p(|𝒚¯𝒙¯|+1)d+p2dy~d𝒚¯dx~d𝒙¯\displaystyle\underset{\mathcal{R}_{-1}}{\iint}\underset{{\mathcal{R}_{-1}\backslash B(\bm{x},1)}}{\iint}\frac{|u(\tilde{y},\overline{\bm{y}})-u(\tilde{x},\overline{\bm{x}})|^{p}}{(|\overline{\bm{y}}-\overline{\bm{x}}|+1)^{d+p-2}}\,d\tilde{y}d\overline{\bm{y}}d\tilde{x}d\overline{\bm{x}} 11|u(y~,𝒚¯)u(x~,𝒙¯)|p(|𝒚¯𝒙¯|+1)d+p2dy~d𝒚¯dx~d𝒙¯C|u|𝒮10(1)p,\displaystyle\leq\underset{\mathcal{R}_{-1}}{\iint}\underset{\mathcal{R}_{-1}}{\iint}\frac{|u(\tilde{y},\overline{\bm{y}})-u(\tilde{x},\overline{\bm{x}})|^{p}}{(|\overline{\bm{y}}-\overline{\bm{x}}|+1)^{d+p-2}}\,d\tilde{y}d\overline{\bm{y}}d\tilde{x}d\overline{\bm{x}}\leq C|u|^{p}_{\mathcal{S}_{1}^{0}(\mathcal{R}_{-1}^{\infty})}\,,

since |u|𝒮10(1)pC|d+pβ|1|u|𝒮1β(1)p|u|^{p}_{\mathcal{S}_{1}^{0}(\mathcal{R}_{-1}^{\infty})}\leq C|d+p-\beta|^{-1}|{u}|^{p}_{\mathcal{S}^{\,\beta}_{1}(\mathcal{R}_{-1}^{\infty})} for any β[0,d+p)\beta\in[0,d+p) where CC only depends on dd and pp. Taking the path from 𝒙\bm{x} to (z~,𝒙¯)(\tilde{z},\overline{\bm{x}}), (z~,𝒚¯)(\tilde{z},\overline{\bm{y}}) and then finally 𝒚\bm{y}, we have

|u(x~,𝒙¯)u(y~,𝒚¯)||u(x~,𝒙¯)u(z~,𝒙¯)|+|u(y~,𝒚¯)u(z~,𝒚¯)|+|u(z~,𝒙¯)u(z~,𝒚¯)|.\displaystyle|u(\tilde{x},\overline{\bm{x}})-u(\tilde{y},\overline{\bm{y}})|\leq|u(\tilde{x},\overline{\bm{x}})-u(\tilde{z},\overline{\bm{x}})|+|u(\tilde{y},\overline{\bm{y}})-u(\tilde{z},\overline{\bm{y}})|+|u(\tilde{z},\overline{\bm{x}})-u(\tilde{z},\overline{\bm{y}})|.

Denoting 𝒉¯:=𝒚¯𝒙¯\overline{\bm{h}}:=\overline{\bm{y}}-\overline{\bm{x}} and integrating the above over I(m(𝒙,𝒉¯))I{(m(\bm{x},\overline{\bm{h}}))} with respect to z~\tilde{z} and taking both hand sides to the power of pp yields:

|u(x~,𝒙¯)u(y~,𝒚¯)|p\displaystyle|u(\tilde{x},\overline{\bm{x}})-u(\tilde{y},\overline{\bm{y}})|^{p}\leq 3p1(I(m(𝒙,𝒉¯))|u(x~,𝒙¯)u(z~,𝒙¯)|𝑑z~)p+3p1(I(m(𝒙,𝒉¯))|u(y~,𝒚¯)u(z~,𝒚¯)|𝑑z~)p\displaystyle 3^{p-1}\left(\int_{I{(m(\bm{x},\overline{\bm{h}}))}}|u(\tilde{x},\overline{\bm{x}})-u(\tilde{z},\overline{\bm{x}})|d\tilde{z}\right)^{p}+3^{p-1}\left(\int_{I{(m(\bm{x},\overline{\bm{h}}))}}|u(\tilde{y},\overline{\bm{y}})-u(\tilde{z},\overline{\bm{y}})|d\tilde{z}\right)^{p}
+3p1(I(m(𝒙,𝒉¯))|u(z~,𝒙¯)u(z~,𝒚¯)|𝑑z~)p.\displaystyle+3^{p-1}\left(\int_{I{(m(\bm{x},\overline{\bm{h}}))}}|u(\tilde{z},\overline{\bm{x}})-u(\tilde{z},\overline{\bm{y}})|d\tilde{z}\right)^{p}.

Considering a fixed 𝒉¯=𝒚¯𝒙¯\overline{\bm{h}}=\overline{\bm{y}}-\overline{\bm{x}}, we integrate the above inequality over (1,0)(-1,0) with respect to x~\tilde{x}, y~\tilde{y}, respectively, then integrate over d-1 with respect to 𝒙¯\overline{\bm{x}}:

d11010|u(x~,𝒙¯)u(y~,𝒚¯)|p𝑑y~𝑑x~𝑑𝒙¯\displaystyle\int_{{}^{d-1}}\int_{-1}^{0}\int_{-1}^{0}|u(\tilde{x},\overline{\bm{x}})-u(\tilde{y},\overline{\bm{y}})|^{p}d\tilde{y}d\tilde{x}d\overline{\bm{x}}
\displaystyle\leq 3p1d110(I(m(𝒙,𝒉¯))|u(x~,𝒙¯)u(z~,𝒙¯)|𝑑z~)p𝑑x~𝑑𝒙¯+3p1d110(I(m(𝒙,𝒉¯))|u(y~,𝒚¯)u(z~,𝒚¯)|𝑑z~)p𝑑y~𝑑𝒙¯\displaystyle 3^{p-1}\int_{{}^{d-1}}\int_{-1}^{0}\left(\int_{I{(m(\bm{x},\overline{\bm{h}}))}}|u(\tilde{x},\overline{\bm{x}})-u(\tilde{z},\overline{\bm{x}})|d\tilde{z}\right)^{p}d\tilde{x}d\overline{\bm{x}}+3^{p-1}\int_{{}^{d-1}}\int_{-1}^{0}\left(\int_{I{(m(\bm{x},\overline{\bm{h}}))}}|u(\tilde{y},\overline{\bm{y}})-u(\tilde{z},\overline{\bm{y}})|d\tilde{z}\right)^{p}d\tilde{y}d\overline{\bm{x}}
+3p1d1(I(m(𝒙,𝒉¯))|u(z~,𝒙¯)u(z~,𝒚¯)|𝑑z~)p𝑑𝒙¯.\displaystyle+3^{p-1}\int_{{}^{d-1}}\left(\int_{I{(m(\bm{x},\overline{\bm{h}}))}}|u(\tilde{z},\overline{\bm{x}})-u(\tilde{z},\overline{\bm{y}})|d\tilde{z}\right)^{p}d\overline{\bm{x}}.

Multiplying the above inequalities with (|𝒉¯|+1)d+p2\left({\left|\overline{\bm{h}}\right|}+1\right)^{d+p-2} and integrating with respect to 𝒉¯\overline{\bm{h}} over d-1 yield:

d1d11010|u(x~,𝒙¯)u(y~,𝒚¯)|p(|𝒚¯𝒙¯|+1)d+p2𝑑y~𝑑x~𝑑𝒙¯𝑑𝒚¯\displaystyle\int_{{}^{d-1}}\int_{{}^{d-1}}\int_{-1}^{0}\int_{-1}^{0}\dfrac{{\left|u(\tilde{x},\overline{\bm{x}})-u(\tilde{y},\overline{\bm{y}})\right|}^{p}}{\left({\left|\overline{\bm{y}}-\overline{\bm{x}}\right|}+1\right)^{d+p-2}}d\tilde{y}d\tilde{x}d\overline{\bm{x}}d\overline{\bm{y}}
\displaystyle\leq Cd1d110(I(m(𝒙,𝒉¯))|u(x~,𝒙¯)u(z~,𝒙¯)|𝑑z~)p𝑑x~𝑑𝒙¯d𝒉¯(|𝒉¯|+1)d+p2\displaystyle C\int_{{}^{d-1}}\int_{{}^{d-1}}\int_{-1}^{0}\left(\int_{I{(m(\bm{x},\overline{\bm{h}}))}}|u(\tilde{x},\overline{\bm{x}})-u(\tilde{z},\overline{\bm{x}})|d\tilde{z}\right)^{p}d\tilde{x}d\overline{\bm{x}}\frac{d\overline{\bm{h}}}{\left({\left|\overline{\bm{h}}\right|}+1\right)^{d+p-2}}
+Cd1d110(I(m(𝒙,𝒉¯))|u(y~,𝒙¯+𝒉¯)u(z~,𝒙¯+𝒉¯)|𝑑z~)p𝑑y~𝑑𝒙¯d𝒉¯(|𝒉¯|+1)d+p2\displaystyle+C\int_{{}^{d-1}}\int_{{}^{d-1}}\int_{-1}^{0}\left(\int_{I{(m(\bm{x},\overline{\bm{h}}))}}|u(\tilde{y},\overline{\bm{x}}+\overline{\bm{h}})-u(\tilde{z},\overline{\bm{x}}+\overline{\bm{h}})|d\tilde{z}\right)^{p}d\tilde{y}d\overline{\bm{x}}\frac{d\overline{\bm{h}}}{\left({\left|\overline{\bm{h}}\right|}+1\right)^{d+p-2}}
+Cd1d1(I(m(𝒙,𝒉¯))|u(z~,𝒙¯)u(z~,𝒚¯)|𝑑z~)p𝑑𝒙¯d𝒉¯(|𝒉¯|+1)d+p2C|u|𝒮1 0(1)p,\displaystyle+C\int_{{}^{d-1}}\int_{{}^{d-1}}\left(\int_{I{(m(\bm{x},\overline{\bm{h}}))}}|u(\tilde{z},\overline{\bm{x}})-u(\tilde{z},\overline{\bm{y}})|d\tilde{z}\right)^{p}d\overline{\bm{x}}\frac{d\overline{\bm{h}}}{\left({\left|\overline{\bm{h}}\right|}+1\right)^{d+p-2}}\leq C{\left|u\right|}^{p}_{\mathcal{S}^{\,0}_{1}(\mathcal{R}_{-1}^{\infty})},

where the last inequality follows immediate from Lemmas 3.13-3.14. ∎

We now show the proof of Theorem 3.7 and Theorem 1.1.

Proof of Theorem 3.7 and Theorem 1.1. From Lemma 3.10, we have

uLp(1)pCL1uLp(1)p+CLp1|u|𝒮10(1)pC|d+pβ|1(L1uLp(1)p+Lp1|u|𝒮1β(1)p),\|u\|^{p}_{L^{p}(\mathcal{R}_{-1})}\leq CL^{-1}\|u\|^{p}_{L^{p}(\mathcal{R}_{-1}^{\infty})}+CL^{p-1}{\left|u\right|}^{p}_{\mathcal{S}^{0}_{1}(\mathcal{R}_{-1}^{\infty})}\leq C|d+p-\beta|^{-1}(L^{-1}\|u\|^{p}_{L^{p}(\mathcal{R}_{-1}^{\infty})}+L^{p-1}{\left|u\right|}^{p}_{\mathcal{S}^{\,\beta}_{1}(\mathcal{R}_{-1}^{\infty})})\,,

for any L>0L>0. By taking L=uLp(1)/|u|𝒮1β(1)L=\|u\|_{L^{p}(\mathcal{R}_{-1}^{\infty})}/{\left|u\right|}_{\mathcal{S}^{\,\beta}_{1}(\mathcal{R}_{-1}^{\infty})} for u0u\neq 0 in the above inequality, we obtain (3.1). (3.2) is an immediate result in Lemma 3.15.

The proof of the general nonlocal trace Theorem 1.1 on half spaces then follows from Theorem 3.7 and the scaling argument in Lemma 2.5: for any u𝒮δβ(δ)u\in\mathcal{S}^{\,\beta}_{\delta}(\mathcal{R}_{-\delta}^{\infty}) and let v(𝒙)=u(δ𝒙)v(\bm{x})=u(\delta\bm{x}), then v𝒮1β(1)v\in{\mathcal{S}^{\,\beta}_{1}(\mathcal{R}_{-1}^{\infty})} and

1δuLp(δ)p\displaystyle\frac{1}{\delta}\|u\|^{p}_{L^{p}(\mathcal{R}_{-\delta})} =δd1vLp(1)pC|d+pβ|1δd1vLp(1)p1|v|𝒮1β(1)\displaystyle=\delta^{d-1}\|v\|^{p}_{L^{p}(\mathcal{R}_{-1})}\leq C|d+p-\beta|^{-1}\delta^{d-1}\|v\|^{p-1}_{L^{p}(\mathcal{R}_{-1}^{\infty})}{\left|v\right|}_{\mathcal{S}^{\,\beta}_{1}(\mathcal{R}_{-1}^{\infty})}
=C|d+pβ|1uLp(δ)p1|u|𝒮δβ(δ)C|d+pβ|1(uLp(δ)p+|u|𝒮δβ(δ)p).\displaystyle=C|d+p-\beta|^{-1}\|u\|^{p-1}_{L^{p}(\mathcal{R}_{-\delta}^{\infty})}{\left|u\right|}_{\mathcal{S}^{\,\beta}_{\delta}(\mathcal{R}_{-\delta}^{\infty})}\leq C|d+p-\beta|^{-1}\left(\|u\|^{p}_{L^{p}(\mathcal{R}_{-\delta}^{\infty})}+{\left|u\right|}^{p}_{\mathcal{S}^{\,\beta}_{\delta}(\mathcal{R}_{-\delta}^{\infty})}\right).
|u|𝒯δβ(δ)p\displaystyle|u|^{p}_{\mathcal{T}^{\,\beta}_{\delta}(\mathcal{R}_{-\delta})} =δdp|v|𝒯1β(1)pC|d+pβ|1δdp|v|𝒮1β(1)p=C|d+pβ|1|u|𝒮δβ(δ)p.\displaystyle=\delta^{d-p}{\left|v\right|}^{p}_{\mathcal{T}^{\,\beta}_{1}(\mathcal{R}_{-1})}\leq C|d+p-\beta|^{-1}\delta^{d-p}{\left|v\right|}^{p}_{\mathcal{S}^{\,\beta}_{1}(\mathcal{R}_{-1}^{\infty})}=C|d+p-\beta|^{-1}{\left|u\right|}^{p}_{\mathcal{S}^{\,\beta}_{\delta}(\mathcal{R}_{-\delta}^{\infty})}.

Remark 3.

We have proved in Lemma 3.10 that uLp(1){\left|\left|u\right|\right|}_{L^{p}(\mathcal{R}_{-1})} is bounded by the LpL^{p} norm and the 𝒮1β\mathcal{S}_{1}^{\,\beta} semi-norm on a stripe domain 1L{\mathcal{R}_{-1}^{L}}, which might appear as a stronger statement that implies the result on a half space 1{\mathcal{R}_{-1}^{\infty}} in Theorem 3.7. Though, we note that the result on a stripe domain 1L{\mathcal{R}_{-1}^{L}} can also be a consequence of Theorem 3.7. Likewise, a bound on the 𝒯1β(1){\mathcal{T}_{1}^{\,\beta}(\mathcal{R}_{-1})} semi-norm can also be obtained on a stripe domain 1L{\mathcal{R}_{-1}^{L}}:

|u|𝒯1β(1)pC|d+pβ|1(|u|𝒮1β(1L)p+LpuLp(1L)p).{\left|u\right|}^{p}_{\mathcal{T}^{\,\beta}_{1}(\mathcal{R}_{-1})}\leq C|d+p-\beta|^{-1}\left(|u|^{p}_{\mathcal{S}_{1}^{\,\beta}(\mathcal{R}_{-1}^{L})}+L^{-p}\|u\|_{L^{p}(\mathcal{R}_{-1}^{L})}^{p}\right).

To verify the above conclusions, let us derive the results on the stripe domain from (3.1) and (3.2). We take a smooth cutoff function ϕ(x)Cc()\phi(x)\in C_{c}^{\infty}() such that supp(ϕ)[1,1/2](\phi)\subset[-1,1/2] and ϕ(x)=1\phi(x)=1 for x0x\leq 0. Denoting ϕ~(𝒙):d\tilde{\phi}(\bm{x}):^{d}\rightarrow such that ϕ~(x~,𝒙¯)=ϕ(x~/L)\tilde{\phi}(\tilde{x},\overline{\bm{x}})=\phi(\tilde{x}/L) for x~>0\tilde{x}>0 and ϕ~(x~,𝒙¯)=ϕ(x~)\tilde{\phi}(\tilde{x},\overline{\bm{x}})=\phi(\tilde{x}) for x~<0\tilde{x}<0, then we note that there exists a generic constant CC independent of LL and |ϕ~|C0C{\left|\tilde{\phi}\right|}_{C^{0}}\leq C, |ϕ~|C0CL1{\left|\tilde{\phi}^{\prime}\right|}_{C^{0}}\leq CL^{-1}. Substituting ϕ~u\tilde{\phi}u into (3.2), we have

|u|𝒯1β(1)p=|ϕ~u|𝒯1β(1)pC|d+pβ|1|ϕ~u|𝒮1β(1)pC|d+pβ|1(1L1L+21L/2\L)γ1β(|𝒙𝒚|)|ϕ~(𝒚)u(𝒚)ϕ~(𝒙)u(𝒙)|pd𝒚d𝒙C|d+pβ|11L1Lγ1β(|𝒙𝒚|)|ϕ~(𝒚)|p|u(𝒚)u(𝒙)|p+γ1β(|𝒙𝒚|)|u(𝒙)|p|ϕ~(𝒚)ϕ~(𝒙)|pd𝒚d𝒙+C|d+pβ|11L/2|ϕ~(𝒙)u(𝒙)|pL/2<|𝒚𝒙|<1γ1β(|𝒙𝒚|)𝑑𝒚𝑑𝒙C|d+pβ|1(ϕ~C0p|u|𝒮1β(1L)p+ϕ~C0p1L|u(𝒙)|p1LB(𝒙,1)γ1β(|𝒙𝒚|)|𝒙𝐲|pd𝒚d𝒙+ϕ~C0puLp(1L/2)pL/2<|𝒛|<11|𝒛|βd𝒛)C|d+pβ|1(|u|𝒮1β(1L)p+LpuLp(1L)p+ϕ~C0puLp(1L/2)pL/2<|𝒛|<11|𝒛|β𝑑𝒛).\begin{split}&|u|^{p}_{\mathcal{T}_{1}^{\,\beta}(\mathcal{R}_{-1})}=|\tilde{\phi}u|^{p}_{\mathcal{T}_{1}^{\,\beta}(\mathcal{R}_{-1})}\leq C|d+p-\beta|^{-1}|\tilde{\phi}u|^{p}_{\mathcal{S}_{1}^{\,\beta}(\mathcal{R}_{-1}^{\infty})}\\ \leq&C|d+p-\beta|^{-1}\left(\int_{\mathcal{R}_{-1}^{L}}\int_{\mathcal{R}_{-1}^{L}}+2\int_{\mathcal{R}_{-1}^{L/2}}\int_{\mathcal{R}^{\infty}\backslash\mathcal{R}^{L}}\right)\gamma^{\,\beta}_{1}(|\bm{x}-\bm{y}|)|\tilde{\phi}(\bm{y})u(\bm{y})-\tilde{\phi}(\bm{x})u(\bm{x})|^{p}d\bm{y}d\bm{x}\\ \leq&C|d+p-\beta|^{-1}\int_{\mathcal{R}_{-1}^{L}}\int_{\mathcal{R}_{-1}^{L}}\gamma^{\,\beta}_{1}(|\bm{x}-\bm{y}|)|\tilde{\phi}(\bm{y})|^{p}|u(\bm{y})-u(\bm{x})|^{p}+\gamma^{\,\beta}_{1}(|\bm{x}-\bm{y}|)|u(\bm{x})|^{p}|\tilde{\phi}(\bm{y})-\tilde{\phi}(\bm{x})|^{p}d\bm{y}d\bm{x}\\ &+C|d+p-\beta|^{-1}\int_{\mathcal{R}_{-1}^{L/2}}|\tilde{\phi}(\bm{x})u(\bm{x})|^{p}\int_{L/2<|\bm{y}-\bm{x}|<1}\gamma^{\,\beta}_{1}(|\bm{x}-\bm{y}|)d\bm{y}d\bm{x}\\ \leq&C|d+p-\beta|^{-1}\left(\|\tilde{\phi}\|^{p}_{C^{0}}|u|^{p}_{\mathcal{S}_{1}^{\,\beta}(\mathcal{R}_{-1}^{L})}+\|\tilde{\phi}^{\prime}\|^{p}_{C^{0}}\int_{\mathcal{R}_{-1}^{L}}|u(\bm{x})|^{p}\int_{\mathcal{R}_{-1}^{L}\cap B(\bm{x},1)}\gamma^{\,\beta}_{1}(|\bm{x}-\bm{y}|)|\bm{x}-\mathbf{y}|^{p}d\bm{y}d\bm{x}\right.\\ &\left.+\|\tilde{\phi}\|_{C^{0}}^{p}\|u\|_{L^{p}(\mathcal{R}_{-1}^{L/2})}^{p}\int_{L/2<|\bm{z}|<1}\frac{1}{|\bm{z}|^{\beta}}d\bm{z}\right)\\ \leq&C|d+p-\beta|^{-1}\left(|u|^{p}_{\mathcal{S}_{1}^{\,\beta}(\mathcal{R}_{-1}^{L})}+{L^{-p}}\|u\|_{L^{p}(\mathcal{R}_{-1}^{L})}^{p}+\|\tilde{\phi}\|_{C^{0}}^{p}\|u\|_{L^{p}(\mathcal{R}_{-1}^{L/2})}^{p}\int_{L/2<|\bm{z}|<1}\frac{1}{|\bm{z}|^{\beta}}d\bm{z}\right).\end{split}

Notice that

L/2<|𝒛|<11|𝒛|β𝑑𝒛=0 if L2,\int_{L/2<|\bm{z}|<1}\frac{1}{|\bm{z}|^{\beta}}d\bm{z}=0\quad\text{ if }L\geq 2,

otherwise

L/2<|𝒛|<11|𝒛|β𝑑𝒛CLdβCLp\int_{L/2<|\bm{z}|<1}\frac{1}{|\bm{z}|^{\beta}}d\bm{z}\leq CL^{d-\beta}\leq CL^{-p}

since dβ>pd-\beta>-p. So we have |u|𝒯1β(1)pC|d+pβ|1(|u|𝒮1β(1L)p+LpuLp(1L)p)|u|^{p}_{\mathcal{T}_{1}^{\,\beta}(\mathcal{R}_{-1})}\leq C|d+p-\beta|^{-1}\left(|u|^{p}_{\mathcal{S}_{1}^{\,\beta}(\mathcal{R}_{-1}^{L})}+L^{-p}\|u\|_{L^{p}(\mathcal{R}_{-1}^{L})}^{p}\right) for all L>0L>0. Similarly, substituting ϕ~u\tilde{\phi}u into (3.1) for β=0\beta=0 yields

uLp(1)p=ϕ~uLp(1)pCϕ~uLp(1)p1|ϕ~u|𝒮10(1)CuLp(1L)p1(|u|𝒮10(1L)+L1uLp(1L))\displaystyle\|u\|^{p}_{L^{p}(\mathcal{R}_{-1})}=\|\tilde{\phi}u\|^{p}_{L^{p}(\mathcal{R}_{-1})}\leq C\|\tilde{\phi}u\|^{p-1}_{L^{p}(\mathcal{R}_{-1}^{\infty})}{\left|\tilde{\phi}u\right|}_{\mathcal{S}^{0}_{1}(\mathcal{R}_{-1}^{\infty})}\leq C\|u\|^{p-1}_{L^{p}(\mathcal{R}_{-1}^{L})}\left(|u|_{\mathcal{S}_{1}^{0}(\mathcal{R}_{-1}^{L})}+L^{-1}\|u\|_{L^{p}(\mathcal{R}_{-1}^{L})}\right)
CL1uLp(1L)p+CuLp(1L)p1|u|𝒮10(1L)CL1uLp(1L)p+CLp1|u|𝒮10(1L)p.\displaystyle\leq CL^{-1}\|u\|^{p}_{L^{p}(\mathcal{R}_{-1}^{L})}+C\|u\|^{p-1}_{L^{p}(\mathcal{R}_{-1}^{L})}{\left|u\right|}_{\mathcal{S}^{0}_{1}(\mathcal{R}_{-1}^{L})}\leq CL^{-1}\|u\|^{p}_{L^{p}(\mathcal{R}_{-1}^{L})}+CL^{p-1}{\left|u\right|}^{p}_{\mathcal{S}^{0}_{1}(\mathcal{R}_{-1}^{L})}.

4 Nonlocal Inverse Trace Theorem

For u:1u:\mathcal{R}_{-1}\to\mathbb{R} and L=2mL=2^{m} (m+{0}m\in\mathbb{Z}_{+}\cup\{0\}), we now define the extension operator ELu:1E^{L}u:\mathcal{R}_{-1}^{\infty}\to\mathbb{R}. Notice that the kernel γ1β{\gamma}^{\,\beta}_{1} is defined in (1.4) with the two cases β[0,d)\beta\in[0,d) and β(d,d+p)\beta\in(d,d+p). We have the following two cases for the definition of ELE^{L}.
Case 1: β[0,d)\beta\in[0,d). We define a partition of unity for L\mathcal{R}^{L} according to the decomposition 𝒲I(L)\mathscr{W}^{I}(\mathcal{R}^{L}) defined in (2.6). For any W𝒲I(L)W\in\mathscr{W}^{I}(\mathcal{R}^{L}), let ϕWI:+d[0,1]\phi_{W}^{I}:\mathbb{R}^{d}_{+}\to[0,1] be a smooth function associated with WW such that ϕWI\phi_{W}^{I} is bounded below uniformly on WW, LipϕWI1/l(W)\phi_{W}^{I}\lesssim 1/l(W) and supp(ϕWI)(\phi_{W}^{I}) is contained in an l(W)/4l(W)/4-neighborhood of WW. Moreover, W𝒲I(L)ϕWI1\sum_{W\in\mathcal{W}^{I}(\mathcal{R}^{L})}\phi_{W}^{I}\equiv 1 on L\mathcal{R}^{L}. Notice that {ϕWI}\{\phi^{I}_{W}\} should also depend on LL and here we drop the LL dependence for simplicity of notations. The extension operator is then defined as

ELu(𝒙)={W𝒲I(L)aWIϕWI(𝒙)𝒙,u(𝒙)𝒙1,E^{L}u(\bm{x})=\left\{\begin{aligned} \sum_{W\in\mathscr{W}^{I}(\mathcal{R}^{L})}a_{W}^{I}\phi_{W}^{I}(\bm{x})\quad&\bm{x}\in\mathcal{R}^{\infty}\,,\\ u(\bm{x})\quad&\bm{x}\in\mathcal{R}_{-1}\,,\end{aligned}\right. (4.1)

where

aWI:=(1(W)u)/|1(W)|,a_{W}^{I}:=\left(\int_{\mathscr{M}_{1}(W)}u\right)\big{/}|\mathscr{M}_{1}(W)|,

and the map 1\mathscr{M}_{1} is defined for any W=(a,b]×Q𝒲I(L)W=(a,b]\times Q\in\mathscr{W}^{I}(\mathcal{R}^{L}) as

1(W)=(1,0)×Q.\mathscr{M}_{1}(W)=(-1,0)\times Q\,. (4.2)

Case 2: β(d,d+p)\beta\in(d,d+p). We similarly define {ϕWII}W𝒲II(L)\{\phi_{W}^{II}\}_{W\in\mathscr{W}^{II}(\mathcal{R}^{L})} as a partition of unity for L\mathcal{R}^{L} according to 𝒲II(L)\mathscr{W}^{II}(\mathcal{R}^{L}) defined in (2.7). More specifically, for any W𝒲II(L)W\in\mathscr{W}^{II}(\mathcal{R}^{L}), ϕWII:+d[0,1]\phi_{W}^{II}:\mathbb{R}^{d}_{+}\to[0,1] is a smooth function bounded below uniformly on WW, LipϕWII1/l(W)\phi_{W}^{II}\lesssim 1/l(W) and supp(ϕWII)(\phi_{W}^{II}) is contained in an l(W)/4l(W)/4-neighborhood of WW. Moreover, W𝒲II(L)ϕWII1\sum_{W\in\mathcal{W}^{II}(\mathcal{R}^{L})}\phi_{W}^{II}\equiv 1 on L\mathcal{R}^{L}. Then the extension operator is given by

ELu(𝒙)={W𝒲II(L)aWIIϕWII(𝒙)𝒙,u(𝒙)𝒙1,E^{L}u(\bm{x})=\left\{\begin{aligned} \sum_{W\in\mathscr{W}^{II}(\mathcal{R}^{L})}a_{W}^{II}\phi_{W}^{II}(\bm{x})\quad&\bm{x}\in\mathcal{R}^{\infty}\,,\\ u(\bm{x})\quad&\bm{x}\in\mathcal{R}_{-1}\,,\end{aligned}\right. (4.3)

where

aWII:=(2(W)u)/|2(W)|,a_{W}^{II}:=\left(\int_{\mathscr{M}_{2}(W)}u\right)\big{/}|\mathscr{M}_{2}(W)|,

and the map 2\mathscr{M}_{2} for any W=(a,b]×Q𝒲II(L)W=(a,b]\times Q\in\mathscr{W}^{II}(\mathcal{R}^{L}) as

2(W)={(b,a)×Qif b1,(1,0)×Qif b>1.\mathscr{M}_{2}(W)=\left\{\begin{aligned} &(-b,-a)\times Q\quad&\text{if }b\leq 1\,,\\ &(-1,0)\times Q\quad&\text{if }b>1\,.\end{aligned}\right. (4.4)

Notice that for such WW in 𝒲II(L)\mathscr{W}^{II}(\mathcal{R}^{L}), if b>1b>1, then we have a1a\geq 1 and |ba|1|b-a|\geq 1.

Remark 4.

The two types of extensions in (4.1) and (4.3) work for β[0,d)\beta\in[0,d) and β(d,d+p)\beta\in(d,d+p) respectively. Notice that if uC(1¯)u\in C(\overline{\mathcal{R}_{1}}), then the extension in (4.3) gives a continuously function across the boundary \partial\mathcal{R}^{\infty} to have necessary regularity. On the other hand, the extended function in (4.1) is discontinuous across \partial\mathcal{R}^{\infty}. Such an extension is fine in this case, since 𝒮1β(1)\mathcal{S}_{1}^{\,\beta}(\mathcal{R}_{-1}^{\infty}) is equivalent to Lp(1)L^{p}(\mathcal{R}_{-1}^{\infty}) for β[0,d)\beta\in[0,d) , and it accepts discontinuous functions. We also note that the map in (4.4) characterizes two regimes – the “fractional regime”, where any cube in 1\mathcal{R}^{1} is mapped to its symmetric reflection in 1\mathcal{R}_{-1}, and the “classical regime”, where any cube in \1\mathcal{R}^{\infty}\backslash\mathcal{R}^{1} is mapped to a (hyper)rectangle in 1\mathcal{R}_{-1}. Related discussions on extension operators for the fractional and classical Sobolev spaces using Whitney decompositions can be found in [26] and [38].

Theorem 4.16.

For any L=2mL=2^{m} (m+m\in\mathbb{Z}_{+}), let ELE^{L} be the extension operator defined in (4.1) for β[0,d)\beta\in[0,d) or in (4.3) for β(d,d+p)\beta\in(d,d+p), then EL:𝒯1β(1)𝒮1β(1)E^{L}:\mathcal{T}_{1}^{\,\beta}(\mathcal{R}_{-1})\to\mathcal{S}_{1}^{\,\beta}(\mathcal{R}_{-1}^{\infty}) and

ELuLp(1)pCLuLp(1)p\displaystyle\|E^{L}u\|^{p}_{L^{p}(\mathcal{R}_{-1}^{\infty})}\leq CL\|u\|^{p}_{L^{p}(\mathcal{R}_{-1})} (4.5)
|ELu|𝒮1β(1)pC(L(p1)uLp(1)p+|βd|1|u|𝒯1β(1)p)\displaystyle|E^{L}u|^{p}_{\mathcal{S}_{1}^{\,\beta}(\mathcal{R}_{-1}^{\infty})}\leq C\left(L^{-(p-1)}\|u\|^{p}_{L^{p}(\mathcal{R}_{-1})}+|\beta-d|^{-1}|u|^{p}_{\mathcal{T}_{1}^{\,\beta}(\mathcal{R}_{-1})}\right) (4.6)

where CC is a constant independent of LL, β\beta and u𝒯1β(1)u\in\mathcal{T}_{1}^{\,\beta}(\mathcal{R}_{-1}).

Proof.

We first take the case β[0,d)\beta\in[0,d), where ELE^{L} is defined in (4.1). Notice that by the construction of {ϕWI}W𝒲I(L)\{\phi_{W}^{I}\}_{W\in\mathscr{W}^{I}(\mathcal{R}^{L})} the support of each ϕWI\phi_{W}^{I} overlaps with only a finite number of the supports of other function. For the LpL^{p} estimate, we have

|ELu|p=|W𝒲I(L)aWIϕWI(𝒙)|p𝑑𝒙W𝒲I(L)|aWI|p|ϕWI|p(𝒙)d𝒙W𝒲I(L)|W||aWI|pW𝒲I(L)|W||1(W)|1(W)|u(𝒙)|p𝑑𝒙k=0m2k1|u(𝒙)|p𝑑𝒙2m1|u(𝒙)|p𝑑𝒙LuLp(1)p.\begin{split}\int_{\mathcal{R}^{\infty}}|E^{L}u|^{p}&=\int_{\mathcal{R}^{\infty}}\left|\sum_{W\in\mathscr{W}^{I}(\mathcal{R}^{L})}a_{W}^{I}\phi_{W}^{I}(\bm{x})\right|^{p}d\bm{x}\lesssim\int_{\mathcal{R}^{\infty}}\sum_{W\in\mathscr{W}^{I}(\mathcal{R}^{L})}\left|a_{W}^{I}\right|^{p}|\phi_{W}^{I}|^{p}(\bm{x})d\bm{x}\\ &\lesssim\sum_{W\in\mathscr{W}^{I}(\mathcal{R}^{L})}|W|\left|a_{W}^{I}\right|^{p}\leq\sum_{W\in\mathscr{W}^{I}(\mathcal{R}^{L})}\frac{|W|}{|\mathscr{M}_{1}(W)|}\int_{\mathscr{M}_{1}(W)}|u(\bm{x})|^{p}d\bm{x}\\ &\lesssim\sum_{k=0}^{m}2^{k}\int_{\mathcal{R}_{-1}}|u(\bm{x})|^{p}d\bm{x}\lesssim 2^{m}\int_{\mathcal{R}_{-1}}|u(\bm{x})|^{p}d\bm{x}\lesssim L\|u\|^{p}_{L^{p}(\mathcal{R}_{-1})}\,.\end{split}

Thus (4.5) is true.

Now to estimate |ELu|𝒮1β(1)|E^{L}u|_{\mathcal{S}_{1}^{\,\beta}(\mathcal{R}_{-1}^{\infty})}, we first note that

11γ1β(|𝒚𝒙|)|ELu(𝒚)ELu(𝒙)|p𝑑𝒚𝑑𝒙=11γ1β(|𝒚𝒙|)|u(𝒚)u(𝒙)|p𝑑𝒚𝑑𝒙|u|𝒯1β(1)p.\int_{\mathcal{R}_{-1}}\int_{\mathcal{R}_{-1}}{\gamma}^{\,\beta}_{1}(|\bm{y}-\bm{x}|)|E^{L}u(\bm{y})-E^{L}u(\bm{x})|^{p}d\bm{y}d\bm{x}=\int_{\mathcal{R}_{-1}}\int_{\mathcal{R}_{-1}}{\gamma}^{\,\beta}_{1}(|\bm{y}-\bm{x}|)|u(\bm{y})-u(\bm{x})|^{p}d\bm{y}d\bm{x}\lesssim|u|^{p}_{\mathcal{T}_{1}^{\,\beta}(\mathcal{R}_{-1})}\,.

So we only need to estimate

I.1=1γ1β(|𝒚𝒙|)|ELu(𝒚)ELu(𝒙)|p𝑑𝒚𝑑𝒙,I.1=\int_{\mathcal{R}_{-1}}\int_{\mathcal{R}^{\infty}}{\gamma}^{\,\beta}_{1}(|\bm{y}-\bm{x}|)|E^{L}u(\bm{y})-E^{L}u(\bm{x})|^{p}d\bm{y}d\bm{x}\,, (4.7)

and

I.2=γ1β(|𝒚𝒙|)|ELu(𝒚)ELu(𝒙)|p𝑑𝒚𝑑𝒙.I.2=\int_{\mathcal{R}^{\infty}}\int_{\mathcal{R}^{\infty}}{\gamma}^{\,\beta}_{1}(|\bm{y}-\bm{x}|)|E^{L}u(\bm{y})-E^{L}u(\bm{x})|^{p}d\bm{y}d\bm{x}\,. (4.8)

Notice that for any 𝒚W1𝒲I(L)\bm{y}\in W_{1}\in\mathscr{W}^{I}(\mathcal{R}^{L}),

ELu(𝒚)u(𝒙)=W𝒲I(L)aWIϕWI(𝒚)u(𝒙)=W𝒩(W1)𝒲I(L)(aWIaW1I)ϕWI(𝒚)+(aW1Iu(𝒙)),\begin{split}E^{L}u(\bm{y})-u(\bm{x})=&\sum_{W\in\mathscr{W}^{I}(\mathcal{R}^{L})}a_{W}^{I}\phi_{W}^{I}(\bm{y})-u(\bm{x})=\sum_{W\in\mathscr{N}(W_{1})\cap\mathscr{W}^{I}(\mathcal{R}^{L})}\left(a_{W}^{I}-a_{W_{1}}^{I}\right)\phi_{W}^{I}(\bm{y})+\left(a_{W_{1}}^{I}-u(\bm{x})\right)\,,\end{split}

where 𝒩(W1)𝒲I()\mathscr{N}(W_{1})\subset\mathscr{W}^{I}(\mathcal{R}^{\infty}) denotes the collections of all the cubes that have nontrivial overlaps with the l(W1)/4l(W_{1})/4-neighborhood of W1W_{1}. We then have the estimate

I.1=W1𝒲0¯1W1γ1β(|𝒚𝒙|)|ELu(𝒚)ELu(𝒙)|p𝑑𝒚𝑑𝒙W1𝒲0¯W𝒩(W1)1W1γ1β(|𝒚𝒙|)|aWIaW1I|p𝑑𝒚𝑑𝒙+W1𝒲0¯1W1γ1β(|𝒚𝒙|)|aW1Iu(𝒙)|p𝑑𝒚𝑑𝒙=:I.1.a+I.1.b.\begin{split}I.1&=\sum_{W_{1}\in\overline{\mathscr{W}_{0}}}\int_{\mathcal{R}_{-1}}\int_{W_{1}}{\gamma}^{\,\beta}_{1}(|\bm{y}-\bm{x}|)|E^{L}u(\bm{y})-E^{L}u(\bm{x})|^{p}d\bm{y}d\bm{x}\\ &\lesssim\sum_{W_{1}\in\overline{\mathscr{W}_{0}}}\sum_{W\in\mathscr{N}(W_{1})}\int_{\mathcal{R}_{-1}}\int_{W_{1}}{\gamma}^{\,\beta}_{1}(|\bm{y}-\bm{x}|)\left|a_{W}^{I}-a_{W_{1}}^{I}\right|^{p}d\bm{y}d\bm{x}+\sum_{W_{1}\in\overline{\mathscr{W}_{0}}}\int_{\mathcal{R}_{-1}}\int_{W_{1}}{\gamma}^{\,\beta}_{1}(|\bm{y}-\bm{x}|)\left|a_{W_{1}}^{I}-u(\bm{x})\right|^{p}d\bm{y}d\bm{x}\\ &=:I.1.a+I.1.b\,.\end{split}

We now estimate I.1.aI.1.a. Note that

aWIaW1I=1|1(W)|1(W)u(𝒚)𝑑𝒚1|1(W1)|1(W1)u(𝒙)𝑑𝒙=1|1(W)||1(W1)|1(W1)1(W)(u(𝒚)u(𝒙))𝑑𝒚𝑑𝒙,\begin{split}a_{W}^{I}-a_{W_{1}}^{I}&=\frac{1}{|\mathscr{M}_{1}(W)|}\int_{\mathscr{M}_{1}(W)}u(\bm{y}^{\prime})d\bm{y}^{\prime}-\frac{1}{|\mathscr{M}_{1}(W_{1})|}\int_{\mathscr{M}_{1}(W_{1})}u(\bm{x}^{\prime})d\bm{x}^{\prime}\\ &=\frac{1}{|\mathscr{M}_{1}(W)||\mathscr{M}_{1}(W_{1})|}\int_{\mathscr{M}_{1}(W_{1})}\int_{\mathscr{M}_{1}(W)}(u(\bm{y}^{\prime})-u(\bm{x}^{\prime}))d\bm{y}^{\prime}d\bm{x}^{\prime}\,,\end{split} (4.9)

we then have

|aWIaW1I|p1|1(W)||1(W1)|1(W1)1(W)|u(𝒚)u(𝒙)|p𝑑𝒚𝑑𝒙1|1(W)||1(W1)|1(W1)1(W)|u(𝒚)u(𝒙)|p(|𝒚𝒙|1)d+p2(|𝒚𝒙|1)β𝑑𝒚𝑑𝒙,\begin{split}\left|a_{W}^{I}-a_{W_{1}}^{I}\right|^{p}&\leq\frac{1}{|\mathscr{M}_{1}(W)||\mathscr{M}_{1}(W_{1})|}\int_{\mathscr{M}_{1}(W_{1})}\int_{\mathscr{M}_{1}(W)}|u(\bm{y}^{\prime})-u(\bm{x}^{\prime})|^{p}d\bm{y}^{\prime}d\bm{x}^{\prime}\\ &\lesssim\frac{1}{|\mathscr{M}_{1}(W)||\mathscr{M}_{1}(W_{1})|}\int_{\mathscr{M}_{1}(W_{1})}\int_{\mathscr{M}_{1}(W)}\frac{|u(\bm{y}^{\prime})-u(\bm{x}^{\prime})|^{p}}{(|\bm{y}^{\prime}-\bm{x}^{\prime}|\vee 1)^{d+p-2}(|\bm{y}^{\prime}-\bm{x}^{\prime}|\wedge 1)^{\,\beta}}d\bm{y}^{\prime}d\bm{x}^{\prime}\,,\end{split}

where we have used |𝒚𝒙|1|\bm{y}^{\prime}-\bm{x}^{\prime}|\lesssim 1 in the last inequality as a result of W1𝒲0¯W_{1}\in\overline{\mathscr{W}_{0}} and W𝒩(W1)W\in\mathscr{N}(W_{1}). Notice that γ1β(|𝒚𝒙|)=Cd,p,β1{|𝒚𝒙|<1}/|𝒚𝒙|β{\gamma}^{\,\beta}_{1}(|\bm{y}-\bm{x}|)=C_{d,p,\,\beta}1_{\{|\bm{y}-\bm{x}|<1\}}/|\bm{y}-\bm{x}|^{\,\beta} by (1.4), so

I.1.aW1𝒲0¯W𝒩(W1)(1W1Cd,p,β1{|𝒚𝒙|<1}|𝒚𝒙|β1|1(W)||1(W1)|𝑑𝒚𝑑𝒙)(1(W1)1(W)|u(𝒚)u(𝒙)|p(|𝒚𝒙|1)d+p2(|𝒚𝒙|1)β𝑑𝒚𝑑𝒙).\begin{split}I.1.a\lesssim\sum_{W_{1}\in\overline{\mathscr{W}_{0}}}\sum_{W\in\mathscr{N}(W_{1})}&\left(\int_{\mathcal{R}_{-1}}\int_{W_{1}}\frac{C_{d,p,\,\beta}1_{\{|\bm{y}-\bm{x}|<1\}}}{|\bm{y}-\bm{x}|^{\,\beta}}\frac{1}{|\mathscr{M}_{1}(W)||\mathscr{M}_{1}(W_{1})|}d\bm{y}d\bm{x}\right)\\ &\cdot\left(\int_{\mathscr{M}_{1}(W_{1})}\int_{\mathscr{M}_{1}(W)}\frac{|u(\bm{y}^{\prime})-u(\bm{x}^{\prime})|^{p}}{(|\bm{y}^{\prime}-\bm{x}^{\prime}|\vee 1)^{d+p-2}(|\bm{y}^{\prime}-\bm{x}^{\prime}|\wedge 1)^{\,\beta}}d\bm{y}^{\prime}d\bm{x}^{\prime}\right)\,.\end{split}

For any 𝒚W1𝒲0¯\bm{y}\in W_{1}\in\overline{\mathscr{W}_{0}},

1Cd,p,β1{|𝒚𝒙|<1}|𝒚𝒙|β𝑑𝒙|𝒔|<1Cd,p,β|𝒔|β𝑑𝒔1dβ.\int_{\mathcal{R}_{-1}}\frac{C_{d,p,\,\beta}1_{\{|\bm{y}-\bm{x}|<1\}}}{|\bm{y}-\bm{x}|^{\,\beta}}d\bm{x}\leq\int_{|\bm{s}|<1}\frac{C_{d,p,\,\beta}}{|\bm{s}|^{\,\beta}}d\bm{s}\lesssim\frac{1}{d-\beta}\,.

Notice that 1/(dβ)1/(d-\beta) is the constant that appears in (4.6) and it blows up as βd\beta\to d so we have to take a fixed β[0,d)\beta\in[0,d). Therefore,

1W1Cd,p,β1{|𝒚𝒙|<1}|𝒚𝒙|β1|1(W)||1(W1)|𝑑𝒚𝑑𝒙|βd|1|W1||1(W)||1(W1)||βd|1,\int_{\mathcal{R}_{-1}}\int_{W_{1}}\frac{C_{d,p,\,\beta}1_{\{|\bm{y}-\bm{x}|<1\}}}{|\bm{y}-\bm{x}|^{\,\beta}}\frac{1}{|\mathscr{M}_{1}(W)||\mathscr{M}_{1}(W_{1})|}d\bm{y}d\bm{x}\lesssim\frac{|\beta-d|^{-1}|W_{1}|}{|\mathscr{M}_{1}(W)||\mathscr{M}_{1}(W_{1})|}\lesssim|\beta-d|^{-1}\,,

where we have used the fact that |W1||1(W)||1(W1)|1|W_{1}|\approx|\mathscr{M}_{1}(W)|\approx|\mathscr{M}_{1}(W_{1})|\approx 1 for any W1𝒲0¯W_{1}\in\overline{\mathscr{W}_{0}} and W𝒩(W1)W\in\mathscr{N}(W_{1}). So

I.1.a|βd|1W1𝒲0¯W𝒩(W1)1(W1)1(W)|u(𝒚)u(𝒙)|p(|𝒚𝒙|1)d+p2(|𝒚𝒙|1)β𝑑𝒚𝑑𝒙|βd|1|u|𝒯1β(1)p.I.1.a\lesssim|\beta-d|^{-1}\sum_{W_{1}\in\overline{\mathscr{W}_{0}}}\sum_{W\in\mathscr{N}(W_{1})}\int_{\mathscr{M}_{1}(W_{1})}\int_{\mathscr{M}_{1}(W)}\frac{|u(\bm{y}^{\prime})-u(\bm{x}^{\prime})|^{p}}{(|\bm{y}^{\prime}-\bm{x}^{\prime}|\vee 1)^{d+p-2}(|\bm{y}^{\prime}-\bm{x}^{\prime}|\wedge 1)^{\,\beta}}d\bm{y}^{\prime}d\bm{x}^{\prime}\lesssim|\beta-d|^{-1}|u|^{p}_{\mathcal{T}_{1}^{\,\beta}(\mathcal{R}_{-1})}\,.

Now since

|aW1Iu(𝒙)|p=|1|1(W1)|1(W1)(u(𝒚)u(𝒙))𝑑𝒚|p1|1(W1)|1(W1)|u(𝒚)u(𝒙)|p𝑑𝒚1|1(W1)|1(W1)|u(𝒚)u(𝒙)|p(|𝒚𝒙|1)d+p2(|𝒚𝒙|1)β𝑑𝒚,\begin{split}\left|a_{W_{1}}^{I}-u(\bm{x})\right|^{p}&=\left|\frac{1}{|\mathscr{M}_{1}(W_{1})|}\int_{\mathscr{M}_{1}(W_{1})}(u(\bm{y}^{\prime})-u(\bm{x}))d\bm{y}^{\prime}\right|^{p}\leq\frac{1}{|\mathscr{M}_{1}(W_{1})|}\int_{\mathscr{M}_{1}(W_{1})}|u(\bm{y}^{\prime})-u(\bm{x})|^{p}d\bm{y}^{\prime}\\ &\lesssim\frac{1}{|\mathscr{M}_{1}(W_{1})|}\int_{\mathscr{M}_{1}(W_{1})}\frac{|u(\bm{y}^{\prime})-u(\bm{x})|^{p}}{(|\bm{y}^{\prime}-\bm{x}|\vee 1)^{d+p-2}(|\bm{y}^{\prime}-\bm{x}|\wedge 1)^{\,\beta}}d\bm{y}^{\prime}\,,\end{split}

as a result of the fact that 𝒚W1\bm{y}\in W_{1} and |𝒚𝒙|1|\bm{y}-\bm{x}|\lesssim 1, we have

I.1.bW1𝒲0¯1(W11{|𝒚𝒙|<1}|𝒚𝒙|β1|1(W1)|𝑑𝒚1(W1)|u(𝒚)u(𝒙)|p(|𝒚𝒙|1)d+p2(|𝒚𝒙|1)β𝑑𝒚)𝑑𝒙|βd|1W1𝒲0¯11(W1)|u(𝒚)u(𝒙)|p(|𝒚𝒙|1)d+p2(|𝒚𝒙|1)β𝑑𝒚𝑑𝒙|βd|1|u|𝒯1β(1)p.\begin{split}I.1.b&\lesssim\sum_{W_{1}\in\overline{\mathscr{W}_{0}}}\int_{\mathcal{R}_{-1}}\left(\int_{W_{1}}\frac{1_{\{|\bm{y}-\bm{x}|<1\}}}{|\bm{y}-\bm{x}|^{\,\beta}}\frac{1}{|\mathscr{M}_{1}(W_{1})|}d\bm{y}\int_{\mathscr{M}_{1}(W_{1})}\frac{|u(\bm{y}^{\prime})-u(\bm{x})|^{p}}{(|\bm{y}^{\prime}-\bm{x}|\vee 1)^{d+p-2}(|\bm{y}^{\prime}-\bm{x}|\wedge 1)^{\,\beta}}d\bm{y}^{\prime}\right)d\bm{x}\\ &\lesssim|\beta-d|^{-1}\sum_{W_{1}\in\overline{\mathscr{W}_{0}}}\int_{\mathcal{R}_{-1}}\int_{\mathscr{M}_{1}(W_{1})}\frac{|u(\bm{y}^{\prime})-u(\bm{x})|^{p}}{(|\bm{y}^{\prime}-\bm{x}|\vee 1)^{d+p-2}(|\bm{y}^{\prime}-\bm{x}|\wedge 1)^{\,\beta}}d\bm{y}^{\prime}d\bm{x}\lesssim|\beta-d|^{-1}|u|^{p}_{\mathcal{T}_{1}^{\,\beta}(\mathcal{R}_{-1})}\,.\end{split}

Together we have shown that I.1I.1 in (4.7) is bounded by |u|𝒯1β(1)p|u|^{p}_{\mathcal{T}_{1}^{\,\beta}(\mathcal{R}_{-1})}.

To estimate I.2I.2 in (4.8), we first note that

I.2=W1𝒲I()W2𝒩(W1)W1W2γ1β(|𝒚𝒙|)|ELu(𝒚)ELu(𝒙)|p𝑑𝒚𝑑𝒙,I.2=\sum_{W_{1}\in\mathscr{W}^{I}(\mathcal{R}^{\infty})}\sum_{W_{2}\in\mathscr{N}(W_{1})}\int_{W_{1}}\int_{W_{2}}{\gamma}^{\,\beta}_{1}(|\bm{y}-\bm{x}|)|E^{L}u(\bm{y})-E^{L}u(\bm{x})|^{p}d\bm{y}d\bm{x}\,, (4.10)

since all cubes in 𝒲I()\mathscr{W}^{I}(\mathcal{R}^{\infty}) have length greater than or equal to 11 and γ1β(|𝒚𝒙|)=0{\gamma}^{\,\beta}_{1}(|\bm{y}-\bm{x}|)=0 if |𝒚𝒙|>1|\bm{y}-\bm{x}|>1. Now suppose 𝒙W1𝒲k\bm{x}\in W_{1}\in\mathscr{W}_{k} for km+1k\leq-m+1, and yW2𝒩(W1)y\in W_{2}\in\mathscr{N}(W_{1}) then

ELu(𝒚)ELu(𝒙)=W(𝒩(W1)𝒩(W2))𝒲I(L)[(aWIaW1I)(ϕWI(𝒚)ϕWI(𝒙))+aW1I(ϕWI(𝒚)ϕWI(𝒙))],E^{L}u(\bm{y})-E^{L}u(\bm{x})=\sum_{W\in(\mathscr{N}(W_{1})\cup\mathscr{N}(W_{2}))\cap\mathscr{W}^{I}(\mathcal{R}^{L})}\left[\left(a_{W}^{I}-a_{W_{1}}^{I}\right)\left(\phi_{W}^{I}(\bm{y})-\phi_{W}^{I}(\bm{x})\right)+a_{W_{1}}^{I}\left(\phi_{W}^{I}(\bm{y})-\phi_{W}^{I}(\bm{x})\right)\right],

On the other hand if 𝒙W1𝒲I(L)\𝒲m+1\bm{x}\in W_{1}\in\mathscr{W}^{I}(\mathcal{R}^{L})\backslash\mathscr{W}_{-m+1} and 𝒚W2𝒩(W1)\bm{y}\in W_{2}\in\mathscr{N}(W_{1}), then we know that both 𝒙\bm{x} and 𝒚\bm{y} are in L\mathcal{R}^{L}, and therefore

W𝒲I(L)ϕWI(𝒚)=W𝒲I(L)ϕWI(𝒙)=1.\sum_{W\in\mathscr{W}^{I}(\mathcal{R}^{L})}\phi_{W}^{I}(\bm{y})=\sum_{W\in\mathscr{W}^{I}(\mathcal{R}^{L})}\phi_{W}^{I}(\bm{x})=1.

In turn, we have

ELu(𝒚)ELu(𝒙)=W𝒲I(L)aWI(ϕWI(𝒚)ϕWI(𝒙))=W(𝒩(W1)𝒩(W2))𝒲I(L)(aWIaW1I)(ϕWI(𝒚)ϕWI(𝒙)).E^{L}u(\bm{y})-E^{L}u(\bm{x})=\sum_{W\in\mathscr{W}^{I}(\mathcal{R}^{L})}a_{W}^{I}\left(\phi_{W}^{I}(\bm{y})-\phi_{W}^{I}(\bm{x})\right)=\sum_{W\in(\mathscr{N}(W_{1})\cup\mathscr{N}(W_{2}))\cap\mathscr{W}^{I}(\mathcal{R}^{L})}\left(a_{W}^{I}-a_{W_{1}}^{I}\right)\left(\phi_{W}^{I}(\bm{y})-\phi_{W}^{I}(\bm{x})\right)\,.

Taking into account the two cases, we can show

I.2I.2.a+I.2.bI.2\lesssim I.2.a+I.2.b

where

I.2.a=W1𝒲I()W2𝒩(W1)W1W2γ1β(|𝒚𝒙|)|W(𝒩(W1)𝒩(W2))𝒲I(L)(aWIaW1I)(ϕWI(𝒚)ϕWI(𝒙))|p𝑑𝒚𝑑𝒙,I.2.a=\sum_{W_{1}\in\mathscr{W}^{I}(\mathcal{R}^{\infty})}\sum_{W_{2}\in\mathscr{N}(W_{1})}\int_{W_{1}}\int_{W_{2}}{\gamma}^{\,\beta}_{1}(|\bm{y}-\bm{x}|)\left|\sum_{W\in(\mathscr{N}(W_{1})\cup\mathscr{N}(W_{2}))\cap\mathscr{W}^{I}(\mathcal{R}^{L})}\left(a_{W}^{I}-a_{W_{1}}^{I}\right)\left(\phi_{W}^{I}(\bm{y})-\phi_{W}^{I}(\bm{x})\right)\right|^{p}d\bm{y}d\bm{x},

and

I.2.b=km+1W1𝒲kW2𝒩(W1)W1W2γ1β(|𝒚𝒙|)|W(𝒩(W1)𝒩(W2))𝒲I(L)aW1I(ϕWI(𝒚)ϕWI(𝒙))|p𝑑𝒚𝑑𝒙.I.2.b=\sum_{k\leq-m+1}\sum_{W_{1}\in\mathscr{W}_{k}}\sum_{W_{2}\in\mathscr{N}(W_{1})}\int_{W_{1}}\int_{W_{2}}{\gamma}^{\,\beta}_{1}(|\bm{y}-\bm{x}|)\left|\sum_{W\in(\mathscr{N}(W_{1})\cup\mathscr{N}(W_{2}))\cap\mathscr{W}^{I}(\mathcal{R}^{L})}a_{W_{1}}^{I}\left(\phi_{W}^{I}(\bm{y})-\phi_{W}^{I}(\bm{x})\right)\right|^{p}d\bm{y}d\bm{x}.

We first estimate I.2.bI.2.b. Since the number of sets in 𝒩(W1)𝒩(W2)\mathscr{N}(W_{1})\cup\mathscr{N}(W_{2}) is uniformly bounded by a constant for any W2𝒩(W1)W_{2}\in\mathscr{N}(W_{1}), and LipϕWI1/l(W)\phi_{W}^{I}\lesssim 1/l(W), we have

|W(𝒩(W1)𝒩(W2))𝒲I(L)aW1I(ϕWI(𝒚)ϕWI(𝒙))|p|aW1I|p|𝒚𝒙|p|l(W1)|p|𝒚𝒙|p|1(W1)||l(W1)|p1(W1)|u(𝒛)|p𝑑𝒛,\left|\sum_{W\in(\mathscr{N}(W_{1})\cup\mathscr{N}(W_{2}))\cap\mathscr{W}^{I}(\mathcal{R}^{L})}a_{W_{1}}^{I}\left(\phi_{W}^{I}(\bm{y})-\phi_{W}^{I}(\bm{x})\right)\right|^{p}\lesssim\left|a_{W_{1}}^{I}\right|^{p}\frac{|\bm{y}-\bm{x}|^{p}}{|l(W_{1})|^{p}}\lesssim\frac{|\bm{y}-\bm{x}|^{p}}{|\mathscr{M}_{1}(W_{1})||l(W_{1})|^{p}}\int_{\mathscr{M}_{1}(W_{1})}|u(\bm{z})|^{p}d\bm{z},

where we have also used l(W1)l(W2)l(W)l(W_{1})\approx l(W_{2})\approx l(W) for any W𝒩(W1)𝒩(W2)W\in\mathscr{N}(W_{1})\cup\mathscr{N}(W_{2}) and W2𝒩(W1)W_{2}\in\mathscr{N}(W_{1}). Therefore

I.2.bkm+1W1𝒲kW2𝒩(W1)W1W2γ1β(|𝒚𝒙|)|𝒚𝒙|pd𝒚d𝒙|1(W1)||l(W1)|p1(W1)|u(𝒛)|p𝑑𝒛km+1W1𝒲k|W1||1(W1)||l(W1)|p1(W1)|u(𝒛)|p𝑑𝒛km+12k(p1)1|u(𝒛)|p𝑑𝒛L(p1)uLp(1)p.\begin{split}I.2.b&\lesssim\sum_{k\leq-m+1}\sum_{W_{1}\in\mathscr{W}_{k}}\sum_{W_{2}\in\mathscr{N}(W_{1})}\int_{W_{1}}\int_{W_{2}}\frac{{\gamma}^{\,\beta}_{1}(|\bm{y}-\bm{x}|)|\bm{y}-\bm{x}|^{p}d\bm{y}d\bm{x}}{|\mathscr{M}_{1}(W_{1})||l(W_{1})|^{p}}\int_{\mathscr{M}_{1}(W_{1})}|u(\bm{z})|^{p}d\bm{z}\\ &\lesssim\sum_{k\leq-m+1}\sum_{W_{1}\in\mathscr{W}_{k}}\frac{|W_{1}|}{|\mathscr{M}_{1}(W_{1})||l(W_{1})|^{p}}\int_{\mathscr{M}_{1}(W_{1})}|u(\bm{z})|^{p}d\bm{z}\\ &\lesssim\sum_{k\leq-m+1}2^{k(p-1)}\int_{\mathcal{R}_{-1}}|u(\bm{z})|^{p}d\bm{z}\lesssim L^{-(p-1)}\|u\|^{p}_{L^{p}(\mathcal{R}_{-1})}.\end{split}

For I.2.a, we first notice that

|W(𝒩(W1)𝒩(W2))𝒲I(L)(aWIaW1I)(ϕWI(𝒚)ϕWI(𝒙))|pW𝒩(W1)𝒩(W2)|aWIaW1I|p|𝒚𝒙|pl(W)p,\left|\sum_{W\in(\mathscr{N}(W_{1})\cup\mathscr{N}(W_{2}))\cap\mathscr{W}^{I}(\mathcal{R}^{L})}\left(a_{W}^{I}-a_{W_{1}}^{I}\right)\left(\phi_{W}^{I}(\bm{y})-\phi_{W}^{I}(\bm{x})\right)\right|^{p}\lesssim\sum_{W\in\mathscr{N}(W_{1})\cup\mathscr{N}(W_{2})}\left|a_{W}^{I}-a_{W_{1}}^{I}\right|^{p}\frac{|\bm{y}-\bm{x}|^{p}}{l(W)^{p}}\,,

where we have used the fact that 𝒩(W1)𝒩(W2)\mathscr{N}(W_{1})\cup\mathscr{N}(W_{2}) contains only finite number of sets and LipϕWI1/l(W)\phi_{W}^{I}\lesssim 1/l(W). Now from (4.9), we obtain

|aWIaW1I|p1|1(W)||1(W1)|1(W1)1(W)|u(𝒚)u(𝒙)|p𝑑𝒚𝑑𝒙1|1(W)||1(W1)|1(W1)1(W)|u(𝒚)u(𝒙)|p(|𝒚𝒙|1)β𝑑𝒚𝑑𝒙.\begin{split}\left|a_{W}^{I}-a_{W_{1}}^{I}\right|^{p}&\leq\frac{1}{|\mathscr{M}_{1}(W)||\mathscr{M}_{1}(W_{1})|}\int_{\mathscr{M}_{1}(W_{1})}\int_{\mathscr{M}_{1}(W)}|u(\bm{y}^{\prime})-u(\bm{x}^{\prime})|^{p}d\bm{y}^{\prime}d\bm{x}^{\prime}\\ &\lesssim\frac{1}{|\mathscr{M}_{1}(W)||\mathscr{M}_{1}(W_{1})|}\int_{\mathscr{M}_{1}(W_{1})}\int_{\mathscr{M}_{1}(W)}\frac{|u(\bm{y}^{\prime})-u(\bm{x}^{\prime})|^{p}}{(|\bm{y}^{\prime}-\bm{x}^{\prime}|\wedge 1)^{\,\beta}}d\bm{y}^{\prime}d\bm{x}^{\prime}\,.\end{split}

Notice also that

W1W2Cd,p,β1{|𝒚𝒙|<1}|𝒚𝒙|βp𝑑𝒚𝑑𝒙W1dCd,p,β1{|𝒚𝒙|<1}|𝒚𝒙|βp𝑑𝒚𝑑𝒙|W1|.\int_{W_{1}}\int_{W_{2}}\frac{C_{d,p,\,\beta}1_{\{|\bm{y}-\bm{x}|<1\}}}{|\bm{y}-\bm{x}|^{\beta-p}}d\bm{y}d\bm{x}\leq\int_{W_{1}}\int_{\mathbb{R}^{d}}\frac{C_{d,p,\,\beta}1_{\{|\bm{y}-\bm{x}|<1\}}}{|\bm{y}-\bm{x}|^{\beta-p}}d\bm{y}d\bm{x}\lesssim|W_{1}|\,.

So we have

I.2.aW1𝒲I()W2𝒩(W1)W𝒩(W1)𝒩(W2)(W1W2Cd,p,β1{|𝒚𝒙|<1}|𝒚𝒙|βpl(W)p1|1(W)||1(W1)|𝑑𝒚𝑑𝒙)(1(W1)1(W)|u(𝒚)u(𝒙)|p(|𝒚𝒙|1)β𝑑𝒚𝑑𝒙)W1𝒲I()W2𝒩(W1)W𝒩(W1)𝒩(W2)|W1|l(W)p|1(W)||1(W1)|1(W1)1(W)|u(𝒚)u(𝒙)|p(|𝒚𝒙|1)β𝑑𝒚𝑑𝒙W1𝒲I()W2𝒩(W1)W𝒩(W1)𝒩(W2)l(W1)d+p2l(W1)pl(W1)2d21(W1)1(W)|u(𝒚)u(𝒙)|p(|𝒚𝒙|1)β𝑑𝒚𝑑𝒙(k0,kW1𝒲k+W1𝒲0¯,k=0)W2𝒩(W1)W𝒩(W1)𝒩(W2)(2k)(d+p2)1(W1)1(W)|u(𝒚)u(𝒙)|p(|𝒚𝒙|1)β𝑑𝒚𝑑𝒙(k0,kW1𝒲k+W1𝒲0¯,k=0)2k(d+p2)1(W1)B(𝒙,C2k)1|u(𝒚)u(𝒙)|p(|𝒚𝒙|1)β𝑑𝒚𝑑𝒙,\begin{split}I.2.a&\lesssim\sum_{W_{1}\in\mathscr{W}^{I}(\mathcal{R}^{\infty})}\sum_{W_{2}\in\mathscr{N}(W_{1})}\sum_{W\in\mathscr{N}(W_{1})\cup\mathscr{N}(W_{2})}\left(\int_{W_{1}}\int_{W_{2}}\frac{C_{d,p,\,\beta}1_{\{|\bm{y}-\bm{x}|<1\}}}{|\bm{y}-\bm{x}|^{\beta-p}l(W)^{p}}\frac{1}{|\mathscr{M}_{1}(W)||\mathscr{M}_{1}(W_{1})|}d\bm{y}d\bm{x}\right)\\ &\hskip 199.16928pt\cdot\left(\int_{\mathscr{M}_{1}(W_{1})}\int_{\mathscr{M}_{1}(W)}\frac{|u(\bm{y}^{\prime})-u(\bm{x}^{\prime})|^{p}}{(|\bm{y}^{\prime}-\bm{x}^{\prime}|\wedge 1)^{\,\beta}}d\bm{y}^{\prime}d\bm{x}^{\prime}\right)\\ &\lesssim\sum_{W_{1}\in\mathscr{W}^{I}(\mathcal{R}^{\infty})}\sum_{W_{2}\in\mathscr{N}(W_{1})}\sum_{W\in\mathscr{N}(W_{1})\cup\mathscr{N}(W_{2})}\frac{|W_{1}|}{l(W)^{p}|\mathscr{M}_{1}(W)||\mathscr{M}_{1}(W_{1})|}\int_{\mathscr{M}_{1}(W_{1})}\int_{\mathscr{M}_{1}(W)}\frac{|u(\bm{y}^{\prime})-u(\bm{x}^{\prime})|^{p}}{(|\bm{y}^{\prime}-\bm{x}^{\prime}|\wedge 1)^{\,\beta}}d\bm{y}^{\prime}d\bm{x}^{\prime}\\ &\lesssim\sum_{W_{1}\in\mathscr{W}^{I}(\mathcal{R}^{\infty})}\sum_{W_{2}\in\mathscr{N}(W_{1})}\sum_{W\in\mathscr{N}(W_{1})\cup\mathscr{N}(W_{2})}\frac{l(W_{1})^{d+p-2}}{l(W_{1})^{p}l(W_{1})^{2d-2}}\int_{\mathscr{M}_{1}(W_{1})}\int_{\mathscr{M}_{1}(W)}\frac{|u(\bm{y}^{\prime})-u(\bm{x}^{\prime})|^{p}}{(|\bm{y}^{\prime}-\bm{x}^{\prime}|\wedge 1)^{\,\beta}}d\bm{y}^{\prime}d\bm{x}^{\prime}\\ &\lesssim\left(\sum_{k\leq 0,k\in\mathbb{Z}}\sum_{W_{1}\in\mathscr{W}_{k}}+\sum_{W_{1}\in\overline{\mathscr{W}_{0}},\,k=0}\right)\sum_{W_{2}\in\mathscr{N}(W_{1})}\sum_{W\in\mathscr{N}(W_{1})\cup\mathscr{N}(W_{2})}(2^{-k})^{-(d+p-2)}\int_{\mathscr{M}_{1}(W_{1})}\int_{\mathscr{M}_{1}(W)}\frac{|u(\bm{y}^{\prime})-u(\bm{x}^{\prime})|^{p}}{(|\bm{y}^{\prime}-\bm{x}^{\prime}|\wedge 1)^{\,\beta}}d\bm{y}^{\prime}d\bm{x}^{\prime}\\ &\lesssim\left(\sum_{k\leq 0,k\in\mathbb{Z}}\sum_{W_{1}\in\mathscr{W}_{k}}+\sum_{W_{1}\in\overline{\mathscr{W}_{0}},\,k=0}\right)2^{k(d+p-2)}\int_{\mathscr{M}_{1}(W_{1})}\int_{B(\bm{x}^{\prime},C\cdot 2^{-k})\cap\mathcal{R}_{-1}}\frac{|u(\bm{y}^{\prime})-u(\bm{x}^{\prime})|^{p}}{(|\bm{y}^{\prime}-\bm{x}^{\prime}|\wedge 1)^{\,\beta}}d\bm{y}^{\prime}d\bm{x}^{\prime}\,,\end{split}

for some C>0C>0, and B(𝒙,r)B(\bm{x}^{\prime},r) denotes the ball of radius rr centered at 𝒙\bm{x}^{\prime}. Now chose C1=C+1C_{1}=C+1, then (C1C)2k1(C_{1}-C)\cdot 2^{-k}\geq 1 for all k0k\leq 0. Therefore

I.2.a(k0,kW1𝒲k+W1𝒲0¯,k=0)C12kC12k+11(W1)B(𝒙,C2k)1|u(𝒚)u(𝒙)|p(|𝒚𝒙|1)β𝑑𝒚𝑑𝒙dttd+p1(k0,kW1𝒲k+W1𝒲0¯,k=0)C12kC12k+11(W1)B(𝒙,C12k1)1|u(𝒚)u(𝒙)|p(|𝒚𝒙|1)β𝑑𝒚𝑑𝒙dttd+p1(k0,kW1𝒲k+W1𝒲0¯,k=0)C12kC12k+11(W1)B(𝒙,t1)1|u(𝒚)u(𝒙)|p(|𝒚𝒙|1)β𝑑𝒚𝑑𝒙dttd+p101B(𝒙,t1)1|u(𝒚)u(𝒙)|p(|𝒚𝒙|1)β𝑑𝒚𝑑𝒙dttd+p111|u(𝒚)u(𝒙)|p(|𝒚𝒙|1)β|𝒚𝒙|<t1dttd+p1𝑑𝒚𝑑𝒙11|u(𝒚)u(𝒙)|p(|𝒚𝒙|+1)d+p2(|𝒚𝒙|1)β𝑑𝒚𝑑𝒙|u|𝒯1β(1)p.\begin{split}I.2.a&\lesssim\left(\sum_{k\leq 0,k\in\mathbb{Z}}\sum_{W_{1}\in\mathscr{W}_{k}}+\sum_{W_{1}\in\overline{\mathscr{W}_{0}},\,k=0}\right)\int_{C_{1}\cdot 2^{-k}}^{C_{1}\cdot 2^{-k+1}}\int_{\mathscr{M}_{1}(W_{1})}\int_{B(\bm{x}^{\prime},C\cdot 2^{-k})\cap\mathcal{R}_{-1}}\frac{|u(\bm{y}^{\prime})-u(\bm{x}^{\prime})|^{p}}{(|\bm{y}^{\prime}-\bm{x}^{\prime}|\wedge 1)^{\,\beta}}d\bm{y}^{\prime}d\bm{x}^{\prime}\frac{dt}{t^{d+p-1}}\\ &\lesssim\left(\sum_{k\leq 0,k\in\mathbb{Z}}\sum_{W_{1}\in\mathscr{W}_{k}}+\sum_{W_{1}\in\overline{\mathscr{W}_{0}},\,k=0}\right)\int_{C_{1}\cdot 2^{-k}}^{C_{1}\cdot 2^{-k+1}}\int_{\mathscr{M}_{1}(W_{1})}\int_{B(\bm{x}^{\prime},C_{1}\cdot 2^{-k}-1)\cap\mathcal{R}_{-1}}\frac{|u(\bm{y}^{\prime})-u(\bm{x}^{\prime})|^{p}}{(|\bm{y}^{\prime}-\bm{x}^{\prime}|\wedge 1)^{\,\beta}}d\bm{y}^{\prime}d\bm{x}^{\prime}\frac{dt}{t^{d+p-1}}\\ &\lesssim\left(\sum_{k\leq 0,k\in\mathbb{Z}}\sum_{W_{1}\in\mathscr{W}_{k}}+\sum_{W_{1}\in\overline{\mathscr{W}_{0}},\,k=0}\right)\int_{C_{1}\cdot 2^{-k}}^{C_{1}\cdot 2^{-k+1}}\int_{\mathscr{M}_{1}(W_{1})}\int_{B(\bm{x}^{\prime},t-1)\cap\mathcal{R}_{-1}}\frac{|u(\bm{y}^{\prime})-u(\bm{x}^{\prime})|^{p}}{(|\bm{y}^{\prime}-\bm{x}^{\prime}|\wedge 1)^{\,\beta}}d\bm{y}^{\prime}d\bm{x}^{\prime}\frac{dt}{t^{d+p-1}}\\ &\lesssim\int_{0}^{\infty}\int_{\mathcal{R}_{-1}}\int_{B(\bm{x}^{\prime},t-1)\cap\mathcal{R}_{-1}}\frac{|u(\bm{y}^{\prime})-u(\bm{x}^{\prime})|^{p}}{(|\bm{y}^{\prime}-\bm{x}^{\prime}|\wedge 1)^{\,\beta}}d\bm{y}^{\prime}d\bm{x}^{\prime}\frac{dt}{t^{d+p-1}}\\ &\leq\int_{\mathcal{R}_{-1}}\int_{\mathcal{R}_{-1}}\frac{|u(\bm{y}^{\prime})-u(\bm{x}^{\prime})|^{p}}{(|\bm{y}^{\prime}-\bm{x}^{\prime}|\wedge 1)^{\,\beta}}\int_{|\bm{y}^{\prime}-\bm{x}^{\prime}|<t-1}\frac{dt}{t^{d+p-1}}d\bm{y}^{\prime}d\bm{x}^{\prime}\\ &\lesssim\int_{\mathcal{R}_{-1}}\int_{\mathcal{R}_{-1}}\frac{|u(\bm{y}^{\prime})-u(\bm{x}^{\prime})|^{p}}{(|\bm{y}^{\prime}-\bm{x}^{\prime}|+1)^{d+p-2}(|\bm{y}^{\prime}-\bm{x}^{\prime}|\wedge 1)^{\,\beta}}d\bm{y}^{\prime}d\bm{x}^{\prime}\lesssim|u|^{p}_{\mathcal{T}_{1}^{\,\beta}(\mathcal{R}_{-1})}\,.\end{split}

Together we have shown (4.6) for the case β[0,d)\beta\in[0,d).

Now for β(d,d+p)\beta\in(d,d+p), we take the extension operator ELE^{L} defined in (4.3). The LpL^{p} estimate of ELuE^{L}u can be shown similarly as in the first case. For the estimate of |ELu|𝒮1β(1)|E^{L}u|_{\mathcal{S}_{1}^{\,\beta}(\mathcal{R}_{-1}^{\infty})}, similar to the first case considered earlier, it is not hard to see that we only need to estimate

II.1=1γ1β(|𝒚𝒙|)|ELu(𝒚)ELu(𝒙)|p𝑑𝒚𝑑𝒙,II.1=\int_{\mathcal{R}_{-1}}\int_{\mathcal{R}^{\infty}}{\gamma}^{\,\beta}_{1}(|\bm{y}-\bm{x}|)|E^{L}u(\bm{y})-E^{L}u(\bm{x})|^{p}d\bm{y}d\bm{x}\,, (4.11)

and

II.2=γ1β(|𝒚𝒙|)|ELu(𝒚)ELu(𝒙)|p𝑑𝒚𝑑𝒙.II.2=\int_{\mathcal{R}^{\infty}}\int_{\mathcal{R}^{\infty}}{\gamma}^{\,\beta}_{1}(|\bm{y}-\bm{x}|)|E^{L}u(\bm{y})-E^{L}u(\bm{x})|^{p}d\bm{y}d\bm{x}\,. (4.12)

Similar to the first case, we can split II.1II.1 into two parts.

II.1=k=1W1𝒲k1W1γ1β(|𝒚𝒙|)|ELu(𝒚)ELu(𝒙)|p𝑑𝒚𝑑𝒙k=1W1𝒲kW𝒩(W1)1W1γ1β(|𝒚𝒙|)|aWIIaW1II|p𝑑𝒚𝑑𝒙+k=1W1𝒲k1W1γ1β(|𝒚𝒙|)|aW1IIu(𝒙)|p𝑑𝒚𝑑𝒙=:II.1.a+II.1.b.\begin{split}II.1&=\sum_{k=1}^{\infty}\sum_{W_{1}\in\mathscr{W}_{k}}\int_{\mathcal{R}_{-1}}\int_{W_{1}}{\gamma}^{\,\beta}_{1}(|\bm{y}-\bm{x}|)|E^{L}u(\bm{y})-E^{L}u(\bm{x})|^{p}d\bm{y}d\bm{x}\\ &\lesssim\sum_{k=1}^{\infty}\sum_{W_{1}\in\mathscr{W}_{k}}\sum_{W\in\mathscr{N}(W_{1})}\int_{\mathcal{R}_{-1}}\int_{W_{1}}{\gamma}^{\,\beta}_{1}(|\bm{y}-\bm{x}|)\left|a_{W}^{II}-a_{W_{1}}^{II}\right|^{p}d\bm{y}d\bm{x}+\sum_{k=1}^{\infty}\sum_{W_{1}\in\mathscr{W}_{k}}\int_{\mathcal{R}_{-1}}\int_{W_{1}}{\gamma}^{\,\beta}_{1}(|\bm{y}-\bm{x}|)\left|a_{W_{1}}^{II}-u(\bm{x})\right|^{p}d\bm{y}d\bm{x}\\ &=:II.1.a+II.1.b\,.\end{split}

From a similar equation to (4.9), we have

|aWIIaW1II|pl(W1)β|2(W)||2(W1)|2(W1)2(W)|u(𝒚)u(𝒙)|p(|𝒚𝒙|1)d+p2(|𝒚𝒙|1)β𝑑𝒚𝑑𝒙,\left|a_{W}^{II}-a_{W_{1}}^{II}\right|^{p}\lesssim\frac{l(W_{1})^{\,\beta}}{|\mathscr{M}_{2}(W)||\mathscr{M}_{2}(W_{1})|}\int_{\mathscr{M}_{2}(W_{1})}\int_{\mathscr{M}_{2}(W)}\frac{|u(\bm{y}^{\prime})-u(\bm{x}^{\prime})|^{p}}{(|\bm{y}^{\prime}-\bm{x}^{\prime}|\vee 1)^{d+p-2}(|\bm{y}^{\prime}-\bm{x}^{\prime}|\wedge 1)^{\,\beta}}d\bm{y}^{\prime}d\bm{x}^{\prime}\,, (4.13)

where we have used W𝒩(W1)W\in\mathscr{N}(W_{1}) and l(W1)1l(W_{1})\leq 1. So

II.1.ak=1W1𝒲kW𝒩(W1)(1W1Cd,p,β1{|𝒚𝒙|<1}|𝒚𝒙|βl(W1)β|2(W)||2(W1)|𝑑𝒚𝑑𝒙)(2(W1)2(W)|u(𝒚)u(𝒙)|p(|𝒚𝒙|1)d+p2(|𝒚𝒙|1)β𝑑𝒚𝑑𝒙).\begin{split}II.1.a\lesssim\sum_{k=1}^{\infty}\sum_{W_{1}\in\mathscr{W}_{k}}\sum_{W\in\mathscr{N}(W_{1})}&\left(\int_{\mathcal{R}_{-1}}\int_{W_{1}}\frac{C_{d,p,\,\beta}1_{\{|\bm{y}-\bm{x}|<1\}}}{|\bm{y}-\bm{x}|^{\,\beta}}\frac{l(W_{1})^{\,\beta}}{|\mathscr{M}_{2}(W)||\mathscr{M}_{2}(W_{1})|}d\bm{y}d\bm{x}\right)\\ &\cdot\left(\int_{\mathscr{M}_{2}(W_{1})}\int_{\mathscr{M}_{2}(W)}\frac{|u(\bm{y}^{\prime})-u(\bm{x}^{\prime})|^{p}}{(|\bm{y}^{\prime}-\bm{x}^{\prime}|\vee 1)^{d+p-2}(|\bm{y}^{\prime}-\bm{x}^{\prime}|\wedge 1)^{\,\beta}}d\bm{y}^{\prime}d\bm{x}^{\prime}\right)\,.\end{split}

For any 𝒚W1𝒲k\bm{y}\in W_{1}\in\mathscr{W}_{k} and β(d,d+p)\beta\in(d,d+p),

1Cd,p,β1{|𝒚𝒙|<1}|𝒚𝒙|β𝑑𝒙1βdl(W1)dβ.\int_{\mathcal{R}_{-1}}\frac{C_{d,p,\,\beta}1_{\{|\bm{y}-\bm{x}|<1\}}}{|\bm{y}-\bm{x}|^{\,\beta}}d\bm{x}\lesssim\frac{1}{\beta-d}l(W_{1})^{d-\beta}\,.

Notice again that the constant 1/(βd)1/(\beta-d) blows up as βd\beta\to d. Then

1W1Cd,p,β1{|𝒚𝒙|<1}|𝒚𝒙|βl(W1)β|2(W)||2(W1)|𝑑𝒚𝑑𝒙|βd|1l(W1)dβl(W1)β|2(W)||2(W1)||W1||βd|1,\int_{\mathcal{R}_{-1}}\int_{W_{1}}\frac{C_{d,p,\,\beta}1_{\{|\bm{y}-\bm{x}|<1\}}}{|\bm{y}-\bm{x}|^{\,\beta}}\frac{l(W_{1})^{\,\beta}}{|\mathscr{M}_{2}(W)||\mathscr{M}_{2}(W_{1})|}d\bm{y}d\bm{x}\lesssim|\beta-d|^{-1}l(W_{1})^{d-\beta}\cdot\frac{l(W_{1})^{\,\beta}}{|\mathscr{M}_{2}(W)||\mathscr{M}_{2}(W_{1})|}|W_{1}|\lesssim|\beta-d|^{-1}\,,

where we have used the fact that |2(W)||2(W1)||W1|l(W1)d+p2|\mathscr{M}_{2}(W)|\approx|\mathscr{M}_{2}(W_{1})|\approx|W_{1}|\approx l(W_{1})^{d+p-2}. Using this estimate, one can show

II.1.a|βd|1|u|𝒯1β(1)p.II.1.a\lesssim|\beta-d|^{-1}|u|^{p}_{\mathcal{T}_{1}^{\,\beta}(\mathcal{R}_{-1})}.

To estimate II.1.bII.1.b, we first define a decomposition of 1\mathcal{R}_{-1}

𝒲(1)={2(W):W𝒲k,k+}.\mathscr{W}(\mathcal{R}_{-1})=\left\{\mathscr{M}_{2}(W):W\in\mathscr{W}_{k},k\in\mathbb{Z}_{+}\right\}. (4.14)

Then

II.1.b=W2𝒲(1)k=1W1𝒲kW2W1γ1β(|𝒚𝒙|)|aW1IIu(𝒙)|p𝑑𝒚𝑑𝒙.II.1.b=\sum_{W_{2}\in\mathscr{W}(\mathcal{R}_{-1})}\sum_{k=1}^{\infty}\sum_{W_{1}\in\mathscr{W}_{k}}\int_{W_{2}}\int_{W_{1}}{\gamma}^{\,\beta}_{1}(|\bm{y}-\bm{x}|)\left|a_{W_{1}}^{II}-u(\bm{x})\right|^{p}d\bm{y}d\bm{x}\,. (4.15)

Notice that for any 𝒙W2𝒲(1)\bm{x}\in W_{2}\in\mathscr{W}(\mathcal{R}_{-1}) and 𝒚2(W1)\bm{y}^{\prime}\in\mathscr{M}_{2}(W_{1}) for W1𝒲k,k+W_{1}\in\mathscr{W}_{k},k\in\mathbb{Z}_{+}, we have

|𝒚𝒙|dist(W1,W2)+l(W1)+l(W2)dist(W1,W2).|\bm{y}^{\prime}-\bm{x}|\lesssim\text{dist}(W_{1},W_{2})+l(W_{1})+l(W_{2})\lesssim\text{dist}(W_{1},W_{2})\,.

Moreover, we must have dist(W1,W2)<1\text{dist}(W_{1},W_{2})<1 for the double integral in (4.15) to be non-zero. We thus have the estimate

|aW1IIu(𝒙)|p1|2(W1)|2(W1)|u(𝒚)u(𝒙)|p𝑑𝒚dist(W1,W2)β|2(W1)|2(W1)|u(𝒚)u(𝒙)|p(|𝒚𝒙|1)d+p2(|𝒚𝒙|1)β𝑑𝒚.\left|a_{W_{1}}^{II}-u(\bm{x})\right|^{p}\leq\frac{1}{|\mathscr{M}_{2}(W_{1})|}\int_{\mathscr{M}_{2}(W_{1})}|u(\bm{y}^{\prime})-u(\bm{x})|^{p}d\bm{y}^{\prime}\lesssim\frac{\text{dist}(W_{1},W_{2})^{\,\beta}}{|\mathscr{M}_{2}(W_{1})|}\int_{\mathscr{M}_{2}(W_{1})}\frac{|u(\bm{y}^{\prime})-u(\bm{x})|^{p}}{(|\bm{y}^{\prime}-\bm{x}|\vee 1)^{d+p-2}(|\bm{y}^{\prime}-\bm{x}|\wedge 1)^{\,\beta}}d\bm{y}^{\prime}\,.

Therefore

II.1.bW2𝒲(1)W1𝒲k,k+W2(W1Cd,p,β1{|𝒚𝒙|<1}|𝒚𝒙|βdist(W1,W2)β|2(W1)|𝑑𝒚2(W1)|u(𝒚)u(𝒙)|p(|𝒚𝒙|1)d+p2(|𝒚𝒙|1)β𝑑𝒚)𝑑𝒙W2𝒲(1)W1𝒲k,k+W2(W1Cd,p,βdist(W1,W2)βdist(W1,W2)β|2(W1)|𝑑𝒚2(W1)|u(𝒚)u(𝒙)|p(|𝒚𝒙|1)d+p2(|𝒚𝒙|1)β𝑑𝒚)𝑑𝒙W2𝒲(1)W1𝒲k,k+W22(W1)|u(𝒚)u(𝒙)|p(|𝒚𝒙|1)d+p2(|𝒚𝒙|1)β𝑑𝒚𝑑𝒙|u|𝒯1β(1)p.\begin{split}&II.1.b\lesssim\sum_{W_{2}\in\mathscr{W}(\mathcal{R}_{-1})}\sum_{W_{1}\in\mathscr{W}_{k},\,k\in\mathbb{Z}_{+}}\int_{W_{2}}\left(\int_{W_{1}}\frac{C_{d,p,\,\beta}1_{\{|\bm{y}-\bm{x}|<1\}}}{|\bm{y}-\bm{x}|^{\,\beta}}\frac{\text{dist}(W_{1},W_{2})^{\,\beta}}{|\mathscr{M}_{2}(W_{1})|}d\bm{y}\int_{\mathscr{M}_{2}(W_{1})}\frac{|u(\bm{y}^{\prime})-u(\bm{x})|^{p}}{(|\bm{y}^{\prime}-\bm{x}|\vee 1)^{d+p-2}(|\bm{y}^{\prime}-\bm{x}|\wedge 1)^{\,\beta}}d\bm{y}^{\prime}\right)d\bm{x}\\ &\lesssim\sum_{W_{2}\in\mathscr{W}(\mathcal{R}_{-1})}\sum_{W_{1}\in\mathscr{W}_{k},\,k\in\mathbb{Z}_{+}}\int_{W_{2}}\left(\int_{W_{1}}\frac{C_{d,p,\,\beta}}{\text{dist}(W_{1},W_{2})^{\,\beta}}\frac{\text{dist}(W_{1},W_{2})^{\,\beta}}{|\mathscr{M}_{2}(W_{1})|}d\bm{y}\int_{\mathscr{M}_{2}(W_{1})}\frac{|u(\bm{y}^{\prime})-u(\bm{x})|^{p}}{(|\bm{y}^{\prime}-\bm{x}|\vee 1)^{d+p-2}(|\bm{y}^{\prime}-\bm{x}|\wedge 1)^{\,\beta}}d\bm{y}^{\prime}\right)d\bm{x}\\ &\lesssim\sum_{W_{2}\in\mathscr{W}(\mathcal{R}_{-1})}\sum_{W_{1}\in\mathscr{W}_{k},\,k\in\mathbb{Z}_{+}}\int_{W_{2}}\int_{{\mathscr{M}_{2}(W_{1})}}\frac{|u(\bm{y}^{\prime})-u(\bm{x})|^{p}}{(|\bm{y}^{\prime}-\bm{x}|\vee 1)^{d+p-2}(|\bm{y}^{\prime}-\bm{x}|\wedge 1)^{\,\beta}}d\bm{y}^{\prime}d\bm{x}\lesssim|u|^{p}_{\mathcal{T}_{1}^{\,\beta}(\mathcal{R}_{-1})}\,.\end{split}

Now for II.2II.2, we can first write

II.2=W1𝒲II()W2𝒲II()W1W2γ1β(|𝒚𝒙|)|ELu(𝒚)ELu(𝒙)|p𝑑𝒚𝑑𝒙.II.2=\sum_{W_{1}\in\mathscr{W}^{II}(\mathcal{R}^{\infty})}\sum_{W_{2}\in\mathscr{W}^{II}(\mathcal{R}^{\infty})}\int_{W_{1}}\int_{W_{2}}{\gamma}^{\,\beta}_{1}(|\bm{y}-\bm{x}|)|E^{L}u(\bm{y})-E^{L}u(\bm{x})|^{p}d\bm{y}d\bm{x}\,. (4.16)

Observe that

ELu(𝒚)ELu(𝒙)=W(𝒩(W1)𝒩(W2))𝒲II(L)[(aWIIaW1II)(ϕWII(𝒚)ϕWII(𝒙))+aW1II(ϕWII(𝒚)ϕWII(𝒙))],E^{L}u(\bm{y})-E^{L}u(\bm{x})=\sum_{W\in(\mathscr{N}(W_{1})\cup\mathscr{N}(W_{2}))\cap\mathscr{W}^{II}(\mathcal{R}^{L})}\left[\left(a_{W}^{II}-a_{W_{1}}^{II}\right)\left(\phi_{W}^{II}(\bm{y})-\phi_{W}^{II}(\bm{x})\right)+a_{W_{1}}^{II}\left(\phi_{W}^{II}(\bm{y})-\phi_{W}^{II}(\bm{x})\right)\right],

where the second part in the above equation is only nonzero for 𝒙W1𝒲k\bm{x}\in W_{1}\in\mathscr{W}_{k} for km+1k\leq-m+1 (and therefore 𝒚W2𝒩(W1)\bm{y}\in W_{2}\in\mathscr{N}(W_{1}) in this case because of the nonlocal interaction length). Similarly as before, we have

II.2II.2.a+II.2.bII.2\lesssim II.2.a+II.2.b

where

II.2.a=W1𝒲II()W2𝒲II()W1W2γ1β(|𝒚𝒙|)|W(𝒩(W1)𝒩(W2))𝒲II(L)(aWIIaW1II)(ϕWII(𝒚)ϕWII(𝒙))|p𝑑𝒚𝑑𝒙II.2.a=\sum_{W_{1}\in\mathscr{W}^{II}(\mathcal{R}^{\infty})}\sum_{W_{2}\in\mathscr{W}^{II}(\mathcal{R}^{\infty})}\int_{W_{1}}\int_{W_{2}}{\gamma}^{\,\beta}_{1}(|\bm{y}-\bm{x}|)\left|\sum_{W\in(\mathscr{N}(W_{1})\cup\mathscr{N}(W_{2}))\cap\mathscr{W}^{II}(\mathcal{R}^{L})}\left(a_{W}^{II}-a_{W_{1}}^{II}\right)\left(\phi_{W}^{II}(\bm{y})-\phi_{W}^{II}(\bm{x})\right)\right|^{p}d\bm{y}d\bm{x}

and

II.2.b=km+1W1𝒲kW2𝒩(W1)W1W2γ1β(|𝒚𝒙|)|W(𝒩(W1)𝒩(W2))𝒲II(L)aW1II(ϕWII(𝒚)ϕWII(𝒙))|p𝑑𝒚𝑑𝒙.II.2.b=\sum_{k\leq-m+1}\sum_{W_{1}\in\mathscr{W}_{k}}\sum_{W_{2}\in\mathscr{N}(W_{1})}\int_{W_{1}}\int_{W_{2}}{\gamma}^{\,\beta}_{1}(|\bm{y}-\bm{x}|)\left|\sum_{W\in(\mathscr{N}(W_{1})\cup\mathscr{N}(W_{2}))\cap\mathscr{W}^{II}(\mathcal{R}^{L})}a_{W_{1}}^{II}\left(\phi_{W}^{II}(\bm{y})-\phi_{W}^{II}(\bm{x})\right)\right|^{p}d\bm{y}d\bm{x}.

It is easy to see that II.2.bII.2.b can be estimated similarly as I.2.bI.2.b and we have II.2.bL(p1)uLp(1)pII.2.b\lesssim L^{-(p-1)}\|u\|^{p}_{L^{p}(\mathcal{R}_{-1})}. Now for the estimate of II.2.aII.2.a, we have two different cases where W2𝒩(W1)W_{2}\in\mathscr{N}(W_{1}) and W2𝒩(W1)W_{2}\notin\mathscr{N}(W_{1}). For the case W2𝒩(W1)W_{2}\in\mathscr{N}(W_{1}), the estimate follows similarly to the estimate of I.2.aI.2.a which is omitted here. For the case W2𝒩(W1)W_{2}\notin\mathscr{N}(W_{1}), we proceed by noticing that if l(W1)2l(W_{1})\geq 2 and W2𝒩(W1)W_{2}\notin\mathscr{N}(W_{1}), then we must have dist(W1,W2)1\text{dist}(W_{1},W_{2})\geq 1 so that the double integral in (4.16) becomes zero. Therefore we only need to consider l(W1)1l(W_{1})\leq 1 (i.e., W1𝒲kW_{1}\in\mathscr{W}_{k} for k0k\geq 0) in this case. Notice that

|W(𝒩(W1)𝒩(W2))𝒲II(L)(aWIIaW1II)(ϕWII(𝒚)ϕWII(𝒙))|pW𝒩(W1)𝒩(W2)|aWIIaW1II|p|ϕWII(𝒚)ϕWII(𝒙)|pW𝒩(W1)𝒩(W2)|aWIIaW1II|p,\begin{split}\left|\sum_{W\in(\mathscr{N}(W_{1})\cup\mathscr{N}(W_{2}))\cap\mathscr{W}^{II}(\mathcal{R}^{L})}\left(a_{W}^{II}-a_{W_{1}}^{II}\right)\left(\phi_{W}^{II}(\bm{y})-\phi_{W}^{II}(\bm{x})\right)\right|^{p}&\lesssim\sum_{W\in\mathscr{N}(W_{1})\cup\mathscr{N}(W_{2})}\left|a_{W}^{II}-a_{W_{1}}^{II}\right|^{p}\left|\phi_{W}^{II}(\bm{y})-\phi_{W}^{II}(\bm{x})\right|^{p}\\ &\lesssim\sum_{W\in\mathscr{N}(W_{1})\cup\mathscr{N}(W_{2})}\left|a_{W}^{II}-a_{W_{1}}^{II}\right|^{p}\,,\end{split}

for 𝒙W1\bm{x}\in W_{1} and 𝒚W2\bm{y}\in W_{2}. For W𝒩(W1)W\in\mathscr{N}(W_{1}), we use (4.13) and

W2𝒩(W1)W1W2Cd,p,β1{|𝒚𝒙|<1}|𝒚𝒙|β𝑑𝒚𝑑𝒙W1|𝒚𝒙|l(W1)/2Cd,p,β|𝒚𝒙|β𝑑𝒚𝑑𝒙|βd|1|W1|l(W1)dβ\sum_{W_{2}\notin\mathscr{N}(W_{1})}\int_{W_{1}}\int_{W_{2}}\frac{C_{d,p,\,\beta}1_{\{|\bm{y}-\bm{x}|<1\}}}{|\bm{y}-\bm{x}|^{\,\beta}}d\bm{y}d\bm{x}\leq\int_{W_{1}}\int_{|\bm{y}-\bm{x}|\geq l(W_{1})/2}\frac{C_{d,p,\,\beta}}{|\bm{y}-\bm{x}|^{\,\beta}}d\bm{y}d\bm{x}\lesssim|\beta-d|^{-1}|W_{1}|l(W_{1})^{d-\beta}

to get

W1𝒲II()W2𝒲II()\𝒩(W1)W1W2γ1β(|𝒚𝒙|)W𝒩(W1)|aWIIaW1II|pd𝒚d𝒙W1𝒲kk0W2𝒲II()\𝒩(W1)W𝒩(W1)(W1W2Cd,p,β1{|𝒚𝒙|<1}|𝒚𝒙|βl(W1)β|2(W)||2(W1)|𝑑𝒚𝑑𝒙)(2(W1)2(W)|u(𝒚)u(𝒙)|p(|𝒚𝒙|1)d+p2(|𝒚𝒙|1)β𝑑𝒚𝑑𝒙)|βd|1W1𝒲kk0W𝒩(W1)2(W1)2(W)|u(𝒚)u(𝒙)|p(|𝒚𝒙|1)d+p2(|𝒚𝒙|1)β𝑑𝒚𝑑𝒙|βd|1|u|𝒯1β(1)p.\begin{split}&\sum_{W_{1}\in\mathscr{W}^{II}(\mathcal{R}^{\infty})}\sum_{W_{2}\in\mathscr{W}^{II}(\mathcal{R}^{\infty})\backslash\mathscr{N}(W_{1})}\int_{W_{1}}\int_{W_{2}}{\gamma}^{\,\beta}_{1}(|\bm{y}-\bm{x}|)\sum_{W\in\mathscr{N}(W_{1})}\left|a_{W}^{II}-a_{W_{1}}^{II}\right|^{p}d\bm{y}d\bm{x}\\ \lesssim&\sum_{\begin{subarray}{c}W_{1}\in\mathscr{W}_{k}\\ k\geq 0\end{subarray}}\sum_{W_{2}\in\mathscr{W}^{II}(\mathcal{R}^{\infty})\backslash\mathscr{N}(W_{1})}\sum_{W\in\mathscr{N}(W_{1})}\left(\int_{W_{1}}\int_{W_{2}}\frac{C_{d,p,\,\beta}1_{\{|\bm{y}-\bm{x}|<1\}}}{|\bm{y}-\bm{x}|^{\,\beta}}\frac{l(W_{1})^{\,\beta}}{|\mathscr{M}_{2}(W)||\mathscr{M}_{2}(W_{1})|}d\bm{y}d\bm{x}\right)\\ &\hskip 170.71652pt\cdot\left(\int_{\mathscr{M}_{2}(W_{1})}\int_{\mathscr{M}_{2}(W)}\frac{|u(\bm{y}^{\prime})-u(\bm{x}^{\prime})|^{p}}{(|\bm{y}^{\prime}-\bm{x}^{\prime}|\vee 1)^{d+p-2}(|\bm{y}^{\prime}-\bm{x}^{\prime}|\wedge 1)^{\,\beta}}d\bm{y}^{\prime}d\bm{x}^{\prime}\right)\\ \lesssim&|\beta-d|^{-1}\sum_{\begin{subarray}{c}W_{1}\in\mathscr{W}_{k}\\ k\geq 0\end{subarray}}\sum_{W\in\mathscr{N}(W_{1})}\int_{\mathscr{M}_{2}(W_{1})}\int_{\mathscr{M}_{2}(W)}\frac{|u(\bm{y}^{\prime})-u(\bm{x}^{\prime})|^{p}}{(|\bm{y}^{\prime}-\bm{x}^{\prime}|\vee 1)^{d+p-2}(|\bm{y}^{\prime}-\bm{x}^{\prime}|\wedge 1)^{\,\beta}}d\bm{y}^{\prime}d\bm{x}^{\prime}\lesssim|\beta-d|^{-1}|u|^{p}_{\mathcal{T}_{1}^{\,\beta}(\mathcal{R}_{-1})}\,.\end{split}

On the other hand, if W𝒩(W2)W\in\mathscr{N}(W_{2}), then |W||(W)||W2||W|\approx|\mathscr{M}(W)|\approx|W_{2}|, and we can use

|aWIIaW1II|p1|1(W)||1(W1)|1(W1)1(W)|u(𝒚)u(𝒙)|p𝑑𝒚𝑑𝒙dist(W1,W2)β|2(W)||2(W1)|2(W1)2(W)|u(𝒚)u(𝒙)|p(|𝒚𝒙|1)d+p2(|𝒚𝒙|1)β𝑑𝒚𝑑𝒙\begin{split}\left|a_{W}^{II}-a_{W_{1}}^{II}\right|^{p}&\leq\frac{1}{|\mathscr{M}_{1}(W)||\mathscr{M}_{1}(W_{1})|}\int_{\mathscr{M}_{1}(W_{1})}\int_{\mathscr{M}_{1}(W)}|u(\bm{y}^{\prime})-u(\bm{x}^{\prime})|^{p}d\bm{y}^{\prime}d\bm{x}^{\prime}\\ &\lesssim\frac{\text{dist}(W_{1},W_{2})^{\,\beta}}{|\mathscr{M}_{2}(W)||\mathscr{M}_{2}(W_{1})|}\int_{\mathscr{M}_{2}(W_{1})}\int_{\mathscr{M}_{2}(W)}\frac{|u(\bm{y}^{\prime})-u(\bm{x}^{\prime})|^{p}}{(|\bm{y}^{\prime}-\bm{x}^{\prime}|\vee 1)^{d+p-2}(|\bm{y}^{\prime}-\bm{x}^{\prime}|\wedge 1)^{\,\beta}}d\bm{y}^{\prime}d\bm{x}^{\prime}\end{split}

and

W1W21{|𝒚𝒙|<1}|𝒚𝒙|β𝑑𝒚𝑑𝒙|W1||W2|dist(W1,W2)β\int_{W_{1}}\int_{W_{2}}\frac{1_{\{|\bm{y}-\bm{x}|<1\}}}{|\bm{y}-\bm{x}|^{\,\beta}}d\bm{y}d\bm{x}\leq\frac{|W_{1}||W_{2}|}{\text{dist}(W_{1},W_{2})^{\,\beta}}

to arrive at

W1𝒲II()W2𝒲II()\𝒩(W1)W1W2γ1β(|𝒚𝒙|)W𝒩(W2)|aWIIaW1II|pd𝒚d𝒙W1𝒲kk0W2𝒲II()\𝒩(W1)W𝒩(W2)(W1W2Cd,p,β1{|𝒚𝒙|<1}|𝒚𝒙|βdist(W1,W2)β|2(W)||2(W1)|𝑑𝒚𝑑𝒙)(2(W1)2(W)|u(𝒚)u(𝒙)|p(|𝒚𝒙|1)d+p2(|𝒚𝒙|1)β𝑑𝒚𝑑𝒙)W1𝒲kk0W2𝒲II()\𝒩(W1)W𝒩(W2)2(W1)2(W)|u(𝒚)u(𝒙)|p(|𝒚𝒙|1)d+p2(|𝒚𝒙|1)β𝑑𝒚𝑑𝒙|u|𝒯1β(1)p.\begin{split}&\sum_{W_{1}\in\mathscr{W}^{II}(\mathcal{R}^{\infty})}\sum_{W_{2}\in\mathscr{W}^{II}(\mathcal{R}^{\infty})\backslash\mathscr{N}(W_{1})}\int_{W_{1}}\int_{W_{2}}{\gamma}^{\,\beta}_{1}(|\bm{y}-\bm{x}|)\sum_{W\in\mathscr{N}(W_{2})}\left|a_{W}^{II}-a_{W_{1}}^{II}\right|^{p}d\bm{y}d\bm{x}\\ \lesssim&\sum_{\begin{subarray}{c}W_{1}\in\mathscr{W}_{k}\\ k\geq 0\end{subarray}}\sum_{W_{2}\in\mathscr{W}^{II}(\mathcal{R}^{\infty})\backslash\mathscr{N}(W_{1})}\sum_{W\in\mathscr{N}(W_{2})}\left(\int_{W_{1}}\int_{W_{2}}\frac{C_{d,p,\,\beta}1_{\{|\bm{y}-\bm{x}|<1\}}}{|\bm{y}-\bm{x}|^{\,\beta}}\frac{\text{dist}(W_{1},W_{2})^{\,\beta}}{|\mathscr{M}_{2}(W)||\mathscr{M}_{2}(W_{1})|}d\bm{y}d\bm{x}\right)\\ &\hskip 170.71652pt\cdot\left(\int_{\mathscr{M}_{2}(W_{1})}\int_{\mathscr{M}_{2}(W)}\frac{|u(\bm{y}^{\prime})-u(\bm{x}^{\prime})|^{p}}{(|\bm{y}^{\prime}-\bm{x}^{\prime}|\vee 1)^{d+p-2}(|\bm{y}^{\prime}-\bm{x}^{\prime}|\wedge 1)^{\,\beta}}d\bm{y}^{\prime}d\bm{x}^{\prime}\right)\\ \lesssim&\sum_{\begin{subarray}{c}W_{1}\in\mathscr{W}_{k}\\ k\geq 0\end{subarray}}\sum_{W_{2}\in\mathscr{W}^{II}(\mathcal{R}^{\infty})\backslash\mathscr{N}(W_{1})}\sum_{W\in\mathscr{N}(W_{2})}\int_{\mathscr{M}_{2}(W_{1})}\int_{\mathscr{M}_{2}(W)}\frac{|u(\bm{y}^{\prime})-u(\bm{x}^{\prime})|^{p}}{(|\bm{y}^{\prime}-\bm{x}^{\prime}|\vee 1)^{d+p-2}(|\bm{y}^{\prime}-\bm{x}^{\prime}|\wedge 1)^{\,\beta}}d\bm{y}^{\prime}d\bm{x}^{\prime}\lesssim|u|^{p}_{\mathcal{T}_{1}^{\,\beta}(\mathcal{R}_{-1})}.\end{split}

Together we have shown II.2.a|βd|1|u|𝒯1β(1)pII.2.a\lesssim|\beta-d|^{-1}|u|^{p}_{\mathcal{T}_{1}^{\,\beta}(\mathcal{R}_{-1})} and as a result the estimate (4.6) is proved for β(d,d+p)\beta\in(d,d+p). ∎

Proof of Theorem 1.2. For any u𝒯δβ(δ)u\in\mathcal{T}^{\,\beta}_{\delta}(\mathcal{R}_{-\delta}), define v(x)=u(δx)v(x)=u(\delta x), then from Lemma 2.5 we know |v|𝒯1β(1)p=δpd|u|𝒯1β(δ)p|v|^{p}_{\mathcal{T}_{1}^{\,\beta}(\mathcal{R}_{-1})}=\delta^{p-d}|u|^{p}_{\mathcal{T}_{1}^{\,\beta}(\mathcal{R}_{-\delta})} and vLp(1)p=δduLp(δ)p\|v\|^{p}_{L^{p}(\mathcal{R}_{-1})}=\delta^{-d}\|u\|^{p}_{L^{p}(\mathcal{R}_{-\delta})}. From Theorem 4.16 we know that

ELvLp(1)pCLvLp(1)p, and |ELv|𝒮1β(1)pC(L(p1)vLp(1)p+|βd|1|v|𝒯1β(1)p)\|E^{L}v\|^{p}_{L^{p}(\mathcal{R}_{-1}^{\infty})}\leq CL\|v\|^{p}_{L^{p}(\mathcal{R}_{-1})},\text{ and }|E^{L}v|^{p}_{\mathcal{S}_{1}^{\,\beta}(\mathcal{R}^{\infty}_{-1})}\leq C\left(L^{-(p-1)}\|v\|^{p}_{L^{p}(\mathcal{R}_{-1})}+|\beta-d|^{-1}|v|^{p}_{\mathcal{T}_{1}^{\,\beta}(\mathcal{R}^{\infty}_{-1})}\right)

for any L=2mL=2^{m} (m+m\in\mathbb{Z}_{+}). Now choose m=log2(M/δ)m=\lceil\log_{2}(M/\delta)\rceil and L=2mL=2^{m}, and define the extension operator E:𝒯δβ(δ)𝒮δβ(δ)E:\mathcal{T}^{\,\beta}_{\delta}(\mathcal{R}_{-\delta})\to\mathcal{S}^{\,\beta}_{\delta}(\mathcal{R}_{-\delta}^{\infty}) as

Eu(𝒙)=(ELv)(𝒙/δ).Eu(\bm{x})=(E^{L}v)(\bm{x}/\delta)\,.

Then

EuLp(δ)p=δdELvLp(1)pCδdLvLp(1)=CLuLp(δ)p1δuLp(δ)p,\|Eu\|^{p}_{L^{p}(\mathcal{R}_{-\delta}^{\infty})}=\delta^{d}\|E^{L}v\|^{p}_{L^{p}(\mathcal{R}_{-1}^{\infty})}\leq C\delta^{d}L\|v\|_{L^{p}(\mathcal{R}_{-1})}=CL\|u\|^{p}_{L^{p}(\mathcal{R}_{-\delta})}\lesssim\frac{1}{\delta}\|u\|^{p}_{L^{p}(\mathcal{R}_{-\delta})}\,,

and

|Eu|𝒮δβ(δ)p=δdp|ELv|𝒮1β(1)pC(δdpL(p1)uLp(δ)p+|βd|1δdp|v|𝒯1β(1)p)C(1δuLp(δ)p+|βd|1|u|𝒯δβ(δ)p).\begin{split}|Eu|^{p}_{\mathcal{S}_{\delta}^{\,\beta}(\mathcal{R}_{-\delta}^{\infty})}=\delta^{d-p}|E^{L}v|^{p}_{\mathcal{S}_{1}^{\,\beta}(\mathcal{R}_{-1}^{\infty})}\leq&C\left(\delta^{d-p}L^{-(p-1)}\|u\|^{p}_{L^{p}(\mathcal{R}_{-\delta})}+|\beta-d|^{-1}\delta^{d-p}|v|^{p}_{\mathcal{T}_{1}^{\,\beta}(\mathcal{R}_{-1})}\right)\\ \lesssim&C\left(\frac{1}{\delta}\|u\|^{p}_{L^{p}(\mathcal{R}_{-\delta})}+|\beta-d|^{-1}|u|^{p}_{\mathcal{T}^{\,\beta}_{\delta}(\mathcal{R}_{-\delta})}\right)\,.\end{split}

Thus Theorem 1.2 is shown. ∎

5 Extension to General Lipschitz Domains

In this section we will extend the trace theorems for the half plane to a general Lipschitz domain. We take the strategy to first generalize to a “special” Lipschitz domain before showing the fully general case.

5.1 Some technical lemmas

We will first list some lemmas which are used to show the transformations from the special Lipschitz domain to the half-space are continuous, with detailed proofs elaborated in A.

Lemma 5.17.

Let φ:d1[0,)\varphi:\mathbb{R}^{d-1}\to[0,\infty) be a Lipschitz function with Lipschitz constant LL, Φ(𝐱¯)=(φ(𝐱¯),𝐱¯)\Phi(\overline{\bm{x}})=(\varphi(\overline{\bm{x}}),\overline{\bm{x}}), and define the function ψ:d1[δ,)\psi:\mathbb{R}^{d-1}\to[-\delta,\infty) where ψ(𝐱¯):=min{x~:dist((x~,𝐱¯),Φ(d1))=δ,ψ(𝐱¯)<φ(𝐱¯)}\psi(\overline{\bm{x}}):=\min\{\tilde{x}\in\mathbb{R}:\text{dist}((\tilde{x},\overline{\bm{x}}),\Phi(\mathbb{R}^{d-1}))=\delta,\ \psi(\overline{\bm{x}})<\varphi(\overline{\bm{x}})\} for all 𝐱¯d1\overline{\bm{x}}\in\mathbb{R}^{d-1}. Then ψ\psi is a Lipschitz function with the same Lipschitz constant LL, which is independent of δ\delta.

Lemma 5.18.

Let φ\varphi and ψ\psi be as defined in Lemma 5.17. Then δ|φ(𝐱¯)ψ(𝐱¯)|δL2+1\delta\leq|\varphi(\overline{\bm{x}})-\psi(\overline{\bm{x}})|\leq\delta\sqrt{L^{2}+1} for any 𝐱¯d1\overline{\bm{x}}\in\mathbb{R}^{d-1}.

Lemma 5.19.

Let φ\varphi and ψ\psi be defined as in the Lemma 5.17. Then for 𝐱=(x~,𝐱¯),𝐲=(y~,𝐲¯)δ\bm{x}=(\tilde{x},\overline{\bm{x}}),\bm{y}=(\tilde{y},\overline{\bm{y}})\in\mathcal{R}_{-\delta}, if

x~\displaystyle\tilde{x}^{\prime} =(1+x~δ)φ(𝒙¯)x~δψ(𝒙¯)\displaystyle=\left(1+\frac{\tilde{x}}{\delta}\right)\varphi(\overline{\bm{x}})-\frac{\tilde{x}}{\delta}\psi(\overline{\bm{x}}) (5.1)
y~\displaystyle\tilde{y}^{\prime} =(1+y~δ)φ(𝒚¯)y~δψ(𝒚¯)\displaystyle=\left(1+\frac{\tilde{y}}{\delta}\right)\varphi(\overline{\bm{y}})-\frac{\tilde{y}}{\delta}\psi(\overline{\bm{y}})

and 𝐱=(x~,𝐱¯)\bm{x}^{\prime}=(\tilde{x}^{\prime},\overline{\bm{x}}), 𝐲=(y~,𝐲¯)\bm{y}^{\prime}=(\tilde{y}^{\prime},\overline{\bm{y}}), then

KL|𝒙𝒚||𝒙𝒚|KL|𝒙𝒚|K_{L}^{\prime}|\bm{x}-\bm{y}|\leq|\bm{x}^{\prime}-\bm{y}^{\prime}|\leq K_{L}|\bm{x}-\bm{y}|

for some positive constants KL1K_{L}\geq 1 and KL1K_{L}^{\prime}\leq 1, independent of δ\delta.

Lemma 5.20.

Let φ\varphi and ψ\psi be defined as in the Lemma 5.17. Let M=max(L+1+L2+1,KL)M=\max(L+1+\sqrt{L^{2}+1},K_{L}) with KLK_{L} as in Lemma 5.19, 𝐱=(x~,𝐱¯)\bm{x}=(\tilde{x},\overline{\bm{x}}), 𝐲=(y~,𝐲¯)\bm{y}=(\tilde{y},\overline{\bm{y}}), 𝐰=(y~+φ(𝐲¯),𝐲¯)\bm{w}=(\tilde{y}+\varphi(\overline{\bm{y}}),\overline{\bm{y}}) and 𝐳=(x~+φ(𝐱¯),𝐱¯)\bm{z}=(\tilde{x}+\varphi(\overline{\bm{x}}),\overline{\bm{x}}). Then we have the following kernel inequalities:

  1. 1.

    For 𝒙,𝒚\bm{x},\bm{y}\in\mathcal{R}^{\infty}, γδ/Mβ(|𝒙𝒚|)Md+pγδβ(|𝒛𝒘|).\gamma_{\delta/M}^{\,\beta}(|\bm{x}-\bm{y}|)\leq M^{d+p}\gamma_{\delta}^{\,\beta}(|\bm{z}-\bm{w}|){.}

  2. 2.

    For 𝒙δ\bm{x}\in\mathcal{R}_{-\delta} and 𝒚\bm{y}\in\mathcal{R}^{\infty}, γδ/Mβ(|𝒙𝒚|)Md+pγδβ(|𝒙𝒘|).\gamma_{\delta/M}^{\,\beta}(|\bm{x}-\bm{y}|)\leq M^{d+p}\gamma_{\delta}^{\,\beta}(|\bm{x}^{\prime}-\bm{w}|){.}

  3. 3.

    For 𝒙,𝒚δ\bm{x},\bm{y}\in\mathcal{R}_{-\delta}, γδ/Mβ(|𝒙𝒚|)Md+pγδβ(|𝒙𝒚|).\gamma_{\delta/M}^{\,\beta}(|\bm{x}-\bm{y}|)\leq M^{d+p}\gamma_{\delta}^{\,\beta}(|\bm{x}^{\prime}-\bm{y}^{\prime}|){.}

where 𝐱\bm{x}^{\prime} and 𝐲\bm{y}^{\prime} are defined as in (5.1).

Lemma 5.21.

Let φ\varphi and ψ\psi be defined as in the Lemma 5.17. Let M=max(L+2,KL)M=\max(L+2,K^{\prime}_{L}) with KLK^{\prime}_{L} as in Lemma 5.19, 𝐱=(x~,𝐱¯)\bm{x}^{\prime}=(\tilde{x}^{\prime},\overline{\bm{x}}), 𝐲=(y~,𝐲¯)\bm{y}^{\prime}=(\tilde{y}^{\prime},\overline{\bm{y}}), 𝐰=(y~φ(𝐲¯),𝐲¯)\bm{w}=(\tilde{y}^{\prime}-\varphi(\overline{\bm{y}}),\overline{\bm{y}}) and 𝐳=(x~φ(𝐱¯),𝐱¯)\bm{z}=(\tilde{x}^{\prime}-\varphi(\overline{\bm{x}}),\overline{\bm{x}}). Then we have the following kernel inequalities:

  1. 1.

    For 𝒙,𝒚Ω\bm{x}^{\prime},\bm{y}^{\prime}\in\Omega, γδβ(|𝒙𝒚|)Md+pγMδβ(|𝒛𝒘|)\gamma_{\delta}^{\,\beta}(|\bm{x}^{\prime}-\bm{y}^{\prime}|)\leq M^{d+p}\gamma_{M\delta}^{\,\beta}(|\bm{z}-\bm{w}|).

  2. 2.

    For 𝒙Ωδ\bm{x}^{\prime}\in\Omega_{\delta} and 𝒚Ω\bm{y}^{\prime}\in\Omega, γδβ(|𝒙𝒚|)Md+pγMδβ(|𝒙𝒘|)\gamma_{\delta}^{\,\beta}(|\bm{x}^{\prime}-\bm{y}^{\prime}|)\leq M^{d+p}\gamma_{M\delta}^{\,\beta}(|\bm{x}-\bm{w}|).

  3. 3.

    For 𝒙,𝒚Ωδ\bm{x}^{\prime},\bm{y}^{\prime}\in\Omega_{\delta}, γMδβ(|𝒙𝒚|)Md+pγMδβ(|𝒙𝒚|)\gamma_{M\delta}^{\,\beta}(|\bm{x}^{\prime}-\bm{y}^{\prime}|)\leq M^{d+p}\gamma_{M\delta}^{\,\beta}(|\bm{x}-\bm{y}|).

where 𝐱=(x~,𝐱¯)\bm{x}=(\tilde{x},\overline{\bm{x}}), 𝐲=(y~,𝐲¯)\bm{y}=(\tilde{y},\overline{\bm{y}}) such that x~\tilde{x}, y~\tilde{y} and x~\tilde{x}^{\prime}, y~\tilde{y}^{\prime} satisfy (5.1). More specifically,

x~:=δ(x~φ(𝒙¯))φ(𝒙¯)ψ(𝒙¯),y~:=δ(y~φ(𝒚¯))φ(𝒚¯)ψ(𝒚¯).\displaystyle\tilde{x}:=\frac{\delta(\tilde{x}^{\prime}-\varphi(\overline{\bm{x}}))}{\varphi(\overline{\bm{x}})-\psi(\overline{\bm{x}})},\quad\tilde{y}:=\frac{\delta(\tilde{y}^{\prime}-\varphi(\overline{\bm{y}}))}{\varphi(\overline{\bm{y}})-\psi(\overline{\bm{y}})}. (5.2)

5.2 Extension to special Lipshitz domains

We now first present a nonlocal trace theorem to generalize the earlier result shown on a half space with a flat boundary on one side to the case of any infinite domain whose boundary is defined by a Lipshitz graph.

Theorem 5.22.

Consider a special Lipschitz domain, Ω\Omega, where there is a Lipschitz function φ:d1\varphi:\mathbb{R}^{d-1}\to\mathbb{R} with Lipschitz constant LL such that

Ω={𝒙=(x~,𝒙¯)d:φ(𝒙¯)<x~,𝒙¯d1}\Omega=\{\bm{x}=(\tilde{x},\overline{\bm{x}})\in\mathbb{R}^{d}:\varphi(\overline{\bm{x}})<\tilde{x},\ \overline{\bm{x}}\in\mathbb{R}^{d-1}\}

with a δ\delta collar boundary Ωδ\Omega_{\delta}

Ωδ={𝒙=(x~,𝒙¯)d:ψ(𝒙¯)<x~<φ(𝒙¯),𝒙¯d1}.\Omega_{\delta}=\{\bm{x}=(\tilde{x},\overline{\bm{x}})\in\mathbb{R}^{d}:\psi(\overline{\bm{x}})<\tilde{x}<\varphi(\overline{\bm{x}}),\ \overline{\bm{x}}\in\mathbb{R}^{d-1}\}.

Here ψ\psi is as defined in Lemma 5.17. Then the nonlocal trace theorem holds on this domain, i.e.,

u𝒯δβ(Ωδ)C|d+pβ|1/pu𝒮δβ(Ω^)\|u\|_{\mathcal{T}_{\delta}^{\,\beta}(\Omega_{\delta})}\leq C|d+p-\beta|^{-1/p}\|u\|_{\mathcal{S}_{\delta}^{\,\beta}(\hat{\Omega})}

for some constant CC which is independent of δ\delta, β\beta and u𝒮δβ(Ω^)u\in\mathcal{S}_{\delta}^{\,\beta}(\hat{\Omega}).

Proof.

Define the operators Pφ,ψ:Lp(Ω)Lp()P_{\varphi,\psi}:L^{p}(\Omega)\to L^{p}(\mathcal{R}^{\infty}) and Gφ,ψ:Lp(Ωδ)Lp(δ)G_{\varphi,\psi}:L^{p}(\Omega_{\delta})\to L^{p}(\mathcal{R}_{-\delta})

(Pφ,ψu)(𝒙)\displaystyle(P_{\varphi,\psi}u)(\bm{x}) =u(x~+φ(𝒙¯),𝒙¯),\displaystyle=u(\tilde{x}+\varphi(\overline{\bm{x}}),\overline{\bm{x}}), (5.3)
(Gφ,ψu)(𝒙)\displaystyle(G_{\varphi,\psi}u)(\bm{x}) =u((1+x~δ)φ(𝒙¯)x~δψ(𝒙¯),𝒙¯).\displaystyle=u\left(\left(1+\frac{\tilde{x}}{\delta}\right)\varphi(\overline{\bm{x}})-\frac{\tilde{x}}{\delta}\psi(\overline{\bm{x}}),\overline{\bm{x}}\right). (5.4)

Then the operator Sφ,ψ:Lp(Ω^)Lp(δ)S_{\varphi,\psi}:L^{p}(\hat{\Omega})\to L^{p}(\mathcal{R}_{-\delta}^{\infty}) is defined as

Sφ,ψu(𝒙)={Pφ,ψu(𝒙)𝒙,Gφ,ψu(𝒙)𝒙δ.\displaystyle S_{\varphi,\psi}u(\bm{x})=\begin{cases}P_{\varphi,\psi}u(\bm{x})&\bm{x}\in\mathcal{R}^{\infty},\\ G_{\varphi,\psi}u(\bm{x})&\bm{x}\in\mathcal{R}_{-\delta}.\end{cases} (5.5)

We will show that Gφ,ψG_{\varphi,\psi} is a bounded operator from 𝒯δβ(Ωδ)\mathcal{T}^{\,\beta}_{\delta}(\Omega_{\delta}) to 𝒯δβ(δ)\mathcal{T}^{\,\beta}_{\delta}(\mathcal{R}_{-\delta}) with a bounded inverse Gφ,ψ1G_{\varphi,\psi}^{-1}. Moreover, Sφ,ψS_{\varphi,\psi} is a bounded operator from 𝒮δβ(Ω^)\mathcal{S}_{\delta}^{\,\beta}(\hat{\Omega}) to 𝒮δβ(δ)\mathcal{S}_{\delta}^{\,\beta}(\mathcal{R}^{\infty}_{-\delta}).

To show Gφ,ψG_{\varphi,\psi} is a bounded operator from 𝒯δβ(Ωδ)\mathcal{T}^{\,\beta}_{\delta}(\Omega_{\delta}) to 𝒯δβ(δ)\mathcal{T}^{\,\beta}_{\delta}(\mathcal{R}_{-\delta}), we let 𝒙=(x~,𝒙¯)\bm{x}^{\prime}=(\tilde{x}^{\prime},\overline{\bm{x}}), 𝒚=(y~,𝒚¯)\bm{y}^{\prime}=(\tilde{y}^{\prime},\overline{\bm{y}}) and the constant KL1K_{L}\geq 1 as defined in Lemma 5.19. From definition, we have Gφ,ψ(u)(𝒙)=u(𝒙)G_{\varphi,\psi}(u)(\bm{x})=u(\bm{x}^{\prime}), d𝒙=|φ(𝒙¯)ψ(𝒙¯)|δd𝒙d\bm{x}^{\prime}=\frac{|\varphi(\overline{\bm{x}})-\psi(\overline{\bm{x}})|}{\delta}d\bm{x} and d𝒚=|φ(𝒚¯)ψ(𝒚¯)|δd𝒚d\bm{y}^{\prime}=\frac{|\varphi(\overline{\bm{y}})-\psi(\overline{\bm{y}})|}{\delta}d\bm{y}. Then,

Gφ,ψuLp(δ)p=1δδ|Gφ,ψ(u)(𝒙)|p𝑑𝒙=1δδ|u(𝒙)|p𝑑𝒙1δδinf|φψ|Ωδ|u(𝒙)|p𝑑𝒙1δuLp(Ωδ)p\|G_{\varphi,\psi}u\|^{p}_{L^{p}(\mathcal{R}_{-\delta})}=\frac{1}{\delta}\int_{\mathcal{R}_{-\delta}}|G_{\varphi,\psi}(u)(\bm{x})|^{p}d\bm{x}=\frac{1}{\delta}\int_{\mathcal{R}_{-\delta}}|u(\bm{x}^{\prime})|^{p}d\bm{x}\leq\frac{1}{\delta}\frac{\delta}{\inf|\varphi-\psi|}\int_{\Omega_{\delta}}|u(\bm{x}^{\prime})|^{p}d\bm{x}^{\prime}\leq\frac{1}{\delta}\|u\|^{p}_{L^{p}(\Omega_{\delta})} (5.6)

and

|Gφ,ψu|𝒯δβ(δ)p\displaystyle|G_{\varphi,\psi}u|^{p}_{\mathcal{T}^{\,\beta}_{\delta}(\mathcal{R}_{-\delta})} =1δδ|Gφ,ψ(u)(𝒙)|p𝑑𝒙+δβ2δδ|Gφ,ψ(u)(𝒚)Gφ,ψ(u)(𝒙)|p(|𝒚𝒙|δ)d+p2(|𝒚𝒙|δ)β𝑑𝒚𝑑𝒙\displaystyle=\frac{1}{\delta}\int_{\mathcal{R}_{-\delta}}|G_{\varphi,\psi}(u)(\bm{x})|^{p}d\bm{x}+\delta^{\,\beta-2}\int_{\mathcal{R}_{-\delta}}\int_{\mathcal{R}_{-\delta}}\frac{|G_{\varphi,\psi}(u)(\bm{y})-G_{\varphi,\psi}(u)(\bm{x})|^{p}}{(|\bm{y}-\bm{x}|\vee\delta)^{d+p-2}(|\bm{y}-\bm{x}|\wedge\delta)^{\beta}}d\bm{y}d\bm{x}
δβ2δδ|u(𝒚)u(𝒙)|p(|𝒚𝒙|KLδ)d+p2(|𝒚𝒙|KLδ)β𝑑𝒚𝑑𝒙\displaystyle\leq\delta^{\,\beta-2}\int_{\mathcal{R}_{-\delta}}\int_{\mathcal{R}_{-\delta}}\frac{|u(\bm{y}^{\prime})-u(\bm{x}^{\prime})|^{p}}{(\frac{|\bm{y}^{\prime}-\bm{x}^{\prime}|}{K_{L}}\vee\delta)^{d+p-2}(\frac{|\bm{y}^{\prime}-\bm{x}^{\prime}|}{K_{L}}\wedge\delta)^{\beta}}d\bm{y}d\bm{x}
δβ2KLd+β+p2δpinf|φψ|pΩδΩδ|u(𝒚)u(𝒙)|p(|𝒚𝒙|δ)d+p2(|𝒚𝒙|δ)β𝑑𝒚𝑑𝒙\displaystyle\leq\delta^{\,\beta-2}K_{L}^{d+\beta+p-2}\frac{\delta^{p}}{\inf|\varphi-\psi|^{p}}\int_{\Omega_{\delta}}\int_{\Omega_{\delta}}\frac{|u(\bm{y}^{\prime})-u(\bm{x}^{\prime})|^{p}}{(|\bm{y}^{\prime}-\bm{x}^{\prime}|\vee\delta)^{d+p-2}(|\bm{y}^{\prime}-\bm{x}^{\prime}|\wedge\delta)^{\beta}}d\bm{y}^{\prime}d\bm{x}^{\prime}
KL2d+2p2δpinf|φψ|pδβ2ΩδΩδ|u(𝒚)u(𝒙)|p(|𝒚𝒙|δ)d+p2(|𝒚𝒙|δ)β𝑑𝒚𝑑𝒙\displaystyle\leq K_{L}^{2d+2p-2}\frac{\delta^{p}}{\inf|\varphi-\psi|^{p}}\delta^{\,\beta-2}\int_{\Omega_{\delta}}\int_{\Omega_{\delta}}\frac{|u(\bm{y}^{\prime})-u(\bm{x}^{\prime})|^{p}}{(|\bm{y}^{\prime}-\bm{x}^{\prime}|\vee\delta)^{d+p-2}(|\bm{y}^{\prime}-\bm{x}^{\prime}|\wedge\delta)^{\beta}}d\bm{y}^{\prime}d\bm{x}^{\prime}
KL2d+2p2|u|𝒯δβ(Ωδ)p\displaystyle\leq K_{L}^{2d+2p-2}{\left|u\right|}^{p}_{\mathcal{T}^{\,\beta}_{\delta}(\Omega_{\delta})}

where we have used Lemma 5.18 for the last estimate as well as (5.6). Together these estimates show
Gφ,ψu𝒯δβ(δ)pCGφ,ψu𝒯δβ(Ωδ)p\|G_{\varphi,\psi}u\|^{p}_{\mathcal{T}^{\,\beta}_{\delta}(\mathcal{R}_{-\delta})}\leq C\|G_{\varphi,\psi}u\|^{p}_{\mathcal{T}^{\,\beta}_{\delta}(\Omega_{\delta})} where the constant CC is independent of β\beta and δ\delta.

To show that Gφ,ψ1G_{\varphi,\psi}^{-1} exists and it is a bounded operator from 𝒯δβ(δ)\mathcal{T}^{\,\beta}_{\delta}(\mathcal{R}_{-\delta}) to 𝒯δβ(Ωδ)\mathcal{T}^{\,\beta}_{\delta}(\Omega_{\delta}), we note first that one can get (5.2) from (5.1). It is then easy to check that Gφ,ψ1G_{\varphi,\psi}^{-1} can be defined by Gφ,ψ1u(𝒙)=u(𝒙)G_{\varphi,\psi}^{-1}u(\bm{x}^{\prime})=u(\bm{x}) for 𝒙=(x~,𝒙¯)Ωδ\bm{x}^{\prime}=(\tilde{x}^{\prime},\overline{\bm{x}})\in\Omega_{\delta} and 𝒙=(x~,𝒙¯)δ\bm{x}=(\tilde{x},\overline{\bm{x}})\in\mathcal{R}_{-\delta} where x~\tilde{x} is given by (5.2). Using a change of variable estimate given by Lemma 5.19 we can then deduce the continuity of Gφ,ψ1G_{\varphi,\psi}^{-1} the same way as we have done for Gφ,ψG_{\varphi,\psi} with details omitted.

Now to show that Sφ,ψS_{\varphi,\psi} is a bounded operator from 𝒮δβ(Ω^)\mathcal{S}^{\,\beta}_{\delta}(\hat{\Omega}) to 𝒮δβ(δ)\mathcal{S}^{\,\beta}_{\delta}(\mathcal{R}_{-\delta}^{\infty}), we note that Sφ,ψuLp(δ)=uLp(Ω^)\|S_{\varphi,\psi}u\|_{L^{p}(\mathcal{R}_{-\delta}^{\infty})}=\|u\|_{L^{p}(\hat{\Omega})}, and by applying Lemma 2.6 with U=δU=\mathcal{R}_{-\delta}^{\infty} and α=1/M\alpha=1/M where M>1M>1 is defined in Lemma 5.20, we have

|Sφ,ψ(u)|𝒮δβ(δ)p\displaystyle|S_{\varphi,\psi}(u)|^{p}_{\mathcal{S}^{\,\beta}_{\delta}(\mathcal{R}_{-\delta}^{\infty})} Cδδγδ/Mβ(|𝒚𝒙|)|Sφ,ψ(u)(𝒚)Sφ,ψ(u)(𝒙)|p𝑑𝒚𝑑𝒙\displaystyle\leq C\int_{\mathcal{R}_{-\delta}^{\infty}}\int_{\mathcal{R}_{-\delta}^{\infty}}\gamma^{\,\beta}_{\delta/M}(|\bm{y}-\bm{x}|)|S_{\varphi,\psi}(u)(\bm{y})-S_{\varphi,\psi}(u)(\bm{x})|^{p}d\bm{y}d\bm{x}
Cγδ/Mβ(|𝒚𝒙|)|u(y~+φ(𝒚¯),𝒚¯)u(x~+φ(𝒙¯),𝒙¯)|p𝑑𝒚𝑑𝒙I1\displaystyle\leq C\underbrace{\int_{\mathcal{R}^{\infty}}\int_{\mathcal{R}^{\infty}}\gamma^{\,\beta}_{\delta/M}(|\bm{y}-\bm{x}|)|u(\tilde{y}+\varphi(\overline{\bm{y}}),\overline{\bm{y}})-u(\tilde{x}+\varphi(\overline{\bm{x}}),\overline{\bm{x}})|^{p}d\bm{y}d\bm{x}}_{I_{1}}
+Cδγδ/Mβ(|𝒚𝒙|)|u(y~+φ(𝒚¯),𝒚¯)u((1+x~δ)φ(𝒙¯)x~δψ(𝒙¯),𝒙¯)|p𝑑𝒚𝑑𝒙I2\displaystyle+C\underbrace{\int_{\mathcal{R}_{-\delta}}\int_{\mathcal{R}^{\infty}}\gamma^{\,\beta}_{\delta/M}(|\bm{y}-\bm{x}|)\left|u(\tilde{y}+\varphi(\overline{\bm{y}}),\overline{\bm{y}})-u\left(\left(1+\frac{\tilde{x}}{\delta}\right)\varphi(\overline{\bm{x}})-\frac{\tilde{x}}{\delta}\psi(\overline{\bm{x}}),\overline{\bm{x}}\right)\right|^{p}d\bm{y}d\bm{x}}_{I_{2}}
+Cδδγδ/Mβ(|𝒚𝒙|)|u((1+y~δ)φ(𝒚¯)y~δψ(𝒚¯),𝒚¯)u((1+x~δ)φ(𝒙¯)x~δψ(𝒙¯),𝒙¯)|p𝑑𝒚𝑑𝒙I3.\displaystyle+C\underbrace{\int_{\mathcal{R}_{-\delta}}\int_{\mathcal{R}_{-\delta}}\gamma^{\,\beta}_{\delta/M}(|\bm{y}-\bm{x}|)\left|u\left(\left(1+\frac{\tilde{y}}{\delta}\right)\varphi(\overline{\bm{y}})-\frac{\tilde{y}}{\delta}\psi(\overline{\bm{y}}),\overline{\bm{y}}\right)-u\left(\left(1+\frac{\tilde{x}}{\delta}\right)\varphi(\overline{\bm{x}})-\frac{\tilde{x}}{\delta}\psi(\overline{\bm{x}}),\overline{\bm{x}}\right)\right|^{p}d\bm{y}d\bm{x}}_{I_{3}}.

Here the constant CC is independent of β\beta and δ\delta.

Applying Lemma 5.20 part (a) to I1I_{1} and then using a change of variable, we have

I1Md+pΩΩγδβ(|𝒘𝒛|)|u(𝒘)u(𝒛)|p𝑑𝒘𝑑𝒛C|u|𝒮δβ(Ω^)p.I_{1}\leq M^{d+p}\int_{\Omega}\int_{\Omega}\gamma^{\,\beta}_{\delta}(|\bm{w}-\bm{z}|)|u(\bm{w})-u(\bm{z})|^{p}d\bm{w}d\bm{z}\leq C|u|^{p}_{\mathcal{S}^{\,\beta}_{\delta}(\hat{\Omega})}.

Similarly applying Lemma 5.20 to I2I_{2} and I3I_{3} along with the proper change of variables, we finally have |Sφ,ψ(u)|𝒮δβ(δ)pC|u|𝒮δβ(Ω^)p|S_{\varphi,\psi}(u)|^{p}_{\mathcal{S}^{\,\beta}_{\delta}(\mathcal{R}_{-\delta}^{\infty})}\leq C|u|^{p}_{\mathcal{S}^{\,\beta}_{\delta}(\hat{\Omega})} where CC is independent of δ\delta and β\beta. Thus, we have the continuity of Sφ,ψS_{\varphi,\psi}. Using proven properties of Gφ,ψG_{\varphi,\psi} and Sφ,ψS_{\varphi,\psi} along with the trace theorem for the half-plane, we have

u𝒯δβ(Ωδ)\displaystyle\|u\|_{\mathcal{T}_{\delta}^{\beta}(\Omega_{\delta})} =Gφ,ψ1(Gφ,ψ(u))𝒯δβ(Ωδ)CGφ,ψ(u)𝒯δβ(δ)=CSφ,ψ(u)𝒯δβ(δ)\displaystyle=\|G^{-1}_{\varphi,\psi}(G_{\varphi,\psi}(u))\|_{\mathcal{T}^{\,\beta}_{\delta}(\Omega_{\delta})}\leq C\|G_{\varphi,\psi}(u)\|_{\mathcal{T}^{\,\beta}_{\delta}(\mathcal{R}_{-\delta})}=C\|S_{\varphi,\psi}(u)\|_{\mathcal{T}^{\,\beta}_{\delta}(\mathcal{R}_{-\delta})}
C|d+pβ|1/pSφ,ψ(u)𝒮δβ(δ)C|d+pβ|1/pu𝒮δβ(Ω^).\displaystyle\leq C|d+p-\beta|^{-1/p}\|S_{\varphi,\psi}(u)\|_{\mathcal{S}^{\,\beta}_{\delta}(\mathcal{R}_{-\delta}^{\infty})}\leq C|d+p-\beta|^{-1/p}\|u\|_{\mathcal{S}^{\,\beta}_{\delta}(\hat{\Omega})}.

Using the transformation operators Gφ,ψG_{\varphi,\psi} and Sφ,ψS_{\varphi,\psi}, we can also generalize the inverse nonlocal trace theorem to the special Lipschitz domain.

Theorem 5.23.

Let ϕ\phi, ψ\psi, Ω\Omega and Ωδ\Omega_{\delta} be as defined in Theorem 5.22 and the extension operator E:𝒯δβ(δ)𝒮δβ(δ)E:\mathcal{T}^{\,\beta}_{\delta}(\mathcal{R}_{-\delta})\to\mathcal{S}^{\beta}_{\delta}(\mathcal{R}_{-\delta}^{\infty}) as defined in Theorem 1.2. Let Gφ,ψG_{\varphi,\psi} be defined in (5.4) and Sφ,ψS_{\varphi,\psi} in (5.5). Then we can define an extension operator E~:𝒯δβ(Ωδ)𝒮δβ(Ω^)\tilde{E}:\mathcal{T}_{\delta}^{\beta}(\Omega_{\delta})\to\mathcal{S}^{\beta}_{\delta}(\hat{\Omega}) where E~=Sφ,ψ1EGφ,ψ\tilde{E}=S^{-1}_{\varphi,\psi}EG_{\varphi,\psi} and

E~u𝒮δβ(Ω^)C|dβ|1/pu𝒯δβ(Ωδ).\|\tilde{E}u\|_{\mathcal{S}_{\delta}^{\beta}(\hat{\Omega})}\leq C|d-\beta|^{-1/p}\|u\|_{\mathcal{T}_{\delta}^{\beta}(\Omega_{\delta})}.

Here CC is a constant independent of δ\delta, β\beta and u𝒯δβ(Ωδ)u\in\mathcal{T}_{\delta}^{\beta}(\Omega_{\delta}).

Proof.

Notice that the inverse operator Sφ,ψ1:Lp(δ)Lp(Ω^)S^{-1}_{\varphi,\psi}:L^{p}(\mathcal{R}_{-\delta}^{\infty})\to L^{p}(\hat{\Omega}) can be defined as

Sφ,ψ1u(𝒙)={u(δ(x~φ(𝒙¯))φ(𝒙¯)ψ(𝒙¯),𝒙¯),𝒙=(x~,𝒙¯)Ωδ,u(x~φ(𝒙¯),𝒙¯),𝒙=(x~,𝒙¯)Ω.S^{-1}_{\varphi,\psi}u(\bm{x}^{\prime})=\left\{\begin{aligned} &u\left(\frac{\delta(\tilde{x}^{\prime}-\varphi(\overline{\bm{x}}))}{\varphi(\overline{\bm{x}})-\psi(\overline{\bm{x}})},\overline{\bm{x}}\right),&\quad\bm{x}^{\prime}=(\tilde{x}^{\prime},\overline{\bm{x}})\in\Omega_{\delta},\\ &u(\tilde{x}^{\prime}-\varphi(\overline{\bm{x}}),\overline{\bm{x}}),&\quad\bm{x}^{\prime}=(\tilde{x}^{\prime},\overline{\bm{x}})\in\Omega.\end{aligned}\right.

Now we wish to show that Sφ,ψ1S^{-1}_{\varphi,\psi} is a bounded operator from 𝒮δβ(δ)\mathcal{S}^{\,\beta}_{\delta}(\mathcal{R}_{-\delta}^{\infty}) to 𝒮δβ(Ω^)\mathcal{S}^{\,\beta}_{\delta}(\hat{\Omega}). Using Lemma 5.21 and the MM defined there along with the appropriate changes of the variables, we can show similarly as we have done in Theorem 5.22 that

|Sφ,ψ1(u)|𝒮δβ(Ω^)pCδδγMδβ(|𝒚𝒙|)|u(𝒚)u(𝒙)|p𝑑𝒚𝑑𝒙Cδδγδβ(|𝒚𝒙|)|u(𝒚)u(𝒙)|p𝑑𝒚𝑑𝒙,\displaystyle|S^{-1}_{\varphi,\psi}(u)|^{p}_{\mathcal{S}^{\,\beta}_{\delta}(\hat{\Omega})}\leq C\int_{\mathcal{R}^{\infty}_{-\delta}}\int_{\mathcal{R}^{\infty}_{-\delta}}\gamma^{\,\beta}_{M\delta}(|\bm{y}-\bm{x}|)|u(\bm{y})-u(\bm{x})|^{p}d\bm{y}d\bm{x}\leq C\int_{\mathcal{R}^{\infty}_{-\delta}}\int_{\mathcal{R}^{\infty}_{-\delta}}\gamma^{\,\beta}_{\delta}(|\bm{y}-\bm{x}|)|u(\bm{y})-u(\bm{x})|^{p}d\bm{y}d\bm{x},

where we have used Lemma 2.6 with U=δU=\mathcal{R}_{-\delta}^{\infty} and α=1/M\alpha=1/M in the last step. The continuity of Sφ,ψ1S^{-1}_{\varphi,\psi} is thus shown.

Finally, using the continuity properties of Sφ,ψ1S_{\varphi,\psi}^{-1} , Gφ,ψG_{\varphi,\psi} and EE we have

E~u𝒮δβ(Ω^)=Sφ,ψ1EGφ,ψu𝒮δβ(Ω^)CEGφ,ψu𝒮δβ(δ)C|dβ|1/pGφ,ψu𝒯δβ(δ)C|dβ|1/pu𝒯δβ(Ωδ).\begin{split}&\|\tilde{E}u\|_{\mathcal{S}^{\,\beta}_{\delta}(\hat{\Omega})}=\|S^{-1}_{\varphi,\psi}EG_{\varphi,\psi}u\|_{\mathcal{S}^{\,\beta}_{\delta}(\hat{\Omega})}\leq C\|EG_{\varphi,\psi}u\|_{\mathcal{S}^{\,\beta}_{\delta}(\mathcal{R}_{-\delta}^{\infty})}\\ \leq&C|d-\beta|^{-1/p}\|G_{\varphi,\psi}u\|_{\mathcal{T}^{\,\beta}_{\delta}(\mathcal{R}_{-\delta})}\leq C|d-\beta|^{-1/p}\|u\|_{\mathcal{T}^{\,\beta}_{\delta}(\Omega_{\delta})}.\end{split}

5.3 Extension to more general Lipshitz domains

The extension to more general Lipshitz domains can be otained by using the partition of unity technique. We first decompose the boundary collar region into finitely many balls so that we can locally view the boundary as multiple special Lipschitz domains. From there we apply Theorem 5.22 to each part and join the estimates together with a partition of unity. The detailed derivation is given as follows.

First, for all discussions given in this subsection, we state some assumptions on the domains and define the necessary spaces and functions.

We consider a general bounded simply connected Lipschitz domain Ω\Omega, which naturally makes Ωδ¯\overline{\Omega_{\delta}} a compact set for any finite δ>0\delta>0. Since Ω\Omega has a Lipschitz boundary (see, e.g., [31] Def 1.2.1.1), there exist NN local coordinate systems 𝒙i=(x1i,x2i,,xdi)\bm{x}^{i}=(x_{1}^{i},x_{2}^{i},\cdots,x_{d}^{i}) for 1iN1\leq i\leq N, a collection of balls {B(𝒙i,ri)}i=1N\{B(\bm{x}_{i},r_{i})\}_{i=1}^{N}, and Lipschitz functions φi:d1\varphi_{i}:^{d-1}\to for some NN\in\mathbb{N}, 𝒙iΩ,ri>0\bm{x}_{i}\in\partial\Omega,\ r_{i}>0 such that Ωi=1NB(𝒙i,ri)\partial\Omega\subseteq\bigcup_{i=1}^{N}B(\bm{x}_{i},r_{i}),

{𝒙i=(x~i,𝒙¯i)B(𝒙i,ri):φi(𝒙¯i)<x~i}=ΩB(𝒙i,ri),\displaystyle\{\bm{x}^{i}=(\tilde{x}^{i},\overline{\bm{x}}^{i})\in B(\bm{x}_{i},r_{i}):\varphi_{i}(\overline{\bm{x}}^{i})<\tilde{x}^{i}\}=\Omega\cap B(\bm{x}_{i},r_{i}),
{𝒙i=(x~i,𝒙¯i)B(𝒙i,ri):φi(𝒙¯i)=x~i}=ΩB(𝒙i,ri).\displaystyle\{\bm{x}^{i}=(\tilde{x}^{i},\overline{\bm{x}}^{i})\in B(\bm{x}_{i},r_{i}):\varphi_{i}(\overline{\bm{x}}^{i})=\tilde{x}^{i}\}=\partial\Omega\cap B(\bm{x}_{i},r_{i}).

Notice that in the above definition, {𝒙i}i=1N\{\bm{x}_{i}\}_{i=1}^{N} are NN fixed points on Ω\partial\Omega. Letting δ0:=12dist(di=1NB(𝒙i,ri),Ω)\delta_{0}:=\frac{1}{2}\text{dist}(^{d}\setminus\bigcup_{i=1}^{N}B(\bm{x}_{i},r_{i}),\partial\Omega), we have Ωδ0i=1NB(𝒙i,ri)\Omega_{\delta_{0}}\subseteq\bigcup_{i=1}^{N}B(\bm{x}_{i},r_{i}) and also a positive number ϵ<δ0\epsilon<\delta_{0} such that Ωδ0i=1NB(𝒙i,ri2ϵ)\Omega_{\delta_{0}}\subseteq\bigcup_{i=1}^{N}B(\bm{x}_{i},r_{i}-2\epsilon). Defining ψi0(𝒙¯i)\psi_{i}^{0}(\overline{\bm{x}}^{i}) from φi\varphi_{i} as in Lemma 5.17 we have

(ΩΩδ0)B(𝒙i,ri)\displaystyle(\Omega\cup\Omega_{\delta_{0}})\cap B(\bm{x}_{i},r_{i}) :=Ω0iB(𝒙i,ri)\displaystyle:=\Omega^{i}_{0}\cap B(\bm{x}_{i},r_{i})
Ωδ0B(𝒙i,ri)\displaystyle\Omega_{\delta_{0}}\cap B(\bm{x}_{i},r_{i}) :=Ωδ0iB(𝒙i,ri)\displaystyle:=\Omega_{\delta_{0}}^{i}\cap B(\bm{x}_{i},r_{i})

where Ω0i={𝒙id:ψi0(𝒙¯i)<x~i}\Omega^{i}_{0}=\{\bm{x}^{i}\in\mathbb{R}^{d}:\psi_{i}^{0}(\overline{\bm{x}}^{i})<\tilde{x}^{i}\} and Ωδ0i={𝒙id:ψi0(𝒙¯i)<x~i<φi(𝒙¯i)}\Omega^{i}_{\delta_{0}}=\{\bm{x}^{i}\in\mathbb{R}^{d}:\psi_{i}^{0}(\overline{\bm{x}}^{i})<\tilde{x}^{i}<\varphi_{i}(\overline{\bm{x}}^{i})\}. Notice here the Lipschitz constants of φi\varphi_{i} and ψi0\psi_{i}^{0} depend on the domain Ω\Omega, δ0\delta_{0} and the collection of balls {B(𝒙i,ri)}\{B(\bm{x}_{i},r_{i})\} only and are thus independent of δ\delta and β\beta. Then given δ(0,ϵ)\delta\in(0,\epsilon) we have ΩδΩδ0i=1NB(𝒙i,ri2ϵ)\Omega_{\delta}\subset\Omega_{\delta_{0}}\subset\bigcup_{i=1}^{N}B(\bm{x}_{i},r_{i}-2\epsilon) along with functions ψi(𝒙¯i)\psi_{i}(\overline{\bm{x}}^{i}) so that Ω^B(𝒙i,ri)=ΩiB(𝒙i,ri)\hat{\Omega}\cap B(\bm{x}_{i},r_{i})=\Omega^{i}\cap B(\bm{x}_{i},r_{i}) and ΩδB(𝒙i,ri)=ΩδiB(𝒙i,ri)\Omega_{\delta}\cap B(\bm{x}_{i},r_{i})=\Omega_{\delta}^{i}\cap B(\bm{x}_{i},r_{i}) where

Ωi={𝒙id:ψi(𝒙¯i)<x~i}andΩδi={𝒙id:ψi(𝒙¯i)<x~i<φi(𝒙¯i)}.\Omega^{i}=\{{\bm{x}^{i}}\in\mathbb{R}^{d}:\psi_{i}(\overline{\bm{x}}^{i})<\tilde{x}^{i}\}\ \text{and}\ \Omega^{i}_{\delta}=\{{\bm{x}^{i}}\in\mathbb{R}^{d}:\psi_{i}(\overline{\bm{x}}^{i})<\tilde{x}^{i}<\varphi_{i}(\overline{\bm{x}}^{i})\}.

Define functions {λi}i=1N\{\lambda_{i}\}_{i=1}^{N} such that

  1. 1.

    λiCc(B(𝒙i,riϵ)),1iN\lambda_{i}\in C_{c}^{\infty}(B(\bm{x}_{i},r_{i}-\epsilon)),1\leq i\leq N,

  2. 2.

    0λi10\leq\lambda_{i}\leq 1 and λi1\lambda_{i}\equiv 1 on B(𝒙i,ri2ϵ)B(\bm{x}_{i},r_{i}-2\epsilon).

Since Ωδ\Omega_{\delta} is covered by {B(𝒙i,ri2ϵ)}i=1N\{B(\bm{x}_{i},r_{i}-2\epsilon)\}_{i=1}^{N}, we have 1i=1Nλi(𝒙)C1\leq\sum_{i=1}^{N}\lambda_{i}(\bm{x})\leq C for a fixed constant C>0C>0 depending only on the maximum number of overlapped balls in the set {B(𝒙i,riϵ)}i=1N\{B(\bm{x}_{i},r_{i}-\epsilon)\}_{i=1}^{N}. We also define

λi~(𝒙)=λi(𝒙)/j=1Nλj2(𝒙)\widetilde{\lambda_{i}}(\bm{x})=\lambda_{i}(\bm{x})/\sum_{j=1}^{N}\lambda_{j}^{2}(\bm{x})

for each i{1,,N}i\in\{1,\cdots,N\}. Then since j=1Nλj2(𝒙)\sum_{j=1}^{N}\lambda_{j}^{2}(\bm{x}) is uniformly bounded above and below, we also have λi~Cc(B(𝒙i,riϵ))\widetilde{\lambda_{i}}\in C_{c}^{\infty}(B(\bm{x}_{i},r_{i}-\epsilon)).

Furthermore, we would like to define the extension operator on the general domain. By Theorem 5.23, there exists an extension operator Ei:𝒯δβ(Ωδi)𝒮δβ(Ωi)E^{i}:\mathcal{T}^{\,\beta}_{\delta}(\Omega^{i}_{\delta})\to\mathcal{S}^{\,\beta}_{\delta}(\Omega^{i}) such that Ei(λiu)(𝒙)=(λiu)(𝒙)E^{i}(\lambda_{i}u)(\bm{x})=(\lambda_{i}u)(\bm{x}) for xΩδix\in\Omega^{i}_{\delta} and

Ei(λiu)𝒮δβ(Ωi)C|dβ|1/pλiu𝒯δβ(Ωδi).\|E^{i}(\lambda_{i}u)\|_{\mathcal{S}^{\,\beta}_{\delta}(\Omega^{i})}\leq C|d-\beta|^{-1/p}\|\lambda_{i}u\|_{\mathcal{T}^{\,\beta}_{\delta}(\Omega_{\delta}^{i})}\,.

For any 𝒙Ω^Ωi\bm{x}\in\hat{\Omega}\setminus\Omega^{i}, we assume Ei(λiu)(𝒙)=0E^{i}(\lambda_{i}u)(\bm{x})=0. Then we can define the extension operator E:Lp(Ωδ)Lp(Ω^)E:L^{p}(\Omega_{\delta})\to L^{p}(\hat{\Omega}) by

Eu(𝒙)=i=1Nλi~(𝒙)Ei(λiu)(𝒙),Eu(\bm{x})=\sum_{i=1}^{N}\widetilde{\lambda_{i}}(\bm{x})E^{i}(\lambda_{i}u)(\bm{x})\,, (5.7)

for any 𝒙Ω^\bm{x}\in\hat{\Omega}. Before continuing we show some useful estimates which will together swiftly prove Theorem 1.3.

Lemma 5.24.

Let Ω\Omega be a simply connected Lipschitz domain with an interaction domain Ωδ\Omega_{\delta} for 0<δ<ϵ0<\delta<\epsilon where ϵ\epsilon, Ωi\Omega^{i}, and Ωδi\Omega_{\delta}^{i}, as well as λi\lambda_{i}, are defined as above. For any u𝒮δβ(Ω^)u\in\mathcal{S}_{\delta}^{\,\beta}(\hat{\Omega}), u𝒯δ(Ωδ)pCi=1Nλiu𝒯δ(Ωδi)p\|u\|^{p}_{\mathcal{T}_{\delta}(\Omega_{\delta})}\leq C\sum_{i=1}^{N}\|\lambda_{i}u\|^{p}_{\mathcal{T}_{\delta}(\Omega_{\delta}^{i})}, where CC is a constant independent of δ\delta and β\beta.

Proof.

First note for 𝒙Ωδ\bm{x}\in\Omega_{\delta},

|u(𝒙)|i=1N|(λiu)(𝒙)||u(\bm{x})|\leq\sum_{i=1}^{N}|(\lambda_{i}u)(\bm{x})|

and hence

u𝒯δβ(Ωδ)i=1Nλiu𝒯δβ(Ωδ).\|u\|_{\mathcal{T}^{\,\beta}_{\delta}(\Omega_{\delta})}\leq\sum_{i=1}^{N}\|\lambda_{i}u\|_{\mathcal{T}^{\,\beta}_{\delta}(\Omega_{\delta})}.

Notice that we can extend λi\lambda_{i} by zero so that λiu\lambda_{i}u can be viewed as a function on Ωi\Omega^{i}. Using the fact that λiCc(B(𝒙i,ri))\lambda_{i}\in C_{c}^{\infty}(B(\bm{x}_{i},r_{i})) we have

|λiu|𝒯δβ(Ωδ)p\displaystyle|\lambda_{i}u|^{p}_{\mathcal{T}^{\,\beta}_{\delta}(\Omega_{\delta})} =δβ2(ΩδB(𝒙i,ri)ΩδB(𝒙i,ri)+2ΩδB(𝒙i,ri)ΩδB(𝒙i,ri))|λiu(𝒚)λiu(𝒙)|p(|𝒚𝒙|δ)d+p2(|𝒚𝒙|δ)βd𝒚d𝒙\displaystyle=\delta^{\,\beta-2}\left(\int_{\Omega_{\delta}\cap B(\bm{x}_{i},r_{i})}\int_{\Omega_{\delta}\cap B(\bm{x}_{i},r_{i})}+2\int_{\Omega_{\delta}\cap B(\bm{x}_{i},r_{i})}\int_{\Omega_{\delta}\setminus B(\bm{x}_{i},r_{i})}\right)\frac{|\lambda_{i}u(\bm{y})-\lambda_{i}u(\bm{x})|^{p}}{(|\bm{y}-\bm{x}|\vee\delta)^{d+p-2}(|\bm{y}-\bm{x}|\wedge\delta)^{\beta}}d\bm{y}d\bm{x}
=\displaystyle= δβ2(ΩδiB(𝒙i,ri)ΩδiB(𝒙i,ri)+2ΩδiB(𝒙i,ri)ΩδB(𝒙i,ri))|λiu(𝒚)λiu(𝒙)|p(|𝒚𝒙|δ)d+p2(|𝒚𝒙|δ)βd𝒚d𝒙\displaystyle\delta^{\,\beta-2}\left(\int_{\Omega_{\delta}^{i}\cap B(\bm{x}_{i},r_{i})}\int_{\Omega_{\delta}^{i}\cap B(\bm{x}_{i},r_{i})}+2\int_{\Omega_{\delta}^{i}\cap B(\bm{x}_{i},r_{i})}\int_{\Omega_{\delta}\setminus B(\bm{x}_{i},r_{i})}\right)\frac{|\lambda_{i}u(\bm{y})-\lambda_{i}u(\bm{x})|^{p}}{(|\bm{y}-\bm{x}|\vee\delta)^{d+p-2}(|\bm{y}-\bm{x}|\wedge\delta)^{\beta}}d\bm{y}d\bm{x}
\displaystyle\leq |λiu|𝒯δ(Ωδi)p+2pδβ2ΩδiB(𝒙i,riϵ)ΩδB(𝒙i,ri)|λiu(𝒙)|p(|𝒚𝒙|δ)d+p2(|𝒚𝒙|δ)β𝑑𝒚𝑑𝒙.\displaystyle|\lambda_{i}u|^{p}_{\mathcal{T}_{\delta}(\Omega_{\delta}^{i})}+2^{p}\delta^{\,\beta-2}\int_{\Omega_{\delta}^{i}\cap B(\bm{x}_{i},r_{i}-\epsilon)}\int_{\Omega_{\delta}\setminus B(\bm{x}_{i},r_{i})}\frac{|\lambda_{i}u(\bm{x})|^{p}}{(|\bm{y}-\bm{x}|\vee\delta)^{d+p-2}(|\bm{y}-\bm{x}|\wedge\delta)^{\beta}}d\bm{y}d\bm{x}. (5.8)

Notice that for each 𝒙ΩδB(𝒙i,riϵ)\bm{x}\in\Omega_{\delta}\cap B(\bm{x}_{i},r_{i}-\epsilon), and δ(0,ϵ)\delta\in(0,\epsilon) we have

δβ2ΩδB(𝒙i,ri)1(|𝒚𝒙|δ)d+p2(|𝒚𝒙|δ)β𝑑𝒚=δ2ΩδB(𝒙i,ri)1|𝒚𝒙|d+p2𝑑𝒚\displaystyle\delta^{\,\beta-2}\int_{\Omega_{\delta}\setminus B(\bm{x}_{i},r_{i})}\frac{1}{(|\bm{y}-\bm{x}|\vee\delta)^{d+p-2}(|\bm{y}-\bm{x}|\wedge\delta)^{\beta}}d\bm{y}=\delta^{-2}\int_{\Omega_{\delta}\setminus B(\bm{x}_{i},r_{i})}\frac{1}{|\bm{y}-\bm{x}|^{d+p-2}}d\bm{y}
δ2Ωδ{𝒚d:|𝒚𝒙|>ϵ}1|𝒚𝒙|d+p2𝑑𝒚δ2x~δ/2x~+δ/2|𝒚¯𝒙¯|>ϵδ/21(|y~x~|+|𝒚¯𝒙¯|)d+p2𝑑𝒚¯𝑑y~\displaystyle\leq\delta^{-2}\int_{\Omega_{\delta}\cap\{\bm{y}\in\mathbb{R}^{d}:|\bm{y}-\bm{x}|>\epsilon\}}\frac{1}{|\bm{y}-\bm{x}|^{d+p-2}}d\bm{y}\leq\delta^{-2}\int_{\tilde{x}-\delta/2}^{\tilde{x}+\delta/2}\int_{|\overline{\bm{y}}-\overline{\bm{x}}|>\epsilon-\delta/2}\frac{1}{(|\tilde{y}-\tilde{x}|+|\overline{\bm{y}}-\overline{\bm{x}}|)^{d+p-2}}d\overline{\bm{y}}d\tilde{y} (5.9)
δ1|𝒚¯|>ϵ/21|𝒚¯|d+p2𝑑𝒚¯Cδ1\displaystyle\leq\delta^{-1}\int_{|\overline{\bm{y}}|>{\epsilon/2}}\frac{1}{|\overline{\bm{y}}|^{d+p-2}}d\overline{\bm{y}}\leq C\delta^{-1}

where CC depends on ϵ\epsilon, dd and pp. Therefore, the integral term in (5.8) is bounded by a multiple of 1δλiuLp(Ωδi)p\frac{1}{\delta}\|\lambda_{i}u\|^{p}_{L^{p}(\Omega_{\delta}^{i})}. Moreover, using the compact support of λi\lambda_{i},

λiuLp(Ωδ)p=λiuLp(ΩδB(𝒙i,ri))p=λiuLp(Ωδi)p.\|\lambda_{i}u\|^{p}_{L^{p}(\Omega_{\delta})}=\|\lambda_{i}u\|^{p}_{L^{p}(\Omega_{\delta}\cap B(\bm{x}_{i},r_{i}))}=\|\lambda_{i}u\|^{p}_{L^{p}(\Omega_{\delta}^{i})}. (5.10)

Therefore (5.10) along with the estimates of (5.8) and (5.9)

λiu𝒯δ(Ωδ)pCλiu𝒯δ(Ωδi)p\|\lambda_{i}u\|^{p}_{\mathcal{T}_{\delta}(\Omega_{\delta})}\leq C\|\lambda_{i}u\|^{p}_{\mathcal{T}_{\delta}(\Omega_{\delta}^{i})}

where the constant CC is independent of β\beta and δ\delta. ∎

Lemma 5.25.

Let Ω\Omega be a simply connected Lipschitz domain with an interaction domain Ωδ\Omega_{\delta} for 0<δ<ϵ0<\delta<\epsilon where ϵ\epsilon, Ωi\Omega^{i}, and Ωδi\Omega_{\delta}^{i} are defined as above, along with λi\lambda_{i} and λi~\widetilde{\lambda_{i}} for each ii. For any u𝒮δβ(Ω^)u\in\mathcal{S}_{\delta}^{\,\beta}(\hat{\Omega}), we have

λiu𝒮δβ(Ωi)pCu𝒮δβ(Ω^B(𝒙i,ri))p, and λi~u𝒮δβ(Ωi)pCu𝒮δβ(Ω^B(𝒙i,ri))p,\|\lambda_{i}u\|^{p}_{\mathcal{S}_{\delta}^{\,\beta}(\Omega^{i})}\leq C\|u\|^{p}_{\mathcal{S}_{\delta}^{\,\beta}(\hat{\Omega}\cap B(\bm{x}_{i},r_{i}))},\quad\text{ and }\quad\|\widetilde{\lambda_{i}}u\|^{p}_{\mathcal{S}_{\delta}^{\,\beta}(\Omega^{i})}\leq C\|u\|^{p}_{\mathcal{S}_{\delta}^{\,\beta}(\hat{\Omega}\cap B(\bm{x}_{i},r_{i}))},

where CC is independent of β\beta and δ\delta.

Proof.

First, note that λiuLp(Ωi)=λiuLp(Ω^B(𝒙i,ri))\|\lambda_{i}u\|_{L^{p}(\Omega^{i})}=\|\lambda_{i}u\|_{L^{p}(\hat{\Omega}\cap B(\bm{x}_{i},r_{i}))} and also if 𝒚ΩiB(𝒙i,ri)\bm{y}\in\Omega^{i}\setminus B(\bm{x}_{i},r_{i}) and 𝒙ΩiB(𝒙i,riϵ)\bm{x}\in\Omega^{i}\cap B(\bm{x}_{i},r_{i}-\epsilon), then

|𝒚𝒙||𝒚𝒙i||𝒙𝒙i|>ri(riϵ)=ϵ>δ.|\bm{y}-\bm{x}|\geq|\bm{y}-\bm{x}_{i}|-|\bm{x}-\bm{x}_{i}|>r_{i}-(r_{i}-\epsilon)=\epsilon>\delta.

Moreover, using the compact support of λi\lambda_{i},

|λiu|𝒮δβ(Ωi)p\displaystyle|\lambda_{i}u|^{p}_{\mathcal{S}_{\delta}^{\,\beta}(\Omega^{i})} =(ΩiB(𝒙i,ri)ΩiB(𝒙i,ri)+2ΩiB(𝒙i,ri)ΩiB(𝒙i,ri))γδβ(|𝒙𝒚|)|λiu(𝒙)λiu(𝒚)|pd𝒚d𝒙\displaystyle=\left(\int_{\Omega^{i}\cap B(\bm{x}_{i},r_{i})}\int_{\Omega^{i}\cap B(\bm{x}_{i},r_{i})}+2\int_{\Omega^{i}\cap B(\bm{x}_{i},r_{i})}\int_{\Omega^{i}\setminus B(\bm{x}_{i},r_{i})}\right)\gamma^{\,\beta}_{\delta}(|\bm{x}-\bm{y}|)|\lambda_{i}u(\bm{x})-\lambda_{i}u(\bm{y})|^{p}d\bm{y}d\bm{x}
|λiu|𝒮δβ(ΩiB(𝒙i,ri))p+2ΩiB(𝒙i,riϵ)Ωi{𝒚d:|𝒚𝒙|>ϵ}γδβ(|𝒙𝒚|)|λiu(𝒙)|p𝑑𝒚𝑑𝒙=|λiu|𝒮δβ(Ω^B(𝒙i,ri))p\displaystyle\leq|\lambda_{i}u|^{p}_{\mathcal{S}_{\delta}^{\,\beta}(\Omega^{i}\cap B(\bm{x}_{i},r_{i}))}+2\int_{\Omega^{i}\cap B(\bm{x}_{i},r_{i}-\epsilon)}\int_{\Omega^{i}\cap\{\bm{y}\in\mathbb{R}^{d}:|\bm{y}-\bm{x}|>\epsilon\}}\gamma^{\,\beta}_{\delta}(|\bm{x}-\bm{y}|)|\lambda_{i}u(\bm{x})|^{p}d\bm{y}d\bm{x}=|\lambda_{i}u|^{p}_{\mathcal{S}_{\delta}^{\,\beta}(\hat{\Omega}\cap B(\bm{x}_{i},r_{i}))}

where the last equality is because γδβ(|𝒙𝒚|)=0\gamma_{\delta}^{\beta}(|\bm{x}-\bm{y}|)=0 since |𝒙𝒚|>ϵ>δ|\bm{x}-\bm{y}|>\epsilon>\delta. Then for each 1iN1\leq i\leq N,

|λiu|𝒮δβ(Ω^B(𝒙i,ri))p=Ω^B(𝒙i,ri)Ω^B(𝒙i,ri)γδβ(|𝒙𝒚|)|λi(𝒚)u(𝒚)λi(𝒙)u(𝒙)|p𝑑𝒚𝑑𝒙\displaystyle|\lambda_{i}u|_{\mathcal{S}_{\delta}^{\,\beta}(\hat{\Omega}\cap B(\bm{x}_{i},r_{i}))}^{p}=\int_{\hat{\Omega}\cap B(\bm{x}_{i},r_{i})}\int_{\hat{\Omega}\cap B(\bm{x}_{i},r_{i})}\gamma^{\,\beta}_{\delta}(|\bm{x}-\bm{y}|)|\lambda_{i}(\bm{y})u(\bm{y})-\lambda_{i}(\bm{x})u(\bm{x})|^{p}d\bm{y}d\bm{x}
2p1Ω^B(𝒙i,ri)Ω^B(𝒙i,ri)γδβ(|𝒙𝒚|)|λi(𝒚)|p|u(𝒚)u(𝒙)|p+γδβ(|𝒙𝒚|)|u(𝒙)|p|λi(𝒚)λi(𝒙)|pd𝒚d𝒙\displaystyle\leq 2^{p-1}\int_{\hat{\Omega}\cap B(\bm{x}_{i},r_{i})}\int_{\hat{\Omega}\cap B(\bm{x}_{i},r_{i})}\gamma^{\,\beta}_{\delta}(|\bm{x}-\bm{y}|)|\lambda_{i}(\bm{y})|^{p}|u(\bm{y})-u(\bm{x})|^{p}+\gamma^{\,\beta}_{\delta}(|\bm{x}-\bm{y}|)|u(\bm{x})|^{p}|\lambda_{i}(\bm{y})-\lambda_{i}(\bm{x})|^{p}d\bm{y}d\bm{x}
2p1|u|𝒮δβ(Ω^B(𝒙i,ri))p+2p1Ω^B(𝒙i,ri)|u(𝒙)|pΩ^B(𝒙i,ri)γδβ(|𝒙𝒚|)|λi(𝒚)λi(𝒙)|p𝑑𝒚𝑑𝒙\displaystyle\leq 2^{p-1}|u|^{p}_{\mathcal{S}_{\delta}^{\,\beta}(\hat{\Omega}\cap B(\bm{x}_{i},r_{i}))}+2^{p-1}\int_{\hat{\Omega}\cap B(\bm{x}_{i},r_{i})}|u(\bm{x})|^{p}\int_{\hat{\Omega}\cap B(\bm{x}_{i},r_{i})}\gamma^{\,\beta}_{\delta}(|\bm{x}-\bm{y}|)|\lambda_{i}(\bm{y})-\lambda_{i}(\bm{x})|^{p}d\bm{y}d\bm{x}
2p1|u|𝒮δβ(Ω^B(𝒙i,ri))p+2p1λiC1pΩ^B(𝒙i,ri)|u(𝒙)|pΩ^B(𝒙i,ri)γδβ(|𝒙𝒚|)|𝒚𝒙|p𝑑𝒚𝑑𝒙\displaystyle\leq 2^{p-1}|u|^{p}_{\mathcal{S}_{\delta}^{\,\beta}(\hat{\Omega}\cap B(\bm{x}_{i},r_{i}))}+2^{p-1}\|\lambda_{i}\|^{p}_{C^{1}}\int_{\hat{\Omega}\cap B(\bm{x}_{i},r_{i})}|u(\bm{x})|^{p}\int_{\hat{\Omega}\cap B(\bm{x}_{i},r_{i})}\gamma^{\,\beta}_{\delta}(|\bm{x}-\bm{y}|)|\bm{y}-\bm{x}|^{p}d\bm{y}d\bm{x}
Cu𝒮δβ(Ω^B(𝒙i,ri))p,\displaystyle\leq C\|u\|^{p}_{\mathcal{S}_{\delta}^{\,\beta}(\hat{\Omega}\cap B(\bm{x}_{i},r_{i}))}, (5.11)

where CC is independent of β\beta and δ\delta. Also, since |λi|1|\lambda_{i}|\leq 1,

λiuLp(Ω^B(𝒙i,ri))puLp(Ω^B(𝒙i,ri))puLp(Ω^)p.\|\lambda_{i}u\|_{L^{p}(\hat{\Omega}\cap B(\bm{x}_{i},r_{i}))}^{p}\leq\|u\|_{L^{p}(\hat{\Omega}\cap B(\bm{x}_{i},r_{i}))}^{p}\leq\|u\|_{L^{p}(\hat{\Omega})}^{p}.

The estimates for λi~\widetilde{\lambda_{i}} can be done similarly. ∎

Lemma 5.26.

Let Ω\Omega be a simply connected Lipschitz domain with an interaction domain Ωδ\Omega_{\delta} for 0<δ<ϵ0<\delta<\epsilon where ϵ\epsilon, Ωi\Omega^{i}, and Ωδi\Omega_{\delta}^{i}, along with λi\lambda_{i}, are defined as above. For any u𝒯δβ(Ωδ)u\in\mathcal{T}_{\delta}^{\,\beta}(\Omega_{\delta}), we have

λiu(𝒙)𝒯δβ(Ωδi)pC(u𝒯δβ(Ωδ)p+|d+pβ|1uLp(Ωδ)p),\|\lambda_{i}u(\bm{x})\|^{p}_{\mathcal{T}^{\beta}_{\delta}(\Omega^{i}_{\delta})}\leq C\left(\|u\|^{p}_{\mathcal{T}_{\delta}^{\,\beta}(\Omega_{\delta})}+|d+p-\beta|^{-1}\|u\|^{p}_{L^{p}(\Omega_{\delta})}\right),

where CC is independent of δ\delta and β\beta.

Proof.

Since λi\lambda_{i} is supported in B(𝒙i,riϵ)B(\bm{x}_{i},r_{i}-\epsilon) and λi1\lambda_{i}\leq 1, it is obvious that λiu(𝒙)Lp(Ωδi)=λiu(𝒙)Lp(Ωδ)u(𝒙)Lp(Ωδ)\|\lambda_{i}u(\bm{x})\|_{L^{p}(\Omega^{i}_{\delta})}=\|\lambda_{i}u(\bm{x})\|_{L^{p}(\Omega_{\delta})}\leq\|u(\bm{x})\|_{L^{p}(\Omega_{\delta})}. Now

|λiu|𝒯δβ(Ωδi)p=δβ2(ΩδiB(𝒙i,ri)ΩδiB(𝒙i,ri)+2ΩδiB(𝒙i,ri)Ωδi\B(𝒙i,ri))|λiu(𝒚)λiu(𝒙)|p(|𝒚𝒙|δ)d+p2(|𝒚𝒙|δ)βd𝒚d𝒙=|λiu|𝒯δβ(ΩδiB(𝒙i,ri))p+2ΩδiB(𝒙i,riϵ)Ωδi\B(𝒙i,ri)|λiu(𝒙)|p(|𝒚𝒙|δ)d+p2(|𝒚𝒙|δ)β𝑑𝒚𝑑𝒙\begin{split}|\lambda_{i}u|^{p}_{\mathcal{T}^{\,\beta}_{\delta}(\Omega^{i}_{\delta})}&=\delta^{\,\beta-2}\left(\int_{\Omega^{i}_{\delta}\cap B(\bm{x}_{i},r_{i})}\int_{\Omega^{i}_{\delta}\cap B(\bm{x}_{i},r_{i})}+2\int_{\Omega^{i}_{\delta}\cap B(\bm{x}_{i},r_{i})}\int_{\Omega_{\delta}^{i}\backslash B(\bm{x}_{i},r_{i})}\right)\frac{|\lambda_{i}u(\bm{y})-\lambda_{i}u(\bm{x})|^{p}}{(|\bm{y}-\bm{x}|\vee\delta)^{d+p-2}(|\bm{y}-\bm{x}|\wedge\delta)^{\,\beta}}d\bm{y}d\bm{x}\\ &=|\lambda_{i}u|^{p}_{\mathcal{T}^{\,\beta}_{\delta}(\Omega^{i}_{\delta}\cap B(\bm{x}_{i},r_{i}))}+2\int_{\Omega^{i}_{\delta}\cap B(\bm{x}_{i},r_{i}-\epsilon)}\int_{\Omega_{\delta}^{i}\backslash B(\bm{x}_{i},r_{i})}\frac{|\lambda_{i}u(\bm{x})|^{p}}{(|\bm{y}-\bm{x}|\vee\delta)^{d+p-2}(|\bm{y}-\bm{x}|\wedge\delta)^{\,\beta}}d\bm{y}d\bm{x}\end{split} (5.12)

For the first term in the last line, we have

|λiu|𝒯δβ(ΩδiB(𝒙i,ri))p2p1δβ2ΩδiB(𝒙i,ri)ΩδiB(𝒙i,ri)|λi(𝒚)|p|u(𝒚)u(𝒙)|p+|u(𝒙)|p|λi(𝒚)λi(𝒙)|p(|𝒚𝒙|δ)d+p2(|𝒚𝒙|δ)β𝑑𝒚𝑑𝒙2p1|u|𝒯δβ(Ωδ)p+2p1δβ2λiC1pΩδB(𝒙i,ri)|u(𝒙)|pΩδiB(𝒙i,ri)|𝒚𝒙|p(|𝒚𝒙|δ)d+p2(|𝒚𝒙|δ)β𝑑𝒚𝑑𝒙.\begin{split}|\lambda_{i}u|^{p}_{\mathcal{T}^{\,\beta}_{\delta}(\Omega^{i}_{\delta}\cap B(\bm{x}_{i},r_{i}))}&\leq 2^{p-1}\delta^{\,\beta-2}\int_{\Omega^{i}_{\delta}\cap B(\bm{x}_{i},r_{i})}\int_{\Omega^{i}_{\delta}\cap B(\bm{x}_{i},r_{i})}\frac{|\lambda_{i}(\bm{y})|^{p}|u(\bm{y})-u(\bm{x})|^{p}+|u(\bm{x})|^{p}|\lambda_{i}(\bm{y})-\lambda_{i}(\bm{x})|^{p}}{(|\bm{y}-\bm{x}|\vee\delta)^{d+p-2}(|\bm{y}-\bm{x}|\wedge\delta)^{\,\beta}}d\bm{y}d\bm{x}\\ \leq&2^{p-1}|u|^{p}_{\mathcal{T}^{\,\beta}_{\delta}(\Omega_{\delta})}+2^{p-1}\delta^{\,\beta-2}\|\lambda_{i}\|_{C^{1}}^{p}\int_{\Omega_{\delta}\cap B(\bm{x}_{i},r_{i})}|u(\bm{x})|^{p}\int_{\Omega^{i}_{\delta}\cap B(\bm{x}_{i},r_{i})}\frac{|\bm{y}-\bm{x}|^{p}}{(|\bm{y}-\bm{x}|\vee\delta)^{d+p-2}(|\bm{y}-\bm{x}|\wedge\delta)^{\,\beta}}d\bm{y}d\bm{x}.\end{split}

Now for any 𝒙ΩδiB(𝒙i,ri)\bm{x}\in\Omega^{i}_{\delta}\cap B(\bm{x}_{i},r_{i}),

δβ2ΩδiB(𝒙i,ri)|𝒚𝒙|p(|𝒚𝒙|δ)d+p2(|𝒚𝒙|δ)β𝑑𝒚δβdp|𝒚𝒙|<δ1|𝒚𝒙|βp𝑑𝒚+δ2{𝒚Ωδi:δ<|𝒚𝒙|<2ri}1|𝒚𝒙|d2𝑑𝒚C|d+pβ|1+δ2{𝒚d:ψi(𝒚¯)<y~<φi(𝒚¯),|𝒚𝒙|<2ri}1|𝒚𝒙|d2𝑑𝒚,\begin{split}&\delta^{\,\beta-2}\int_{\Omega^{i}_{\delta}\cap B(\bm{x}_{i},r_{i})}\frac{|\bm{y}-\bm{x}|^{p}}{(|\bm{y}-\bm{x}|\vee\delta)^{d+p-2}(|\bm{y}-\bm{x}|\wedge\delta)^{\,\beta}}d\bm{y}\\ \leq&\delta^{\,\beta-d-p}\int_{|\bm{y}-\bm{x}|<\delta}\frac{1}{|\bm{y}-\bm{x}|^{\,\beta-p}}d\bm{y}+\delta^{-2}\int_{\{\bm{y}\in\Omega_{\delta}^{i}:\delta<|\bm{y}-\bm{x}|<2r_{i}\}}\frac{1}{|\bm{y}-\bm{x}|^{d-2}}d\bm{y}\\ \leq&C|d+p-\beta|^{-1}+\delta^{-2}\int_{\left\{\bm{y}\in\mathbb{R}^{d}:\psi_{i}(\overline{\bm{y}})<\tilde{y}<\varphi_{i}(\overline{\bm{y}}),\,|\bm{y}-\bm{x}|<2r_{i}\right\}}\frac{1}{|\bm{y}-\bm{x}|^{d-2}}d\bm{y}\,,\end{split}

where CC only depends on dd. Note that in the last step above, we have adopted the ii-th local coordinate system defined before to represent the points 𝒙\bm{x} and 𝒚\bm{y} without adding labels to them. Define Gi:δ{𝒚d:ψi(𝒚¯)<y~<φi(𝒚¯)}G^{i}:\mathcal{R}_{-\delta}\to\{\bm{y}\in\mathbb{R}^{d}:\psi_{i}(\overline{\bm{y}})<\tilde{y}<\varphi_{i}(\overline{\bm{y}})\} such that for any 𝒙=(x~,𝒙¯)\bm{x}=(\tilde{x},\overline{\bm{x}}), with the same ii-th local coordinate system representation

Gi𝒙=((1+x~δ)φi(𝒙¯)x~δψi(𝒙¯),𝒙¯).G^{i}\bm{x}=\left(\left(1+\frac{\tilde{x}}{\delta}\right)\varphi_{i}(\overline{\bm{x}})-\frac{\tilde{x}}{\delta}\psi_{i}(\overline{\bm{x}}),\overline{\bm{x}}\right)\,. (5.13)

We can see from Lemma 5.19 that KL|𝒙𝒛||Gi𝒙Gi𝒛|KL|𝒙𝒛|K_{L}^{\prime}|\bm{x}-\bm{z}|\leq|G^{i}\bm{x}-G^{i}\bm{z}|\leq K_{L}|\bm{x}-\bm{z}|, so |Gi𝒙|KL\left|\frac{\partial G^{i}}{\partial\bm{x}}\right|\leq K_{L}. By the change of variable,

δ2{𝒚d:ψi(𝒚¯)<y~<φi(𝒚¯),|𝒚𝒙|<2ri}1|𝒚𝒙|d2𝑑𝒚KLδ2{𝒚δ:|Gi𝒚𝒙|<2ri}1|Gi𝒚𝒙|d2𝑑𝒚KL(KL)d2δ2{𝒚δ:|𝒚(Gi)1𝒙|<2ri/KL}1|𝒚(Gi)1𝒙|d2𝑑𝒚.\begin{split}&\delta^{-2}\int_{\left\{\bm{y}\in\mathbb{R}^{d}:\psi_{i}(\overline{\bm{y}})<\tilde{y}<\varphi_{i}(\overline{\bm{y}}),\,|\bm{y}-\bm{x}|<2r_{i}\right\}}\frac{1}{|\bm{y}-\bm{x}|^{d-2}}d\bm{y}\leq K_{L}\delta^{-2}\int_{\left\{\bm{y}\in\mathcal{R}_{-\delta}:|G^{i}\bm{y}-\bm{x}|<2r_{i}\right\}}\frac{1}{|G^{i}\bm{y}-\bm{x}|^{d-2}}d\bm{y}\\ \leq&\frac{K_{L}}{(K_{L}^{\prime})^{d-2}}\delta^{-2}\int_{\left\{\bm{y}\in\mathcal{R}_{-\delta}:|\bm{y}-(G^{i})^{-1}\bm{x}|<2r_{i}/K_{L}^{\prime}\right\}}\frac{1}{|\bm{y}-(G^{i})^{-1}\bm{x}|^{d-2}}d\bm{y}\end{split}.

Let 𝒘=(Gi)1𝒙=(w~,𝒘¯)\bm{w}=(G^{i})^{-1}\bm{x}=(\tilde{w},\overline{\bm{w}}) and δ𝒘:={𝒚𝒘:𝒚δ}=(δw~,w~)×d1\mathcal{R}_{-\delta}-\bm{w}:=\{\bm{y}-\bm{w}:\bm{y}\in\mathcal{R}_{-\delta}\}=(-\delta-\tilde{w},-\tilde{w})\times\mathbb{R}^{d-1}, the last line can be estimated by

KL(KL)d2δ2{𝒚δ𝒘:|𝒚|<2ri/KL}1|𝒚|d2𝑑𝒚KL(KL)d2δ2{𝒚δ𝒘:|𝒚¯|<2ri/KL}1|𝒚¯|d2𝑑𝒚=KL(KL)d2δ2δw~w~𝑑y~|𝒚¯|<2ri/KL1|𝒚¯|d2𝑑𝒚¯Cδ1,\begin{split}&\frac{K_{L}}{(K_{L}^{\prime})^{d-2}}\delta^{-2}\int_{\left\{\bm{y}\in\mathcal{R}_{-\delta}-\bm{w}:|\bm{y}|<2r_{i}/K_{L}^{\prime}\right\}}\frac{1}{|\bm{y}|^{d-2}}d\bm{y}\leq\frac{K_{L}}{(K_{L}^{\prime})^{d-2}}\delta^{-2}\int_{\left\{\bm{y}\in\mathcal{R}_{-\delta}-\bm{w}:|\overline{\bm{y}}|<2r_{i}/K_{L}^{\prime}\right\}}\frac{1}{|\overline{\bm{y}}|^{d-2}}d\bm{y}\\ &=\frac{K_{L}}{(K_{L}^{\prime})^{d-2}}\delta^{-2}\int_{-\delta-\tilde{w}}^{-\tilde{w}}d\tilde{y}\int_{|\overline{\bm{y}}|<2r_{i}/K_{L}^{\prime}}\frac{1}{|\overline{\bm{y}}|^{d-2}}d\overline{\bm{y}}\leq C\delta^{-1}\,,\end{split}

where CC is independent of δ\delta and β\beta. Collecting the above estimates, we have

|λiu|𝒯δβ(ΩδiB(𝒙i,ri))pC(u𝒯δβ(Ωδ)p+|d+pβ|1uLp(Ωδ)p).|\lambda_{i}u|^{p}_{\mathcal{T}^{\,\beta}_{\delta}(\Omega^{i}_{\delta}\cap B(\bm{x}_{i},r_{i}))}\leq C\left(\|u\|^{p}_{\mathcal{T}_{\delta}^{\,\beta}(\Omega_{\delta})}+|d+p-\beta|^{-1}\|u\|^{p}_{L^{p}(\Omega_{\delta})}\right).

Now for the second term in (5.12), we notice that if 𝒙B(𝒙i,riϵ)\bm{x}\in B(\bm{x}_{i},r_{i}-\epsilon) and 𝒚dB(𝒙i,ri)\bm{y}\in\mathbb{R}^{d}\setminus B(\bm{x}_{i},r_{i}), then |𝒚𝒙|ϵ>δ|\bm{y}-\bm{x}|\geq\epsilon>\delta, therefore for each 𝒙B(𝒙i,riϵ)\bm{x}\in B(\bm{x}_{i},r_{i}-\epsilon)

δβ2Ωδi\B(𝒙i,ri)1(|𝒚𝒙|δ)d+p2(|𝒚𝒙|δ)β𝑑𝒚=δ2Ωδi\B(𝒙i,ri)1|𝒚𝒙|d+p2𝑑𝒚δ2{𝒚d:ψi(𝒚¯)<y~<φi(𝒚¯),|𝒚𝒙|>ϵ}1|𝒚𝒙|d+p2𝑑𝒚.\begin{split}&\delta^{\,\beta-2}\int_{\Omega_{\delta}^{i}\backslash B(\bm{x}_{i},r_{i})}\frac{1}{(|\bm{y}-\bm{x}|\vee\delta)^{d+p-2}(|\bm{y}-\bm{x}|\wedge\delta)^{\,\beta}}d\bm{y}=\delta^{-2}\int_{\Omega_{\delta}^{i}\backslash B(\bm{x}_{i},r_{i})}\frac{1}{|\bm{y}-\bm{x}|^{d+p-2}}d\bm{y}\\ \leq&\delta^{-2}\int_{\left\{\bm{y}\in\mathbb{R}^{d}:\psi_{i}(\overline{\bm{y}})<\tilde{y}<\varphi_{i}(\overline{\bm{y}}),\,|\bm{y}-\bm{x}|>\epsilon\right\}}\frac{1}{|\bm{y}-\bm{x}|^{d+p-2}}d\bm{y}\,.\end{split}

Note that in the last line, we have again adopted the ii-th local coordinate system. Let GiG^{i} be defined in (5.13) and 𝒘=(Gi)1𝒙\bm{w}=(G^{i})^{-1}\bm{x}. Then by the same reasoning as above,

δ2{𝒚d:ψi(𝒚¯)<y~<φi(𝒚¯),|𝒚𝒙|>ϵ}1|𝒚𝒙|d+p2𝑑𝒚KLδ2{𝒚δ,|Gi𝒚𝒙|>ϵ}1|Gi𝒚𝒙|d+p2𝑑𝒚KL(KL)d+p2δ2{𝒚δ𝒘,|𝒚|>ϵ/KL}1|𝒚|d+p2𝑑𝒚.\begin{split}&\delta^{-2}\int_{\left\{\bm{y}\in\mathbb{R}^{d}:\psi_{i}(\overline{\bm{y}})<\tilde{y}<\varphi_{i}(\overline{\bm{y}}),\,|\bm{y}-\bm{x}|>\epsilon\right\}}\frac{1}{|\bm{y}-\bm{x}|^{d+p-2}}d\bm{y}\leq K_{L}\delta^{-2}\int_{\left\{\bm{y}\in\mathcal{R}_{-\delta},\,|G^{i}\bm{y}-\bm{x}|>\epsilon\right\}}\frac{1}{|G^{i}\bm{y}-\bm{x}|^{d+p-2}}d\bm{y}\\ \leq&\frac{K_{L}}{(K_{L}^{\prime})^{d+p-2}}\delta^{-2}\int_{\left\{\bm{y}\in\mathcal{R}_{-\delta}-\bm{w},\,|\bm{y}|>\epsilon/K_{L}\right\}}\frac{1}{|\bm{y}|^{d+p-2}}d\bm{y}.\end{split}

Since {𝒚:|𝒚|>ϵ/KL}{𝒚=(y~,𝒚¯):|𝒚¯|>3ϵ/(2KL)}{𝒚=(y~,𝒚¯):|y~|>ϵ/(2KL)}\{\bm{y}:|\bm{y}|>\epsilon/K_{L}\}\subset\{\bm{y}=(\tilde{y},\overline{\bm{y}}):|\overline{\bm{y}}|>\sqrt{3}\epsilon/(2K_{L})\}\cup\{\bm{y}=(\tilde{y},\overline{\bm{y}}):|\tilde{y}|>\epsilon/(2K_{L})\}, the above quantity can be bounded by

KL(KL)d+p2δ2({𝒚δ𝒘,|y~|>ϵ/(2KL)}1|𝒚|d+p2𝑑𝒚+{𝒚δ𝒘,|𝒚¯|>3ϵ/(2KL)}1|𝒚|d+p2𝑑𝒚)Cδ2(δd11(|𝒚¯|+ϵ/(2KL))d+p2𝑑𝒚¯+δ|𝒚¯|>3ϵ2KL1|𝒚¯|d+p2𝑑𝒚¯)Cδ1,\begin{split}&\frac{K_{L}}{(K_{L}^{\prime})^{d+p-2}}\delta^{-2}\left(\int_{\left\{\bm{y}\in\mathcal{R}_{-\delta}-\bm{w},|\tilde{y}|>\epsilon/(2K_{L})\right\}}\frac{1}{|\bm{y}|^{d+p-2}}d\bm{y}+\int_{\left\{\bm{y}\in\mathcal{R}_{-\delta}-\bm{w},|\overline{\bm{y}}|>\sqrt{3}\epsilon/(2K_{L})\right\}}\frac{1}{|\bm{y}|^{d+p-2}}d\bm{y}\right)\\ \leq&C\delta^{-2}\left(\delta\int_{\mathbb{R}^{d-1}}\frac{1}{(|\overline{\bm{y}}|+\epsilon/(2K_{L}))^{d+p-2}}d\overline{\bm{y}}+\delta\int_{|\overline{\bm{y}}|>\frac{\sqrt{3}\epsilon}{2K_{L}}}\frac{1}{|\overline{\bm{y}}|^{d+p-2}}d\overline{\bm{y}}\right)\leq C\delta^{-1}\,,\end{split}

where CC is a constant that depends on ϵ\epsilon, KLK_{L}, dd and pp. Combining the estimates, we get

|λiu|𝒯δβ(Ωδi)pC(u𝒯δβ(Ωδ)p+|d+pβ|1uLp(Ωδ)p).|\lambda_{i}u|^{p}_{\mathcal{T}^{\,\beta}_{\delta}(\Omega^{i}_{\delta})}\leq C\left(\|u\|^{p}_{\mathcal{T}_{\delta}^{\,\beta}(\Omega_{\delta})}+|d+p-\beta|^{-1}\|u\|^{p}_{L^{p}(\Omega_{\delta})}\right)\,.

Lemma 5.27.

Let Ω\Omega be a simply connected Lipschitz domain with an interaction domain Ωδ\Omega_{\delta} for 0<δ<ϵ0<\delta<\epsilon where ϵ\epsilon, Ωi\Omega^{i}, and Ωδi\Omega_{\delta}^{i} are defined as above. Assume each λi\lambda_{i} as above and EE defined by (5.7), then for any u𝒯δβ(Ωδ)u\in\mathcal{T}_{\delta}^{\,\beta}(\Omega_{\delta}), Eu𝒮δβ(Ω^)C|dβ|1/pi=1Nλiu(𝐱)𝒯δβ(Ωδi)\|Eu\|_{\mathcal{S}^{\,\beta}_{\delta}(\hat{\Omega})}\leq C|d-\beta|^{-1/p}\sum_{i=1}^{N}\|\lambda_{i}u(\bm{x})\|_{\mathcal{T}^{\,\beta}_{\delta}(\Omega^{i}_{\delta})} where CC is independent of δ\delta and β\beta.

Proof.

Notice that Eu|Ωδ=uEu|_{\Omega_{\delta}}=u since, for 𝒙Ωδ\bm{x}\in\Omega_{\delta}, λi(𝒙)Ei(λiu)(𝒙)=λi2(𝒙)u(𝒙)\lambda_{i}(\bm{x})E^{i}(\lambda_{i}u)(\bm{x})=\lambda_{i}^{2}(\bm{x})u(\bm{x}) for all ii. By (5.7), we observe that

Eu𝒮δβ(Ω^)i=1Nλi~Ei(λiu)𝒮δβ(Ω^).\|Eu\|_{\mathcal{S}^{\,\beta}_{\delta}(\hat{\Omega})}\leq\sum_{i=1}^{N}\|\widetilde{\lambda_{i}}E^{i}(\lambda_{i}u)\|_{\mathcal{S}^{\,\beta}_{\delta}(\hat{\Omega})}.

For each i{1,,N}i\in\{1,\cdots,N\}, we have

|λi~Ei(λiu)|𝒮δβ(Ω^)p=(Ω^B(𝒙i,ri)Ω^B(𝒙i,ri)+2Ω^B(𝒙i,ri)Ω^B(𝒙i,ri))γδβ(|𝒙𝒚|)|(λi~Ei(λiu))(𝒙)(λi~Ei(λiu))(𝒚)|pd𝒚d𝒙=|λi~Ei(λiu)|𝒮δβ(Ωi)p+2Ω^B(𝒙i,riϵ)Ω^{𝒚d:|𝒚𝒙|>ϵ}γδβ(|𝒙𝒚|)|(λi~Ei(λiu))(𝒙)(λi~Ei(λiu))(𝒚)|p𝑑𝒚𝑑𝒙=|λi~Ei(λiu)|𝒮δβ(Ωi)pC|Ei(λiu)|𝒮δβ(Ω^B(𝒙i,ri))pC|Ei(λiu)|𝒮δβ(Ωi)pC|βd|1λiu𝒯δβ(Ωδi)p,\begin{split}&|\widetilde{\lambda_{i}}E^{i}(\lambda_{i}u)|^{p}_{\mathcal{S}^{\,\beta}_{\delta}(\hat{\Omega})}\\ =&\left(\int_{\hat{\Omega}\cap B(\bm{x}_{i},r_{i})}\int_{\hat{\Omega}\cap B(\bm{x}_{i},r_{i})}+2\int_{\hat{\Omega}\cap B(\bm{x}_{i},r_{i})}\int_{\hat{\Omega}\setminus B(\bm{x}_{i},r_{i})}\right)\gamma^{\,\beta}_{\delta}(|\bm{x}-\bm{y}|)\left|\left(\widetilde{\lambda_{i}}E^{i}(\lambda_{i}u)\right)(\bm{x})-\left(\widetilde{\lambda_{i}}E^{i}(\lambda_{i}u)\right)(\bm{y})\right|^{p}d\bm{y}d\bm{x}\\ =&|\widetilde{\lambda_{i}}E^{i}(\lambda_{i}u)|^{p}_{\mathcal{S}^{\,\beta}_{\delta}(\Omega^{i})}+2\int_{\hat{\Omega}\cap B(\bm{x}_{i},r_{i}-\epsilon)}\int_{\hat{\Omega}\cap\{\bm{y}\in\mathbb{R}^{d}:|\bm{y}-\bm{x}|>\epsilon\}}\gamma^{\,\beta}_{\delta}(|\bm{x}-\bm{y}|)\left|\left(\widetilde{\lambda_{i}}E^{i}(\lambda_{i}u)\right)(\bm{x})-\left(\widetilde{\lambda_{i}}E^{i}(\lambda_{i}u)\right)(\bm{y})\right|^{p}d\bm{y}d\bm{x}\\ =&|\widetilde{\lambda_{i}}E^{i}(\lambda_{i}u)|^{p}_{\mathcal{S}^{\,\beta}_{\delta}(\Omega^{i})}\leq C|E^{i}(\lambda_{i}u)|^{p}_{\mathcal{S}^{\,\beta}_{\delta}(\hat{\Omega}\cap B(\bm{x}_{i},r_{i}))}\leq C|E^{i}(\lambda_{i}u)|^{p}_{\mathcal{S}^{\,\beta}_{\delta}(\Omega^{i})}\\ \leq&C|\beta-d|^{-1}\|\lambda_{i}u\|^{p}_{\mathcal{T}^{\,\beta}_{\delta}(\Omega^{i}_{\delta})}\,,\end{split}

where we have used Lemma 5.25 and Theorem 5.23. Moreover, since λi~1\widetilde{\lambda_{i}}\leq 1, we have

λi~Ei(λiu)Lp(Ω^)p=λi~Ei(λiu)Lp(Ω^B(𝒙i,ri))pEi(λiu)Lp(Ωi)pCλiu𝒯δβ(Ωδi)p.\|\widetilde{\lambda_{i}}E^{i}(\lambda_{i}u)\|^{p}_{L^{p}(\hat{\Omega})}=\|\widetilde{\lambda_{i}}E^{i}(\lambda_{i}u)\|^{p}_{L^{p}(\hat{\Omega}\cap B(\bm{x}_{i},r_{i}))}\leq\|E^{i}(\lambda_{i}u)\|^{p}_{L^{p}(\Omega^{i})}\leq C\|\lambda_{i}u\|^{p}_{\mathcal{T}^{\,\beta}_{\delta}(\Omega^{i}_{\delta})}.

Therefore, we have Eu𝒮δβ(Ω^)C|dβ|1/pi=1Nλiu(𝒙)𝒯δβ(Ωδi)\|Eu\|_{\mathcal{S}^{\,\beta}_{\delta}(\hat{\Omega})}\leq C|d-\beta|^{-1/p}\sum_{i=1}^{N}\|\lambda_{i}u(\bm{x})\|_{\mathcal{T}^{\,\beta}_{\delta}(\Omega^{i}_{\delta})}. ∎

Proof of Theorem 1.3. To show general trace theorem we use Lemmas 5.24 and 5.25 along with Theorem 5.22 to obtain the estimate

u𝒯δβ(Ωδ)\displaystyle\|u\|_{\mathcal{T}^{\,\beta}_{\delta}(\Omega_{\delta})} Ci=1Nλiu𝒯δβ(Ωδi)C|d+pβ|1/pi=1Nλiu𝒮δβ(Ωi)\displaystyle\leq C\sum_{i=1}^{N}\|\lambda_{i}u\|_{\mathcal{T}_{\delta}^{\,\beta}(\Omega^{i}_{\delta})}\leq C|d+p-\beta|^{-1/p}\sum_{i=1}^{N}\|\lambda_{i}u\|_{\mathcal{S}_{\delta}^{\,\beta}(\Omega^{i})}
C|d+pβ|1/pi=1Nu𝒮δβ(Ω^B(𝒙i,ri))C|d+pβ|1/pu𝒮δβ(Ω^),\displaystyle\leq C|d+p-\beta|^{-1/p}\sum_{i=1}^{N}\|u\|_{\mathcal{S}_{\delta}^{\,\beta}(\hat{\Omega}\cap B(\bm{x}_{i},r_{i}))}\leq C|d+p-\beta|^{-1/p}\|u\|_{\mathcal{S}_{\delta}^{\,\beta}(\hat{\Omega})}\,,

where CC is independent of β\beta and δ\delta. For the general inverse trace theorem, let EE be defined by (5.7), then from Lemmas 5.26 and 5.27 we have

Eu𝒮δβ(Ω^)C|dβ|1/pi=1Nλiu𝒯δβ(Ωδi)C|dβ|1/p(u𝒯δβ(Ωδ)+|d+pβ|1/puLp(Ωδ)),\|Eu\|_{\mathcal{S}^{\,\beta}_{\delta}(\hat{\Omega})}\leq C|d-\beta|^{-1/p}\sum_{i=1}^{N}\|\lambda_{i}u\|_{\mathcal{T}^{\,\beta}_{\delta}(\Omega^{i}_{\delta})}\leq C|d-\beta|^{-1/p}\left(\|u\|_{\mathcal{T}_{\delta}^{\,\beta}(\Omega_{\delta})}+|d+p-\beta|^{-1/p}\|u\|_{L^{p}(\Omega_{\delta})}\right)\,,

where CC is independent of δ\delta and β\beta. ∎

6 Conclusion and Discussion

This work gives suitable characterizations of the trace spaces of a class of nonlocal function spaces denoted by 𝒮δβ(Ω^)\mathcal{S}^{\,\beta}_{\delta}(\hat{\Omega}), where the parameter δ\delta is the nonlocal interaction length and β\beta characterizes the singularity of the nonlocal interaction kernels. Such nonlocal function spaces have been extensively used recently as the energy spaces associated with nonlocal diffusion and nonlocal mechanics models [22, 55, 46, 19, you2020data, FR2]. However, a clear understanding of the trace spaces of 𝒮δβ(Ω^)\mathcal{S}^{\,\beta}_{\delta}(\hat{\Omega}) has been largely limited [61]. In the current work, we have introduced the function space 𝒯δβ(Ωδ)\mathcal{T}^{\,\beta}_{\delta}(\Omega_{\delta}) as the trace space of 𝒮δβ(Ω^)\mathcal{S}^{\,\beta}_{\delta}(\hat{\Omega}) and demonstrated that the trace map from 𝒮δβ(Ω^)\mathcal{S}^{\,\beta}_{\delta}(\hat{\Omega}) to 𝒯δβ(Ωδ)\mathcal{T}^{\,\beta}_{\delta}(\Omega_{\delta}) is continuous (given by the trace theorem) and conversely, there is a continuous extension operator from 𝒯δβ(Ωδ)\mathcal{T}^{\,\beta}_{\delta}(\Omega_{\delta}) to 𝒮δβ(Ω^)\mathcal{S}^{\,\beta}_{\delta}(\hat{\Omega}) (given by the inverse trace theorem). Moreover, the estimates on the trace and the inverse trace maps are uniform with respect to the horizon parameter δ\delta, so that one can recover the classical trace and inverse trace theorems in the local limit as the nonlocal interaction length δ0\delta\to 0. This is also important since there are many instances of nonlocal models that recover the classical diffusion or elasticity equations as δ0\delta\to 0 [22, 45, 46].

The investigation of trace spaces of Sobolev spaces has been a classical research area that has important implications in the mathematical and numerical studies of boundary value problems of local PDEs. The results of this work therefore are expected to be helpful in the rigorous studies of nonlocal equations with possible nonlocal boundary constraints similar to their PDEs counterparts. Studies in this direction are currently underway. Moreover, nonlocal functions spaces on vector fields such as those appear in [45, 46] can also be studied in the future. Another interesting direction for the future is to investigate, when δ\delta\rightarrow\infty, the consistency of suitably defined nonlocal spaces, similar to those discussed in this work, with their fractional limits.

Acknowledgments

Y. Yu is supported by the National Science Foundation under award DMS 1753031. Q. Du is supported in part by the National Science Foundation under award DMS-2012562 and the ARO MURI Grant W911NF-15-1-0562. X. Tian is supported by the National Science Foundation under award DMS-2111608.

References

  • Adams and Fournier [2003] Adams, R. A. and Fournier, J. J. (2003). Sobolev spaces. Elsevier.
  • Andreu et al. [2008] Andreu, F., Mazón, J. M., Rossi, J. D., and Toledo, J. (2008). A nonlocal p-laplacian evolution equation with neumann boundary conditions. Journal de mathématiques pures et appliquées, 90(2):201–227.
  • Andreu et al. [2009] Andreu, F., Mazón, J. M., Rossi, J. D., and Toledo, J. (2009). A nonlocal p-laplacian evolution equation with nonhomogeneous dirichlet boundary conditions. SIAM journal on mathematical analysis, 40(5):1815–1851.
  • Andreu-Vaillo et al. [2010] Andreu-Vaillo, F., Mazón, J. M., Rossi, J. D., and Toledo-Melero, J. J. (2010). Nonlocal diffusion problems. Number 165. American Mathematical Soc.
  • Avkhadiev [2006] Avkhadiev, F. G. (2006). Hardy-type inequalities on planar and spatial open sets. Proceedings of the Steklov Institute of Mathematics, 255(1):2–12.
  • Avkhadiev and Nasibullin [2014] Avkhadiev, F. G. and Nasibullin, R. (2014). Hardy-type inequalities in arbitrary domains with finite inner radius. Siberian Mathematical Journal, 55(2):191–200.
  • Bobaru and Duangpanya [2010] Bobaru, F. and Duangpanya, M. (2010). The peridynamic formulation for transient heat conduction. International Journal of Heat and Mass Transfer, 53:4047–4059.
  • Bobaru et al. [2015] Bobaru, F., Foster, J., Geubelle, P., and Silling, S. (2015). Handbook of Peridynamic Modeling. Modern Mechanics and Mathematics. Taylor & Francis.
  • Bobaru et al. [2016] Bobaru, F., Foster, J. T., Geubelle, P. H., and Silling, S. A. (2016). Handbook of peridynamic modeling. CRC press.
  • Bobaru and Ha [2011] Bobaru, F. and Ha, Y. D. (2011). Adaptive refinement and multiscale modeling in 2D peridynamics. International Journal for Multiscale Computational Engineering, 9(6).
  • Bogdan et al. [2020] Bogdan, K., Grzywny, T., Pietruska-Pałuba, K., and Rutkowski, A. (2020). Extension and trace for nonlocal operators. Journal de Mathématiques Pures et Appliquées, 137:33–69.
  • Borthagaray et al. [2019] Borthagaray, J. P., Li, W., and Nochetto, R. H. (2019). Finite element discretizations of nonlocal minimal graphs: convergence. arXiv preprint arXiv:1905.06395.
  • Bourgain et al. [2001] Bourgain, J., Brezis, H., and Mironescu, P. (2001). Another look at Sobolev spaces, pages 439–455. IOS Press.
  • Carrillo and Fife [2005] Carrillo, C. and Fife, P. (2005). Spatial effects in discrete generation population models. Journal of Mathematical Biology, 50(2):161–188.
  • Chen et al. [2020] Chen, J., Jiao, Y., Jiang, W., and Zhang, Y. (2020). Peridynamics boundary condition treatments via the pseudo-layer enrichment method and variable horizon approach. Mathematics and Mechanics of Solids, page 1081286520961144.
  • Chen and Bobaru [2015] Chen, Z. and Bobaru, F. (2015). Peridynamic modeling of pitting corrosion damage. Journal of the Mechanics and Physics of Solids, 78:352 – 381.
  • Chen et al. [2015] Chen, Z., Zhang, G., and Bobaru, F. (2015). The influence of passive film damage on pitting corrosion. Journal of the Electrochemical Society, 163:C19–C24.
  • Cheng et al. [2015] Cheng, Z., Zhang, G., Wang, Y., and Bobaru, F. (2015). A peridynamic model for dynamic fracture in functionally graded materials. Composite Structures, 133:529–546.
  • D’Elia et al. [2020] D’Elia, M., Du, Q., Glusa, C., Gunzburger, M., Tian, X., and Zhou, Z. (2020). Numerical methods for nonlocal and fractional models. Acta Numerica, 29:1–124.
  • Dipierro et al. [2017a] Dipierro, S., Ros-Oton, X., and Valdinoci, E. (2017a). Nonlocal problems with neumann boundary conditions. Revista Matemática Iberoamericana, 33(2):377–416.
  • Dipierro et al. [2017b] Dipierro, S., Savin, O., and Valdinoci, E. (2017b). Boundary behavior of nonlocal minimal surfaces. Journal of Functional Analysis, 272(5):1791–1851.
  • Du et al. [2012] Du, Q., Gunzburger, M., Lehoucq, R. B., and Zhou, K. (2012). Analysis and approximation of nonlocal diffusion problems with volume constraints. SIAM review, 54(4):667–696.
  • Du et al. [2013] Du, Q., Gunzburger, M., Lehoucq, R. B., and Zhou, K. (2013). A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws. Mathematical Models and Methods in Applied Sciences, 23(03):493–540.
  • Du et al. [2021] Du, Q., Mengesha, T., and Tian, X. (2021). Fractional hardy-type and trace theorems for nonlocal function spaces with heterogeneous localization. arXiv preprint arXiv:2103.09387.
  • Du et al. [2017] Du, Q., Tao, Y., and Tian, X. (2017). A peridynamic model of fracture mechanics with bond-breaking. Journal of Elasticity, pages 1–22.
  • Dyda and Kassmann [2019] Dyda, B. and Kassmann, M. (2019). Function spaces and extension results for nonlocal dirichlet problems. Journal of Functional Analysis, 277(11):108134.
  • Foss [2020] Foss, M. (2020). Traces on general sets in n\mathbb{R}^{n} for functions with no differentiability requirements. arXiv preprint arXiv:2007.00863.
  • Foss and Radu [2016] Foss, M. and Radu, P. (2016). Differentiability and integrability properties for solutions to nonlocal equations. In New Trends in Differential Equations, Control Theory and Optimization: Proceedings of the 8th Congress of Romanian Mathematicians, pages 105–119. World Scientific.
  • Foss et al. [2018] Foss, M. D., Radu, P., Wright, C., et al. (2018). Existence and regularity of minimizers for nonlocal energy functionals. Differential and Integral Equations, 31(11/12):807–832.
  • Gagliardo [1957] Gagliardo, E. (1957). Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in nn variabili. Rendiconti del seminario matematico della universita di Padova, 27:284–305.
  • Grisvard [1985] Grisvard, P. (1985). Elliptic Problems in Nonsmooth Domains. Monographs and studies in mathematics. Pitman Advanced Pub. Program.
  • Gunzburger and Lehoucq [2010] Gunzburger, M. and Lehoucq, R. B. (2010). A nonlocal vector calculus with application to nonlocal boundary value problems. Multiscale Modeling & Simulation, 8(5):1581–1598.
  • Ha and Bobaru [2010] Ha, Y. D. and Bobaru, F. (2010). Studies of dynamic crack propagation and crack branching with peridynamics. International Journal of Fracture, 162(1):229–244.
  • Ha and Bobaru [2011] Ha, Y. D. and Bobaru, F. (2011). Characteristics of dynamic brittle fracture captured with peridynamics. Engineering Fracture Mechanics, 78(6):1156–1168.
  • Hardy et al. [1952] Hardy, G., Littlewood, J., and Polya, G. (1952). Inequalities cambridge univ. Press, Cambridge, (1988).
  • Hu et al. [2012] Hu, W., Ha, Y. D., and Bobaru, F. (2012). Peridynamic model for dynamic fracture in unidirectional fiber-reinforced composites. Computer Methods in Applied Mechanics and Engineering, 217:247–261.
  • Jafarzadeh et al. [2017] Jafarzadeh, S., Chen, Z., and Bobaru, F. (2017). Peridynamic modeling of repassivation in pitting corrosion of stainless steel. CORROSION, 74.
  • Koskela et al. [2017] Koskela, P., Soto, T., and Wang, Z. (2017). Traces of weighted function spaces: dyadic norms and whitney extensions. Science China Mathematics, 60(11):1981–2010.
  • Le and Bobaru [2018] Le, Q. and Bobaru, F. (2018). Surface corrections for peridynamic models in elasticity and fracture. Computational Mechanics, 61(4):499–518.
  • Li et al. [2017] Li, S., Chen, Z., Tan, L., and Bobaru, F. (2017). Corrosion-induced embrittlement in zk60a mg alloy. Materials Science and Engineering: A, 713.
  • Lou et al. [2010] Lou, Y., Zhang, X., Osher, S., and Bertozzi, A. (2010). Image recovery via nonlocal operators. Journal of Scientific Computing, 42(2):185–197.
  • Macek and Silling [2007] Macek, R. W. and Silling, S. A. (2007). Peridynamics via finite element analysis. Finite Elements in Analysis and Design, 43(15):1169–1178.
  • Madenci and Oterkus [2014] Madenci, E. and Oterkus, E. (2014). Peridynamic theory. In Peridynamic Theory and Its Applications, pages 19–43. Springer.
  • Mengesha [2012] Mengesha, T. (2012). Nonlocal korn-type characterization of sobolev vector fields. Communications in Contemporary Mathematics, 14(04):1250028.
  • Mengesha and Du [2014a] Mengesha, T. and Du, Q. (2014a). The bond-based peridynamic system with dirichlet-type volume constraint. Proc. Roy. Soc. Edinburgh Sect. A, 144(1):161–186.
  • Mengesha and Du [2014b] Mengesha, T. and Du, Q. (2014b). Nonlocal constrained value problems for a linear peridynamic navier equation. Journal of Elasticity, 116(1):27–51.
  • Oterkus [2010] Oterkus, E. (2010). Peridynamic theory for modeling three-dimensional damage growth in metallic and composite structures. PhD thesis, The University of Arizona.
  • Oterkus [2015] Oterkus, S. (2015). Peridynamics for the solution of multiphysics problems.
  • Oterkus et al. [2014] Oterkus, S., Madenci, E., and Agwai, A. (2014). Peridynamic thermal diffusion. Journal of Computational Physics, 265:71–96.
  • Ponce [2004] Ponce, A. C. (2004). An estimate in the spirit of Poincaré’s inequality. J. Eur. Math. Soc, 6(1):1–15.
  • Prudhomme and Diehl [2020] Prudhomme, S. and Diehl, P. (2020). On the treatment of boundary conditions for bond-based peridynamic models. Computer Methods in Applied Mechanics and Engineering, 372:113391.
  • Ros-Oton [2016] Ros-Oton, X. (2016). Nonlocal elliptic equations in bounded domains: a survey. Publicacions matematiques, pages 3–26.
  • Rutkowski [2020] Rutkowski, A. (2020). Function spaces and the Dirichlet problem for nonlocal operators. Ph.D. thesis, Wrocław University of Science and Technology, Wrocław, Poland.
  • Schep [1995] Schep, A. R. (1995). Minkowski’s integral inequality for function norms. In Operator theory in function spaces and Banach lattices, pages 299–308. Springer.
  • Silling [2000] Silling, S. A. (2000). Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and Physics of Solids, 48(1):175–209.
  • Silling et al. [2007] Silling, S. A., Epton, M., Weckner, O., Xu, J., and Askari, E. (2007). Peridynamic states and constitutive modeling. Journal of Elasticity, 88(2):151–184.
  • Slobodetskiĭ [1958] Slobodetskiĭ, L. N. (1958). S.l. sobolev’s spaces of fractional order and their application to boundary problems for partial differential equations. In Doklady Akademii Nauk, volume 118, pages 243–246. Russian Academy of Sciences.
  • Stein [1970] Stein, E. M. (1970). Singular Integrals and Differentiability Properties of Functions (PMS-30), Volume 30. Princeton University Press.
  • Tao et al. [2017] Tao, Y., Tian, X., and Du, Q. (2017). Nonlocal diffusion and peridynamic models with neumann type constraints and their numerical approximations. Applied Mathematics and Computation, 305:282–298.
  • Tao et al. [2019] Tao, Y., Tian, X., and Du, Q. (2019). Nonlocal models with heterogeneous localization and their application to seamless local-nonlocal coupling. Multiscale Modeling & Simulation, 17(3):1052–1075.
  • Tian and Du [2017] Tian, X. and Du, Q. (2017). Trace theorems for some nonlocal function spaces with heterogeneous localization. SIAM Journal on Mathematical Analysis, 49(2):1621–1644.
  • Trask et al. [2019] Trask, N., You, H., Yu, Y., and Parks, M. L. (2019). An asymptotically compatible meshfree quadrature rule for nonlocal problems with applications to peridynamics. Computer Methods in Applied Mechanics and Engineering, 343:151–165.
  • You et al. [2020a] You, H., Lu, X., Trask, N., and Yu, Y. (2020a). An asymptotically compatible approach for neumann-type boundary condition on nonlocal problems. ESAIM: Mathematical Modelling and Numerical Analysis, 54(4):1373–1413.
  • You et al. [2020b] You, H., Yu, Y., and Kamensky, D. (2020b). An asymptotically compatible formulation for local-to-nonlocal coupling problems without overlapping regions. Computer Methods in Applied Mechanics and Engineering, 366:113038.
  • Yu et al. [2018] Yu, Y., Bargos, F. F., You, H., Parks, M. L., Bittencourt, M. L., and Karniadakis, G. E. (2018). A partitioned coupling framework for peridynamics and classical theory: analysis and simulations. Computer Methods in Applied Mechanics and Engineering, 340:905–931.
  • Yu et al. [2021] Yu, Y., You, H., and Trask, N. (2021). An asymptotically compatible treatment of traction loading in linearly elastic peridynamic fracture. Computer Methods in Applied Mechanics and Engineering, 377:113691.
  • Zhang et al. [2018] Zhang, G., Gazonas, G. A., and Bobaru, F. (2018). Supershear damage propagation and sub-rayleigh crack growth from edge-on impact: A peridynamic analysis. International Journal of Impact Engineering, 113:73 – 87.

Appendix A Proof of Lemmas in Section 5

Proof of Lemma 5.17. First, note that the function ψ\psi is well-defined for each 𝒙¯d1\overline{\bm{x}}\in\mathbb{R}^{d-1} since

dist((δ,𝒙¯),Φ(d1))|(δ,𝒙¯)(0,𝒙¯)|=δ,and dist((φ(𝒙¯),𝒙¯),Φ(d1))=0,\text{dist}((-\delta,\overline{\bm{x}}),\Phi(\mathbb{R}^{d-1}))\geq|(-\delta,\overline{\bm{x}})-(0,\overline{\bm{x}})|=\delta,\quad\text{and }\quad\text{dist}((\varphi(\overline{\bm{x}}),\overline{\bm{x}}),\Phi(\mathbb{R}^{d-1}))=0,

there must exist at least one z~[δ,φ(𝒙¯))\tilde{z}\in[-\delta,\varphi(\overline{\bm{x}})) such that dist((z~,𝒙¯),Φ(d1))=δ\text{dist}((\tilde{z},\overline{\bm{x}}),\Phi(\mathbb{R}^{d-1}))=\delta by the continuity of x~dist((x~,𝒙¯),Φ(d1))\tilde{x}\mapsto\text{dist}((\tilde{x},\overline{\bm{x}}),\Phi(\mathbb{R}^{d-1})). The minimum of such z~\tilde{z} is the value of ψ(𝒙¯)\psi(\overline{\bm{x}}) and clearly ψ(𝒙¯)<φ(𝒙¯)\psi(\overline{\bm{x}})<\varphi(\overline{\bm{x}}) by how the z~\tilde{z} were chosen.

Let 𝒙¯,𝒚¯d1,𝒙¯𝒚¯\overline{\bm{x}},\overline{\bm{y}}\in\mathbb{R}^{d-1},\ \overline{\bm{x}}\neq\overline{\bm{y}} and without loss of generality assume ψ(𝒙¯)ψ(𝒚¯)\psi(\overline{\bm{x}})\leq\psi(\overline{\bm{y}}). By definition of ψ\psi, there is a 𝒙^d1\hat{\bm{x}}\in\mathbb{R}^{d-1} such that dist((ψ(𝒙¯),𝒙¯),(φ(𝒙^),𝒙^))=δ\text{dist}((\psi(\overline{\bm{x}}),\overline{\bm{x}}),(\varphi(\hat{\bm{x}}),\hat{\bm{x}}))=\delta. Now define

c1:=φ(𝒙^)ψ(𝒙¯), and 𝒄¯:=𝒙^𝒙¯.c_{1}:=\varphi(\hat{\bm{x}})-\psi(\overline{\bm{x}}),\text{ and }\overline{\bm{c}}:=\hat{\bm{x}}-\overline{\bm{x}}.

Notice that we must have ψ(𝒚¯)+c1φ(𝒚¯+𝒄¯)\psi(\overline{\bm{y}})+c_{1}\leq\varphi(\overline{\bm{y}}+\overline{\bm{c}}). If this was not the case, then consider function

𝑭(t)=(tψ(𝒚¯)+(1t)(ψ(𝒚¯)+c1),t𝒚¯+(1t)(𝒚¯+𝒄¯))\bm{F}(t)=(t\psi(\overline{\bm{y}})+(1-t)(\psi(\overline{\bm{y}})+c_{1}),t\overline{\bm{y}}+(1-t)(\overline{\bm{y}}+\overline{\bm{c}}))

for t[0,1]t\in[0,1]. By the assumption, we have

𝑭(0)\displaystyle\bm{F}(0) =(ψ(𝒚¯)+c1,𝒚¯+𝒄¯){𝒙=(x~,𝒙¯):x~>φ(𝒙¯)};\displaystyle=(\psi(\overline{\bm{y}})+c_{1},\overline{\bm{y}}+\overline{\bm{c}})\in\{\bm{x}=(\tilde{x},\overline{\bm{x}}):\tilde{x}>\varphi(\overline{\bm{x}})\};
𝑭(1)\displaystyle\bm{F}(1) =(ψ(𝒚¯),𝒚¯){𝒙=(x~,𝒙¯):x~<φ(𝒙¯)}.\displaystyle=(\psi(\overline{\bm{y}}),\overline{\bm{y}})\in\{\bm{x}=(\tilde{x},\overline{\bm{x}}):\tilde{x}<\varphi(\overline{\bm{x}})\}.

Since 𝑭\bm{F} is continuous, there must be a t0(0,1)t_{0}\in(0,1) such that 𝑭(t0)=(φ(𝒛¯),𝒛¯)\bm{F}(t_{0})=(\varphi(\overline{\bm{z}}),\overline{\bm{z}}) for some 𝒛¯d1\overline{\bm{z}}\in\mathbb{R}^{d-1}. Then,

|(ψ(𝒚¯),𝒚¯)(φ(𝒛¯),𝒛¯)|\displaystyle|(\psi(\overline{\bm{y}}),\overline{\bm{y}})-(\varphi(\overline{\bm{z}}),\overline{\bm{z}})| =|(ψ(𝒚¯),𝒚¯)(t0ψ(𝒚¯)+(1t0)(ψ(𝒚¯)+c1),t0𝒚¯+(1t0)(𝒚¯+𝒄¯))|\displaystyle=|(\psi(\overline{\bm{y}}),\overline{\bm{y}})-(t_{0}\psi(\overline{\bm{y}})+(1-t_{0})(\psi(\overline{\bm{y}})+c_{1}),t_{0}\overline{\bm{y}}+(1-t_{0})(\overline{\bm{y}}+\overline{\bm{c}}))|
=|((1t0)c1,(1t0)𝒄¯)|<|(c1,𝒄¯)|=δ.\displaystyle=|((1-t_{0})c_{1},(1-t_{0})\overline{\bm{c}})|<|(c_{1},\overline{\bm{c}})|=\delta.

which is a contradiction of the definition of ψ\psi. With this inequality we finally have

|ψ(𝒚¯)ψ(𝒙¯)||𝒚¯𝒙¯|=ψ(𝒚¯)ψ(𝒙¯)|𝒚¯𝒙¯|=ψ(𝒚¯)+c1φ(𝒙^)|𝒚¯+𝒄¯𝒙^|φ(𝒚¯+𝒄¯)φ(𝒙^)|𝒚¯+𝒄¯𝒙^|<L.\displaystyle\frac{|\psi(\overline{\bm{y}})-\psi(\overline{\bm{x}})|}{|\overline{\bm{y}}-\overline{\bm{x}}|}=\frac{\psi(\overline{\bm{y}})-\psi(\overline{\bm{x}})}{|\overline{\bm{y}}-\overline{\bm{x}}|}=\frac{\psi(\overline{\bm{y}})+c_{1}-\varphi(\hat{\bm{x}})}{|\overline{\bm{y}}+\overline{\bm{c}}-\hat{\bm{x}}|}\leq\frac{\varphi(\overline{\bm{y}}+\overline{\bm{c}})-\varphi(\hat{\bm{x}})}{|\overline{\bm{y}}+\overline{\bm{c}}-\hat{\bm{x}}|}<L.

Proof of Lemma 5.18. Let 𝒛d1\bm{z}\in\mathbb{R}^{d-1} and define 𝒙:=(φ(𝒛),𝒛)\bm{x}:=(\varphi(\bm{z}),\bm{z}) and 𝒚:=(ψ(𝒛),𝒛)\bm{y}:=(\psi(\bm{z}),\bm{z}). By the definition of ψ\psi, there is a 𝒛nd1\bm{z}_{n}\in\mathbb{R}^{d-1} such that |𝒙𝒙n|=δ|\bm{x}-\bm{x}_{n}|=\delta where 𝒙n:=(ψ(𝒛n),𝒛n)\bm{x}_{n}:=(\psi(\bm{z}_{n}),\bm{z}_{n}). Note that 𝒙=(h+ψ(𝒛),𝒛)\bm{x}=(h+\psi(\bm{z}),\bm{z}) where h=φ(𝒛)ψ(𝒛)h=\varphi(\bm{z})-\psi(\bm{z}). If 𝒙n=𝒚\bm{x}_{n}=\bm{y}, then we are done since then

h=|(h,0)|=|𝒙𝒚|=|𝒙𝒙n|=δδL2+1.h=|(h,0)|=|\bm{x}-\bm{y}|=|\bm{x}-\bm{x}_{n}|=\delta\leq\delta\sqrt{L^{2}+1}.

Otherwise, consider the triangle made by the points 𝒙n\bm{x}_{n}, 𝒚\bm{y}, and 𝒙\bm{x} as shown in Figure 1. ***Here we are viewing the triangle by taking the natural isometry to 2\mathbb{R}^{2} from an orthonormal basis for span(𝒚𝒙,𝒚𝒙𝒏)(\bm{y}-\bm{x},\bm{y}-\bm{x_{n}}). Note that 𝒚𝒙\bm{y}-\bm{x} and 𝒚𝒙n\bm{y}-\bm{x}_{n} are linearly independent under the assumption 𝒚𝒙n\bm{y}\neq\bm{x}_{n}. If this was not the case, then h|φ(𝒚¯)φ(𝒙n)|2+|𝒚¯xn¯|2=|𝒚𝒙||𝒚𝒙n|=|(𝒚𝒙)(𝒚𝒙n)|=h|φ(𝒚¯)φ(𝒙n¯)|h\sqrt{|\varphi(\overline{\bm{y}})-\varphi(\bm{x}_{n})|^{2}+|\overline{\bm{y}}-\overline{x_{n}}|^{2}}=|\bm{y}-\bm{x}||\bm{y}-\bm{x}_{n}|=|(\bm{y}-\bm{x})\cdot(\bm{y}-\bm{x}_{n})|=h|\varphi(\overline{\bm{y}})-\varphi(\overline{\bm{x}_{n}})| requiring 𝒚¯=𝒙n¯\overline{\bm{y}}=\overline{\bm{x}_{n}}. Since φ\varphi is a single-valued function, φ(𝒚¯)=φ(𝒙n¯)\varphi(\overline{\bm{y}})=\varphi(\overline{\bm{x}_{n}}), hence 𝒚=𝒙n\bm{y}=\bm{x}_{n}, giving a contradiction. Let θ\theta be the angle associated with the vertex 𝒚\bm{y} and note that ψ\psi is a Lipschitz function with Lipschitz constant LL. Then,

0<π2arctan(L)π2arctan(|ψ(𝒛)ψ(𝒛n)||𝒛𝒛n|)=θπ2.0<\frac{\pi}{2}-\arctan(L)\leq\frac{\pi}{2}-\arctan\left(\frac{|\psi(\bm{z})-\psi(\bm{z}_{n})|}{|\bm{z}-\bm{z}_{n}|}\right)=\theta\leq\frac{\pi}{2}.

So if γ\gamma is the angle associated with the vertex 𝒙n\bm{x}_{n}, then by the law of sines

1δL2+1=cos(arctan(L))δ=sin(π2arctan(L))δsin(θ)δ=sin(γ)h1h.\frac{1}{\delta\sqrt{L^{2}+1}}=\frac{\cos(\arctan(L))}{\delta}=\frac{\sin\left(\frac{\pi}{2}-\arctan(L)\right)}{\delta}\leq\frac{\sin(\theta)}{\delta}=\frac{\sin(\gamma)}{h}\leq\frac{1}{h}.

and so hδL2+1h\leq\delta\sqrt{L^{2}+1}. By the definition of ψ\psi we clearly have δh\delta\leq h. Since 𝒛d1\bm{z}\in\mathbb{R}^{d-1} was arbitrary we finish the proof.

𝒙\bm{x}𝒙n\bm{x}_{n}𝒚\bm{y}Ωδ\Omega_{\delta}Ω\Omegahhδ\delta|ψ(𝒛n)ψ(𝒛)||\psi(\bm{z}_{n})-\psi(\bm{z})||𝒛n𝒛||\bm{z}_{n}-\bm{z}|θ\thetaγ\gamma
Figure 1: Settings and definitions for the proof of Lemma 5.18.

Proof of Lemma 5.19. By Lemma 5.17 φψ\varphi-\psi is a Lipschitz function with Lipschitz constant CLC_{L}. Then in combination with Lemma 5.18,

|𝒙𝒚|\displaystyle|\bm{x}^{\prime}-\bm{y}^{\prime}| |𝒙¯𝒚¯|+|x~y~||𝒙¯𝒚¯|+|φ(𝒙¯)φ(𝒚¯)|+|x~δ(φ(𝒙¯)ψ(𝒙¯))y~δ(φ(𝒚¯)ψ(𝒚¯))|\displaystyle\leq|\overline{\bm{x}}-\overline{\bm{y}}|+|\tilde{x}^{\prime}-\tilde{y}^{\prime}|\leq|\overline{\bm{x}}-\overline{\bm{y}}|+\left|\varphi(\overline{\bm{x}})-\varphi(\overline{\bm{y}})\right|+\left|\frac{\tilde{x}}{\delta}(\varphi(\overline{\bm{x}})-\psi(\overline{\bm{x}}))-\frac{\tilde{y}}{\delta}(\varphi(\overline{\bm{y}})-\psi(\overline{\bm{y}}))\right|
|𝒙¯𝒚¯|+L|𝒙¯𝒚¯|+|x~y~δ(φ(𝒙¯)ψ(𝒙¯))|+|y~δ(φ(𝒚¯)ψ(𝒚¯)(φ(𝒙¯)ψ(𝒙¯))|\displaystyle\leq|\overline{\bm{x}}-\overline{\bm{y}}|+L|\overline{\bm{x}}-\overline{\bm{y}}|+\left|\frac{\tilde{x}-\tilde{y}}{\delta}(\varphi(\overline{\bm{x}})-\psi(\overline{\bm{x}}))\right|+\left|\frac{\tilde{y}}{\delta}(\varphi(\overline{\bm{y}})-\psi(\overline{\bm{y}})-(\varphi(\overline{\bm{x}})-\psi(\overline{\bm{x}}))\right|
(L+1)|𝒙¯𝒚¯|+L2+1|x~y~|+2L2+1|𝒙¯𝒚¯|KL|𝒙𝒚|.\displaystyle\leq(L+1)|\overline{\bm{x}}-\overline{\bm{y}}|+\sqrt{L^{2}+1}|\tilde{x}-\tilde{y}|+2\sqrt{L^{2}+1}|\overline{\bm{x}}-\overline{\bm{y}}|\leq K_{L}|\bm{x}-\bm{y}|.

For left inequality, first notice from (5.1) that

x~\displaystyle\tilde{x} =δ(x~φ(𝒙¯))φ(𝒙¯)ψ(𝒙¯),andy~=δ(y~φ(𝒚¯))φ(𝒚¯)ψ(𝒚¯).\displaystyle=\frac{\delta(\tilde{x}^{\prime}-\varphi(\overline{\bm{x}}))}{\varphi(\overline{\bm{x}})-\psi(\overline{\bm{x}})},\quad\text{and}\quad\tilde{y}=\frac{\delta(\tilde{y}^{\prime}-\varphi(\overline{\bm{y}}))}{\varphi(\overline{\bm{y}})-\psi(\overline{\bm{y}})}.

Additionally, δ<y~<0-\delta<\tilde{y}<0 implies ψ(𝒚¯)<y~<φ(𝒚¯)\psi(\overline{\bm{y}})<\tilde{y}^{\prime}<\varphi(\overline{\bm{y}}) so then,

|𝒙𝒚|\displaystyle|\bm{x}-\bm{y}| |x~y~|+|𝒙¯𝒚¯|\displaystyle\leq|\tilde{x}-\tilde{y}|+|\overline{\bm{x}}-\overline{\bm{y}}|
δ|φ(𝒙¯)φ(𝒚¯)(x~y~)||φ(𝒙¯)ψ(𝒙¯)|+δ|φ(𝒚¯)y~||φ(𝒚¯)ψ(𝒚¯)(φ(𝒙¯)ψ(𝒙¯))(φ(𝒙¯)ψ(𝒙¯))(φ(𝒚¯)ψ(𝒚¯))|+|𝒙¯𝒚¯|\displaystyle\leq\delta\frac{|\varphi(\overline{\bm{x}})-\varphi(\overline{\bm{y}})-(\tilde{x}^{\prime}-\tilde{y}^{\prime})|}{|\varphi(\overline{\bm{x}})-\psi(\overline{\bm{x}})|}+\delta|\varphi(\overline{\bm{y}})-\tilde{y}^{\prime}|\left|\frac{\varphi(\overline{\bm{y}})-\psi(\overline{\bm{y}})-(\varphi(\overline{\bm{x}})-\psi(\overline{\bm{x}}))}{(\varphi(\overline{\bm{x}})-\psi(\overline{\bm{x}}))(\varphi(\overline{\bm{y}})-\psi(\overline{\bm{y}}))}\right|+|\overline{\bm{x}}-\overline{\bm{y}}|
δL|𝒙¯𝒚¯|+|x~y~|inf|φψ|+δ|y~(φ(𝒚¯)ψ(𝒚¯))|δ|φ(𝒚¯)φ(𝒙¯)+ψ(𝒙¯)ψ(𝒚¯)(φ(𝒙¯)ψ(𝒙¯))(φ(𝒚¯)ψ(𝒚¯))|+|𝒙¯𝒚¯|\displaystyle\leq\delta\frac{L|\overline{\bm{x}}-\overline{\bm{y}}|+|\tilde{x}^{\prime}-\tilde{y}^{\prime}|}{\inf|\varphi-\psi|}+\delta\frac{|\tilde{y}(\varphi(\overline{\bm{y}})-\psi(\overline{\bm{y}}))|}{\delta}\left|\frac{\varphi(\overline{\bm{y}})-\varphi(\overline{\bm{x}})+\psi(\overline{\bm{x}})-\psi(\overline{\bm{y}})}{(\varphi(\overline{\bm{x}})-\psi(\overline{\bm{x}}))(\varphi(\overline{\bm{y}})-\psi(\overline{\bm{y}}))}\right|+|\overline{\bm{x}}-\overline{\bm{y}}|
δL|𝒙¯𝒚¯|+|x~y~|inf|φψ|+δ2L|𝒙¯𝒚¯|inf|φψ|+|𝒙¯𝒚¯|KL1|𝒙𝒚|.\displaystyle\leq\delta\frac{L|\overline{\bm{x}}-\overline{\bm{y}}|+|\tilde{x}^{\prime}-\tilde{y}^{\prime}|}{\inf|\varphi-\psi|}+\delta\frac{2L|\overline{\bm{x}}-\overline{\bm{y}}|}{\inf|\varphi-\psi|}+|\overline{\bm{x}}-\overline{\bm{y}}|\leq K_{L}^{\prime-1}|\bm{x}^{\prime}-\bm{y}^{\prime}|.

Proof of Lemma 5.20. For (a) if |𝒚𝒙|<δ/M|\bm{y}-\bm{x}|<\delta/M, then

|𝒘𝒛|\displaystyle|\bm{w}-\bm{z}| =|(y~+φ(𝒚¯),𝒚¯)(x~+φ(𝒙¯),𝒙¯)||y~x~|+|φ(𝒚¯)φ(𝒙¯)|+|𝒚¯𝒙¯|\displaystyle=|(\tilde{y}+\varphi(\overline{\bm{y}}),\overline{\bm{y}})-(\tilde{x}+\varphi(\overline{\bm{x}}),\overline{\bm{x}})|\leq|\tilde{y}-\tilde{x}|+|\varphi(\overline{\bm{y}})-\varphi(\overline{\bm{x}})|+|\overline{\bm{y}}-\overline{\bm{x}}|
|y~x~|+(L+1)|𝒚¯𝒙¯|(L+2)|𝒚𝒙|<MδM=δ.\displaystyle\leq|\tilde{y}-\tilde{x}|+(L+1)|\overline{\bm{y}}-\overline{\bm{x}}|\leq(L+2)|\bm{y}-\bm{x}|<M\frac{\delta}{M}=\delta.

Therefore we have

γδ/Mβ(|𝒚𝒙|)1(δ/M)d+pβ1|𝒚𝒙|β𝟏|𝒚𝒙|<δ/MMd+pβδd+pβMβ|𝒘𝒛|β𝟏|𝒘𝒛|<δMd+pγδβ(|𝒘𝒛|).\gamma^{\,\beta}_{\delta/M}(|\bm{y}-\bm{x}|)\leq\frac{1}{(\delta/M)^{d+p-\beta}}\frac{1}{|\bm{y}-\bm{x}|^{\,\beta}}\bm{1}_{|\bm{y}-\bm{x}|<\delta/M}\leq\frac{M^{d+p-\beta}}{\delta^{d+p-\beta}}\frac{M^{\beta}}{|\bm{w}-\bm{z}|^{\,\beta}}\bm{1}_{|\bm{w}-\bm{z}|<\delta}\leq M^{d+p}\gamma^{\,\beta}_{\delta}(|\bm{w}-\bm{z}|).

For (b), with |𝒚𝒙|<δ/M|\bm{y}-\bm{x}|<\delta/M and noting |x~|<δ|\tilde{x}|<\delta we have

|𝒘𝒙||y~+φ(𝒚¯)[(1+x~δ)φ(𝒙¯)x~δψ(𝒙¯)]|+|𝒚¯𝒙¯|=|φ(𝒚¯)φ(𝒙¯)+y~x~δ(φ(𝒙¯)ψ(𝒙¯))|+|𝒚¯𝒙¯||φ(𝒚¯)φ(𝒙¯)|+|y~x~δ(φ(𝒙¯)ψ(𝒙¯))|+|𝒚¯𝒙¯|L|𝒚¯𝒙¯|+L2+1|y~x~|+|𝒚¯𝒙¯|(L+1+L2+1)|𝒚𝒙|<δ.\begin{split}&|\bm{w}-\bm{x}^{\prime}|\leq\left|\tilde{y}+\varphi(\overline{\bm{y}})-\left[\left(1+\frac{\tilde{x}}{\delta}\right)\varphi(\overline{\bm{x}})-\frac{\tilde{x}}{\delta}\psi(\overline{\bm{x}})\right]\right|+|\overline{\bm{y}}-\overline{\bm{x}}|=\left|\varphi(\overline{\bm{y}})-\varphi(\overline{\bm{x}})+\tilde{y}-\frac{\tilde{x}}{\delta}(\varphi(\overline{\bm{x}})-\psi(\overline{\bm{x}}))\right|+|\overline{\bm{y}}-\overline{\bm{x}}|\\ &\leq\left|\varphi(\overline{\bm{y}})-\varphi(\overline{\bm{x}})\right|+\left|\tilde{y}-\frac{\tilde{x}}{\delta}(\varphi(\overline{\bm{x}})-\psi(\overline{\bm{x}}))\right|+|\overline{\bm{y}}-\overline{\bm{x}}|\leq L|\overline{\bm{y}}-\overline{\bm{x}}|+\sqrt{L^{2}+1}|\tilde{y}-\tilde{x}|+|\overline{\bm{y}}-\overline{\bm{x}}|\\ &\leq(L+1+\sqrt{L^{2}+1})|\bm{y}-\bm{x}|<\delta.\end{split}

By the same reason, we have

γδ/Mβ(|𝒙𝒚|)Md+pγδβ(|𝒙𝒘|).\gamma_{\delta/M}^{\beta}(|\bm{x}-\bm{y}|)\leq M^{d+p}\gamma_{\delta}^{\beta}(|\bm{x}^{\prime}-\bm{w}|).

We similarly have (c) by noticing that |𝒚𝒙|KL|𝒚𝒙|M|𝒚𝒙||\bm{y}^{\prime}-\bm{x}^{\prime}|\leq K_{L}|\bm{y}-\bm{x}|\leq M|\bm{y}-\bm{x}|. ∎

Proof of Lemma 5.21. For (a),

|𝒘𝒛||y~x~|+|φ(𝒚¯)φ(𝒙¯)|+|𝒚¯𝒙¯|(L+2)|𝒚𝒙|Mδ|\bm{w}-\bm{z}|\leq|\tilde{y}^{\prime}-\tilde{x}^{\prime}|+|\varphi(\overline{\bm{y}})-\varphi(\overline{\bm{x}})|+|\overline{\bm{y}}-\overline{\bm{x}}|\leq(L+2)|\bm{y}^{\prime}-\bm{x}^{\prime}|\leq M\delta

and so

γδβ(|𝒚𝒙|)1δd+pβ1|𝒚𝒙|β𝟏|𝒚𝒙|<δMd+pβ(Mδ)d+pβMβ|𝒘𝒛|β𝟏|𝒘𝒛|<MδMd+pγMδβ(|𝒘𝒛|).\gamma^{\,\beta}_{\delta}(|\bm{y}^{\prime}-\bm{x}^{\prime}|)\leq\frac{1}{\delta^{d+p-\beta}}\frac{1}{|\bm{y}^{\prime}-\bm{x}^{\prime}|^{\,\beta}}\bm{1}_{|\bm{y}^{\prime}-\bm{x}^{\prime}|<\delta}\leq\frac{M^{d+p-\beta}}{(M\delta)^{d+p-\beta}}\frac{M^{\beta}}{|\bm{w}-\bm{z}|^{\,\beta}}\bm{1}_{|\bm{w}-\bm{z}|<M\delta}\leq M^{d+p}\gamma^{\,\beta}_{M\delta}(|\bm{w}-\bm{z}|).

For (b),

|𝒘𝒙|\displaystyle|\bm{w}-\bm{x}| |y~φ(𝒚¯)+δ(φ(𝒙¯)x~φ(𝒙¯)ψ(𝒙¯))|+|𝒚¯𝒙¯||y~φ(𝒚¯)+φ(𝒙¯)x~|+|𝒚¯𝒙¯|(L+2)|𝒚𝒙|\displaystyle\leq\left|\tilde{y}^{\prime}-\varphi(\overline{\bm{y}})+\delta\left(\dfrac{\varphi(\overline{\bm{x}})-\tilde{x}^{\prime}}{\varphi(\overline{\bm{x}})-\psi(\overline{\bm{x}})}\right)\right|+|\overline{\bm{y}}-\overline{\bm{x}}|\leq|\tilde{y}^{\prime}-\varphi(\overline{\bm{y}})+\varphi(\overline{\bm{x}})-\tilde{x}^{\prime}|+|\overline{\bm{y}}-\overline{\bm{x}}|\leq(L+2)|\bm{y}^{\prime}-\bm{x}^{\prime}|

and so similarly we have γδβ(|𝒙𝒚|)Md+pγMδβ(|𝒙𝒘|)\gamma_{\delta}^{\beta}(|\bm{x}^{\prime}-\bm{y}^{\prime}|)\leq M^{d+p}\gamma_{M\delta}^{\beta}(|\bm{x}-\bm{w}|).
For (c) note KL|𝒚𝒙||𝒚𝒙|K_{L}^{\prime}|\bm{y}-\bm{x}|\leq|\bm{y}^{\prime}-\bm{x}^{\prime}| for 𝒙Ωδ\bm{x}^{\prime}\in\Omega_{\delta} and 𝒚Ωδ\bm{y}^{\prime}\in\Omega_{\delta} where KLK_{L}^{\prime} is as in Lemma 5.19 and we can conclude the result in a similar manner. ∎