This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Nonlocal Drag Thermoelectricity Generated by Ferroelectric Heterostructures

Ping Tang1    Ken-ichi Uchida2,3    Gerrit E. W. Bauer1,3,4,5,6 1WPI-AIMR, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan 2National Institute for Materials Science, Tsukuba 305-0047, Japan 3Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan 4Center for Spintronics Research Network, Tohoku University, Sendai 980-8577, Japan 5Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, Netherlands 6Kavli Institute for Theoretical Sciences, University of the Chinese Academy of Sciences, Beijing 10090, China
Abstract

The “ferron” excitations of the electric-dipolar order carry energy as well as electric dipoles. Here we predict a nonlocal ferron drag effect in a ferroelectric on top of a metallic film: An electric current in the conductor generates a heat current in the ferroelectric by long-range charge-dipole interactions. The non-local Peltier and its reciprocal Seebeck effect can be controlled by electric gates and detected thermographically. We predict large effects for van der Waals ferroelectric films on graphene.

The electron-electron interaction between closely spaced two-dimensional electron gases (2DEGs) gives rise to non-local Coulomb drag effects gramila1991mutual ; jauho1993coulomb ; narozhny2016coulomb , in which a current in an active layer induces a voltage over the passive one. The concept of Coulomb drag has been extended to other systems and interactions. A local drag effect by the electron-phonon interaction contributes to the thermopower in bulk conductors bailyn1967phonon ; cantrell1987calculation ; lyo1988low ; vavro2003thermoelectric and also a non-local drag effect can be mediated by phonons in the spacer between the 2DEGs tso1992direct ; bonsager1998frictional ; noh1999phonon . In ferromagnetic metals, magnons, the quasiparticle excitations of local magnetization, transfer their momenta to conduction electrons by the exchange interaction. This local magnon drag effect enhances the Seebeck and Peltier coefficients bailyn1962maximum ; blatt1967magnon ; PhysRevB.13.2072 ; costache2012magnon ; flebus2016landau ; watzman2016magnon . The voltage in one layer induced by a current in the other in a heavy metal/ferromagnetic insulator/heavy metal stack is a non-local drag effect caused by spin Hall effect zhang2012magnon ; wu2016observation ; li2016observation . Theory predicts that magnons in magnetic films separated by a vacuum barrier experience a non-local drag effect by the magnetodipolar interaction liu2016nonlocal . The magnetodipolar interaction can also mediate an energy transfer through an air gap Kainuma2021 , but a non-local magnon drag effect has not yet been observed.

Ferroelectrics exhibit an electrically switchable spontaneous polarization that orders below a Curie temperature. Recently, we introduced “ferrons”, the bosonic excitations of ferroelectric order that carry elementary electric dipoles in the presence of transverse Bauer2021 ; Tang2022 or longitudinal fluctuations arXiv:2203.06367 . A direct experimental observation of the predicted polarization and heat transport phenomena, e.g. by the transient Peltier effect Bauer2021 and associated stray fields Tang2022 , may not be so simple, however.

Here we pursue ideas to simplify the detection of ferronic effects via non-local thermoelectric drag effects in bilayers of a ferroelectric and a metal, which opens new strategies for heat-to-electricity conversion. We consider a film of a perpendicularly polarized ferroelectric insulator on top of an extended metallic sheet that experiences a “ferron drag” in the form of a non-local Peltier effect, i.e., a heat current in the ferroelectric generated by an electric current in the metal film (see figure 1). We assume that the electric dipoles are all located in a common plane and that the electrons in the metal move in a parallel plane. This two-dimensional (2D) assumption is valid when the two films are separated by a distance dd much larger than their thickness, but certainly appropriate when the conductor is, e.g., graphene and the ferroelectric a van der Waals mono- or bilayer Chang2016 ; Liu2016 ; Li2017 ; Yang2018 ; Fei2018 ; Yuan2019 ; Yasuda2021 ; Wang2022 .

The linear response relations of transport or Ohm’s Law in our bilayer (in the xx-direction) connect four driving forces, i.e. an in-plane electric field EME_{\mathrm{M}} in the metal, a gradient of an out-of-plane electric field EFE\partial E_{\mathrm{FE}} in the ferroelectric, and independent temperature gradients in the two films, with the charge current jcj_{c} in the metal, polarization current jpj_{p} in the ferroelectric and the heat currents jq(M)j_{q}^{(\mathrm{M})} and jq(FE)j_{q}^{(\mathrm{FE})}:

(jcjq(M)jpjq(FE))=(L11L12L13L14L12L22L23L24L13L23L33L34L14L24L34L44)(EMlnTMEFElnTFE)\left(\begin{array}[c]{c}-j_{c}\\ j_{q}^{(\mathrm{M})}\\ -j_{p}\\ j_{q}^{(\mathrm{FE})}\end{array}\right)=\left(\begin{array}[c]{cccc}L_{11}&L_{12}&L_{13}&L_{14}\\ L_{12}&L_{22}&L_{23}&L_{24}\\ L_{13}&L_{23}&L_{33}&L_{34}\\ L_{14}&L_{24}&L_{34}&L_{44}\end{array}\right)\left(\begin{array}[c]{c}-E_{\mathrm{M}}\\ -\partial\ln T_{\mathrm{M}}\\ \partial E_{\mathrm{FE}}\\ -\partial\ln T_{\mathrm{FE}}\end{array}\right) (1)

where we already inserted the Onsager-Kelvin relation Lij=LjiL_{ij}=L_{ji} between the off-diagonal transport coefficients. We focus here on the steady state with finite EME_{\mathrm{M}} that induces polarization and heat currents in the ferroelectric. In the following, we disregard small thermoelectric effects in the metal, thermal leakage between the films, and electric field gradients EFE\partial E_{\mathrm{FE}} at the edges of the ferroelectric. The task then reduces to the calculation of the polarization drag ϑDL13/L11\vartheta_{D}\equiv L_{13}/L_{11} as well as the thermoelectric effects summarized by

(jcjq(FE))=(L11L14L14L44)(EMlnTFE)\left(\begin{array}[c]{c}-j_{c}\\ j_{q}^{(\mathrm{FE})}\end{array}\right)=\left(\begin{array}[c]{cc}L_{11}&L_{14}\\ L_{14}&L_{44}\end{array}\right)\left(\begin{array}[c]{c}-E_{\mathrm{M}}\\ -\partial\ln T_{\mathrm{FE}}\end{array}\right) (2)

in which we identify the non-local Peltier coefficient πD=L14/L11\pi_{D}=L_{14}/L_{11} and thermopower sD=πD/TFEs_{D}=\pi_{D}/T_{\text{FE}}. The electrical conductivity σ=L11\sigma=L_{11} is also affected by the equilibrium fluctuations of the nearby ferroelectric.

The conduction electrons in the metallic layer interact with the electric polarization 𝐏(𝐫)=P(𝐫)δ(zd)𝐳^\mathbf{P}\left(\mathbf{r}\right)=P\left(\mathbf{r}_{\|}\right)\delta\left(z-d\right)\mathbf{\hat{z}} of the ferroelectric at z=dz=d by the electrostatic energy

int=𝐄el(𝐫)𝐏(𝐫)𝑑𝐫,\mathcal{H}_{\mathrm{int}}=-\int\mathbf{E}_{\mathrm{el}}\left(\mathbf{r}\right)\cdot\mathbf{P}(\mathbf{r})d\mathbf{r,} (3)

where

𝐄el(𝐫)=e4πϵrϵ0𝑑𝐫n(𝐫)|𝐫𝐫|3(𝐫𝐫)\mathbf{E}_{\mathrm{el}}(\mathbf{r})=-\frac{e}{4\pi\epsilon_{r}\epsilon_{0}}\int d\mathbf{r}^{\prime}\frac{n(\mathbf{r}^{\prime})}{|\mathbf{r}-\mathbf{r}^{\prime}|^{3}}(\mathbf{r}-\mathbf{r}^{\prime}) (4)

is the Hartree field of the electrons, e-e the electron charge, n(𝐫)=n(𝐫)δ(z)n(\mathbf{r})=n(\mathbf{r}_{\|})\delta\left(z\right) the electron density in the metal at z=0z=0 and ϵr\epsilon_{r} the relative permittivity of the separating barrier. Substituting Eq. (4) leads to

int=ed4πϵrϵ0𝑑𝐫𝑑𝐫P(𝐫)n(𝐫)[(𝐫𝐫)2+d2]3/2.\mathcal{H}_{\mathrm{int}}=\frac{ed}{4\pi\epsilon_{r}\epsilon_{0}}\int\int d\mathbf{r}_{\|}d\mathbf{r}_{\|}^{\prime}\frac{P(\mathbf{r}_{\|})n(\mathbf{r}_{\|}^{\prime})}{[(\mathbf{r}_{\|}-\mathbf{r}_{\|}^{\prime})^{2}+d^{2}]^{3/2}}. (5)

where P(𝐫)P(\mathbf{r}_{\|}) and n(𝐫)n(\mathbf{r}_{\|}) represent the 2D polarization and electron density in units of C/m and m-2, respectively.

Refer to caption
Figure 1: A schematic of the nonlocal ferron-drag Peltier effect between an extended metallic (M) and a perpendicularly polarized and electrically insulating ferroelectric (FE) film. A charge current (jcj_{c}) in the active M sheet transfers its linear momentum to the ferrons in the FE by the electrostatic interaction, leading to heat accumulations at the FE edges. The orange balls represent the ferrons, while the small black arrows are the ferron dipoles that oppose the ferroelectric order and can couple with an out-of-plane electric field (EFEE_{\mathrm{FE}}).

We model the ferroelectric by the Landau-Ginzburg-Devonshire free energy Devonshire1949 ; Devonshire1951

F=(g2(P)2+α2P2+β4P4+λ6P6EFEP)F=\left(\frac{g}{2}(\boldsymbol{\nabla}P)^{2}+\frac{\alpha}{2}P^{2}+\frac{\beta}{4}P^{4}+\frac{\lambda}{6}P^{6}-E_{\mathrm{FE}}P\right) (6)

where α=α0(TTc)\alpha=\alpha_{0}(T-T_{c}), β\beta and λ>0\lambda>0 are the Landau coefficients, TcT_{c} the Curie-Weiss temperature, g>0g>0 the Ginzburg parameter accounting for the energy cost of an inhomogeneous polarization, and EFEE_{\text{FE}} is an out-of-plane electric field acting on the ferroelectric order. The phase transition for β<0\beta<0 (β>0\beta>0) is first (second)-order. A uniform spontaneous polarization P0P_{0} minimizes FF by αP0+βP03+λP05=EFE\alpha P_{0}+\beta P_{0}^{3}+\lambda P_{0}^{5}=E_{\mathrm{FE}}, which gives P02=[β+(β24αλ)1/2]/(2λ)P_{0}^{2}=[-\beta+(\beta^{2}-4\alpha\lambda)^{1/2}]/(2\lambda) when EFE=0E_{\mathrm{FE}}=0. The non-linear static dielectric susceptibility with the field reads

χ(EFE)=P0(EFE)EFE=1α+3βP02(EFE)+5λP04(EFE).\chi\left(E_{\mathrm{FE}}\right)=\frac{\partial P_{0}\left(E_{\mathrm{FE}}\right)}{\partial E_{\mathrm{FE}}}=\frac{1}{\alpha+3\beta P_{0}^{2}\left(E_{\mathrm{FE}}\right)+5\lambda P_{0}^{4}\left(E_{\mathrm{FE}}\right)}. (7)

Small fluctuations δP(𝐫,t)=P(𝐫,t)P0\delta P(\mathbf{r}_{\|},t)=P(\mathbf{r}_{\|},t)-P_{0} can be quantized as arXiv:2203.06367

δP(𝐫,t)=2mpA𝐪a^𝐪ei𝐪𝐫ωq+H.c.,\delta P(\mathbf{r}_{\|},t)=\sqrt{\frac{\hbar}{2m_{p}A}}\sum_{\mathbf{q}}\frac{\hat{a}_{\mathbf{q}}e^{i\mathbf{q}\cdot\mathbf{r}_{\|}}}{\sqrt{\omega_{q}}}+\mathrm{H.c.}, (8)

where mpm_{p} is the polarization inertia that depends on the ionic masses MiM_{i} and Born effective charges QiQ_{i} in the unit cell of area A0A_{0} as mp=A0(iQi2/Mi)1m_{p}=A_{0}(\sum_{i}Q_{i}^{2}/M_{i})^{-1} Sivasubramanian2004 , AA the area of the ferroelectric sheet (assumed to be the same as the metal) and a^𝐪\hat{a}_{\mathbf{q}} (a^𝐪\hat{a}_{\mathbf{q}}^{\dagger}) the annihilation (creation) operator of ferrons with the dispersion relation

ωq=(gq2+χ(EFE)1mp)1/2.\omega_{q}=\left(\frac{gq^{2}+\chi\left(E_{\mathrm{FE}}\right)^{-1}}{m_{p}}\right)^{1/2}. (9)

The electric dipole carried by a single ferron is then identified as arXiv:2203.06367

δpq=ωqEFE=2mpωqlnχP0<0\delta p_{q}=-\frac{\partial\hbar\omega_{q}}{\partial E_{\mathrm{FE}}}=\frac{\hbar}{2m_{p}\omega_{q}}\frac{\partial\ln\chi}{\partial P_{0}}<0 (10)

where the negative sign indicates its opposite direction to the ferroelectric order.

In 2D momentum space Eq. (5) now reads

int=e2ϵrϵ0A𝐪edqn(𝐪)𝑑𝐫δP(𝐫)ei𝐪𝐫\mathcal{H}_{\mathrm{int}}=\frac{e}{2\epsilon_{r}\epsilon_{0}A}\sum_{\mathbf{q}}e^{-dq}n(\mathbf{q})\int d\mathbf{r}_{\|}\delta{P}(\mathbf{r}_{\|})e^{i\mathbf{q}\cdot\mathbf{r}_{\|}} (11)

where we dropped a constant energy shift related to P0P_{0} and n(𝐪)=𝐤ννF𝐤νF(𝐤+𝐪)νc^𝐤νc^(𝐤+𝐪)νn(\mathbf{q})=\sum_{\mathbf{k}\nu\nu^{\prime}}F_{\mathbf{k}\nu}^{\dagger}F_{(\mathbf{k}+\mathbf{q})\nu^{\prime}}\hat{c}_{\mathbf{k}\nu}^{\dagger}\hat{c}_{(\mathbf{k}+\mathbf{q})\nu^{\prime}} is the Fourier component of the 2D electron density in terms of the field operators c^𝐤ν\hat{c}_{\mathbf{k}\nu}^{\dagger} and c^𝐤ν\hat{c}_{\mathbf{k}\nu} with momentum 𝐤\mathbf{k}, band index ν\nu and the corresponding spinor wave functions F𝐤νF_{\mathbf{k}\nu}. F𝐤νF𝐤ν=(ei(θ𝐤θ𝐤)+νν)/2F_{\mathbf{k}^{\prime}\nu^{\prime}}^{\dagger}F_{\mathbf{k}\nu}=(e^{i(\theta_{\mathbf{k}^{\prime}}-\theta_{\mathbf{k}})}+\nu\nu^{\prime})/2 (=δν,ν=\delta_{\nu,\nu^{\prime}}) for graphene (normal metals), where tanθ𝐤=ky/kx\tan\theta_{\mathbf{k}}=k_{y}/k_{x} and ν=+1\nu=+1 and ν=1\nu=-1 indicate the conduction and valence bands, respectively Ando2006 ; Hwang2009 . Substituting Eq. (8) yields

int=𝐤𝐪ννV𝐤𝐪(ν,ν)c^(𝐤+𝐪)νc^𝐤νa^𝐪+H.c.,\mathcal{H}_{\mathrm{int}}=\sum_{\mathbf{k}\mathbf{q}\nu\nu^{\prime}}V_{\mathbf{k}\mathbf{q}}(\nu^{\prime},\nu)\hat{c}_{(\mathbf{k}+\mathbf{q})\nu^{\prime}}^{\dagger}\hat{c}_{\mathbf{k}\nu}\hat{a}_{\mathbf{q}}+\mathrm{H.c.}, (12)

where

V𝐤𝐪(ν,ν)=e2ϵrϵ02mpAedqωqF(𝐤+𝐪)νF𝐤νV_{\mathbf{k}\mathbf{q}}(\nu^{\prime},\nu)=\frac{e}{2\epsilon_{r}\epsilon_{0}}\sqrt{\frac{\hbar}{2m_{p}A}}\frac{e^{-dq}}{\sqrt{\omega_{q}}}F_{(\mathbf{k}+\mathbf{q})\nu^{\prime}}^{\dagger}F_{\mathbf{k}\nu} (13)

is the bare inelastic scattering amplitude of the electrons.

The screening by the conduction electrons and electric dipoles is a many-body problem in which V𝐤𝐪(ν,ν)V𝐤𝐪(ν,ν)/ϵ(q,ω)V_{\mathbf{k}\mathbf{q}}(\nu^{\prime},\nu)\rightarrow V_{\mathbf{k}\mathbf{q}}(\nu^{\prime},\nu)/\epsilon\left(q,\omega\right) and ϵ(q,ω)\epsilon(q,\omega) is the dielectric function. At sufficiently high conduction electron densities, the ferron energies are small compared to the Fermi energy and we may adopt static screening ω0\omega\rightarrow 0. For q<1/(2d)2kFq<1/(2d)\lesssim 2k_{F}, where kFk_{F} is the Fermi wave vector, it is sufficient to adopt the Thomas-Fermi screening approximation Stern1967 ; Ando1982 ; Ando2006 ; Hwang2007 ; Hwang2009 ; Sarma2011 , i.e.,

V𝐤𝐪(ν,ν)U𝐤𝐪(νν)=V𝐤𝐪(νν)1+qTF/qV_{\mathbf{k}\mathbf{q}}(\nu^{\prime},\nu)\rightarrow U_{\mathbf{k}\mathbf{q}}(\nu^{\prime}\nu)=\frac{V_{\mathbf{k}\mathbf{q}}(\nu^{\prime}\nu)}{1+q_{\mathrm{TF}}/q} (14)

where qTF=e2DF/(2ϵrϵ0)q_{\mathrm{TF}}=e^{2}D_{F}/(2\epsilon_{r}\epsilon_{0}) is the 2D Thomas-Fermi wave vector in terms of the density of state DFD_{F} at Fermi level. The screening by the ferroelectric dipoles is negligibly small compared to that of the free electrons when the ferroelectric sheet is sufficiently thin. The screening then does not depend on dd.

We consider now the effect of a charge current jcj_{c} driven by an electric filed (EME_{\mathrm{M}}) along the xx direction in the metallic sheet that deforms the electron distribution function f𝐤νf_{\mathbf{k\nu}} from the Fermi-Dirac form f𝐤ν(0)=[exp((ε𝐤νεF)/kBT)+1]1f_{\mathbf{k}\nu}^{(0)}=[\exp\left((\varepsilon_{\mathbf{k}\nu}-\varepsilon_{F})/k_{B}T\right)+1]^{-1} in momentum space, where ε𝐤ν\varepsilon_{\mathbf{k\nu}} is the electronic band structure, εF\varepsilon_{F} the Fermi energy, TT the temperature, and kBk_{B} Boltzmann’s constant. Within relaxation time approximation the linearized Boltzmann equation in the metal reads

f𝐤ν=f𝐤ν(0)+eτev𝐤ν(x)EMf𝐤ν(0)ε𝐤νf_{\mathbf{k\nu}}=f_{\mathbf{k}\nu}^{(0)}+e\tau_{e}v_{\mathbf{k}\nu}^{(x)}E_{M}\frac{\partial f_{\mathbf{k}\nu}^{(0)}}{\partial\varepsilon_{\mathbf{k}\nu}} (15)

where τe\tau_{e} is the relaxation time and v𝐤ν(x)=ε𝐤ν/kxv_{\mathbf{k}\nu}^{(x)}=\partial\varepsilon_{\mathbf{k}\nu}/\partial\hbar k_{x} the group velocities in transport (x)(x) direction, with v𝐤ν(x)kx/mev_{\mathbf{k}\nu}^{(x)}\rightarrow\hbar k_{x}/m_{e} (νvFkx/|𝐤|)\left(\nu v_{F}k_{x}/|\mathbf{k}|\right) for a free electron gas with effective mass mem_{e} (or a Dirac cone of graphene with Fermi velocity vFv_{F}). The associated electric current density reads jc=σEMj_{c}=\sigma E_{M}, where

σ=e2τeδA𝐤(v𝐤ν(x))2(f𝐤νε𝐤ν)\sigma=\frac{e^{2}\tau_{e}\delta}{A}\sum_{\mathbf{k}}(v_{\mathbf{k}\nu}^{(x)})^{2}\left(-\frac{\partial f_{\mathbf{k}\nu}}{\partial\varepsilon_{\mathbf{k}\nu}}\right) (16)

is the electrical conductivity and δ\delta includes the spin and valley degeneracies.

In the Supplemental Material A SM we derive a ferron-electron scattering contribution that drastically reduces the τe\tau_{e} at the Curie temperature of the ferroelectric. The observation of the predicted critical enhancement of the scattering rate would provide a proof of ferron excitations independent of the thermoelectric effects discussed in the following.

The bosonic ferron distribution function N𝐪N_{\mathbf{q}} in the ferroelectric is governed by another linearized Boltzmann equation arXiv:2203.06367 ; Bauer2022 . Far from the edges and in the absence of temperature or effective field gradients, the steady state distribution reads

N𝐪=Nq(0)+τfN𝐪t|intN_{\mathbf{q}}=N_{q}^{(0)}+\tau_{f}\left.\frac{\partial N_{\mathbf{q}}}{\partial t}\right|_{\mathrm{int}} (17)

where Nq(0)=[exp(ωq/kBT)1]1N_{q}^{(0)}=\left[\exp\left(\hbar\omega_{q}/k_{B}T\right)-1\right]^{-1} is the equilibrium Planck distribution, τf\tau_{f} the ferron relaxation time. The new ingredient is the collision integral N𝐪/t|int\left.\partial N_{\mathbf{q}}/\partial t\right|_{\mathrm{int}}, which by the current in the metal and via the interlayer interaction U𝐪U_{\mathbf{q}} renders N𝐪N𝐪.N_{\mathbf{q}}\neq N_{-\mathbf{q}}. The electrons scatter from occupied to empty states, creating and annihilating a ferron in the process. According to Fermi’s Golden Rule

N𝐪t|int\displaystyle\left.\frac{\partial N_{\mathbf{q}}}{\partial t}\right|_{\mathrm{int}} =2πδ𝐤|U𝐤𝐪|2[(1+N𝐪)f(𝐤+𝐪)ν(1f𝐤ν)\displaystyle=\frac{2\pi\delta}{\hbar}\sum_{\mathbf{k}}\left|U_{\mathbf{k}\mathbf{q}}\right|^{2}\left[(1+N_{\mathbf{q}})f_{\left(\mathbf{k}+\mathbf{q}\right)\nu}(1-f_{\mathbf{k}\nu})\right.
N𝐪f𝐤ν(1f(𝐤+𝐪)ν)]δ(ε𝐤νε(𝐤+𝐪)ν+ωq)\displaystyle\left.-N_{\mathbf{q}}f_{\mathbf{k}\nu}(1-f_{\left(\mathbf{k}+\mathbf{q}\right)\nu})\right]\delta(\varepsilon_{\mathbf{k}\nu}-\varepsilon_{\left(\mathbf{k}+\mathbf{q}\right)\nu}+\hbar\omega_{q}) (18)

while energy and momentum are conserved. Here insignificant interband processes (νν\nu\neq\nu^{\prime}) have been discarded. To leading order, we may replace N𝐪N_{\mathbf{q}} on the r.h.s. of Eq. (18) with Nq(0)N_{q}^{(0)} and substitute the distribution function of the field-biased conductor Eq. (15):

N𝐪\displaystyle N_{\mathbf{q}} =Nq(0)+2πδτfNq(0)ωq𝐤|U𝐤𝐪|2(f(𝐤+𝐪)ν(0)f𝐤ν(0))\displaystyle=N_{q}^{(0)}+\frac{2\pi\delta\tau_{f}}{\hbar}\frac{\partial N_{q}^{(0)}}{\partial\hbar\omega_{q}}\sum_{\mathbf{k}}\left|U_{\mathbf{k}\mathbf{q}}\right|^{2}(f_{\left(\mathbf{k}+\mathbf{q}\right)\nu}^{(0)}-f_{\mathbf{k}\nu}^{(0)})
×eτeEM(v𝐤+𝐪(x)v𝐤(x))δ(ε𝐤νε(𝐤+𝐪)ν+ωq).\displaystyle\times e\tau_{e}E_{M}(v_{\mathbf{k}+\mathbf{q}}^{(x)}-v_{\mathbf{k}}^{(x)})\delta(\varepsilon_{\mathbf{k}\nu}-\varepsilon_{\left(\mathbf{k}+\mathbf{q}\right)\nu}+\hbar\omega_{q}). (19)

We can now derive the non-local Peltier πD=jq(FE)/jc\pi_{D}=-j_{q}^{(\mathrm{FE})}/j_{c} and polarization drag ϑD=jp/jc\vartheta_{D}=j_{p}/j_{c} coefficients by evaluating the heat and polarization currents for the deformed ferron distribution functions by jq(FE)=A1𝐪u𝐪(x)N𝐪ωqj_{q}^{(\mathrm{FE})}=A^{-1}\sum_{\mathbf{q}}u_{\mathbf{q}}^{(x)}N_{\mathbf{q}}\hbar\omega_{q} and jp=A1𝐪u𝐪(x)N𝐪δpqj_{p}=A^{-1}\sum_{\mathbf{q}}u_{\mathbf{q}}^{(x)}N_{\mathbf{q}}\delta p_{q}, respectively, where u𝐪(x)=ωq/qxu_{\mathbf{q}}^{(x)}=\partial\omega_{q}/\partial q_{x} is the ferron group velocity along xx direction:

πD=\displaystyle\pi_{D}= 2πeτfτeδσA𝐤𝐪ωqu𝐪(x)(v𝐤+𝐪(x)v𝐤(x))Nq(0)ωq|U𝐤𝐪|2\displaystyle\frac{2\pi e\tau_{f}\tau_{e}\delta}{\sigma\hbar A}\sum_{\mathbf{k}\mathbf{q}}\hbar\omega_{q}u_{\mathbf{q}}^{\left(x\right)}(v_{\mathbf{k}+\mathbf{q}}^{(x)}-v_{\mathbf{k}}^{\left(x\right)})\frac{\partial N_{q}^{(0)}}{\partial\hbar\omega_{q}}\left|U_{\mathbf{k}\mathbf{q}}\right|^{2}
×(f𝐤+𝐪ν(0)f𝐤ν(0))δ(ε𝐤νε(𝐤+𝐪)ν+ωq)\displaystyle\times(f_{\mathbf{k}+\mathbf{q}\nu}^{(0)}-f_{\mathbf{k}\nu}^{(0)})\delta(\varepsilon_{\mathbf{k}\nu}-\varepsilon_{\left(\mathbf{k}+\mathbf{q}\right)\nu}+\hbar\omega_{q}) (20)
ϑD=\displaystyle\vartheta_{D}= 2πeτfτeδσA𝐤𝐪δpqu𝐪(x)(v𝐤+𝐪(x)v𝐤(x))Nq(0)ωq|U𝐤𝐪|2\displaystyle\frac{2\pi e\tau_{f}\tau_{e}\delta}{\sigma\hbar A}\sum_{\mathbf{k}\mathbf{q}}\delta p_{q}u_{\mathbf{q}}^{\left(x\right)}(v_{\mathbf{k}+\mathbf{q}}^{(x)}-v_{\mathbf{k}}^{\left(x\right)})\frac{\partial N_{q}^{(0)}}{\partial\hbar\omega_{q}}\left|U_{\mathbf{k}\mathbf{q}}\right|^{2}
×(f𝐤+𝐪ν(0)f𝐤ν(0))δ(ε𝐤νε(𝐤+𝐪)ν+ωq).\displaystyle\times(f_{\mathbf{k}+\mathbf{q}\nu}^{(0)}-f_{\mathbf{k}\nu}^{(0)})\delta(\varepsilon_{\mathbf{k}\nu}-\varepsilon_{\left(\mathbf{k}+\mathbf{q}\right)\nu}+\hbar\omega_{q}). (21)

We proceed by adopting the quasi-elastic approximation, i.e., δ(ε𝐤νε(𝐤+𝐪)ν+ωq)δ(ε𝐤νε(𝐤+𝐪)ν)\delta(\varepsilon_{\mathbf{k}\nu}-\varepsilon_{\left(\mathbf{k}+\mathbf{q}\right)\nu}+\hbar\omega_{q})\approx\delta(\varepsilon_{\mathbf{k}\nu}-\varepsilon_{\left(\mathbf{k}+\mathbf{q}\right)\nu}), assuming that the Fermi energy is much larger than that of the ferrons (10\lesssim 10\,meV) arXiv:2203.06367 . This is the case in graphene with homogeneous electron densities n0>1012n_{0}>10^{12}\,cm-2 and Fermi energies εF>0.11\varepsilon_{F}>0.11\,eV Sarma2011 . At kBTεFk_{B}T\ll\varepsilon_{F}, f𝐤νf(𝐤+𝐪)νωqδ(ε𝐤νεF)f_{\mathbf{k}\nu}-f_{(\mathbf{k}+\mathbf{q})\nu}\simeq\hbar\omega_{q}\delta(\varepsilon_{\mathbf{k}\nu}-\varepsilon_{F}) and we find

πD\displaystyle\pi_{D}\simeq eτfg3DF232δmp2ϵ02n0kFkBT02kFcos2(θ/2)q2dq1(q/2kF)2\displaystyle\frac{e\tau_{f}g\hbar^{3}D_{F}^{2}}{32\delta m_{p}^{2}\epsilon_{0}^{2}n_{0}k_{F}k_{B}T}\int_{0}^{2k_{F}}\frac{\cos^{2}(\theta/2)q^{2}dq}{\sqrt{1-(q/2k_{F})^{2}}}
×e2dq(1+qTF/q)2csch2(ωq2kBT).\displaystyle\times\frac{e^{-2dq}}{(1+q_{\mathrm{TF}}/q)^{2}}\mathrm{csch}^{2}\left(\frac{\hbar\omega_{q}}{2k_{B}T}\right). (22)

In contrast to the free electron gas there is a factor cos2(θ/2)\cos^{2}(\theta/2) that arises from the overlap |F(𝐤+𝐪)νF𝐤ν|2|F_{(\mathbf{k}+\mathbf{q})\nu}^{\dagger}F_{\mathbf{k}\nu}|^{2}, where θ\theta is the scattering angle determined by q=2kFsin(θ/2)q=2k_{F}\sin(\theta/2). A similar expression can be derived for ϑD\vartheta_{D} by replacing ωq\hbar\omega_{q} with δpq\delta p_{q}.

The spatial separation limits the momentum transfer exponentially via the factor exp(2dq)\exp(-2dq) to q<1/(2d)q<1/(2d). At large distances with kFd1k_{F}d\gg 1, qTFd1q_{\mathrm{TF}}d\gg 1 and dlgχd\gg l\equiv\sqrt{g\chi}, only the ferrons located near the center of Brillouin zone contribute and

πD\displaystyle\pi_{D} 3π8δ2τfω0(kFd)3(ld)2(2e3mp)ξ0csch2(ξ02)\displaystyle\approx\frac{3\pi}{8\delta^{2}}\frac{\tau_{f}\omega_{0}}{(k_{F}d)^{3}}\left(\frac{l}{d}\right)^{2}\left(\frac{\hbar^{2}}{e^{3}m_{p}}\right)\xi_{0}\mathrm{csch}^{2}\left(\frac{\xi_{0}}{2}\right)
3π2δ2τfω0(kFd)3(ld)2(2e3mp){ξ0eξ0,ξ01, for ξ01ξ01\displaystyle\simeq\frac{3\pi}{2\delta^{2}}\frac{\tau_{f}\omega_{0}}{(k_{F}d)^{3}}\left(\frac{l}{d}\right)^{2}\left(\frac{\hbar^{2}}{e^{3}m_{p}}\right)\left\{\begin{array}[c]{c}\xi_{0}e^{-\xi_{0}},\\ \xi_{0}^{-1},\end{array}\text{ for }\begin{array}[c]{c}\xi_{0}\gg 1\\ \xi_{0}\ll 1\end{array}\right. (27)
ϑD\displaystyle\vartheta_{D} πD2χP0\displaystyle\approx\frac{\pi_{D}}{2}\frac{\partial\chi}{\partial P_{0}} (28)

where ξ0=ω0/kBT\xi_{0}=\hbar\omega_{0}/k_{B}T and ω0=(χmp)1/2\omega_{0}=(\chi m_{p})^{-1/2} the ferron gap. lgχl\equiv\sqrt{g\chi} is the coherence length of the ferroelectric order, a measure of the ferroelectric domain wall width Ishibashi1989 ; Ishibashi1990 . Since magnetic domain wall widths that scale like J/K,\sim\sqrt{J/K}, where JJ is the exchange interaction and KK is the anisotropy that governs the magnon gap, χ1\chi^{-1} plays the role of the anisotropy by stiffening the ferroelectric order.

The T/d5T/d^{5} scaling relation at large distances and elevated temperatures for the drag efficiency differs from that of the Coulomb drag effect between two metallic sheets (T2/d4\sim T^{2}/d^{4}) gramila1991mutual ; jauho1993coulomb . We can trace the difference to the faster decay of electron-dipole interactions (r2)(\sim r^{-2}) compared to those between charges (r1)(\sim r^{-1}) as a function of distance while the Planck distribution of the ferrons compared to the Fermi distribution of electrons leads to an increased phase space for scatterings at low temperatures (kBTεFk_{B}T\ll\varepsilon_{F}).

Refer to caption
Figure 2: The nonlocal ferron-drag Peltier coefficient (πD\pi_{D}) as a function of the electron concentration (n0n_{0}) in graphene for various interlayer distance (dd). The πD\pi_{D} exhibit an asymmetric dependence on the relative direction of an external field (EFEE_{\text{FE}}) to the ferroelectric order.

For a numerical estimate, we consider here a bilayer composed of graphene and van der Waals ferroelectric monolayer and separated by an inert h-BN layer with (out-of-plane) ϵr=3.76\epsilon_{r}=3.76 Laturia2018 . In graphene ε𝐤ν=νvF|𝐤|\varepsilon_{\mathbf{k}\nu}=\nu\hbar v_{F}|\mathbf{k}| with vF=108v_{F}=10^{8} cm/s, DF=2εF/(π2vF2)D_{F}=2\varepsilon_{F}/(\pi\hbar^{2}v_{F}^{2}), δ=4\delta=4 and kF=(4πn0/δ)1/2k_{F}=(4\pi n_{0}/\delta)^{1/2} Sarma2011 . The parameters for the ferroelectric are adopted as: τf=1\tau_{f}=1\,ps, Tc=326T_{c}=326\,K, α0=1.54×103\alpha_{0}=1.54\times 10^{3}\,VK-1/pC, β=1.48×105\beta=1.48\times 10^{5}\,Vcm2/pC3, λ=2.75×104\lambda=2.75\times 10^{4}\,Vcm4/pC5 and g=0.33g=0.33\,Vm2/C, and mp=108m_{p}=10^{-8}\,Vs2/C, which are close to those of the monolayer SnSe with in-plane polarization Fei2016 . Figure 2 shows the ferron-drag Peltier coefficient as a function of graphene excess electron density (n0n_{0}) for various interlayer distances dd at room temperature. πD\pi_{D} has a maximum at an optimal n0n_{0} that decreases with dd because a larger n0n_{0} increases the electron-ferron scattering for small n0n_{0} while the increased screening wins at larger densities, which is easier for larger dd. πD\pi_{D} depends not only on the strength, but also on the direction of an external electric field (below the coercive field), i.e., πD\pi_{D} is reduced (enhanced) by the positive (negative) field along the ferroelectric order, because of the fact that the ferrons carry nonzero electric dipoles.

The drag effect results in heat and polarization accumulations in the ferroelectric (see figure 1). Assuming that both films are thermally isolated, a temperature gradient TFE(x)=T0+TFE(xL/2)T_{\mathrm{FE}}(x)=T_{0}+\partial T_{\mathrm{FE}}\left(x-L/2\right) emerges in a ferroelectric with length LL, where T0T_{0} is the ambient temperature. The open circuit condition for the heat current, i.e., jq(FE)=πDjcκFETFE=0j_{q}^{(\mathrm{FE})}=-\pi_{D}j_{c}-\kappa_{\mathrm{FE}}\partial T_{\mathrm{FE}}=0, leads to TFE=(πD/κFE)jc\partial T_{\mathrm{FE}}=\left(-\pi_{D}/\kappa_{\mathrm{FE}}\right)j_{c}, where κFE\kappa_{\mathrm{FE}} is the 2D thermal conductivity of the ferroelectric sheet (in units of W/K). The polarization accumulation ΔP(x)\Delta P(x) vanishes except for the neighborhood of the edges on the scale of the polarization relaxation length Bauer2021 .

With d=1d=1\,nm, n0=1013n_{0}=10^{13}\,cm-2, we have πD=367\pi_{D}=367μV\mathrm{\mu V} at the room temperature. The maximum current density in graphene is limited by self-heating to 30\sim 30\,A/cm Liao2011 , but even for jc=3.4×102j_{c}=3.4\times 10^{-2}\,A/cm (or a bulk current density jc(b)=106j_{c}^{(b)}=10^{6}\,A/cm2) this modest Peltier coefficient generates a large temperature gradient TFE=5\partial T_{\mathrm{FE}}=5 K/μm\mathrm{\mu m} for κFE=2.5×1010\kappa_{\mathrm{FE}}=2.5\times 10^{-10}\,W/K (or bulk κFE(b)=0.5\kappa_{\mathrm{FE}}^{(b)}=0.5\,W/Km for a monolayer thickness of 55 Å Li2015 ) because of the simultaneous low thermal conductivity of the ferroelectric and high available current density in graphene. This should be easily observable close to the edges, even when some heat current leaks from the ferroelectric into the graphene. Inversely, a temperature gradient in the ferroelectric generates a charge current in graphene, i.e., a nonlocal ferron-drag thermopower. sD=πD/T0=1.23μs_{D}=\pi_{D}/T_{0}=1.23\,\mathrm{\mu}V/K at T0=298T_{0}=298\,K. However, this number is at least an order of magnitude smaller than that of a single graphene Zuev2009 ; Wei2009 .

For sufficient thermal isolation between the ferroelectric and graphene layers the figure of merit of the ferron drag thermoelectric device can be defined and estimated as

(ZT)D=σsD2T0κFE=2.6×103\left(ZT\right)_{D}=\frac{\sigma s_{D}^{2}T_{0}}{\kappa_{\mathrm{FE}}}=2.6\times 10^{-3} (29)

where σ=1.38×103\sigma=1.38\times 10^{-3}\,S is the electrical conductivity with the nearby ferroelectric at n0=1013n_{0}=10^{13} cm-2 SM . This (ZT)D\left(ZT\right)_{D} is comparable to that of graphene Reshak2008 but it may be engineered to become larger by, e.g., optimizing the electron density of graphene as shown in figure 2 or stacking mm ferroelectric monolayers with (ZT)Dm\left(ZT\right)_{D}\propto m as long as all of them stay in the range of the dipolar interaction. The predicted substantial FOM in spite of the small sDs_{D} relies on beating the Wiedemann-Franz Law that hinders conventional thermoelectric devices: The small heat conductivity in the ferroelectric does not depend on the electric conductivity in the conductor, which is large in graphene in spite of the additional ferron scattering SM .

According to Supplemental Material B SM the current drag is not specific for ferrons: the expressions are identical for in-plane longitudinal and out-of-plane polarized polar optical phonons, except for the difference in the frequency dispersions and other relevant parameters. We therefore encourage search for thermoelectric effects in any highly polarizable insulator. The attraction of using ferroelectrics is strong dependence and control of larger effects by temperature and applied electric field as well as non-volatile switching of the ferroelectric order. The critical enhancement of the electrical resistance at the Curie temperature is also unique for ferroelectrics.

Conclusion: We predict significant non-local ferron-drag thermoelectric effects in bilayers of ferroelectric insulators and conductors that are separated by a small distance dd. A remote gate-field controlled Peltier effect can be detected by standard thermography and would prove the existence of the ferron quasiparticles in ferroelectrics. The results can be readily extended to the limit d=0d=0 corresponding to van der Waals conducting ferroelectrics, known as ferroelectric metals, in which electric polarization and mobile electrons coexist Zhou2020 , and the ferroelectrics with in-plane spontaneous polarization. In the dipole approximation of the ferroelectric charge dynamics, the mobile electrons cannot screen the perpendicular ferroelectric order nor couple to the longitudinal ferrons. We may expect a strong coupling to the transverse ferrons, however, with associated interesting thermoelectric phenomena presently under investigation. Our work opens a new strategy for the design of thermoelectric devices that are not bound by the Wiedemann-Franz Law.

Acknowledgements: We acknowledge the helpful discussions with Ryo Iguchi. JSPS KAKENHI Grant No. 19H00645 supported P.T. and G.B and Grant No. 22H04965 supported G.B. and K.U. K.U. also acknowledges support by JSPS KAKENHI Grant No. 20H02609 and JST CREST “Creation of Innovative Core Technologies for Nano-enabled Thermal Management” Grant No. JPMJCR17I1.

References

  • (1) T. J. Gramila, J. P. Eisenstein, A. H. MacDonald, L. N. Pfeiffer, and K. W. West, Mutual Friction between Parallel Two-Dimensional Electron Systems, Phys. Rev. Lett. 66, 1216 (1991).
  • (2) A. Jauho and H. Smith, Coulomb drag between parallel two-dimensional electron systems, Phys. Rev. B 47, 4420 (1993).
  • (3) B. Narozhny and A. Levchenko, Coulomb drag, Rev. Mod. Phys. 88, 025003 (2016).
  • (4) M. Bailyn, Phonon-drag part of the thermoelectric power in metals, Phys. Rev. 157, 480 (1967).
  • (5) D. Cantrell and P. Butcher, A calculation of the phonon-drag contribution to the thermopower of quasi-2D electrons coupled to 3D phonons, Journal of Physics C: Solid State Physics 20, 1985 (1987).
  • (6) S. Lyo, Low-temperature phonon-drag thermoelectric power in heterojunctions, Phys. Rev. B 38, 6345(R) (1988).
  • (7) J. Vavro, M. C. Llaguno, J. E. Fischer, S. Ramesh, R. K. Saini, L. M. Ericson, V. A. Davis, R. H. Hauge, M. Pasquali, and R. E. Smalley, Thermoelectric Power of p-Doped Single-Wall Carbon Nanotubes and the Role of Phonon Drag, Phys. Rev. Lett. 90, 065503 (2003).
  • (8) H. C. Tso, P. Vasilopoulos, and F. M. Peeters, Direct Coulomb and phonon-mediated coupling between spatially separated electron gases, Phys. Rev. Lett. 68, 2516 (1992).
  • (9) M. C. Bønsager, K. Flensberg, B. Y. Hu, and A. H. MacDonald, Frictional drag between quantum wells mediated by phonon exchange, Phys. Rev. B 57, 7085 (1998).
  • (10) H. Noh, S. Zelakiewicz, T. J. Gramila, L. N. Pfeiffer, and K. W. West, Phonon-mediated drag in double-layer two-dimensional electron systems, Phys. Rev. B 59, 13114 (1999).
  • (11) M. Bailyn, Maximum Variational Principle for Conduction Problems in a Magnetic Field, and the Theory of Magnon Drag, Phys. Rev. 126, 2040 (1962).
  • (12) F. Blatt, D. Flood, V. Rowe, P. Schroeder, and J. Cox, Magnon-Drag Thermopower in Iron, Phys. Rev. Lett. 18, 395 (1967).
  • (13) G. N. Grannemann and L. Berger, Magnon-drag Peltier effect in a Ni-Cu alloy, Phys. Rev. B 13, 2072 (1976).
  • (14) M. V. Costache, G. Bridoux, I. Neumann and S. O. Valenzuela, Magnon-drag thermopile, Nat. Mater. 11, 199 (2012).
  • (15) B. Flebus, R. A. Duine, and Y. Tserkovnyak, Landau-Lifshitz theory of the magnon-drag thermopower, Europhys. Lett. 115, 57004 (2016).
  • (16) S. J. Watzman, R. A. Duine, Y. Tserkovnyak, S. R. Boona, H. Jin, A. Prakash, Y. Zheng, and J. P. Heremans, Magnon-drag thermopower and Nernst coefficient in Fe, Co, and Ni, Phys. Rev. B 94, 144407 (2016).
  • (17) S. S.-L. Zhang and S. Zhang, Magnon Mediated Electric Current Drag Across a Ferromagnetic Insulator Layer, Phys. Rev. Lett. 109, 096603 (2012).
  • (18) H. Wu, C. H. Wan, X. Zhang, Z. H. Yuan, Q. T. Zhang, J. Y. Qin, H. X. Wei, X. F. Han, and S. Zhang, Observation of magnon-mediated electric current drag at room temperature, Phys. Rev. B 93, 060403(R) (2016).
  • (19) J. Li, Y. Xu, M. Aldosary, C. Tang, Z. Lin, S. Zhang, R. Lake, and J. Shi, Observation of magnon-mediated current drag in Pt/yttrium iron garnet/Pt(Ta) trilayers, Nat. Commun. 7, 10858 (2016).
  • (20) T. Liu, G. Vignale, and M. E. Flatté, Nonlocal Drag of Magnons in a Ferromagnetic Bilayer, Phys. Rev. Lett. 116, 237202 (2016).
  • (21) Y. Kainuma, R. Iguchi, D. Prananto, V. I. Vasyuchka, B. Hillebrands, T. An, and K. Uchida, Local heat emission due to unidirectional spin-wave heat conveyer effect observed by lock-in thermography, Appl. Phys. Lett. 118, 222404 (2021).
  • (22) G. E. W. Bauer, R. Iguchi, and K. Uchida, Theory of transport in ferroelectric capacitors, Phys. Rev. Lett. 126, 187603 (2021).
  • (23) P. Tang, R. Iguchi, K. Uchida, G. E. W. Bauer, Thermoelectric Polarization Transport in Ferroelectric Ballistic Point Contacts, Phys. Rev. Lett. 128, 047601 (2022).
  • (24) P. Tang, R. Iguchi, K. Uchida, Gerrit E. W. Bauer, Excitations of the ferroelectric order, arXiv:2203.06367 (2022).
  • (25) K. Chang, J. Liu, H. Lin, N. Wang, K. Zhao, A. Zhang, F. Jin, Y. Zhong, X. Hu, W. Duan, Q. Zhang, L. Fu, Qi-Kun Xue, X. Chen, and Shuai-Hua Ji, Discovery of robust in-plane ferroelectricity in atomic-thick SnTe, Science 353, 274 (2016).
  • (26) F. Liu, L. You, K. L. Seyler, X. Li, P. Yu, J. Lin, X. Wang, J. Zhou, H. Wang, H. He, S. T. Pantelides, W. Zhou, P. Sharma, X. Xu, P. M. Ajayan, J. Wang, and Z. Liu, Room-temperature ferroelectricity in CuInP2S2 ultrathin flakes. Nat. Commun. 7, 12357 (2016).
  • (27) L. Li and M. Wu, Binary compound bilayer and multilayer with vertical polarizations: Two-dimensional ferroelectrics, multiferroics, and nanogenerators, ACS Nano 11, 6382 (2017).
  • (28) Q. Yang, M. Wu, and J. Li, Origin of two-dimensional vertical ferroelectricity in WTe2 bilayer and multilayer, J. Phys. Chem. Lett. 9, 7160 (2018).
  • (29) Z. Fei, W. Zhao, T. A. Palomaki, B. Sun, M. K. Miller, Z. Zhao, J. Yan, X. Xu, and D. H. Cobden, Ferroelectric switching of a two-dimensional metal, Nature 560, 336 (2018).
  • (30) S. Yuan, X. Luo, H. L. Chan, C. Xiao, Y. Dai, M. Xie, and J. Hao, Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit, Nat. Commun. 10, 1775 (2019).
  • (31) K. Yasuda, X. Wang, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, Stacking-engineered ferroelectricity in bilayer boron nitride, Science 372, 1458 (2021).
  • (32) X. Wang, K. Yasuda, Y. Zhang, S. Liu, K. Watanabe, T. Taniguchi, J. Hone, L. Fu, and P. Jarillo-Herrero, Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides. Nat. Nanotechnol. 17, 367 (2022).
  • (33) A. F. Devonshire, Theory of barium titanate: Part I, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 40, 1040 (1949).
  • (34) A. Devonshire, Theory of barium titanate: Part II, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 42, 1065 (1951).
  • (35) S. Sivasubramanian, A. Widom, and Y. N. Srivastava, Physical kinetics of ferroelectric hysteresis, Ferroelectrics 300, 43 (2004).
  • (36) T. Ando, Screening Effect and Impurity Scattering in Monolayer Graphene, J. Phys. Soc. Jpn. 75, 074716 (2006).
  • (37) E. H. Hwang and S. D. Sarma, Screening-induced temperature-dependent transport in two-dimensional graphene, Phys. Rev. B 79, 165404 (2009).
  • (38) F. Stern, Polarizability of a Two-Dimensional Electron Gas, Phys. Rev. Lett. 18, 546 (1967).
  • (39) T. Ando, A. B. Fowler, and F. Stern, Electronic properties of two-dimensional systems, Rev. Mod. Phys. 54, 437 (1982).
  • (40) E. H. Hwang and S. Das Sarma, Dielectric function, screening, and plasmons in two-dimensional graphene, Phys. Rev. B 75, 205418 (2007).
  • (41) S. D. Sarma, S. Adam, E. H. Hwang, and E. Rossi, Electronic transport in two-dimensional graphene, Rev. Mod. Phys. 83, 407 (2011).
  • (42) See the Supplemental Material for the influence of ferron-electron scatterings on the electrical conductivity in the metal and the drag effect of in-plane polarization fluctuations (polar optical phonons).
  • (43) G. E. W. Bauer, P. Tang, R. Iguchi, K. Uchida, Magnonics vs. Ferronics, J. Magn. Magn. Mater. 541, 168468 (2022).
  • (44) Y. Ishibashi, Phenomenological theory of domain walls, Ferroelectrics 98, 193 (1989).
  • (45) Y. Ishibashi, Structure and physical properties of domain walls, Ferroelectrics 104, 299 (1990).
  • (46) A. Laturia, M.L. van de Put, W.G. Vandenberghe, Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: from monolayer to bulk. npj 2D Mater Appl 2, 6 (2018).
  • (47) R. Fei, W. Kang, and L. Yang, Ferroelectricity and Phase Transitions in Monolayer Group-IV Monochalcogenides, Phys. Rev. Lett. 117, 097601 (2016).
  • (48) A. D. Liao, J. Z. Wu, X. Wang, K. Tahy, D. Jena, H. Dai, and E. Pop, Thermally Limited Current Carrying Ability of Graphene Nanoribbons, Phys. Rev. Lett. 106, 256801 (2011).
  • (49) C. Li, J. Hong, A. May, D. Bansal, S. Chi, T. Hong, G. Ehlers, and O. Delaire, Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals, Nat. Phys. 11, 1063 (2015).
  • (50) Y. M. Zuev, W. Chang, and P. Kim, Thermoelectric and Magnetothermoelectric Transport Measurements of Graphene, Phys. Rev. Lett. 102, 096807 (2009).
  • (51) P. Wei, W. Bao, Y. Pu, C. N. Lau, and J. Shi, Anomalous Thermoelectric Transport of Dirac Particles in Graphene, Phys. Rev. Lett. 102, 166808 (2009).
  • (52) A. H. Reshak, S. A. Khan and S. Auluck, Thermoelectric properties of a single graphene sheet and its derivatives, J. Mater. Chem. C 2, 2346 (2014).
  • (53) W. X. Zhou and A. Ariando, Review on ferroelectric/polar metals, Jpn. J. Appl. Phys. 59, SI0802 (2020).