This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Nonlinear stability of phase transition steady states to a hyperbolic-parabolic system modelling vascular networks

Guangyi Hong Guangyi Hong
Department of Applied Mathematics
Hong Kong Polytechnic University
Hung Hom, Kowloon, Hong Kong, P. R. China
[email protected]
Hongyun Peng Hongyun Peng
School of Applied Mathematics
Guangdong University of Technology
Guangzhou, 510006, P. R. China
[email protected]
Zhi-An Wang\ast Zhi-an Wang
Department of Applied Mathematics
Hong Kong Polytechnic University
Hung Hom, Kowloon, Hong Kong, P. R. China
[email protected]
 and  Changjiang Zhu Changjiang Zhu
School of Mathematics
South China University of Technology
Guangzhou, 510641, P. R. China
[email protected]
Abstract.

This paper is concerned with the existence and stability of phase transition steady states to a quasi-linear hyperbolic-parabolic system of chemotactic aggregation, which was proposed in [1, 13] to describe the coherent vascular network formation observed in vitro experiment. Considering the system in the half line +=(0,)\mathbb{R}_{+}=(0,\infty) with Dirichlet boundary conditions, we first prove the existence and uniqueness of non-constant phase transition steady states under some structure conditions on the pressure function. Then we prove that this unique phase transition steady state is nonlinearly asymptotically stable against a small perturbation. We prove our results by the method of energy estimates, the technique of a priori assumption and a weighted Hardy-type inequality.

2020 Mathematics Subject Classification. 35L60, 35L04, 35B40, 35Q92

Keywords. Hyperbolic-parabolic system; vascular network; phase transitions; nonlinear stability; energy estimates

1. Introduction

Experiments of in vitro blood vessel formation demonstrate that endothelial cells randomly dispersing on a gel substrate (matrix) can spontaneously organize into a coherent vascular network (see [1, 13] and figures therein), which is called angiogenesis - a major factor driving the tumor growth. How endothelial cells self-organize geometrically into capillary networks and how separate individual cells cooperate in the formation of coherent patterns remain poorly understood biologically up to date. These networking patterns can not be explained by the macroscopic aggregation models such as Keller-Segel type chemotaxis models that lead to point-wise blowup or rounded aggregates, nor by the microscopic kinetic models that describe individual cell behaviors, as commented in [6]. Strikingly they can be numerically reproduced by a hydrodynamic (hyperbolic-parabolic) models of chemotaxis proposed in [1, 13] as follows

{tρ+(ρu)=0,t(ρu)+(ρuu)+p(ρ)=μρϕαρu,tϕΔϕ=aρbϕ\displaystyle\left\{\begin{array}[]{l}\partial_{t}\rho+\nabla\cdot(\rho u)=0,\\[2.84526pt] \partial_{t}(\rho u)+\nabla\cdot(\rho u\otimes u)+\nabla p(\rho)=\mu\rho\nabla\phi-\alpha\rho u,\\[2.84526pt] \partial_{t}\phi-\Delta\phi=a\rho-b\phi\end{array}\right. (1.4)

where ρ\rho denotes the endothelial cell density, uu the cell velocity and ϕ\phi the concentration of chemoattractant secreted by cells; pp is a pressure function accounting for the fact that closely packed cells resist to compression due to the impenetrability of cellular matter, the parameter μ>0\mu>0 measures the intensity of cell response to the chemoattractant and αρu\alpha\rho u corresponds to a damping (friction) force due to the interaction between cells and underlying substratum with a drag coefficient α>0\alpha>0; aa and bb are positive constants accounting for the growth and death rates of the chemoattractant. The convective term (ρuu)\nabla\cdot(\rho u\otimes u) models the cell persistence (inertia effect). We refer more detailed biological interpretations on the model (1.4) to [1, 13]. The hydrodynamic system (1.4) has been (formally) derived from the following kinetic equation in [7] via the mean-field approximation

ft+vxf=V(T[ϕ](v,v)f(t,x,v)T[ϕ](v,v)f(t,x,v))dv,\displaystyle\frac{\partial f}{\partial t}+v\cdot\nabla_{x}f=\int_{V}(T[\phi](v^{\prime},v)f(t,x,v^{\prime})-T[\phi](v,v^{\prime})f(t,x,v))\mathrm{d}v^{\prime},

where f(t,x,v)f(t,x,v) denotes cell density distribution at time tt, position xdx\in{\mathbb{R}}^{d} moving with a velocity vv from a compact set VV in d\mathbb{R}^{d}, and tumbling kernel T[ϕ](v,v)T[\phi](v^{\prime},v) describes the frequency of changing trajectories from velocity vv^{\prime} (anterior) to vv (posterior) in response to a chemical concentration ϕ\phi.

At first glance from mathematical point of view, the above hydrodynamic system (1.4) is analogous to the well-known damped Euler-Poisson system where the ϕ\phi-equation is elliptic (i.e. Δϕ=αρ-\Delta\phi=\alpha\rho) which appears in various important applications depending on the sign of μ\mu, such as the propagation of electrons in semiconductor devices (cf. [22]) and the transport of ions in plasma physics (cf. [8]) and the collapse of gaseous stars due to self-gravitation [5]. However the parabolic ϕ\phi-equation in (1.4) will bring substantial differences in mathematical analysis and many existing mathematical frameworks developed for the Euler-Poisson system are inapplicable directly to (1.4). Due to the competing interactions between parabolic dissipation and hyperbolic anti-dissipation effect plus nonlinear convection, the global well-posedness and regularity of solutions to (1.4) is very complicated as can be glimpsed from the Euler-Poisson equations for which the understanding of solution behaviors is rather incomplete despite of numerous studies attempted. Up to date, there are only few results obtained for (1.4) in the literature. First when the initial value (ρ0,u0,ϕ0)(\rho_{0},u_{0},\phi_{0}) is a small perturbation of a constant ground state (ρ¯,0,ϕ¯)(\bar{\rho},0,\bar{\phi}) in Hs(d)(s>d/2+1)H^{s}(\mathbb{R}^{d})(s>d/2+1) with ρ¯>0\bar{\rho}>0 sufficiently small, the global existence and stability of solutions with non-vacuum (i.e. infxdρ>0\inf\limits_{x\in\mathbb{R}^{d}}\rho>0) to (1.4) was established in [11, 9]. The linear stability of constant ground state (ρ¯,0,ϕ¯)(\bar{\rho},0,\bar{\phi}) was obtained under the condition p(ρ¯)>aμbρ¯p^{\prime}(\bar{\rho})>\frac{a\mu}{b}\bar{\rho} in [16] where an additional viscous term 2u\nabla^{2}u is supplied to the second equation of (1.4). The stationary solutions of (1.4) with vacuum (bump solutions) in a bounded interval with zero-flux boundary condition and in \mathbb{R} were constructed in [2] and further elaborated in [3]. The model (1.4) with p(ρ)=ρp(\rho)=\rho and periodic boundary conditions in one dimension was numerically explored in [12]. These appear to be the only results available to the system (1.4) in the literature and further studies are in demand. For results on some other types of hyperbolic-parabolic chemotaxis models, we refer to [10, 17, 18, 24, 27] and references therein.

Note that the above-mentioned mathematical works on (1.4) prescribe initial data as a small perturbation of constant equilibria and the large-time profile of solutions is also constant, which can not explain the experimental observations of [1, 13] showing prominent phase transition patterns connecting regions clear (or low density) of cells. This motivates us to explore the possible non-constant phase transition profiles of solutions. The aim of this paper is to study the existence and stability of phase transition steady states without vacuum to the system (1.4) in one dimensional half space +=(0,)\mathbb{R}_{+}=(0,\infty). For the convenience of presentation in the sequel, we set m=ρum=\rho u, namely mm denotes the momentum of cells, and recast the one-dimensional system (1.4) in +\mathbb{R}_{+} as

ρt+mx=0,x+,t>0,\displaystyle\rho_{t}+m_{x}=0,\ \ \ \ x\in\mathbb{R}_{+},\ \ t>0, (1.5a)
mt+(m2ρ+p(ρ))x=μρϕxαm,\displaystyle m_{t}+\left(\frac{m^{2}}{\rho}+p(\rho)\right)_{x}=\mu\rho\phi_{x}-\alpha m, (1.5b)
ϕt=ϕxx+aρbϕ.\displaystyle\phi_{t}=\phi_{xx}+a\rho-b\phi. (1.5c)

As in [16], we assume the pressure function pp depends only on the density and satisfies

p(ρ)C3(0,),p(ρ)aμbρ>0for any ρ>0.\displaystyle\displaystyle p(\rho)\in C^{3}(0,\infty),\ \ p^{\prime}(\rho)-\frac{a\mu}{b}\rho>0\ \ \mbox{for any }\rho>0. (1.6)

A typical form of pp is p(ρ)=K2ρ2p(\rho)=\frac{K}{2}\rho^{2} with K>aμbK>\frac{a\mu}{b}. We supplement the system (1.5a)–(1.5c) with the following boundary conditions

m(0,t)=0,ϕ(0,t)=ϕ,\displaystyle\displaystyle m(0,t)=0,\ \ \ \phi(0,t)=\phi_{-}, (1.7)

and the initial value

(ρ,m,ϕ)(x,0)=(ρ0,m0,ϕ0)(x)(ρ+,0,ϕ+)asx+\displaystyle\displaystyle(\rho,m,\phi)(x,0)=(\rho_{0},m_{0},\phi_{0})(x)\rightarrow(\rho_{+},0,\phi_{+})\ \ \mbox{as}\ \ x\rightarrow+\infty (1.8)

where ϕ\phi_{-}, ρ+>0\rho_{+}>0, ϕ+>0\phi_{+}>0 are constants and ϕϕ+\phi_{-}\neq\phi_{+}.

In this paper, we shall first use delicate analysis to show that the system (1.5a)–(1.5c) has a unique non-constant stationary solution (ρ¯,0,ϕ¯)(\bar{\rho},0,\bar{\phi}) without vacuum satisfying

ϕ¯(0)=ϕandlimx+(ρ¯,ϕ¯)(x)=(ρ+,ϕ+)\displaystyle\displaystyle\bar{\phi}(0)=\phi_{-}\ \ \mbox{and}\ \ \lim_{x\rightarrow+\infty}\left(\bar{\rho},\bar{\phi}\right)(x)=(\rho_{+},\phi_{+})

where ρ¯\bar{\rho} and ϕ¯\bar{\phi} are monotone. Then we show that the stationary solution (ρ¯,0,ϕ¯)(\bar{\rho},0,\bar{\phi}) is asymptotically stable, namely the solution of (1.5a)–(1.5c) converges to (ρ¯,0,ϕ¯)(\bar{\rho},0,\bar{\phi}) point-wisely as tt\to\infty if the initial value (ρ0,m0,ϕ0)(\rho_{0},m_{0},\phi_{0}) is an appropriate small perturbation of (ρ¯,0,ϕ¯)(\bar{\rho},0,\bar{\phi}). The monotonicity of ρ¯\bar{\rho} and ϕ¯\bar{\phi} indicates that the steady states have phase transition profiles. To the best of our knowledge, there are not such results available in the literature for (1.5a)–(1.5c) and even for the Euler-Poisson equations (cf. [26, 21, 20, 19, 14]. To prove our results, we fully capture the structure of (1.5a)–(1.5c) where the stationary solution has exponential decay at far field, which is not enjoyed by the Euler-Poisson (or Euler) equations. Though part of the proof of our results is inspired by some ideas of [14, 25, 26, 15] on Euler-Poisson or Euler equations, we have added lof of extra efforts to deal with complicated couplings and boundary effects. The coupling term ρϕx\rho\phi_{x} leads to two linear terms in the linearized system around stationary solutions and how to make these linear terms under control is key to the asymptotic stability against small perturbations. We resolve this issue by the structural assumption (1.6) to take up the dissipation and use the exponentially weighted Hardy inequality in half space to compensate for the lack of dissipation in the hyperbolic equations. Due to the couplings and boundary effects, the energy estimates are very sophisticated, where the lower-order estimates involve higher-order estimates and vice versa. We use the delicate energy estimates along with the technique of a priori assumptions to unravel these tangles and gradually achieve our results.

The rest of this paper is organized as follows. In section 2, we state our main results on the existence of non-constant stationary solutions (Theorem 2.1) and stability of stationary solutions (Theorem 2.2). In section 3, we study the stationary problem and prove Theorem 2.1. The proof of Theorem 2.2 is given in Section 4.

2. Statement of main results

In this section, we shall state the main results of this paper. To be precise, we first introduce some notations used. Throughout the paper, we use L\|\cdot\|_{L^{\infty}}, \|\cdot\| and k\|\cdot\|_{k} to denote the norms of usual L(+)L^{\infty}(\mathbb{R}_{+}), L2(+)L^{2}(\mathbb{R}_{+}) and the standard Sobolev space Hk(+)H^{k}(\mathbb{R}_{+}), respectively. We also use (f1,,fn)(resp.(f1,,fn)k)\|(f_{1},\cdots,f_{n})\|~{}(\mathrm{resp}.~{}\|(f_{1},\cdots,f_{n})\|_{k}) to denote f1++fn(resp.f1k++fnk)\|f_{1}\|+\cdots+\|f_{n}\|~{}(\mathrm{resp}.~{}\|f_{1}\|_{k}+\cdots+\|f_{n}\|_{k}) for some n+n\in\mathbb{Z}_{+}. We denote by CC a generic constant that may vary in the context, and by CηC_{\eta} a constant depending on η\eta. Occasionally, we simply write fgf\sim g if C1fCgC^{-1}\leq f\leq Cg for some constant C>0C>0.

It can be verified that the system (1.5a)–(1.5c) possesses the following energy functional (cf. [2, 7])

F[ρ,u,ϕ]=12μ+ρu2dx+1μ+G(ρ)dx+12a+(|ϕ|2+bϕ2)dx+ρϕdxF[\rho,u,\phi]=\frac{1}{2\mu}\int_{\mathbb{R}_{+}}\rho u^{2}\mathrm{d}x+\frac{1}{\mu}\int_{\mathbb{R}_{+}}G(\rho)\mathrm{d}x+\frac{1}{2a}\int_{\mathbb{R}_{+}}(|\nabla\phi|^{2}+b\phi^{2})\mathrm{d}x-\int_{\mathbb{R}_{+}}\rho\phi\mathrm{d}x

which, subject to the boundary condition (1.7), satisfies that

ddtF[ρ,u,ϕ]+αμ+ρu2dx+1a+|ϕt|2dx=0,\frac{\mathrm{d}}{\mathrm{d}t}F[\rho,u,\phi]+\frac{\alpha}{\mu}\int_{\mathbb{R}_{+}}\rho u^{2}\mathrm{d}x+\frac{1}{a}\int_{\mathbb{R}_{+}}|\phi_{t}|^{2}\mathrm{d}x=0,

where ρG′′(ρ)=p(ρ)\rho G^{\prime\prime}(\rho)=p^{\prime}(\rho). Thus the stationary solution satisfying ddtF[ρ,u,ϕ]=0\frac{\mathrm{d}}{\mathrm{d}t}F[\rho,u,\phi]=0 gives rise to ρu=0\rho u=0 and ϕt=0\phi_{t}=0 in +\mathbb{R}_{+}. Since we are interested in non-constant profile for ρ\rho, u0u\equiv 0 is the only (physical) stationary profile for the velocity uu. Therefore stationary solutions of (1.5a)–(1.5c) without vacuum must possess the form (ρ¯,0,ϕ¯)(\bar{\rho},0,\bar{\phi}), where (ρ¯,ϕ¯)(\bar{\rho},\bar{\phi}) satisfies

p(ρ¯)x=μρ¯ϕ¯x,x+,\displaystyle p(\bar{\rho})_{x}=\mu\bar{\rho}\bar{\phi}_{x},\ \ x\in\mathbb{R}_{+}, (2.1a)
ϕ¯xx+aρ¯bϕ¯=0,\displaystyle\displaystyle\bar{\phi}_{xx}+a\bar{\rho}-b\bar{\phi}=0, (2.1b)
ϕ¯(0)=ϕ,\displaystyle\displaystyle\bar{\phi}(0)=\phi_{-}, (2.1c)
limx+(ρ¯,ϕ¯)=(ρ+,ϕ+).\displaystyle\displaystyle\lim_{x\rightarrow+\infty}\left(\bar{\rho},\bar{\phi}\right)=(\rho_{+},\phi_{+}). (2.1d)

Here the pressure pp satisfies (1.6) and the constants ρ+\rho_{+} and ϕ±\phi_{\pm} are the same as in (1.7) and (1.8).

Then our first result concerning the existence and uniqueness of solutions to the stationary problem (2.1a)–(2.1d) is given below.

Theorem 2.1.

Let ρ+>0\rho_{+}>0 and ϕϕ+\phi_{-}\neq\phi_{+} such that aρ+=bϕ+a\rho_{+}=b\phi_{+}. If

ϕϕ++0ρ+p(s)μsds>0,\displaystyle\displaystyle\phi_{-}-\phi_{+}+\int_{0}^{\rho_{+}}\frac{p^{\prime}(s)}{\mu s}\mathrm{d}s>0, (2.2)

then there is a unique constant ρ>0\rho_{-}>0 such that the problem (2.1a)–(2.1d) with (1.6) admits a unique solution (ρ¯,ϕ¯)(\bar{\rho},\bar{\phi}) satisfying ρ¯(0)=ρ\bar{\rho}(0)=\rho_{-} and

{ρ¯(x)<0,ϕ¯(x)<0 if ϕ>ϕ+,ρ¯(x)>0,ϕ¯(x)>0 if ϕ<ϕ+.\displaystyle\displaystyle\begin{cases}\displaystyle\bar{\rho}^{\prime}(x)<0,\,\bar{\phi}^{\prime}(x)<0&\text{ if }\phi_{-}>\phi_{+},\\[2.84526pt] \displaystyle\bar{\rho}^{\prime}(x)>0,\,\bar{\phi}^{\prime}(x)>0&\text{ if }\phi_{-}<\phi_{+}.\end{cases} (2.3)

Moreover, if |ϕϕ+|\left|\phi_{-}-\phi_{+}\right| is small enough, it holds that

k=12|dkdxk(ρ¯,ϕ¯)|+|ρ¯(x)ρ+|+|ϕ¯(x)ϕ+|Ceλx|ϕϕ+|,x0\displaystyle\displaystyle\sum_{k=1}^{2}\left|\frac{\mathrm{d}^{k}}{\mathrm{d}x^{k}}\left(\bar{\rho},\bar{\phi}\right)\right|+\left|\bar{\rho}(x)-\rho_{+}\right|+\left|\bar{\phi}(x)-\phi_{+}\right|\leq C{\mathop{\mathrm{e}}}^{-\lambda x}\left|\phi_{-}-\phi_{+}\right|,\ \ x\geq 0 (2.4)

for some constants C>0C>0 and λ>0\lambda>0 which may depend on ρ+\rho_{+}, aa and bb, but independent of ϕϕ+\phi_{-}-\phi_{+}.

Remark 2.1.

Under the condition (1.6), the integral 0ρ+p(s)μsds\int_{0}^{\rho_{+}}\frac{p^{\prime}(s)}{\mu s}\mathrm{d}s in (2.2) is positive, but not necessarily finite since p(s)μs+\frac{p^{\prime}(s)}{\mu s}\rightarrow+\infty as s0s\rightarrow 0 is possible. While in the case of 0ρ+p(s)μsds=+\int_{0}^{\rho_{+}}\frac{p^{\prime}(s)}{\mu s}\mathrm{d}s=+\infty, the condition (2.2) is free for any given ϕ\phi_{-} and ϕ+\phi_{+}.

Our second result is the asymptotic stability of the stationary solutions obtained in Theorem 2.1, which is stated in the following theorem.

Theorem 2.2.

Let the conditions in Theorem 2.1 hold and define

φ0=x(ρ0(y)ρ¯(y))dy,Φ0=ϕ0(x)ϕ¯.\displaystyle\displaystyle\varphi_{0}=-\int_{x}^{\infty}\left(\rho_{0}(y)-\bar{\rho}(y)\right)\mathrm{d}y,\ \ \ \Phi_{0}=\phi_{0}(x)-\bar{\phi}.

If φ0H3\varphi_{0}\in H^{3}, m0H2m_{0}\in H^{2} and Φ0H4\Phi_{0}\in H^{4} with infx+ρ0(x)>0\inf\limits_{x\in\mathbb{R}_{+}}\rho_{0}(x)>0 (namely infx+{φ0x+ρ¯}>0)\inf\limits_{x\in\mathbb{R}_{+}}\left\{\varphi_{0x}+\bar{\rho}\right\}>0), then there exists a constant δ0>0\delta_{0}>0 such that if

φ03+m02+Φ04+|ϕϕ+|δ0,\displaystyle\displaystyle\|\varphi_{0}\|_{3}+\|m_{0}\|_{2}+\|\Phi_{0}\|_{4}+\left|\phi_{-}-\phi_{+}\right|\leq\delta_{0},

the problem (1.5a)–(1.5c) subject to the initial-boundary conditions (1.7)–(1.8) admits a unique classical solution (ρ(x,t),m(x,t),ϕ(x,t))(\rho(x,t),m(x,t),\phi(x,t)) in +×(0,)\mathbb{R}_{+}\times(0,\infty) satisfying infx+ρ(x)>0\inf\limits_{x\in\mathbb{R}_{+}}\rho(x)>0 for any t>0t>0 and

limtsupx+|(ρ,m,ϕ)(x,t)(ρ¯,0,ϕ¯)(x)|0.\displaystyle\displaystyle\lim_{t\rightarrow\infty}\sup_{x\in\mathbb{R}_{+}}\left|(\rho,m,\phi)(x,t)-(\bar{\rho},0,\bar{\phi})(x)\right|\rightarrow 0. (2.5)
Remark 2.2.

With the condition Φ0H4\Phi_{0}\in H^{4}, we can define the initial values of ϕt\phi_{t} and ϕtt\phi_{tt} through the equation for ϕ\phi. That is

Φt0\displaystyle\displaystyle\Phi_{t0} :=ϕt0=(Φ0)xx+a(φ0)xbΦ0,\displaystyle:=\phi_{t0}=(\Phi_{0})_{xx}+a(\varphi_{0})_{x}-b\Phi_{0}, (2.6)
Φtt0\displaystyle\displaystyle\displaystyle\Phi_{tt0} :=ϕtt0=(Φt0)xxa(m0)xbΦt0.\displaystyle:=\phi_{tt0}=(\Phi_{t0})_{xx}-a(m_{0})_{x}-b\Phi_{t0}. (2.7)

These initial values of time derivatives are of importance in deriving the higher-order estimates in section 4. Furthermore, we always assume that the initial data is compatible with the boundary conditions at x=0x=0.

3. Stationary problem (Proof of Theorem 2.1)

In this section, we shall study the stationary problem (2.1a)–(2.1d) and complete the proof of Theorem 2.1. To this end, we first reformulate our problem (2.1a)–(2.1d), and then prove the existence and uniqueness of solutions. Finally, we derive the monotone and decay properties of solutions.

3.1. Reformulation of our problem

We start by proving the following lemma, which plays a key role in the reformulation of our problem.

Lemma 3.1.

If ff is a solution to the problem

{fx=ω(f(x)),x+,f(+)=k0,\displaystyle\displaystyle\begin{cases}\displaystyle f_{x}=\omega(f(x)),\ \ x\in\mathbb{R}_{+},\\ \displaystyle f(+\infty)=k_{0},\end{cases} (3.1)

where ω\omega is a continuous function, k0k_{0} is a constant. Then we have

limx+fx=ω(k0)=0.\displaystyle\displaystyle\lim_{x\rightarrow+\infty}f_{x}=\omega(k_{0})=0.
Proof.

Since ω\omega is continuous, and limx+f(x)=k0\displaystyle\lim_{x\rightarrow+\infty}f(x)=k_{0}, we have limx+fx=ω(k0)\displaystyle\lim_{x\rightarrow+\infty}f_{x}=\omega(k_{0}). It remains to show ω(k0)=0\omega(k_{0})=0. We proof this by contradiction. Supposing that ω(k0)0\omega(k_{0})\neq 0, without loss of generality, we assume ω(k0)>0\omega(k_{0})>0. Thanks to the continuity of ω\omega and limx+f(x)=k0\displaystyle\lim_{x\rightarrow+\infty}f(x)=k_{0}, there exists a constant X0+X_{0}\in\mathbb{R}_{+} such that for any xX0x\geq X_{0}, ω(f(x))>ω(k0)2>0\omega(f(x))>\frac{\omega(k_{0})}{2}>0. This along with (3.1)1\eqref{eq-f}_{1} implies that

f(x)=f(X0)+X0xω(f(x))dxf(X0)+ω(k0)2(xX0)+asx+,\displaystyle\displaystyle f(x)=f(X_{0})+\int_{X_{0}}^{x}\omega(f(x))\mathrm{d}x\geq f(X_{0})+\frac{\omega(k_{0})}{2}(x-X_{0})\rightarrow+\infty\ \ \mbox{as}\ \ x\rightarrow+\infty,

which contradicts the fact f(+)=k0f(+\infty)=k_{0}. Hence, ω(k0)=0\omega(k_{0})=0. The proof of Lemma 3.1 is complete.

Define

F(s):=ρ+sp(τ)μτdτ\displaystyle\displaystyle F(s):=\int_{\rho_{+}}^{s}\frac{p^{\prime}(\tau)}{\mu\tau}\mathrm{d}\tau (3.2)

for any s>0s>0. Clearly, F(ρ+)=0F(\rho_{+})=0. We claim that under the conditions (1.6)\eqref{p-condition}, (2.2) and ρ+>0\rho_{+}>0, there exists a unique constant ρ>0\rho_{-}>0 such that

F(ρ)=ϕϕ+\displaystyle\displaystyle F(\rho_{-})=\phi_{-}-\phi_{+} (3.3)

and

ϕ>ϕ+ρ>ρ+(resp.ϕ<ϕ+ρ<ρ+).\displaystyle\displaystyle\phi_{-}>\phi_{+}\Longleftrightarrow\rho_{-}>\rho_{+}~{}~{}(\mathrm{resp}.~{}\phi_{-}<\phi_{+}\Longleftrightarrow\rho_{-}<\rho_{+}). (3.4)

Indeed, in view of (1.6), we know that

F(s)=p(s)sμ>ab>0.\displaystyle\displaystyle F^{\prime}(s)=\frac{p^{\prime}(s)}{s\mu}>\frac{a}{b}>0. (3.5)

This implies that the function F(s)F(s) is strictly monotonically increasing. Furthermore, we have F(s)<0F(s)<0 if s<ρ+s<\rho_{+}, and lims+F(s)=+\displaystyle\lim_{s\rightarrow+\infty}F(s)=+\infty. For the case ϕ>ϕ+\phi_{-}>\phi_{+}, since F(ρ+)=0<ϕϕ+<F(\rho_{+})=0<\phi_{-}-\phi_{+}<\infty, then there exists a unique constant ρ(ρ+,+)\rho_{-}\in(\rho_{+},+\infty) such that (3.3) holds. For the case ϕ<ϕ+\phi_{-}<\phi_{+}, we have ϕϕ+<0\phi_{-}-\phi_{+}<0. If 0ρ+p(τ)μτdτ=\int_{0}^{\rho_{+}}\frac{p^{\prime}(\tau)}{\mu\tau}\mathrm{d}\tau=\infty, we know that lims0F(s)=<ϕϕ+<0=F(ρ+)\displaystyle\lim_{s\rightarrow 0}F(s)=-\infty<\phi_{-}-\phi_{+}<0=F(\rho_{+}), then similar to the case ϕ>ϕ+\phi_{-}>\phi_{+}, there exists a unique constant ρ(0,ρ+)\rho_{-}\in(0,\rho_{+}) such that F(ρ)=ϕϕ+F(\rho_{-})=\phi_{-}-\phi_{+}. Now it remains to consider the case when ϕ<ϕ+\phi_{-}<\phi_{+} and 0ρ+p(τ)μτdτ<\int_{0}^{\rho_{+}}\frac{p^{\prime}(\tau)}{\mu\tau}\mathrm{d}\tau<\infty. In this case, since the F(s)F(s) is continuous, monotonic and bounded below, we can extend F(s)F(s) by defining F(0):=lims0F(s)>\displaystyle F(0):=\lim_{s\rightarrow 0}F(s)>-\infty. Then the extended function F(s)F(s) is continuous on [0,ρ+][0,\rho_{+}]. Furthermore, from (2.2), we get F(0)<ϕϕ+<0=F(ρ+)F(0)<\phi_{-}-\phi_{+}<0=F(\rho_{+}). Hence, there exists a unique constant ρ(0,ρ+)\rho_{-}\in(0,\rho_{+}) such that F(ρ)=ϕϕ+F(\rho_{-})=\phi_{-}-\phi_{+}. Then (3.3) is proved. Moreover, with the help of (3.3) and (3.5), we immediately get (3.4). We thus finish the proof of the claim.

To proceed, assume that (ρ¯,ϕ¯)(\bar{\rho},\bar{\phi}) is a classical solution to (2.1a)–(2.1d) with ρ¯>0\bar{\rho}>0. Dividing (2.1a) by ρ¯\bar{\rho} and integrating the resulting equation over (x,+)(x,+\infty), we get

ϕ¯(x)=F(ρ¯(x))F(ρ+)+ϕ+,\displaystyle\displaystyle\bar{\phi}(x)=F(\bar{\rho}(x))-F(\rho_{+})+\phi_{+}, (3.6)

where F(s)F(s) is as in (3.2). Sending x0+x\rightarrow 0^{+} along with (2.1c), (3.3) and the fact F(ρ+)=0F(\rho_{+})=0, we get

limx0+F(ρ¯(x))=F(ρ).\displaystyle\displaystyle\lim_{x\rightarrow 0^{+}}F(\bar{\rho}(x))=F(\rho_{-}).

By using the monotonicity and continuity of F(s)F(s), we further have that

ρ¯(0)=limx0+ρ¯(x)=limx0+F1(F(ρ¯(x)))=F1(F(ρ))=ρ.\displaystyle\displaystyle\bar{\rho}(0)=\lim_{x\rightarrow 0^{+}}\bar{\rho}(x)=\lim_{x\rightarrow 0^{+}}F^{-1}(F(\bar{\rho}(x)))=F^{-1}(F(\rho_{-}))=\rho_{-}.

Inserting (3.6) into (2.1b), we get

[F(ρ¯)]xx=b[F(ρ¯)F(ρ+)]+bϕ+aρ¯.\displaystyle\displaystyle[F(\bar{\rho})]_{xx}=b[F(\bar{\rho})-F(\rho_{+})]+b\phi_{+}-a\bar{\rho}. (3.7)

Multiplying (3.7) by 2F(ρ¯)ρ¯x2F^{\prime}(\bar{\rho})\bar{\rho}_{x}, it follows that

2F(ρ¯)ρ¯x[F(ρ¯)ρ¯x]x\displaystyle\displaystyle 2F^{\prime}(\bar{\rho})\bar{\rho}_{x}[F^{\prime}(\bar{\rho})\bar{\rho}_{x}]_{x} =2{b[F(ρ¯)F(ρ+)]+bϕ+aρ¯}=:2H(ρ¯)F(ρ¯)ρ¯x,\displaystyle=2\left\{b[F(\bar{\rho})-F(\rho_{+})]+b\phi_{+}-a\bar{\rho}\right\}=:2H(\bar{\rho})F^{\prime}(\bar{\rho})\bar{\rho}_{x}, (3.8)

with

H(s):=b[F(s)F(ρ+)]+bϕ+as.\displaystyle\displaystyle H(s):=b[F(s)-F(\rho_{+})]+b\phi_{+}-as. (3.9)

Thus,

[F(ρ¯)ρ¯x]2=G(ρ¯)+C00,x+\displaystyle\displaystyle[F^{\prime}(\bar{\rho})\bar{\rho}_{x}]^{2}=G(\bar{\rho})+C_{0}\geq 0,\ \ x\in\mathbb{R}_{+} (3.10)

for some constant C0C_{0} and some function G(s)G(s) with

G(s)=2F(s)H(s).\displaystyle\displaystyle G^{\prime}(s)=2F^{\prime}(s)H(s). (3.11)

By virtue of (1.6) and (3.9), we get

H(s)=bF(s)a>0\displaystyle\displaystyle H^{\prime}(s)=bF^{\prime}(s)-a>0 (3.12)

for any s>0s>0. Thanks to the condition aρ+=bϕ+a\rho_{+}=b\phi_{+}, it holds that H(ρ+)=0H(\rho_{+})=0. This along with (3.12) yields that

H(s)>H(ρ+)=0ifs>ρ+andH(s)<H(ρ+)=0ifs<ρ+.\displaystyle\displaystyle H(s)>H(\rho_{+})=0\ \mbox{if}\ s>\rho_{+}\ \mbox{and}\ H(s)<H(\rho_{+})=0\ \mbox{if}\ s<\rho_{+}. (3.13)

Then by (3.5), (3.11) and (3.13), we get G(s)>0G^{\prime}(s)>0 if s>ρ+s>\rho_{+} and G(s)<0G^{\prime}(s)<0 if s<ρ+s<\rho_{+}. This gives

G(s)G(ρ+)>0\displaystyle\displaystyle G(s)-G(\rho_{+})>0 (3.14)

for any sρ+s\neq\rho_{+}. We claim that C0=G(ρ+)C_{0}=-G(\rho_{+}). Otherwise, we have C0<G(ρ+)C_{0}<-G(\rho_{+}) or C0>G(ρ+)C_{0}>-G(\rho_{+}). If C0<G(ρ+)C_{0}<-G(\rho_{+}), by the continuity of GG and ρ¯\bar{\rho}, there exists a constant K0>0K_{0}>0 such that if xK0x\geq K_{0},

G(ρ¯)<G(ρ+)C02<C0.\displaystyle\displaystyle G(\bar{\rho})<\frac{G(\rho_{+})-C_{0}}{2}<-C_{0}.

Then G(ρ¯)+C0<0G(\bar{\rho})+C_{0}<0 for xK0x\geq K_{0}. This contradicts to (3.10). If C0>G(ρ+)C_{0}>-G(\rho_{+}), using (3.14), we get ρ¯x0\bar{\rho}_{x}\neq 0 for any x+x\in\mathbb{R}_{+}. Therefore, for any x+x\in\mathbb{R}_{+}, it holds that

ρ¯x=G(ρ¯)+C0F(ρ¯)ifρ>ρ+andρ¯x=G(ρ¯)+C0F(ρ¯)ifρ<ρ+.\displaystyle\displaystyle\bar{\rho}_{x}=-\frac{\sqrt{G(\bar{\rho})+C_{0}}}{F^{\prime}(\bar{\rho})}\ \mbox{if}\ \rho_{-}>\rho_{+}\ \ \mbox{and}\ \ \bar{\rho}_{x}=-\frac{\sqrt{G(\bar{\rho})+C_{0}}}{F^{\prime}(\bar{\rho})}\ \mbox{if}\ \rho_{-}<\rho_{+}.

With the fact ρ¯(+)=ρ+\displaystyle\bar{\rho}(+\infty)=\rho_{+} and Lemma 3.1, we have C0=G(ρ+)C_{0}=-G(\rho_{+}). This is a contradiction. Hence, we have C0=G(ρ+)C_{0}=-G(\rho_{+}) and

{[F(ρ¯)ρ¯x]2=G(ρ¯)G(ρ+),x+,ρ¯(0)=ρ,ρ¯(+)=ρ+.\displaystyle\displaystyle\begin{cases}[F^{\prime}(\bar{\rho})\bar{\rho}_{x}]^{2}=G(\bar{\rho})-G(\rho_{+}),\ \ x\in\mathbb{\mathbb{R}}_{+},\\ \bar{\rho}(0)=\rho_{-},\ \ \bar{\rho}(+\infty)=\rho_{+}.\end{cases} (3.15)

This together with (3.5) and (3.14) implies that ρ¯x0\bar{\rho}_{x}\leq 0 if ρ>ρ+\rho_{-}>\rho_{+} and ρ¯x0\bar{\rho}_{x}\geq 0 if ρ+>ρ\rho_{+}>\rho_{-}, and that

ρ¯x(x)=0if and only ifρ¯(x)=ρ+\displaystyle\displaystyle\bar{\rho}_{x}(x)=0\ \mbox{if and only if}\ \bar{\rho}(x)=\rho_{+} (3.16)

for any x+x\in\mathbb{R}_{+}. Hence, we can solve ρ¯x\bar{\rho}_{x} from (3.15) that

ρ¯x=G(ρ¯)G(ρ+)F(ρ¯)ifϕ>ϕ+andρ¯x=G(ρ¯)G(ρ+)F(ρ¯)ifϕ<ϕ+,\displaystyle\displaystyle\displaystyle\bar{\rho}_{x}=-\frac{\sqrt{G(\bar{\rho})-G(\rho_{+})}}{F^{\prime}(\bar{\rho})}\ \mbox{if}\ \phi_{-}>\phi_{+}\ \ \mbox{and}\ \ \bar{\rho}_{x}=-\frac{\sqrt{G(\bar{\rho})-G(\rho_{+})}}{F^{\prime}(\bar{\rho})}\ \mbox{if}\ \phi_{-}<\phi_{+},

where we have used (3.4).
Summing up, we have the following lemma.

Lemma 3.2.

Under the conditions of Theorem 2.1, if (ρ¯,ϕ¯)(\bar{\rho},\bar{\phi}) is a classical solution to the problem (2.1a)–(2.1d) satisfying ρ¯(x)>0\bar{\rho}(x)>0 for any x+x\in\mathbb{R}_{+}, then (ρ¯,ϕ¯)(\bar{\rho},\bar{\phi}) is also a solution to the following problem:

{ρ¯x=G(ρ¯)G(ρ+)F(ρ¯)ifϕ>ϕ+(reps.ρ¯x=G(ρ¯)G(ρ+)F(ρ¯)ifϕ<ϕ+),ϕ¯(x)=F(ρ¯(x))F(ρ+)+ϕ+,ρ¯(0)=ρ,ρ¯(+)=ρ+.\displaystyle\displaystyle\begin{cases}\displaystyle\bar{\rho}_{x}=-\frac{\sqrt{G(\bar{\rho})-G(\rho_{+})}}{F^{\prime}(\bar{\rho})}\ \mbox{if}\ \phi_{-}>\phi_{+}\ \ (\mathrm{reps.}\ \bar{\rho}_{x}=\frac{\sqrt{G(\bar{\rho})-G(\rho_{+})}}{F^{\prime}(\bar{\rho})}\ \mbox{if}\ \phi_{-}<\phi_{+}),\\ \displaystyle\displaystyle\bar{\phi}(x)=F(\bar{\rho}(x))-F(\rho_{+})+\phi_{+},\\ \displaystyle\bar{\rho}(0)=\rho_{-},\ \ \bar{\rho}(+\infty)=\rho_{+}.\end{cases} (3.17)

Here F(s)F(s) and G(s)G(s) are given in (3.2) and (3.11), respectively, and ρ>0\rho_{-}>0 is determined by (3.3).

In the following, we shall show that the problem (3.17) is indeed equivalent to (2.1a)–(2.1d).

Lemma 3.3 (Reformulation).

Suppose that the conditions of Theorem 2.1 hold. Then (ρ¯(x),ϕ¯(x))(\bar{\rho}(x),\bar{\phi}(x)) is a classical solution to the problem (2.1a)–(2.1d) satisfying ρ¯>0\bar{\rho}>0, if and only if it is a classical solution to the problem (3.17).

Proof.

In view of Lemma 3.2, it remains to show that if (ρ¯,ϕ¯)(\bar{\rho},\bar{\phi}) is a solution to the problem (3.17), then (ρ¯,ϕ¯)(\bar{\rho},\bar{\phi}) solves the problem (2.1a)–(2.1d). By using (3.17)3\eqref{stat-equiv-syst}_{3} and (3.5), one can easily derive (2.1a). Thanks to (3.3) and (3.17)3\eqref{stat-equiv-syst}_{3}, we have ϕ¯(0)=ϕ\bar{\phi}(0)=\phi_{-} and ϕ¯(+)=ϕ+\bar{\phi}(+\infty)=\phi_{+}. To show (2.1b), by (3.8), (3.15) and (3.17)3\eqref{stat-equiv-syst}_{3}, it suffices to show that ρ¯x0\bar{\rho}_{x}\neq 0 for any x+x\in\mathbb{R}_{+}. We prove this for the case ρ>ρ+(i.e.,ϕ>ϕ+)\rho_{-}>\rho_{+}~{}(i.e.,\phi_{-}>\phi_{+}), and the proof for the case ρ<ρ+(i.e.,ϕ<ϕ+)\rho_{-}<\rho_{+}~{}(i.e.,\phi_{-}<\phi_{+}) is similar. Since ρ>ρ+\rho_{-}>\rho_{+}, we have ρ¯x0\bar{\rho}_{x}\leq 0 for any x+x\in\mathbb{R}_{+}. Denote

𝒟(ρ¯):=G(ρ¯)G(ρ+)F(ρ¯).\displaystyle\displaystyle\mathcal{D}(\bar{\rho}):=-\frac{\sqrt{G(\bar{\rho})-G(\rho_{+})}}{F^{\prime}(\bar{\rho})}.

We claim that 𝒟(ρ¯)\mathcal{D}(\bar{\rho}) is Lipschitz continuous on [ρ+,ρ][\rho_{+},\rho_{-}]. With this claim, we can prove that ρ¯x<0\bar{\rho}_{x}<0 for x+x\in\mathbb{R}_{+}, and hence finish the proof. Indeed, if there exists a point x0+x_{0}\in\mathbb{R}_{+} such that ρ¯x(x0)=0\bar{\rho}_{x}(x_{0})=0, then from (3.16), we have ρ¯(x0)=ρ+\bar{\rho}(x_{0})=\rho_{+}. This implies that ρ¯\bar{\rho} is a solution to the following problem

{ρx=𝒟(ρ), 0xx0,ρ(x0)=ρ+.\displaystyle\begin{cases}\displaystyle\rho_{x}^{\ast}=\mathcal{D}(\rho^{\ast}),\ \ 0\leq x\leq x_{0},\\ \displaystyle\rho^{\ast}(x_{0})=\rho_{+}.\end{cases} (3.18)

Since 𝒟(ρ¯)\mathcal{D}(\bar{\rho}) is Lipschitz continuous on [ρ+,ρ][\rho_{+},\rho_{-}], the problem (3.18) admits a unique solution on [0,x0][0,x_{0}]. While ρρ+\rho^{\ast}\equiv\rho_{+} is also a solution to (3.18), and obviously, ρ¯ρ+\bar{\rho}\not\equiv\rho_{+}. This is a contradiction. Therefore, ρ¯x<0\bar{\rho}_{x}<0 for any x+x\in\mathbb{R}_{+}. Now it remains to prove the claim that 𝒟(ρ¯)\mathcal{D}(\bar{\rho}) is Lipschitz continuous on [ρ+,ρ][\rho_{+},\rho_{-}]. With the help of (1.6), (3.5) and (3.14), we know that 𝒟(ρ¯)\mathcal{D}(\bar{\rho}) is differentiable if ρ¯ρ+\bar{\rho}\neq\rho_{+}. Furthermore, a direct computation gives

𝒟(ρ¯)=G(ρ¯)G(ρ+)[F(ρ¯)]2F′′(ρ¯)H(ρ¯)G(ρ¯)G(ρ+).\displaystyle\displaystyle\mathcal{D}^{\prime}(\bar{\rho})=\frac{\sqrt{G(\bar{\rho})-G(\rho_{+})}}{[F^{\prime}(\bar{\rho})]^{2}}F^{\prime\prime}(\bar{\rho})-\frac{H(\bar{\rho})}{\sqrt{G(\bar{\rho})-G(\rho_{+})}}. (3.19)

By using (3.11), (3.12) and L’Hôpital’s rule, we have

limρ¯ρ++H2(ρ¯)G(ρ¯)G(ρ+)=limρ¯ρ++2H(ρ¯)H(ρ¯)G(ρ¯)=limρ¯ρ++H(ρ¯)F(ρ¯)=bF(ρ+)aF(ρ+)>0.\displaystyle\displaystyle\lim_{\,\bar{\rho}\rightarrow\rho_{+}^{\,+}}\frac{H^{2}(\bar{\rho})}{G(\bar{\rho})-G(\rho_{+})}=\lim_{\,\bar{\rho}\rightarrow\rho_{+}^{\,+}}\frac{2H^{\prime}(\bar{\rho})H(\bar{\rho})}{G^{\prime}(\bar{\rho})}=\lim_{\,\bar{\rho}\rightarrow\rho_{+}^{\,+}}\frac{H^{\prime}(\bar{\rho})}{F^{\prime}(\bar{\rho})}=\frac{bF^{\prime}(\rho_{+})-a}{F^{\prime}(\rho_{+})}>0. (3.20)

From (3.13) and (3.14), we get H(ρ¯)G(ρ¯)G(ρ+)>0\frac{H(\bar{\rho})}{\sqrt{G(\bar{\rho})-G(\rho_{+})}}>0 for ρ¯>ρ+\bar{\rho}>\rho_{+}. This along with (3.20) yields that

limρ¯ρ++H(ρ¯)G(ρ¯)G(ρ+)=(limρ¯ρ++H2(ρ¯)G(ρ¯)G(ρ+))12=aF(ρ+)bF(ρ+).\displaystyle\displaystyle\lim_{\,\bar{\rho}\rightarrow\rho_{+}^{\,+}}\frac{H(\bar{\rho})}{\sqrt{G(\bar{\rho})-G(\rho_{+})}}=\left(\lim_{\,\bar{\rho}\rightarrow\rho_{+}^{\,+}}\frac{H^{2}(\bar{\rho})}{G(\bar{\rho})-G(\rho_{+})}\right)^{\frac{1}{2}}=\sqrt{\frac{aF^{\prime}(\rho_{+})-b}{F^{\prime}(\rho_{+})}}.

Therefore,

limρ¯ρ++𝒟(ρ¯)\displaystyle\displaystyle\lim_{\,\bar{\rho}\rightarrow\rho_{+}^{\,+}}\mathcal{D}^{\prime}(\bar{\rho}) =limρ¯ρ++H(ρ¯)G(ρ¯)G(ρ+)=aF(ρ+)bF(ρ+).\displaystyle=-\lim_{\,\bar{\rho}\rightarrow\rho_{+}^{\,+}}\frac{H(\bar{\rho})}{\sqrt{G(\bar{\rho})-G(\rho_{+})}}=-\sqrt{\frac{aF^{\prime}(\rho_{+})-b}{F^{\prime}(\rho_{+})}}.

Notice that 𝒟(ρ¯)𝒟(ρ+)ρ¯ρ+=𝒟(ρ¯)ρ¯ρ+<0\frac{\mathcal{D}(\bar{\rho})-\mathcal{D}(\rho_{+})}{\bar{\rho}-\rho_{+}}=\frac{\mathcal{D}(\bar{\rho})}{\bar{\rho}-\rho_{+}}<0 for ρ¯>ρ+\bar{\rho}>\rho_{+}, and that

limρ¯ρ+|𝒟(ρ¯)𝒟(ρ+)|2|ρ¯ρ+|2\displaystyle\displaystyle\lim_{\bar{\rho}\rightarrow\rho_{+}}\frac{\left|\mathcal{D}(\bar{\rho})-\mathcal{D}(\rho_{+})\right|^{2}}{\left|\bar{\rho}-\rho_{+}\right|^{2}} =1[F(ρ+)]2limρ¯ρ+G(ρ¯)G(ρ+)|ρ¯ρ+|2=limρ¯ρ+H(ρ¯)ρ¯ρ+\displaystyle=\frac{1}{[F^{\prime}(\rho_{+})]^{2}}\lim_{\bar{\rho}\rightarrow\rho_{+}}\frac{G(\bar{\rho})-G(\rho_{+})}{\left|\bar{\rho}-\rho_{+}\right|^{2}}=\lim_{\bar{\rho}\rightarrow\rho_{+}}\frac{H(\bar{\rho})}{\bar{\rho}-\rho_{+}}
=limρ¯ρ+H(ρ¯)F(ρ+)=aF(ρ+)bF(ρ+)>0,\displaystyle\displaystyle=\lim_{\bar{\rho}\rightarrow\rho_{+}}\frac{H^{\prime}(\bar{\rho})}{F^{\prime}(\rho_{+})}=\frac{aF^{\prime}(\rho_{+})-b}{F^{\prime}(\rho_{+})}>0,

due to (3.11), (3.12) and L’Hôpital’s rule, we have

𝒟+(ρ+)=limρ¯ρ++𝒟(ρ¯)𝒟(ρ+)ρ¯ρ+=(limρ¯ρ+|𝒟(ρ¯)𝒟(ρ+)|2|ρ¯ρ+|2)12=bF(ρ+)aF(ρ+),\displaystyle\displaystyle\mathcal{D}_{+}^{\prime}(\rho_{+})=\lim_{\bar{\rho}\rightarrow\rho_{+}^{\,+}}\frac{\mathcal{D}(\bar{\rho})-\mathcal{D}(\rho_{+})}{\bar{\rho}-\rho_{+}}=-\left(\lim_{\bar{\rho}\rightarrow\rho_{+}}\frac{\left|\mathcal{D}(\bar{\rho})-\mathcal{D}(\rho_{+})\right|^{2}}{\left|\bar{\rho}-\rho_{+}\right|^{2}}\right)^{\frac{1}{2}}=-\sqrt{\frac{bF^{\prime}(\rho_{+})-a}{F^{\prime}(\rho_{+})}},

where 𝒟+(ρ+)\mathcal{D}_{+}^{\prime}(\rho_{+}) is the right derivative of 𝒟(ρ¯)\mathcal{D}(\bar{\rho}) at ρ+\rho_{+}. We thus have limρ¯ρ++𝒟(ρ¯)=𝒟+(ρ+)\displaystyle\lim_{\,\bar{\rho}\rightarrow\rho_{+}^{\,+}}\mathcal{D}^{\prime}(\bar{\rho})=\mathcal{D}_{+}^{\prime}(\rho_{+}). This in combination with (3.19) yields that 𝒟(ρ¯)\mathcal{D}^{\prime}(\bar{\rho}) is continuous on [ρ+,ρ][\rho_{+},\rho_{-}], and thus |𝒟(ρ¯)|C(ρ,ρ+)\left|\mathcal{D}^{\prime}(\bar{\rho})\right|\leq C(\rho_{-},\rho_{+}) for some constant C(ρ,ρ+)>0C(\rho_{-},\rho_{+})>0 depending on ρ\rho_{-} and ρ+\rho_{+}. This implies that 𝒟(ρ¯)\mathcal{D}(\bar{\rho}) is Lipschitz continuous on [ρ+,ρ][\rho_{+},\rho_{-}]. The proof of the present lemma is complete. ∎

3.2. Existence and uniqueness of solutions

In this section, we will prove that the problem (2.1a)–(2.1d) admits a unique solution (ρ¯,ϕ¯)(\bar{\rho},\bar{\phi}) with ρ¯>0\bar{\rho}>0. Thanks to Lemma 3.3, it now suffices to consider the problem (3.17). As before, we focus only on the case ρ>ρ+(i.e.,ϕ>ϕ+)\rho_{-}>\rho_{+}~{}(i.e.,~{}\phi_{-}>\phi_{+}), the proof for the case ρ<ρ+(i.e.,ϕ<ϕ+)\rho_{-}<\rho_{+}~{}(i.e.,~{}\phi_{-}<\phi_{+}) is similar and so omitted. Let us begin with the following ODE problem

{ρ¯x=𝒟(ρ¯),x>0,ρ¯(0)=ρ.\displaystyle\begin{cases}\displaystyle\bar{\rho}_{x}=\mathcal{D}(\bar{\rho}),\ \ x>0,\\ \displaystyle\bar{\rho}(0)=\rho_{-}.\end{cases} (3.21)

By the Lipschitz continuity of 𝒟(ρ¯)\mathcal{D}(\bar{\rho}) on [ρ+,ρ][\rho_{+},\rho_{-}], we conclude that the problem (3.21) admits a unique solution on [0,X)[0,X_{\ast}) for some X+X_{\ast}\in\mathbb{R}_{+}. Then by the contradiction argument and discussions in Step 1 on the uniqueness of solutions to (3.18), we get ρ¯(x)>ρ+\bar{\rho}(x)>\rho_{+} for any x[0,X)x\in[0,X_{\ast}). This, along with the standard extension theorem for ordinary differential equations, implies that the solution ρ¯\bar{\rho} to the problem (3.21) exists globally in +\mathbb{R}_{+}, and for any x+x\in\mathbb{R}_{+}, ρ¯(x)>ρ+\bar{\rho}(x)>\rho_{+}. In addition, notice from (3.16) that ρ¯x(x)=0\bar{\rho}_{x}(x)=0 if and only if ρ¯(x)=ρ+\bar{\rho}(x)=\rho_{+}, we have that

ρ¯x<0for any x+,\displaystyle\displaystyle\bar{\rho}_{x}<0\ \ \mbox{for any }x\in\mathbb{R}_{+}, (3.22)

and that limx+ρ¯(x)\displaystyle\lim_{x\rightarrow+\infty}\bar{\rho}(x) exists. Denoting ρ¯(+):=limx+ρ¯(x)\displaystyle\bar{\rho}(+\infty):=\lim_{x\rightarrow+\infty}\bar{\rho}(x), from Lemma 3.1, we obtain G(ρ¯(+))G(ρ+)=0G(\bar{\rho}(+\infty))-G(\rho_{+})=0. This combined with (3.14) give rises to ρ¯(+)=ρ+\bar{\rho}(+\infty)=\rho_{+}. With ρ¯(x)\bar{\rho}(x) at hand, we can define ϕ¯(x)\bar{\phi}(x) from (3.17)2\eqref{stat-equiv-syst}_{2}. Clearly, (ρ¯,ϕ¯)(\bar{\rho},\bar{\phi}) is a solution to (3.17) for ρ>ρ+\rho_{-}>\rho_{+}. Finally, since ρ+ρ¯(x)ρ\rho_{+}\leq\bar{\rho}(x)\leq\rho_{-}, the uniqueness of solutions can be proved by the Lipschitz continuity of 𝒟(ρ¯)\mathcal{D}(\bar{\rho}) on [ρ+,ρ][\rho_{+},\rho_{-}].

3.3. Monotonicity and decay properties

Recalling (3.4) and (3.22), we get ρ¯(x)<0\bar{\rho}^{\prime}(x)<0 if ϕ>ϕ+\phi_{-}>\phi_{+}. In a manner similar to the derivation of (3.22), we have ρ¯(x)>0\bar{\rho}^{\prime}(x)>0 if ϕ<ϕ+\phi_{-}<\phi_{+}. With the help of (3.5), (3.6) and the properties of ρ¯x\bar{\rho}_{x}, we have

ϕ¯x<0ifϕ>ϕ+andϕ¯x>0ifϕ<ϕ+.\displaystyle\displaystyle\bar{\phi}_{x}<0\ \mbox{if}\ \phi_{-}>\phi_{+}\ \ \mbox{and}\ \ \bar{\phi}_{x}>0\ \mbox{if}\ \phi_{-}<\phi_{+}.

This gives (2.3). Now let us turn to the decay properties of the solution. By using (3.3) and (3.5), we get

|ϕϕ+|=|ρρ+F(s)ds|ab|ρρ+|.\displaystyle\displaystyle\left|\phi_{-}-\phi_{+}\right|=\left|\int_{\rho_{-}}^{\rho_{+}}F^{\prime}(s)\mathrm{d}s\right|\geq\frac{a}{b}\left|\rho_{-}-\rho_{+}\right|. (3.23)

Thus |ϕϕ+|1\left|\phi_{-}-\phi_{+}\right|\ll 1 implies |ρρ+|1\left|\rho_{-}-\rho_{+}\right|\ll 1. In the following, without loss of generality, we assume that [ρ+,ρ][ρ+,ρ++1][\rho_{+},\rho_{-}]\subset[\rho_{+},\rho_{+}+1], and thus for any continuous function ff defined on +\mathbb{R}_{+}, supx[ρ+,ρ]f(x)\sup_{x\in[\rho_{+},\rho_{-}]}f(x) depends only on ρ+\rho_{+}. If ϕ>ϕ+(i.e.,ρ>ρ+)\phi_{-}>\phi_{+}~{}(i.e.,\rho_{-}>\rho_{+}), recalling (2.3) and (3.17), we have

ρ>ρ¯>ρ+andρ¯x=G(ρ¯)G(ρ+)F(ρ¯)\displaystyle\displaystyle\rho_{-}>\bar{\rho}>\rho_{+}\ \mbox{and}\ \ \bar{\rho}_{x}=-\frac{\sqrt{G(\bar{\rho})-G(\rho_{+})}}{F^{\prime}(\bar{\rho})} (3.24)

for any x+x\in\mathbb{R}_{+}. Owing to (1.6), (3.5), (3.11) and the condition aρ+=bϕ+a\rho_{+}=b\phi_{+}, we get

G′′(s)\displaystyle\displaystyle G^{\prime\prime}(s) =2[F(s)H(s)]=2F(s)H(s)+2F′′(s)H(s)\displaystyle=2[F^{\prime}(s)H(s)]^{\prime}=2F^{\prime}(s)H^{\prime}(s)+2F^{\prime\prime}(s)H(s)
=2F(s)(bF(s)a)+2μs2(sp′′(s)p(s))(b[F(s)F(ρ+)]+bϕ+as)\displaystyle\displaystyle=2F^{\prime}(s)\left(bF^{\prime}(s)-a\right)+\frac{2}{\mu s^{2}}\left(sp^{\prime\prime}(s)-p^{\prime}(s)\right)\left(b[F(s)-F(\rho_{+})]+b\phi_{+}-as\right)
2F(s)(bF(s)a)|sρ+|supι[ρ+,ρ]2μι2|(|ιp′′(ι)|+p(ι))|(bsupι[ρ+,ρ]F(ι)+a)\displaystyle\displaystyle\geq 2F^{\prime}(s)\left(bF^{\prime}(s)-a\right)-\left|s-\rho_{+}\right|\sup_{\iota\in[\rho_{+},\rho_{-}]}\frac{2}{\mu\iota^{2}}\left|\left(\left|\iota p^{\prime\prime}(\iota)\right|+p^{\prime}(\iota)\right)\right|\left(b\sup_{\iota\in[\rho_{+},\rho_{-}]}F^{\prime}(\iota)+a\right)
2F(s)(bF(s)a)C(ρ+)|sρ+|\displaystyle\geq 2F^{\prime}(s)\left(bF^{\prime}(s)-a\right)-C(\rho_{+})\left|s-\rho_{+}\right| (3.25)

for any s[ρ+,ρ]s\in[\rho_{+},\rho_{-}], where C(ρ+)>0C(\rho_{+})>0 is a constant depending on ρ+\rho_{+}. From (3.11) and (3.13), we get G(ρ+)=0G^{\prime}(\rho_{+})=0. This combined with (3.5), (3.3) and the Taylor expansion implies that

G(ρ¯)G(ρ+)\displaystyle\displaystyle G(\bar{\rho})-G(\rho_{+}) =G(ρ¯)G(ρ+)G(ρ+)(ρ¯ρ+)=010sG′′(τ(ρ¯ρ+)+ρ+)dτds|ρ¯ρ+|2\displaystyle=G(\bar{\rho})-G(\rho_{+})-G^{\prime}(\rho_{+})(\bar{\rho}-\rho_{+})=\int_{0}^{1}\int_{0}^{s}G^{\prime\prime}(\tau(\bar{\rho}-\rho_{+})+\rho_{+})\mathrm{d}\tau\mathrm{d}s\left|\bar{\rho}-\rho_{+}\right|^{2}
12[2F(s)(bF(s)a)C(ρ+)|ρ¯ρ+|]|ρ¯ρ+|2\displaystyle\geq\frac{1}{2}\left[2F^{\prime}(s)\left(bF^{\prime}(s)-a\right)-C(\rho_{+})\left|\bar{\rho}-\rho_{+}\right|\right]\left|\bar{\rho}-\rho_{+}\right|^{2}
C(ρ+)|ρ¯ρ+|2,\displaystyle\geq C(\rho_{+})\left|\bar{\rho}-\rho_{+}\right|^{2}, (3.26)

provided |ρρ+|\left|\rho_{-}-\rho_{+}\right| is suitably small, where C(ρ+)C(\rho_{+}) is a positive constant depending on ρ+\rho_{+}. Combining (3.3) with (3.24), we get

(ρ¯ρ+)x=G(ρ¯)G(ρ+)F(ρ¯)G(ρ¯)G(ρ+)supx+F(ρ¯)λ1(ρ¯ρ+)\displaystyle\displaystyle(\bar{\rho}-\rho_{+})_{x}=-\frac{\sqrt{G(\bar{\rho})-G(\rho_{+})}}{F^{\prime}(\bar{\rho})}\leq-\frac{\sqrt{G(\bar{\rho})-G(\rho_{+})}}{\displaystyle\sup_{x\in\mathbb{R}_{+}}F^{\prime}(\bar{\rho})}\leq-\lambda_{1}(\bar{\rho}-\rho_{+})

for some constant λ1>0\lambda_{1}>0 depending on ρ+\rho_{+}, provided |ρρ+|\left|\rho_{-}-\rho_{+}\right| is suitably small, where we have used (1.6) and (3.5). Consequently, with (3.23), we have the following decay estimate:

|ρ¯ρ+|=ρ¯ρ+(ρρ+)eλ1x=|ρρ+|eλ1xba|ϕϕ+|eλ1x,x0.\displaystyle\displaystyle|\bar{\rho}-\rho_{+}|=\bar{\rho}-\rho_{+}\leq\left(\rho_{-}-\rho_{+}\right){\mathop{\mathrm{e}}}^{-\lambda_{1}x}=\left|\rho_{-}-\rho_{+}\right|{\mathop{\mathrm{e}}}^{-\lambda_{1}x}\leq\frac{b}{a}\left|\phi_{-}-\phi_{+}\right|{\mathop{\mathrm{e}}}^{-\lambda_{1}x},\ \ x\geq 0. (3.27)

For the case ϕ<ϕ+(i.e.,ρ<ρ+)\phi_{-}<\phi_{+}~{}(i.e.,~{}\rho_{-}<\rho_{+}), it holds that

ρ<ρ¯<ρ+andρ¯x=G(ρ¯)G(ρ+)F(ρ¯).\displaystyle\displaystyle\rho_{-}<\bar{\rho}<\rho_{+}\ \mbox{and}\ \ \bar{\rho}_{x}=\frac{\sqrt{G(\bar{\rho})-G(\rho_{+})}}{F^{\prime}(\bar{\rho})}. (3.28)

Using (3.5), (3.3) and (3.28), we get

ρ¯xC(ρ+)|ρ¯ρ+|supx[ρ,ρ+]F(ρ¯)λ2(ρ¯ρ+),\displaystyle\displaystyle\bar{\rho}_{x}\geq\frac{\sqrt{C(\rho_{+})}\left|\bar{\rho}-\rho_{+}\right|}{\displaystyle\sup_{x\in[\rho_{-},\rho_{+}]}F^{\prime}(\bar{\rho})}\geq-\lambda_{2}(\bar{\rho}-\rho_{+}),

that is,

(ρ+ρ¯)x+λ2(ρ+ρ¯)0\displaystyle\displaystyle(\rho_{+}-\bar{\rho})_{x}+\lambda_{2}(\rho_{+}-\bar{\rho})\leq 0

for some constant λ2>0\lambda_{2}>0 depending on ρ+\rho_{+}, provided |ρρ+|\left|\rho_{-}-\rho_{+}\right| is suitably small. It thus holds that

|ρ+ρ¯|=ρ+ρ¯(ρ+ρ)eλ2xba|ϕϕ+|eλ2x,x0.\displaystyle\displaystyle\left|\rho_{+}-\bar{\rho}\right|=\rho_{+}-\bar{\rho}\leq\left(\rho_{+}-\rho_{-}\right){\mathop{\mathrm{e}}}^{-\lambda_{2}x}\leq\frac{b}{a}\left|\phi_{-}-\phi_{+}\right|{\mathop{\mathrm{e}}}^{-\lambda_{2}x},\ \ x\geq 0.

Finally, by (2.1b), (3.3), (3.6), (3.7) and (3.27), we get (2.4). The proof is complete. \square

4. Global existence and asymptotic stability

In this section, we are devoted to studying the asymptotic stability of the unique stationary solution to (1.5a)–(1.5a) obtained in Section 3. To this end, we first reformulate the problem with the technique of taking anti-derivative for ρ\rho.

4.1. Reformulation of problem

Combining (1.5a)–(1.5c) with (1.5a)–(1.5c), we have

(ρρ¯)t+mx=0,\displaystyle\displaystyle(\rho-\bar{\rho})_{t}+m_{x}=0, (4.1a)
mt+(m2ρ)x+[p(ρ)p(ρ¯)]x=μρϕxμρ¯ϕ¯xαm,\displaystyle\displaystyle m_{t}+\left(\frac{m^{2}}{\rho}\right)_{x}+\left[p(\rho)-p(\bar{\rho})\right]_{x}=\mu\rho\phi_{x}-\mu\bar{\rho}\bar{\phi}_{x}-\alpha m, (4.1b)
(ϕϕ¯)t=(ϕϕ¯)xx+a(ρρ¯)b(ϕϕ¯).\displaystyle\displaystyle(\phi-\bar{\phi})_{t}=\left(\phi-\bar{\phi}\right)_{xx}+a(\rho-\bar{\rho})-b(\phi-\bar{\phi}). (4.1c)

It follows from (4.1a) that

+(ρρ¯)dx=+(ρ0ρ¯)dx=φ0(0),\displaystyle\displaystyle\int_{\mathbb{R}_{+}}(\rho-\bar{\rho})\mathrm{d}x=\int_{\mathbb{R}_{+}}(\rho_{0}-\bar{\rho})\mathrm{d}x=\varphi_{0}(0),

which, together with the condition φ0H03(+)\varphi_{0}\in H_{0}^{3}(\mathbb{R}_{+}) in Theorem 2.2, gives

+(ρρ¯)dx=0.\displaystyle\displaystyle\int_{\mathbb{R}_{+}}\left(\rho-\bar{\rho}\right)\mathrm{d}x=0.

Defining the perturbation function (φ,ψ,Φ)(\varphi,\psi,\Phi)

φ=x(ρρ¯)dy,ψ=m,Φ=ϕϕ¯,\displaystyle\displaystyle\varphi=-\int_{x}^{\infty}\left(\rho-\bar{\rho}\right)\mathrm{d}y,\ \ \psi=m,\ \ \Phi=\phi-\bar{\phi}, (4.2)

with

(φ0,ψ0,Φ0):=(x(ρ0ρ¯)dy,m0,ϕ0ϕ¯),\displaystyle\displaystyle(\varphi_{0},\psi_{0},\Phi_{0}):=\left(-\int_{x}^{\infty}(\rho_{0}-\bar{\rho})\mathrm{d}y,m_{0},\phi_{0}-\bar{\phi}\right),

we get the reformulated problem:

{φt+ψ=0,ψt+(ψ2φx+ρ¯)x+p(φx+ρ¯)xp(ρ¯)x=μ(ρϕxρ¯ϕ¯x)αψ,Φt=Φxx+aφxbΦ,(φ,ψ,Φ)|t=0=(φ0,ψ0,Φ0),(φ,ψ,Φ)|x=0=(0,0,0),\displaystyle\displaystyle\begin{cases}\displaystyle\varphi_{t}+\psi=0,\\[2.84526pt] \displaystyle\psi_{t}+\left(\frac{\psi^{2}}{\varphi_{x}+\bar{\rho}}\right)_{x}+p(\varphi_{x}+\bar{\rho})_{x}-p(\bar{\rho})_{x}=\mu\left(\rho\phi_{x}-\bar{\rho}\bar{\phi}_{x}\right)-\alpha\psi,\\[7.0pt] \displaystyle\Phi_{t}=\Phi_{xx}+a\varphi_{x}-b\Phi,\\ \displaystyle\left.(\varphi,\psi,\Phi)\right|_{t=0}=(\varphi_{0},\psi_{0},\Phi_{0}),\\ \displaystyle\left.\left(\varphi,\psi,\Phi\right)\right|_{x=0}=(0,0,0),\end{cases}

and its linearized problem around ρ¯\bar{\rho} is

φtt(p(ρ¯)φx)x+αφt=+,\displaystyle\varphi_{tt}-\left(p^{\prime}(\bar{\rho})\varphi_{x}\right)_{x}+\alpha\varphi_{t}=\mathcal{F}+\mathcal{H}, (4.3a)
ΦtΦxx+bΦ=aφx,\displaystyle\displaystyle\Phi_{t}-\Phi_{xx}+b\Phi=a\varphi_{x}, (4.3b)
(φ,φt,Φ)|t=0=(φ0,ψ0,Φ0),\displaystyle\displaystyle\left.(\varphi,\varphi_{t},\Phi)\right|_{t=0}=(\varphi_{0},-\psi_{0},\Phi_{0}), (4.3c)
(φ,φt,Φ)|x=0=(0,0,0),\displaystyle\displaystyle\left.\left(\varphi,\varphi_{t},\Phi\right)\right|_{x=0}=(0,0,0), (4.3d)
ψ=φt,\displaystyle\psi=-\varphi_{t}, (4.3e)

where

=1+2,=(φt2φx+ρ¯)x,\displaystyle\mathcal{F}=\mathcal{F}_{1}+\mathcal{F}_{2},\ \ \mathcal{H}=\left(\frac{\varphi_{t}^{2}}{\varphi_{x}+\bar{\rho}}\right)_{x}, (4.4)

and

1=[p(φx+ρ¯)p(ρ¯)p(ρ¯)φx]x,2=μ[φxΦx+φxϕ¯x+ρ¯Φx].\displaystyle\displaystyle\mathcal{F}_{1}=[p(\varphi_{x}+\bar{\rho})-p(\bar{\rho})-p^{\prime}(\bar{\rho})\varphi_{x}]_{x},\ \ \mathcal{F}_{2}=-\mu[\varphi_{x}\Phi_{x}+\varphi_{x}\bar{\phi}_{x}+\bar{\rho}\Phi_{x}]. (4.5)

To proceed, we define the solution space of the problem (4.3a)–(4.3d) as follows:

X(0,T)={(φ,ψ,Φ)|\displaystyle\displaystyle X(0,T)=\left\{(\varphi,\psi,\Phi)|\right. φC([0,T];H3)C1([0,T];H2),ψC([0,T];H2)C1([0,T];H1),\displaystyle\left.\varphi\in C([0,T];H^{3})\cap C^{1}([0,T];H^{2}),\,\psi\in C([0,T];H^{2})\cap C^{1}([0,T];H^{1}),\right.
ΦC([0,T];H4)C1([0,T];H2)}\displaystyle\left.\Phi\in C([0,T];H^{4})\cap C^{1}([0,T];H^{2})\right\}

for any T(0,+)T\in(0,+\infty).

Since we are interested in the case where the solution has no vacuum, naturally we require that infx+ρ0(x)>0\inf\limits_{x\in\mathbb{R}_{+}}\rho_{0}(x)>0, namely

infx+{φ0x+ρ¯}>0.\displaystyle\displaystyle\inf_{x\in\mathbb{R}_{+}}\left\{\varphi_{0x}+\bar{\rho}\right\}>0. (4.6)

For simplicity, we denote

𝒩0:=φ032+ψ022+Φ042.\displaystyle\displaystyle\mathcal{N}_{0}:=\|\varphi_{0}\|_{3}^{2}+\|\psi_{0}\|_{2}^{2}+\|\Phi_{0}\|_{4}^{2}.

Then by the standard parabolic theory and fixed point theorem (cf. [23]), we have the following local existence result.

Proposition 4.1 (Local existence).

Let the conditions of Theorem 2.1 hold. Assume φ0H3\varphi_{0}\in H^{3}, ψ0H2\psi_{0}\in H^{2} and Φ0H4\Phi_{0}\in H^{4} such that (4.6) holds. Then there exists a positive constant T0T_{0} depending on 𝒩0\mathcal{N}_{0} such that the initial-boundary value problem (4.3a)–(4.3d) admits a unique solution (φ(x,t),ψ(x,t),Φ(x,t))X(0,T0)(\varphi(x,t),\psi(x,t),\Phi(x,t))\in X(0,T_{0}) such that infx+{φx+ρ¯}>0\displaystyle\inf_{x\in\mathbb{R}_{+}}\left\{\varphi_{x}+\bar{\rho}\right\}>0 for an 0tT00\leq t\leq T_{0} and

supt[0,T0](φ32+ψ22+Φ42)2𝒩0.\displaystyle\displaystyle\sup_{t\in[0,T_{0}]}\left(\|\varphi\|_{3}^{2}+\|\psi\|_{2}^{2}+\|\Phi\|_{4}^{2}\right)\leq 2\mathcal{N}_{0}.

In what follows, we are devoted to proving the following theorem on the global existence and uniqueness of solutions to the problem (4.3a)–(4.3d).

Proposition 4.2.

Let the conditions in Theorem 2.1 hold and assume φ0H3\varphi_{0}\in H^{3}, ψ0H2\psi_{0}\in H^{2} and Φ0H4\Phi_{0}\in H^{4} with (4.6). Then there exists a suitably small constant δ1>0\delta_{1}>0 independent of tt such that if

φ03+ψ02+Φ04+|ϕϕ+|δ1,\displaystyle\displaystyle\|\varphi_{0}\|_{3}+\|\psi_{0}\|_{2}+\|\Phi_{0}\|_{4}+\left|\phi_{-}-\phi_{+}\right|\leq\delta_{1},

the problem (4.3a)–(4.3d) admits a unique global solution (φ(x,t),ψ(x,t),Φ(x,t))X(0,)(\varphi(x,t),\psi(x,t),\Phi(x,t))\in X(0,\infty) such that for any t0t\geq 0 there holds that

φ3+ψ2+Φ4Cδ1\displaystyle\displaystyle\|\varphi\|_{3}+\|\psi\|_{2}+\|\Phi\|_{4}\leq C\delta_{1} (4.7)

and

0t(Φ32+(φx,φτ,ψ,Φτ)22+(φττ,ψτ,Φττ)12)dτCδ12\displaystyle\displaystyle\int_{0}^{t}\Big{(}\|\Phi\|_{3}^{2}+\|(\varphi_{x},\varphi_{\tau},\psi,\Phi_{\tau})\|_{2}^{2}+\|(\varphi_{\tau\tau},\psi_{\tau},\Phi_{\tau\tau})\|_{1}^{2}\Big{)}\mathrm{d}\tau\leq C\delta_{1}^{2} (4.8)

where CC is a constant independent of tt.

Theorem 2.2 will be proved by Proposition 4.1 and Proposition 4.2. Next, we are devoted to proving Proposition 4.2.

4.2. Some preliminaries

The proof of Proposition 4.2 is based on the combination of the local existence result in Proposition 4.1 with the a priori estimates given in (4.7)-(4.8). In the sequel, we assume that (φ,ψ,Φ)X(0,T)\left(\varphi,\psi,\Phi\right)\in X(0,T) is a solution to the problem (4.3a)–(4.3d) obtained in Proposition 4.1 for some T>0T>0 and derive the a priori estimates (4.7)-(4.8) based on the technique of a priori assumption. That is we first assume that the solution (φ,ψ,Φ)(\varphi,\psi,\Phi) of (4.3a)–(4.3d) satisfies

sup0t<T{(φ,Φ)(,t)32+ψ(,t)22}ε2,\displaystyle\displaystyle\sup_{0\leq t<T}\left\{\left\|(\varphi,\Phi)(\cdot,t)\right\|_{3}^{2}+\left\|\psi(\cdot,t)\right\|_{2}^{2}\right\}\leq\varepsilon^{2}, (4.9)

where ε>0\varepsilon>0 is a constant to be determined later, and then derive the a priori estimates to obtain the global existence of solutions. Finally we justify that the global solutions obtained satisfy the above a priori assumption and thus close our argument.

Using the fact φt=ψ\varphi_{t}=-\psi from (4.3e) and the Sobolev inequality, we have

k=02xk(φ,Φ)(,t)L(+)+k=01xk(ψ,φt)(,t)L(+)Cε.\displaystyle\displaystyle\sum_{k=0}^{2}\|\partial_{x}^{k}(\varphi,\Phi)(\cdot,t)\|_{L^{\infty}(\mathbb{R}_{+})}+\sum_{k=0}^{1}\|\partial_{x}^{k}(\psi,\varphi_{t})(\cdot,t)\|_{L^{\infty}(\mathbb{R}_{+})}\leq C\varepsilon. (4.10)

Denote δ:=|ϕϕ+|\delta:=\left|\phi_{-}-\phi_{+}\right|, by (2.4), one can find a constant c1>0c_{1}>0 depending on ρ+\rho_{+}, aa and bb such that

c11ρ¯(x)c1,\displaystyle\displaystyle c_{1}^{-1}\leq\bar{\rho}(x)\leq c_{1}, (4.11)

provided δ\delta is suitably small. Combining (4.11) with (4.10), we get

1cρ=φx+ρ¯c,\displaystyle\displaystyle\frac{1}{c}\leq\rho=\varphi_{x}+\bar{\rho}\leq c, (4.12)

for some constant c>0c>0 depending on ρ+\rho_{+}, aa and bb, provided ε\varepsilon and δ\delta are small enough. The boundary condition (4.3d) together with the equation (4.3a) leads to the following boundary conditions on higher-order derivatives:

(φt,φtt,Φt,Φtt)|x=0=0,((p(ρ¯)φx)x+)|x=0=0,((p(ρ¯)φx)x+)t|x=0=0.\displaystyle\displaystyle\left.(\varphi_{t},\varphi_{tt},\Phi_{t},\Phi_{tt})\right.|_{x=0}=0,\ \ \left.\left(\left(p^{\prime}(\bar{\rho})\varphi_{x}\right)_{x}+\mathcal{F}\right)\right|_{x=0}=0,\ \ \left.\left(\left(p^{\prime}(\bar{\rho})\varphi_{x}\right)_{x}+\mathcal{F}\right)_{t}\right|_{x=0}=0. (4.13)

Moreover, the following Hardy inequality plays a key role in deriving the a priori estimates.

Lemma 4.1.

Let k>0k>0 be a constant, it holds that

+ekxf2dxCk+fx2dx\displaystyle\displaystyle\int_{\mathbb{R}_{+}}{\mathop{\mathrm{e}}}^{-kx}f^{2}\mathrm{d}x\leq C_{k}\int_{\mathbb{R}_{+}}f_{x}^{2}\mathrm{d}x (4.14)

for any fH01(+)f\in H_{0}^{1}(\mathbb{R}_{+}), where Ck>0C_{k}>0 is a constant depending on kk but independent of ff.

Proof.

From Lemma 3.4 in [4], we get

+(1+x)2f2dx4+fx2dx\displaystyle\displaystyle\int_{\mathbb{R}_{+}}(1+x)^{-2}f^{2}\mathrm{d}x\leq 4\int_{\mathbb{R}_{+}}f_{x}^{2}\mathrm{d}x

for any fH01(+)f\in H_{0}^{1}(\mathbb{R}_{+}). This along with the basic fact ekx(1+x)2Ck{\mathop{\mathrm{e}}}^{-kx}(1+x)^{2}\leq C_{k} with some positive constant Ck>0C_{k}>0 for any x+x\in\mathbb{R}_{+}, implies that

+ekxf2dxCk+(1+x)2f2dxCk+fx2dx.\displaystyle\displaystyle\int_{\mathbb{R}_{+}}{\mathop{\mathrm{e}}}^{-kx}f^{2}\mathrm{d}x\leq C_{k}\int_{\mathbb{R}_{+}}(1+x)^{-2}f^{2}\mathrm{d}x\leq C_{k}\int_{\mathbb{R}_{+}}f_{x}^{2}\mathrm{d}x.

We thus get (4.14). ∎

4.3. Energy estimates

In this section, we will derive the some estimates for the solution (φ,Φ)(\varphi,\Phi) of (4.3a)–(4.3d) under the a priori assumption (4.9) by the method of energy estimates. The estimates for ψ\psi follows from the fact ψ=φt\psi=-\varphi_{t}.

We begin with the lower-order estimates.

Lemma 4.2.

Let the assumptions in Proposition 4.2 hold. If ε\varepsilon and δ:=|ϕϕ+|\delta:=\left|\phi_{-}-\phi_{+}\right| are sufficiently small, then the solution (φ,Φ)(\varphi,\Phi) of (4.3a)–(4.3d) satisfies

(φ,Φ)12+φt2+0t(φx,φτ,Φ,Φx,Φτ)2dτC((φ0,Φ0)12+ψ02)\displaystyle\displaystyle\|(\varphi,\Phi)\|_{1}^{2}+\|\varphi_{t}\|^{2}+\int_{0}^{t}\|(\varphi_{x},\varphi_{\tau},\Phi,\Phi_{x},\Phi_{\tau})\|^{2}\mathrm{d}\tau\leq C(\|(\varphi_{0},\Phi_{0})\|_{1}^{2}+\|\psi_{0}\|^{2}) (4.15)

for any t(0,T)t\in(0,T), where C>0C>0 is a constant independent of TT.

Proof.

Multiplying (4.3a) by φ\varphi and integrating the resulting equation over +\mathbb{R}_{+}, we get

ddt+(φφt+α2φ2)dx++p(ρ¯)φx2dx\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}\left(\varphi\varphi_{t}+\frac{\alpha}{2}\varphi^{2}\right)\mathrm{d}x+\int_{\mathbb{R}_{+}}p^{\prime}(\bar{\rho})\varphi_{x}^{2}\mathrm{d}x
=φt2++1φdx++2φdx++φdx.\displaystyle\displaystyle~{}=\|\varphi_{t}\|^{2}+\int_{\mathbb{R}_{+}}\mathcal{F}_{1}\varphi\mathrm{d}x+\int_{\mathbb{R}_{+}}\mathcal{F}_{2}\varphi\mathrm{d}x+\int_{\mathbb{R}_{+}}\mathcal{H}\varphi\mathrm{d}x. (4.16)

By the Taylor expansion, we get

p(φx+ρ¯)p(ρ¯)p(ρ¯)φx=p′′(ρ¯+ϑ1φx)φx2\displaystyle\displaystyle p(\varphi_{x}+\bar{\rho})-p(\bar{\rho})-p^{\prime}(\bar{\rho})\varphi_{x}=p^{\prime\prime}(\bar{\rho}+\vartheta_{1}\varphi_{x})\varphi_{x}^{2}

for some ϑ1(0,1)\vartheta_{1}\in(0,1). Then it follows from (1.6), (4.5), (4.10) and (4.11) that

+1φdx=+[p(φx+ρ¯)p(ρ¯)p(ρ¯)φx]φxdxCεφx2,\displaystyle\displaystyle\int_{\mathbb{R}_{+}}\mathcal{F}_{1}\varphi\mathrm{d}x=-\int_{\mathbb{R}_{+}}\left[p(\varphi_{x}+\bar{\rho})-p(\bar{\rho})-p^{\prime}(\bar{\rho})\varphi_{x}\right]\varphi_{x}\mathrm{d}x\leq C\varepsilon\|\varphi_{x}\|^{2}, (4.17)

provided ε\varepsilon and δ\delta are suitably small. Integrating by parts, we have

+2φdx\displaystyle\displaystyle\int_{\mathbb{R}_{+}}\mathcal{F}_{2}\varphi\mathrm{d}x =μ+φxΦxφdxμ+φxϕ¯xφdxμ+ρ¯Φxφdx\displaystyle=-\mu\int_{\mathbb{R}_{+}}\varphi_{x}\Phi_{x}\varphi\mathrm{d}x-\mu\int_{\mathbb{R}_{+}}\varphi_{x}\bar{\phi}_{x}\varphi\mathrm{d}x-\mu\int_{\mathbb{R}_{+}}\bar{\rho}\Phi_{x}\varphi\mathrm{d}x
=μ+φxΦxφdxμ+φxϕ¯xφdx+μ+ρ¯xΦφdx+μ+ρ¯Φφxdx.\displaystyle\displaystyle=-\mu\int_{\mathbb{R}_{+}}\varphi_{x}\Phi_{x}\varphi\mathrm{d}x-\mu\int_{\mathbb{R}_{+}}\varphi_{x}\bar{\phi}_{x}\varphi\mathrm{d}x+\mu\int_{\mathbb{R}_{+}}\bar{\rho}_{x}\Phi\varphi\mathrm{d}x+\mu\int_{\mathbb{R}_{+}}\bar{\rho}\Phi\varphi_{x}\mathrm{d}x. (4.18)

In view of (4.10) and the Cauchy-Schwarz inequality, we deduce

μ+φxΦxφdxCφLφxΦxCε(φx,Φx)2.\displaystyle\displaystyle-\mu\int_{\mathbb{R}_{+}}\varphi_{x}\Phi_{x}\varphi\mathrm{d}x\leq C\|\varphi\|_{L^{\infty}}\|\varphi_{x}\|\|\Phi_{x}\|\leq C\varepsilon\|(\varphi_{x},\Phi_{x})\|^{2}. (4.19)

By the fact |(ρ¯x,ϕ¯x)|Cδeλx\left|(\bar{\rho}_{x},\bar{\phi}_{x})\right|\leq C\delta{\mathop{\mathrm{e}}}^{-\lambda x} from (2.4) and the Hardy inequality (4.14), it holds that

μ+φxϕ¯xφdx+μ+ρ¯xΦφdx\displaystyle\displaystyle-\mu\int_{\mathbb{R}_{+}}\varphi_{x}\bar{\phi}_{x}\varphi\mathrm{d}x+\mu\int_{\mathbb{R}_{+}}\bar{\rho}_{x}\Phi\varphi\mathrm{d}x
Cδφxeλxφ+Cδeλ2xφeλ2xΦ\displaystyle~{}\displaystyle\leq C\delta\|\varphi_{x}\|\|{\mathop{\mathrm{e}}}^{-\lambda x}\varphi\|+C\delta\|{\mathop{\mathrm{e}}}^{-\frac{\lambda}{2}x}\varphi\|\|{\mathop{\mathrm{e}}}^{-\frac{\lambda}{2}x}\Phi\|
Cδ(φx,Φx)2,\displaystyle~{}\displaystyle\leq C\delta\|(\varphi_{x},\Phi_{x})\|^{2}, (4.20)

where the Cauchy-Schwarz inequality has been used. Inserting (4.19) and (4.3) into (4.3) leads to

+2φdx\displaystyle\displaystyle\int_{\mathbb{R}_{+}}\mathcal{F}_{2}\varphi\mathrm{d}x C(δ+ε)(φx,Φx)2+μ+ρ¯Φφxdx.\displaystyle\leq C\left(\delta+\varepsilon\right)\|(\varphi_{x},\Phi_{x})\|^{2}+\mu\int_{\mathbb{R}_{+}}\bar{\rho}\Phi\varphi_{x}\mathrm{d}x. (4.21)

For the last term on the right-hand side of (4.3), from (4.4), (4.10), (4.12), integration by parts and Cauchy-Schwarz inequality, we have

+φdx\displaystyle\displaystyle\int_{\mathbb{R}_{+}}\mathcal{H}\varphi\mathrm{d}x =+φt2φx+ρ¯φxdxC+φt2|φx|dxCφtLφtφxCε(φt,φx)2.\displaystyle=-\int_{\mathbb{R}_{+}}\frac{\varphi_{t}^{2}}{\varphi_{x}+\bar{\rho}}\varphi_{x}\mathrm{d}x\leq C\int_{\mathbb{R}_{+}}\varphi_{t}^{2}\left|\varphi_{x}\right|\mathrm{d}x\leq C\|\varphi_{t}\|_{L^{\infty}}\|\varphi_{t}\|\|\varphi_{x}\|\leq C\varepsilon\|(\varphi_{t},\varphi_{x})\|^{2}. (4.22)

Substituting (4.17), (4.21) and (4.22) into (4.3), we get

ddt+(φφt+α2φ2)dx++p(ρ¯)φx2dx\displaystyle\displaystyle\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}\left(\varphi\varphi_{t}+\frac{\alpha}{2}\varphi^{2}\right)\mathrm{d}x+\int_{\mathbb{R}_{+}}p^{\prime}(\bar{\rho})\varphi_{x}^{2}\mathrm{d}x
C(δ+ε)(φx,Φx)2+Cφt2+μ+ρ¯Φφxdx.\displaystyle~{}\displaystyle\leq C\left(\delta+\varepsilon\right)\|(\varphi_{x},\Phi_{x})\|^{2}+C\|\varphi_{t}\|^{2}+\mu\int_{\mathbb{R}_{+}}\bar{\rho}\Phi\varphi_{x}\mathrm{d}x. (4.23)

Multiplying (4.3b) by μaρ¯Φ\frac{\mu}{a}\bar{\rho}\Phi and integrating the resulting equation over +\mathbb{R}_{+}, one has

12ddt+μaρ¯Φ2dx+μa+(bρ¯Φ2+ρ¯Φx2)dx\displaystyle\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}\frac{\mu}{a}\bar{\rho}\Phi^{2}\mathrm{d}x+\frac{\mu}{a}\int_{\mathbb{R}_{+}}\left(b\bar{\rho}\Phi^{2}+\bar{\rho}\Phi_{x}^{2}\right)\mathrm{d}x
=+μaρ¯xΦΦxdx+μ+ρ¯Φφxdx,\displaystyle\displaystyle~{}=-\int_{\mathbb{R}_{+}}\frac{\mu}{a}\bar{\rho}_{x}\Phi\Phi_{x}\mathrm{d}x+\mu\int_{\mathbb{R}_{+}}\bar{\rho}\Phi\varphi_{x}\mathrm{d}x,

where, due to the fact |ρ¯x|Cδeλx\left|\bar{\rho}_{x}\right|\leq C\delta{\mathop{\mathrm{e}}}^{-\lambda x} from (2.4) and the Hardy inequality (4.14), the following inequality holds

+μaρ¯xΦΦxdxCδΦxeλxΦCδΦx2.\displaystyle\displaystyle-\int_{\mathbb{R}_{+}}\frac{\mu}{a}\bar{\rho}_{x}\Phi\Phi_{x}\mathrm{d}x\leq C\delta\|\Phi_{x}\|\|{\mathop{\mathrm{e}}}^{-\lambda x}\Phi\|\leq C\delta\|\Phi_{x}\|^{2}.

Therefore,

12ddt+μaρ¯Φ2dx+μa+(bρ¯Φ2+ρ¯Φx2)dxμ+ρ¯Φφxdx+CδΦx2.\displaystyle\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}\frac{\mu}{a}\bar{\rho}\Phi^{2}\mathrm{d}x+\frac{\mu}{a}\int_{\mathbb{R}_{+}}\left(b\bar{\rho}\Phi^{2}+\bar{\rho}\Phi_{x}^{2}\right)\mathrm{d}x\leq\mu\int_{\mathbb{R}_{+}}\bar{\rho}\Phi\varphi_{x}\mathrm{d}x+C\delta\|\Phi_{x}\|^{2}. (4.24)

Combining (4.24) with (4.3), we obtain

ddt+(φφt+α2φ2+μ2aρ¯Φ2)dx++[μ2aρ¯Φx2+(p(ρ¯)φx22μρ¯Φφx+μbaρ¯Φ2)]dx\displaystyle\displaystyle\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}\left(\varphi\varphi_{t}+\frac{\alpha}{2}\varphi^{2}+\frac{\mu}{2a}\bar{\rho}\Phi^{2}\right)\mathrm{d}x+\int_{\mathbb{R}_{+}}\left[\frac{\mu}{2a}\bar{\rho}\Phi_{x}^{2}+\left(p^{\prime}(\bar{\rho})\varphi_{x}^{2}-2\mu\bar{\rho}\Phi\varphi_{x}+\frac{\mu b}{a}\bar{\rho}\Phi^{2}\right)\right]\mathrm{d}x
C(δ+ε)φx2+Cφt2\displaystyle~{}\displaystyle\leq C\left(\delta+\varepsilon\right)\|\varphi_{x}\|^{2}+C\|\varphi_{t}\|^{2} (4.25)

for suitably small ε\varepsilon and δ\delta. By (1.6) and (4.11), we have

p(ρ¯)φx22μρ¯Φφx+μbaρ¯Φ2C(φx2+Φ2)\displaystyle\displaystyle p^{\prime}(\bar{\rho})\varphi_{x}^{2}-2\mu\bar{\rho}\Phi\varphi_{x}+\frac{\mu b}{a}\bar{\rho}\Phi^{2}\geq C\left(\varphi_{x}^{2}+\Phi^{2}\right)

for some constant C>0C>0 independent of tt. Then, for sufficiently small ε\varepsilon and δ\delta, we have from (4.3) that

ddt+(φφt+α2φ2+μaρ¯Φ2)dx+C(φx,Φ,Φx)2C1φt2\displaystyle\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}\left(\varphi\varphi_{t}+\frac{\alpha}{2}\varphi^{2}+\frac{\mu}{a}\bar{\rho}\Phi^{2}\right)\mathrm{d}x+C\|(\varphi_{x},\Phi,\Phi_{x})\|^{2}\leq C_{1}\|\varphi_{t}\|^{2} (4.26)

for some constant C1>0C_{1}>0, where we have used (4.11). Now let us turn to the estimate for φt\varphi_{t}. Multiplying (4.3a) by φt\varphi_{t} and integrating the resulting equation over +\mathbb{R}_{+}, we get

12ddt+[φt2+p(ρ¯)φx2]dx++αφt2dx=+1φtdx++2φtdx++φtdx.\displaystyle\displaystyle\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}\left[\varphi_{t}^{2}+p^{\prime}(\bar{\rho})\varphi_{x}^{2}\right]\mathrm{d}x+\int_{\mathbb{R}_{+}}\alpha\varphi_{t}^{2}\mathrm{d}x=\int_{\mathbb{R}_{+}}\mathcal{F}_{1}\varphi_{t}\mathrm{d}x+\int_{\mathbb{R}_{+}}\mathcal{F}_{2}\varphi_{t}\mathrm{d}x+\int_{\mathbb{R}_{+}}\mathcal{H}\varphi_{t}\mathrm{d}x. (4.27)

Next, we estimate the terms on the right-hand side of (4.27). First, it follows from a direct computation that

+1φtdx\displaystyle\displaystyle\int_{\mathbb{R}_{+}}\mathcal{F}_{1}\varphi_{t}\mathrm{d}x =+[p(φx+ρ¯)p(ρ¯)p(ρ¯)φx]φxtdx\displaystyle=-\int_{\mathbb{R}_{+}}\left[p(\varphi_{x}+\bar{\rho})-p(\bar{\rho})-p^{\prime}(\bar{\rho})\varphi_{x}\right]\varphi_{xt}\mathrm{d}x
=ddt+(ρ¯ρ¯+φxp(s)dyp(ρ¯)φx12p(ρ¯)φx2)dx.\displaystyle\displaystyle=-\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}\left(\int_{\bar{\rho}}^{\bar{\rho}+\varphi_{x}}p(s)\mathrm{d}y-p(\bar{\rho})\varphi_{x}-\frac{1}{2}p^{\prime}(\bar{\rho})\varphi_{x}^{2}\right)\mathrm{d}x.

Second, due to (4.10), Cauchy-Schwarz inequality and the fact |(ρ¯x,ϕ¯x)|δeλx\left|(\bar{\rho}_{x},\bar{\phi}_{x})\right|\leq\delta{\mathop{\mathrm{e}}}^{-\lambda x} from (2.4), we have

+2φtdx\displaystyle\displaystyle\int_{\mathbb{R}_{+}}\mathcal{F}_{2}\varphi_{t}\mathrm{d}x =μ+φxΦxφtdxμ+φxϕ¯xφtdx+μ+ρ¯xΦφtdx+μ+ρ¯Φφxtdx,\displaystyle=-\mu\int_{\mathbb{R}_{+}}\varphi_{x}\Phi_{x}\varphi_{t}\mathrm{d}x-\mu\int_{\mathbb{R}_{+}}\varphi_{x}\bar{\phi}_{x}\varphi_{t}\mathrm{d}x+\mu\int_{\mathbb{R}_{+}}\bar{\rho}_{x}\Phi\varphi_{t}\mathrm{d}x+\mu\int_{\mathbb{R}_{+}}\bar{\rho}\Phi\varphi_{xt}\mathrm{d}x,
CφxLΦxφt+ϕ¯xLφxφt+CδeλxΦφt\displaystyle\displaystyle\leq C\|\varphi_{x}\|_{L^{\infty}}\|\Phi_{x}\|\|\varphi_{t}\|+\|\bar{\phi}_{x}\|_{L^{\infty}}\|\varphi_{x}\|\|\varphi_{t}\|+C\delta\|{\mathop{\mathrm{e}}}^{-\lambda x}\Phi\|\|\varphi_{t}\|
+ddt+μρ¯Φφxdxμ+ρ¯Φtφxdx\displaystyle\displaystyle\quad+\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}\mu\bar{\rho}\Phi\varphi_{x}\mathrm{d}x-\mu\int_{\mathbb{R}_{+}}\bar{\rho}\Phi_{t}\varphi_{x}\mathrm{d}x
C(ε+δ)(φx,φt,Φx)2+ddt+μρ¯Φφxdxμ+ρ¯Φtφxdx.\displaystyle\displaystyle\leq C(\varepsilon+\delta)\|(\varphi_{x},\varphi_{t},\Phi_{x})\|^{2}+\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}\mu\bar{\rho}\Phi\varphi_{x}\mathrm{d}x-\mu\int_{\mathbb{R}_{+}}\bar{\rho}\Phi_{t}\varphi_{x}\mathrm{d}x. (4.28)

where we have used the fact eλxΦ2CΦx2\|{\mathop{\mathrm{e}}}^{-\lambda x}\Phi\|^{2}\leq C\|\Phi_{x}\|^{2} by the Hardy inequality (4.14). Finally, using (4.10), (4.12) and integration by parts, one has

+φtdx\displaystyle\displaystyle\int_{\mathbb{R}_{+}}\mathcal{H}\varphi_{t}\mathrm{d}x =+φt2φx+ρ¯φxtdxCφxtLφt2Cεφt2.\displaystyle=-\int_{\mathbb{R}_{+}}\frac{\varphi_{t}^{2}}{\varphi_{x}+\bar{\rho}}\varphi_{xt}\mathrm{d}x\leq C\|\varphi_{xt}\|_{L^{\infty}}\|\varphi_{t}\|^{2}\leq C\varepsilon\|\varphi_{t}\|^{2}. (4.29)

Hence, for suitably small δ\delta and ε\varepsilon, we find from (4.27) that

12ddt+[φt2+p(ρ¯)φx2]dx+α2+φt2dx\displaystyle\displaystyle\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}\left[\varphi_{t}^{2}+p^{\prime}(\bar{\rho})\varphi_{x}^{2}\right]\mathrm{d}x+\frac{\alpha}{2}\int_{\mathbb{R}_{+}}\varphi_{t}^{2}\mathrm{d}x
ddt+μρ¯Φφxdxddt+(ρ¯ρ¯+φxp(s)dyp(ρ¯)φx12p(ρ¯)φx2)dx\displaystyle~{}\leq\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}\mu\bar{\rho}\Phi\varphi_{x}\mathrm{d}x-\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}\left(\int_{\bar{\rho}}^{\bar{\rho}+\varphi_{x}}p(s)\mathrm{d}y-p(\bar{\rho})\varphi_{x}-\frac{1}{2}p^{\prime}(\bar{\rho})\varphi_{x}^{2}\right)\mathrm{d}x
μ+ρ¯Φtφxdx+C(δ+ε)(φx,Φx)2,\displaystyle~{}\quad\displaystyle-\mu\int_{\mathbb{R}_{+}}\bar{\rho}\Phi_{t}\varphi_{x}\mathrm{d}x+C(\delta+\varepsilon)\|(\varphi_{x},\Phi_{x})\|^{2}, (4.30)

where the terms φt2\|\varphi_{t}\|^{2} on the right-hand side of (4.3) and (4.29) have been absorbed. To proceed, we multiply (4.3b) by μaρ¯Φt\frac{\mu}{a}\bar{\rho}\Phi_{t} and integrate the resulting equation over +\mathbb{R}_{+} to get

μ2addt+(bρ¯Φ2+ρ¯Φx2)dx+μa+ρ¯Φt2dx\displaystyle\frac{\mu}{2a}\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}\left(b\bar{\rho}\Phi^{2}+\bar{\rho}\Phi_{x}^{2}\right)\mathrm{d}x+\frac{\mu}{a}\int_{\mathbb{R}_{+}}\bar{\rho}\Phi_{t}^{2}\mathrm{d}x
=+μaρ¯xΦtΦxdx+μ+ρ¯Φtφxdx\displaystyle\displaystyle~{}=\int_{\mathbb{R}_{+}}\frac{\mu}{a}\bar{\rho}_{x}\Phi_{t}\Phi_{x}\mathrm{d}x+\mu\int_{\mathbb{R}_{+}}\bar{\rho}\Phi_{t}\varphi_{x}\mathrm{d}x
μ+ρ¯Φtφxdx+δ(Φt,Φx)2,\displaystyle\displaystyle~{}\leq\mu\int_{\mathbb{R}_{+}}\bar{\rho}\Phi_{t}\varphi_{x}\mathrm{d}x+\delta\|(\Phi_{t},\Phi_{x})\|^{2}, (4.31)

where (2.4) and the Cauchy-Schwarz inequality have been used. Combining (4.3) with (4.3) gives

12ddt+(bμaρ¯Φ22μρ¯Φφx+p(ρ¯)φx2+μaρ¯Φx2+φt2)dx+α2φt2+μa+ρ¯Φt2dx\displaystyle\displaystyle\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}\left(\frac{b\mu}{a}\bar{\rho}\Phi^{2}-2\mu\bar{\rho}\Phi\varphi_{x}+p^{\prime}(\bar{\rho})\varphi_{x}^{2}+\frac{\mu}{a}\bar{\rho}\Phi_{x}^{2}+\varphi_{t}^{2}\right)\mathrm{d}x+\frac{\alpha}{2}\|\varphi_{t}\|^{2}+\frac{\mu}{a}\int_{\mathbb{R}_{+}}\bar{\rho}\Phi_{t}^{2}\mathrm{d}x
ddt+(ρ¯ρ¯+φxp(s)dyp(ρ¯)φx12p(ρ¯)φx2)dx+C(δ+ε)(φx,Φx,Φt)2,\displaystyle~{}\displaystyle\leq-\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}\left(\int_{\bar{\rho}}^{\bar{\rho}+\varphi_{x}}p(s)\mathrm{d}y-p(\bar{\rho})\varphi_{x}-\frac{1}{2}p^{\prime}(\bar{\rho})\varphi_{x}^{2}\right)\mathrm{d}x+C(\delta+\varepsilon)\|(\varphi_{x},\Phi_{x},\Phi_{t})\|^{2}, (4.32)

where

bμaρ¯Φ22μρ¯Φφx+p(ρ¯)φx2Φ2+φx2,\displaystyle\displaystyle\frac{b\mu}{a}\bar{\rho}\Phi^{2}-2\mu\bar{\rho}\Phi\varphi_{x}+p^{\prime}(\bar{\rho})\varphi_{x}^{2}\sim\Phi^{2}+\varphi_{x}^{2},

due to (1.6) and (4.11). Given any constant K0>0K_{0}>0, adding (4.26) with (4.3) multiplied by K0K_{0} leads to

12ddt+[αφ2+2φφt+K0φt2+K0(bμaρ¯Φ22μρ¯Φφx+p(ρ¯)φx2+μaρ¯Φx2)]dx\displaystyle\displaystyle\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}\left[\alpha\varphi^{2}+2\varphi\varphi_{t}+K_{0}\varphi_{t}^{2}+K_{0}\Big{(}\frac{b\mu}{a}\bar{\rho}\Phi^{2}-2\mu\bar{\rho}\Phi\varphi_{x}+p^{\prime}(\bar{\rho})\varphi_{x}^{2}+\frac{\mu}{a}\bar{\rho}\Phi_{x}^{2}\Big{)}\right]\mathrm{d}x
+C(φx,Φ,Φx)2+(αK02C1)φt2+μK0a+ρ¯Φt2dx\displaystyle~{}\quad\displaystyle+C\|(\varphi_{x},\Phi,\Phi_{x})\|^{2}+\left(\frac{\alpha K_{0}}{2}-C_{1}\right)\|\varphi_{t}\|^{2}+\frac{\mu K_{0}}{a}\int_{\mathbb{R}_{+}}\bar{\rho}\Phi_{t}^{2}\mathrm{d}x
ddt+K0(ρ¯ρ¯+φxp(s)dyp(ρ¯)φx12p(ρ¯)φx2)dx+CK0(δ+ε)(φx,Φx,Φt)2,\displaystyle~{}\displaystyle\leq-\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}K_{0}\left(\int_{\bar{\rho}}^{\bar{\rho}+\varphi_{x}}p(s)\mathrm{d}y-p(\bar{\rho})\varphi_{x}-\frac{1}{2}p^{\prime}(\bar{\rho})\varphi_{x}^{2}\right)\mathrm{d}x+CK_{0}(\delta+\varepsilon)\|(\varphi_{x},\Phi_{x},\Phi_{t})\|^{2}, (4.33)

where C1C_{1} is as in (4.26). From (4.11), it holds that

μK0a+ρ¯Φt2dxCK0Φt2\displaystyle\displaystyle\frac{\mu K_{0}}{a}\int_{\mathbb{R}_{+}}\bar{\rho}\Phi_{t}^{2}\mathrm{d}x\leq CK_{0}\|\Phi_{t}\|^{2}

for some constant C>0C>0 which depends on ρ+\rho_{+}, μ\mu and aa. Taking K0K_{0} large enough such that αK02>C1\frac{\alpha K_{0}}{2}>C_{1} and

α2φ2+φφt+K02φt2C(φ2+φt2)\displaystyle\displaystyle\frac{\alpha}{2}\varphi^{2}+\varphi\varphi_{t}+\frac{K_{0}}{2}\varphi_{t}^{2}\geq C\left(\varphi^{2}+\varphi_{t}^{2}\right)

for some constant C>0C>0, then for suitably small δ\delta and ε\varepsilon, we have from (4.3) that

12ddt+[αφ2+2φφt+K0φt2+K0(bμaρ¯Φ22μρ¯Φφx+p(ρ¯)φx2+μaρ¯Φx2)]dx\displaystyle\displaystyle\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}\left[\alpha\varphi^{2}+2\varphi\varphi_{t}+K_{0}\varphi_{t}^{2}+K_{0}\Big{(}\frac{b\mu}{a}\bar{\rho}\Phi^{2}-2\mu\bar{\rho}\Phi\varphi_{x}+p^{\prime}(\bar{\rho})\varphi_{x}^{2}+\frac{\mu}{a}\bar{\rho}\Phi_{x}^{2}\Big{)}\right]\mathrm{d}x
+ddt+(ρ¯ρ¯+φxp(s)dyp(ρ¯)φx12p(ρ¯)φx2)dx+C(Φ12+(φx,φt,Φt)2)0,\displaystyle~{}\displaystyle\quad+\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}\left(\int_{\bar{\rho}}^{\bar{\rho}+\varphi_{x}}p(s)\mathrm{d}y-p(\bar{\rho})\varphi_{x}-\frac{1}{2}p^{\prime}(\bar{\rho})\varphi_{x}^{2}\right)\mathrm{d}x+C\left(\|\Phi\|_{1}^{2}+\|(\varphi_{x},\varphi_{t},\Phi_{t})\|^{2}\right)\leq 0, (4.34)

where

αφ2+2φφt+K0(φt2+bμaρ¯Φ22μρ¯Φφx+p(ρ¯)φx2+μaρ¯Φx2)φ2+φx2+φt2+Φ2+Φx2.\displaystyle\displaystyle\alpha\varphi^{2}+2\varphi\varphi_{t}+K_{0}\left(\varphi_{t}^{2}+\frac{b\mu}{a}\bar{\rho}\Phi^{2}-2\mu\bar{\rho}\Phi\varphi_{x}+p^{\prime}(\bar{\rho})\varphi_{x}^{2}+\frac{\mu}{a}\bar{\rho}\Phi_{x}^{2}\right)~{}\sim\varphi^{2}+\varphi_{x}^{2}+\varphi_{t}^{2}+\Phi^{2}+\Phi_{x}^{2}.

Applying the Taylor expansion to the function h(s):=ρ¯(x)sp(s)dsh(s):=\int_{\bar{\rho}(x)}^{s}p(s)\mathrm{d}s along with (4.10) leads to

|ρ¯ρ¯+φxp(s)dyp(ρ¯)φx12p(ρ¯)φx2|=16|p′′(ρ¯+ϑ2φx)φx3|Cεφx2\displaystyle\displaystyle\left|\int_{\bar{\rho}}^{\bar{\rho}+\varphi_{x}}p(s)\mathrm{d}y-p(\bar{\rho})\varphi_{x}-\frac{1}{2}p^{\prime}(\bar{\rho})\varphi_{x}^{2}\right|=\frac{1}{6}\left|p^{\prime\prime}(\bar{\rho}+\vartheta_{2}\varphi_{x})\varphi_{x}^{3}\right|\leq C\varepsilon\varphi_{x}^{2} (4.35)

for some constant ϑ2(0,1)\vartheta_{2}\in(0,1). With (4.35), integrating (4.3) with respect to tt, by taking δ\delta and ε\varepsilon suitably small, we get (4.15) and hence complete the proof. ∎

Lemma 4.3.

Let the assumptions in Proposition 4.2 hold. If ε\varepsilon and δ\delta are sufficiently small, then for any t(0,T)t\in(0,T), the solution (φ,Φ)(\varphi,\Phi) of (4.3a)–(4.3d) satisfies

(φx,Φx)12+φxt2+0t(φxx,Φx,Φxx,φxτ,Φxτ)2dτ\displaystyle\displaystyle\|(\varphi_{x},\Phi_{x})\|_{1}^{2}+\|\varphi_{xt}\|^{2}+\int_{0}^{t}\|(\varphi_{xx},\Phi_{x},\Phi_{xx},\varphi_{x\tau},\Phi_{x\tau})\|^{2}\mathrm{d}\tau
C((φ0x,Φ0x)12+ψ0x2)+C0t(φx2+φxΦxxτ)dτ.\displaystyle\displaystyle~{}\leq C(\|(\varphi_{0x},\Phi_{0x})\|_{1}^{2}+\|\psi_{0x}\|^{2})+C\int_{0}^{t}\left(\|\varphi_{x}\|^{2}+\|\varphi_{x}\|\|\Phi_{xx\tau}\|\right)\mathrm{d}\tau. (4.36)
Proof.

Differentiating (4.3a)–(4.3b) with respect to xx, we get

φxtt+αφxt(p(ρ¯)φx)xx=x+x,\displaystyle\displaystyle\varphi_{xtt}+\alpha\varphi_{xt}-(p^{\prime}(\bar{\rho})\varphi_{x})_{xx}=\mathcal{F}_{x}+\mathcal{H}_{x}, (4.37a)
Φxt=Φxxx+aφxxbΦx.\displaystyle\displaystyle\displaystyle\Phi_{xt}=\Phi_{xxx}+a\varphi_{xx}-b\Phi_{x}. (4.37b)

Multiplying (4.37a) by φx\varphi_{x}, and integrating it over +\mathbb{R}_{+}, we get, thanks to (4.13), that

ddt+(α2φx2+φxφxt)dx++p(ρ¯)φxx2dx+φxt2dx\displaystyle\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}\left(\frac{\alpha}{2}\varphi_{x}^{2}+\varphi_{x}\varphi_{xt}\right)\mathrm{d}x+\int_{\mathbb{R}_{+}}p^{\prime}(\bar{\rho})\varphi_{xx}^{2}\mathrm{d}x-\int_{\mathbb{R}_{+}}\varphi_{xt}^{2}\mathrm{d}x
=+p′′(ρ¯)ρ¯xφxφxxdx+1φxxdx+2φxxdx++xφxdx.\displaystyle~{}\displaystyle=-\int_{\mathbb{R}_{+}}p^{\prime\prime}(\bar{\rho})\bar{\rho}_{x}\varphi_{x}\varphi_{xx}\mathrm{d}x-\int_{\mathbb{R}_{+}}\mathcal{F}_{1}\varphi_{xx}\mathrm{d}x-\int_{\mathbb{R}_{+}}\mathcal{F}_{2}\varphi_{xx}\mathrm{d}x+\int_{\mathbb{R}_{+}}\mathcal{H}_{x}\varphi_{x}\mathrm{d}x. (4.38)

Recalling the definitions of 1\mathcal{F}_{1} and 2\mathcal{F}_{2} in (4.5), using (1.6), (4.11), (4.10), the fact |(ρ¯x,ϕ¯x)|Cδeλx\left|(\bar{\rho}_{x},\bar{\phi}_{x})\right|\leq C\delta{\mathop{\mathrm{e}}}^{-\lambda x} from (2.4) and Cauchy-Schwarz inequality, we have

+p′′(ρ¯)ρ¯xφxφxxdx+2φxxdx\displaystyle\displaystyle-\int_{\mathbb{R}_{+}}p^{\prime\prime}(\bar{\rho})\bar{\rho}_{x}\varphi_{x}\varphi_{xx}\mathrm{d}x-\int_{\mathbb{R}_{+}}\mathcal{F}_{2}\varphi_{xx}\mathrm{d}x
=+(p′′(ρ¯)ρ¯xμϕ¯x)φxφxxdx+μ+φxΦxφxxdx+μ+ρ¯Φxφxxdx\displaystyle~{}\displaystyle=-\int_{\mathbb{R}_{+}}\left(p^{\prime\prime}(\bar{\rho})\bar{\rho}_{x}-\mu\bar{\phi}_{x}\right)\varphi_{x}\varphi_{xx}\mathrm{d}x+\mu\int_{\mathbb{R}_{+}}\varphi_{x}\Phi_{x}\varphi_{xx}\mathrm{d}x+\mu\int_{\mathbb{R}_{+}}\bar{\rho}\Phi_{x}\varphi_{xx}\mathrm{d}x
Cδφxφxx+CφxΦxLφxx+μ+ρ¯Φxφxxdx\displaystyle~{}\displaystyle\leq C\delta\|\varphi_{x}\|\|\varphi_{xx}\|+C\|\varphi_{x}\|\|\Phi_{x}\|_{L^{\infty}}\|\varphi_{xx}\|+\mu\int_{\mathbb{R}_{+}}\bar{\rho}\Phi_{x}\varphi_{xx}\mathrm{d}x
C(δ+ε)(φx,φxx)2+μ+ρ¯Φxφxxdx\displaystyle~{}\displaystyle\leq C(\delta+\varepsilon)\|(\varphi_{x},\varphi_{xx})\|^{2}+\mu\int_{\mathbb{R}_{+}}\bar{\rho}\Phi_{x}\varphi_{xx}\mathrm{d}x (4.39)

and

+1φxxdx\displaystyle\displaystyle\int_{\mathbb{R}_{+}}\mathcal{F}_{1}\varphi_{xx}\mathrm{d}x =+010sp′′′(ρ¯+τφx)dτdsφx2ρ¯xφxxdx\displaystyle\displaystyle=-\int_{\mathbb{R}_{+}}\int_{0}^{1}\int_{0}^{s}p^{\prime\prime\prime}(\bar{\rho}+\tau\varphi_{x})\mathrm{d}\tau\mathrm{d}s\varphi_{x}^{2}\bar{\rho}_{x}\varphi_{xx}\mathrm{d}x
+01p′′(ρ¯+sφx)dsφxφxx2dx\displaystyle\displaystyle\quad-\int_{\mathbb{R}_{+}}\int_{0}^{1}p^{\prime\prime}(\bar{\rho}+s\varphi_{x})\mathrm{d}s\varphi_{x}\varphi_{xx}^{2}\mathrm{d}x
CφxLφxφxx+CφxLφxx2\displaystyle\displaystyle\leq C\|\varphi_{x}\|_{L^{\infty}}\|\varphi_{x}\|\|\varphi_{xx}\|+C\|\varphi_{x}\|_{L^{\infty}}\|\varphi_{xx}\|^{2}
Cε(φx,φxx)2,\displaystyle\displaystyle\leq C\varepsilon\|(\varphi_{x},\varphi_{xx})\|^{2},

where we have used the following identity

1\displaystyle\displaystyle\mathcal{F}_{1} =[p(φx+ρ¯)p(ρ¯)p′′(ρ¯)φx]ρ¯x+[p(φx+ρ¯)p(ρ¯)]φxx\displaystyle=[p^{\prime}(\varphi_{x}+\bar{\rho})-p^{\prime}(\bar{\rho})-p^{\prime\prime}(\bar{\rho})\varphi_{x}]\bar{\rho}_{x}+[p^{\prime}(\varphi_{x}+\bar{\rho})-p^{\prime}(\bar{\rho})]\varphi_{xx}
=010sp′′′(ρ¯+τφx)dτdsφx2ρ¯x+01p′′(ρ¯+sφx)dsφxφxx\displaystyle\displaystyle=\int_{0}^{1}\int_{0}^{s}p^{\prime\prime\prime}(\bar{\rho}+\tau\varphi_{x})\mathrm{d}\tau\mathrm{d}s\varphi_{x}^{2}\bar{\rho}_{x}+\int_{0}^{1}p^{\prime\prime}(\bar{\rho}+s\varphi_{x})\mathrm{d}s\varphi_{x}\varphi_{xx} (4.40)

due to the Taylor expansion. For the last term on the right hand of (4.3), thanks to (2.4), (4.4), (4.10), (4.12), Cauchy-Schwarz inequality and the Hardy inequality (4.14), it holds for suitably small ε\varepsilon and δ\delta that

+xφxdx\displaystyle\displaystyle\int_{\mathbb{R}_{+}}\mathcal{H}_{x}\varphi_{x}\mathrm{d}x =+(φt2φx+ρ¯)xφxxdx\displaystyle=-\int_{\mathbb{R}_{+}}\left(\frac{\varphi_{t}^{2}}{\varphi_{x}+\bar{\rho}}\right)_{x}\varphi_{xx}\mathrm{d}x
=+(2φtφtxφx+ρ¯φt2(φxx+ρ¯x)(φx+ρ¯)2)φxxdx\displaystyle\displaystyle=\int_{\mathbb{R}_{+}}\left(\frac{2\varphi_{t}\varphi_{tx}}{\varphi_{x}+\bar{\rho}}-\frac{\varphi_{t}^{2}(\varphi_{xx}+\bar{\rho}_{x})}{(\varphi_{x}+\bar{\rho})^{2}}\right)\varphi_{xx}\mathrm{d}x
C+|φt||φtx||φxx|dx+C+φt2(|φxx|+|ρ¯x|)|φxx|dx\displaystyle\displaystyle\leq C\int_{\mathbb{R}_{+}}\left|\varphi_{t}\right|\left|\varphi_{tx}\right|\left|\varphi_{xx}\right|\mathrm{d}x+C\int_{\mathbb{R}_{+}}\varphi_{t}^{2}(\left|\varphi_{xx}\right|+\left|\bar{\rho}_{x}\right|)\left|\varphi_{xx}\right|\mathrm{d}x
CφtLφtxφxx+CφtL2φxx2+CδφtLeλxφtφxx\displaystyle\displaystyle\leq C\|\varphi_{t}\|_{L^{\infty}}\|\varphi_{tx}\|\|\varphi_{xx}\|+C\|\varphi_{t}\|_{L^{\infty}}^{2}\|\varphi_{xx}\|^{2}+C\delta\|\varphi_{t}\|_{L^{\infty}}\|{\mathop{\mathrm{e}}}^{-\lambda x}\varphi_{t}\|\|\varphi_{xx}\|
Cεφtxφxx+Cε2φxx2+Cεδφtxφxx\displaystyle\leq\displaystyle C\varepsilon\|\varphi_{tx}\|\|\varphi_{xx}\|+C\varepsilon^{2}\|\varphi_{xx}\|^{2}+C\varepsilon\delta\|\varphi_{tx}\|\|\varphi_{xx}\|
C(ε+δ)(φtx,φxx)2.\displaystyle\displaystyle\leq C(\varepsilon+\delta)\|(\varphi_{tx},\varphi_{xx})\|^{2}. (4.41)

We thus conclude from (4.3)–(4.3) that

ddt+(α2φx2+φxφxt)dx++p(ρ¯)φxx2dx\displaystyle\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}\left(\frac{\alpha}{2}\varphi_{x}^{2}+\varphi_{x}\varphi_{xt}\right)\mathrm{d}x+\int_{\mathbb{R}_{+}}p^{\prime}(\bar{\rho})\varphi_{xx}^{2}\mathrm{d}x
C(δ+ε)(φx,φxt,φxx)2+μ+ρ¯Φxφxxdx+φxt2.\displaystyle~{}\displaystyle\leq C(\delta+\varepsilon)\|(\varphi_{x},\varphi_{xt},\varphi_{xx})\|^{2}+\mu\int_{\mathbb{R}_{+}}\bar{\rho}\Phi_{x}\varphi_{xx}\mathrm{d}x+\left\|\varphi_{xt}\right\|^{2}. (4.42)

Multiplying (4.37b) by μaρ¯Φx\frac{\mu}{a}\bar{\rho}\Phi_{x}, and integrating it to get

μ2addt+ρ¯Φx2dx+μa+ρ¯Φxx2dx+bμa+ρ¯Φx2dx\displaystyle\displaystyle\frac{\mu}{2a}\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}\bar{\rho}\Phi_{x}^{2}\mathrm{d}x+\frac{\mu}{a}\int_{\mathbb{R}_{+}}\bar{\rho}\Phi_{xx}^{2}\mathrm{d}x+\frac{b\mu}{a}\int_{\mathbb{R}_{+}}\bar{\rho}\Phi_{x}^{2}\mathrm{d}x
=μaρ¯(0)ΦxxΦx|x=0+ρ¯xΦxxΦxdx+μ+ρ¯φxxΦxdx\displaystyle~{}\displaystyle=-\left.\frac{\mu}{a}\bar{\rho}(0)\Phi_{xx}\Phi_{x}\right|_{x=0}-\int_{\mathbb{R}_{+}}\bar{\rho}_{x}\Phi_{xx}\Phi_{x}\mathrm{d}x+\mu\int_{\mathbb{R}_{+}}\bar{\rho}\varphi_{xx}\Phi_{x}\mathrm{d}x
Cδ(Φx,Φxx)2μaρΦxxΦx|x=0+μ+ρ¯Φxφxxdx,\displaystyle~{}\displaystyle\leq C\delta\|(\Phi_{x},\Phi_{xx})\|^{2}-\left.\frac{\mu}{a}\rho_{-}\Phi_{xx}\Phi_{x}\right|_{x=0}+\mu\int_{\mathbb{R}_{+}}\bar{\rho}\Phi_{x}\varphi_{xx}\mathrm{d}x, (4.43)

where (2.4), (4.11) and Cauchy-Schwarz inequality have been used. Since Φ=0\Phi=0 at x=0x=0 and hence Φt=0\Phi_{t}=0 at x=0x=0, recalling (4.3b), we have

Φxx=aφxatx=0.\displaystyle\displaystyle\Phi_{xx}=-a\varphi_{x}\ \mbox{at}\ x=0. (4.44)

This along with the Sobolev inequality fLCf12fx12\|f\|_{L^{\infty}}\leq C\|f\|^{\frac{1}{2}}\|f_{x}\|^{\frac{1}{2}} and Young’s inequality implies that

μaρ¯(0)ΦxxΦx|x=0\displaystyle\displaystyle-\left.\frac{\mu}{a}\bar{\rho}(0)\Phi_{xx}\Phi_{x}\right|_{x=0} =μρ¯(0)φxΦx|x=0CφxLΦxL\displaystyle=\left.\mu\bar{\rho}(0)\varphi_{x}\Phi_{x}\right|_{x=0}\leq C\|\varphi_{x}\|_{L^{\infty}}\|\Phi_{x}\|_{L^{\infty}}
Cφx12φxx12Φx12Φxx12\displaystyle\leq C\|\varphi_{x}\|^{\frac{1}{2}}\|\varphi_{xx}\|^{\frac{1}{2}}\|\Phi_{x}\|^{\frac{1}{2}}\|\Phi_{xx}\|^{\frac{1}{2}}
Cφx12φxx12(Φx+Φxx)\displaystyle\leq C\|\varphi_{x}\|^{\frac{1}{2}}\|\varphi_{xx}\|^{\frac{1}{2}}(\|\Phi_{x}\|+\|\Phi_{xx}\|)
η(Φx,Φxx,φxx)2+Cηφx2\displaystyle\leq\eta\|(\Phi_{x},\Phi_{xx},\varphi_{xx})\|^{2}+C_{\eta}\|\varphi_{x}\|^{2} (4.45)

for any η>0\eta>0. Substituting (4.3) into (4.3), we get

μ2addt+ρ¯Φx2dx+μa+ρ¯Φxx2dx+bμa+ρ¯Φx2dx\displaystyle\displaystyle\frac{\mu}{2a}\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}\bar{\rho}\Phi_{x}^{2}\mathrm{d}x+\frac{\mu}{a}\int_{\mathbb{R}_{+}}\bar{\rho}\Phi_{xx}^{2}\mathrm{d}x+\frac{b\mu}{a}\int_{\mathbb{R}_{+}}\bar{\rho}\Phi_{x}^{2}\mathrm{d}x
C(η+δ)(Φx,Φxx)2+ηφxx2+Cηφx2+μ+ρ¯φxxΦxdx.\displaystyle~{}\displaystyle\leq C(\eta+\delta)\|(\Phi_{x},\Phi_{xx})\|^{2}+\eta\|\varphi_{xx}\|^{2}+C_{\eta}\|\varphi_{x}\|^{2}+\mu\int_{\mathbb{R}_{+}}\bar{\rho}\varphi_{xx}\Phi_{x}\mathrm{d}x. (4.46)

Combining (4.3) with (4.3), we get after taking δ\delta, ε\varepsilon and η\eta suitably small that

ddt+(α2φx2+φxφxt+μ2aρ¯Φx2)dx+C(φxx,Φx,Φxx)2\displaystyle\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}\left(\frac{\alpha}{2}\varphi_{x}^{2}+\varphi_{x}\varphi_{xt}+\frac{\mu}{2a}\bar{\rho}\Phi_{x}^{2}\right)\mathrm{d}x+C\|(\varphi_{xx},\Phi_{x},\Phi_{xx})\|^{2}
[1+C(δ+ε)]φxt2+Cφx2,\displaystyle\displaystyle\leq\left[1+C(\delta+\varepsilon)\right]\|\varphi_{xt}\|^{2}+C\|\varphi_{x}\|^{2}, (4.47)

where we have used (4.11) and the following inequality

p(ρ¯)φxx22μρ¯φxxΦx+bμaρ¯Φx2C(φxx2+Φx2)\displaystyle\displaystyle p^{\prime}(\bar{\rho})\varphi_{xx}^{2}-2\mu\bar{\rho}\varphi_{xx}\Phi_{x}+\frac{b\mu}{a}\bar{\rho}\Phi_{x}^{2}\geq C\left(\varphi_{xx}^{2}+\Phi_{x}^{2}\right) (4.48)

due to (1.6). Next, we integrate (4.37a) multiplied by φxt\varphi_{xt} over +\mathbb{R}_{+} to get

12ddt+(φxt2+p(ρ¯)φxx2)dx+αφxt2\displaystyle\displaystyle\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}(\varphi_{xt}^{2}+p^{\prime}(\bar{\rho})\varphi_{xx}^{2})\mathrm{d}x+\alpha\|\varphi_{xt}\|^{2}
=+p′′(ρ¯)ρ¯xφxφxxtdx+1φxxtdx+2φxxtdx++xφxtdx.\displaystyle~{}\displaystyle=-\int_{\mathbb{R}_{+}}p^{\prime\prime}(\bar{\rho})\bar{\rho}_{x}\varphi_{x}\varphi_{xxt}\mathrm{d}x-\int_{\mathbb{R}_{+}}\mathcal{F}_{1}\varphi_{xxt}\mathrm{d}x-\int_{\mathbb{R}_{+}}\mathcal{F}_{2}\varphi_{xxt}\mathrm{d}x+\int_{\mathbb{R}_{+}}\mathcal{H}_{x}\varphi_{xt}\mathrm{d}x. (4.49)

A direct computation along with (2.4) and Cauchy-Schwarz inequality gives

+p′′(ρ¯)ρ¯xφxφxxtdx\displaystyle\displaystyle-\int_{\mathbb{R}_{+}}p^{\prime\prime}(\bar{\rho})\bar{\rho}_{x}\varphi_{x}\varphi_{xxt}\mathrm{d}x =ddt+p′′(ρ¯)ρ¯xφxφxxdx++p′′(ρ¯)ρ¯xφxtφxxdx\displaystyle=-\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}p^{\prime\prime}(\bar{\rho})\bar{\rho}_{x}\varphi_{x}\varphi_{xx}\mathrm{d}x+\int_{\mathbb{R}_{+}}p^{\prime\prime}(\bar{\rho})\bar{\rho}_{x}\varphi_{xt}\varphi_{xx}\mathrm{d}x
ddt+p′′(ρ¯)ρ¯xφxφxxdx+Cδ(φxt,φxx)2.\displaystyle\displaystyle\leq-\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}p^{\prime\prime}(\bar{\rho})\bar{\rho}_{x}\varphi_{x}\varphi_{xx}\mathrm{d}x+C\delta\|(\varphi_{xt},\varphi_{xx})\|^{2}. (4.50)

Recalling (4.3), we arrive at

+1φxxtdx\displaystyle\displaystyle-\int_{\mathbb{R}_{+}}\mathcal{F}_{1}\varphi_{xxt}\mathrm{d}x =12ddt+[p(φx+ρ¯)p(ρ¯)]φxx2dx+12+p′′(φx+ρ¯)φxtφxx2dx\displaystyle\displaystyle=-\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}[p^{\prime}(\varphi_{x}+\bar{\rho})-p^{\prime}(\bar{\rho})]\varphi_{xx}^{2}\mathrm{d}x+\frac{1}{2}\int_{\mathbb{R}_{+}}p^{\prime\prime}(\varphi_{x}+\bar{\rho})\varphi_{xt}\varphi_{xx}^{2}\mathrm{d}x
ddt+[p(φx+ρ¯)p(ρ¯)p′′(ρ¯)φx]ρ¯xφxxdx\displaystyle~{}\displaystyle\quad-\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}[p^{\prime}(\varphi_{x}+\bar{\rho})-p^{\prime}(\bar{\rho})-p^{\prime\prime}(\bar{\rho})\varphi_{x}]\bar{\rho}_{x}\varphi_{xx}\mathrm{d}x
++[p′′(φx+ρ¯)p′′(ρ¯)]φxtφxxρ¯xdx.\displaystyle~{}\displaystyle\quad+\int_{\mathbb{R}_{+}}\left[p^{\prime\prime}(\varphi_{x}+\bar{\rho})-p^{\prime\prime}(\bar{\rho})\right]\varphi_{xt}\varphi_{xx}\bar{\rho}_{x}\mathrm{d}x. (4.51)

From (1.6), (2.4), (4.10) and (4.12), it holds that

12+p′′(φx+ρ¯)φxtφxx2dx++[p′′(φx+ρ¯)p′′(ρ¯)]φxtφxxρ¯xdx\displaystyle\displaystyle\frac{1}{2}\int_{\mathbb{R}_{+}}p^{\prime\prime}(\varphi_{x}+\bar{\rho})\varphi_{xt}\varphi_{xx}^{2}\mathrm{d}x+\int_{\mathbb{R}_{+}}\left[p^{\prime\prime}(\varphi_{x}+\bar{\rho})-p^{\prime\prime}(\bar{\rho})\right]\varphi_{xt}\varphi_{xx}\bar{\rho}_{x}\mathrm{d}x
CφxxLφtxφxx+Cρ¯xLφxtφxx\displaystyle~{}\displaystyle\leq C\|\varphi_{xx}\|_{L^{\infty}}\|\varphi_{tx}\|\|\varphi_{xx}\|+C\|\bar{\rho}_{x}\|_{L^{\infty}}\left\|\varphi_{xt}\right\|\|\varphi_{xx}\|
C(δ+ε)(φxx,φxt)2.\displaystyle~{}\displaystyle\leq C(\delta+\varepsilon)\|(\varphi_{xx},\varphi_{xt})\|^{2}.

Therefore, we have

+1φxxtdx\displaystyle\displaystyle-\int_{\mathbb{R}_{+}}\mathcal{F}_{1}\varphi_{xxt}\mathrm{d}x C(δ+ε)(φxx,φxt)212ddt+[p(φx+ρ¯)xp(ρ¯)]φxx2dx\displaystyle\displaystyle\leq C(\delta+\varepsilon)\|(\varphi_{xx},\varphi_{xt})\|^{2}-\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}[p^{\prime}(\varphi_{x}+\bar{\rho})-xp^{\prime}(\bar{\rho})]\varphi_{xx}^{2}\mathrm{d}x
ddt+[p(φx+ρ¯)p(ρ¯)p′′(ρ¯)φx]ρ¯xφxxdx.\displaystyle~{}\quad-\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}[p^{\prime}(\varphi_{x}+\bar{\rho})-p^{\prime}(\bar{\rho})-p^{\prime\prime}(\bar{\rho})\varphi_{x}]\bar{\rho}_{x}\varphi_{xx}\mathrm{d}x. (4.52)

Similar to (4.3)–(4.3), the third term on the right-hand side of (4.3) can be estimated as follows:

+2φxxtdx\displaystyle\displaystyle-\int_{\mathbb{R}_{+}}\mathcal{F}_{2}\varphi_{xxt}\mathrm{d}x =ddt+μ(φxΦx+φxϕ¯x+ρ¯Φx)φxxdxμ+ρ¯Φxtφxxdx\displaystyle=\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}\mu(\varphi_{x}\Phi_{x}+\varphi_{x}\bar{\phi}_{x}+\bar{\rho}\Phi_{x})\varphi_{xx}\mathrm{d}x-\mu\int_{\mathbb{R}_{+}}\bar{\rho}\Phi_{xt}\varphi_{xx}\mathrm{d}x
μ+(φxtΦx+φxΦxt+φxtϕ¯x)φxxdx\displaystyle\displaystyle\quad-\mu\int_{\mathbb{R}_{+}}\left(\varphi_{xt}\Phi_{x}+\varphi_{x}\Phi_{xt}+\varphi_{xt}\bar{\phi}_{x}\right)\varphi_{xx}\mathrm{d}x
ddt+μ(φxΦx+φxϕ¯x+ρ¯Φx)φxxdxμ+ρ¯Φxtφxxdx\displaystyle\displaystyle\leq\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}\mu(\varphi_{x}\Phi_{x}+\varphi_{x}\bar{\phi}_{x}+\bar{\rho}\Phi_{x})\varphi_{xx}\mathrm{d}x-\mu\int_{\mathbb{R}_{+}}\bar{\rho}\Phi_{xt}\varphi_{xx}\mathrm{d}x
+CΦxLφxtφxx+CφxLΦxtφxx+Cϕ¯xLφxtφxx\displaystyle\displaystyle\quad+C\|\Phi_{x}\|_{L^{\infty}}\|\varphi_{xt}\|\|\varphi_{xx}\|+C\|\varphi_{x}\|_{L^{\infty}}\|\Phi_{xt}\|\|\varphi_{xx}\|+C\|\bar{\phi}_{x}\|_{L^{\infty}}\|\varphi_{xt}\|\|\varphi_{xx}\|
ddt+μ(φxΦx+φxϕ¯x+ρ¯Φx)φxxdxμ+ρ¯Φxtφxxdx\displaystyle\displaystyle\leq\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}\mu(\varphi_{x}\Phi_{x}+\varphi_{x}\bar{\phi}_{x}+\bar{\rho}\Phi_{x})\varphi_{xx}\mathrm{d}x-\mu\int_{\mathbb{R}_{+}}\bar{\rho}\Phi_{xt}\varphi_{xx}\mathrm{d}x
+C(ε+δ)(φxx,φxt,Φxt)2.\displaystyle\displaystyle\quad+C(\varepsilon+\delta)\|(\varphi_{xx},\varphi_{xt},\Phi_{xt})\|^{2}. (4.53)

Noticing

=(φt2φx+ρ¯)x=2φtφtxφx+ρ¯φt2(φxx+ρ¯x)(φx+ρ¯)2,\displaystyle\displaystyle\mathcal{H}=\left(\frac{\varphi_{t}^{2}}{\varphi_{x}+\bar{\rho}}\right)_{x}=\frac{2\varphi_{t}\varphi_{tx}}{\varphi_{x}+\bar{\rho}}-\frac{\varphi_{t}^{2}(\varphi_{xx}+\bar{\rho}_{x})}{(\varphi_{x}+\bar{\rho})^{2}},

we get, thanks to integration by parts and the boundary condition φt=0\varphi_{t}=0 at x=0x=0, that

+xφxtdx\displaystyle\displaystyle\int_{\mathbb{R}_{+}}\mathcal{H}_{x}\varphi_{xt}\mathrm{d}x =+φxt(φt2(φxx+ρ¯x)(φx+ρ¯)2)xdx+2+φxt(φtφtxφx+ρ¯)xdx\displaystyle=-\int_{\mathbb{R}_{+}}\varphi_{xt}\left(\frac{\varphi_{t}^{2}(\varphi_{xx}+\bar{\rho}_{x})}{(\varphi_{x}+\bar{\rho})^{2}}\right)_{x}\mathrm{d}x+2\int_{\mathbb{R}_{+}}\varphi_{xt}\left(\frac{\varphi_{t}\varphi_{tx}}{\varphi_{x}+\bar{\rho}}\right)_{x}\mathrm{d}x
=+[(φxx22)t+ρ¯xφxxt]φt2(φx+ρ¯)2dx++φxt2(φtφx+ρ¯)xdx\displaystyle\displaystyle=\int_{\mathbb{R}_{+}}\left[\left(\frac{\varphi_{xx}^{2}}{2}\right)_{t}+\bar{\rho}_{x}\varphi_{xxt}\right]\frac{\varphi_{t}^{2}}{(\varphi_{x}+\bar{\rho})^{2}}\mathrm{d}x+\int_{\mathbb{R}_{+}}\varphi_{xt}^{2}\left(\frac{\varphi_{t}}{\varphi_{x}+\bar{\rho}}\right)_{x}\mathrm{d}x
=ddt+φt2(φx+ρ¯)2(12φxx2+ρ¯xφxx)dx++φxt2(φtφx+ρ¯)xdx\displaystyle\displaystyle=\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}\frac{\varphi_{t}^{2}}{(\varphi_{x}+\bar{\rho})^{2}}\left(\frac{1}{2}\varphi_{xx}^{2}+\bar{\rho}_{x}\varphi_{xx}\right)\mathrm{d}x+\int_{\mathbb{R}_{+}}\varphi_{xt}^{2}\left(\frac{\varphi_{t}}{\varphi_{x}+\bar{\rho}}\right)_{x}\mathrm{d}x
+(12φxx2+ρ¯xφxx)(φt2(φx+ρ¯)2)tdx\displaystyle\displaystyle\quad-\int_{\mathbb{R}_{+}}\left(\frac{1}{2}\varphi_{xx}^{2}+\bar{\rho}_{x}\varphi_{xx}\right)\left(\frac{\varphi_{t}^{2}}{(\varphi_{x}+\bar{\rho})^{2}}\right)_{t}\mathrm{d}x
=ddt+φt2(φx+ρ¯)2(12φxx2+ρ¯xφxx)dx+𝒟1+𝒟2.\displaystyle=\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}\frac{\varphi_{t}^{2}}{(\varphi_{x}+\bar{\rho})^{2}}\left(\frac{1}{2}\varphi_{xx}^{2}+\bar{\rho}_{x}\varphi_{xx}\right)\mathrm{d}x+\mathcal{D}_{1}+\mathcal{D}_{2}. (4.54)

Next, we estimate 𝒟1\mathcal{D}_{1} and 𝒟2\mathcal{D}_{2}. First, we utilize (2.4), (4.10) and (4.12) to get

𝒟1\displaystyle\displaystyle\mathcal{D}_{1} =+φxt2(φxtφx+ρ¯φt(φxx+ρ¯x)(φx+ρ¯)2)dx\displaystyle=\int_{\mathbb{R}_{+}}\varphi_{xt}^{2}\left(\frac{\varphi_{xt}}{\varphi_{x}+\bar{\rho}}-\frac{\varphi_{t}(\varphi_{xx}+\bar{\rho}_{x})}{\left(\varphi_{x}+\bar{\rho}\right)^{2}}\right)\mathrm{d}x
CφxtLφxt2+CφtL(φxxL+ρ¯xL)φxt2\displaystyle\displaystyle\leq C\|\varphi_{xt}\|_{L^{\infty}}\|\varphi_{xt}\|^{2}+C\|\varphi_{t}\|_{L^{\infty}}(\|\varphi_{xx}\|_{L^{\infty}}+\|\bar{\rho}_{x}\|_{L^{\infty}})\|\varphi_{xt}\|^{2}
C(ε+δ)φxt2,\displaystyle\displaystyle\leq C\left(\varepsilon+\delta\right)\|\varphi_{xt}\|^{2}, (4.55)

provided ε\varepsilon and δ\delta are suitably small. For 𝒟2\mathcal{D}_{2}, by using (2.4), (4.10), (4.12), Cauchy-Schwarz inequality and the Hardy inequality (4.14), we obtain

𝒟2\displaystyle\displaystyle\mathcal{D}_{2} =+(12φxx2+ρ¯xφxx)(2φtφtt(φx+ρ¯)22φt2φxt(φx+ρ¯)3)dx\displaystyle=-\int_{\mathbb{R}_{+}}\left(\frac{1}{2}\varphi_{xx}^{2}+\bar{\rho}_{x}\varphi_{xx}\right)\left(\frac{2\varphi_{t}\varphi_{tt}}{(\varphi_{x}+\bar{\rho})^{2}}-2\frac{\varphi_{t}^{2}\varphi_{xt}}{(\varphi_{x}+\bar{\rho})^{3}}\right)\mathrm{d}x
Cφxx2(φtLφttL+φtL2φxtL)\displaystyle\displaystyle\leq C\|\varphi_{xx}\|^{2}\left(\|\varphi_{t}\|_{L^{\infty}}\|\varphi_{tt}\|_{L^{\infty}}+\|\varphi_{t}\|_{L^{\infty}}^{2}\|\varphi_{xt}\|_{L^{\infty}}\right)
+CδφxxeλxφtL2φttL+Cρ¯LφtL2φxt\displaystyle\displaystyle\quad+C\delta\|\varphi_{xx}\|\|{\mathop{\mathrm{e}}}^{-\lambda x}\varphi_{t}\|_{L^{2}}\|\varphi_{tt}\|_{L^{\infty}}+C\|\bar{\rho}\|_{L^{\infty}}\|\varphi_{t}\|_{L^{\infty}}^{2}\|\varphi_{xt}\|
C(δ+ε)(φxt,φxx)2,\displaystyle\displaystyle\leq C\left(\delta+\varepsilon\right)\|(\varphi_{xt},\varphi_{xx})\|^{2}, (4.56)

where we have used the following inequality

φttLC(p(ρ¯)φx)xL+CφtL+1L+2L+CLCε,\displaystyle\displaystyle\|\varphi_{tt}\|_{L^{\infty}}\leq C\|\left(p^{\prime}(\bar{\rho})\varphi_{x}\right)_{x}\|_{L^{\infty}}+C\|\varphi_{t}\|_{L^{\infty}}+\|\mathcal{F}_{1}\|_{L^{\infty}}+\|\mathcal{F}_{2}\|_{L^{\infty}}+C\|\mathcal{H}\|_{L^{\infty}}\leq C\varepsilon, (4.57)

due to (2.4), (4.3a), (4.4), (4.5), (4.10) and (4.12). With (4.3) and (4.3), we update (4.3) as

+xφxtdx\displaystyle\displaystyle\int_{\mathbb{R}_{+}}\mathcal{H}_{x}\varphi_{xt}\mathrm{d}x ddt+φt2(φx+ρ¯)2(12φxx2+ρ¯xφxx)dx+C(δ+ε)(φxt,φxx)2.\displaystyle\displaystyle\leq\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}\frac{\varphi_{t}^{2}}{(\varphi_{x}+\bar{\rho})^{2}}\left(\frac{1}{2}\varphi_{xx}^{2}+\bar{\rho}_{x}\varphi_{xx}\right)\mathrm{d}x+C\left(\delta+\varepsilon\right)\|(\varphi_{xt},\varphi_{xx})\|^{2}. (4.58)

Substituting (4.3), (4.3), (4.3) and (4.58) into (4.3), we get

12ddt+(φxt2+p(ρ¯)φxx22μρ¯Φxφxx)dx+αφxt2\displaystyle\displaystyle\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}(\varphi_{xt}^{2}+p^{\prime}(\bar{\rho})\varphi_{xx}^{2}-2\mu\bar{\rho}\Phi_{x}\varphi_{xx})\mathrm{d}x+\alpha\|\varphi_{xt}\|^{2}
12ddt+[p(φx+ρ¯)p(ρ¯)]φxx2dxddt+[p(φx+ρ¯)p(ρ¯)p′′(ρ¯)φx]ρ¯xφxxdx\displaystyle~{}\displaystyle\leq-\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}[p^{\prime}(\varphi_{x}+\bar{\rho})-p^{\prime}(\bar{\rho})]\varphi_{xx}^{2}\mathrm{d}x-\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}[p^{\prime}(\varphi_{x}+\bar{\rho})-p^{\prime}(\bar{\rho})-p^{\prime\prime}(\bar{\rho})\varphi_{x}]\bar{\rho}_{x}\varphi_{xx}\mathrm{d}x
+ddt+μ(φxΦx+φxϕ¯x)φxxdx+ddt+φt2(φx+ρ¯)2(12φxx2+ρ¯xφxx)dx\displaystyle~{}\displaystyle\quad+\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}\mu(\varphi_{x}\Phi_{x}+\varphi_{x}\bar{\phi}_{x})\varphi_{xx}\mathrm{d}x+\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}\frac{\varphi_{t}^{2}}{(\varphi_{x}+\bar{\rho})^{2}}\left(\frac{1}{2}\varphi_{xx}^{2}+\bar{\rho}_{x}\varphi_{xx}\right)\mathrm{d}x
+C(δ+ε)(φxt,φxx,Φxt)2μ+ρ¯Φxtφxxdx.\displaystyle~{}\displaystyle\quad+C(\delta+\varepsilon)\|(\varphi_{xt},\varphi_{xx},\Phi_{xt})\|^{2}-\mu\int_{\mathbb{R}_{+}}\bar{\rho}\Phi_{xt}\varphi_{xx}\mathrm{d}x. (4.59)

Multiplying (4.37b) by μaρ¯Φxt\frac{\mu}{a}\bar{\rho}\Phi_{xt}, and integrating it to get

μb2addt+ρ¯Φx2dx+μ2addt+ρ¯Φxx2dx+μa+ρ¯Φxt2dx\displaystyle\displaystyle\frac{\mu b}{2a}\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}\bar{\rho}\Phi_{x}^{2}\mathrm{d}x+\frac{\mu}{2a}\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}\bar{\rho}\Phi_{xx}^{2}\mathrm{d}x+\frac{\mu}{a}\int_{\mathbb{R}_{+}}\bar{\rho}\Phi_{xt}^{2}\mathrm{d}x
=μaρ¯ΦxxΦxt|x=0+μ+ρ¯φxxΦxtdx+ΦxxΦxtρ¯xdx,\displaystyle~{}\displaystyle=-\left.\frac{\mu}{a}\bar{\rho}\Phi_{xx}\Phi_{xt}\right|_{x=0}+\mu\int_{\mathbb{R}_{+}}\bar{\rho}\varphi_{xx}\Phi_{xt}\mathrm{d}x-\int_{\mathbb{R}_{+}}\Phi_{xx}\Phi_{xt}\bar{\rho}_{x}\mathrm{d}x, (4.60)

where, in view of (2.4), (4.44), the Sobolev inequality fLCf12fx12\|f\|_{L^{\infty}}\leq C\|f\|^{\frac{1}{2}}\|f_{x}\|^{\frac{1}{2}} and Cauchy-Schwarz inequality, the following inequalities hold:

+ΦxxΦxtρ¯xdx\displaystyle\displaystyle-\int_{\mathbb{R}_{+}}\Phi_{xx}\Phi_{xt}\bar{\rho}_{x}\mathrm{d}x Cρ¯xLΦxxΦxtCδ(Φxt,Φxx)2,\displaystyle\leq C\|\bar{\rho}_{x}\|_{L^{\infty}}\|\Phi_{xx}\|\|\Phi_{xt}\|\leq C\delta\|(\Phi_{xt},\Phi_{xx})\|^{2},
μaρ¯ΦxxΦxt|x=0\displaystyle\displaystyle-\left.\frac{\mu}{a}\bar{\rho}\Phi_{xx}\Phi_{xt}\right|_{x=0} CφxLΦxtL\displaystyle\leq C\|\varphi_{x}\|_{L^{\infty}}\|\Phi_{xt}\|_{L^{\infty}}
Cφx12φxx12Φxt12Φxxt12\displaystyle\leq C\|\varphi_{x}\|^{\frac{1}{2}}\|\varphi_{xx}\|^{\frac{1}{2}}\|\Phi_{xt}\|^{\frac{1}{2}}\|\Phi_{xxt}\|^{\frac{1}{2}}
Cφx12Φxxt12(Φxt+φxx)\displaystyle\leq C\|\varphi_{x}\|^{\frac{1}{2}}\|\Phi_{xxt}\|^{\frac{1}{2}}(\|\Phi_{xt}\|+\|\varphi_{xx}\|)
η(Φxt,φxx)2+CηφxΦxxt\displaystyle\leq\eta\|(\Phi_{xt},\varphi_{xx})\|^{2}+C_{\eta}\|\varphi_{x}\|\|\Phi_{xxt}\|

for any η>0\eta>0. Then, combining (4.3) with (4.3) gives

12ddt+(φxt2+p(ρ¯)φxx22μρ¯Φxφxx+μbaρ¯Φx2+μaρ¯Φxx2)dx+CΦxt2+αφxt2\displaystyle\displaystyle\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}\left(\varphi_{xt}^{2}+p^{\prime}(\bar{\rho})\varphi_{xx}^{2}-2\mu\bar{\rho}\Phi_{x}\varphi_{xx}+\frac{\mu b}{a}\bar{\rho}\Phi_{x}^{2}+\frac{\mu}{a}\bar{\rho}\Phi_{xx}^{2}\right)\mathrm{d}x+C\|\Phi_{xt}\|^{2}+\alpha\|\varphi_{xt}\|^{2}
12ddt+[p(φx+ρ¯)p(ρ¯)]φxx2dx+ddt+[p(φx+ρ¯)p(ρ¯)p′′(ρ¯)φx]ρ¯xφxxdx\displaystyle~{}\displaystyle\leq-\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}[p^{\prime}(\varphi_{x}+\bar{\rho})-p^{\prime}(\bar{\rho})]\varphi_{xx}^{2}\mathrm{d}x+\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}[p^{\prime}(\varphi_{x}+\bar{\rho})-p^{\prime}(\bar{\rho})-p^{\prime\prime}(\bar{\rho})\varphi_{x}]\bar{\rho}_{x}\varphi_{xx}\mathrm{d}x
+ddt+μ(φxΦx+φxϕ¯x)φxxdx+ddt+φt2(φx+ρ¯)2(12φxx2+ρ¯xφxx)dx\displaystyle~{}\displaystyle\quad+\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}\mu(\varphi_{x}\Phi_{x}+\varphi_{x}\bar{\phi}_{x})\varphi_{xx}\mathrm{d}x+\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}\frac{\varphi_{t}^{2}}{(\varphi_{x}+\bar{\rho})^{2}}\left(\frac{1}{2}\varphi_{xx}^{2}+\bar{\rho}_{x}\varphi_{xx}\right)\mathrm{d}x
+C(δ+ε)(φxt,φxx,Φxt)2+η(Φxt,φxx)2+CηφxΦxxt\displaystyle~{}\displaystyle\quad+C(\delta+\varepsilon)\|(\varphi_{xt},\varphi_{xx},\Phi_{xt})\|^{2}+\eta\|(\Phi_{xt},\varphi_{xx})\|^{2}+C_{\eta}\|\varphi_{x}\|\|\Phi_{xxt}\| (4.61)

for any η>0\eta>0, provided ε\varepsilon and δ\delta are suitably small, where we have used (4.11).

Finally, similar to the proof of Lemma 4.2, adding (4.3) with (4.3) multiplied by a constant K1>2αK_{1}>\frac{2}{\alpha}, it follows that

ddt𝒢1(t)+C(φxx,Φx,Φxx,Φxt)2+(K1α1)φxt2\displaystyle\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{G}_{1}(t)+C\|(\varphi_{xx},\Phi_{x},\Phi_{xx},\Phi_{xt})\|^{2}+\left(K_{1}\alpha-1\right)\|\varphi_{xt}\|^{2}
C(δ+ε)(φxt,φxx,Φxt)2+η(Φxt,φxx)2+CηφxΦxxt+Cηφx2,\displaystyle~{}\displaystyle\leq C(\delta+\varepsilon)\|(\varphi_{xt},\varphi_{xx},\Phi_{xt})\|^{2}+\eta\|(\Phi_{xt},\varphi_{xx})\|^{2}+C_{\eta}\|\varphi_{x}\|\|\Phi_{xxt}\|+C_{\eta}\|\varphi_{x}\|^{2}, (4.62)

where K1α1>1K_{1}\alpha-1>1, 𝒢1(t)\mathcal{G}_{1}(t) is given by

𝒢1(t):\displaystyle\displaystyle\mathcal{G}_{1}(t): =+{K12φxt2+α2φx2+φxφxt+μρ¯2aΦx2+K12[p(ρ¯)φxx22μρ¯Φxφxx+μρ¯a(bΦx2+Φxx2)]}dx\displaystyle=\int_{\mathbb{R}_{+}}\left\{\frac{K_{1}}{2}\varphi_{xt}^{2}+\frac{\alpha}{2}\varphi_{x}^{2}+\varphi_{x}\varphi_{xt}+\frac{\mu\bar{\rho}}{2a}\Phi_{x}^{2}+\frac{K_{1}}{2}\Big{[}p^{\prime}(\bar{\rho})\varphi_{xx}^{2}-2\mu\bar{\rho}\Phi_{x}\varphi_{xx}+\frac{\mu\bar{\rho}}{a}(b\Phi_{x}^{2}+\Phi_{xx}^{2})\Big{]}\right\}\mathrm{d}x
+K12+[p(φx+ρ¯)p(ρ¯)]φxx2dx+K1[p(φx+ρ¯)p(ρ¯)p′′(ρ¯)φx]ρ¯xφxxdx\displaystyle~{}\displaystyle\quad+\frac{K_{1}}{2}\int_{\mathbb{R}_{+}}[p^{\prime}(\varphi_{x}+\bar{\rho})-p^{\prime}(\bar{\rho})]\varphi_{xx}^{2}\mathrm{d}x-\int_{\mathbb{R}_{+}}K_{1}[p^{\prime}(\varphi_{x}+\bar{\rho})-p^{\prime}(\bar{\rho})-p^{\prime\prime}(\bar{\rho})\varphi_{x}]\bar{\rho}_{x}\varphi_{xx}\mathrm{d}x
+μK1(φxΦx+φxϕ¯x)φxxdx+K1+φt2(φx+ρ¯)2(12φxx2+ρ¯xφxx)dx\displaystyle~{}\displaystyle\quad-\int_{\mathbb{R}_{+}}\mu K_{1}(\varphi_{x}\Phi_{x}+\varphi_{x}\bar{\phi}_{x})\varphi_{xx}\mathrm{d}x+K_{1}\int_{\mathbb{R}_{+}}\frac{\varphi_{t}^{2}}{(\varphi_{x}+\bar{\rho})^{2}}\left(\frac{1}{2}\varphi_{xx}^{2}+\bar{\rho}_{x}\varphi_{xx}\right)\mathrm{d}x
=𝒢1,0+𝒢1,1+𝒢1,2+𝒢1,3+𝒢1,4.\displaystyle\displaystyle=\mathcal{G}_{1,0}+\mathcal{G}_{1,1}+\mathcal{G}_{1,2}+\mathcal{G}_{1,3}+\mathcal{G}_{1,4}. (4.63)

Taking K1K_{1} large enough such that

K12φxt2+α2φx2+φxφxtC(φxt2+φx2)\displaystyle\displaystyle\frac{K_{1}}{2}\varphi_{xt}^{2}+\frac{\alpha}{2}\varphi_{x}^{2}+\varphi_{x}\varphi_{xt}\geq C\left(\varphi_{xt}^{2}+\varphi_{x}^{2}\right)

for some constant C>0C>0 independent of tt, recalling (4.48), we have

𝒢1,0(φx,φxx,φxt,Φx,Φxx)2.\displaystyle\displaystyle\mathcal{G}_{1,0}\sim\|(\varphi_{x},\varphi_{xx},\varphi_{xt},\Phi_{x},\Phi_{xx})\|^{2}.

By (1.6), (2.4), (4.10), (4.12), Cauchy-Schwarz inequality and the Taylor expansion, we have

𝒢1,1\displaystyle\displaystyle\mathcal{G}_{1,1} Cρ¯xLφxφxxCδ(φx,φxx)2,\displaystyle\leq C\|\bar{\rho}_{x}\|_{L^{\infty}}\|\varphi_{x}\|\|\varphi_{xx}\|\leq C\delta\|(\varphi_{x},\varphi_{xx})\|^{2},
𝒢1,2\displaystyle\displaystyle\mathcal{G}_{1,2} Cφxxρ¯xLφx2Cδ(φx,φxx)2,\displaystyle\leq C\|\varphi_{xx}\|\|\bar{\rho}_{x}\|_{L^{\infty}}\|\varphi_{x}\|^{2}\leq C\delta\|(\varphi_{x},\varphi_{xx})\|^{2},
𝒢1,3\displaystyle\displaystyle\mathcal{G}_{1,3} Cφxx(φxΦxL+ϕ¯xLφx)C(ε+δ)(φx,φxx)2,\displaystyle\leq C\|\varphi_{xx}\|\left(\|\varphi_{x}\|\|\Phi_{x}\|_{L^{\infty}}+\|\bar{\phi}_{x}\|_{L^{\infty}}\|\varphi_{x}\|\right)\leq C\left(\varepsilon+\delta\right)\|(\varphi_{x},\varphi_{xx})\|^{2},
𝒢1,4\displaystyle\displaystyle\mathcal{G}_{1,4} Cφxx(φxΦxL+ϕ¯xLφx)C(ε+δ)(φx,φxx)2.\displaystyle\leq C\|\varphi_{xx}\|\left(\|\varphi_{x}\|\|\Phi_{x}\|_{L^{\infty}}+\|\bar{\phi}_{x}\|_{L^{\infty}}\|\varphi_{x}\|\right)\leq C\left(\varepsilon+\delta\right)\|(\varphi_{x},\varphi_{xx})\|^{2}.

Therefore, for sufficiently small ε\varepsilon and δ\delta, we have from (4.3) that

𝒢1\displaystyle\displaystyle\mathcal{G}_{1} (φx,φxx,φxt,Φx,Φxx)2.\displaystyle\sim\|(\varphi_{x},\varphi_{xx},\varphi_{xt},\Phi_{x},\Phi_{xx})\|^{2}. (4.64)

With (4.64), after integrating (4.3) over (0,t)(0,t) and taking ε\varepsilon, δ\delta, η\eta sufficiently small, we get (4.3) and thus finish the proof of Lemma 4.3. ∎

To close the a priori assumption (4.9), some higher-order estimates of solutions are needed. Let us begin with the estimates on (φxxx,φxxt)(\varphi_{xxx},\varphi_{xxt}).

Lemma 4.4.

Let the assumptions in Proposition 4.2 hold. If ε\varepsilon and δ\delta are sufficiently small, then the solution (φ,Φ)(\varphi,\Phi) of (4.3a)–(4.3d) satisfies

(φxxx,φxxt)2+0tφxxτ2dτ\displaystyle\displaystyle\|(\varphi_{xxx},\varphi_{xxt})\|^{2}+\int_{0}^{t}\|\varphi_{xx\tau}\|^{2}\mathrm{d}\tau
C(δ+ε)0t(Φxxτ,φxxx)2dτ+C0t((φx,φτ)12+(Φxτ,Φxx)2+Φxττ2)dτ\displaystyle~{}\displaystyle\leq C(\delta+\varepsilon)\int_{0}^{t}\|(\Phi_{xx\tau},\varphi_{xxx})\|^{2}\mathrm{d}\tau+C\int_{0}^{t}\left(\|(\varphi_{x},\varphi_{\tau})\|_{1}^{2}+\|(\Phi_{x\tau},\Phi_{xx})\|^{2}+\|\Phi_{x\tau\tau}\|^{2}\right)\mathrm{d}\tau
+C((φ0x,ψ0)22+Φ0xx2)+C((φx,φτ)12+(Φxx,Φxτ)2)\displaystyle~{}\quad+C\left(\|(\varphi_{0x},\psi_{0})\|_{2}^{2}+\|\Phi_{0xx}\|^{2}\right)+C\left(\|(\varphi_{x},\varphi_{\tau})\|_{1}^{2}+\|(\Phi_{xx},\Phi_{x\tau})\|^{2}\right) (4.65)

for any t(0,T)t\in(0,T), where the constant C>0C>0 is independent of TT.

Proof.

Multiplying (4.37a) by ((p(ρ¯)φx)xx+x)t-((p^{\prime}(\bar{\rho})\varphi_{x})_{xx}+\mathcal{F}_{x})_{t} followed by an integration over +\mathbb{R}_{+}, we obtain

12ddt+p(ρ¯)φxxt2dx+α+p(ρ¯)φxxt2dx\displaystyle\displaystyle\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}p^{\prime}(\bar{\rho})\varphi_{xxt}^{2}\mathrm{d}x+\alpha\int_{\mathbb{R}_{+}}p^{\prime}(\bar{\rho})\varphi_{xxt}^{2}\mathrm{d}x
=ddt+(φxxt+αφxx)tdx12ddt+[(p(ρ¯)φx)xx+x]2dx\displaystyle~{}\displaystyle=-\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}(\varphi_{xxt}+\alpha\varphi_{xx})\mathcal{F}_{t}\mathrm{d}x-\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}[(p^{\prime}(\bar{\rho})\varphi_{x})_{xx}+\mathcal{F}_{x}]^{2}\mathrm{d}x
ddt+φxxtp(ρ¯)ρ¯xφxtdx++φxxtp(ρ¯)ρ¯x(φxttφxt)dx1\displaystyle~{}\displaystyle\quad-\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}\varphi_{xxt}p^{\prime}(\bar{\rho})\bar{\rho}_{x}\varphi_{xt}\mathrm{d}x+\underbrace{\int_{\mathbb{R}_{+}}\varphi_{xxt}p^{\prime}(\bar{\rho})\bar{\rho}_{x}\left(\varphi_{xtt}-\varphi_{xt}\right)\mathrm{d}x}_{\mathcal{I}_{1}}
++(φxxt+αφxx)ttdx2+x((p(ρ¯)φx)xx+x)tdx3.\displaystyle~{}\displaystyle\quad\underbrace{+\int_{\mathbb{R}_{+}}(\varphi_{xxt}+\alpha\varphi_{xx})\mathcal{F}_{tt}\mathrm{d}x}_{\mathcal{I}_{2}}\underbrace{-\int_{\mathbb{R}_{+}}\mathcal{H}_{x}((p^{\prime}(\bar{\rho})\varphi_{x})_{xx}+\mathcal{F}_{x})_{t}\mathrm{d}x}_{\mathcal{I}_{3}}. (4.66)

Denote

𝒢2(t):\displaystyle\displaystyle\mathcal{G}_{2}(t): =12+p(ρ¯)φxxt2dx++(φxxt+αφxx)tdx\displaystyle=\frac{1}{2}\int_{\mathbb{R}_{+}}p^{\prime}(\bar{\rho})\varphi_{xxt}^{2}\mathrm{d}x+\int_{\mathbb{R}_{+}}(\varphi_{xxt}+\alpha\varphi_{xx})\mathcal{F}_{t}\mathrm{d}x
+12+[(p(ρ¯)φx)xx+x]2dx++φxxtp(ρ¯)ρ¯xφxtdx,\displaystyle\displaystyle\quad+\frac{1}{2}\int_{\mathbb{R}_{+}}[(p^{\prime}(\bar{\rho})\varphi_{x})_{xx}+\mathcal{F}_{x}]^{2}\mathrm{d}x+\int_{\mathbb{R}_{+}}\varphi_{xxt}p^{\prime}(\bar{\rho})\bar{\rho}_{x}\varphi_{xt}\mathrm{d}x,

then (4.3) can be rewritten as

ddt𝒢2(t)+α+p(ρ¯)φxxt2dx=1+2+3.\displaystyle\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{G}_{2}(t)+\alpha\int_{\mathbb{R}_{+}}p^{\prime}(\bar{\rho})\varphi_{xxt}^{2}\mathrm{d}x=\mathcal{I}_{1}+\mathcal{I}_{2}+\mathcal{I}_{3}. (4.67)

Noting that

t\displaystyle\displaystyle\mathcal{F}_{t} =[p(φx+ρ¯)p(ρ¯)]φxxt+[p′′(φx+ρ¯)p′′(ρ¯)]φxtρ¯x+p′′(φx+ρ¯)φxtφxx\displaystyle=[p^{\prime}(\varphi_{x}+\bar{\rho})-p^{\prime}(\bar{\rho})]\varphi_{xxt}+[p^{\prime\prime}(\varphi_{x}+\bar{\rho})-p^{\prime\prime}(\bar{\rho})]\varphi_{xt}\bar{\rho}_{x}+p^{\prime\prime}(\varphi_{x}+\bar{\rho})\varphi_{xt}\varphi_{xx}
μ(φxtΦx+φxΦxt+φxtϕ¯x+ρ¯Φxt),\displaystyle\quad\displaystyle-\mu\left(\varphi_{xt}\Phi_{x}+\varphi_{x}\Phi_{xt}+\varphi_{xt}\bar{\phi}_{x}+\bar{\rho}\Phi_{xt}\right),

we utilize (1.6), (2.4), (4.10), (4.11) and the mean value theorem to get

|t|Cε|φxxt|+C(ε+δ)(|φxt|+|Φxt|)+C|Φxt|Cε|φxxt|+C(|φxt|+|Φxt|).\displaystyle\displaystyle\left|\mathcal{F}_{t}\right|\leq C\varepsilon\left|\varphi_{xxt}\right|+C(\varepsilon+\delta)\left(\left|\varphi_{xt}\right|+\left|\Phi_{xt}\right|\right)+C\left|\Phi_{xt}\right|\leq C\varepsilon\left|\varphi_{xxt}\right|+C\left(\left|\varphi_{xt}\right|+\left|\Phi_{xt}\right|\right).

Then by (2.4) and Cauchy-Schwarz inequality, we have

|+φxxtp(ρ¯)ρ¯xφxtdx|+|+(φxxt+αφxx)tdx|\displaystyle\displaystyle\left|\int_{\mathbb{R}_{+}}\varphi_{xxt}p^{\prime}(\bar{\rho})\bar{\rho}_{x}\varphi_{xt}\mathrm{d}x\right|+\left|\int_{\mathbb{R}_{+}}(\varphi_{xxt}+\alpha\varphi_{xx})\mathcal{F}_{t}\mathrm{d}x\right|
C(ε+δ)φxxt2+C(φxx,φxt,Φxt)2.\displaystyle~{}\displaystyle\leq C(\varepsilon+\delta)\left\|\varphi_{xxt}\right\|^{2}+C\|(\varphi_{xx},\varphi_{xt},\Phi_{xt})\|^{2}. (4.68)

A direct computation leads to

x\displaystyle\displaystyle\mathcal{F}_{x} =[p(φx+ρ¯)p(ρ¯)p′′(ρ¯)φx]ρ¯xx+[p(φx+ρ¯)p(ρ¯)]φxxx\displaystyle=[p^{\prime}(\varphi_{x}+\bar{\rho})-p^{\prime}(\bar{\rho})-p^{\prime\prime}(\bar{\rho})\varphi_{x}]\bar{\rho}_{xx}+[p^{\prime}(\varphi_{x}+\bar{\rho})-p^{\prime}(\bar{\rho})]\varphi_{xxx}
+[p′′(φx+ρ¯)p′′(ρ¯)p′′′(ρ¯)φx]ρ¯x2+2[p′′(φx+ρ¯)p′′(ρ¯)]φxxρ¯x\displaystyle\displaystyle\quad+[p^{\prime\prime}(\varphi_{x}+\bar{\rho})-p^{\prime\prime}(\bar{\rho})-p^{\prime\prime\prime}(\bar{\rho})\varphi_{x}]\bar{\rho}_{x}^{2}+2[p^{\prime\prime}(\varphi_{x}+\bar{\rho})-p^{\prime\prime}(\bar{\rho})]\varphi_{xx}\bar{\rho}_{x}
+p′′(φx+ρ¯)φxx2+φxxΦx+φxΦxx+φxxϕ¯x+ρ¯Φxx,\displaystyle\displaystyle\quad+p^{\prime\prime}(\varphi_{x}+\bar{\rho})\varphi_{xx}^{2}+\varphi_{xx}\Phi_{x}+\varphi_{x}\Phi_{xx}+\varphi_{xx}\bar{\phi}_{x}+\bar{\rho}\Phi_{xx}, (4.69)
(p(ρ¯)φx)xx\displaystyle\displaystyle(p^{\prime}(\bar{\rho})\varphi_{x})_{xx} =p(ρ¯)φxxx+2p′′(ρ¯)ρ¯xφxx+p′′(ρ¯)ρ¯xxφx+p′′′(ρ¯)ρ¯x2φx.\displaystyle=p^{\prime}(\bar{\rho})\varphi_{xxx}+2p^{\prime\prime}(\bar{\rho})\bar{\rho}_{x}\varphi_{xx}+p^{\prime\prime}(\bar{\rho})\bar{\rho}_{xx}\varphi_{x}+p^{\prime\prime\prime}(\bar{\rho})\bar{\rho}_{x}^{2}\varphi_{x}. (4.70)

Combining the above identities with (1.6), (2.4), (4.10)–(4.12) and the Taylor expansion yields that

|x|Cε|φxxx|+C(ε+δ)(|φxx|+|φx|)+C|Φxx|,\displaystyle\displaystyle\left|\mathcal{F}_{x}\right|\leq C\varepsilon\left|\varphi_{xxx}\right|+C(\varepsilon+\delta)\left(\left|\varphi_{xx}\right|+\left|\varphi_{x}\right|\right)+C\left|\Phi_{xx}\right|, (4.71)
|(p(ρ¯)φx)xxp(ρ¯)φxxx|Cδ(|φx|+|φxx|).\displaystyle\displaystyle\left|(p^{\prime}(\bar{\rho})\varphi_{x})_{xx}-p^{\prime}(\bar{\rho})\varphi_{xxx}\right|\leq C\delta(\left|\varphi_{x}\right|+\left|\varphi_{xx}\right|). (4.72)

We thus deduce that

+[(p(ρ¯)φx)xx+x]2dx=+|p(ρ¯)φxxx+(p(ρ¯)φx)xxp(ρ¯)φxxx+x|2dx\displaystyle\displaystyle\int_{\mathbb{R}_{+}}[(p^{\prime}(\bar{\rho})\varphi_{x})_{xx}+\mathcal{F}_{x}]^{2}\mathrm{d}x=\int_{\mathbb{R}_{+}}\left|p^{\prime}(\bar{\rho})\varphi_{xxx}+(p^{\prime}(\bar{\rho})\varphi_{x})_{xx}-p^{\prime}(\bar{\rho})\varphi_{xxx}+\mathcal{F}_{x}\right|^{2}\mathrm{d}x
+|p(ρ¯)φxxx|2dx2+|p(ρ¯)φxxx|(|x|+|(p(ρ¯)φx)xp(ρ¯)φxxx|)dx\displaystyle~{}\displaystyle\geq\int_{\mathbb{R}_{+}}\left|p^{\prime}(\bar{\rho})\varphi_{xxx}\right|^{2}\mathrm{d}x-2\int_{\mathbb{R}_{+}}\left|p^{\prime}(\bar{\rho})\varphi_{xxx}\right|\left(\left|\mathcal{F}_{x}\right|+\left|(p^{\prime}(\bar{\rho})\varphi_{x})_{x}-p^{\prime}(\bar{\rho})\varphi_{xxx}\right|\right)\mathrm{d}x
12+|p(ρ¯)φxxx|2dxC(φx,φxx,Φxx)2\displaystyle~{}\displaystyle\geq\frac{1}{2}\int_{\mathbb{R}_{+}}\left|p^{\prime}(\bar{\rho})\varphi_{xxx}\right|^{2}\mathrm{d}x-C\|(\varphi_{x},\varphi_{xx},\Phi_{xx})\|^{2} (4.73)

for suitably small ε\varepsilon and δ\delta, and that

+[(p(ρ¯)φx)xx+x]2dxC(φx22+Φxx2).\displaystyle\displaystyle\int_{\mathbb{R}_{+}}[(p^{\prime}(\bar{\rho})\varphi_{x})_{xx}+\mathcal{F}_{x}]^{2}\mathrm{d}x\leq C\left(\|\varphi_{x}\|_{2}^{2}+\|\Phi_{xx}\|^{2}\right). (4.74)

Here (1.6), (4.11) and Cauchy-Schwarz inequality have been used. Thanks to (4.3), (4.3) and (4.74), it follows that

{𝒢2(t)C(φxt12+φx22+(Φxx,Φxt)2),𝒢2(t)C(φxxt,φxxx)2C(φx12+(Φxx,Φxt,φxt)2).\displaystyle\begin{cases}\mathcal{G}_{2}(t)\leq C\left(\|\varphi_{xt}\|_{1}^{2}+\|\varphi_{x}\|_{2}^{2}+\|(\Phi_{xx},\Phi_{xt})\|^{2}\right),\\ \displaystyle\mathcal{G}_{2}(t)\geq C\|(\varphi_{xxt},\varphi_{xxx})\|^{2}-C\left(\|\varphi_{x}\|_{1}^{2}+\|(\Phi_{xx},\Phi_{xt},\varphi_{xt})\|^{2}\right).\end{cases} (4.75)

where we have used (1.6) and the bounds of ρ¯\bar{\rho}. Now let us turn to the estimates of i\mathcal{I}_{i}. From (4.3a), we get

φxtt=(p(ρ¯)φx)xxαφxt+x+x.\displaystyle\displaystyle\varphi_{xtt}=\left(p^{\prime}(\bar{\rho})\varphi_{x}\right)_{xx}-\alpha\varphi_{xt}+\mathcal{F}_{x}+\mathcal{H}_{x}. (4.76)

A direct computation leads to

x\displaystyle\displaystyle\mathcal{H}_{x} =2φtx2+2φtφtxxφx+ρ¯4φtφtx(φxx+ρ¯x)(φx+ρ¯)2φt2(φxxx+ρ¯xx)(φx+ρ¯)2+2φt2(φxx+ρ¯x)2(φx+ρ¯)3.\displaystyle=\frac{2\varphi_{tx}^{2}+2\varphi_{t}\varphi_{txx}}{\varphi_{x}+\bar{\rho}}-\frac{4\varphi_{t}\varphi_{tx}(\varphi_{xx}+\bar{\rho}_{x})}{(\varphi_{x}+\bar{\rho})^{2}}-\frac{\varphi_{t}^{2}(\varphi_{xxx}+\bar{\rho}_{xx})}{(\varphi_{x}+\bar{\rho})^{2}}+\frac{2\varphi_{t}^{2}(\varphi_{xx}+\bar{\rho}_{x})^{2}}{(\varphi_{x}+\bar{\rho})^{3}}. (4.77)

This along with (1.6), (2.4), (4.10) and (4.12) implies that

|x|Cε(|φxxx|+|φxxt|)+C(|φxt|+|φt|)\displaystyle\displaystyle\left|\mathcal{H}_{x}\right|\leq C\varepsilon(\left|\varphi_{xxx}\right|+\left|\varphi_{xxt}\right|)+C\left(\left|\varphi_{xt}\right|+\left|\varphi_{t}\right|\right) (4.78)

for sufficiently small ε\varepsilon and δ\delta. Therefore, it holds that

φxttC(p(ρ¯)φx)xx+αφxt+x+xC((φx,φt)2+Φxx),\displaystyle\displaystyle\|\varphi_{xtt}\|\leq C\|\left(p^{\prime}(\bar{\rho})\varphi_{x}\right)_{xx}\|+\|\alpha\varphi_{xt}\|+\|\mathcal{F}_{x}\|+\|\mathcal{H}_{x}\|\leq C\left(\|(\varphi_{x},\varphi_{t})\|_{2}+\|\Phi_{xx}\|\right), (4.79)

where we have used (1.6), (2.4), (4.11), (4.71) and (4.78). Resorting to (2.4), (4.79) and Cauchy-Schwarz inequality, we get

1Cδφxxt(φxtt,φxt)Cδ(φxxx,φxxt)2+C((φx,φt)12+Φxx2).\displaystyle\displaystyle\mathcal{I}_{1}\leq C\delta\|\varphi_{xxt}\|\|(\varphi_{xtt},\varphi_{xt})\|\leq C\delta\|(\varphi_{xxx},\varphi_{xxt})\|^{2}+C\left(\|(\varphi_{x},\varphi_{t})\|_{1}^{2}+\left\|\Phi_{xx}\right\|^{2}\right).

For 2\mathcal{I}_{2}, a direct computation gives

tt\displaystyle\displaystyle\mathcal{F}_{tt} =[p(φx+ρ¯)p(ρ¯)]φxxtt+2p′′(φx+ρ¯)φxtφxxt+[p′′(φx+ρ¯)p′′(ρ¯)]φxttρ¯x\displaystyle=[p^{\prime}(\varphi_{x}+\bar{\rho})-p^{\prime}(\bar{\rho})]\varphi_{xxtt}+2p^{\prime\prime}(\varphi_{x}+\bar{\rho})\varphi_{xt}\varphi_{xxt}+[p^{\prime\prime}(\varphi_{x}+\bar{\rho})-p^{\prime\prime}(\bar{\rho})]\varphi_{xtt}\bar{\rho}_{x}
+p′′′(φx+ρ¯)φxt2ρ¯x+p′′′(φx+ρ¯)φxt2φxx+p′′(φx+ρ¯)φxttφxx\displaystyle\displaystyle\quad+p^{\prime\prime\prime}(\varphi_{x}+\bar{\rho})\varphi_{xt}^{2}\bar{\rho}_{x}+p^{\prime\prime\prime}(\varphi_{x}+\bar{\rho})\varphi_{xt}^{2}\varphi_{xx}+p^{\prime\prime}(\varphi_{x}+\bar{\rho})\varphi_{xtt}\varphi_{xx}
μ(φxttΦx+2φxtΦxt+φxΦxtt+φxttϕ¯x+ρ¯Φxtt)\displaystyle\displaystyle\quad-\mu\left(\varphi_{xtt}\Phi_{x}+2\varphi_{xt}\Phi_{xt}+\varphi_{x}\Phi_{xtt}+\varphi_{xtt}\bar{\phi}_{x}+\bar{\rho}\Phi_{xtt}\right)
=[p(φx+ρ¯)p(ρ¯)]φxxtt+𝒥,\displaystyle\displaystyle=[p^{\prime}(\varphi_{x}+\bar{\rho})-p^{\prime}(\bar{\rho})]\varphi_{xxtt}+\mathcal{J},

where, due to (1.6), (2.4) and (4.10), 𝒥\mathcal{J} can be estimated as follows

|𝒥|C(ε+δ)(|φxtt|+|φxt|+|Φxt|)+Cε|φxxt|+C|Φxtt|.\displaystyle\displaystyle\left|\mathcal{J}\right|\leq C(\varepsilon+\delta)\left(\left|\varphi_{xtt}\right|+\left|\varphi_{xt}\right|+\left|\Phi_{xt}\right|\right)+C\varepsilon\left|\varphi_{xxt}\right|+C\left|\Phi_{xtt}\right|.

Then, owing to (1.6), (4.10)–(4.12), (4.79), Cauchy-Schwarz inequality and the mean value theorem, we have

2\displaystyle\displaystyle\mathcal{I}_{2} =+(φxxt+αφxx)([p(φx+ρ¯)p(ρ¯)]φxxtt+𝒥)dx\displaystyle=\int_{\mathbb{R}_{+}}(\varphi_{xxt}+\alpha\varphi_{xx})\left([p^{\prime}(\varphi_{x}+\bar{\rho})-p^{\prime}(\bar{\rho})]\varphi_{xxtt}+\mathcal{J}\right)\mathrm{d}x
=ddt+[p(φx+ρ¯)p(ρ¯)](12φxxt2+φxxφxxt)dxα+[p(φx+ρ¯)p(ρ¯)]φxxt2dx\displaystyle\displaystyle=\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}[p^{\prime}(\varphi_{x}+\bar{\rho})-p^{\prime}(\bar{\rho})]\Big{(}\frac{1}{2}\varphi_{xxt}^{2}+\varphi_{xx}\varphi_{xxt}\Big{)}\mathrm{d}x-\alpha\int_{\mathbb{R}_{+}}[p^{\prime}(\varphi_{x}+\bar{\rho})-p^{\prime}(\bar{\rho})]\varphi_{xxt}^{2}\mathrm{d}x
+p′′(φx+ρ¯)φxt(12φxxt2+φxxφxxt)dx++(φxxt+αφxx)𝒥dx\displaystyle\displaystyle\quad-\int_{\mathbb{R}_{+}}p^{\prime\prime}(\varphi_{x}+\bar{\rho})\varphi_{xt}\Big{(}\frac{1}{2}\varphi_{xxt}^{2}+\varphi_{xx}\varphi_{xxt}\Big{)}\mathrm{d}x+\int_{\mathbb{R}_{+}}\left(\varphi_{xxt}+\alpha\varphi_{xx}\right)\mathcal{J}\mathrm{d}x
ddt+[p(φx+ρ¯)p(ρ¯)](12φxxt2+φxxφxxt)dx+CφxLφxxt2\displaystyle\displaystyle\leq\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}[p^{\prime}(\varphi_{x}+\bar{\rho})-p^{\prime}(\bar{\rho})]\Big{(}\frac{1}{2}\varphi_{xxt}^{2}+\varphi_{xx}\varphi_{xxt}\Big{)}\mathrm{d}x+C\|\varphi_{x}\|_{L^{\infty}}\|\varphi_{xxt}\|^{2}
+CφxtL(φxxt2+φxxφxxt)+C(φxxt,φxx)𝒥\displaystyle\displaystyle\quad+C\left\|\varphi_{xt}\right\|_{L^{\infty}}\left(\left\|\varphi_{xxt}\right\|^{2}+\left\|\varphi_{xx}\right\|\|\varphi_{xxt}\|\right)+C\|(\varphi_{xxt},\varphi_{xx})\|\|\mathcal{J}\|
ddt+[p(φx+ρ¯)p(ρ¯)](12φxxt2+φxxφxxt)dx+C(ε+δ)(φxxt,φxxx)2\displaystyle\displaystyle\leq\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}[p^{\prime}(\varphi_{x}+\bar{\rho})-p^{\prime}(\bar{\rho})]\Big{(}\frac{1}{2}\varphi_{xxt}^{2}+\varphi_{xx}\varphi_{xxt}\Big{)}\mathrm{d}x+C(\varepsilon+\delta)\|(\varphi_{xxt},\varphi_{xxx})\|^{2}
+C((φx,φt)12+(Φxt,Φxx)2)+ηφxxt2+CηΦxtt2\displaystyle\displaystyle\quad+C\left(\|(\varphi_{x},\varphi_{t})\|_{1}^{2}+\|(\Phi_{xt},\Phi_{xx})\|^{2}\right)+\eta\|\varphi_{xxt}\|^{2}+C_{\eta}\|\Phi_{xtt}\|^{2}

for any η>0\eta>0. To deal with 3\mathcal{I}_{3}, we rearrange x\mathcal{H}_{x} in (4.77) as follows

x\displaystyle\displaystyle\mathcal{H}_{x} =2φtφtxxφx+ρ¯φt2(φxxx+ρ¯xx)(φx+ρ¯)2+[2φtx2φx+ρ¯4φtφtx(φxx+ρ¯x)(φx+ρ¯)2+2φt2(φxx+ρ¯x)2(φx+ρ¯)3]\displaystyle=\frac{2\varphi_{t}\varphi_{txx}}{\varphi_{x}+\bar{\rho}}-\frac{\varphi_{t}^{2}(\varphi_{xxx}+\bar{\rho}_{xx})}{(\varphi_{x}+\bar{\rho})^{2}}+\left[\frac{2\varphi_{tx}^{2}}{\varphi_{x}+\bar{\rho}}-\frac{4\varphi_{t}\varphi_{tx}(\varphi_{xx}+\bar{\rho}_{x})}{(\varphi_{x}+\bar{\rho})^{2}}+\frac{2\varphi_{t}^{2}(\varphi_{xx}+\bar{\rho}_{x})^{2}}{(\varphi_{x}+\bar{\rho})^{3}}\right]
=2φtφtxxφx+ρ¯φt2(φxxx+ρ¯xx)(φx+ρ¯)2+1,\displaystyle=\frac{2\varphi_{t}\varphi_{txx}}{\varphi_{x}+\bar{\rho}}-\frac{\varphi_{t}^{2}(\varphi_{xxx}+\bar{\rho}_{xx})}{(\varphi_{x}+\bar{\rho})^{2}}+\mathcal{L}_{1}, (4.80)

with

|x1|C(ε+δ)|φxxt|+Cε|φxxx|+C(ε+δ)(|φt|+|φxt|)\displaystyle\displaystyle\left|\partial_{x}\mathcal{L}_{1}\right|\leq C(\varepsilon+\delta)\left|\varphi_{xxt}\right|+C\varepsilon\left|\varphi_{xxx}\right|+C(\varepsilon+\delta)\left(\left|\varphi_{t}\right|+\left|\varphi_{xt}\right|\right) (4.81)

for suitably small ε\varepsilon and δ\delta, due to (2.4), (4.10) and (4.12). Based on (4.3), we split 3\mathcal{I}_{3} into three parts:

3\displaystyle\displaystyle\mathcal{I}_{3} =+2φtφtxxφx+ρ¯((p(ρ¯)φx)xx+x)tdx+φt2(φxxx+ρ¯xx)(φx+ρ¯)2((p(ρ¯)φx)xx+x)tdx\displaystyle=\int_{\mathbb{R}_{+}}\frac{2\varphi_{t}\varphi_{txx}}{\varphi_{x}+\bar{\rho}}((p^{\prime}(\bar{\rho})\varphi_{x})_{xx}+\mathcal{F}_{x})_{t}\mathrm{d}x-\int_{\mathbb{R}_{+}}\frac{\varphi_{t}^{2}(\varphi_{xxx}+\bar{\rho}_{xx})}{(\varphi_{x}+\bar{\rho})^{2}}((p^{\prime}(\bar{\rho})\varphi_{x})_{xx}+\mathcal{F}_{x})_{t}\mathrm{d}x
++((p(ρ¯)φx)xx+x)t1dx=3,1+3,2+3,3.\displaystyle\displaystyle\quad+\int_{\mathbb{R}_{+}}((p^{\prime}(\bar{\rho})\varphi_{x})_{xx}+\mathcal{F}_{x})_{t}\mathcal{L}_{1}\mathrm{d}x=\mathcal{I}_{3,1}+\mathcal{I}_{3,2}+\mathcal{I}_{3,3}.

Next, we estimate 3,i\mathcal{I}_{3,i}. Recalling (4.69) and (4.70), we have

((p(ρ¯)φx)xx+x)t\displaystyle\displaystyle((p^{\prime}(\bar{\rho})\varphi_{x})_{xx}+\mathcal{F}_{x})_{t} =p(φx+ρ¯)φxxxt+[((p(ρ¯)φx)xx+x)tp(φx+ρ¯)φxxxt]\displaystyle=p^{\prime}(\varphi_{x}+\bar{\rho})\varphi_{xxxt}+\left[((p^{\prime}(\bar{\rho})\varphi_{x})_{xx}+\mathcal{F}_{x})_{t}-p^{\prime}(\varphi_{x}+\bar{\rho})\varphi_{xxxt}\right]
=p(φx+ρ¯)φxxxt+2,\displaystyle\displaystyle=p^{\prime}(\varphi_{x}+\bar{\rho})\varphi_{xxxt}+\mathcal{L}_{2},

where, in view of (1.6), (2.4), (4.10) and (4.11), the following inequality holds

|2|C(ε+δ)(|φxxt|+|φxxx|)+C|Φxxt|+C(|φxt|+|Φxt|).\displaystyle\displaystyle\left|\mathcal{L}_{2}\right|\leq C(\varepsilon+\delta)(\left|\varphi_{xxt}\right|+\left|\varphi_{xxx}\right|)+C\left|\Phi_{xxt}\right|+C(\left|\varphi_{xt}\right|+\left|\Phi_{xt}\right|).

We thus have

3,1\displaystyle\displaystyle\mathcal{I}_{3,1} =+2φtφtxxφx+ρ¯(p(φx+ρ¯)φxxxt+2)dx\displaystyle=\int_{\mathbb{R}_{+}}\frac{2\varphi_{t}\varphi_{txx}}{\varphi_{x}+\bar{\rho}}\left(p^{\prime}(\varphi_{x}+\bar{\rho})\varphi_{xxxt}+\mathcal{L}_{2}\right)\mathrm{d}x
+φxxt2(p(φx+ρ¯)φtφx+ρ¯)xdx+CφtLφxxt2\displaystyle\displaystyle\leq-\int_{\mathbb{R}_{+}}\varphi_{xxt}^{2}\left(\frac{p^{\prime}(\varphi_{x}+\bar{\rho})\varphi_{t}}{\varphi_{x}+\bar{\rho}}\right)_{x}\mathrm{d}x+C\|\varphi_{t}\|_{L^{\infty}}\|\varphi_{xxt}\|\|\mathcal{L}_{2}\|
+φxxt2(|φxt|+|φt(φxx+ρ¯x)|)dx+Cεφxxt2\displaystyle\displaystyle\leq\int_{\mathbb{R}_{+}}\varphi_{xxt}^{2}\left(\left|\varphi_{xt}\right|+\left|\varphi_{t}(\varphi_{xx}+\bar{\rho}_{x})\right|\right)\mathrm{d}x+C\varepsilon\|\varphi_{xxt}\|\|\mathcal{L}_{2}\|
C(δ+ε)(φxxt,φxxx,φtx)2+CεΦxt12\displaystyle\displaystyle\leq C(\delta+\varepsilon)\|(\varphi_{xxt},\varphi_{xxx},\varphi_{tx})\|^{2}+C\varepsilon\|\Phi_{xt}\|_{1}^{2}

and

3,2\displaystyle\displaystyle\mathcal{I}_{3,2} =+φt2(φxxx+ρ¯xx)(φx+ρ¯)2(p(φx+ρ¯)φxxxt+2)dx\displaystyle=-\int_{\mathbb{R}_{+}}\frac{\varphi_{t}^{2}(\varphi_{xxx}+\bar{\rho}_{xx})}{(\varphi_{x}+\bar{\rho})^{2}}\left(p^{\prime}(\varphi_{x}+\bar{\rho})\varphi_{xxxt}+\mathcal{L}_{2}\right)\mathrm{d}x
=12ddt+p(φx+ρ¯)φt2(φxxx+ρ¯xx)2(φx+ρ¯)2dx+C(ε+δ)(φxxx+φt)2\displaystyle\displaystyle=-\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}\frac{p^{\prime}(\varphi_{x}+\bar{\rho})\varphi_{t}^{2}(\varphi_{xxx}+\bar{\rho}_{xx})^{2}}{(\varphi_{x}+\bar{\rho})^{2}}\mathrm{d}x+C(\varepsilon+\delta)\left(\|\varphi_{xxx}\|+\|\varphi_{t}\|\right)\|\mathcal{L}_{2}\|
+12+(φxxx+ρ¯xx)2(p′′(φx+ρ¯)φxtφt2(φx+ρ¯)2+2p(φx+ρ¯)φtφtt(φx+ρ¯)22p(φx+ρ¯)φxtφt2(φx+ρ¯)3)dx\displaystyle\displaystyle\quad+\frac{1}{2}\int_{\mathbb{R}_{+}}(\varphi_{xxx}+\bar{\rho}_{xx})^{2}\left(\frac{p^{\prime\prime}(\varphi_{x}+\bar{\rho})\varphi_{xt}\varphi_{t}^{2}}{(\varphi_{x}+\bar{\rho})^{2}}+\frac{2p^{\prime}(\varphi_{x}+\bar{\rho})\varphi_{t}\varphi_{tt}}{(\varphi_{x}+\bar{\rho})^{2}}-2\frac{p^{\prime}(\varphi_{x}+\bar{\rho})\varphi_{xt}\varphi_{t}^{2}}{(\varphi_{x}+\bar{\rho})^{3}}\right)\mathrm{d}x
=12ddt+p(φx+ρ¯)φt2(φxxx+ρ¯xx)2(φx+ρ¯)2dx+C(ε+δ)(φt12+Φxt12+φxxx2),\displaystyle\displaystyle=-\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}\frac{p^{\prime}(\varphi_{x}+\bar{\rho})\varphi_{t}^{2}(\varphi_{xxx}+\bar{\rho}_{xx})^{2}}{(\varphi_{x}+\bar{\rho})^{2}}\mathrm{d}x+C(\varepsilon+\delta)\left(\|\varphi_{t}\|_{1}^{2}+\|\Phi_{xt}\|_{1}^{2}+\|\varphi_{xxx}\|^{2}\right),

where we have used (1.6), (2.4), (4.10), (4.12), (4.57), Cauchy-Schwarz inequality and the integration by parts. For 3,3\mathcal{I}_{3,3}, the integration by parts leads to

3,3=+((p(ρ¯)φx)x+)tx1dx,\displaystyle\displaystyle\mathcal{I}_{3,3}=-\int_{\mathbb{R}_{+}}((p^{\prime}(\bar{\rho})\varphi_{x})_{x}+\mathcal{F})_{t}\partial_{x}\mathcal{L}_{1}\mathrm{d}x,

which combined with (4.4), (4.5), (4.10), (4.81) and Cauchy-Schwarz inequality implies that

3,3\displaystyle\displaystyle\mathcal{I}_{3,3} C+(|φxt|+|Φxt|)[C(ε+δ)(|φxxt|+|φt|+|φxt|)+Cε|φxxx|]dx\displaystyle\leq C\int_{\mathbb{R}_{+}}\left(\left|\varphi_{xt}\right|+\left|\Phi_{xt}\right|\right)\Big{[}C(\varepsilon+\delta)(\left|\varphi_{xxt}\right|+\left|\varphi_{t}\right|+\left|\varphi_{xt}\right|)+C\varepsilon\left|\varphi_{xxx}\right|\Big{]}\mathrm{d}x
C(ε+δ)(φxxx,φxxt)2+C(φt12+Φxt2).\displaystyle\leq\displaystyle C(\varepsilon+\delta)\|(\varphi_{xxx},\varphi_{xxt})\|^{2}+C\left(\|\varphi_{t}\|_{1}^{2}+\|\Phi_{xt}\|^{2}\right).

Hence, we have

3\displaystyle\displaystyle\mathcal{I}_{3} 12ddt+p(φx+ρ¯)φt2(φxxx+ρ¯xx)2(φx+ρ¯)2dx\displaystyle\leq-\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}\frac{p^{\prime}(\varphi_{x}+\bar{\rho})\varphi_{t}^{2}(\varphi_{xxx}+\bar{\rho}_{xx})^{2}}{(\varphi_{x}+\bar{\rho})^{2}}\mathrm{d}x
+C(ε+δ)(φxxx,φxxt,Φxxt)2+C(φt12+Φxt2).\displaystyle\displaystyle\quad+C(\varepsilon+\delta)\|(\varphi_{xxx},\varphi_{xxt},\Phi_{xxt})\|^{2}+C\left(\|\varphi_{t}\|_{1}^{2}+\|\Phi_{xt}\|^{2}\right).

Plugging i(i=1,2,3)\mathcal{I}_{i}~{}(i=1,2,3) into (4.67), we now reach

ddt𝒢2(t)+α+p(ρ¯)φxxt2dx+12ddt+p(φx+ρ¯)φt2(φxxx+ρ¯xx)2(φx+ρ¯)2dx\displaystyle\displaystyle\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{G}_{2}(t)+\alpha\int_{\mathbb{R}_{+}}p^{\prime}(\bar{\rho})\varphi_{xxt}^{2}\mathrm{d}x+\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}\frac{p^{\prime}(\varphi_{x}+\bar{\rho})\varphi_{t}^{2}(\varphi_{xxx}+\bar{\rho}_{xx})^{2}}{(\varphi_{x}+\bar{\rho})^{2}}\mathrm{d}x
=ddt+[p(φx+ρ¯)p(ρ¯)](12φxxt2+φxxφxxt)dx+C(δ+ε)(φxxx,φxxt,Φxxt)2\displaystyle\displaystyle=\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}[p^{\prime}(\varphi_{x}+\bar{\rho})-p^{\prime}(\bar{\rho})]\Big{(}\frac{1}{2}\varphi_{xxt}^{2}+\varphi_{xx}\varphi_{xxt}\Big{)}\mathrm{d}x+C(\delta+\varepsilon)\|(\varphi_{xxx},\varphi_{xxt},\Phi_{xxt})\|^{2}
+ηφxxt2+CηΦxtt2+C(φx,φt)12+C(Φxx,Φxt)2\displaystyle\displaystyle\quad+\eta\|\varphi_{xxt}\|^{2}+C_{\eta}\|\Phi_{xtt}\|^{2}+C\|(\varphi_{x},\varphi_{t})\|_{1}^{2}+C\|(\Phi_{xx},\Phi_{xt})\|^{2} (4.82)

for any η>0\eta>0. Consequently, thanks to (1.6), (4.10)–(4.12), (4.75) and the mean value theorem, we obtain (4.4) after integrating (4.3) over (0,t)(0,t) and taking δ\delta, ε\varepsilon and η\eta small enough. The proof of Lemma 4.4 is complete. ∎

In the next lemma, we shall estimate the higher-order terms on the right-hand side of (4.4).

Lemma 4.5.

Let the assumptions in Proposition 4.2 hold. If ε\varepsilon and δ\delta are sufficiently small, then the solution (φ,Φ)(\varphi,\Phi) of (4.3a)–(4.3d) satisfies

(Φxt,Φtt,Φxxx)2+0tΦxxτ2dτ+0t(Φττ,Φxτ,Φxττ,Φxxτ)2dτ\displaystyle\displaystyle\|(\Phi_{xt},\Phi_{tt},\Phi_{xxx})\|^{2}+\int_{0}^{t}\|\Phi_{xx\tau}\|^{2}\mathrm{d}\tau+\int_{0}^{t}\|(\Phi_{\tau\tau},\Phi_{x\tau},\Phi_{x\tau\tau},\Phi_{xx\tau})\|^{2}\mathrm{d}\tau
C(Φ042+φ0x22+ψ0x2)+C(φxx,Φx)2+C0t((φτ,φx)12+Φxx2)dτ\displaystyle~{}\displaystyle\leq C(\|\Phi_{0}\|_{4}^{2}+\|\varphi_{0x}\|_{2}^{2}+\|\psi_{0x}\|^{2})+C\|(\varphi_{xx},\Phi_{x})\|^{2}+C\int_{0}^{t}(\|(\varphi_{\tau},\varphi_{x})\|_{1}^{2}+\|\Phi_{xx}\|^{2})\mathrm{d}\tau
+C0t(ε(φxxτ,φxxx)2+φxxτΦxτ)dτ,\displaystyle\displaystyle\quad+C\int_{0}^{t}\left(\varepsilon\|(\varphi_{xx\tau},\varphi_{xxx})\|^{2}+\|\varphi_{xx\tau}\|\|\Phi_{x\tau}\|\right)\mathrm{d}\tau, (4.83)

and that

0t+φxxx2dxdτ\displaystyle\displaystyle\int_{0}^{t}\int_{\mathbb{R}_{+}}\varphi_{xxx}^{2}\mathrm{d}x\mathrm{d}\tau C(φx,φxt,Φx)12+C(φ0x22+ψ0x2)\displaystyle\displaystyle\leq C\|(\varphi_{x},\varphi_{xt},\Phi_{x})\|_{1}^{2}+C\left(\|\varphi_{0x}\|_{2}^{2}+\|\psi_{0x}\|^{2}\right)
+C(δ+ε)0tΦxxτ2dτ+C0t(φτ22+(Φxτ,Φxx)2+φx12)dτ.\displaystyle\displaystyle\quad+C(\delta+\varepsilon)\int_{0}^{t}\|\Phi_{xx\tau}\|^{2}\mathrm{d}\tau+C\int_{0}^{t}\left(\|\varphi_{\tau}\|_{2}^{2}+\|(\Phi_{x\tau},\Phi_{xx})\|^{2}+\left\|\varphi_{x}\right\|_{1}^{2}\right)\mathrm{d}\tau. (4.84)
Proof.

We divide the proof into two steps.

Step 1: Estimates on (Φxt,Φxxt,Φxtt)(\Phi_{xt},\Phi_{xxt},\Phi_{xtt}). Differentiating (4.37b) with respect to tt, we have

Φxtt=Φxxxt+aφxxtbΦxt.\displaystyle\displaystyle\Phi_{xtt}=\Phi_{xxxt}+a\varphi_{xxt}-b\Phi_{xt}. (4.85)

Multiplying (4.85) by Φxt\Phi_{xt} and integrating the resulting equation over +\mathbb{R}_{+}, we get by the Hölder’s inequality that

12ddt+Φxt2dx+b+Φxt2dx++Φxxt2dx\displaystyle\displaystyle\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}\Phi_{xt}^{2}\mathrm{d}x+b\int_{\mathbb{R}_{+}}\Phi_{xt}^{2}\mathrm{d}x+\int_{\mathbb{R}_{+}}\Phi_{xxt}^{2}\mathrm{d}x
=ΦxxtΦxt|x=0+a+φxxtΦxtdx\displaystyle~{}=-\left.\Phi_{xxt}\Phi_{xt}\right|_{x=0}+a\int_{\mathbb{R}_{+}}\varphi_{xxt}\Phi_{xt}\mathrm{d}x
ΦxxtΦxt|x=0+CΦxtφxxt.\displaystyle~{}\displaystyle\leq-\left.\Phi_{xxt}\Phi_{xt}\right|_{x=0}+C\|\Phi_{xt}\|\|\varphi_{xxt}\|. (4.86)

In view of (4.44), for smooth solution (φ,Φ)(\varphi,\Phi), we have Φxxt=aφxt\Phi_{xxt}=a\varphi_{xt} at x=0x=0. Then it holds that

ΦxxtΦxt|x=0\displaystyle\displaystyle-\left.\Phi_{xxt}\Phi_{xt}\right|_{x=0} φxtLΦxtL\displaystyle\leq\|\varphi_{xt}\|_{L^{\infty}}\|\Phi_{xt}\|_{L^{\infty}}
Cφxt12φxxt12Φxt12Φxxt12\displaystyle\displaystyle\leq C\|\varphi_{xt}\|^{\frac{1}{2}}\|\varphi_{xxt}\|^{\frac{1}{2}}\|\Phi_{xt}\|^{\frac{1}{2}}\|\Phi_{xxt}\|^{\frac{1}{2}}
Cφxxt12Φxt12(φxt+Φxxt)\displaystyle\displaystyle\leq C\|\varphi_{xxt}\|^{\frac{1}{2}}\|\Phi_{xt}\|^{\frac{1}{2}}\left(\|\varphi_{xt}\|+\left\|\Phi_{xxt}\right\|\right)
ηΦxxt2+CηΦxtφxxt+Cφxt2\displaystyle\displaystyle\leq\eta\|\Phi_{xxt}\|^{2}+C_{\eta}\|\Phi_{xt}\|\|\varphi_{xxt}\|+C\|\varphi_{xt}\|^{2} (4.87)

for any η>0\eta>0, where the Sobolev inequality fLCf12fx12\|f\|_{L^{\infty}}\leq C\|f\|^{\frac{1}{2}}\|f_{x}\|^{\frac{1}{2}} and Cauchy-Schwarz inequality have been used. Plugging (4.3) into (4.3), we get after taking η\eta suitably small that

Φxt2+0t(Φxxτ,Φxτ)2dτ\displaystyle\displaystyle\|\Phi_{xt}\|^{2}+\int_{0}^{t}\|(\Phi_{xx\tau},\Phi_{x\tau})\|^{2}\mathrm{d}\tau
C0t(φxxτΦxτ+φxτ2)dτ+C(Φ032+φ0xx2),\displaystyle~{}\displaystyle\leq C\int_{0}^{t}\left(\|\varphi_{xx\tau}\|\|\Phi_{x\tau}\|+\|\varphi_{x\tau}\|^{2}\right)\mathrm{d}\tau+C(\|\Phi_{0}\|_{3}^{2}+\|\varphi_{0xx}\|^{2}), (4.88)

where we have used (2.6). By (4.37b) and (4.3), we have

Φxxx2\displaystyle\displaystyle\|\Phi_{xxx}\|^{2} CΦxt2+C(φxx,Φx)2\displaystyle\leq C\|\Phi_{xt}\|^{2}+C\|(\varphi_{xx},\Phi_{x})\|^{2}
C0t(φxxτΦxτ+φxτ2)dτ+C(φxx,Φx)2+C(Φ032+φ0xx2).\displaystyle\displaystyle\leq C\int_{0}^{t}\left(\|\varphi_{xx\tau}\|\|\Phi_{x\tau}\|+\|\varphi_{x\tau}\|^{2}\right)\mathrm{d}\tau+C\|(\varphi_{xx},\Phi_{x})\|^{2}+C(\|\Phi_{0}\|_{3}^{2}+\|\varphi_{0xx}\|^{2}). (4.89)

Differentiating in (4.3b) with respect to tt twice gives

Φttt=Φxxtt+aφxttbΦtt.\displaystyle\displaystyle\Phi_{ttt}=\Phi_{xxtt}+a\varphi_{xtt}-b\Phi_{tt}. (4.90)

Multiplying (4.90) by Φtt\Phi_{tt}, we have

12ddt+Φtt2dx+b+Φtt2dx++Φxtt2dx=a+φxttΦttdx.\displaystyle\displaystyle\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{+}}\Phi_{tt}^{2}\mathrm{d}x+b\int_{\mathbb{R}_{+}}\Phi_{tt}^{2}\mathrm{d}x+\int_{\mathbb{R}_{+}}\Phi_{xtt}^{2}\mathrm{d}x=a\int_{\mathbb{R}_{+}}\varphi_{xtt}\Phi_{tt}\mathrm{d}x. (4.91)

Thanks to (1.6), (2.4), (4.11), (4.71), (4.72), (4.76), (4.78), Cauchy-Schwarz inequality and integration by parts, one has

a+φxttΦttdx\displaystyle\displaystyle a\int_{\mathbb{R}_{+}}\varphi_{xtt}\Phi_{tt}\mathrm{d}x
=a+p(ρ¯)φxxxΦttdx+a+[((p(ρ¯)φx)xxp(ρ¯)φxxx)φxt+x+x]Φttdx\displaystyle~{}\displaystyle=a\int_{\mathbb{R}_{+}}p^{\prime}(\bar{\rho})\varphi_{xxx}\Phi_{tt}\mathrm{d}x+a\int_{\mathbb{R}_{+}}\left[\left(\left(p^{\prime}(\bar{\rho})\varphi_{x}\right)_{xx}-p^{\prime}(\bar{\rho})\varphi_{xxx}\right)-\varphi_{xt}+\mathcal{F}_{x}+\mathcal{H}_{x}\right]\Phi_{tt}\mathrm{d}x
a+p(ρ¯)φxxΦxttdxa+p′′(ρ¯)ρ¯xφxxΦttdx+CφxtΦtt\displaystyle\displaystyle~{}\leq-a\int_{\mathbb{R}_{+}}p^{\prime}(\bar{\rho})\varphi_{xx}\Phi_{xtt}\mathrm{d}x-a\int_{\mathbb{R}_{+}}p^{\prime\prime}(\bar{\rho})\bar{\rho}_{x}\varphi_{xx}\Phi_{tt}\mathrm{d}x+C\|\varphi_{xt}\|\|\Phi_{tt}\|
+C(x,x)Φtt+C(p(ρ¯)φx)xxp(ρ¯)φxxxΦtt\displaystyle~{}\displaystyle\quad+C\|(\mathcal{F}_{x},\mathcal{H}_{x})\|\|\Phi_{tt}\|+C\|\left(p^{\prime}(\bar{\rho})\varphi_{x}\right)_{xx}-p^{\prime}(\bar{\rho})\varphi_{xxx}\|\|\Phi_{tt}\|
C(η+ε+δ)Φtt2+ηΦxtt2+Cε(φxxt,φxxx)2+Cη((φt,φx)12+Φxx2)\displaystyle\displaystyle~{}\leq C(\eta+\varepsilon+\delta)\|\Phi_{tt}\|^{2}+\eta\|\Phi_{xtt}\|^{2}+C\varepsilon\|(\varphi_{xxt},\varphi_{xxx})\|^{2}+C_{\eta}(\|(\varphi_{t},\varphi_{x})\|_{1}^{2}+\|\Phi_{xx}\|^{2}) (4.92)

for any η>0\eta>0. Substituting (4.3) into (4.91), we get after taking η\eta, ε\varepsilon, δ\delta small enough that

Φtt2+0t(Φττ,Φxττ)2dτ\displaystyle\displaystyle\|\Phi_{tt}\|^{2}+\int_{0}^{t}\|(\Phi_{\tau\tau},\Phi_{x\tau\tau})\|^{2}\mathrm{d}\tau
C(Φ042+φ0x22+ψ0x2)+Cε0t(φxxτ,φxxx)2dτ\displaystyle~{}\displaystyle\leq C(\|\Phi_{0}\|_{4}^{2}+\|\varphi_{0x}\|_{2}^{2}+\|\psi_{0x}\|^{2})+C\varepsilon\int_{0}^{t}\|(\varphi_{xx\tau},\varphi_{xxx})\|^{2}\mathrm{d}\tau
+C0t((φτ,φx)12+Φxx2)dτ,\displaystyle~{}\displaystyle\quad+C\int_{0}^{t}(\|(\varphi_{\tau},\varphi_{x})\|_{1}^{2}+\|\Phi_{xx}\|^{2})\mathrm{d}\tau, (4.93)

where we have used (2.7). Combining (4.3) with (4.3) and (4.3), then we get (4.5).

Step 2: Estimates on φxxx\varphi_{xxx}. Multiplying (4.37a) by (φxxxμρp(ρ)Φxx)-(\varphi_{xxx}-\frac{\mu\rho_{-}}{p^{\prime}(\rho_{-})}\Phi_{xx}) with ρ\rho_{-} as in (3.3), and integrating the resulting equation over +×(0,t)\mathbb{R}_{+}\times(0,t) for any t(0,T)t\in(0,T), we get

0t+p(ρ¯)φxxx2dxdτ\displaystyle\displaystyle\int_{0}^{t}\int_{\mathbb{R}_{+}}p^{\prime}(\bar{\rho})\varphi_{xxx}^{2}\mathrm{d}x\mathrm{d}\tau
=0t+((p(ρ¯)φx)xxp(ρ¯)φxxx)φxxxdxdτ+0t+(p(ρ¯)φx)xxμρp(ρ)Φxxdxdτ\displaystyle~{}\displaystyle=-\int_{0}^{t}\int_{\mathbb{R}_{+}}\left((p^{\prime}(\bar{\rho})\varphi_{x})_{xx}-p^{\prime}(\bar{\rho})\varphi_{xxx}\right)\varphi_{xxx}\mathrm{d}x\mathrm{d}\tau+\int_{0}^{t}\int_{\mathbb{R}_{+}}(p^{\prime}(\bar{\rho})\varphi_{x})_{xx}\frac{\mu\rho_{-}}{p^{\prime}(\rho_{-})}\Phi_{xx}\mathrm{d}x\mathrm{d}\tau
+(φxt+φx)(φxxxμρΦxxp(ρ))(x,0)dx++(φxt+φx)(φxxxμρΦxxp(ρ))(x,t)dx\displaystyle\displaystyle\quad-\int_{\mathbb{R}_{+}}(\varphi_{xt}+\varphi_{x})\left(\varphi_{xxx}-\frac{\mu\rho_{-}\Phi_{xx}}{p^{\prime}(\rho_{-})}\right)(x,0)\mathrm{d}x+\int_{\mathbb{R}_{+}}(\varphi_{xt}+\varphi_{x})\left(\varphi_{xxx}-\frac{\mu\rho_{-}\Phi_{xx}}{p^{\prime}(\rho_{-})}\right)(x,t)\mathrm{d}x
0t+(φxt+αφx)(φxxxμρΦxxp(ρ))τdxdτ0t+(x+x)(φxxxμρΦxxp(ρ))dxdτ\displaystyle~{}\displaystyle\quad-\int_{0}^{t}\int_{\mathbb{R}_{+}}(\varphi_{xt}+\alpha\varphi_{x})\left(\varphi_{xxx}-\frac{\mu\rho_{-}\Phi_{xx}}{p^{\prime}(\rho_{-})}\right)_{\tau}\mathrm{d}x\mathrm{d}\tau-\int_{0}^{t}\int_{\mathbb{R}_{+}}(\mathcal{H}_{x}+\mathcal{F}_{x})\left(\varphi_{xxx}-\frac{\mu\rho_{-}\Phi_{xx}}{p^{\prime}(\rho_{-})}\right)\mathrm{d}x\mathrm{d}\tau
=i=16𝒫i.\displaystyle\displaystyle=\sum_{i=1}^{6}\mathcal{P}_{i}. (4.94)

Thanks to (1.6) and (4.11), one can find a constant C>0C>0 such that

C0t+φxxx2dxdτ0t+p(ρ¯)φxxx2dxdτ.\displaystyle\displaystyle C\int_{0}^{t}\int_{\mathbb{R}_{+}}\varphi_{xxx}^{2}\mathrm{d}x\mathrm{d}\tau\leq\int_{0}^{t}\int_{\mathbb{R}_{+}}p^{\prime}(\bar{\rho})\varphi_{xxx}^{2}\mathrm{d}x\mathrm{d}\tau.

Now let us estimates 𝒫i(1i6)\mathcal{P}_{i}~{}(1\leq i\leq 6) term by term. Recalling (4.72), it holds that

𝒫1Cδ0t+(|φx|+|φxx|)|φxxx|dxdτCδ0tφx22dτ,\displaystyle\displaystyle\mathcal{P}_{1}\leq C\delta\int_{0}^{t}\int_{\mathbb{R}_{+}}(\left|\varphi_{x}\right|+\left|\varphi_{xx}\right|)\left|\varphi_{xxx}\right|\mathrm{d}x\mathrm{d}\tau\leq C\delta\int_{0}^{t}\|\varphi_{x}\|_{2}^{2}\mathrm{d}\tau,

and that

𝒫2\displaystyle\displaystyle\mathcal{P}_{2} =0t+[(p(ρ¯)φx)xxp(ρ¯)φxxx+p(ρ¯)φxxx]μρp(ρ)Φxxdxdτ\displaystyle=\int_{0}^{t}\int_{\mathbb{R}_{+}}\left[(p^{\prime}(\bar{\rho})\varphi_{x})_{xx}-p^{\prime}(\bar{\rho})\varphi_{xxx}+p^{\prime}(\bar{\rho})\varphi_{xxx}\right]\frac{\mu\rho_{-}}{p^{\prime}(\rho_{-})}\Phi_{xx}\mathrm{d}x\mathrm{d}\tau
0t+(δ(|φx|+|φxx|)+|φxxx|)|Φxx|dxdτ\displaystyle\leq\int_{0}^{t}\int_{\mathbb{R}_{+}}\left(\delta(\left|\varphi_{x}\right|+\left|\varphi_{xx}\right|)+\left|\varphi_{xxx}\right|\right)\left|\Phi_{xx}\right|\mathrm{d}x\mathrm{d}\tau
0tφxxxΦxxdτ+Cδ0t(φx,φxx,Φxx)2dτ\displaystyle\displaystyle\leq\int_{0}^{t}\|\varphi_{xxx}\|\|\Phi_{xx}\|\mathrm{d}\tau+C\delta\int_{0}^{t}\|(\varphi_{x},\varphi_{xx},\Phi_{xx})\|^{2}\mathrm{d}\tau
η0tφxxx2dτ+Cη0tΦxx2dτ+Cδ0t(φx,φxx)2dτ\displaystyle\displaystyle\leq\eta\int_{0}^{t}\|\varphi_{xxx}\|^{2}\mathrm{d}\tau+C_{\eta}\int_{0}^{t}\|\Phi_{xx}\|^{2}\mathrm{d}\tau+C\delta\int_{0}^{t}\|(\varphi_{x},\varphi_{xx})\|^{2}\mathrm{d}\tau

for any η>0\eta>0, where the Cauchy-Schwarz has been used. Again, by Cauchy-Schwarz inequality, it holds that

𝒫3\displaystyle\displaystyle\mathcal{P}_{3} C+(|ψ0x|+|φ0x|)(|φ0xxx|+|Φ0xx|)dx\displaystyle\leq C\int_{\mathbb{R}_{+}}\left(\left|\psi_{0x}\right|+\left|\varphi_{0x}\right|\right)\left(\left|\varphi_{0xxx}\right|+\left|\Phi_{0xx}\right|\right)\mathrm{d}x
C(φ0x22+(ψ0x,Φ0xx)2).\displaystyle\displaystyle\leq C\left(\|\varphi_{0x}\|_{2}^{2}+\|(\psi_{0x},\Phi_{0xx})\|^{2}\right).

From the boundary conditions in (4.13), we get

(φxxμρp(ρ)Φx)|x=0\displaystyle\displaystyle\left.\left(\varphi_{xx}-\frac{\mu\rho_{-}}{p^{\prime}(\rho_{-})}\Phi_{x}\right)\right|_{x=0} ={μρ¯(1p(φx+ρ¯)1p(ρ¯)+φxp(φx+ρ¯))Φx\displaystyle=\left\{\mu\bar{\rho}\left(\frac{1}{p^{\prime}(\varphi_{x}+\bar{\rho})}-\frac{1}{p^{\prime}(\bar{\rho})}+\frac{\varphi_{x}}{p^{\prime}(\varphi_{x}+\bar{\rho})}\right)\Phi_{x}\right.
1p(φx+ρ¯)(p(φx+ρ¯)p(ρ¯))ρ¯x+φxϕ¯xp(φx+ρ¯)}|x=0,\displaystyle\quad\left.\left.-\frac{1}{p^{\prime}(\varphi_{x}+\bar{\rho})}\left(p^{\prime}(\varphi_{x}+\bar{\rho})-p^{\prime}(\bar{\rho})\right)\bar{\rho}_{x}+\frac{\varphi_{x}\bar{\phi}_{x}}{p^{\prime}(\varphi_{x}+\bar{\rho})}\right\}\right|_{x=0},
(φxxμρp(ρ)Φx)t|x=0\displaystyle\displaystyle\left.\left(\varphi_{xx}-\frac{\mu\rho_{-}}{p^{\prime}(\rho_{-})}\Phi_{x}\right)_{t}\right|_{x=0} ={μρ¯(1p(φx+ρ¯)1p(ρ¯)+φxp(φx+ρ¯))Φx\displaystyle=\left\{\mu\bar{\rho}\left(\frac{1}{p^{\prime}(\varphi_{x}+\bar{\rho})}-\frac{1}{p^{\prime}(\bar{\rho})}+\frac{\varphi_{x}}{p^{\prime}(\varphi_{x}+\bar{\rho})}\right)\Phi_{x}\right.
1p(φx+ρ¯)(p(φx+ρ¯)p(ρ¯))ρ¯x+φxϕ¯xp(φx+ρ¯)}t|x=0.\displaystyle\quad\left.\left.-\frac{1}{p^{\prime}(\varphi_{x}+\bar{\rho})}\left(p^{\prime}(\varphi_{x}+\bar{\rho})-p^{\prime}(\bar{\rho})\right)\bar{\rho}_{x}+\frac{\varphi_{x}\bar{\phi}_{x}}{p^{\prime}(\varphi_{x}+\bar{\rho})}\right\}_{t}\right|_{x=0}.

Thanks to (1.6), (2.4) and (4.10)–(4.12), we further have that

{|(φxxμρp(ρ)Φx)|x=0|C(ε+δ)(ΦxL+φxL),|(φxxμρp(ρ)Φx)t|x=0|C(ε+δ)(ΦxtL+φxtL).\displaystyle\begin{cases}\displaystyle\left|\left.\left(\varphi_{xx}-\frac{\mu\rho_{-}}{p^{\prime}(\rho_{-})}\Phi_{x}\right)\right|_{x=0}\right|&\leq C(\varepsilon+\delta)\left(\|\Phi_{x}\|_{L^{\infty}}+\|\varphi_{x}\|_{L^{\infty}}\right),\\[10.0pt] \displaystyle\left|\left.\left(\varphi_{xx}-\frac{\mu\rho_{-}}{p^{\prime}(\rho_{-})}\Phi_{x}\right)_{t}\right|_{x=0}\right|&\leq C(\varepsilon+\delta)\left(\|\Phi_{xt}\|_{L^{\infty}}+\|\varphi_{xt}\|_{L^{\infty}}\right).\end{cases} (4.95)

By (4.95), Cauchy-Schwarz inequality, the Sobolev inequality fLCf1\left\|f\right\|_{L^{\infty}}\leq C\|f\|_{1} and the integration by parts, we have

𝒫4\displaystyle\mathcal{P}_{4} =+(φxt+φx)(φxxxμρp(ρ)Φxx)dx\displaystyle=\displaystyle\int_{\mathbb{R}_{+}}(\varphi_{xt}+\varphi_{x})(\varphi_{xxx}-\frac{\mu\rho_{-}}{p^{\prime}(\rho_{-})}\Phi_{xx})\mathrm{d}x
=+(φxxt+φxx)(φxxμρp(ρ)Φx)dx(φxt+φx)(φxxμρp(ρ)Φx)|x=0\displaystyle\displaystyle=-\int_{\mathbb{R}_{+}}(\varphi_{xxt}+\varphi_{xx})(\varphi_{xx}-\frac{\mu\rho_{-}}{p^{\prime}(\rho_{-})}\Phi_{x})\mathrm{d}x-\left.(\varphi_{xt}+\varphi_{x})\left(\varphi_{xx}-\frac{\mu\rho_{-}}{p^{\prime}(\rho_{-})}\Phi_{x}\right)\right|_{x=0}
Cφxxt(φxx,Φx)+C(φxx,Φx)2+C(ε+δ)φxtL(ΦxL+φxL)\displaystyle\displaystyle\leq C\|\varphi_{xxt}\|\|(\varphi_{xx},\Phi_{x})\|+C\|(\varphi_{xx},\Phi_{x})\|^{2}+C(\varepsilon+\delta)\|\varphi_{xt}\|_{L^{\infty}}\left(\|\Phi_{x}\|_{L^{\infty}}+\|\varphi_{x}\|_{L^{\infty}}\right)
+C(ε+δ)φxL(ΦxL+φxL)\displaystyle\displaystyle\quad+C(\varepsilon+\delta)\|\varphi_{x}\|_{L^{\infty}}\left(\|\Phi_{x}\|_{L^{\infty}}+\|\varphi_{x}\|_{L^{\infty}}\right)
C(φx,φxt,Φx)12\displaystyle\displaystyle\leq C\|(\varphi_{x},\varphi_{xt},\Phi_{x})\|_{1}^{2}

and

𝒫5\displaystyle\displaystyle\mathcal{P}_{5} =0t+(φxxτ+αφxx)(φxxμρΦxp(ρ))τdxdτ0t(φxτ+φx)(φxxμρΦxp(ρ))τ|x=0dτ\displaystyle=\int_{0}^{t}\int_{\mathbb{R}_{+}}(\varphi_{xx\tau}+\alpha\varphi_{xx})\left(\varphi_{xx}-\frac{\mu\rho_{-}\Phi_{x}}{p^{\prime}(\rho_{-})}\right)_{\tau}\mathrm{d}x\mathrm{d}\tau-\int_{0}^{t}\left.(\varphi_{x\tau}+\varphi_{x})\left(\varphi_{xx}-\frac{\mu\rho_{-}\Phi_{x}}{p^{\prime}(\rho_{-})}\right)_{\tau}\right|_{x=0}\mathrm{d}\tau
C0t(φxxτ,φxx,Φxτ)2dτ+C(ε+δ)0t(φxτL+φxL)(ΦxτL+φxτL)dτ\displaystyle\displaystyle\leq C\int_{0}^{t}\|(\varphi_{xx\tau},\varphi_{xx},\Phi_{x\tau})\|^{2}\mathrm{d}\tau+C(\varepsilon+\delta)\int_{0}^{t}(\|\varphi_{x\tau}\|_{L^{\infty}}+\|\varphi_{x}\|_{L^{\infty}})(\|\Phi_{x\tau}\|_{L^{\infty}}+\|\varphi_{x\tau}\|_{L^{\infty}})\mathrm{d}\tau
C(ε+δ)0tΦxxτ2dτ+C0t((φx,φxτ)12+Φxτ2)dτ.\displaystyle\displaystyle\leq C(\varepsilon+\delta)\int_{0}^{t}\|\Phi_{xx\tau}\|^{2}\mathrm{d}\tau+C\int_{0}^{t}\left(\|(\varphi_{x},\varphi_{x\tau})\|_{1}^{2}+\|\Phi_{x\tau}\|^{2}\right)\mathrm{d}\tau.

For 𝒫6\mathcal{P}_{6}, we utilize (4.71), (4.78) and Cauchy-Schwarz inequality to get

𝒫6\displaystyle\displaystyle\mathcal{P}_{6} C0t(x,x)(φxxx,Φxx)dτ\displaystyle\leq C\int_{0}^{t}\|(\mathcal{H}_{x},\mathcal{F}_{x})\|\|(\varphi_{xxx},\Phi_{xx})\|\mathrm{d}\tau
C(ε+δ)0t(φxxx,φxxτ)2dτ+C0t((φτ,φx)12+Φxx2)dτ.\displaystyle\displaystyle\leq C(\varepsilon+\delta)\int_{0}^{t}\|(\varphi_{xxx},\varphi_{xx\tau})\|^{2}\mathrm{d}\tau+C\int_{0}^{t}\left(\|(\varphi_{\tau},\varphi_{x})\|_{1}^{2}+\|\Phi_{xx}\|^{2}\right)\mathrm{d}\tau.

Inserting the estimates for 𝒫i(i=1,,6)\mathcal{P}_{i}~{}(i=1,\cdots,6) into (4.3), we get

0t+φxxx2dxdτ\displaystyle\displaystyle\int_{0}^{t}\int_{\mathbb{R}_{+}}\varphi_{xxx}^{2}\mathrm{d}x\mathrm{d}\tau C(φx,φxt,Φx)12+C(φ0x22+ψ0x2)\displaystyle\displaystyle\leq C\|(\varphi_{x},\varphi_{xt},\Phi_{x})\|_{1}^{2}+C\left(\|\varphi_{0x}\|_{2}^{2}+\|\psi_{0x}\|^{2}\right)
+C(δ+ε)0tΦxxτ2dτ+C0t(φτ22+(Φxτ,Φxx)2+φx12)dτ,\displaystyle\displaystyle\quad+C(\delta+\varepsilon)\int_{0}^{t}\|\Phi_{xx\tau}\|^{2}\mathrm{d}\tau+C\int_{0}^{t}\left(\|\varphi_{\tau}\|_{2}^{2}+\|(\Phi_{x\tau},\Phi_{xx})\|^{2}+\|\varphi_{x}\|_{1}^{2}\right)\mathrm{d}\tau,

provided ε\varepsilon and δ\delta are suitably small. The proof of Lemma 4.5 is complete. ∎

From Lemmas 4.4 and 4.5, we have the following higher-order estimates.

Lemma 4.6.

Under the conditions of Proposition 4.2, for any t(0,T)t\in(0,T), we have

(φxxx,φxxt,Φxt,Φtt,Φxxx)2+0t((φxxτ,φxxx)2+(φxτ,Φττ)12)dτ\displaystyle\displaystyle\|(\varphi_{xxx},\varphi_{xxt},\Phi_{xt},\Phi_{tt},\Phi_{xxx})\|^{2}+\int_{0}^{t}\left(\|(\varphi_{xx\tau},\varphi_{xxx})\|^{2}+\|(\varphi_{x\tau},\Phi_{\tau\tau})\|_{1}^{2}\right)\mathrm{d}\tau
C(Φ042+(φ0x,ψ0)22)+C(φx,φt,Φx)12+C0t((φτ,φx)12+(Φxτ,Φxx)2)dτ,\displaystyle~{}\displaystyle\leq C\left(\|\Phi_{0}\|_{4}^{2}+\|(\varphi_{0x},\psi_{0})\|_{2}^{2}\right)+C\|(\varphi_{x},\varphi_{t},\Phi_{x})\|_{1}^{2}+C\int_{0}^{t}\left(\|(\varphi_{\tau},\varphi_{x})\|_{1}^{2}+\|(\Phi_{x\tau},\Phi_{xx})\|^{2}\right)\mathrm{d}\tau, (4.96)

provided ε\varepsilon and δ\delta are sufficiently small.

Proof.

First, to control the terms related to (Φxt,Φxxt,Φxtt)(\Phi_{xt},\Phi_{xxt},\Phi_{xtt}) on the right-hand side of (4.4), we add (4.4) with (4.5) multiplied by a large positive constant to get

(φxxx,φxxt,Φxt,Φtt,Φxxx)2+0t(Φxτ,Φτ,Φxττ,Φxxτ,φxxτ)2dτ\displaystyle\displaystyle\|(\varphi_{xxx},\varphi_{xxt},\Phi_{xt},\Phi_{tt},\Phi_{xxx})\|^{2}+\int_{0}^{t}\|(\Phi_{x\tau},\Phi_{\tau},\Phi_{x\tau\tau},\Phi_{xx\tau},\varphi_{xx\tau})\|^{2}\mathrm{d}\tau
C(Φ042+(φ0x,ψ0)22)+C((φx,φt)12+Φxx2)\displaystyle~{}\displaystyle\leq C(\|\Phi_{0}\|_{4}^{2}+\|(\varphi_{0x},\psi_{0})\|_{2}^{2})+C\left(\|(\varphi_{x},\varphi_{t})\|_{1}^{2}+\|\Phi_{xx}\|^{2}\right)
+C(δ+ε)0tφxxx2dτ+C0t((φτ,φx)12+(Φxτ,Φxx)2)dτ,\displaystyle~{}\displaystyle\quad+C(\delta+\varepsilon)\int_{0}^{t}\|\varphi_{xxx}\|^{2}\mathrm{d}\tau+C\int_{0}^{t}(\|(\varphi_{\tau},\varphi_{x})\|_{1}^{2}+\|(\Phi_{x\tau},\Phi_{xx})\|^{2})\mathrm{d}\tau, (4.97)

provided ε\varepsilon and δ\delta are suitably small, where the Cauchy-Schwarz inequality has been used. Combining (4.3) with (4.5), for sufficiently small ε\varepsilon and δ\delta, we have

(φxxx,φxxt,Φxt,Φtt,Φxxx)2+0t(Φxτ,Φττ,Φxττ,Φxxτ,φxxτ,φxxx)2dτ\displaystyle\displaystyle\|(\varphi_{xxx},\varphi_{xxt},\Phi_{xt},\Phi_{tt},\Phi_{xxx})\|^{2}+\int_{0}^{t}\|(\Phi_{x\tau},\Phi_{\tau\tau},\Phi_{x\tau\tau},\Phi_{xx\tau},\varphi_{xx\tau},\varphi_{xxx})\|^{2}\mathrm{d}\tau
C(Φ042+(φ0x,ψ0)22)+C(φx,φt,Φx)12+C0t((φτ,φx)12+(Φxτ,Φxx)2)dτ.\displaystyle~{}\displaystyle\leq C(\|\Phi_{0}\|_{4}^{2}+\|(\varphi_{0x},\psi_{0})\|_{2}^{2})+C\|(\varphi_{x},\varphi_{t},\Phi_{x})\|_{1}^{2}+C\int_{0}^{t}(\|(\varphi_{\tau},\varphi_{x})\|_{1}^{2}+\|(\Phi_{x\tau},\Phi_{xx})\|^{2})\mathrm{d}\tau.

This gives rise to (4.6) and thus finishes the proof of Lemma 4.6. ∎

4.4. Proof of Proposition 4.2

By the local existence result in Proposition 4.1 and the standard extension criterion, it suffices to show the estimates (4.7) and (4.8) to prove Proposition 4.2. We first close the a priori assumption (4.9). To this end, we add (4.6) to (4.3) multiplied by a suitable positive constant and get

(φx,Φx)22+φxt12+(Φxt,Φtt)2+0t(φxx,φxτ,Φx,Φxτ,Φττ)12dτ\displaystyle\displaystyle\|(\varphi_{x},\Phi_{x})\|_{2}^{2}+\|\varphi_{xt}\|_{1}^{2}+\|(\Phi_{xt},\Phi_{tt})\|^{2}+\int_{0}^{t}\|(\varphi_{xx},\varphi_{x\tau},\Phi_{x},\Phi_{x\tau},\Phi_{\tau\tau})\|_{1}^{2}\mathrm{d}\tau
C(Φ042+(φ0x,ψ0)22)+Cφt2+C0t(φx,φτ)2dτ+C0tφxΦxxτdτ,\displaystyle~{}\displaystyle\leq C\left(\|\Phi_{0}\|_{4}^{2}+\|(\varphi_{0x},\psi_{0})\|_{2}^{2}\right)+C\|\varphi_{t}\|^{2}+C\int_{0}^{t}\|(\varphi_{x},\varphi_{\tau})\|^{2}\mathrm{d}\tau+C\int_{0}^{t}\|\varphi_{x}\|\|\Phi_{xx\tau}\|\mathrm{d}\tau,

where the smallness of ε\varepsilon and δ\delta has been used. This along with the Cauchy-Schwarz inequality gives

(φx,Φx)22+φxt12+(Φxt,Φtt)2+0t(φxx,φxτ,Φx,Φxτ,Φττ)12dτ\displaystyle\displaystyle\|(\varphi_{x},\Phi_{x})\|_{2}^{2}+\|\varphi_{xt}\|_{1}^{2}+\|(\Phi_{xt},\Phi_{tt})\|^{2}+\int_{0}^{t}\|(\varphi_{xx},\varphi_{x\tau},\Phi_{x},\Phi_{x\tau},\Phi_{\tau\tau})\|_{1}^{2}\mathrm{d}\tau
C(Φ042+(φ0x,ψ0)22)+Cφt2+C0t(φx,φτ)2dτ.\displaystyle~{}\displaystyle\leq C\left(\|\Phi_{0}\|_{4}^{2}+\|(\varphi_{0x},\psi_{0})\|_{2}^{2}\right)+C\|\varphi_{t}\|^{2}+C\int_{0}^{t}\|(\varphi_{x},\varphi_{\tau})\|^{2}\mathrm{d}\tau. (4.98)

Furthermore, multiplying (4.15) by a suitable positive constant, and adding the resulting inequality to (4.4), we obtain

(φ,Φ)32+φt22+(Φxt,Φtt)2+0t(φx22+(φτ,Φτ,Φ)22+Φττ12)dτ\displaystyle\displaystyle\|(\varphi,\Phi)\|_{3}^{2}+\|\varphi_{t}\|_{2}^{2}+\|(\Phi_{xt},\Phi_{tt})\|^{2}+\int_{0}^{t}\Big{(}\|\varphi_{x}\|_{2}^{2}+\|(\varphi_{\tau},\Phi_{\tau},\Phi)\|_{2}^{2}+\|\Phi_{\tau\tau}\|_{1}^{2}\Big{)}\mathrm{d}\tau
C(φ032+ψ022+Φ042).\displaystyle~{}\leq C\left(\|\varphi_{0}\|_{3}^{2}+\|\psi_{0}\|_{2}^{2}+\|\Phi_{0}\|_{4}^{2}\right). (4.99)

Then by setting

ε2=2C(φ032+ψ022+Φ042)\displaystyle\displaystyle\varepsilon^{2}=2C\left(\|\varphi_{0}\|_{3}^{2}+\|\psi_{0}\|_{2}^{2}+\|\Phi_{0}\|_{4}^{2}\right)

and taking φ03+ψ02+Φ04\|\varphi_{0}\|_{3}+\|\psi_{0}\|_{2}+\|\Phi_{0}\|_{4} suitably small, we have

sup0t<T{(φ,Φ)(,t)32+ψ(,t)22}<ε2\displaystyle\displaystyle\sup_{0\leq t<T}\left\{\left\|(\varphi,\Phi)(\cdot,t)\right\|_{3}^{2}+\left\|\psi(\cdot,t)\right\|_{2}^{2}\right\}<\varepsilon^{2}

which hence closes the a priori assumption (4.9). To complete the proof of (4.7)-(4.8), now it remains to show the following

Φxxxx2+0t(Φxxx2+(φττ,φττx)2)dτC(φ032+ψ022+Φ042).\displaystyle\displaystyle\|\Phi_{xxxx}\|^{2}+\int_{0}^{t}\left(\|\Phi_{xxx}\|^{2}+\|(\varphi_{\tau\tau},\varphi_{\tau\tau x})\|^{2}\right)\mathrm{d}\tau\leq C\left(\|\varphi_{0}\|_{3}^{2}+\|\psi_{0}\|_{2}^{2}+\|\Phi_{0}\|_{4}^{2}\right).

Collecting (4.37b), (4.57), (4.79) and (4.4), one immediately has

0t(Φxxx2+(φττ,φττx)2)dτC(φ032+ψ022+Φ042).\displaystyle\displaystyle\int_{0}^{t}\left(\|\Phi_{xxx}\|^{2}+\|(\varphi_{\tau\tau},\varphi_{\tau\tau x})\|^{2}\right)\mathrm{d}\tau\leq C\left(\|\varphi_{0}\|_{3}^{2}+\|\psi_{0}\|_{2}^{2}+\|\Phi_{0}\|_{4}^{2}\right).

To derive the estimate for Φxxxx\Phi_{xxxx}, we first deduce from (4.3b) and (4.4) that

Φt2C(Φxx,φx,Φ)2C(φ032+ψ022+Φ042).\displaystyle\displaystyle\|\Phi_{t}\|^{2}\leq C\|(\Phi_{xx},\varphi_{x},\Phi)\|^{2}\leq C\left(\|\varphi_{0}\|_{3}^{2}+\|\psi_{0}\|_{2}^{2}+\|\Phi_{0}\|_{4}^{2}\right). (4.100)

Next, differentiating (4.3b) with respect to tt leads to

Φtt=Φxxt+aφxt+bΦt.\displaystyle\displaystyle\Phi_{tt}=\Phi_{xxt}+a\varphi_{xt}+b\Phi_{t}.

This along with (4.100) and (4.4) yields that

Φxxt2C(Φtt,Φt,φxt)2C(φ032+ψ022+Φ042).\displaystyle\displaystyle\|\Phi_{xxt}\|^{2}\leq C\|(\Phi_{tt},\Phi_{t},\varphi_{xt})\|^{2}\leq C\left(\|\varphi_{0}\|_{3}^{2}+\|\psi_{0}\|_{2}^{2}+\|\Phi_{0}\|_{4}^{2}\right).

Finally, differentiating (4.37b) with respect to xx, we have

Φxxxx=Φxxtaφxxx+bΦxx,\displaystyle\displaystyle\Phi_{xxxx}=\Phi_{xxt}-a\varphi_{xxx}+b\Phi_{xx},

and thus

Φxxxx2C(Φxx,Φxxt,φxxx)2C(φ032+ψ022+Φ042).\displaystyle\displaystyle\|\Phi_{xxxx}\|^{2}\leq C\|(\Phi_{xx},\Phi_{xxt},\varphi_{xxx})\|^{2}\leq C\left(\|\varphi_{0}\|_{3}^{2}+\|\psi_{0}\|_{2}^{2}+\|\Phi_{0}\|_{4}^{2}\right).

The proof of Proposition 4.2 is complete. \square

4.5. Proof of Theorem 2.2

In view of Proposition 4.2, the problem (1.5a)–(1.5c), (1.7)–(1.8) admits a unique classical solution (ρ,m,ϕ)(\rho,m,\phi) in +×(0,)\mathbb{R}_{+}\times(0,\infty). Moreover, thanks to (4.2), (4.7) and (4.8), it holds that

(ρρ¯,m)22+ϕϕ¯42C(φ032+ψ022+Φ042),\displaystyle\displaystyle\|(\rho-\bar{\rho},m)\|_{2}^{2}+\|\phi-\bar{\phi}\|_{4}^{2}\leq C\left(\|\varphi_{0}\|_{3}^{2}+\|\psi_{0}\|_{2}^{2}+\|\Phi_{0}\|_{4}^{2}\right),

and that

0t((ρρ¯,m)22+ϕϕ¯32+(ρτ,mτ,ϕτ)12)dτC(φ032+ψ022+Φ042)\displaystyle\displaystyle\int_{0}^{t}\left(\|(\rho-\bar{\rho},m)\|_{2}^{2}+\|\phi-\bar{\phi}\|_{3}^{2}+\|(\rho_{\tau},m_{\tau},\phi_{\tau})\|_{1}^{2}\right)\mathrm{d}\tau\leq C\left(\|\varphi_{0}\|_{3}^{2}+\|\psi_{0}\|_{2}^{2}+\|\Phi_{0}\|_{4}^{2}\right) (4.101)

for any t>0t>0. In the following, we shall prove the large time behavior of (ρ,m,ϕ)(\rho,m,\phi) as in (2.5). For this, recalling the Sobolev inequality fLCf12fx12\|f\|_{L^{\infty}}\leq C\|f\|^{\frac{1}{2}}\|f_{x}\|^{\frac{1}{2}}, it suffices to show that

limt(ρρ¯,m,ϕϕ¯)(,t)20.\displaystyle\displaystyle\lim_{t\rightarrow\infty}\|(\rho-\bar{\rho},m,\phi-\bar{\phi})(\cdot,t)\|^{2}\rightarrow 0. (4.102)

In fact, with the help of (4.101) and Cauchy-Schwarz inequality, we get

0+|ddt(ρρ¯,m,ϕϕ¯)(,t)2|dt\displaystyle\displaystyle\int_{0}^{+\infty}\left|\frac{\mathrm{d}}{\mathrm{d}t}\|(\rho-\bar{\rho},m,\phi-\bar{\phi})(\cdot,t)\|^{2}\right|\mathrm{d}t
C0+((ρρ¯,m,ϕϕ¯)2+(ρt,mt,ϕt)2)dt.\displaystyle~{}\displaystyle\leq C\int_{0}^{+\infty}\left(\|(\rho-\bar{\rho},m,\phi-\bar{\phi})\|^{2}+\|(\rho_{t},m_{t},\phi_{t})\|^{2}\right)\mathrm{d}t\leq\infty. (4.103)

The estimate (4.101) in combination with (4.5) gives (4.102). Then (2.5) is proved and we complete the proof of Theorem 2.2. \square

Acknowledgement

G. Hong is partially supported from the CAS AMSS-POLYU Joint Laboratory of Applied Mathematics postdoctoral fellowship scheme. H.Y. Peng was supported from the National Natural Science Foundation of China (No. 11901115), Natural Science Foundation of Guangdong Province (No. 2019A1515010706). Z.-A. Wang was supported in part by the Hong Kong RGC GRF grant No. PolyU 153055/18P (P0005472) and an internal grant No. ZZKN from HKPU (P0031013). C.J. Zhu was supported by the National Natural Science Foundation of China (No. 11771150, 11831003 and 11926346) and Guangdong Basic and Applied Basic Research Foundation (No. 2020B1515310015).

References

  • [1] D. Ambrosi, F. Bussolino, and L. Preziosi, A review of vasculogenesis models, J. Theore. Med., 6 (2005), pp. 1–19.
  • [2] F. Berthelin, D. Chiron, and M. Ribot, Stationary solutions with vacuum for a one-dimensional chemotaxis model with nonlinear pressure, Comm. Math. Sci., 14 (2016), pp. 147–186.
  • [3] J. Carrillo, X. Chen, Q. Wang, Z. Wang, and L. Zhang, Phase transitions and bump solutions of the Keller-Segel model with volume exclusion, SIAM J. Appl. Math., 80 (2020), pp. 232–261.
  • [4] J.-A. Carrillo, J.-Y. Li, and Z.-A. Wang, Boundary spike-layer solutions of the singular Keller-Segel system: existence and stability, Proc. London Math. Soc., Doi:10.1112/plms.12319, 2020.
  • [5] S. Chandrasekhar, An introduction to the study of stellar structure, vol. 2, Courier Corporation, 1957.
  • [6] P.-H. Chavanis, Jeans type instability for a chemotactic model of cellular aggregation, Eur. Phys. J. B, 52 (2006), pp. 433–443.
  • [7] P.-H. Chavanis and C. Sire, Kinetic and hydrodynamic models of chemotactic aggregation, Physica A, 384 (2007), pp. 199–222.
  • [8] A. Choudhuri, The physics of fluids and plasmas: an introduction for astrophysicists, Cambridge University Press, 1998.
  • [9] C. Di Russo, Analysis and numerical approximations of hydrodynamical models of biological movements, Rend. Mat. Appl. (7), 32 (2012), pp. 117–367.
  • [10] C. Di Russo, Existence and asymptotic behavior of solutions to a semilinear hyperbolic-parabolic model of chemotaxis, Indiana Univ. Math. J., 65 (2016), pp. 493–533.
  • [11] C. Di Russo and A. Sepe, Existence and asymptotic behavior of solutions to a quasi-linear hyperbolic-parabolic model of vasculogenesis, SIAM J. Math. Anal., 45 (2013), pp. 748–776.
  • [12] F. Filbet and C.-W. Shu, Approximation of hyperbolic models for chemosensitive movement, SIAM J. Sci. Comput., 27 (2005), pp. 850–872.
  • [13] A. Gamba, D. Ambrosi, A. Coniglio, A. De Candia, S. Di Talia, E. Giraudo, G. Serini, L. Preziosi, and F. Bussolino, Percolation, morphogenesis, and burgers dynamics in blood vessels formation, Phys. Rev. Lett., 90 (2003), p. 118101.
  • [14] L. Hsiao and T.-P. Liu, Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping, Comm. Math. Phys., 143 (1992), pp. 599–605.
  • [15] F.-M. Huang, M. Mei, Y. Wang, and H.-M. Yu, Asymptotic convergence to stationary waves for unipolar hydrodynamic model of semiconductors, SIAM J. Math. Anal., 43 (2011), pp. 411–429.
  • [16] R. Kowalczyk, A. Gamba, and L. Preziosi, On the stability of homogeneous solutions to some aggregation models, Disc. Cont. Dyn. Syst. Series B, 4 (2004), pp. 203–220.
  • [17] D. Li, T. Li, and K. Zhao, On a hyperbolic-parabolic system modeling chemotaxis, Math. Models Meth. Appl. Sci., 21 (2011), pp. 1631–1650.
  • [18] T. Li and Z.-A. Wang, Nonlinear stability of traveling waves to a hyperbolic-parabolic system modeling chemotaxis, SIAM J. Appl. Math., 70 (2010), pp. 1522–1541.
  • [19] C.-K. Lin, C.-T. Lin, and M. Mei, Asymptotic behavior of solution to nonlinear damped pp-system with boundary effect, Int. J. Numer. Anal. Model. Ser. B, 1 (2010), pp. 70–92.
  • [20] H.-F. Ma and M. Mei, Best asymptotic profile for linear damped pp-system with boundary effect, J. Differential Equations, 249 (2010), pp. 446–484.
  • [21] P. Marcati, M. Mei, and B. Rubino, Optimal convergence rates to diffusion waves for solutions of the hyperbolic conservation laws with damping, J. Math. Fluid Mech., 7 (2005), pp. S224–S240.
  • [22] P. Markowich, C. Ringhofer, and C. Schmeiser, Semiconductor equations, Springer Science & Business Media, 2012.
  • [23] A. Matsumura, Global existence and asymptotics of the solutions of the second-order quasilinear hyperbolic equations with the first-order dissipation, Publ. Res. Inst. Math. Sci., 13 (1977/78), pp. 349–379.
  • [24] M. Mei, H. Peng, and Z.-A. Wang, Asymptotic profile of a parabolic-hyperbolic system with boundary effect arising from tumor angiogenesis, J. Differential Equations, 259 (2015), pp. 5168–5191.
  • [25] K. Nishihara, Convergence rates to nonlinear diffusion waves for solutions of system of hyperbolic conservation laws with damping, J. Differential Equations, 131 (1996), pp. 171–188.
  • [26] K. Nishihara and T. Yang, Boundary effect on asymptotic behaviour of solutions to the pp-system with linear damping, J. Differential Equations, 156 (1999), pp. 439–458.
  • [27] M. Zhang and C. Zhu, Global existence of solutions to a hyperbolic-parabolic system, Proc. Amer. Math. Soc., 135 (2007), pp. 1017–1027.