This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Nonlinear stability of compressible vortex sheets in three-dimensional elastodynamics

Robin Ming Chen Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA. [email protected] Feimin Huang Institute of Applied Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China. [email protected] Dehua Wang Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA. [email protected]  and  Difan Yuan School of Mathematical Sciences, Beijing Normal University and Laboratory of Mathematics, and Complex Systems, Ministry of Education, Beijing 100875, China. [email protected]
Abstract.

We investigate the nonlinear stability and existence of compressible vortex sheet solutions for three-dimensional isentropic elastic flows. This problem involves a nonlinear hyperbolic system with a characteristic free boundary. Compared to the two-dimensional case, the additional spatial dimension introduces intricate frequency interactions between elasticity and velocity, significantly complicating the stability analysis. Building upon previous results on the weakly linear stability of elastic vortex sheets [19], we perform a detailed study of the roots of the Lopatinskii˘\breve{\mathrm{i}} determinant and identify a geometric stability condition associated with the deformation gradient.

To address the challenges of the variable-coefficient linearized problem, we employ an upper triangularization technique that isolates the outgoing modes into a closed system, where they appear only at the leading order. This enables us to derive energy estimates despite derivative loss. The major novelty of our approach includes the following two key aspects: (1) For the three-dimensional compressible Euler vortex sheets, the front symbol exhibits degenerate ellipticity in certain frequency directions, which makes it challenging to ensure the front’s regularity using standard energy estimates. Our analysis reveals that the non-parallel structure of the deformation gradient tensor plays a crucial role in recovering ellipticity in the front symbol, thereby enhancing the regularity of the free interface. (2) Another significant challenge in three dimensions arises from the strong degeneracy caused by the collision of repeated roots and poles. Unlike in two dimensions, where such interactions are absent, we encounter a co-dimension one set in frequency space where a double root coincides with a double pole. To resolve this, we refine Coulombel’s diagonalization framework [21] and construct a suitable transformation that reduces the degeneracy order of the Lopatinskii˘\breve{\mathrm{i}} matrix, enabling the use of localized Gå{\rm\mathring{a}}rding-type estimates to control the characteristic components. Finally, we employ a Nash-Moser iteration scheme to establish the local existence and nonlinear stability of vortex sheets under small initial perturbations, showing stability within a subsonic regime.

Key words and phrases:
Vortex sheets, Elastodynamics, Contact discontinuities, Linear stability, Nonlinear stability, Para-differential calculus, Nash-Moser iteration
2010 Mathematics Subject Classification:
35Q51, 35Q35, 74F10, 76E17, 76N99

1. Introduction

Vortex sheets are interfaces between two inviscid incompressible or compressible flows, characterized by a contact discontinuity in the fluid velocity. Across these interfaces, the tangential velocity field exhibits a jump discontinuity, while the normal component of the flow velocity remains continuous. Vortex sheets arise from various physical phenomena in fluid mechanics, including oceanography, plasma physics, astrophysics, elastodynamic and aerodynamics. In compressible flows, they are one of the fundamental wave types, along with shock waves and rarefaction waves, in multi-dimensional (M-D) hyperbolic systems of conservation laws. Studying the existence and stability of compressible vortex sheets can give a better understanding of M-D Riemann problems and the behavior of entropy solutions; see Chen-Feldman [11] and Dafermos [26].

In this paper, we focus on studying the vortex sheets in 3D compressible inviscid flows in elastodynamics: (cf. [29, 33] for the physical background):

{ρt+div(ρv)=0,(ρv)t+div(ρvv)+p=div(ρ𝐅𝐅),(ρ𝐅j)t+div(ρ𝐅jvvρ𝐅j)=𝟎,\begin{cases}\rho_{t}+\mathrm{div}(\rho\mathbf{\textbf{v}})=0,\\ (\rho\mathbf{\textbf{v}})_{t}+\mathrm{div}(\rho\mathbf{\textbf{v}}\otimes\mathbf{\textbf{v}})+\nabla p=\mathrm{div}(\rho\mathbf{F}\mathbf{F}^{\top}),\\ (\rho\mathbf{F}_{j})_{t}+\mathrm{div}(\rho\mathbf{F}_{j}\otimes\textbf{v}-\textbf{v}\otimes\rho\mathbf{F}_{j})=\mathbf{0},\\ \end{cases} (1.1)

where ρ\rho denotes the density, 𝐯=(v1,v2,v3)3\mathbf{v}=(v_{1},v_{2},v_{3})^{\top}\in{\mathbb{R}}^{3} the velocity, 𝐅j\mathrm{\mathbf{F}}_{j} is the jjth column of deformation gradient 𝐅=(Fij)𝐌3×3,i,j=1,2,3\mathrm{\mathbf{F}}=(F_{ij})\in\mathbf{M}^{3\times 3},i,j=1,2,3 and pp for the pressure with p=p(ρ)p=p(\rho) a smooth strictly increasing function on (0,).(0,\infty). We also introduce Mach number M=|v|c,M=\frac{|\mathbf{\textbf{v}}|}{c}, where

c:=c(ρ)=p(ρ), for ρ>0.\displaystyle c:=c(\rho)=\sqrt{p^{\prime}(\rho)},\text{ for }\rho>0. (1.2)

The fluids occupy in 3D space and the interfaces are 2D embedded inside the fluid.

Note that by taking divergence of the third equations in (1.1), we end up with

t(div(ρ𝐅j))=0, for j=1,2,3.\partial_{t}(\mathrm{div}(\rho\mathbf{F}_{j}))=0,\text{ for }j=1,2,3.

In column-wise components, we can write the intrinsic property (involution condition for the elastic flow, refer to [26]) as follows:

div(ρ𝐅j)=0, for j=1,2,3.\mathrm{div}(\rho\mathbf{F}_{j})=0,\text{ for }j=1,2,3. (1.3)

This intrinsic property holds at any time throughout the flow if it is initially satisfied.

1.1. History Review

The study of compressible vortex sheets has a long and rich history, originating from the seminal works of Miles [41, 42] and Fejer-Miles [27]. These early studies established that in the two-dimensional compressible Euler flow, vortex sheets exhibit violent instability when the Mach number M<2M<\sqrt{2}, an effect analogous to the Kelvin–Helmholtz instability in incompressible fluids. Later, Artola–Majda [5, 3, 4] investigated the interaction between vortex sheets and highly oscillatory waves, demonstrating that global-in-time nonlinear instability persists for M>2M>\sqrt{2}, making global existence results challenging in the multidimensional settings.

A major breakthrough in the mathematical analysis of compressible vortex sheets came from Coulombel and Secchi [24, 25], who employed microlocal analysis and the Nash-Moser iteration technique to establish the local-in-time nonlinear stability of 2D compressible vortex sheets under small perturbations. Their results were restricted to the supersonic regime M>2M>\sqrt{2}, relying on stability conditions akin to those used for shock waves by Majda [37, 36] and Coulombel [20, 21]. Extensions of these results to non-isentropic Euler flows [23, 45, 46] further demonstrated how entropy variations influence stability. More recently, research has been carried out to steady three-dimensional compressible vortex sheets [53, 55, 56] and relativistic vortex sheets [12], providing insights into broader applications and mathematical structures.

In three-dimensional flows, the dynamics become substantially more intricate. Miles [42] observed that disturbances propagating at large angles to the undisturbed flow amplify instability, and Serre [50] later demonstrated through normal mode analysis that 3D compressible vortex sheets remain unstable for all Mach numbers, mirroring the Kelvin–Helmholtz instability in incompressible fluids. This suggests that additional physical mechanisms – such as external forces, surface tension, or viscosity – are required to stabilize the interface.

Magnetohydrodynamics (MHD) provides one such stabilizing effect. Chen–Wang [10] and Trakhinin [52] independently proved that non-parallel magnetic fields stabilize compressible current-vortex sheets, a result that was also obtained for 2D MHD current-vortex sheets [54, 44]. Another stabilizing mechanism arises from viscoelastic effects; numerical simulations and theoretical studies [6, 31] suggest that viscoelasticity counteracts vortex sheet instabilities. Huilgol [31, 32] studied vortex sheet formation in viscoelastic fluids, showing that unsteady shearing motions can induce vortex sheet structures, while Hu–Wang [30] investigated singularity formation in viscoelastic flows. The stabilization by surface tension was confirmed in the work of Stevens [51], where the local existence and structural stability for 3D compressible Euler vortex sheets were obtained.

Significant effort has been devoted to understanding the influence of elasticity on vortex sheet stability. Linear and nonlinear stability for 2D compressible elastic vortex sheets has been rigorously established in [14, 15, 16, 17, 18]. More recently, Chen–Huang–Wang–Yuan [19] investigated the weakly linear stability of 3D compressible elastic vortex sheets, deriving necessary and sufficient conditions for stability through spectral analysis and a priori estimates.

1.2. Classical Challenges and Resolutions in 2D

One of the fundamental difficulties in analyzing vortex sheets stems from the characteristic nature of the free boundary, which limits control over the trace of characteristic components [24, 34, 38, 7]. Specifically, the failure of the uniform Kreiss–Lopatinskii˘\breve{\mathrm{i}} (UKL) condition leads to a loss of tangential derivatives in estimating the solutions in terms of source terms in the linearized problem [24], making standard approaches insufficient for proving stability results. Additionally, the presence of elasticity complicates the root structure of the Lopatinskii˘\breve{\mathrm{i}} determinant, making it difficult to directly apply classical Kreiss symmetrization techniques.

A recent development in overcoming these difficulties was introduced in [14] in the study of 2D rectilinear compressible elastic vortex sheets, where the authors proposed an upper triangularization technique to isolate outgoing modes from the system at all points in the frequency space. This method effectively separates the system into a closed form where the outgoing modes can be proved to be zero, simplifying the analysis to estimating only the incoming modes, which can be derived directly from the Lopatinskii˘\breve{\mathrm{i}} determinant. As a result, the linear stability was achieved. This approach was further extended by Chen–Huang–Wang–Yuan [19] to analyze 3D linear stability for rectilinear compressible elastic fluids, providing a crucial step toward the nonlinear dynamics.

Linearizing around a non-constant background state introduces spatially dependent coefficients in the system, leading to additional complications in controlling the behavior of solutions. One convenient way to derive energy-type estimates is to use paradifferential calculus of Bony [8]. A particularly difficult issue in the paralinearization approach is that the Lopatinskii˘\breve{\mathrm{i}} determinant may vanish at certain frequencies (called roots). Coulombel [20, 21] and Coulombel–Secchi [24] developed a bicharacteristic extension method to construct weight functions that mitigate this degeneracy. However, this method relies on the assumption that the leading order symbol matrix for the paralinearized system of the non-characteristic form remains diagonalizable along bicharacteristic curves. This assumption fails when the roots coincide with the points where the system cannot be reduced to a non-characteristic form – these points are referred to as poles. This breakdown has been a significant obstacle in applying classical energy methods.

To overcome this, a new approach was designed in [15], based on a refined upper triangularization of the para-linearized system. Instead of relying on bicharacteristic curves, this method constructs weight functions that depend solely on the background state variables. This avoids discrepancies between bicharacteristic extensions and pole distributions, allowing for a more robust stability analysis. A key advantage of this approach is that it provides a framework to ensure improved regularity of the outgoing mode even in the variable-coefficient case, which plays a crucial role in compensating the loss of higher regularity for the characteristic components near the poles. This is particularly important when extending stability results to nonlinear settings, where controlling derivative loss is essential for proving local well-posedness [16].

1.3. New Challenges from Dimension Increase and Resolutions in 3D

In addition to the above challenges, the transition from two-dimensional to fully three-dimensional vortex sheets introduces new analytical and structural challenges. The additional spatial dimension not only increases the degrees of freedom in frequency space but also creates more potential instability directions, making frequency interactions significantly more intricate. Unlike in 2D, where instabilities are constrained to a plane, 3D vortex sheets exhibit a broader range of possible resonance mechanisms. However, in the case of elastic vortex sheets, the additional elasticity components in 3D play a stabilizing role by restricting the growth of unstable perturbations, provided that certain geometric conditions on the deformation gradient are satisfied.

1.3.1. Enhanced ellipticity from elasticity

As is mentioned in Section 1.2, the energy estimates suffer a loss of tangential derivative due to the failure of the UKL condition. Since the wave front appears only in the boundary conditions of the vortex sheet system, one key strategy is to ensure that instabilities can only arise from the traces of solutions to the interior dynamical system rather than from the front symbol. In other words, the boundary conditions for the front need to satisfy certain ellipticity condition.

For 2D compressible Euler vortex sheets, this ellipticity is achieved because the front symbol is homogeneous and does not vanish on the closed hemisphere in the frequency space; see [24, Lemma 4.1]. This property allows for the recovery of one derivative in the regularity estimates of the vortex sheet front. Furthermore, it enables the elimination of the front from the system, reducing the problem to a standard boundary value problem with a symbolic boundary condition, similar to the case of shock waves [37]. The introduction of elasticity preserves the essential algebraic structure, ensuring that the ellipticity condition and subsequent reduction of the system remain valid [14].

However, increasing the spatial dimension introduces additional tangential components, significantly complicating frequency interactions and resonance effects. In particular, for the 3D compressible Euler vortex sheets, the front symbol exhibits degenerate ellipticity along certain frequency directions, which makes it more difficult to control the regularity of the front using standard energy estimates. A key discovery in our analysis is that elasticity provides an ellipticity enhancement mechanism that counteracts this degeneracy. More precisely, we show that if the deformation gradient on the free boundary satisfies the geometric condition

F1×F2𝟎,or equivalently,F1F2,\mathrm{F}_{1}\times\mathrm{F}_{2}\neq\mathbf{0},\qquad\text{or equivalently,}\qquad\mathrm{F}_{1}\nparallel\mathrm{F}_{2}, (1.4)

where F1\mathrm{F}_{1} and F2\mathrm{F}_{2} denote the first two rows of the deformation gradient (see (2.18)), then boundary ellipticity is restored, allowing for the recovery of one derivative for the free interface regularity; see (3.3). Another fundamental difference between the 2D and 3D elastic vortex sheet problems lies in the elimination of the front from the boundary conditions. In two dimensions, there exists a natural projection that removes the front-related terms from the boundary conditions, leaving the remaining system non-singular and ensuring that the normal component of the unknown function can be controlled by its non-characteristic part. In contrast, in 3D, no obvious projection structure is available due to the increased complexity of frequency interactions. Nevertheless, by exploiting the non-parallel structural property of elasticity in (1.4), we construct a suitable projection matrix that facilitates the elimination of the front, thus preserving the essential structure needed for stability estimates; see (3.26).

1.3.2. Resolving higher-order singularities in the Lopatinskii˘\breve{\mathrm{i}} condition

As is explained in Section 1.2, the presence of roots of the Lopatinskii˘\breve{\mathrm{i}} determinant leads to a loss of derivatives in the energy estimates, while at each pole, the para-linearized system cannot be reduced to a non-characteristic form. In the case of 2D elastic vortex sheets, the method developed in [15] effectively treats the scenario where a simple root coincides with a simple pole.

In 3D, the situation is considerably more complex. Specifically, there exists a co-dimension one set in frequency space where a double pole, arising from the left and right states of the two-phase system, collides with a double root. Since the system cannot be directly transformed into a non-characteristic form, we employ the refined upper triangularization technique of [15] to separate the outgoing modes into a closed form, allowing us to derive improved regularity estimates. These estimates are then used to analyze the coupling between the characteristic part and the outgoing mode, ultimately enabling control of the characteristic components. The final step is to estimate the (boundary trace of) incoming modes in terms of the outgoing modes and source terms.

A crucial factor in determining whether the boundary estimates can be closed is the behavior of the restriction of the boundary symbol β\beta to the stable subspace span{Er,El}\text{span}\{E^{r},E^{l}\} of the linearized system, which corresponds to the Lopatinskii˘\breve{\mathrm{i}} matrix L:=β(ErEl)L:=\beta(E^{r}\ E^{l}). As noted earlier, LL is not invertible, and direct computation reveals that LL has a one-dimensional kernel at the roots. This singularity leads to the failure of UKL, resulting in derivative loss. The important work of Coulombel [21] on weakly stable shock waves developed a framework to handle cases where the boundary symbol β\beta vanishes at first order at the roots. This technique has been successfully applied to the study of 2D compressible Euler vortex sheets [24], 2D compressible elastic vortex sheets [15, 16], and 2D relativistic vortex sheets [13]. However, for 3D elastic vortex sheets, a double root may appear, leading to a higher-order degeneracy where β\beta vanishes at second order at the double root. To resolve this issue, we extend Coulombel’s argument by constructing two invertible mappings P1P_{1} and P2P_{2} near the double root, which are symbols of type Γ02\Gamma^{0}_{2} (degree 0 and regularity 2; see Definition 3.1). Under these transformations, the Lopatinskii˘\breve{\mathrm{i}} matrix LL is transformed to

βin:=P1LP2=[100Λ2(γ+iσ1)(γ+iσ2)],\beta_{\rm{in}}:=P_{1}LP_{2}=\left[\begin{matrix}1&0\\ 0&\Lambda^{-2}(\gamma+i\sigma_{1})(\gamma+i\sigma_{2})\end{matrix}\right],

where Λ,σ1,σ2Γ12\Lambda,\sigma_{1},\sigma_{2}\in\Gamma^{1}_{2} are real-valued scalar symbols. The second-order vanishing of β\beta is captured by the symbol (γ+iσ1)(γ+iσ2)(\gamma+i\sigma_{1})(\gamma+i\sigma_{2}). We show that this construction ensures βinΓ02\beta_{\rm{in}}\in\Gamma^{0}_{2}, which brings the problem into the framework of [21], allowing us to use localized Gå{\rm\mathring{a}}rding’s inequality to compensate for the loss of derivatives; see Section 3.6. We would like to comment that this diagonalization of LL into βin\beta_{\rm{in}} and the associated reduction in the degree of the double roots of the Lopatinskii˘\breve{\mathrm{i}} determinant are expected to be useful for other models with similar algebraic structures, such as contact discontinuities in relativistic vortex sheets, non-isentropic Euler equations, and multidimensional shock waves in non-characteristic free boundary problems.

The rest of the paper is organized as follows. In Section 2, we formulate 3D nonlinear problem of vortex sheets, fix the free boundary, linearize the system around a given constant solution, introduce the function spaces and useful lemmas, and state our main result, Theorem 2.1. In Section 3, we introduce the effective linear problem and its formulation with variable coefficients. In Section 4, we prove a well-posedness result of the effective linear problem in the usual Sobolev space HmH^{m} with mm large enough. In Section 5, we transform the original nonlinear problem into the case with zero initial data. We construct approximate solutions to incorporate the initial data into the interior equations. The necessary compatibility conditions are imposed on the initial data for the construction of smooth approximate solutions. Finally, we show the existence and stability results of solutions to the reduced problem and conclude the main result in Section 6 by using Nash-Moser iteration.

2. Formulation, Notations and Main Result

In this section, we will derive the governing dynamics of vortex sheets from the elastic equation (1.1), linearize them around a planar vortex sheet, and state our main result.

2.1. Statement for the Vortex Sheet Problem

Recall the definition of vortex sheet solutions for (1.1). Let U(t,x1,x2,x3)=(ρ,v,𝐅)(t,x1,x2,x3)U(t,x_{1},x_{2},x_{3})=(\rho,\textbf{v},\mathbf{F})(t,x_{1},x_{2},x_{3}) be a solution to system (1.1) which is piecewise smooth on the both sides of a smooth hypersurface

Γ={x3=ψ(t,x1,x2)}.\Gamma=\{x_{3}=\psi(t,x_{1},x_{2})\}.

Denote i=xi,i=1,2,3,\partial_{i}=\partial_{x_{i}},i=1,2,3, for the partial derivatives, normal vector ν=(1ψ,2ψ,1)\nu=(-\partial_{1}\psi,-\partial_{2}\psi,1) on Γ\Gamma and

U(t,x1,x2,x3)={U+(t,x1,x2,x3) if x3>ψ(t,x1,x2),U(t,x1,x2,x3) if x3<ψ(t,x1,x2),\displaystyle U(t,x_{1},x_{2},x_{3})=\begin{cases}U^{+}(t,x_{1},x_{2},x_{3})&\text{ if }x_{3}>\psi(t,x_{1},x_{2}),\\ U^{-}(t,x_{1},x_{2},x_{3})&\text{ if }x_{3}<\psi(t,x_{1},x_{2}),\\ \end{cases}

where U±=(ρ±,v±,𝐅±)(t,x1,x2,x3).U^{\pm}=(\rho^{\pm},\textbf{v}^{\pm},\mathbf{F}^{\pm})(t,x_{1},x_{2},x_{3}). The solution UU satisfies the Rankine-Hugoniot jump relations at each point on Γ:\Gamma:

tψ[ρ][ρvν]=0,tψ[ρv][(ρvν)v][p]ν+[ρ𝐅𝐅ν]=𝟎,tψ[ρ𝐅j][(vν)ρ𝐅j]+[(ρ𝐅jν)v]=𝟎,\begin{split}&\partial_{t}\psi[\rho]-[\rho\textbf{v}\cdot\nu]=0,\\ &\partial_{t}\psi[\rho\textbf{v}]-[(\rho\textbf{v}\cdot\nu)\textbf{v}]-[p]\nu+[\rho\mathbf{F}\mathbf{F}^{\top}\nu]=\mathbf{0},\\ &\partial_{t}\psi[\rho\mathbf{F}_{j}]-[(\textbf{v}\cdot\nu)\rho\mathbf{F}_{j}]+[(\rho\mathbf{F}_{j}\cdot\nu)\textbf{v}]=\mathbf{0},\\ \end{split} (2.1)

where we write [f][f] as the jump of the quantity ff across the hypersurface Γ.\Gamma. For a vortex sheet (contact discontinuity), we require

[vν]=0,[v]𝟎, and ψt=v±ν|Γ.[\textbf{v}\cdot\nu]=0,\;[\textbf{v}]\neq\mathbf{0},\text{ and }\psi_{t}=\textbf{v}^{\pm}\cdot\nu\Big{|}_{\Gamma}. (2.2)

Therefore the jump conditions reduce to

ρ+=ρ,ψt=v+ν=vν,𝐅+jν=𝐅jν.\rho^{+}=\rho^{-},\quad\psi_{t}=\textbf{v}^{+}\cdot\nu=\textbf{v}^{-}\cdot\nu,\quad\mathbf{F}^{+}_{j}\cdot\nu=\mathbf{F}^{-}_{j}\cdot\nu. (2.3)

It is crucial that in the derivation of Rankine-Hugoniot condition, we need to regard

ρ±𝐅±jν=0\rho^{\pm}\mathbf{F}^{\pm}_{j}\cdot\nu=0

as an intrinsic property. Therefore, we also have

𝐅±jν=0, for j=1,2,3on Γ(t).\displaystyle\mathbf{F}^{\pm}_{j}\cdot\nu=0,\text{ for }j=1,2,3\quad\text{on }\Gamma(t). (2.4)

To flatten and fix the free boundary Γ,\Gamma, we need to introduce the function Φ(t,x1,x2,x3)\Phi(t,x_{1},x_{2},x_{3}) to set the variable transformation Φ±(t,x1,x2,x3)\Phi^{\pm}(t,x_{1},x_{2},x_{3}) as follows. We first consider the class of functions Φ(t,x1,x2,x3)\Phi(t,x_{1},x_{2},x_{3}) such that inf{3Φ}>0.\inf\{\partial_{3}\Phi\}>0. Then we define

U±=(ρ±,v±,𝐅±)(t,x1,x2,x3):=(ρ,v,𝐅)(t,x1,x2,Φ(t,x1,x2,±x3)),\displaystyle U^{\pm}_{\sharp}=(\rho^{\pm}_{\sharp},\textbf{v}^{\pm}_{\sharp},\mathbf{F}^{\pm}_{\sharp})(t,x_{1},x_{2},x_{3}):=(\rho,\textbf{v},\mathbf{F})(t,x_{1},x_{2},\Phi(t,x_{1},x_{2},\pm x_{3})), (2.5)

for x30.x_{3}\geq 0. In the following argument, we drop the index \sharp for notation simplicity. Define Φ±(t,x1,x2,x3):=Φ(t,x1,x2,±x3).\Phi^{\pm}(t,x_{1},x_{2},x_{3}):=\Phi(t,x_{1},x_{2},\pm x_{3}). Inspired by [24, 28], it is natural to require Φ±\Phi^{\pm} satisfying the eikonal equation

tΦ±+v1±1Φ±+v2±2Φ±v3±=0,±3Φ±κ>0,\begin{split}\partial_{t}\varPhi^{\pm}+v_{1}^{\pm}\partial_{1}\varPhi^{\pm}+v_{2}^{\pm}\partial_{2}\varPhi^{\pm}-v_{3}^{\pm}=0,\quad\pm\partial_{3}\varPhi^{\pm}\geq\kappa>0,\end{split} (2.6)

when x30x_{3}\geq 0, and

Φ+=Φ=ψ,ifx3=0,\varPhi^{+}=\varPhi^{-}=\psi,\quad\mathrm{if}\ x_{3}=0, (2.7)

for some constant κ>0\kappa>0.

Through this variable transformation, equations (1.1) become

tU±+A1(U±)1U±+A2(U±)2U±+13Φ±(A3(U±)tΦ±I1Φ±A1(U±)2Φ±A2(U±))3U±=𝟎,\begin{split}&\partial_{t}U^{\pm}+A_{1}(U^{\pm})\partial_{1}U^{\pm}+A_{2}(U^{\pm})\partial_{2}U^{\pm}\\ &\quad+\frac{1}{\partial_{3}\Phi^{\pm}}\big{(}A_{3}(U^{\pm})-\partial_{t}\Phi^{\pm}I-\partial_{1}\Phi^{\pm}A_{1}(U^{\pm})-\partial_{2}\Phi^{\pm}A_{2}(U^{\pm})\big{)}\partial_{3}U^{\pm}=\mathbf{0},\end{split} (2.8)

for x3>0x_{3}>0 with free boundary x3=0,x_{3}=0, where

A1(U):=[v1ρ00000000000pρv100F1100F1200F130000v100F1100F1200F130000v100F1100F1200F130F1100v10000000000F1100v10000000000F1100v10000000F1200000v10000000F1200000v10000000F1300000v10000F1300000000v10000F1300000000v10000F1300000000v1],A2(U):=[v20ρ00000000000v200F2100F2200F2300pρ0v200F2100F2200F230000v200F2100F2200F230F2100v20000000000F2100v20000000000F2100v20000000F2200000v20000000F2200000v20000000F2200000v20000F2300000000v20000F2300000000v20000F2300000000v2], and A3(U):=[v300ρ0000000000v300F3100F3200F330000v300F3100F3200F330pρ00v300F3100F3200F330F3100v30000000000F3100v30000000000F3100v30000000F3200000v30000000F3200000v30000000F3200000v30000F3300000000v30000F3300000000v30000F3300000000v3].\begin{split}&A_{1}(U):=\begin{bmatrix}\setcounter{MaxMatrixCols}{13}\begin{smallmatrix}v_{1}&\rho&0&0&0&0&0&0&0&0&0&0&0\\ \frac{p^{\prime}}{\rho}&v_{1}&0&0&-F_{11}&0&0&-F_{12}&0&0&-F_{13}&0&0\\ 0&0&v_{1}&0&0&-F_{11}&0&0&-F_{12}&0&0&-F_{13}&0\\ 0&0&0&v_{1}&0&0&-F_{11}&0&0&-F_{12}&0&0&-F_{13}\\ 0&-F_{11}&0&0&v_{1}&0&0&0&0&0&0&0&0\\ 0&0&-F_{11}&0&0&v_{1}&0&0&0&0&0&0&0\\ 0&0&0&-F_{11}&0&0&v_{1}&0&0&0&0&0&0\\ 0&-F_{12}&0&0&0&0&0&v_{1}&0&0&0&0&0\\ 0&0&-F_{12}&0&0&0&0&0&v_{1}&0&0&0&0\\ 0&0&0&-F_{13}&0&0&0&0&0&v_{1}&0&0&0\\ 0&-F_{13}&0&0&0&0&0&0&0&0&v_{1}&0&0\\ 0&0&-F_{13}&0&0&0&0&0&0&0&0&v_{1}&0\\ 0&0&0&-F_{13}&0&0&0&0&0&0&0&0&v_{1}\\ \end{smallmatrix}\end{bmatrix},\\[5.0pt] &A_{2}(U):=\begin{bmatrix}\setcounter{MaxMatrixCols}{13}\begin{smallmatrix}v_{2}&0&\rho&0&0&0&0&0&0&0&0&0&0\\ 0&v_{2}&0&0&-F_{21}&0&0&-F_{22}&0&0&-F_{23}&0&0\\ \frac{p^{\prime}}{\rho}&0&v_{2}&0&0&-F_{21}&0&0&-F_{22}&0&0&-F_{23}&0\\ 0&0&0&v_{2}&0&0&-F_{21}&0&0&-F_{22}&0&0&-F_{23}\\ 0&-F_{21}&0&0&v_{2}&0&0&0&0&0&0&0&0\\ 0&0&-F_{21}&0&0&v_{2}&0&0&0&0&0&0&0\\ 0&0&0&-F_{21}&0&0&v_{2}&0&0&0&0&0&0\\ 0&-F_{22}&0&0&0&0&0&v_{2}&0&0&0&0&0\\ 0&0&-F_{22}&0&0&0&0&0&v_{2}&0&0&0&0\\ 0&0&0&-F_{22}&0&0&0&0&0&v_{2}&0&0&0\\ 0&-F_{23}&0&0&0&0&0&0&0&0&v_{2}&0&0\\ 0&0&-F_{23}&0&0&0&0&0&0&0&0&v_{2}&0\\ 0&0&0&-F_{23}&0&0&0&0&0&0&0&0&v_{2}\\ \end{smallmatrix}\end{bmatrix},\\[5.0pt] \text{ and }&A_{3}(U):=\begin{bmatrix}\setcounter{MaxMatrixCols}{13}\begin{smallmatrix}v_{3}&0&0&\rho&0&0&0&0&0&0&0&0&0\\ 0&v_{3}&0&0&-F_{31}&0&0&-F_{32}&0&0&-F_{33}&0&0\\ 0&0&v_{3}&0&0&-F_{31}&0&0&-F_{32}&0&0&-F_{33}&0\\ \frac{p^{\prime}}{\rho}&0&0&v_{3}&0&0&-F_{31}&0&0&-F_{32}&0&0&-F_{33}\\ 0&-F_{31}&0&0&v_{3}&0&0&0&0&0&0&0&0\\ 0&0&-F_{31}&0&0&v_{3}&0&0&0&0&0&0&0\\ 0&0&0&-F_{31}&0&0&v_{3}&0&0&0&0&0&0\\ 0&-F_{32}&0&0&0&0&0&v_{3}&0&0&0&0&0\\ 0&0&-F_{32}&0&0&0&0&0&v_{3}&0&0&0&0\\ 0&0&0&-F_{32}&0&0&0&0&0&v_{3}&0&0&0\\ 0&-F_{33}&0&0&0&0&0&0&0&0&v_{3}&0&0\\ 0&0&-F_{33}&0&0&0&0&0&0&0&0&v_{3}&0\\ 0&0&0&-F_{33}&0&0&0&0&0&0&0&0&v_{3}\\ \end{smallmatrix}\end{bmatrix}.\\ \end{split} (2.9)

It is noted that this choice simplify the expression of the nonlinear problem in the fixed domain and guarantees the constant rank property of boundary matrix in the whole domain.

It is obvious that system of conservation laws (1.1) admits trivial vortex sheets solutions consisting of two constant states separated by a planar front as follows:

U(t,x1,x2,x3)={(ρ¯,v¯,0,0,F¯+11,F¯+21,0,F¯+12,F¯+22,0,F¯+13,F¯+23,0) if x3>0,(ρ¯,v¯,0,0,F¯11,F¯+21,0,F¯12,F¯22,0,F¯13,F¯23,0) if x3<0.\displaystyle U(t,x_{1},x_{2},x_{3})=\begin{cases}(\bar{\rho},\bar{v},0,0,\bar{F}^{+}_{11},\bar{F}^{+}_{21},0,\bar{F}^{+}_{12},\bar{F}^{+}_{22},0,\bar{F}^{+}_{13},\bar{F}^{+}_{23},0)&\text{ if }x_{3}>0,\\ (\bar{\rho},-\bar{v},0,0,\bar{F}^{-}_{11},\bar{F}^{+}_{21},0,\bar{F}^{-}_{12},\bar{F}^{-}_{22},0,\bar{F}^{-}_{13},\bar{F}^{-}_{23},0)&\text{ if }x_{3}<0.\\ \end{cases} (2.10)

Every planar elastic vortex sheet (namely piecewise-constant vortex sheet) is of this form through the Galilean transformation. For simplicity we assume that F¯ij+=F¯ij=F¯ij,\bar{F}_{ij}^{+}=-\bar{F}_{ij}^{-}=\bar{F}_{ij}, for i{1,2},j{1,2,3}.i\in\{1,2\},\ j\in\{1,2,3\}.

Then we need to solve the following initial-boundary value problem for U±U^{\pm}_{\sharp} in a fixed domain:

𝕃(U±,Φ±):=L(U±,Φ±)U±=𝟎,x3>0,\displaystyle\mathbb{L}(U^{\pm},\varPhi^{\pm}):=L(U^{\pm},\varPhi^{\pm})U^{\pm}=\mathbf{0},\quad x_{3}>0, (2.11a)
𝔹(U+,U,ψ)|x3=0=𝟎,\displaystyle\mathbb{B}(U^{+},U^{-},\psi)|_{x_{3}=0}=\mathbf{0}, (2.11b)
(U+,U,ψ)|t=0=(U+0,U0,ψ0),\displaystyle(U^{+},U^{-},\psi)|_{t=0}=(U^{+}_{0},U^{-}_{0},\psi_{0}), (2.11c)

where we have dropped the index ``"``\sharp" for convenience, L(U,Φ)L(U,\varPhi) and 𝔹\mathbb{B} are given by

L(U,Φ):=It+A1(U)1+A2(U)2+A~3(U,Φ)3,\displaystyle L(U,\varPhi):=I\partial_{t}+A_{1}(U)\partial_{1}+A_{2}(U)\partial_{2}+\widetilde{A}_{3}(U,\varPhi)\partial_{3}, (2.12)
𝔹(U+,U,ψ):=[[v1]1ψ+[v2]2ψ[v3]tψ+v1+|x3=01ψ+v2+|x3=02ψv3+|x3=0[ρ]],\displaystyle\mathbb{B}(U^{+},U^{-},\psi):=\begin{bmatrix}[v_{1}]\partial_{1}\psi+[v_{2}]\partial_{2}\psi-[v_{3}]\\[1.42262pt] \partial_{t}\psi+v_{1}^{+}|_{x_{3}=0}\partial_{1}\psi+v_{2}^{+}|_{x_{3}=0}\partial_{2}\psi-v_{3}^{+}|_{x_{3}=0}\\[1.42262pt] [\rho]\end{bmatrix}, (2.13)

with

A~3(U,Φ):=13Φ(A3(U)tΦI1ΦA1(U)2ΦA2(U)).\displaystyle\widetilde{A}_{3}(U,\varPhi):=\frac{1}{\partial_{3}\varPhi}\big{(}A_{3}(U)-\partial_{t}\varPhi I-\partial_{1}\varPhi A_{1}(U)-\partial_{2}\varPhi A_{2}(U)\big{)}.

By (2.4) and (2.6), we obtain that the boundary matrix of problem (2.11), i.e.,

diag(A~3(U+,Φ+),A~3(U,Φ)),\mathrm{diag}\,\big{(}\!-\widetilde{A}_{3}(U^{+},\varPhi^{+}),\,-\widetilde{A}_{3}(U^{-},\varPhi^{-})\big{)},

has constant rank on {x30}\{x_{3}\geq 0\} if and only if

F3j±=F1j±1Φ±+F2j±2Φ±for j=1,2,3if x30.\displaystyle F_{3j}^{\pm}=F_{1j}^{\pm}\partial_{1}\varPhi^{\pm}+F_{2j}^{\pm}\partial_{2}\varPhi^{\pm}\quad\textrm{for }\ j=1,2,3\quad\textrm{if }\ x_{3}\geq 0. (2.14)

In the new variables, (1.3) become

Φ±(ρ±Fj±)=0\displaystyle\partial_{\ell}^{\varPhi^{\pm}}(\rho^{\pm}{F}_{\ell j}^{\pm})=0\quad for j=1,2,3\displaystyle\textrm{for }\ j=1,2,3 if x3>0,\displaystyle\textrm{if }\ x_{3}>0, (2.15)

where we denote the partial differentials with respect to the lifting function Φ\varPhi by

tΦ:=ttΦ3Φ2,1Φ:=11Φ3Φ3,2Φ:=22Φ3Φ3,3Φ:=13Φ3.\displaystyle\partial_{t}^{\varPhi}:=\partial_{t}-\frac{\partial_{t}\varPhi}{\partial_{3}\varPhi}\partial_{2},\quad\partial_{1}^{\varPhi}:=\partial_{1}-\frac{\partial_{1}\varPhi}{\partial_{3}\varPhi}\partial_{3},\quad\partial_{2}^{\varPhi}:=\partial_{2}-\frac{\partial_{2}\varPhi}{\partial_{3}\varPhi}\partial_{3},\quad\partial_{3}^{\varPhi}:=\frac{1}{\partial_{3}\varPhi}\partial_{3}. (2.16)

The following proposition shows that identities (2.14)–(2.15) are involutions for vortex sheet problem (2.6)–(2.11). The proof follows from a straightforward computation and hence is omitted.

Proposition 2.1.

For every sufficiently smooth solution of problem (2.6)–(2.11) on time interval [0,T][0,T], constraints (2.14)–(2.15) hold for all t[0,T],t\in[0,T], if they are satisfied initially.

2.2. Main Result and Discussion

In the straightened variables, the piecewise constant vortex sheet (2.10) corresponds to the stationary solution of (2.11a)-(2.11c) and (2.14),(2.15) as follows:

U¯±:=(ρ¯,±v¯, 0,±F¯11,±F¯21, 0,±F¯12,±F¯22, 0,±F¯13,±F¯23, 0),φ¯:=0,Φ¯±:=±x3.\displaystyle\bar{U}^{\pm}:=\big{(}\bar{\rho},\,\pm\bar{v},\,0,\,\pm\bar{F}_{11},\pm\bar{F}_{21},\,0,\,\pm\bar{F}_{12},\pm\bar{F}_{22},\,0,\pm\bar{F}_{13},\pm\bar{F}_{23},\,0\big{)}^{\top},\quad\bar{\varphi}:=0,\,\bar{\varPhi}^{\pm}:=\pm x_{3}. (2.17)

For j=1,2,3,j=1,2,3, we denote

Fj:= the jth row of the deformation matrix 𝐅r.\mathrm{F}_{j}:=\text{ the $j$th row of the deformation matrix }\mathbf{F}^{r}. (2.18)

From (2.17) we know that F3=𝟎\mathrm{F_{3}}=\mathbf{0}. We further define the vector projections (see Fig. 1)

Πa(b):= the parallel projection of b onto a,Πa(b):=bΠa(b)= the perpendicular projection of b onto a.\begin{split}\Pi_{a}(b)&:=\textup{ the parallel projection of $b$ onto $a$},\\ \Pi^{\perp}_{a}(b)&:=b-\Pi_{a}(b)=\textup{ the perpendicular projection of $b$ onto $a$}.\end{split} (2.19)
Refer to caption
Figure 1. Vector projections

In order to prove the nonlinear stability of elastic vortex sheets, we only need to show the existence of solutions to problem (2.6)–(2.11) on account of transform (2.5). The main result of this paper is stated as follows:

Theorem 2.1.

Let T>0T>0 and s014s_{0}\geq 14 be an integer. Suppose that the background state (2.17) satisfies F1×F2𝟎,\mathrm{F}_{1}\times\mathrm{F}_{2}\neq\mathbf{0}, and the following stability conditions:

v¯2<|ΠF2(F1)|24,\displaystyle\bar{v}^{2}<\frac{|\Pi^{\perp}_{\mathrm{F}_{2}}(\mathrm{F}_{1})|^{2}}{4}, (2.20)

and

v¯2<G(F1,F2),\displaystyle\begin{aligned} &\bar{v}^{2}<\mathrm{G}(\mathrm{F}_{1},\mathrm{F}_{2}),\end{aligned} (2.21)

where G(F1,F2)\mathrm{G}(\mathrm{F}_{1},\mathrm{F}_{2}) is defined in (3.39). Suppose further that the initial data U±0U^{\pm}_{0} and φ0\varphi_{0} satisfy constraints (2.14)–(2.15) and the compatibility conditions up to order s0s_{0} (cf. Definition 5.1), and that (U±0U¯±,φ0)Hs0+1/2(3+)×Hs0+1(2)(U^{\pm}_{0}-\bar{U}^{\pm},\varphi_{0})\in H^{s_{0}+1/2}(\mathbb{R}^{3}_{+})\times H^{s_{0}+1}(\mathbb{R}^{2}) has a compact support. Then there exists a positive constant ϵ\epsilon such that, if

U±0U¯±Hs0+1/2(3+)+φ0Hs0+1(2)ϵ,\|U^{\pm}_{0}-\bar{U}^{\pm}\|_{H^{s_{0}+1/2}(\mathbb{R}^{3}_{+})}+\|\varphi_{0}\|_{H^{s_{0}+1}(\mathbb{R}^{2})}\leq\epsilon,

then problem (2.6)–(2.11) admits a solution (U±,Φ±,φ)(U^{\pm},\varPhi^{\pm},\varphi) on the time interval [0,T][0,T] satisfying

(U±U¯±,Φ±Φ¯±)Hs08((0,T)×3+),φHs07((0,T)×2).(U^{\pm}-\bar{U}^{\pm},\varPhi^{\pm}-\bar{\varPhi}^{\pm})\in H^{s_{0}-8}((0,T)\times\mathbb{R}^{3}_{+}),\quad\varphi\in H^{s_{0}-7}((0,T)\times\mathbb{R}^{2}).

2.3. Functional Spaces

Now we introduce some necessary functional spaces, i.e.\it{i.e.}, weighted Sobolev spaces in preparation for our main theorem. Let 𝒟\mathcal{D}^{\prime} denote the distributions and define

Hsγ(3):={u(t,x1,x2)𝒟(3):eγtu(t,x1,x2)Hs(3)},H^{s}_{\gamma}({\mathbb{R}}^{3}):=\{u(t,x_{1},x_{2})\in\mathcal{D}^{\prime}({\mathbb{R}}^{3}):e^{-\gamma t}u(t,x_{1},x_{2})\in H^{s}({\mathbb{R}}^{3})\},
Hsγ(4+):={v(t,x1,x2,x3)𝒟(4+):eγtv(t,x1,x2,x3)Hs(4+)},H^{s}_{\gamma}({\mathbb{R}}^{4}_{+}):=\{v(t,x_{1},x_{2},x_{3})\in\mathcal{D}^{\prime}({\mathbb{R}}^{4}_{+}):e^{-\gamma t}v(t,x_{1},x_{2},x_{3})\in H^{s}({\mathbb{R}}^{4}_{+})\},

for s,γ1,s\in{\mathbb{R}},\gamma\geq 1, with equivalent norms

uHsγ(3):=eγtuHs(3),vHsγ(4+):=eγtvHs(4+),\|u\|_{H^{s}_{\gamma}({\mathbb{R}}^{3})}:=\|e^{-\gamma t}u\|_{H^{s}({\mathbb{R}}^{3})},\quad\|v\|_{H^{s}_{\gamma}({\mathbb{R}}^{4}_{+})}:=\|e^{-\gamma t}v\|_{H^{s}({\mathbb{R}}^{4}_{+})},

respectively, where

4+:={(t,x1,x2,x3)4:x3>0}.{\mathbb{R}}^{4}_{+}:=\{(t,x_{1},x_{2},x_{3})\in{\mathbb{R}}^{4}:x_{3}>0\}.

We define the norm

u2s,γ:=1(2π)33(γ2+|ξ|2)s|u^(ξ)|2dξ, for any uHs(3),\|u\|^{2}_{s,\gamma}:=\frac{1}{(2\pi)^{3}}\int_{{\mathbb{R}}^{3}}(\gamma^{2}+|\xi|^{2})^{s}|\widehat{u}(\xi)|^{2}\,{\rm d}\xi,\;\text{ for any }u\in H^{s}({\mathbb{R}}^{3}),

with u^(ξ)\widehat{u}(\xi) being the Fourier transform of uu with respect to (t,x1,x2).(t,x_{1},x_{2}). Setting u~=eγtu,\tilde{u}=e^{-\gamma t}u, we see that uHsγ(3)\|u\|_{H^{s}_{\gamma}({\mathbb{R}}^{3})} and u~s,γ\|\tilde{u}\|_{s,\gamma} are equivalent, denoted by uHsγ(3)u~s,γ.\|u\|_{H^{s}_{\gamma}({\mathbb{R}}^{3})}\simeq\|\tilde{u}\|_{s,\gamma}. Now, we can define the space L2(+;Hsγ(3)),L^{2}({\mathbb{R}}_{+};H^{s}_{\gamma}({\mathbb{R}}^{3})), endowed with the norm

|||v|||2L2(Hsγ):=+0v(,x3)2Hsγ(3)dx3.{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|v\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{L^{2}(H^{s}_{\gamma})}:=\int^{+\infty}_{0}\|v(\cdot,x_{3})\|^{2}_{H^{s}_{\gamma}({\mathbb{R}}^{3})}\,{\rm d}x_{3}.

We also have

|||v|||2L2(Hsγ)|||v~|||2s,γ:=+0v~(,x3)2s,γdx3.{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|v\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{L^{2}(H^{s}_{\gamma})}\simeq{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\tilde{v}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{s,\gamma}:=\int^{+\infty}_{0}\|\tilde{v}(\cdot,x_{3})\|^{2}_{s,\gamma}\,{\rm d}x_{3}.

It is easy to see that when s=0,s=0, 0:=0,γ=L2(3)\|\cdot\|_{0}:=\|\cdot\|_{0,\gamma}=\|\cdot\|_{L^{2}({\mathbb{R}}^{3})} and ||||||0,γ{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\cdot\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{0,\gamma} (||||||0{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\cdot\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{0} for simplicity) is the usual norm of L2(4+).L^{2}({\mathbb{R}}^{4}_{+}). We denote :=(t,1,2)\nabla:=(\partial_{t},\partial_{1},\partial_{2}) when applying it to functions of (t,x1,x2).(t,x_{1},x_{2}). For multi-index α=(α0,α1,α2,α3)4\alpha=(\alpha_{0},\alpha_{1},\alpha_{2},\alpha_{3})\in\mathbb{N}^{4}, we define α:=tα01α12α23α3and |α|:=α0+α1+α2+α3.\partial^{\alpha}:=\partial_{t}^{\alpha_{0}}\partial_{1}^{\alpha_{1}}\partial_{2}^{\alpha_{2}}\partial_{3}^{\alpha_{3}}\quad\textrm{and }\quad|\alpha|:=\alpha_{0}+\alpha_{1}+\alpha_{2}+\alpha_{3}. For mm\in\mathbb{N}, we denote m:={α:|α|=m}\nabla^{m}:=\{\partial^{\alpha}:|\alpha|=m\}.

Moreover,

Hmγ(ΩT):={u𝒟(ΩT):eγtuHm(ΩT)}H^{m}_{\gamma}(\Omega_{T}):=\big{\{}u\in\mathcal{D}^{\prime}(\Omega_{T})\,:\,\mathrm{e}^{-\gamma t}u\in H^{m}(\Omega_{T})\big{\}}

is introduced with the norm

uHmγ(ΩT):=|α|mγm|α|eγtαuL2(ΩT).\displaystyle\|u\|_{H^{m}_{\gamma}(\Omega_{T})}:=\sum_{|\alpha|\leq m}\gamma^{m-|\alpha|}\|\mathrm{e}^{-\gamma t}\partial^{\alpha}u\|_{L^{2}(\Omega_{T})}.

Similarly, the space Hmγ(ωT)H^{m}_{\gamma}(\omega_{T}) and its norm are defined. Furthermore, we abbreviate L2(+;Hmγ(ωT))L^{2}(\mathbb{R}_{+};H^{m}_{\gamma}(\omega_{T})) to L2(Hmγ(ωT))L^{2}(H^{m}_{\gamma}(\omega_{T})), which is equipped with the norm

|||u|||L2(Hmγ(ωT)):=α0+α1+α2mγmα0α1α2eγttα01α12α2uL2(ΩT).\displaystyle{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|u\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{L^{2}(H^{m}_{\gamma}(\omega_{T}))}:=\sum_{\alpha_{0}+\alpha_{1}+\alpha_{2}\leq m}\gamma^{m-\alpha_{0}-\alpha_{1}-\alpha_{2}}\|\mathrm{e}^{-\gamma t}\partial_{t}^{\alpha_{0}}\partial_{1}^{\alpha_{1}}\partial_{2}^{\alpha_{2}}u\|_{L^{2}(\Omega_{T})}.

and L2γ(ΩT):=L2(H0γ(ωT)),L^{2}_{\gamma}(\Omega_{T}):=L^{2}(H^{0}_{\gamma}(\omega_{T})), uL2γ(ΩT)=eγtuL2(ΩT)\|u\|_{L^{2}_{\gamma}(\Omega_{T})}=\|\mathrm{e}^{-\gamma t}u\|_{L^{2}(\Omega_{T})}.

We use the following notation: ABA\lesssim B (BAB\gtrsim A) if ACBA\leq CB (BCAB\geq CA) holds uniformly for some positive constant CC that is independent of γ.\gamma.

In the following, we present the Moser-type calculus inequalities in weighted Sobolev spaces, which will be used in proving the higher-order tame estimates and convergence of the Nash–Moser iterative scheme.

Lemma 2.1.

Let mm\in\mathbb{N}, γ1\gamma\geq 1, TT\in\mathbb{R}, and u,vHγm(ΩT)L(ΩT)u,v\in H_{\gamma}^{m}(\Omega_{T})\cap L^{\infty}(\Omega_{T}). Let bb denote a CC^{\infty}–function defined in a neighborhood of the origin.

(a) If |β1+β2|m|\beta_{1}+\beta_{2}|\leq m and b(0)=0b(0)=0, then

β1uβ2vLγ2(ΩT)+uvHγm(ΩT)\displaystyle\big{\|}\partial^{\beta_{1}}u\partial^{\beta_{2}}v\big{\|}_{L_{\gamma}^{2}(\Omega_{T})}+\big{\|}uv\big{\|}_{H_{\gamma}^{m}(\Omega_{T})} uL(ΩT)vHγm(ΩT)+uHγm(ΩT)vL(ΩT),\displaystyle\lesssim\|u\|_{L^{\infty}(\Omega_{T})}\|v\|_{H_{\gamma}^{m}(\Omega_{T})}+\|u\|_{H_{\gamma}^{m}(\Omega_{T})}\|v\|_{L^{\infty}(\Omega_{T})}, (2.22)
b(u)Hγm(ΩT)\displaystyle\|b(u)\|_{H_{\gamma}^{m}(\Omega_{T})} C(uL(ΩT))uHγm(ΩT);\displaystyle\leq C\big{(}\|u\|_{L^{\infty}(\Omega_{T})}\big{)}\|u\|_{H_{\gamma}^{m}(\Omega_{T})}; (2.23)

(b) If |β1+β2+β3|m|\beta_{1}+\beta_{2}+\beta_{3}|\leq m, then

β1[β2,b(u)]β3vL2γ(ΩT)C(uL(ΩT))(vHγm(ΩT)+uHγm(ΩT)vL(ΩT)).\displaystyle\big{\|}\partial^{\beta_{1}}[\partial^{\beta_{2}},b(u)]\partial^{\beta_{3}}v\big{\|}_{L^{2}_{\gamma}(\Omega_{T})}\leq C\big{(}\|u\|_{L^{\infty}(\Omega_{T})}\big{)}\left(\|v\|_{H_{\gamma}^{m}(\Omega_{T})}+\|u\|_{H_{\gamma}^{m}(\Omega_{T})}\|v\|_{L^{\infty}(\Omega_{T})}\right). (2.24)

   Moreover, if uW1,(ΩT)u\in W^{1,\infty}(\Omega_{T}), then

β1[β2,b(u)]β3vL2γ(ΩT)C(uW1,(ΩT))(vHγm1(ΩT)+uHγm(ΩT)vL(ΩT)).\displaystyle\big{\|}\partial^{\beta_{1}}[\partial^{\beta_{2}},b(u)]\partial^{\beta_{3}}v\big{\|}_{L^{2}_{\gamma}(\Omega_{T})}\leq C\big{(}\|u\|_{W^{1,\infty}(\Omega_{T})}\big{)}\left(\|v\|_{H_{\gamma}^{m-1}(\Omega_{T})}+\|u\|_{H_{\gamma}^{m}(\Omega_{T})}\|v\|_{L^{\infty}(\Omega_{T})}\right). (2.25)

Here βi\beta_{i} (for i=1,2,3i=1,2,3) are multi-indices, [a,b]c:=a(bc)b(ac)[a,b]c:=a(bc)-b(ac) represents the standard commutator, and the increasing function CC is independent of uu, vv, γ\gamma, and TT. The same conclusions remain valid when ΩT\Omega_{T} is replaced by ωT\omega_{T}.

We refer the proof of the inequalities (2.22) and (2.23) to [39, Section 4.5] and [25, Appendix C]. We also omit the proof of the inequalities (2.24) and (2.25), which can be proved by (2.22) and (2.23) through a direct calculation.

3. Variable Coefficient Linearized Problem

In this section we introduce the effective linear problem and its formulation with variable coefficients. We first write (2.11a) as

𝕃(U±,Φ±):=tU±+A1(U±)1U±+A2(U±)2U±+13Φ±(A3(U±)tΦ±I1Φ±A1(U±)2Φ±A2(U±))3U±=𝟎,\begin{split}&\mathbb{L}(U^{\pm},\Phi^{\pm}):=\partial_{t}U^{\pm}+A_{1}(U^{\pm})\partial_{1}U^{\pm}+A_{2}(U^{\pm})\partial_{2}U^{\pm}\\ &\qquad\qquad\qquad+\frac{1}{\partial_{3}\Phi^{\pm}}\big{(}A_{3}(U^{\pm})-\partial_{t}\Phi^{\pm}I-\partial_{1}\Phi^{\pm}A_{1}(U^{\pm})-\partial_{2}\Phi^{\pm}A_{2}(U^{\pm})\big{)}\partial_{3}U^{\pm}=\mathbf{0},\end{split} (3.1)

for x3>0.x_{3}>0. Using Rankine-Hugoniot conditions, we derive that

𝔹(U|x3=0,ψ)={(v+1v1)1ψ+(v+2v2)2ψ(v+3v3)=0,tψ+v+11ψ+v+22ψv+3=0,ρ+ρ=0,\mathbb{B}(U|_{x_{3}=0},\psi)=\begin{cases}(v^{+}_{1}-v^{-}_{1})\partial_{1}\psi+(v^{+}_{2}-v^{-}_{2})\partial_{2}\psi-(v^{+}_{3}-v^{-}_{3})=0,\\ \partial_{t}\psi+v^{+}_{1}\partial_{1}\psi+v^{+}_{2}\partial_{2}\psi-v^{+}_{3}=0,\\ \rho^{+}-\rho^{-}=0,\end{cases} (3.2)

where Φ±=ψ\Phi^{\pm}=\psi at x3=0.x_{3}=0. We also have that

{(F+11F11)1ψ+(F+21F21)2ψ(F+31F31)=0,F+111ψ+F+212ψF+31=0,(F+12F12)1ψ+(F+22F22)2ψ(F+32F32)=0,F+121ψ+F+222ψF+32=0,(F+13F13)1ψ+(F+23F23)2ψ(F+33F33)=0,F+131ψ+F+232ψF+33=0,\begin{cases}(F^{+}_{11}-F^{-}_{11})\partial_{1}\psi+(F^{+}_{21}-F^{-}_{21})\partial_{2}\psi-(F^{+}_{31}-F^{-}_{31})=0,\\ F^{+}_{11}\partial_{1}\psi+F^{+}_{21}\partial_{2}\psi-F^{+}_{31}=0,\\ (F^{+}_{12}-F^{-}_{12})\partial_{1}\psi+(F^{+}_{22}-F^{-}_{22})\partial_{2}\psi-(F^{+}_{32}-F^{-}_{32})=0,\\ F^{+}_{12}\partial_{1}\psi+F^{+}_{22}\partial_{2}\psi-F^{+}_{32}=0,\\ (F^{+}_{13}-F^{-}_{13})\partial_{1}\psi+(F^{+}_{23}-F^{-}_{23})\partial_{2}\psi-(F^{+}_{33}-F^{-}_{33})=0,\\ F^{+}_{13}\partial_{1}\psi+F^{+}_{23}\partial_{2}\psi-F^{+}_{33}=0,\\ \end{cases}

Now, we consider the following background states:

Ur,l=(ρr,l,vr,l1,vr,l2,vr,l3,Fr,l11,Fr,l21,Fr,l31,Fr,l12,Fr,l22,Fr,l32,Fr,l13,Fr,l23,Fr,l33)=U¯r,l+U˙r,l=(ρ¯,±v¯,0,0,±F¯11,±F¯21,0,±F¯12,±F¯22,0,±F¯13,±F¯23,0)+(ρ˙r,l,v˙r,l1,v˙r,l2,v˙r,l3,F˙r,l11,F˙r,l21,F˙r,l31,F˙r,l12,F˙r,l22,F˙r,l32,F˙r,l13,F˙r,l23,F˙r,l33),Φr,l(t,x1,x2,x3):=±x3+Φ˙r,l,\begin{split}U^{r,l}&=(\rho^{r,l},v^{r,l}_{1},v^{r,l}_{2},v^{r,l}_{3},F^{r,l}_{11},F^{r,l}_{21},F^{r,l}_{31},F^{r,l}_{12},F^{r,l}_{22},F^{r,l}_{32},F^{r,l}_{13},F^{r,l}_{23},F^{r,l}_{33})^{\top}=\bar{U}^{r,l}+\dot{U}^{r,l}\\ &=(\bar{\rho},\pm\bar{v},0,0,\pm\bar{F}_{11},\pm\bar{F}_{21},0,\pm\bar{F}_{12},\pm\bar{F}_{22},0,\pm\bar{F}_{13},\pm\bar{F}_{23},0)^{\top}+\\ &\quad\ (\dot{\rho}^{r,l},\dot{v}^{r,l}_{1},\dot{v}^{r,l}_{2},\dot{v}^{r,l}_{3},\dot{F}^{r,l}_{11},\dot{F}^{r,l}_{21},\dot{F}^{r,l}_{31},\dot{F}^{r,l}_{12},\dot{F}^{r,l}_{22},\dot{F}^{r,l}_{32},\dot{F}^{r,l}_{13},\dot{F}^{r,l}_{23},\dot{F}^{r,l}_{33})^{\top},\\ \Phi^{r,l}&(t,x_{1},x_{2},x_{3}):=\pm x_{3}+\dot{\Phi}^{r,l},\end{split} (3.3)

where Ur,lU^{r,l} and Φr,l\Phi^{r,l} represent the states and changes of variables on each side of vortex sheets separately. ρ¯>0,v¯,F¯11,F¯21,F¯12,F¯22,F¯13,F¯23\bar{\rho}>0,\bar{v},\bar{F}_{11},\bar{F}_{21},\bar{F}_{12},\bar{F}_{22},\bar{F}_{13},\bar{F}_{23} are constants. U˙r,l\dot{U}^{r,l} and Φ˙r,l\dot{\Phi}^{r,l} are functions which denotes the perturbation around the constant states. We assume the perturbation of the background states satisfying

U˙r,lW2,(Ω),Φ˙r,lW2,(Ω),U˙r,lW2,(Ω)+||Φ˙r,l||W3,(Ω)K.\dot{U}^{r,l}\in W^{2,\infty}(\Omega),\quad\dot{\Phi}^{r,l}\in W^{2,\infty}(\Omega),\quad\|\dot{U}^{r,l}\|_{W^{2,\infty}(\Omega)}+||\dot{\Phi}^{r,l}||_{W^{3,\infty}(\Omega)}\leq K. (3.4)

Here KK is a positive constant. U˙r,l\dot{U}^{r,l} and Φ˙r,l\dot{\Phi}^{r,l} have compact support in the domain

Ω:={(t,x1,x2,x3)4:x3>0}.\Omega:=\{(t,x_{1},x_{2},x_{3})\in{\mathbb{R}}^{4}:x_{3}>0\}.

We also require the perturbed states (3.3) to satisfy the Rankine-Hugoniot conditions:

{(vr1vl1)1ψ+(vr2vl2)2ψ(vr3vl3)=0,tψ+vr11ψ+vr22ψvr3=0,ρrρl=0,\begin{cases}(v^{r}_{1}-v^{l}_{1})\partial_{1}\psi+(v^{r}_{2}-v^{l}_{2})\partial_{2}\psi-(v^{r}_{3}-v^{l}_{3})=0,\\ \partial_{t}\psi+v^{r}_{1}\partial_{1}\psi+v^{r}_{2}\partial_{2}\psi-v^{r}_{3}=0,\\ \rho^{r}-\rho^{l}=0,\end{cases} (3.5)

on x3=0,x_{3}=0, where ψ=Φr|x3=0=Φl|x3=0.\psi=\Phi^{r}|_{x_{3}=0}=\Phi^{l}|_{x_{3}=0}.

Now, we assume that the following conditions on the perturbed states (3.3) holds:

tΦr,l+vr,l11Φr,l+vr,l22Φr,lvr,l3=0,\partial_{t}\Phi^{r,l}+v^{r,l}_{1}\partial_{1}\Phi^{r,l}+v^{r,l}_{2}\partial_{2}\Phi^{r,l}-v^{r,l}_{3}=0, (3.6)
3Φrκ0,3Φlκ0,\partial_{3}\Phi^{r}\geq\kappa_{0},\quad\partial_{3}\Phi^{l}\leq-\kappa_{0}, (3.7)

for all (t,x1,x2,x3)Ω(t,x_{1},x_{2},x_{3})\in\Omega and some positive constant κ0.\kappa_{0}. We also assume from initial data that

{Fr,l111Φr,l+Fr,l212Φr,lFr,l31=0,Fr,l121Φr,l+Fr,l222Φr,lFr,l32=0,Fr,l131Φr,l+Fr,l232Φr,lFr,l33=0.\begin{cases}F^{r,l}_{11}\partial_{1}\Phi^{r,l}+F^{r,l}_{21}\partial_{2}\Phi^{r,l}-F^{r,l}_{31}=0,\\ F^{r,l}_{12}\partial_{1}\Phi^{r,l}+F^{r,l}_{22}\partial_{2}\Phi^{r,l}-F^{r,l}_{32}=0,\\ F^{r,l}_{13}\partial_{1}\Phi^{r,l}+F^{r,l}_{23}\partial_{2}\Phi^{r,l}-F^{r,l}_{33}=0.\end{cases} (3.8)

Now, we linearize the (3.1) around the basic states (3.3) and denote by (V±,Ψ±)(V^{\pm},\Psi^{\pm}) the perturbation of the states (Ur,l,Φr,l).(U^{r,l},\Phi^{r,l}). Then, the linearized equations are

tV±+A1(Ur,l)1V±+A2(Ur,l)2V±+13Φr,l(A3(Ur,l)tΦr,lI1Φr,lA1(Ur,l)2Φr,lA2(Ur,l))3V±+[dA1(Ur,l)V±]1Ur,l+[dA2(Ur,l)V±]2Ur,l3Ψ±(3Φr,l)2(A3(Ur,l)tΦr,lI1Φr,lA1(Ur,l)2Φr,lA2(Ur,l))3Ur,l+13Φr,l(dA3(Ur,l)V±tΨ±I1Ψ±A1(Ur,l)2Ψ±A2(Ur,l)1Φr,ldA1(Ur,l)V±2Φr,ldA2(Ur,l)V±)3Ur,l=f,\begin{split}&\partial_{t}V^{\pm}+A_{1}(U^{r,l})\partial_{1}V^{\pm}+A_{2}(U^{r,l})\partial_{2}V^{\pm}\\ &\quad+\frac{1}{\partial_{3}\Phi^{r,l}}\big{(}A_{3}(U^{r,l})-\partial_{t}\Phi^{r,l}I-\partial_{1}\Phi^{r,l}A_{1}(U^{r,l})-\partial_{2}\Phi^{r,l}A_{2}(U^{r,l})\big{)}\partial_{3}V^{\pm}\\ &\quad+[dA_{1}(U^{r,l})V^{\pm}]\partial_{1}U^{r,l}+[dA_{2}(U^{r,l})V^{\pm}]\partial_{2}U^{r,l}\\ &\quad-\frac{\partial_{3}\Psi^{\pm}}{(\partial_{3}\Phi^{r,l})^{2}}\big{(}A_{3}(U^{r,l})-\partial_{t}\Phi^{r,l}I-\partial_{1}\Phi^{r,l}A_{1}(U^{r,l})-\partial_{2}\Phi^{r,l}A_{2}(U^{r,l})\big{)}\partial_{3}U^{r,l}\\ &\quad+\frac{1}{\partial_{3}\Phi^{r,l}}\big{(}dA_{3}(U^{r,l})V^{\pm}-\partial_{t}\Psi^{\pm}I-\partial_{1}\Psi^{\pm}A_{1}(U^{r,l})-\partial_{2}\Psi^{\pm}A_{2}(U^{r,l})\\ &\quad-\partial_{1}\Phi^{r,l}dA_{1}(U^{r,l})V^{\pm}-\partial_{2}\Phi^{r,l}dA_{2}(U^{r,l})V^{\pm}\big{)}\partial_{3}U^{r,l}=f,\end{split}

for x3>0.x_{3}>0. We define the first-order linear operator

L(Ur,l,Φr,l)V±:=tV±+A1(Ur,l)1V±+A2(Ur,l)2V±+13Φr,l(A3(Ur,l)tΦr,lI1Φr,lA1(Ur,l)2Φr,lA2(Ur,l))3V±,\begin{split}&L(U^{r,l},\nabla\Phi^{r,l})V^{\pm}:=\partial_{t}V^{\pm}+A_{1}(U^{r,l})\partial_{1}V^{\pm}+A_{2}(U^{r,l})\partial_{2}V^{\pm}\\ &\qquad\qquad\qquad\qquad+\frac{1}{\partial_{3}\Phi^{r,l}}\big{(}A_{3}(U^{r,l})-\partial_{t}\Phi^{r,l}I-\partial_{1}\Phi^{r,l}A_{1}(U^{r,l})-\partial_{2}\Phi^{r,l}A_{2}(U^{r,l})\big{)}\partial_{3}V^{\pm},\\ \end{split}

and introduce the Alinhac’s“good unknown[1]:

V˙±=(ρ˙±,v˙±1,v˙±2,v˙±3,F˙±11,F˙±21,F˙±31,F˙±12,F˙±22,F˙±32,F˙±13,F˙±23,F˙±33):=V±Ψ±3Φr,l3Ur,l.\begin{split}\dot{V}^{\pm}=(\dot{\rho}^{\pm},\dot{v}^{\pm}_{1},\dot{v}^{\pm}_{2},\dot{v}^{\pm}_{3},\dot{F}^{\pm}_{11},\dot{F}^{\pm}_{21},\dot{F}^{\pm}_{31},\dot{F}^{\pm}_{12},\dot{F}^{\pm}_{22},\dot{F}^{\pm}_{32},\dot{F}^{\pm}_{13},\dot{F}^{\pm}_{23},\dot{F}^{\pm}_{33})^{\top}:=V^{\pm}-\frac{\Psi^{\pm}}{\partial_{3}\Phi^{r,l}}\partial_{3}U^{r,l}.\end{split}

Then, we can rewrite the above equations as

L(Ur,l,Φr,l)V˙±+C(Ur,l,Ur,l,Φr,l)V˙±+Ψ±3Φr,l3[L(Ur,l,Φr,l)Ur,l)]=fr,l,L(U^{r,l},\nabla\Phi^{r,l})\dot{V}^{\pm}+C(U^{r,l},\nabla U^{r,l},\nabla\Phi^{r,l})\dot{V}^{\pm}+\frac{\Psi^{\pm}}{\partial_{3}\Phi^{r,l}}\partial_{3}[L(U^{r,l},\nabla\Phi^{r,l})U^{r,l})]=f^{r,l},

where

C(Ur,l,Ur,l,Φr,l)V˙±:=[dA1(Ur,l)V˙±]1Ur,l+[dA2(Ur,l)V˙±]2Ur,l+13Φr,l[dA3(Ur,l)V˙±1Φr,ldA1(Ur,l)V˙±2Φr,ldA2(Ur,l)V˙±]3Ur,l.\begin{split}&C(U^{r,l},\nabla U^{r,l},\nabla\Phi^{r,l})\dot{V}^{\pm}:=[dA_{1}(U^{r,l})\dot{V}^{\pm}]\partial_{1}U^{r,l}+[dA_{2}(U^{r,l})\dot{V}^{\pm}]\partial_{2}U^{r,l}\\ &\qquad\qquad\qquad\qquad+\frac{1}{\partial_{3}\Phi^{r,l}}[dA_{3}(U^{r,l})\dot{V}^{\pm}-\partial_{1}\Phi^{r,l}dA_{1}(U^{r,l})\dot{V}^{\pm}-\partial_{2}\Phi^{r,l}dA_{2}(U^{r,l})\dot{V}^{\pm}]\partial_{3}U^{r,l}.\end{split}

Neglecting the zero-th order terms of Ψ±\Psi^{\pm} and considering the following equations:

Lr,lV˙±:=L(Ur,l,Φr,l)V˙±+C(Ur,l,Ur,l,Φr,l)V˙±=fr,l.\begin{split}L^{\prime}_{r,l}\dot{V}^{\pm}:=L(U^{r,l},\nabla\Phi^{r,l})\dot{V}^{\pm}+C(U^{r,l},\nabla U^{r,l},\nabla\Phi^{r,l})\dot{V}^{\pm}=f^{r,l}.\end{split}

Since Ur,lW2,(Ω),U^{r,l}\in W^{2,\infty}(\Omega), we have L(Ur,l,Φr,l)W2,(Ω)L(U^{r,l},\nabla\Phi^{r,l})\in W^{2,\infty}(\Omega) and C(Ur,l,Ur,l,Φr,l)W1,(Ω).C(U^{r,l},\nabla U^{r,l},\nabla\Phi^{r,l})\in W^{1,\infty}(\Omega). Now, we linearize the boundary conditions around the same perturbed states and obtain that

{(vr1vl1)1φ+(v+1v1)1ψ+(vr2vl2)2φ+(v+2v2)2ψ(v+3v3)=g1,tφ+vr11φ+v+11ψ+vr22φ+v+22ψv+3=g2,ρ+ρ=g3,\begin{cases}(v^{r}_{1}-v^{l}_{1})\partial_{1}\varphi+(v^{+}_{1}-v^{-}_{1})\partial_{1}\psi+(v^{r}_{2}-v^{l}_{2})\partial_{2}\varphi+(v^{+}_{2}-v^{-}_{2})\partial_{2}\psi-(v^{+}_{3}-v^{-}_{3})=g_{1},\\ \partial_{t}\varphi+v^{r}_{1}\partial_{1}\varphi+v^{+}_{1}\partial_{1}\psi+v^{r}_{2}\partial_{2}\varphi+v^{+}_{2}\partial_{2}\psi-v^{+}_{3}=g_{2},\\ \rho^{+}-\rho^{-}=g_{3},\end{cases}

at x3=0,φ=Ψ+|x3=0=Ψ|x3=0.x_{3}=0,\varphi=\Psi^{+}|_{x_{3}=0}=\Psi^{-}|_{x_{3}=0}. We also have that

{(Fr11Fl11)1φ+(F+11Fl11)1ψ+(Fr21Fl21)2φ+(F+21F21)2ψ(F+31F31)=g4,Fr111φ+F+111ψ+Fr212φ+F+212ψF+31=g5,(Fr12Fl12)1φ+(F+12Fl12)1ψ+(Fr22Fl22)2φ+(F+22F22)2ψ(F+32F32)=g6,Fr121φ+F+121ψ+Fr222φ+F+222ψF+32=g7,(Fr13Fl13)1φ+(F+13Fl13)1ψ+(Fr23Fl23)2φ+(F+23F23)2ψ(F+31F33)=g8,Fr131φ+F+131ψ+Fr232φ+F+232ψF+33=g9.\begin{cases}(F^{r}_{11}-F^{l}_{11})\partial_{1}\varphi+(F^{+}_{11}-F^{l}_{11})\partial_{1}\psi+(F^{r}_{21}-F^{l}_{21})\partial_{2}\varphi+(F^{+}_{21}-F^{-}_{21})\partial_{2}\psi-(F^{+}_{31}-F^{-}_{31})=g_{4},\\ F^{r}_{11}\partial_{1}\varphi+F^{+}_{11}\partial_{1}\psi+F^{r}_{21}\partial_{2}\varphi+F^{+}_{21}\partial_{2}\psi-F^{+}_{31}=g_{5},\\ (F^{r}_{12}-F^{l}_{12})\partial_{1}\varphi+(F^{+}_{12}-F^{l}_{12})\partial_{1}\psi+(F^{r}_{22}-F^{l}_{22})\partial_{2}\varphi+(F^{+}_{22}-F^{-}_{22})\partial_{2}\psi-(F^{+}_{32}-F^{-}_{32})=g_{6},\\ F^{r}_{12}\partial_{1}\varphi+F^{+}_{12}\partial_{1}\psi+F^{r}_{22}\partial_{2}\varphi+F^{+}_{22}\partial_{2}\psi-F^{+}_{32}=g_{7},\\ (F^{r}_{13}-F^{l}_{13})\partial_{1}\varphi+(F^{+}_{13}-F^{l}_{13})\partial_{1}\psi+(F^{r}_{23}-F^{l}_{23})\partial_{2}\varphi+(F^{+}_{23}-F^{-}_{23})\partial_{2}\psi-(F^{+}_{31}-F^{-}_{33})=g_{8},\\ F^{r}_{13}\partial_{1}\varphi+F^{+}_{13}\partial_{1}\psi+F^{r}_{23}\partial_{2}\varphi+F^{+}_{23}\partial_{2}\psi-F^{+}_{33}=g_{9}.\\ \end{cases}

We write the above system of equations into the following enlarged form:

𝐛¯φ+M¯V|x3=0=g,\underline{\mathbf{b}}\nabla\varphi+\underline{M}V|_{x_{3}=0}=g,

where V=(V+,V),φ=(tφ,1φ,2φ),g=(g1,g2,g3,g4,g5,g6,g7,g8,g9),V=(V^{+},V^{-})^{\top},\nabla\varphi=(\partial_{t}\varphi,\partial_{1}\varphi,\partial_{2}\varphi)^{\top},g=(g_{1},g_{2},g_{3},g_{4},g_{5},g_{6},g_{7},g_{8},g_{9})^{\top},

𝐛¯(t,x1,x2)=[0(vr1vl1)|x3=0(vr2vl2)|x3=01vr1|x3=0vr2|x3=00000(Fr11Fl11)|x3=0(Fr21Fl21)|x3=00Fr11|x3=0Fr21|x3=00(Fr12Fl12)|x3=0(Fr22Fl22)|x3=00Fr12|x3=0Fr22|x3=00(Fr13Fl13)|x3=0(Fr23Fl23)|x3=00Fr13|x3=0Fr23|x3=0]:=[𝐛0,𝐛1,𝐛2],\underline{\mathbf{b}}(t,x_{1},x_{2})=\left[\begin{array}[]{ccc}0&(v^{r}_{1}-v^{l}_{1})|_{x_{3}=0}&(v^{r}_{2}-v^{l}_{2})|_{x_{3}=0}\\ 1&v^{r}_{1}|_{x_{3}=0}&v^{r}_{2}|_{x_{3}=0}\\ 0&0&0\\ 0&(F^{r}_{11}-F^{l}_{11})|_{x_{3}=0}&(F^{r}_{21}-F^{l}_{21})|_{x_{3}=0}\\ 0&F^{r}_{11}|_{x_{3}=0}&F^{r}_{21}|_{x_{3}=0}\\ 0&(F^{r}_{12}-F^{l}_{12})|_{x_{3}=0}&(F^{r}_{22}-F^{l}_{22})|_{x_{3}=0}\\ 0&F^{r}_{12}|_{x_{3}=0}&F^{r}_{22}|_{x_{3}=0}\\ 0&(F^{r}_{13}-F^{l}_{13})|_{x_{3}=0}&(F^{r}_{23}-F^{l}_{23})|_{x_{3}=0}\\ 0&F^{r}_{13}|_{x_{3}=0}&F^{r}_{23}|_{x_{3}=0}\\ \end{array}\right]:=[\mathbf{b}_{0},\mathbf{b}_{1},\mathbf{b}_{2}],
M¯(t,x1,x2):=[01ψ2ψ100000000001ψ2ψ100000000001ψ2ψ100000000000000000000001000000000000100000000000000001ψ2ψ100000000001ψ2ψ100000000001ψ2ψ1000000000000000000000000001ψ2ψ100000000001ψ2ψ100000000001ψ2ψ100000000000000000000000001ψ2ψ1000000000001ψ2ψ10000000001ψ2ψ100000000000000].\begin{split}&\underline{M}(t,x_{1},x_{2}):=\\ &\left[\setcounter{MaxMatrixCols}{26}\begin{smallmatrix}0&\partial_{1}\psi&\partial_{2}\psi&-1&0&0&0&0&0&0&0&0&0&0&-\partial_{1}\psi&-\partial_{2}\psi&1&0&0&0&0&0&0&0&0&0\\ 0&\partial_{1}\psi&\partial_{2}\psi&-1&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 1&0&0&0&0&0&0&0&0&0&0&0&0&-1&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&\partial_{1}\psi&\partial_{2}\psi&-1&0&0&0&0&0&0&0&0&0&0&-\partial_{1}\psi&-\partial_{2}\psi&1&0&0&0&0&0&0\\ 0&0&0&0&\partial_{1}\psi&\partial_{2}\psi&-1&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&\partial_{1}\psi&\partial_{2}\psi&-1&0&0&0&0&0&0&0&0&0&0&-\partial_{1}\psi&-\partial_{2}\psi&-1&0&0&0\\ 0&0&0&0&0&0&0&\partial_{1}\psi&\partial_{2}\psi&-1&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&\partial_{1}\psi&\partial_{2}\psi&-1&0&0&0&0&0&0&0&0&0&0&0&-\partial_{1}\psi&-\partial_{2}\psi&1\\ 0&0&0&0&0&0&0&0&0&\partial_{1}\psi&\partial_{2}\psi&-1&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ \end{smallmatrix}\right].\end{split}

Using the Alinhac’s “good unknown[1], we obtain that

B(V˙,φ):=𝐛¯φ+M¯[3Ur3Φr3Ul3Φl]φ+M¯V˙|x3=0=g.B^{\prime}(\dot{V},\varphi):=\underline{\mathbf{b}}\nabla\varphi+\underline{M}\left[\begin{array}[]{c}\frac{\partial_{3}U^{r}}{\partial_{3}\Phi^{r}}\\ \frac{\partial_{3}U^{l}}{\partial_{3}\Phi^{l}}\\ \end{array}\right]\varphi+\underline{M}\dot{V}|_{x_{3}=0}=g. (3.9)

Therefore, we have the following linearized problem:

{Lr,lV˙±=fr,l,x3>0,B(V˙,φ)=g,x3=0.\begin{cases}L^{\prime}_{r,l}\dot{V}^{\pm}=f^{r,l},&x_{3}>0,\\ B^{\prime}(\dot{V},\varphi)=g,&x_{3}=0.\end{cases} (3.10)

It is noted that the boundary condition in (3.10) does not contain the tangential components of V˙|x3=0.\dot{V}|_{x_{3}=0}. We write the components of V˙|x3=0\dot{V}|_{x_{3}=0} that are contained in (3.10) by V˙n|x3=0\dot{V}^{n}|_{x_{3}=0} as

V˙n|x3=0=(V˙n+,V˙n)|x3=0,\begin{split}\dot{V}^{n}|_{x_{3}=0}=(\dot{V}^{n+},\dot{V}^{n-})|_{x_{3}=0},\end{split} (3.11)

where

V˙n+=(ρ˙+,v˙+3v˙+11Φrv˙+22Φr,F˙+31F˙+111ΦrF˙+212Φr,F˙+32F˙+121ΦrF˙+222Φr),\displaystyle\dot{V}^{n+}=(\dot{\rho}^{+},\dot{v}^{+}_{3}-\dot{v}^{+}_{1}\partial_{1}\Phi^{r}-\dot{v}^{+}_{2}\partial_{2}\Phi^{r},\dot{F}^{+}_{31}-\dot{F}^{+}_{11}\partial_{1}\Phi^{r}-\dot{F}^{+}_{21}\partial_{2}\Phi^{r},\dot{F}^{+}_{32}-\dot{F}^{+}_{12}\partial_{1}\Phi^{r}-\dot{F}^{+}_{22}\partial_{2}\Phi^{r})^{\top},
V˙n=(ρ˙,v˙3v˙11Φlv˙22Φl,F˙31F˙111ΦlF˙212Φl,F˙32F˙121ΦlF˙222Φl).\displaystyle\dot{V}^{n-}=(\dot{\rho}^{-},\dot{v}^{-}_{3}-\dot{v}^{-}_{1}\partial_{1}\Phi^{l}-\dot{v}^{-}_{2}\partial_{2}\Phi^{l},\dot{F}^{-}_{31}-\dot{F}^{-}_{11}\partial_{1}\Phi^{l}-\dot{F}^{-}_{21}\partial_{2}\Phi^{l},\dot{F}^{-}_{32}-\dot{F}^{-}_{12}\partial_{1}\Phi^{l}-\dot{F}^{-}_{22}\partial_{2}\Phi^{l})^{\top}.

We obtain the main theorem for the variable coefficients.

Theorem 3.1.

Suppose that the background solution defined by (3.3) satisfies F1×F2𝟎,\mathrm{F}_{1}\times\mathrm{F}_{2}\neq\mathbf{0}, and

v¯2<|ΠF2(F1)|24,\displaystyle\bar{v}^{2}<\frac{|\Pi^{\perp}_{\mathrm{F}_{2}}(\mathrm{F}_{1})|^{2}}{4}, (3.12)

and

v¯2<G(F1,F2),\displaystyle\begin{aligned} &\bar{v}^{2}<\mathrm{G}(\mathrm{F}_{1},\mathrm{F}_{2}),\end{aligned} (3.13)

where G(F1,F2)\mathrm{G}(\mathrm{F}_{1},\mathrm{F}_{2}) is defined in (3.39); moreover, the perturbation U˙r,l\dot{U}^{r,l} and Φ˙r,l\dot{\Phi}^{r,l} have compact support, and KK in (3.4) is small enough. Then, there are two constants C0C_{0} and γ0\gamma_{0} which are determined by particular solution, such that for all V˙\dot{V} and ψ\psi and all γγ0,\gamma\geq\gamma_{0}, the following estimate holds:

γ|||V˙|||2L2(H0γ)+V˙n|x3=02L2γ(3)+ψ2H1γ(3)C0(1γ3|||LV˙|||2L2(H1γ)+1γ2B(V˙,ψ)2H1γ(3)),\begin{split}&\gamma{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\dot{V}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{L^{2}(H^{0}_{\gamma})}+\|\dot{V}^{n}|_{x_{3}=0}\|^{2}_{L^{2}_{\gamma}({\mathbb{R}}^{3})}+\|\psi\|^{2}_{H^{1}_{\gamma}({\mathbb{R}}^{3})}\\ &\quad\leq C_{0}\left(\frac{1}{\gamma^{3}}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|L^{\prime}\dot{V}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{L^{2}(H^{1}_{\gamma})}+\frac{1}{\gamma^{2}}\|B^{\prime}(\dot{V},\psi)\|^{2}_{H^{1}_{\gamma}({\mathbb{R}}^{3})}\right),\end{split}

where LV˙:=(LrV˙+,LlV˙).L^{\prime}\dot{V}:=(L^{\prime}_{r}\dot{V}^{+},L^{\prime}_{l}\dot{V}^{-}).

3.1. Reduction of the System

In this section, we will transform the system (3.10) into an ODEs. This is achieved through linear transformation on the unknown variables and a paralinearization on the equations of the transformed variables. For the system (3.10), we can find the symmetrizer

Sr,l:=diag{p(ρr,l)ρr,l,ρr,l,ρr,l,ρr,l,1,1,1,1,1,1,1,1,1}.S^{r,l}:=\mathrm{diag}\left\{\frac{p^{\prime}(\rho^{r,l})}{\rho^{r,l}},\rho^{r,l},\rho^{r,l},\rho^{r,l},1,1,1,1,1,1,1,1,1\right\}.

We multiply (Sr,lV˙±)(S^{r,l}\dot{V}^{\pm})^{\top} to the interior equations of (3.10) and then integrate by parts to obtain the following Lemma 3.1.

Lemma 3.1.

There are two positive constants CC and γ11\gamma_{1}\geq 1 such that for any γγ1,\gamma\geq\gamma_{1}, the following estimate holds:

γ|||V˙±|||2L2(H0γ)C(1γ|||Lr,lV˙±|||2L2γ(4+)+V˙nc|x3=02L2γ(3)).\gamma{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\dot{V}^{\pm}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{L^{2}(H^{0}_{\gamma})}\leq C\left(\frac{1}{\gamma}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|L^{\prime}_{r,l}\dot{V}^{\pm}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{L^{2}_{\gamma}({\mathbb{R}}^{4}_{+})}+\left\|\dot{V}^{nc}|_{x_{3}=0}\right\|^{2}_{L^{2}_{\gamma}({\mathbb{R}}^{3})}\right).

First, we transform the linearized problem (3.10) into a problem with a constant and diagonal boundary matrix. This is essential since the boundary matrix has constant rank on the whole half-plane x30.x_{3}\geq 0.

A~r,l3:=13Φr,l(A3(Ur,l)tΦr,lI1Φr,lA1(Ur,l)2Φr,lA2(Ur,l)).\tilde{A}^{r,l}_{3}:=\frac{1}{\partial_{3}\Phi^{r,l}}\left(A_{3}(U^{r,l})-\partial_{t}\Phi^{r,l}I-\partial_{1}\Phi^{r,l}A_{1}(U^{r,l})-\partial_{2}\Phi^{r,l}A_{2}(U^{r,l})\right).

We consider the following transformation

T(Ur,l,Φr,l):=[00tanΦr,ltanΦr,l00000000010c(ρr,l)ρr,l1Φr,lc(ρr,l)ρr,l1Φr,l00000000001c(ρr,l)ρr,l2Φr,lc(ρr,l)ρr,l2Φr,l0000000001Φr,l2Φr,lc(ρr,l)ρr,lc(ρr,l)ρr,l0000000000000101Φr,l0000000000012Φr,l00000000001Φr,l2Φr,l10000000000000101Φr,l0000000000012Φr,l00000000001Φr,l2Φr,l10000000000000101Φr,l0000000000012Φr,l00000000001Φr,l2Φr,l1],\\ \begin{split}&T(U^{r,l},\nabla\Phi^{r,l}):=\\ &\left[\setcounter{MaxMatrixCols}{13}\begin{smallmatrix}0&0&\langle\partial_{\rm tan}\Phi^{r,l}\rangle&\langle\partial_{\rm tan}\Phi^{r,l}\rangle&0&0&0&0&0&0&0&0&0\\ 1&0&-\frac{c(\rho^{r,l})}{\rho^{r,l}}\partial_{1}\Phi^{r,l}&\frac{c(\rho^{r,l})}{\rho^{r,l}}\partial_{1}\Phi^{r,l}&0&0&0&0&0&0&0&0&0\\ 0&1&-\frac{c(\rho^{r,l})}{\rho^{r,l}}\partial_{2}\Phi^{r,l}&\frac{c(\rho^{r,l})}{\rho^{r,l}}\partial_{2}\Phi^{r,l}&0&0&0&0&0&0&0&0&0\\ \partial_{1}\Phi^{r,l}&\partial_{2}\Phi^{r,l}&\frac{c(\rho^{r,l})}{\rho^{r,l}}&-\frac{c(\rho^{r,l})}{\rho^{r,l}}&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&1&0&-\partial_{1}\Phi^{r,l}&0&0&0&0&0&0\\ 0&0&0&0&0&1&-\partial_{2}\Phi^{r,l}&0&0&0&0&0&0\\ 0&0&0&0&\partial_{1}\Phi^{r,l}&\partial_{2}\Phi^{r,l}&1&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&1&0&-\partial_{1}\Phi^{r,l}&0&0&0\\ 0&0&0&0&0&0&0&0&1&-\partial_{2}\Phi^{r,l}&0&0&0\\ 0&0&0&0&0&0&0&\partial_{1}\Phi^{r,l}&\partial_{2}\Phi^{r,l}&1&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&1&0&-\partial_{1}\Phi^{r,l}\\ 0&0&0&0&0&0&0&0&0&0&0&1&-\partial_{2}\Phi^{r,l}\\ 0&0&0&0&0&0&0&0&0&0&\partial_{1}\Phi^{r,l}&\partial_{2}\Phi^{r,l}&1\\ \end{smallmatrix}\right],\end{split}

where tanΦr,l:=1+(1Φr,l)2+(2Φr,l)2.\langle\partial_{\rm tan}\Phi^{r,l}\rangle:=\sqrt{1+(\partial_{1}\Phi^{r,l})^{2}+(\partial_{2}\Phi^{r,l})^{2}}. Then, we can obtain

T1(Ur,l,Φr,l)A~r,l3T(Ur,l,Φr,l)=diag{0,0,c(ρr,l)tanΦr,l3Φr,l,c(ρr,l)tanΦr,l3Φr,l,0,0,0,0,0,0,0,0,0}.\begin{split}&T^{-1}(U^{r,l},\nabla\Phi^{r,l})\tilde{A}^{r,l}_{3}T(U^{r,l},\nabla\Phi^{r,l})\\ &=\mathrm{diag}\left\{0,0,\frac{c(\rho^{r,l})\langle\partial_{\rm tan}\Phi^{r,l}\rangle}{\partial_{3}\Phi^{r,l}},-\frac{c(\rho^{r,l})\langle\partial_{\rm tan}\Phi^{r,l}\rangle}{\partial_{3}\Phi^{r,l}},0,0,0,0,0,0,0,0,0\right\}.\end{split}

Multiplying the above by the following matrix:

Ar,l0:=diag{1,1,3Φr,lc(ρr,l)tanΦr,l,3Φr,lc(ρr,l)tanΦr,l,1,1,1,1,1,1,1,1,1},A^{r,l}_{0}:=\mathrm{diag}\left\{1,1,\frac{\partial_{3}\Phi^{r,l}}{c(\rho^{r,l})\langle\partial_{\rm tan}\Phi^{r,l}\rangle},-\frac{\partial_{3}\Phi^{r,l}}{c(\rho^{r,l})\langle\partial_{\rm tan}\Phi^{r,l}\rangle},1,1,1,1,1,1,1,1,1\right\}, (3.14)

we obtain that

I2:=diag{0,0,1,1,0,0,0,0,0,0,0,0,0}.I_{2}:=\mathrm{diag}\{0,0,1,1,0,0,0,0,0,0,0,0,0\}. (3.15)

The interior equations of (3.10) for the new unknowns W±:=T1(Ur,l,Φr,l)V˙±W^{\pm}:=T^{-1}(U^{r,l},\nabla\Phi^{r,l})\dot{V}^{\pm} are

Ar,l0tW±+Ar,l11W±+Ar,l22W±+I23W±+Ar,l0Cr,lW±=Fr,l,A^{r,l}_{0}\partial_{t}W^{\pm}+A^{r,l}_{1}\partial_{1}W^{\pm}+A^{r,l}_{2}\partial_{2}W^{\pm}+I_{2}\partial_{3}W^{\pm}+A^{r,l}_{0}C^{r,l}W^{\pm}=F^{r,l}, (3.16)

where

Ar,l1=Ar,l0T1(Ur,l,Φr,l)A1(Ur,l)T(Ur,l,Φr,l),Ar,l2=Ar,l0T1(Ur,l,Φr,l)A2(Ur,l)T(Ur,l,Φr,l),Cr,l=T1(Ur,l,Φr,l)tT(Ur,l,Φr,l)+T1(Ur,l,Φr,l)A1(Ur,l)1T(Ur,l,Φr,l)+T1(Ur,l,Φr,l)A2(Ur,l)2T(Ur,l,Φr,l)+T1(Ur,l,Φr,l)C(Ur,l,Ur,l,Φr,l)T(Ur,l,Φr,l)+T1(Ur,l,Φr,l)A~r,l33T(Ur,l,Φr,l),Fr,l=Ar,l0T1(Ur,l,Φr,l)fr,l.\begin{split}&A^{r,l}_{1}=A^{r,l}_{0}T^{-1}(U^{r,l},\nabla\Phi^{r,l})A_{1}(U^{r,l})T(U^{r,l},\nabla\Phi^{r,l}),\\ &A^{r,l}_{2}=A^{r,l}_{0}T^{-1}(U^{r,l},\nabla\Phi^{r,l})A_{2}(U^{r,l})T(U^{r,l},\nabla\Phi^{r,l}),\\ &C^{r,l}=T^{-1}(U^{r,l},\nabla\Phi^{r,l})\partial_{t}T(U^{r,l},\nabla\Phi^{r,l})+T^{-1}(U^{r,l},\nabla\Phi^{r,l})A_{1}(U^{r,l})\partial_{1}T(U^{r,l},\nabla\Phi^{r,l})\\ &\quad\qquad+T^{-1}(U^{r,l},\nabla\Phi^{r,l})A_{2}(U^{r,l})\partial_{2}T(U^{r,l},\nabla\Phi^{r,l})\\ &\quad\qquad+T^{-1}(U^{r,l},\nabla\Phi^{r,l})C(U^{r,l},\nabla U^{r,l},\nabla\Phi^{r,l})T(U^{r,l},\nabla\Phi^{r,l})\\ &\quad\qquad+T^{-1}(U^{r,l},\nabla\Phi^{r,l})\tilde{A}^{r,l}_{3}\partial_{3}T(U^{r,l},\nabla\Phi^{r,l}),\\ &F^{r,l}=A^{r,l}_{0}T^{-1}(U^{r,l},\nabla\Phi^{r,l})f^{r,l}.\end{split} (3.17)

We consider the weighted unknown W~±=eγtW±\tilde{W}^{\pm}=e^{-\gamma t}W^{\pm} and rewrite (3.16) as

γr,lW~±:=γAr,l0W~±+Ar,l0tW~±+A1r,l1W~±+Ar,l22W~±+I23W~±+Ar,l0Cr,lW~±=eγtFr,l,\begin{split}&\mathcal{L}^{\gamma}_{r,l}\tilde{W}^{\pm}:=\gamma A^{r,l}_{0}\tilde{W}^{\pm}+A^{r,l}_{0}\partial_{t}\tilde{W}^{\pm}+A_{1}^{r,l}\partial_{1}\tilde{W}^{\pm}+A^{r,l}_{2}\partial_{2}\tilde{W}^{\pm}+I_{2}\partial_{3}\tilde{W}^{\pm}+A^{r,l}_{0}C^{r,l}\tilde{W}^{\pm}=e^{-\gamma t}F^{r,l},\\ \end{split}

where Ar,ljW2,(Ω)A^{r,l}_{j}\in W^{2,\infty}(\Omega) and Cr,lW1,(Ω).C^{r,l}\in W^{1,\infty}(\Omega). Then, we obtain the equivalent form of the boundary condition (3.10):

𝐛¯φ+M¯[3Ur3Φr3Ul3Φl]φ+M¯[T(Ur,Φr)𝟎𝟎T(Ul,Φl)]W|x3=0=g.\underline{\mathbf{b}}\nabla\varphi+\underline{M}\left[\begin{array}[]{c}\frac{\partial_{3}U^{r}}{\partial_{3}\Phi^{r}}\\ \frac{\partial_{3}U^{l}}{\partial_{3}\Phi^{l}}\\ \end{array}\right]\varphi+\underline{M}\left[\begin{array}[]{cc}T(U^{r},\nabla\Phi^{r})&\mathbf{0}\\ \mathbf{0}&T(U^{l},\nabla\Phi^{l})\\ \end{array}\right]W|_{x_{3}=0}=g. (3.18)

Note that W~=eγtW\tilde{W}=e^{-\gamma t}W and φ~=eγtφ\tilde{\varphi}=e^{-\gamma t}\varphi. It follows that

γ(W~|x3=0,φ~):=γ𝐛0φ~+𝐛¯φ~+M¯[3Ur3Φr3Ul3Φl]φ~+M¯[T(Ur,Φr)𝟎𝟎T(Ul,Φl)]W~|x3=0=eγtg,\begin{split}&\mathcal{B}^{\gamma}(\tilde{W}|_{x_{3}=0},\tilde{\varphi})\\ &:=\gamma\mathbf{b}_{0}\tilde{\varphi}+\underline{\mathbf{b}}\nabla\tilde{\varphi}+\underline{M}\left[\begin{array}[]{c}\frac{\partial_{3}U^{r}}{\partial_{3}\Phi^{r}}\\ \frac{\partial_{3}U^{l}}{\partial_{3}\Phi^{l}}\\ \end{array}\right]\tilde{\varphi}+\underline{M}\left[\begin{array}[]{cc}T(U^{r},\nabla\Phi^{r})&\mathbf{0}\\ \mathbf{0}&T(U^{l},\nabla\Phi^{l})\\ \end{array}\right]\tilde{W}|_{x_{3}=0}=e^{-\gamma t}g,\end{split}

where 𝐛0\mathbf{\mathbf{b}}_{0} is the first column of 𝐛¯.\underline{\mathbf{b}}. Then, we have 𝐛¯,M¯\underline{\mathbf{b}},\underline{M} and TW2,(Ω),T\in W^{2,\infty}(\Omega), and

𝐛ˇ:=M¯[3Ur3Φr3Ul3Φl]W1,(Ω).\check{\mathbf{b}}:=\underline{M}\left[\begin{array}[]{c}\frac{\partial_{3}U^{r}}{\partial_{3}\Phi^{r}}\\ \frac{\partial_{3}U^{l}}{\partial_{3}\Phi^{l}}\\ \end{array}\right]\in W^{1,\infty}(\Omega).

We first denote the “noncharacteristic” components of W~,\tilde{W}, which will be used in Section 3.3:

W~nc|x3=0:=(W~3,W~4,W~16,W~17).\tilde{W}^{nc}|_{x_{3}=0}:=(\tilde{W}_{3},\tilde{W}_{4},\tilde{W}_{16},\tilde{W}_{17}). (3.19)

Then, we denote the normal components of W~\tilde{W} by checking the matrix coefficient in front of W~\tilde{W} in the boundary conditions,

W~n|x3=0:=(W~3,W~4,W~7,W~10,W~13,W~16,W~17,W~20,W~23,W~26).\tilde{W}^{n}|_{x_{3}=0}:=(\tilde{W}_{3},\tilde{W}_{4},\tilde{W}_{7},\tilde{W}_{10},\tilde{W}_{13},\tilde{W}_{16},\tilde{W}_{17},\tilde{W}_{20},\tilde{W}_{23},\tilde{W}_{26}). (3.20)

Thus, we write the boundary conditions

(W~n|x3=0,φ~)=eγtg,\mathcal{B}(\tilde{W}^{n}|_{x_{3}=0},\tilde{\varphi})=e^{-\gamma t}g,

By defining F~r,l=eγtFr,l\tilde{F}^{r,l}=e^{-\gamma t}F^{r,l} and g~=eγtg,\tilde{g}=e^{-\gamma t}g, the system (3.18) can be re-written as

{γr,lW~±=F~r,l,γ(W~n|x3=0,φ~)=g~.\begin{cases}\mathcal{L}^{\gamma}_{r,l}\tilde{W}^{\pm}=\tilde{F}^{r,l},\\ \mathcal{B}^{\gamma}(\tilde{W}^{n}|_{x_{3}=0},\tilde{\varphi})=\tilde{g}.\end{cases} (3.21)

We are going to perform the paralinearization of the interior equations and the boundary conditions for (3.21).

3.2. Some Results on Paradifferential Calculus

For the sake of self-containedness, we present some necessary definitions and results concerning paradifferential calculus with parameters, as utilized in this paper. For rigourous proofs, refer to [7, Appendix C] and the references therein.

Definition 3.1.

Let mm\in{\mathbb{R}} and k,k\in\mathbb{N}, we define the following notions:

  1. (i)

    A function a(𝐱,ξ,γ):3×3×[1,)N×Na(\mathbf{x},\xi,\gamma):{\mathbb{R}}^{3}\times{\mathbb{R}}^{3}\times[1,\infty)\rightarrow\mathbb{C}^{N\times N} is called a paradifferential symbol of degree mm and regularity kk if aa is CC^{\infty} in ξ\xi and satisfies

    αξa(,ξ,γ)Wk,(3)Cαλm|α|,γ(ξ),\left\|\partial^{\alpha}_{\xi}a(\cdot,\xi,\gamma)\right\|_{W^{k,\infty}({\mathbb{R}}^{3})}\leq C_{\alpha}\lambda^{m-|\alpha|,\gamma}(\xi),

    for all (ξ,γ)3×[1,),(\xi,\gamma)\in{\mathbb{R}}^{3}\times[1,\infty), where λs,γ(ξ):=(γ2+|ξ|2)s2,\lambda^{s,\gamma}(\xi):=(\gamma^{2}+|\xi|^{2})^{\frac{s}{2}}, s,s\in{\mathbb{R}}, and CαC_{\alpha} is a constant.

  2. (ii)

    The set of paradifferential symbols of degree mm and regularity kk is denoted by Γmk.\Gamma^{m}_{k}.

  3. (iii)

    A family of operators {𝒫γ}γ1\{\mathcal{P}^{\gamma}\}_{\gamma\geq 1} is said to be of orderm\leq m if, for all ss\in{\mathbb{R}} and γ1,\gamma\geq 1, there exists a constant C(s,m)C(s,m) such that

    𝒫γus,γC(s,m)us+m,γ,\left\|\mathcal{P}^{\gamma}u\right\|_{s,\gamma}\leq C(s,m)\|u\|_{s+m,\gamma},

    for all uHs+m(3).u\in H^{s+m}({\mathbb{R}}^{3}). A generic family of such operators is denoted by m.\mathcal{R}_{m}.

  4. (iv)

    For s,s\in{\mathbb{R}}, define the operator Λs,γ\Lambda^{s,\gamma} by

    Λs,γu(𝐱):=1(2π)33ei𝐱ξλs,γ(ξ)u^(ξ)dξ\Lambda^{s,\gamma}u(\mathbf{x}):=\frac{1}{(2\pi)^{3}}\int_{{\mathbb{R}}^{3}}e^{i\mathbf{x}\cdot\xi}\lambda^{s,\gamma}(\xi)\hat{u}(\xi)\,{\rm d}\xi

    for all u𝒮u\in\mathcal{S} (the Schwartz class).

  5. (v)

    To any symbol aΓm0,a\in\Gamma^{m}_{0}, we associate a family of paradifferential operators {Tγa}γ1,\{T^{\gamma}_{a}\}_{\gamma\geq 1}, defined by

    Tγau(𝐱):=1(2π)333ei𝐱ξKψ(𝐱𝐲,ξ,γ)a(𝐲,ξ,γ)u^(ξ)d𝐲dξ,T^{\gamma}_{a}u(\mathbf{x}):=\frac{1}{(2\pi)^{3}}\int_{{\mathbb{R}}^{3}}\int_{{\mathbb{R}}^{3}}e^{i\mathbf{x}\cdot\xi}K^{\psi}(\mathbf{x}-\mathbf{y},\xi,\gamma)a(\mathbf{y},\xi,\gamma)\hat{u}(\xi)\,{\rm d}\mathbf{y}{\rm d}\xi,

    where Kψ(,ξ,γ)K^{\psi}(\cdot,\xi,\gamma) is the inverse Fourier transform of ψ(,ξ,γ).\psi(\cdot,\xi,\gamma). The function ψ\psi is defined as

    ψ(𝐱,ξ,γ):=qχ(22q𝐱,0)ϕ(2qξ,2qγ),\psi(\mathbf{x},\xi,\gamma):=\sum_{q\in\mathbb{N}}\chi(2^{2-q}\mathbf{x},0)\phi(2^{-q}\xi,2^{-q}\gamma),

    where ϕ(ξ,γ):=χ(21ξ,21γ)χ(ξ,γ),\phi(\xi,\gamma):=\chi(2^{-1}\xi,2^{-1}\gamma)-\chi(\xi,\gamma), and χ\chi being a CC^{\infty}-function on 4{\mathbb{R}}^{4} satisfying

    χ(𝐳)={1, if |𝐳|12,0, if |𝐳|1, and χ(𝐳)χ(𝐳), if |𝐳||𝐳|.\displaystyle\chi(\mathbf{z})=\begin{cases}1,&\text{ if }|\mathbf{z}|\leq\frac{1}{2},\\ 0,&\text{ if }|\mathbf{z}|\geq 1,\end{cases}\quad\text{ and }\chi(\mathbf{z})\geq\chi(\mathbf{z}^{\prime}),\text{ if }|\mathbf{z}|\leq|\mathbf{z}^{\prime}|.

We have the following properties for the paradifferential calculus:

Lemma 3.2.

The following statements hold:

  1. (i)

    If aW1,(3),a\in W^{1,\infty}({\mathbb{R}}^{3}), uL2(3),u\in L^{2}({\mathbb{R}}^{3}), and γ1,\gamma\geq 1, then

    γauTγau0+ajuTγiξjau0+auTγau1,γaW1,(3)u0;\gamma\|au-T^{\gamma}_{a}u\|_{0}+\|a\partial_{j}u-T^{\gamma}_{i\xi_{j}a}u\|_{0}+\|au-T^{\gamma}_{a}u\|_{1,\gamma}\lesssim\|a\|_{W^{1,\infty}({\mathbb{R}}^{3})}\|u\|_{0};
  2. (ii)

    If aW2,(3),a\in W^{2,\infty}({\mathbb{R}}^{3}), uL2(3),u\in L^{2}({\mathbb{R}}^{3}), and γ1,\gamma\geq 1, then

    γauTγau1,γ+ajuTγiξjau1,γaW2,(3)u0;\gamma\|au-T^{\gamma}_{a}u\|_{1,\gamma}+\|a\partial_{j}u-T^{\gamma}_{i\xi_{j}a}u\|_{1,\gamma}\lesssim\|a\|_{W^{2,\infty}({\mathbb{R}}^{3})}\|u\|_{0};
  3. (iii)

    If aΓmk,a\in\Gamma^{m}_{k}, then TγaT^{\gamma}_{a} is of order m.\leq m. In particular, if aL(3)a\in L^{\infty}({\mathbb{R}}^{3}) and is independent of ξ,\xi, then

    Tγaus,γaL(3)us,γ, for all s,uHs(3);\|T^{\gamma}_{a}u\|_{s,\gamma}\lesssim\|a\|_{L^{\infty}({\mathbb{R}}^{3})}\|u\|_{s,\gamma},\text{ for all }s\in{\mathbb{R}},u\in H^{s}({\mathbb{R}}^{3});
  4. (iv)

    If aΓm1a\in\Gamma^{m}_{1} and bΓm1,b\in\Gamma^{m^{\prime}}_{1}, then abΓm+m1,ab\in\Gamma^{m+m^{\prime}}_{1}, the family {TγaTγbTγab}γ1\{T^{\gamma}_{a}T^{\gamma}_{b}-T^{\gamma}_{ab}\}_{\gamma\geq 1} is of order m+m1,\leq m+m^{\prime}-1, and the family {(Tγa)Tγa}γ1\{(T^{\gamma}_{a})^{\ast}-T^{\gamma}_{a^{\ast}}\}_{\gamma\geq 1} is of order m1;\leq m-1;

  5. (v)

    If aΓm2a\in\Gamma^{m}_{2} and bΓm2,b\in\Gamma^{m^{\prime}}_{2}, then {TγaTγbTγabTγijξjaxjb}γ1\{T^{\gamma}_{a}T^{\gamma}_{b}-T^{\gamma}_{ab}-T^{\gamma}_{-i\sum_{j}\partial_{\xi_{j}}a\partial_{x_{j}}b}\}_{\gamma\geq 1} is of order m+m2;\leq m+m^{\prime}-2;

  6. (vi)

    Gå{\mathring{a}}rding’s inequality: If aΓ2m1a\in\Gamma^{2m}_{1} is a square matrix symbol satisfying

    a(𝐱,ξ,γ)c(γ2+|ξ|2)mI for all (𝐱,ξ,γ)6×[1,),\Re a(\mathbf{x},\xi,\gamma)\geq c(\gamma^{2}+|\xi|^{2})^{m}I\quad\text{ for all }(\mathbf{x},\xi,\gamma)\in{\mathbb{R}}^{6}\times[1,\infty),

    for some constant c,c, then there exists γ01\gamma_{0}\geq 1 such that

    Tγau,uc4u2m,γ for all uHm(3) and γγ0;\Re\langle T^{\gamma}_{a}u,u\rangle\geq\frac{c}{4}\|u\|^{2}_{m,\gamma}\quad\text{ for all }u\in H^{m}({\mathbb{R}}^{3})\text{ and }\gamma\geq\gamma_{0};
  7. (vii)

    Microlocalized Gå{\mathring{a}}rding’s inequality: Let aΓ2m1a\in\Gamma^{2m}_{1} be a square matrix symbol and χΓ01.\chi\in\Gamma^{0}_{1}. If there exist a scalar real symbol χ~Γ01\tilde{\chi}\in\Gamma^{0}_{1} and a constant c>0c>0 such that χ~0,\tilde{\chi}\geq 0, χχ~χ,\chi\tilde{\chi}\equiv\chi, and

    χ~2(𝐱,χ,γ)a(𝐱,ξ,γ)cχ~2(𝐱,χ,γ)(γ2+|ξ|2)mI\tilde{\chi}^{2}(\mathbf{x},\chi,\gamma)\Re a(\mathbf{x},\xi,\gamma)\geq c\tilde{\chi}^{2}(\mathbf{x},\chi,\gamma)(\gamma^{2}+|\xi|^{2})^{m}I

    for all (𝐱,ξ,γ)6×[1,),(\mathbf{x},\xi,\gamma)\in{\mathbb{R}}^{6}\times[1,\infty), then there exist γ01\gamma_{0}\geq 1 and C>0C>0 such that

    TγaTγχu,Tγχuc2Tγχu2m,γCu2m1,γ\Re\langle T^{\gamma}_{a}T^{\gamma}_{\chi}u,T^{\gamma}_{\chi}u\\ \rangle\geq\frac{c}{2}\|T^{\gamma}_{\chi}u\|^{2}_{m,\gamma}-C\|u\|^{2}_{m-1,\gamma}

    for all uHm(3),u\in H^{m}({\mathbb{R}}^{3}), γγ0.\gamma\geq\gamma_{0}. Here, B:=B+B2\Re B:=\frac{B+B^{\ast}}{2} for any complex square matrix B,B, BB^{\ast} denotes its conjugate transpose.

We remark that the proof of Lemma 3.2 (vii) can be found in [40, Theorem B.18].

Similar to the constant coefficient case, the key idea in proving Theorem 3.1 is to transform the variable-coefficient linear problem (3.21) into an ODE. However, instead of applying a Fourier transform as in the constant-coefficient case, we employ paralinearization for (3.21). In the following section, we derive the para-linearized form of (3.21) and estimate the errors introduced by replacing the original system with its para-linearized counterpart.

3.3. Paralinearization

For the frequency space defined in the variable coefficient case:

Π:={(τ,η,η~):τ=γ+iδ,η,η~,|τ|2+η2+η~20,τ0},\Pi:=\left\{(\tau,\eta,\tilde{\eta}):\tau=\gamma+i\delta\in\mathbb{C},\eta,\tilde{\eta}\in{\mathbb{R}},|\tau|^{2}+\eta^{2}+\tilde{\eta}^{2}\neq 0,\Re\tau\geq 0\right\},

where δ,η,η~\delta,\eta,\tilde{\eta} represents the Fourier variables with respect to t,x1,x2t,x_{1},x_{2} separately. Using the homogeneity structure of the system, we will focus on the following unit hemisphere in the frequency space

Σ={(τ,η,η~):|τ|2+η2+η~2=1,τ0}.\Sigma=\{(\tau,\eta,\tilde{\eta}):|\tau|^{2}+\eta^{2}+\tilde{\eta}^{2}=1,\Re\tau\geq 0\}.

This argument will later be extended to the entire frequency space Π.\Pi. For simplicity, we omit the tilde notation in the system. We denote

𝐛0:=[01000000],𝐛1(t,x1,x2):=[vr1vl1vr10Fr11Fl11Fr11Fr12Fl12Fr12Fr13Fl13Fr13](t,x1,x2,0),𝐛2(t,x1,x2):=[vr2vl2vr20Fr21Fl21Fr21Fr22Fl22Fr22Fr23Fl23Fr23](t,x1,x2,0),𝐛=τ𝐛0+iη𝐛1+iη~𝐛2.\begin{split}&\mathbf{b}_{0}:=\left[\begin{array}[]{c}0\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ \end{array}\right],\quad\mathbf{b}_{1}(t,x_{1},x_{2}):=\left[\begin{array}[]{c}v^{r}_{1}-v^{l}_{1}\\ v^{r}_{1}\\ 0\\ F^{r}_{11}-F^{l}_{11}\\ F^{r}_{11}\\ F^{r}_{12}-F^{l}_{12}\\ F^{r}_{12}\\ F^{r}_{13}-F^{l}_{13}\\ F^{r}_{13}\\ \end{array}\right](t,x_{1},x_{2},0),\\ &\mathbf{b}_{2}(t,x_{1},x_{2}):=\left[\begin{array}[]{c}v^{r}_{2}-v^{l}_{2}\\ v^{r}_{2}\\ 0\\ F^{r}_{21}-F^{l}_{21}\\ F^{r}_{21}\\ F^{r}_{22}-F^{l}_{22}\\ F^{r}_{22}\\ F^{r}_{23}-F^{l}_{23}\\ F^{r}_{23}\\ \end{array}\right](t,x_{1},x_{2},0),\quad\mathbf{b}=\tau\mathbf{b}_{0}+i\eta\mathbf{b}_{1}+i\tilde{\eta}\mathbf{b}_{2}.\end{split}

Using Lemma 3.2 (i)-(iii), we perform paralinearization and obtain that

γ𝐛0φ+𝐛0tφ=Tγτ𝐛0φ,𝐛11φTγiη𝐛1φ1,γC𝐛1W2,(3)φ0Cγφ1,γ,𝐛22φTγiη~𝐛2φ1,γC𝐛2W2,(3)φ0Cγφ1,γ,𝐛ˇφTγ𝐛ˇφ1,γC𝐛ˇW1,(3)φ0Cγφ1,γ,Tγ𝐛ˇφ1,γC𝐛ˇL(3)φ1,γCφ1,γ,\begin{split}&\gamma\mathbf{b}_{0}\varphi+\mathbf{b}_{0}\partial_{t}\varphi=T^{\gamma}_{\tau\mathbf{b}_{0}}\varphi,\\ &\|\mathbf{b}_{1}\partial_{1}\varphi-T^{\gamma}_{i\eta\mathbf{b}_{1}}\varphi\|_{1,\gamma}\leq C\|\mathbf{b}_{1}\|_{W^{2,\infty}({\mathbb{R}}^{3})}\|\varphi\|_{0}\leq\frac{C}{\gamma}\|\varphi\|_{1,\gamma},\\ &\|\mathbf{b}_{2}\partial_{2}\varphi-T^{\gamma}_{i\tilde{\eta}\mathbf{b}_{2}}\varphi\|_{1,\gamma}\leq C\|\mathbf{b}_{2}\|_{W^{2,\infty}({\mathbb{R}}^{3})}\|\varphi\|_{0}\leq\frac{C}{\gamma}\|\varphi\|_{1,\gamma},\\ &\|\check{\mathbf{b}}\varphi-T^{\gamma}_{\check{\mathbf{b}}}\varphi\|_{1,\gamma}\leq C\|\check{\mathbf{b}}\|_{W^{1,\infty}({\mathbb{R}}^{3})}\|\varphi\|_{0}\leq\frac{C}{\gamma}\|\varphi\|_{1,\gamma},\\ &\|T^{\gamma}_{\check{\mathbf{b}}}\varphi\|_{1,\gamma}\leq C\|\check{\mathbf{b}}\|_{L^{\infty}({\mathbb{R}}^{3})}\|\varphi\|_{1,\gamma}\leq C\|\varphi\|_{1,\gamma},\\ \end{split}

where CC are positive constants. Then, we consider the coefficients of Wn,W^{n},

M¯diag{Tr,Tl}W=:𝐌Wn=[00mrmr00000000000mlml00000000000mrmr000000000000000000000000kk00000000000kk000000000000000k2000000000000k2000000000000k20000000000000000000000000000k2000000000000k2000000000000k20000000000000000000000000000k2000000000000k2000000000000k20000000000000]Wn.\\ \begin{split}&\underline{M}\text{diag}\{T^{r},T^{l}\}W=:\mathbf{M}W^{n}\\ &=\left[\setcounter{MaxMatrixCols}{26}\begin{smallmatrix}0&0&-m_{r}&m_{r}&0&0&0&0&0&0&0&0&0&0&0&m_{l}&-m_{l}&0&0&0&0&0&0&0&0&0\\ 0&0&-m_{r}&m_{r}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&k&k&0&0&0&0&0&0&0&0&0&0&0&-k&-k&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&-k^{2}&0&0&0&0&0&0&0&0&0&0&0&0&k^{2}&0&0&0&0&0&0\\ 0&0&0&0&0&0&-k^{2}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&-k^{2}&0&0&0&0&0&0&0&0&0&0&0&0&k^{2}&0&0&0\\ 0&0&0&0&0&0&0&0&0&-k^{2}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&-k^{2}&0&0&0&0&0&0&0&0&0&0&0&0&k^{2}\\ 0&0&0&0&0&0&0&0&0&0&0&0&-k^{2}&0&0&0&0&0&0&0&0&0&0&0&0&0\\ \end{smallmatrix}\right]W^{n}.\end{split}

We denote mr=crρrtanψ2,m_{r}=\frac{c^{r}}{\rho^{r}}\langle\partial_{\rm tan}\psi\rangle^{2}, ml=clρltanψ2,m_{l}=\frac{c^{l}}{\rho^{l}}\langle\partial_{\rm tan}\psi\rangle^{2}, k=tanψk=\langle\partial_{\rm tan}\psi\rangle and

𝐌Wn|x3=0Tγ𝐌Wn|x3=01,γCγ𝐌W2,(3)Wn|x3=00CγWn|x3=00,\|\mathbf{M}W^{n}|_{x_{3}=0}-T^{\gamma}_{\mathbf{M}}W^{n}|_{x_{3}=0}\|_{1,\gamma}\leq\frac{C}{\gamma}\|\mathbf{M}\|_{W^{2,\infty}({\mathbb{R}}^{3})}\|W^{n}|_{x_{3}=0}\|_{0}\leq\frac{C}{\gamma}\|W^{n}|_{x_{3}=0}\|_{0},

where CC are some positive constants. Combing the above estimates, we have

γ(Wn|x3=0,φ)Tγ𝐛φTγ𝐌Wn|x3=01,γC(φ1,γ+1γWn|x3=00).\|\mathcal{B}^{\gamma}(W^{n}|_{x_{3}=0},\varphi)-T^{\gamma}_{\mathbf{b}}\varphi-T^{\gamma}_{\mathbf{M}}W^{n}|_{x_{3}=0}\|_{1,\gamma}\leq C(\|\varphi\|_{1,\gamma}+\frac{1}{\gamma}\|W^{n}|_{x_{3}=0}\|_{0}). (3.22)

Next, for the interior differential equations, using Lemma 3.2 (i)-(ii), we have

|||γAr0W+TγγAr0W+|||21,γ=0γ2Ar0W+(,x3)TγAr0W+(,x3)21,γdx3CAr02W2,(Ω)|||W+|||20C|||W+|||20,|||Ar0tW+TγiδAr0W+|||1,γC|||W+|||0,|||Ar11W+TγiηAr1W+|||1,γC|||W+|||0,|||Ar22W+Tγiη~Ar2W+|||1,γC|||W+|||0,|||Ar0CrW+TγAr0CrW+|||1,γC|||W+|||0.\begin{split}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\gamma A^{r}_{0}W^{+}-T^{\gamma}_{\gamma A^{r}_{0}}W^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}&=\int^{\infty}_{0}\gamma^{2}\|A^{r}_{0}W^{+}(\cdot,x_{3})-T^{\gamma}_{A^{r}_{0}}W^{+}(\cdot,x_{3})\|^{2}_{1,\gamma}\,{\rm d}x_{3}\\ &\leq C\|A^{r}_{0}\|^{2}_{W^{2,\infty}(\Omega)}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|W^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}\leq C{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|W^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0},\\ {\left|\kern-1.07639pt\left|\kern-1.07639pt\left|A^{r}_{0}\partial_{t}W^{+}-T^{\gamma}_{i\delta A^{r}_{0}}W^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{1,\gamma}&\leq C{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|W^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{0},\\ {\left|\kern-1.07639pt\left|\kern-1.07639pt\left|A^{r}_{1}\partial_{1}W^{+}-T^{\gamma}_{i\eta A^{r}_{1}}W^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{1,\gamma}&\leq C{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|W^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{0},\\ {\left|\kern-1.07639pt\left|\kern-1.07639pt\left|A^{r}_{2}\partial_{2}W^{+}-T^{\gamma}_{i\tilde{\eta}A^{r}_{2}}W^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{1,\gamma}&\leq C{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|W^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{0},\\ {\left|\kern-1.07639pt\left|\kern-1.07639pt\left|A^{r}_{0}C^{r}W^{+}-T^{\gamma}_{A^{r}_{0}C^{r}}W^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{1,\gamma}&\leq C{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|W^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{0}.\end{split}

Similar estimates also holds for WW^{-}. Hence, we obtain that

|||γr,lW±TγτAr,l0+iηAr,l1+iη~Ar,l2+Ar,l0Cr,lW±I23W±|||1,γC|||W±|||0.{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathcal{L}^{\gamma}_{r,l}W^{\pm}-T^{\gamma}_{\tau A^{r,l}_{0}+i\eta A^{r,l}_{1}+i\tilde{\eta}A^{r,l}_{2}+A^{r,l}_{0}C^{r,l}}W^{\pm}-I_{2}\partial_{3}W^{\pm}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{1,\gamma}\leq C{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|W^{\pm}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{0}. (3.23)

Now, we start to derive the specific expression for the paralinearized system. We write

𝐛=[iη(vr1vl1)+iη~(vr2vl2)τ+iηvr1+iη~vr20iη(Fr11Fl11)+iη~(Fr21Fl21)iηFr11+iη~Fr21iη(Fr12Fl12)+iη~(Fr22Fl22)iηFr12+iη~Fr22iη(Fr13Fl13)+iη~(Fr23Fl23)iηFr13+iη~Fr23]:=[iba0iFaiFbiFciFdiFeiFf].\displaystyle\mathbf{b}=\begin{bmatrix}i\eta(v^{r}_{1}-v^{l}_{1})+i\tilde{\eta}(v^{r}_{2}-v^{l}_{2})\\ \tau+i\eta v^{r}_{1}+i\tilde{\eta}v^{r}_{2}\\ 0\\ i\eta(F^{r}_{11}-F^{l}_{11})+i\tilde{\eta}(F^{r}_{21}-F^{l}_{21})\\ i\eta F^{r}_{11}+i\tilde{\eta}F^{r}_{21}\\ i\eta(F^{r}_{12}-F^{l}_{12})+i\tilde{\eta}(F^{r}_{22}-F^{l}_{22})\\ i\eta F^{r}_{12}+i\tilde{\eta}F^{r}_{22}\\ i\eta(F^{r}_{13}-F^{l}_{13})+i\tilde{\eta}(F^{r}_{23}-F^{l}_{23})\\ i\eta F^{r}_{13}+i\tilde{\eta}F^{r}_{23}\\ \end{bmatrix}:=\begin{bmatrix}ib\\ a\\ 0\\ iF_{a}\\ iF_{b}\\ iF_{c}\\ iF_{d}\\ iF_{e}\\ iF_{f}\end{bmatrix}.

Using the fact that F1×F2𝟎,\mathrm{F}_{1}\times\mathrm{F}_{2}\neq\mathbf{0}, we have

|𝐛(t,x1,x2,δ,η,η~,γ)|2\displaystyle|\mathbf{b}(t,x_{1},x_{2},\delta,\eta,\tilde{\eta},\gamma)|^{2}
=|η(vr1vl1)|2+|η~(vr2vl2)|2+γ2+|δ+ηvr1+η~vr2|2\displaystyle=|\eta(v^{r}_{1}-v^{l}_{1})|^{2}+|\tilde{\eta}(v^{r}_{2}-v^{l}_{2})|^{2}+\gamma^{2}+|\delta+\eta v^{r}_{1}+\tilde{\eta}v^{r}_{2}|^{2}
+|η(Fr11Fl11)+η~(Fr21Fl21)|2+|ηFr11+η~Fr21|2\displaystyle\quad+|\eta(F^{r}_{11}-F^{l}_{11})+\tilde{\eta}(F^{r}_{21}-F^{l}_{21})|^{2}+|\eta F^{r}_{11}+\tilde{\eta}F^{r}_{21}|^{2}
+|η(Fr12Fl12)+η~(Fr22Fl22)|2+|ηFr12+η~Fr22|2\displaystyle\quad+|\eta(F^{r}_{12}-F^{l}_{12})+\tilde{\eta}(F^{r}_{22}-F^{l}_{22})|^{2}+|\eta F^{r}_{12}+\tilde{\eta}F^{r}_{22}|^{2}
+|η(Fr13Fl13)+η~(Fr23Fl23)|2+|ηFr13+η~Fr23|2\displaystyle\quad+|\eta(F^{r}_{13}-F^{l}_{13})+\tilde{\eta}(F^{r}_{23}-F^{l}_{23})|^{2}+|\eta F^{r}_{13}+\tilde{\eta}F^{r}_{23}|^{2}
C(γ2+δ2+η2+η~2),\displaystyle\geq C(\gamma^{2}+\delta^{2}+\eta^{2}+\tilde{\eta}^{2}), (3.24)

for some positive constant C.C. Then, using Gå{\rm\mathring{a}}rding’s inequality (Lemma 3.2 (vi)), we obtain that

Tγ𝐛𝐛φ,φL2(3)c2φ21,γ,\Re\langle T^{\gamma}_{\mathbf{b}^{\ast}\mathbf{b}}\varphi,\varphi\rangle_{L^{2}({\mathbb{R}}^{3})}\geq\frac{c}{2}\|\varphi\|^{2}_{1,\gamma},

for all γγ0,\gamma\geq\gamma_{0}, where γ0\gamma_{0} depends only on K.K. Using the properties of paradifferential operators (Lemma 3.2 (iv)), we obtain that Tγ𝐛𝐛=(Tγ𝐛)Tγ𝐛+1,T^{\gamma}_{\mathbf{b}^{\ast}\mathbf{b}}=(T^{\gamma}_{\mathbf{b}})^{\ast}T^{\gamma}_{\mathbf{b}}+\mathcal{R}_{1}, where 1\mathcal{R}_{1} is an operator of order 1, then we have

φ1,γCTγ𝐛φ0,\|\varphi\|_{1,\gamma}\leq C\|T^{\gamma}_{\mathbf{b}}\varphi\|_{0},

for all γγ0.\gamma\geq\gamma_{0}. Using (3.22) and Lemma 3.2, we have

φ1,γC(Tγ𝐛φ+Tγ𝐌Wn|x3=00+Tγ𝐌Wn|x3=00)C(1γTγ𝐛φ+Tγ𝐌Wn|x3=01,γ+Wn|x3=00)C(1γγ(Wn|x3=0,φ)Tγ𝐛φTγ𝐌Wn|x3=01,γ+1γγ(Wn|x3=0,φ)1,γ+Wn|x3=00)C(1γγ(Wn|x3=0,φ)1,γ+Wn|x3=00).\begin{split}\|\varphi\|_{1,\gamma}&\leq C\left(\left\|T^{\gamma}_{\mathbf{b}}\varphi+T^{\gamma}_{\mathbf{M}}W^{n}|_{x_{3}=0}\right\|_{0}+\left\|T^{\gamma}_{\mathbf{M}}W^{n}|_{x_{3}=0}\right\|_{0}\right)\\ &\leq C\left(\frac{1}{\gamma}\left\|T^{\gamma}_{\mathbf{b}}\varphi+T^{\gamma}_{\mathbf{M}}W^{n}|_{x_{3}=0}\right\|_{1,\gamma}+\|W^{n}|_{x_{3}=0}\|_{0}\right)\\ &\leq C\left(\frac{1}{\gamma}\left\|\mathcal{B}^{\gamma}(W^{n}|_{x_{3}=0},\varphi)-T^{\gamma}_{\mathbf{b}}\varphi-T^{\gamma}_{\mathbf{M}}W^{n}|_{x_{3}=0}\right\|_{1,\gamma}\right.\\ &\qquad\ \left.+\frac{1}{\gamma}\left\|\mathcal{B}^{\gamma}(W^{n}|_{x_{3}=0},\varphi)\right\|_{1,\gamma}+\|W^{n}|_{x_{3}=0}\|_{0}\right)\\ &\leq C\left(\frac{1}{\gamma}\left\|\mathcal{B}^{\gamma}(W^{n}|_{x_{3}=0},\varphi)\right\|_{1,\gamma}+\|W^{n}|_{x_{3}=0}\|_{0}\right).\end{split} (3.25)

Now, we want to analyze the part of the boundary condition where the front function φ\varphi is not involved. We write

a1:=τ+ivr1η+ivr2η~,b1:=η(vr1vl1)+η~(vr2vl2).a_{1}:=\tau+iv^{r}_{1}\eta+iv^{r}_{2}\tilde{\eta},\qquad b_{1}:=\eta(v^{r}_{1}-v^{l}_{1})+\tilde{\eta}(v^{r}_{2}-v^{l}_{2}).

It worth to point out that a1a_{1} and b1b_{1} could equal to 0 for 3D elastic flow, due to the possible frequency interactions. However, in 2D elastic flow, it is natural to obtain the ellipticity for the front symbol and no such kind of degeneracy of a1a_{1} and b1b_{1} happen. Now, we define the following orthogonal projector matrix:

(t,x1,x2,τ,η,η~):=[001000000a1ib10000000F~a00b2α0000F~b000b30000F~c0000b4000F~d00000b500F~e000000b60F~f0000000b7],\mathbb{P}(t,x_{1},x_{2},\tau,\eta,\tilde{\eta}):=\left[\begin{array}[]{ccccccccc}0&0&1&0&0&0&0&0&0\\ a_{1}&-ib_{1}&0&0&0&0&0&0&0\\ -\tilde{F}_{a}&0&0&b_{2}&\alpha&0&0&0&0\\ -\tilde{F}_{b}&0&0&0&b_{3}&0&0&0&0\\ -\tilde{F}_{c}&0&0&0&0&b_{4}&0&0&0\\ -\tilde{F}_{d}&0&0&0&0&0&b_{5}&0&0\\ -\tilde{F}_{e}&0&0&0&0&0&0&b_{6}&0\\ -\tilde{F}_{f}&0&0&0&0&0&0&0&b_{7}\\ \end{array}\right], (3.26)

for (τ,η,η~)Σ(\tau,\eta,\tilde{\eta})\in\Sigma, and extend it as a homogeneous mapping of degree of 0 with respect to (τ,η,η~).(\tau,\eta,\tilde{\eta}). It is easy to check that

𝐛=[0i(a1bab1)i(F~ab+Fab2+Fbα)i(F~bb+Fbb3)i(F~cb+Fcb4)i(F~db+Fdb5)i(F~eb+Feb6)i(F~fb+Ffb7)].\displaystyle\mathbb{P}\mathbf{b}=\begin{bmatrix}0\\ i(a_{1}b-ab_{1})\\ i(-\tilde{F}_{a}b+F_{a}b_{2}+F_{b}\alpha)\\ i(-\tilde{F}_{b}b+F_{b}b_{3})\\ i(-\tilde{F}_{c}b+F_{c}b_{4})\\ i(-\tilde{F}_{d}b+F_{d}b_{5})\\ i(-\tilde{F}_{e}b+F_{e}b_{6})\\ i(-\tilde{F}_{f}b+F_{f}b_{7})\\ \end{bmatrix}.

Since at least one of the Fa,Fc,FeF_{a},F_{c},F_{e} is non-zero as long as (η,η~)(0,0)(\eta,\tilde{\eta})\neq(0,0) by using the fact that F1×F2𝟎\mathrm{F}_{1}\times\mathrm{F}_{2}\neq\mathbf{0}. Without loss of generality, we can assume Fa0,F_{a}\neq 0, then we can define

a1:=a,b1:=b,b2:=F~aFabFbFaα,F~b:=Fb,F~c:=Fc,a_{1}:=a,\quad b_{1}:=b,\quad b_{2}:=\frac{\tilde{F}_{a}}{F_{a}}b-\frac{F_{b}}{F_{a}}\alpha,\quad\tilde{F}_{b}:=F_{b},\quad\tilde{F}_{c}:=F_{c},
F~d:=Fd,F~e:=Fe,F~f:=Ff,b3=b4=b5=b6=b7:=b\tilde{F}_{d}:=F_{d},\quad\tilde{F}_{e}:=F_{e},\quad\tilde{F}_{f}:=F_{f},\quad b_{3}=b_{4}=b_{5}=b_{6}=b_{7}:=b

such that 𝐛=𝟎,\mathbb{P}\mathbf{b}=\mathbf{0}, where α\alpha is a fixed positive constant and F~a\tilde{F}_{a} is a given function. For (η,η~)=(0,0),(\eta,\tilde{\eta})=(0,0), the analysis is similar and omitted it. Simple calculation yields that

𝐌=[kk000kk000(aib)mr(aib)mr000amlaml000F~amrF~amr(b2+α)k200F~amlF~amlb2k200FbmrFbmrbk200FbmlFbml000FcmrFcmr0bk20FcmlFcml0bk20FdmrFdmr0bk20FdmlFdml000FemrFemr00bk2FemlFeml00bk2FfmrFfmr00bk2FfmlFfml000]\begin{split}&\mathbb{P}\mathbf{M}=\left[\begin{smallmatrix}k&k&0&0&0&-k&-k&0&0&0\\ -(a-ib)m_{r}&(a-ib)m_{r}&0&0&0&am_{l}&-am_{l}&0&0&0\\ \tilde{F}_{a}m_{r}&-\tilde{F}_{a}m_{r}&-(b_{2}+\alpha)k^{2}&0&0&-\tilde{F}_{a}m_{l}&\tilde{F}_{a}m_{l}&b_{2}k^{2}&0&0\\ F_{b}m_{r}&-F_{b}m_{r}&bk^{2}&0&0&-F_{b}m_{l}&F_{b}m_{l}&0&0&0\\ F_{c}m_{r}&-F_{c}m_{r}&0&-bk^{2}&0&-F_{c}m_{l}&F_{c}m_{l}&0&bk^{2}&0\\ F_{d}m_{r}&-F_{d}m_{r}&0&-bk^{2}&0&-F_{d}m_{l}&F_{d}m_{l}&0&0&0\\ F_{e}m_{r}&-F_{e}m_{r}&0&0&-bk^{2}&-F_{e}m_{l}&F_{e}m_{l}&0&0&bk^{2}\\ F_{f}m_{r}&-F_{f}m_{r}&0&0&-bk^{2}&-F_{f}m_{l}&F_{f}m_{l}&0&0&0\\ \end{smallmatrix}\right]\end{split}

for (τ,η,η~)Σ(\tau,\eta,\tilde{\eta})\in\Sigma. It is easily seen that 𝐌\mathbb{P}\mathbf{M} is homogenous of degree 0 with respect to (τ,η,η~).(\tau,\eta,\tilde{\eta}).

We denote the last six rows in \mathbb{P} by 6.\mathbb{P}_{6}. Then we can separate the 𝐌\mathbb{P}\mathbf{M}. We have

Tγ6𝐌Wn|x3=0=TγAWnc|x3=0+TγB(W7,W10,W13,W20,W23,W26)|x3=0,T^{\gamma}_{\mathbb{P}_{6}\mathbf{M}}W^{n}|_{x_{3}=0}=T^{\gamma}_{A}W^{nc}|_{x_{3}=0}+T^{\gamma}_{B}(W_{7},W_{10},W_{13},W_{20},W_{23},W_{26})^{\top}|_{x_{3}=0},

where BB an invertible matrix defined in the whole domain and is homogeneous of degree 0. For simplicity, we write

B=[(b2+α)00b200b000000b00b00b000000b00b00b000].\displaystyle B=\begin{bmatrix}-(b_{2}+\alpha)&0&0&b_{2}&0&0\\ b&0&0&0&0&0\\ 0&-b&0&0&b&0\\ 0&-b&0&0&0&0\\ 0&0&-b&0&0&b\\ 0&0&-b&0&0&0\end{bmatrix}.

We can check that

|B(t,x1,x2)|2=tr(BB)=(b2+α)2+b22+7b22(b2+α2)2+α22α22,|B(t,x_{1},x_{2})|^{2}=\text{tr}(BB^{\ast})=(b_{2}+\alpha)^{2}+b^{2}_{2}+7b^{2}\geq 2\left(b_{2}+\frac{\alpha}{2}\right)^{2}+\frac{\alpha^{2}}{2}\geq\frac{\alpha^{2}}{2},

where BB^{\ast} is the conjugate transpose of BB.

Using the Gå{\rm\mathring{a}}rding’s inequality (Lemma 3.2 (vi)), one has

TγBB(W7,W10,W13,W20,W23,W26),(W7,W10,W13,W20,W23,W26)|x3=0\displaystyle\Re\left\langle T^{\gamma}_{B^{\ast}B}(W_{7},W_{10},W_{13},W_{20},W_{23},W_{26})^{\top},(W_{7},W_{10},W_{13},W_{20},W_{23},W_{26})^{\top}\right\rangle\Big{|}_{x_{3}=0}
c2(W7,W10,W13,W20,W23,W26)|x3=020,\displaystyle\qquad\geq\frac{c}{2}\left\|(W_{7},W_{10},W_{13},W_{20},W_{23},W_{26})^{\top}|_{x_{3}=0}\right\|^{2}_{0}, (3.27)

for all γγ0.\gamma\geq\gamma_{0}.

Then, using (3.3), we have

(W7,W10,W13,W20,W23,W26)|x3=00\displaystyle\left\|(W_{7},W_{10},W_{13},W_{20},W_{23},W_{26})^{\top}|_{x_{3}=0}\right\|_{0}
\displaystyle\leq CTγB(W7,W10,W13,W20,W23,W26)|x3=00\displaystyle\ C\left\|T^{\gamma}_{B}(W_{7},W_{10},W_{13},W_{20},W_{23},W_{26})^{\top}|_{x_{3}=0}\right\|_{0}
\displaystyle\leq C(Tγ6𝐌Wn|x3=00+TγAWnc|x3=00).\displaystyle\ C\left(\left\|T^{\gamma}_{\mathbb{P}_{6}\mathbf{M}}W^{n}|_{x_{3}=0}\right\|_{0}+\left\|T^{\gamma}_{A}W^{nc}|_{x_{3}=0}\right\|_{0}\right).

Using Lemma 3.2 and (3.22), we can also obtain the estimate for the front function φ,\varphi, one has

Tγ6𝐌Wn|x3=00\displaystyle\left\|T^{\gamma}_{\mathbb{P}_{6}\mathbf{M}}W^{n}|_{x_{3}=0}\right\|_{0} Tγ6γ(Wn|x3=0,φ)Tγ6Tγ𝐌Wn|x3=0Tγ6Tγ𝐛φ0\displaystyle\leq\left\|T^{\gamma}_{\mathbb{P}_{6}}\mathcal{B}^{\gamma}(W^{n}|_{x_{3}=0},\varphi)-T^{\gamma}_{\mathbb{P}_{6}}T^{\gamma}_{\mathbf{M}}W^{n}|_{x_{3}=0}-T^{\gamma}_{\mathbb{P}_{6}}T^{\gamma}_{\mathbf{b}}\varphi\right\|_{0}
+Tγ6γ(Wn|x3=0,φ)0+Wn|x3=01,γ+φ0\displaystyle\quad+\left\|T^{\gamma}_{\mathbb{P}_{6}}\mathcal{B}^{\gamma}(W^{n}|_{x_{3}=0},\varphi)\right\|_{0}+\left\|W^{n}|_{x_{3}}=0\right\|_{-1,\gamma}+\|\varphi\|_{0}
1γγ(Wn|x3=0,φ)Tγ𝐌Wn|x3=0Tγ𝐛1,γ+1γγ(Wn|x3=0,φ)1,γ\displaystyle\leq\frac{1}{\gamma}\left\|\mathcal{B}^{\gamma}(W^{n}|_{x_{3}=0},\varphi)-T^{\gamma}_{\mathbf{M}}W^{n}|_{x_{3}=0}-T^{\gamma}_{\mathbf{b}}\right\|_{1,\gamma}+\frac{1}{\gamma}\left\|\mathcal{B}^{\gamma}(W^{n}|_{x_{3}=0},\varphi)\right\|_{1,\gamma}
+Wn|x3=01,γ+φ0\displaystyle\quad+\left\|W^{n}|_{x_{3}=0}\right\|_{-1,\gamma}+\|\varphi\|_{0}
1γφ1,γ+1γγ(Wn|x3=0,φ)1,γ+1γWn|x3=00.\displaystyle\leq\frac{1}{\gamma}\|\varphi\|_{1,\gamma}+\frac{1}{\gamma}\left\|\mathcal{B}^{\gamma}(W^{n}|_{x_{3}=0},\varphi)\right\|_{1,\gamma}+\frac{1}{\gamma}\left\|W^{n}|_{x_{3}=0}\right\|_{0}.

Taking γ\gamma sufficiently large, we obtain that

(W7,W10,W13,W20,W23,W26)|x3=00(1γφ1,γ+1γγ(Wn|x3=0,φ)1,γ+Wnc|x3=00).\begin{split}&\left\|(W_{7},W_{10},W_{13},W_{20},W_{23},W_{26})^{\top}|_{x_{3}=0}\right\|_{0}\\ &\lesssim\left(\frac{1}{\gamma}\|\varphi\|_{1,\gamma}+\frac{1}{\gamma}\left\|\mathcal{B}^{\gamma}(W^{n}|_{x_{3}=0},\varphi)\right\|_{1,\gamma}+\left\|W^{nc}|_{x_{3}=0}\right\|_{0}\right).\end{split} (3.28)

Then, collecting (3.25) and (3.28), we obtain that

(W7,W10,W13,W20,W23,W26)|x3=00+φ1,γ(1γγ(Wn|x3=0,φ)1,γ+Wnc|x3=00).\begin{split}&\left\|(W_{7},W_{10},W_{13},W_{20},W_{23},W_{26})^{\top}|_{x_{3}=0}\right\|_{0}+\|\varphi\|_{1,\gamma}\\ &\lesssim\left(\frac{1}{\gamma}\left\|\mathcal{B}^{\gamma}(W^{n}|_{x_{3}=0},\varphi)\right\|_{1,\gamma}+\left\|W^{nc}|_{x_{3}=0}\right\|_{0}\right).\end{split}

Therefore, we obtain the estimate of (W7,W10,W13,W20,W23,W26)|x3=0(W_{7},W_{10},W_{13},W_{20},W_{23},W_{26})^{\top}|_{x_{3}=0} and φ\varphi by estimating the source terms and the non-characteristic components Wnc|x3=0.W^{nc}|_{x_{3}=0}.

Denote that

kr,l1:=τ+iηvr,l1+iη~vr,l2.k^{r,l}_{1}:=\tau+i\eta v^{r,l}_{1}+i\tilde{\eta}v^{r,l}_{2}. (3.29)

Now, we need to estimate Wnc|x3=0,W^{nc}|_{x_{3}=0}, we need to use the other part of boundary conditions,

TγβWnc|x3=0=G~,T^{\gamma}_{\beta}W^{nc}|_{x_{3}=0}=\tilde{G},

where

β:=[kkkkcrρrk2kl1crρrk2kl1clρlk2kr1clρlk2kr1].\begin{split}&\beta:=\left[\begin{matrix}k&k&-k&-k\\ -\frac{c^{r}}{\rho^{r}}k^{2}k^{l}_{1}&\frac{c^{r}}{\rho^{r}}k^{2}k^{l}_{1}&\frac{c^{l}}{\rho^{l}}k^{2}k^{r}_{1}&-\frac{c^{l}}{\rho^{l}}k^{2}k^{r}_{1}\\ \end{matrix}\right].\end{split} (3.30)

It is homogeneous of degree 0 with respect to (τ,η,η~).(\tau,\eta,\tilde{\eta}). βΓ02.\beta\in\Gamma^{0}_{2}. We can define the following para-linearized system as

{TγτAr0+iηAr1+iη~Ar2+Ar0CrW++I23W+=F~+,TγτAl0+iηAl1+iη~Al2+Ar0ClW+I23W=F~,TγβWnc|x3=0=G~.\begin{cases}T^{\gamma}_{\tau A^{r}_{0}+i\eta A^{r}_{1}+i\tilde{\eta}A^{r}_{2}+A^{r}_{0}C^{r}}W^{+}+I_{2}\partial_{3}W^{+}=\tilde{F}^{+},\\ T^{\gamma}_{\tau A^{l}_{0}+i\eta A^{l}_{1}+i\tilde{\eta}A^{l}_{2}+A^{r}_{0}C^{l}}W^{-}+I_{2}\partial_{3}W^{-}=\tilde{F}^{-},\\ T^{\gamma}_{\beta}W^{nc}|_{x_{3}=0}=\tilde{G}.\end{cases} (3.31)

We remain to prove the following estimate:

Wnc|x3=020C0(1γ3F~±21,γ+1γ2G~21,γ).\left\|W^{nc}|_{x_{3}=0}\right\|^{2}_{0}\leq C_{0}\left(\frac{1}{\gamma^{3}}\left\|\tilde{F}^{\pm}\right\|^{2}_{1,\gamma}+\frac{1}{\gamma^{2}}\|\tilde{G}\|^{2}_{1,\gamma}\right). (3.32)

First, we have

|||γr,lW±TγτAr,l0+iηAr,l1+iη~Ar,l2+Ar,l0Cr,lW±I23W±|||1,γC|||W±|||0,γ(Wn|x3=0,φ)Tγ𝐛φTγ𝐌Wn|x3=01,γC(φ1,γ+1γWn|x3=00),G~1,γ=TγβWnc|x3=01,γ=Tγ2𝐌Wnc|x3=01,γ=Tγ2𝐛φ+Tγ2𝐌Wnc|x3=01,γ,\begin{split}&{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathcal{L}^{\gamma}_{r,l}W^{\pm}-T^{\gamma}_{\tau A^{r,l}_{0}+i\eta A^{r,l}_{1}+i\tilde{\eta}A^{r,l}_{2}+A^{r,l}_{0}C^{r,l}}W^{\pm}-I_{2}\partial_{3}W^{\pm}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{1,\gamma}\leq C{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|W^{\pm}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{0},\\ &\left\|\mathcal{B}^{\gamma}(W^{n}|_{x_{3}=0},\varphi)-T^{\gamma}_{\mathbf{b}}\varphi-T^{\gamma}_{\mathbf{M}}W^{n}|_{x_{3}=0}\right\|_{1,\gamma}\leq C\left(\|\varphi\|_{1,\gamma}+\frac{1}{\gamma}\left\|W^{n}|_{x_{3}=0}\right\|_{0}\right),\\ &\|\tilde{G}\|_{1,\gamma}=\left\|T^{\gamma}_{\beta}W^{nc}|_{x_{3}=0}\right\|_{1,\gamma}=\left\|T^{\gamma}_{\mathbb{P}_{2}\mathbf{M}}W^{nc}|_{x_{3}=0}\right\|_{1,\gamma}=\left\|T^{\gamma}_{\mathbb{P}_{2}{\mathbf{b}}}\varphi+T^{\gamma}_{\mathbb{P}_{2}\mathbf{M}}W^{nc}|_{x_{3}=0}\right\|_{1,\gamma},\end{split}

where we have 2\mathbb{P}_{2} denotes the first two rows of .\mathbb{P}. Then, we have

G~1,γ||Tγ2(Tγ𝐛φ+Tγ𝐌Wnc|x3=0)||1,γ+φ1,γ+Wnc|x3=00||γ(Wn|x3=0,φ)Tγ𝐛φTγ𝐌Wn|x3=0||1,γ+γ(Wn|x3=0,φ)1,γ+φ1,γ+Wnc|x3=00φ1,γ+1γWn|x3=00+Wnc|x3=00+γ(Wn|x3=0,φ)1,γ.\begin{split}\|\tilde{G}\|_{1,\gamma}&\leq||T^{\gamma}_{\mathbb{P}_{2}}(T^{\gamma}_{\mathbf{b}}\varphi+T^{\gamma}_{\mathbf{M}}W^{nc}|_{x_{3}=0})||_{1,\gamma}+\|\varphi\|_{1,\gamma}+\left\|W^{nc}|_{x_{3}=0}\right\|_{0}\\ &\leq||\mathcal{B}^{\gamma}(W^{n}|_{x_{3}=0},\varphi)-T^{\gamma}_{\mathbf{b}}\varphi-T^{\gamma}_{\mathbf{M}}W^{n}|_{x_{3}=0}||_{1,\gamma}\\ &\quad+\left\|\mathcal{B}^{\gamma}(W^{n}|_{x_{3}=0},\varphi)\right\|_{1,\gamma}+\|\varphi\|_{1,\gamma}+\left\|W^{nc}|_{x_{3}=0}\right\|_{0}\\ &\leq\|\varphi\|_{1,\gamma}+\frac{1}{\gamma}\|W^{n}|_{x_{3}=0}\|_{0}+\left\|W^{nc}|_{x_{3}=0}\right\|_{0}+\left\|\mathcal{B}^{\gamma}(W^{n}|_{x_{3}=0},\varphi)\right\|_{1,\gamma}.\end{split}

Moreover,

|||F~±|||1,γ=|||γr,lW±|||1,γ+|||F~±γr,lW±|||1,γ|||γr,lW±|||1,γ+C|||W±|||0.\begin{split}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\tilde{F}^{\pm}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{1,\gamma}&={\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathcal{L}^{\gamma}_{r,l}W^{\pm}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{1,\gamma}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\tilde{F}^{\pm}-\mathcal{L}^{\gamma}_{r,l}W^{\pm}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{1,\gamma}\\ &\leq{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathcal{L}^{\gamma}_{r,l}W^{\pm}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{1,\gamma}+C{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|W^{\pm}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{0}.\end{split}

Therefore, from (3.32), one has

Wnc|x3=020\displaystyle\left\|W^{nc}|_{x_{3}=0}\right\|^{2}_{0} C0(1γ3|||γr,lW±|||21,γ+1γ3|||W±|||20+1γ2γ(Wn|x3=0,φ)21,γ\displaystyle\leq C_{0}\left(\frac{1}{\gamma^{3}}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathcal{L}^{\gamma}_{r,l}W^{\pm}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}+\frac{1}{\gamma^{3}}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|W^{\pm}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}+\frac{1}{\gamma^{2}}\left\|\mathcal{B}^{\gamma}(W^{n}|_{x_{3}=0},\varphi)\right\|^{2}_{1,\gamma}\right.
+1γ4Wn|x3=020+1γ2φ21,γ).\displaystyle\qquad\ +\left.\frac{1}{\gamma^{4}}\left\|W^{n}|_{x_{3}=0}\right\|^{2}_{0}+\frac{1}{\gamma^{2}}\|\varphi\|^{2}_{1,\gamma}\right).

Finally, combining (3.32) and (3.28), we obtain

Wn|x3=020+φ21,γC(1γ3|||γr,lW±|||21,γ+1γ3|||W±|||20+1γ2γ(Wn|x3=0,φ)21,γ+1γ4Wn|x3=020+1γ2φ21,γ)C(1γ3|||γr,lW±|||21,γ+1γ3|||W|||20+1γ2γ(Wn|x3=0,φ)21,γ).\begin{split}\|W^{n}|_{x_{3}=0}\|^{2}_{0}+\|\varphi\|^{2}_{1,\gamma}&\leq C\left(\frac{1}{\gamma^{3}}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathcal{L}^{\gamma}_{r,l}W^{\pm}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}+\frac{1}{\gamma^{3}}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|W^{\pm}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}+\frac{1}{\gamma^{2}}\left\|\mathcal{B}^{\gamma}(W^{n}|_{x_{3}=0},\varphi)\right\|^{2}_{1,\gamma}\right.\\ &\qquad\ \left.+\frac{1}{\gamma^{4}}\left\|W^{n}|_{x_{3}=0}\right\|^{2}_{0}+\frac{1}{\gamma^{2}}\|\varphi\|^{2}_{1,\gamma}\right)\\ &\leq C\left(\frac{1}{\gamma^{3}}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathcal{L}^{\gamma}_{r,l}W^{\pm}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}+\frac{1}{\gamma^{3}}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|W\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}+\frac{1}{\gamma^{2}}\left\|\mathcal{B}^{\gamma}(W^{n}|_{x_{3}=0},\varphi)\right\|^{2}_{1,\gamma}\right).\end{split}

Therefore, the key step is to obtain (3.32) from (3.45). Using Lemma 3.1, we obtain Theorem 3.1.

3.4. Microlocalization

For simplicity, we concentrate our analysis on the unit hemisphere Σ={(τ,η,η~):|τ|2+η2+η~2=1 and τ>0}.\Sigma=\{(\tau,\eta,\tilde{\eta}):|\tau|^{2}+\eta^{2}+\tilde{\eta}^{2}=1\text{ and }\Re\tau>0\}.

3.4.1. Poles

Considering the following differential equation:

{(τAr0+iηAr1+iη~Ar2)W++I23W+=𝟎,(τAl0+iηAl1+iη~Al2)W+I23W=𝟎,βWnc|x3=0=𝟎,\begin{cases}(\tau A^{r}_{0}+i\eta A^{r}_{1}+i\tilde{\eta}A^{r}_{2})W^{+}+I_{2}\partial_{3}W^{+}={\mathbf{0}},\\ (\tau A^{l}_{0}+i\eta A^{l}_{1}+i\tilde{\eta}A^{l}_{2})W^{-}+I_{2}\partial_{3}W^{-}={\mathbf{0}},\\ \beta W^{nc}|_{x_{3}=0}={\mathbf{0}},\end{cases} (3.33)

where Ar,l0,Ar,l1,Ar,l2,I2,βA^{r,l}_{0},A^{r,l}_{1},A^{r,l}_{2},I_{2},\beta are defined in (3.14), (3.15), (3.17), and (3.30). Denote

kr,l2:=(ηFr,l11+η~Fr,l21)2+(ηFr,l12+η~Fr,l22)2+(ηFr,l13+η~Fr,l23)2.k^{r,l}_{2}:=(\eta F^{r,l}_{11}+\tilde{\eta}F^{r,l}_{21})^{2}+(\eta F^{r,l}_{12}+\tilde{\eta}F^{r,l}_{22})^{2}+(\eta F^{r,l}_{13}+\tilde{\eta}F^{r,l}_{23})^{2}. (3.34)

Now, we consider the algebraic equations 𝒯W+=𝟎\mathcal{T}W^{+}={\mathbf{0}} for W+W^{+}, where

𝒯:=[kr10𝒯1,3𝒯1,4𝒯1,500𝒯1,800𝒯1,11000kr1𝒯2,3𝒯2,40𝒯2,600𝒯2,900𝒯1,120𝒯3,1𝒯3,2𝒯3,3000𝒯3,700𝒯3,1000𝒯3,13𝒯4,1𝒯4,20𝒯4,400𝒯4,700𝒯4,1000𝒯4,13𝒯5,1000kr1000000000𝒯6,2000kr1000000000𝒯7,3𝒯7,400kr1000000𝒯8,1000000kr1000000𝒯9,2000000kr1000000𝒯10,3𝒯10,400000kr1000𝒯11,1000000000kr1000𝒯12,2000000000kr1000𝒯13,3𝒯13,400000000kr1],\mathcal{T}:=\left[\setcounter{MaxMatrixCols}{13}\begin{smallmatrix}k^{r}_{1}&0&\mathcal{T}_{1,3}&\mathcal{T}_{1,4}&\mathcal{T}_{1,5}&0&0&\mathcal{T}_{1,8}&0&0&\mathcal{T}_{1,11}&0&0\\ 0&k^{r}_{1}&\mathcal{T}_{2,3}&\mathcal{T}_{2,4}&0&\mathcal{T}_{2,6}&0&0&\mathcal{T}_{2,9}&0&0&\mathcal{T}_{1,12}&0\\ \mathcal{T}_{3,1}&\mathcal{T}_{3,2}&\mathcal{T}_{3,3}&0&0&0&\mathcal{T}_{3,7}&0&0&\mathcal{T}_{3,10}&0&0&\mathcal{T}_{3,13}\\ \mathcal{T}_{4,1}&\mathcal{T}_{4,2}&0&\mathcal{T}_{4,4}&0&0&\mathcal{T}_{4,7}&0&0&\mathcal{T}_{4,10}&0&0&\mathcal{T}_{4,13}\\ \mathcal{T}_{5,1}&0&0&0&k^{r}_{1}&0&0&0&0&0&0&0&0\\ 0&\mathcal{T}_{6,2}&0&0&0&k^{r}_{1}&0&0&0&0&0&0&0\\ 0&0&\mathcal{T}_{7,3}&\mathcal{T}_{7,4}&0&0&k^{r}_{1}&0&0&0&0&0&0\\ \mathcal{T}_{8,1}&0&0&0&0&0&0&k^{r}_{1}&0&0&0&0&0\\ 0&\mathcal{T}_{9,2}&0&0&0&0&0&0&k^{r}_{1}&0&0&0&0\\ 0&0&\mathcal{T}_{10,3}&\mathcal{T}_{10,4}&0&0&0&0&0&k^{r}_{1}&0&0&0\\ \mathcal{T}_{11,1}&0&0&0&0&0&0&0&0&0&k^{r}_{1}&0&0\\ 0&\mathcal{T}_{12,2}&0&0&0&0&0&0&0&0&0&k^{r}_{1}&0\\ 0&0&\mathcal{T}_{13,3}&\mathcal{T}_{13,4}&0&0&0&0&0&0&0&0&k^{r}_{1}\\ \end{smallmatrix}\right], (3.35)

where

𝒯1,3=𝒯1,4=c2ρrtanΦr{iη[(2Φr)2+1]iη~1Φr2Φr},\mathcal{T}_{1,3}=\mathcal{T}_{1,4}=\frac{c^{2}}{\rho^{r}\langle\partial_{\rm tan}\Phi^{r}\rangle}\{i\eta[(\partial_{2}\Phi^{r})^{2}+1]-i\tilde{\eta}\partial_{1}\Phi^{r}\partial_{2}\Phi^{r}\},
𝒯2,3=𝒯2,4=c2ρrtanΦr{iη1Φr2Φr+iη~[(1Φr)2+1]},\mathcal{T}_{2,3}=\mathcal{T}_{2,4}=\frac{c^{2}}{\rho^{r}\langle\partial_{\rm tan}\Phi^{r}\rangle}\{-i\eta\partial_{1}\Phi^{r}\partial_{2}\Phi^{r}+i\tilde{\eta}[(\partial_{1}\Phi^{r})^{2}+1]\},
𝒯1,5=𝒯2,6=𝒯5,1=𝒯6,2=iηFr11iη~Fr21,\mathcal{T}_{1,5}=\mathcal{T}_{2,6}=\mathcal{T}_{5,1}=\mathcal{T}_{6,2}=-i\eta F^{r}_{11}-i\tilde{\eta}F^{r}_{21},
𝒯1,8=𝒯2,9=𝒯8,1=𝒯9,2=iηFr12iη~Fr22,\mathcal{T}_{1,8}=\mathcal{T}_{2,9}=\mathcal{T}_{8,1}=\mathcal{T}_{9,2}=-i\eta F^{r}_{12}-i\tilde{\eta}F^{r}_{22},
𝒯1,11=𝒯2,12=𝒯11,1=𝒯12,2=iηFr13iη~Fr23,\mathcal{T}_{1,11}=\mathcal{T}_{2,12}=\mathcal{T}_{11,1}=\mathcal{T}_{12,2}=-i\eta F^{r}_{13}-i\tilde{\eta}F^{r}_{23},
𝒯3,7=𝒯4,7=ρr2(cr)2tanΦr𝒯1,5,\mathcal{T}_{3,7}=\mathcal{T}_{4,7}=-\frac{\rho^{r}}{2(c^{r})^{2}\langle\partial_{\rm tan}\Phi^{r}\rangle}\mathcal{T}_{1,5},
𝒯3,10=𝒯4,10=ρr2(cr)2tanΦr𝒯1,8,\mathcal{T}_{3,10}=\mathcal{T}_{4,10}=-\frac{\rho^{r}}{2(c^{r})^{2}\langle\partial_{\rm tan}\Phi^{r}\rangle}\mathcal{T}_{1,8},
𝒯3,13=𝒯4,13=ρr2(cr)2tanΦr𝒯1,11,\mathcal{T}_{3,13}=\mathcal{T}_{4,13}=-\frac{\rho^{r}}{2(c^{r})^{2}\langle\partial_{\rm tan}\Phi^{r}\rangle}\mathcal{T}_{1,11},
𝒯7,3=𝒯7,4=crρr𝒯1,5,𝒯10,3=𝒯10,4=crρr𝒯1,8,𝒯13,3=𝒯13,4=crρr𝒯1,11,\mathcal{T}_{7,3}=-\mathcal{T}_{7,4}=\frac{c^{r}}{\rho^{r}}\mathcal{T}_{1,5},\quad\mathcal{T}_{10,3}=-\mathcal{T}_{10,4}=\frac{c^{r}}{\rho^{r}}\mathcal{T}_{1,8},\quad\mathcal{T}_{13,3}=-\mathcal{T}_{13,4}=\frac{c^{r}}{\rho^{r}}\mathcal{T}_{1,11},
𝒯3,1=𝒯4,1=ρ3Φriη2crtanΦr2,𝒯3,2=𝒯4,2=ρ3Φriη~2crtanΦr2,\mathcal{T}_{3,1}=-\mathcal{T}_{4,1}=\frac{\rho\partial_{3}\Phi^{r}i\eta}{2c^{r}\langle\partial_{\rm tan}\Phi^{r}\rangle^{2}},\quad\mathcal{T}_{3,2}=-\mathcal{T}_{4,2}=\frac{\rho\partial_{3}\Phi^{r}i\tilde{\eta}}{2c^{r}\langle\partial_{\rm tan}\Phi^{r}\rangle^{2}},
𝒯3,3=3ΦrcrtanΦrτ+iη3Φr(1ΦrtanΦr2+v1crtanΦr)+iη~3Φr(2ΦrtanΦr2+v2crtanΦr),\mathcal{T}_{3,3}=\frac{\partial_{3}\Phi^{r}}{c^{r}\langle\partial_{\rm tan}\Phi^{r}\rangle}\tau+i\eta\partial_{3}\Phi^{r}\left(\frac{-\partial_{1}\Phi^{r}}{\langle\partial_{\rm tan}\Phi^{r}\rangle^{2}}+\frac{v_{1}}{c^{r}\langle\partial_{\rm tan}\Phi^{r}\rangle}\right)+i\tilde{\eta}\partial_{3}\Phi^{r}\left(\frac{-\partial_{2}\Phi^{r}}{\langle\partial_{\rm tan}\Phi^{r}\rangle^{2}}+\frac{v_{2}}{c^{r}\langle\partial_{\rm tan}\Phi^{r}\rangle}\right),
𝒯4,4=3ΦrcrtanΦrτ+iη3Φr(1ΦrtanΦr2v1crtanΦr)+iη~3Φr(2ΦrtanΦr2v2crtanΦr).\mathcal{T}_{4,4}=\frac{\partial_{3}\Phi^{r}}{c^{r}\langle\partial_{\rm tan}\Phi^{r}\rangle}\tau+i\eta\partial_{3}\Phi^{r}\left(\frac{-\partial_{1}\Phi^{r}}{\langle\partial_{\rm tan}\Phi^{r}\rangle^{2}}-\frac{v_{1}}{c^{r}\langle\partial_{\rm tan}\Phi^{r}\rangle}\right)+i\tilde{\eta}\partial_{3}\Phi^{r}\left(\frac{-\partial_{2}\Phi^{r}}{\langle\partial_{\rm tan}\Phi^{r}\rangle^{2}}-\frac{v_{2}}{c^{r}\langle\partial_{\rm tan}\Phi^{r}\rangle}\right).

Similar equations also hold for W.W^{-}. Similar to the constant coefficient case, if (kr1)7((kr1)2+kr2)0,(k^{r}_{1})^{7}((k^{r}_{1})^{2}+k^{r}_{2})\neq 0, we can solve W1,W2,W5,,W13W_{1},W_{2},W_{5},\cdots,W_{13} by W3,W4,W_{3},W_{4}, Then, using differential equations (3.33), we can obtain the differential equations only involve W3W_{3} and W4,W_{4},

3[W3W4]=𝔸r[W3W4],\partial_{3}\left[\begin{array}[]{c}W_{3}\\ W_{4}\end{array}\right]=\mathbb{A}^{r}\left[\begin{array}[]{c}W_{3}\\ W_{4}\end{array}\right],

where

𝔸r:=[μrmrmrμr]+iη1Φr3ΦrtanΦr2[1001]+iη~2Φr3ΦrtanΦr2[1001],\mathbb{A}^{r}:=\left[\begin{array}[]{cc}\mu^{r}&-m^{r}\\ m^{r}&-\mu^{r}\\ \end{array}\right]+i\eta\frac{\partial_{1}\Phi^{r}\partial_{3}\Phi^{r}}{\langle\partial_{\rm tan}\Phi^{r}\rangle^{2}}\left[\begin{array}[]{cc}1&0\\ 0&1\\ \end{array}\right]+i\tilde{\eta}\frac{\partial_{2}\Phi^{r}\partial_{3}\Phi^{r}}{\langle\partial_{\rm tan}\Phi^{r}\rangle^{2}}\left[\begin{array}[]{cc}1&0\\ 0&1\\ \end{array}\right],
μr=3Φrkr1crtanΦr3Φrkr22tanΦrcrkr13Φrcrkr1[(η2Φrη~1Φr)2+η2+η~2]2tanΦr3[(kr1)2+kr2],mr=3Φrkr22tanΦrcrkr1+3Φrcrkr1[(η2Φrη~1Φr)2+η2+η~2]2tanΦr3[(kr1)2+kr2].\begin{split}\mu^{r}=-\frac{\partial_{3}\Phi^{r}k^{r}_{1}}{c^{r}\langle\partial_{\rm tan}\Phi^{r}\rangle}-\frac{\partial_{3}\Phi^{r}k^{r}_{2}}{2\langle\partial_{\rm tan}\Phi^{r}\rangle c^{r}k^{r}_{1}}-\frac{\partial_{3}\Phi^{r}c^{r}k^{r}_{1}[(\eta\partial_{2}\Phi^{r}-\tilde{\eta}\partial_{1}\Phi^{r})^{2}+\eta^{2}+\tilde{\eta}^{2}]}{2\langle\partial_{\rm tan}\Phi^{r}\rangle^{3}[(k^{r}_{1})^{2}+k^{r}_{2}]},\\ m^{r}=-\frac{\partial_{3}\Phi^{r}k^{r}_{2}}{2\langle\partial_{\rm tan}\Phi^{r}\rangle c^{r}k^{r}_{1}}+\frac{\partial_{3}\Phi^{r}c^{r}k^{r}_{1}[(\eta\partial_{2}\Phi^{r}-\tilde{\eta}\partial_{1}\Phi^{r})^{2}+\eta^{2}+\tilde{\eta}^{2}]}{2\langle\partial_{\rm tan}\Phi^{r}\rangle^{3}[(k^{r}_{1})^{2}+k^{r}_{2}]}.\\ \end{split}

Similar arguments hold for W.W^{-}. Then, for the points in frequency space that cannot reduce the system into the non-characteristic form are the points:

(kr,l1)7[(kr,l1)2+kr,l2]=0,(k^{r,l}_{1})^{7}[(k^{r,l}_{1})^{2}+k^{r,l}_{2}]=0, (3.36)

where kr,l1k^{r,l}_{1} and kr,l2k^{r,l}_{2} are defined in (3.29) and (3.34) respectively. These points are exactly the poles of the system (3.33) and we denote

Υp:={(t,x1,x2,x3,τ,η,η~)4+×Σ:(kr,l1)7[(kr,l1)2+kr,l2]=0}.\Upsilon_{p}:=\left\{(t,x_{1},x_{2},x_{3},\tau,\eta,\tilde{\eta})\in{\mathbb{R}}^{4}_{+}\times\Sigma:(k^{r,l}_{1})^{7}[(k^{r,l}_{1})^{2}+k^{r,l}_{2}]=0\right\}.

3.4.2. Roots of the Lopatinskii˘\breve{\mathrm{i}} determinant

Now, we derive the Lopatinskii˘\breve{\mathrm{i}} determinant. We write the eigenvalue of 𝔸r\mathbb{A}^{r} with a real negative real part by ωr+i1Φr3ΦrtanΦr2η+i2Φr3ΦrtanΦr2η~,\omega^{r}+i\frac{\partial_{1}\Phi^{r}\partial_{3}\Phi^{r}}{\langle\partial_{\rm tan}\Phi^{r}\rangle^{2}}\eta+i\frac{\partial_{2}\Phi^{r}\partial_{3}\Phi^{r}}{\langle\partial_{\rm tan}\Phi^{r}\rangle^{2}}\tilde{\eta}, which satisfies

(ωr)2=(μr)2(mr)2=(3Φr)2(cr)2tanΦr4{tanΦr2((kr1)2+kr2)+(cr)2[(η2Φrη~1Φr)2+η2+η~2]}.\begin{split}(\omega^{r})^{2}&=(\mu^{r})^{2}-(m^{r})^{2}\\ &=\frac{(\partial_{3}\Phi^{r})^{2}}{(c^{r})^{2}\langle\partial_{\rm tan}\Phi^{r}\rangle^{4}}\left\{\langle\partial_{\rm tan}\Phi^{r}\rangle^{2}\left((k^{r}_{1})^{2}+k^{r}_{2}\right)+(c^{r})^{2}\left[(\eta\partial_{2}\Phi^{r}-\tilde{\eta}\partial_{1}\Phi^{r})^{2}+\eta^{2}+\tilde{\eta}^{2}\right]\right\}.\end{split}

The corresponding eigenvector is

Er=[αr(μr+ωr)αrmr],E^{r}=\left[\begin{array}[]{c}-\alpha^{r}(\mu^{r}+\omega^{r})\\ -\alpha^{r}m^{r}\end{array}\right],

where

αr=kr1[(kr1)2+kr2].\alpha^{r}=k^{r}_{1}[(k^{r}_{1})^{2}+k^{r}_{2}].

The case is similar for W.W^{-}. Denote the eigenvalue of 𝔸l\mathbb{A}^{l} with a real negative real part by ωl+i1Φl3ΦltanΦl2η+i2Φl3ΦltanΦl2η~,\omega^{l}+i\frac{\partial_{1}\Phi^{l}\partial_{3}\Phi^{l}}{\langle\partial_{\rm tan}\Phi^{l}\rangle^{2}}\eta+i\frac{\partial_{2}\Phi^{l}\partial_{3}\Phi^{l}}{\langle\partial_{\rm tan}\Phi^{l}\rangle^{2}}\tilde{\eta}, which satisfies

(ωl)2=(μl)2(ml)2=(3Φl)2(cl)2tanΦl4{tanΦl2((kl1)2+kl2)+(cl)2[(η2Φlη~1Φl)2+η2+η~2]}.\begin{split}(\omega^{l})^{2}&=(\mu^{l})^{2}-(m^{l})^{2}\\ &=\frac{(\partial_{3}\Phi^{l})^{2}}{(c^{l})^{2}\langle\partial_{\rm tan}\Phi^{l}\rangle^{4}}\left\{\langle\partial_{\rm tan}\Phi^{l}\rangle^{2}\left((k^{l}_{1})^{2}+k^{l}_{2}\right)+(c^{l})^{2}\left[(\eta\partial_{2}\Phi^{l}-\tilde{\eta}\partial_{1}\Phi^{l})^{2}+\eta^{2}+\tilde{\eta}^{2}\right]\right\}.\end{split}

The corresponding eigenvector is

El=[αl(μl+ωl)αlml],E^{l}=\left[\begin{array}[]{c}-\alpha^{l}(\mu^{l}+\omega^{l})\\ -\alpha^{l}m^{l}\end{array}\right],

where

αl=kl1[(kl1)2+kl2].\alpha^{l}=k^{l}_{1}[(k^{l}_{1})^{2}+k^{l}_{2}].

The above eigenvalues and eigenvectors are well-defined and smooth on the whole space 4×Σ{\mathbb{R}}^{4}\times\Sigma using similar calculation in the constant coefficient case. Hence, the Lopatinskii˘\breve{\mathrm{i}} determinant given below is well-defined for all the points in the frequency space,

det(β[Er𝟎𝟎El])|x3=0=c4k2ρkr1kl1[k4ιr3ιl3ωrωl+(ηι2η~ι1)2+η2+η~2](ωrιr3ωlιl3)[ιr3kc((kr1)2+kr2)kr1ωr][ιl3kc((kl1)2+kl2)+kl1ωl].\begin{split}\text{det}\left(\beta\left[\begin{array}[]{cc}E^{r}&\mathbf{0}\\ \mathbf{0}&E^{l}\end{array}\right]\right)\Big{|}_{x_{3}=0}=&\frac{c^{4}k^{2}}{\rho}k^{r}_{1}k^{l}_{1}\cdot\left[\frac{k^{4}}{\iota^{r}_{3}\iota^{l}_{3}}\omega^{r}\omega^{l}+(\eta\iota_{2}-\tilde{\eta}\iota_{1})^{2}+\eta^{2}+\tilde{\eta}^{2}\right]\left(\frac{\omega^{r}}{\iota^{r}_{3}}-\frac{\omega^{l}}{\iota^{l}_{3}}\right)\\ &\cdot\left[\frac{\iota^{r}_{3}}{kc}((k^{r}_{1})^{2}+k^{r}_{2})-k^{r}_{1}\omega^{r}\right]\cdot\left[\frac{\iota^{l}_{3}}{kc}\left((k^{l}_{1})^{2}+k^{l}_{2}\right)+k^{l}_{1}\omega^{l}\right].\end{split} (3.37)

It is homogeneous of degree 0 with respect to (τ,η,η~),(\tau,\eta,\tilde{\eta}), where

ι1=1ψ=1Φr,l|x3=0,ι2=2ψ=2Φr,l|x3=0,ιr,l3=3Φr,l|x3=0,c=cr|x3=0=cl|x3=0.\iota_{1}=\partial_{1}\psi=\partial_{1}\Phi^{r,l}|_{x_{3}=0},\quad\iota_{2}=\partial_{2}\psi=\partial_{2}\Phi^{r,l}|_{x_{3}=0},\quad\iota^{r,l}_{3}=\partial_{3}\Phi^{r,l}|_{x_{3}=0},\quad c=c^{r}|_{x_{3}=0}=c^{l}|_{x_{3}=0}.

It is noted that the last two factors in (3.37) are never equal to 0, and the first two factors correspond to the roots τ=ivr,l1ηivr,l2η~\tau=-iv^{r,l}_{1}\eta-iv^{r,l}_{2}\tilde{\eta} respectively. Therefore, we need to discuss the roots of the third and fourth factors. All the coefficients in the factors of the Lopatinskii˘\breve{\mathrm{i}} determinant are continuous with respect to the background state U|x3=0:=(Ur|x3=0,Ul|x3=0)U|_{x_{3}=0}:=(U^{r}|_{x_{3}=0},U^{l}|_{x_{3}=0}) and Φ|x3=0:=(Φr|x3=0,Φl|x3=0).\Phi|_{x_{3}=0}:=(\Phi^{r}|_{x_{3}=0},\Phi^{l}|_{x_{3}=0}). These factors reduce to the corresponding factors in the constant coefficient case, if the perturbation in (3.3) is zero. Assuming that KK in (3.4) is small enough and using a continuity argument, we obtain that the number of the roots in the third and fourth factors in (3.37) is the same as the number of the roots in the corresponding factors of the constant coefficient case. Hence, there are two roots in the third factors and we denote τ=iV1η2+η~2\tau=iV_{1}\sqrt{\eta^{2}+\tilde{\eta}^{2}} and τ=iV2η2+η~2.\tau=iV_{2}\sqrt{\eta^{2}+\tilde{\eta}^{2}}.

Remark 3.1.

The terms on the right-hand side of ωr\omega^{r}, (η2Φrη~1Φr)2(\eta\partial_{2}\Phi^{r}-\tilde{\eta}\partial_{1}\Phi^{r})^{2}, is small under the small perturbation assumption. Same argument holds for ωl.\omega^{l}.

It is easy to see that V1(U|x3=0,Φ|x3=0)V_{1}(U|_{x_{3}=0},\nabla\Phi|_{x_{3}=0}) and V2(U|x3=0,Φ|x3=0)V_{2}(U|_{x_{3}=0},\nabla\Phi|_{x_{3}=0}) are real and depend continuously on the background states U|x3=0U|_{x_{3}=0} and Φ|x3=0.\nabla\Phi|_{x_{3}=0}. The roots of the Lopatinskii˘\breve{\mathrm{i}} determinants can be written by the following set according to the information provided by the boundary:

Υ0r:={(t,x1,x2,τ,η,η~)3×Σ:τ=0 and σ=0},\Upsilon^{0}_{r}:=\left\{(t,x_{1},x_{2},\tau,\eta,\tilde{\eta})\in{\mathbb{R}}^{3}\times\Sigma:\Re\tau=0\text{ and }\sigma=0\right\}, (3.38)

where

σ:=(δ+vr1|x3=0η+vr2|x3=0η~)(δ+vl1|x3=0η+vl2|x3=0η~)(δV1η2+η~2)(δV2η2+η~2)(δ2+η2+η~2)32\sigma:=\frac{(\delta+v^{r}_{1}|_{x_{3}=0}\eta+v^{r}_{2}|_{x_{3}=0}\tilde{\eta})(\delta+v^{l}_{1}|_{x_{3}=0}\eta+v^{l}_{2}|_{x_{3}=0}\tilde{\eta})(\delta-V_{1}\sqrt{\eta^{2}+\tilde{\eta}^{2}})(\delta-V_{2}\sqrt{\eta^{2}+\tilde{\eta}^{2}})}{(\delta^{2}+\eta^{2}+\tilde{\eta}^{2}\big{)}^{\frac{3}{2}}}

on Σ.\Sigma. We can extend the set Υ0r\Upsilon^{0}_{r} and σ\sigma defined by the data of the boundary into the interior of the domain x3=0.x_{3}=0. The coefficients in σ\sigma for x3>0x_{3}>0 can be defined by continuity of V1V_{1} and V2V_{2} on the background state UU and Φ.\nabla\Phi. Denote the extended set

Υr:={(t,x1,x2,x3,τ,η,η~)4+×Σ:τ=0 and σ=0}.\Upsilon_{r}:=\left\{(t,x_{1},x_{2},x_{3},\tau,\eta,\tilde{\eta})\in{\mathbb{R}}^{4}_{+}\times\Sigma:\Re\tau=0\text{ and }\sigma=0\right\}.

Similar to the poles, the roots of σ\sigma can be viewed as the strip in the frequency space Σ\Sigma parameterized by x3.x_{3}. It originates from the boundary x3=0x_{3}=0 and propagates into the interior domain x3>0.x_{3}>0. Moreover, we need that the roots of the eigenvalues ωr=0\omega^{r}=0 and ωl=0\omega^{l}=0 do not coincide with the poles and the roots of the Lopatinskii˘\breve{\mathrm{i}} determinant.

For simplicity, we write

cosθ=ηη2+η~2,sinθ=η~η2+η~2,for (η,η~)(0,0),\cos\theta=\frac{\eta}{\sqrt{\eta^{2}+\tilde{\eta}^{2}}},\quad\sin\theta=\frac{\tilde{\eta}}{\sqrt{\eta^{2}+\tilde{\eta}^{2}}},\quad\text{for }(\eta,\tilde{\eta})\neq(0,0),

and define

gr,l(θ)=(cosθFr,l11+sinθFr,l21)2+(cosθFr,l12+sinθFr,l22)2+(cosθFr,l13+sinθFr,l23)2.g_{r,l}(\theta)=\left(\cos\theta F^{r,l}_{11}+\sin\theta F^{r,l}_{21}\right)^{2}+\left(\cos\theta F^{r,l}_{12}+\sin\theta F^{r,l}_{22}\right)^{2}+\left(\cos\theta F^{r,l}_{13}+\sin\theta F^{r,l}_{23}\right)^{2}.

Now, we consider the following frequency sets:

  1. (1)

    Υ(1)p=Υ(1)r:={(t,x1,x2,x3,τ,η,η~):τ=ivr,l1ηivr,l2η~},\Upsilon^{(1)}_{p}=\Upsilon^{(1)}_{r}:=\left\{(t,x_{1},x_{2},x_{3},\tau,\eta,\tilde{\eta}):\tau=-iv^{r,l}_{1}\eta-iv^{r,l}_{2}\tilde{\eta}\right\},

  2. (2)

    Υ(2)r:={(t,x1,x2,x3,τ,η,η~):τ=iV1η2+η~2,τ=iV2η2+η~2},\Upsilon^{(2)}_{r}:=\left\{(t,x_{1},x_{2},x_{3},\tau,\eta,\tilde{\eta}):\tau=iV_{1}\sqrt{\eta^{2}+\tilde{\eta}^{2}},\tau=iV_{2}\sqrt{\eta^{2}+\tilde{\eta}^{2}}\right\},

  3. (3)

    Υ(2)p:={(t,x1,x2,x3,τ,η,η~):τ=i(vr,l1η+vr,l2η~±(η2+η~2)(gr,l(θ)+c2)))}\Upsilon^{(2)}_{p}:=\left\{(t,x_{1},x_{2},x_{3},\tau,\eta,\tilde{\eta}):\tau=-i(v^{r,l}_{1}\eta+v^{r,l}_{2}\tilde{\eta}\pm\sqrt{(\eta^{2}+\tilde{\eta}^{2})(g_{r,l}(\theta)+c^{2}))})\right\}.

Here, (1)(1) denotes the roots of the first factor in Υp\Upsilon_{p} and the roots of the first two factors of σ\sigma in Υr\Upsilon_{r}; (2)(2) represents the last two factors of σ\sigma in Υr\Upsilon_{r}; and (3)(3) represents the roots of second factors in Υp.\Upsilon_{p}.

Note that Υp=Υ(1)pΥ(2)p\Upsilon_{p}=\Upsilon^{(1)}_{p}\cup\Upsilon^{(2)}_{p} and Υr=Υ(1)rΥ(2)r.\Upsilon_{r}=\Upsilon^{(1)}_{r}\cup\Upsilon^{(2)}_{r}. As mentioned before, we write

Υω:={(t,x1,x2,x3,τ,η,η~):ωr,l=0},\Upsilon_{\omega}:=\left\{(t,x_{1},x_{2},x_{3},\tau,\eta,\tilde{\eta}):\omega^{r,l}=0\right\},

which clearly does not intersect with Υp\Upsilon_{p} and Υr\Upsilon_{r}, i.e., Υω(ΥpΥr)=.\Upsilon_{\omega}\cap(\Upsilon_{p}\cup\Upsilon_{r})=\emptyset.

Under the assumption (2.21), v¯2<G(F1,F2),\bar{v}^{2}<\mathrm{G}(\mathrm{F}_{1},\mathrm{F}_{2}), where

G(F1,F2)=14infcosθ01cos2θ(g(θ)+c2g(θ))2,\displaystyle\mathrm{G}(\mathrm{F}_{1},\mathrm{F}_{2})=\frac{1}{4}\inf_{\cos\theta\neq 0}\frac{1}{\cos^{2}\theta}\left(\sqrt{g(\theta)+c^{2}}-\sqrt{g(\theta)}\right)^{2}, (3.39)

we obtain that

Υ(2)pΥω=.\Upsilon^{(2)}_{p}\cap\Upsilon_{\omega}=\emptyset.

Notice that

g(θ)cos2θ=|F1|2+|F2|2tan2θ+2(F1F2)tanθ.\frac{g(\theta)}{\cos^{2}\theta}=|\mathrm{F}_{1}|^{2}+|\mathrm{F}_{2}|^{2}\tan^{2}\theta+2(\mathrm{F}_{1}\cdot\mathrm{F}_{2})\tan\theta.

We can introduce

t:=|F2||F1|,α:=the angle between F1 and F2.t:=\frac{|\mathrm{F}_{2}|}{|\mathrm{F}_{1}|},\quad\alpha:=\text{the angle between $\mathrm{F}_{1}$ and $\mathrm{F}_{2}$}.

Then, one has

g(θ)\displaystyle g(\theta) =cos2θ[|F1|2+|F2|2tan2θ+2(|F1F2)tanθ]\displaystyle=\cos^{2}\theta\left[|\mathrm{F}_{1}|^{2}+|\mathrm{F}_{2}|^{2}\tan^{2}\theta+2(|\mathrm{F}_{1}\cdot\mathrm{F}_{2})\tan\theta\right]
=cos2θ|F1|2(1+t2tan2θ+2tcosαtanθ)\displaystyle=\cos^{2}\theta|\mathrm{F}_{1}|^{2}\left(1+t^{2}\tan^{2}\theta+2t\cos\alpha\tan\theta\right)
=cos2θ|F1|2[sin2α+(cosα+ttanθ)2]\displaystyle=\cos^{2}\theta|\mathrm{F}_{1}|^{2}\left[\sin^{2}\alpha+(\cos\alpha+t\tan\theta)^{2}\right]
|F1|2[sin2α+(cosθcosα+tsinθ)2]\displaystyle\leq|\mathrm{F}_{1}|^{2}\left[\sin^{2}\alpha+(\cos\theta\cos\alpha+t\sin\theta)^{2}\right]
|F1|2(1+t2)|F1|2+|F2|2.\displaystyle\leq|\mathrm{F}_{1}|^{2}(1+t^{2})\leq|\mathrm{F}_{1}|^{2}+|\mathrm{F}_{2}|^{2}.

From this it follows that

G(F1,F2)\displaystyle\mathrm{G}(\mathrm{F}_{1},\mathrm{F}_{2}) =14infcosθ0g(θ)cos2θc4g(θ)(g(θ)+c2+g(θ))2\displaystyle=\frac{1}{4}\inf_{\cos\theta\neq 0}\frac{g(\theta)}{\cos^{2}\theta}\frac{c^{4}}{g(\theta)\left(\sqrt{g(\theta)+c^{2}}+\sqrt{g(\theta)}\right)^{2}}
14infcosθ0g(θ)cos2θc4(|F1|2+|F2|2)(|F1|2+|F2|2+c2+|F1|2+|F2|2)2\displaystyle\geq\frac{1}{4}\inf_{\cos\theta\neq 0}\frac{g(\theta)}{\cos^{2}\theta}\frac{c^{4}}{(|\mathrm{F}_{1}|^{2}+|\mathrm{F}_{2}|^{2})\left(\sqrt{|\mathrm{F}_{1}|^{2}+|\mathrm{F}_{2}|^{2}+c^{2}}+\sqrt{|\mathrm{F}_{1}|^{2}+|\mathrm{F}_{2}|^{2}}\right)^{2}}
|ΠF2(F1)|24c4(|F1|2+|F2|2)(|F1|2+|F2|2+c2+|F1|2+|F2|2)2.\displaystyle\geq\frac{|\Pi^{\perp}_{\mathrm{F}_{2}}(\mathrm{F}_{1})|^{2}}{4}\frac{c^{4}}{(|\mathrm{F}_{1}|^{2}+|\mathrm{F}_{2}|^{2})\left(\sqrt{|\mathrm{F}_{1}|^{2}+|\mathrm{F}_{2}|^{2}+c^{2}}+\sqrt{|\mathrm{F}_{1}|^{2}+|\mathrm{F}_{2}|^{2}}\right)^{2}}.

Moreover, the condition

v¯2<|ΠF2(F1)|24\bar{v}^{2}<\frac{|\Pi^{\perp}_{\mathrm{F}_{2}}(\mathrm{F}_{1})|^{2}}{4}

guarantees that

Υ(1)pΥ(2)p=Υ(1)rΥ(2)p=Υ(1)pΥω=Υ(1)rΥω=Υ(1)pΥ(2)r=Υ(1)rΥ(2)r=.\Upsilon^{(1)}_{p}\cap\Upsilon^{(2)}_{p}=\Upsilon^{(1)}_{r}\cap\Upsilon^{(2)}_{p}=\Upsilon^{(1)}_{p}\cap\Upsilon_{\omega}=\Upsilon^{(1)}_{r}\cap\Upsilon_{\omega}=\Upsilon^{(1)}_{p}\cap\Upsilon^{(2)}_{r}=\Upsilon^{(1)}_{r}\cap\Upsilon^{(2)}_{r}=\emptyset.

Note that

Υ(2)pΥ(2)r=Υ(2)rΥω=\Upsilon^{(2)}_{p}\cap\Upsilon^{(2)}_{r}=\Upsilon^{(2)}_{r}\cap\Upsilon_{\omega}=\emptyset

holds with no restriction on the background solutions. Hence, except for the special case Υ(1)p=Υ(1)r\Upsilon^{(1)}_{p}=\Upsilon^{(1)}_{r} in which there are always interaction between the poles (roots), any of rest of two strips in Υp,Υr,Υω\Upsilon_{p},\Upsilon_{r},\Upsilon_{\omega} do not intersect with each other in the whole domain 4×Σ,{\mathbb{R}}^{4}\times\Sigma, unless they are identical.

3.5. Estimates in Each Case

In this section, we derive the estimates for each case and obtain the desired estimate for the paralinearized system. The relation among τ,η,η~\tau,\eta,\tilde{\eta} corresponds to a strip on Σ\Sigma with fixed (τ,η,η~).(\tau,\eta,\tilde{\eta}). Now, we focus on the situation where theses strips do not intersect with each other and construct neighbourhoods around them, except for Case 1, in which the poles and roots always intersect.

Up to shrinking these neighborhood, these neighborhood do not intersect with each other and do not contain any point in Υω\Upsilon_{\omega}. Denote, on 4×Σ,{\mathbb{R}}^{4}\times\Sigma,

𝒱rp1:= the open neighborhood around τ=ivr1ηivr2η~,𝒱lp1:= the open neighborhood around τ=ivl1ηivl2η~,𝒱1p2:= the open neighborhood around τ=i(vr1η+vr2η~+(η2+η~2)gr(θ)),𝒱2p2:= the open neighborhood around τ=i(vr1η+vr2η~(η2+η~2)gr(θ)),𝒱3p2:= the open neighborhood around τ=i(vl1η+vl2η~+(η2+η~2)gl(θ)),𝒱4p2:= the open neighborhood around τ=i(vl1η+vl2η~(η2+η~2)gl(θ)),𝒱1r:= the open neighborhood around τ=iV1η2+η~2,𝒱2r:= the open neighborhood around τ=iV2η2+η~2.\begin{split}&\mathcal{V}^{r}_{p_{1}}:=\text{ the open neighborhood around }\tau=-iv^{r}_{1}\eta-iv^{r}_{2}\tilde{\eta},\\ &\mathcal{V}^{l}_{p_{1}}:=\text{ the open neighborhood around }\tau=-iv^{l}_{1}\eta-iv^{l}_{2}\tilde{\eta},\\ &\mathcal{V}^{1}_{p_{2}}:=\text{ the open neighborhood around }\tau=-i\left(v^{r}_{1}\eta+v^{r}_{2}\tilde{\eta}+\sqrt{(\eta^{2}+\tilde{\eta}^{2})g_{r}(\theta)}\right),\\ &\mathcal{V}^{2}_{p_{2}}:=\text{ the open neighborhood around }\tau=-i\left(v^{r}_{1}\eta+v^{r}_{2}\tilde{\eta}-\sqrt{(\eta^{2}+\tilde{\eta}^{2})g_{r}(\theta)}\right),\\ &\mathcal{V}^{3}_{p_{2}}:=\text{ the open neighborhood around }\tau=-i\left(v^{l}_{1}\eta+v^{l}_{2}\tilde{\eta}+\sqrt{(\eta^{2}+\tilde{\eta}^{2})g_{l}(\theta)}\right),\\ &\mathcal{V}^{4}_{p_{2}}:=\text{ the open neighborhood around }\tau=-i\left(v^{l}_{1}\eta+v^{l}_{2}\tilde{\eta}-\sqrt{(\eta^{2}+\tilde{\eta}^{2})g_{l}(\theta)}\right),\\ &\mathcal{V}^{1}_{r}:=\text{ the open neighborhood around }\tau=iV_{1}\sqrt{\eta^{2}+\tilde{\eta}^{2}},\\ &\mathcal{V}^{2}_{r}:=\text{ the open neighborhood around }\tau=iV_{2}\sqrt{\eta^{2}+\tilde{\eta}^{2}}.\end{split}
Remark 3.2.

Due to the the stability condition imposed on the background solutions for non-parallel elastic deformation gradients, certain neighborhoods remain disjoint. For example, the neighborhood of τ=ivr1ηivr2η~\tau=-iv^{r}_{1}\eta-iv^{r}_{2}\tilde{\eta}, denoted as 𝒱rp1\mathcal{V}^{r}_{p_{1}}, cannot intersect with the neighborhood of τ=i(vr1η+vr2η~+(η2+η~2)gr(θ))\tau=-i(v^{r}_{1}\eta+v^{r}_{2}\tilde{\eta}+\sqrt{(\eta^{2}+\tilde{\eta}^{2})g_{r}(\theta)}), denoted as 𝒱1p2\mathcal{V}^{1}_{p_{2}}. This separation indicates the stabilizing effect of elasticity, which is consistent with the linear analysis of constant coefficients, see [19].

3.6. Case 1: Points in Υ(1)p=Υ(1)r\Upsilon^{(1)}_{p}=\Upsilon^{(1)}_{r}

We consider the kind of frequencies that are both poles and roots of the Lopatinskii˘\breve{\mathrm{i}} determinant. Consider 𝒱rp1\mathcal{V}^{r}_{p_{1}} as an example, since the other cases can be discussed similarly.

Different from 2D case, 𝒱rp1\mathcal{V}^{r}_{p_{1}} not only contains the poles of the equations W+W^{+}, but also contains the poles for WW^{-} in (3.33). Hence we derive the estimates for W+W^{+}. The estimates for WW^{-} will follow the same way. Introducing the smooth cut-off function χp1\chi_{p_{1}} whose range is [0,1].[0,1]. On 4×Σ,{\mathbb{R}}^{4}\times\Sigma, the support of χp1\chi_{p_{1}} is contained in 𝒱rp1\mathcal{V}^{r}_{p_{1}} and equals to 11 on a smaller neighborhood of the strip satisfying τ=ivr1ηivr2η~.\tau=-iv^{r}_{1}\eta-iv^{r}_{2}\tilde{\eta}. We can extend χp1\chi_{p_{1}} by homogeneity of degree 0 with respect to (τ,η~,η~)(\tau,\tilde{\eta},\tilde{\eta}) into the whole domain 4+×Π{\mathbb{R}}^{4}_{+}\times\Pi. We know that χp1Γ0k\chi_{p_{1}}\in\Gamma^{0}_{k} for any integer k.k. Define

W+p1:=Tγχp1W+.W^{+}_{p_{1}}:=T^{\gamma}_{\chi_{p_{1}}}W^{+}.

From (3.33), we have

I23W+p1=I2Tγ3χp1W++Tγχp1F+Tγχp1TγτAr0+iηAr1+iη~Ar2+Ar0CrW+.I_{2}\partial_{3}W^{+}_{p_{1}}=I_{2}T^{\gamma}_{\partial_{3}\chi_{p_{1}}}W^{+}+T^{\gamma}_{\chi_{p_{1}}}F^{+}-T^{\gamma}_{\chi_{p_{1}}}T^{\gamma}_{\tau A^{r}_{0}+i\eta A^{r}_{1}+i\tilde{\eta}A^{r}_{2}+A^{r}_{0}C^{r}}W^{+}.

Then

Tγ𝒜rW+p1+TγAr0CrW+p1+TγrW++I23W+p1=Tγχp1F++1W+,T^{\gamma}_{\mathcal{A}^{r}}W^{+}_{p_{1}}+T^{\gamma}_{A^{r}_{0}C^{r}}W^{+}_{p_{1}}+T^{\gamma}_{r}W^{+}+I_{2}\partial_{3}W^{+}_{p_{1}}=T^{\gamma}_{\chi_{p_{1}}}F^{+}+\mathcal{R}_{-1}W^{+}, (3.40)

where 𝒜r:=τAr0+iηAr1+iη~Ar2\mathcal{A}^{r}:=\tau A^{r}_{0}+i\eta A^{r}_{1}+i\tilde{\eta}A^{r}_{2} and rΓ01r\in\Gamma^{0}_{1} whose support is where χp1(0,1)\chi_{p_{1}}\in(0,1). Consider two cut-off functions χ1\chi_{1} and χ2\chi_{2} in Γ01,\Gamma^{0}_{1}, such that both of the supports are in

𝒱rp1+:={(t,x1,x2,x3,τ,η,η~)Ω×Π:(t,x1,x2,x3,τ|τ|2+η2+η~2,η|τ|2+η2+η~2,η~|τ|2+η2+η~2)𝒱rp1},\begin{split}\mathcal{V}^{r}_{p_{1}}\cdot{\mathbb{R}}_{+}:=&\Big{\{}(t,x_{1},x_{2},x_{3},\tau,\eta,\tilde{\eta})\in\Omega\times\Pi:\\ &\quad\left.\left(t,x_{1},x_{2},x_{3},\frac{\tau}{\sqrt{|\tau|^{2}+\eta^{2}+\tilde{\eta}^{2}}},\frac{\eta}{\sqrt{|\tau|^{2}+\eta^{2}+\tilde{\eta}^{2}}},\frac{\tilde{\eta}}{\sqrt{|\tau|^{2}+\eta^{2}+\tilde{\eta}^{2}}}\right)\in\mathcal{V}^{r}_{p_{1}}\right\},\end{split}

where χ1=1\chi_{1}=1 on suppχp1\text{supp}\chi_{p_{1}} and χ2=1\chi_{2}=1 on suppχ1.\text{supp}\chi_{1}. Now we multiply (3.40) by χ2\chi_{2} and obtain that

Tγχ2𝒜rW+p1+Tγχ2Ar0CrW+p1+TγrW++I23W+p1=0F++1W+.T^{\gamma}_{\chi_{2}\mathcal{A}^{r}}W^{+}_{p_{1}}+T^{\gamma}_{\chi_{2}A^{r}_{0}C^{r}}W^{+}_{p_{1}}+T^{\gamma}_{r}W^{+}+I_{2}\partial_{3}W^{+}_{p_{1}}=\mathcal{R}_{0}F^{+}+\mathcal{R}_{-1}W^{+}. (3.41)

Here the support of χ2𝒜r\chi_{2}\mathcal{A}^{r} is in suppχ2,\text{supp}\chi_{2}, which is the subset of 𝒱rp1+.\mathcal{V}^{r}_{p_{1}}\cdot{\mathbb{R}}_{+}. Now we can uppertriangularize the first symbol χ2𝒜r\chi_{2}\mathcal{A}^{r} on suppχ2.\text{supp}\chi_{2}. Define the transformation matrix Qr0Q^{r}_{0} on 𝒱rp1:\mathcal{V}^{r}_{p_{1}}:

Qr0=[10W^r1000000000001W^r2000000000000αr(μr+ωr)Ur300000000000αrmrUr400000000000W^r5010000000000W^r6001000000000W^r7000100000000W^r8000010000000W^r9000001000000W^r10000000100000W^r11000000010000W^r12000000001000W^r130000000001].Q^{r}_{0}=\left[\setcounter{MaxMatrixCols}{13}\begin{smallmatrix}1&0&\hat{W}^{r}_{1}&0&0&0&0&0&0&0&0&0&0\\ 0&1&\hat{W}^{r}_{2}&0&0&0&0&0&0&0&0&0&0\\ 0&0&-\alpha^{r}(\mu^{r}+\omega^{r})&U^{r}_{3}&0&0&0&0&0&0&0&0&0\\ 0&0&-\alpha^{r}m^{r}&U^{r}_{4}&0&0&0&0&0&0&0&0&0\\ 0&0&\hat{W}^{r}_{5}&0&1&0&0&0&0&0&0&0&0\\ 0&0&\hat{W}^{r}_{6}&0&0&1&0&0&0&0&0&0&0\\ 0&0&\hat{W}^{r}_{7}&0&0&0&1&0&0&0&0&0&0\\ 0&0&\hat{W}^{r}_{8}&0&0&0&0&1&0&0&0&0&0\\ 0&0&\hat{W}^{r}_{9}&0&0&0&0&0&1&0&0&0&0\\ 0&0&\hat{W}^{r}_{10}&0&0&0&0&0&0&1&0&0&0\\ 0&0&\hat{W}^{r}_{11}&0&0&0&0&0&0&0&1&0&0\\ 0&0&\hat{W}^{r}_{12}&0&0&0&0&0&0&0&0&1&0\\ 0&0&\hat{W}^{r}_{13}&0&0&0&0&0&0&0&0&0&1\\ \end{smallmatrix}\right].

Thus Qr0Q^{r}_{0} is homogeneous of degree 0 with respect to (τ,η,η~).(\tau,\eta,\tilde{\eta}). The third and fourth columns of the third row are from the eigenvector ErE^{r}, and W^ri,i=1,2,5,6,,13\hat{W}^{r}_{i},i=1,2,5,6,\cdots,13, are chosen to make the third column of 𝒜rQr0\mathcal{A}^{r}Q^{r}_{0} zero except for the third and fourth rows.

𝒯(W^r1,W^r2,αr(μr+ωr),αrmr,W^r5,W^r6,W^r7,W^r8,W^r9,W^r10,W^r11,W^r12,W^r13)=𝟎.\mathcal{T}\big{(}\hat{W}^{r}_{1},\hat{W}^{r}_{2},-\alpha^{r}(\mu^{r}+\omega^{r}),-\alpha^{r}m^{r},\hat{W}^{r}_{5},\hat{W}^{r}_{6},\hat{W}^{r}_{7},\hat{W}^{r}_{8},\hat{W}^{r}_{9},\hat{W}^{r}_{10},\hat{W}^{r}_{11},\hat{W}^{r}_{12},\hat{W}^{r}_{13}\big{)}^{\top}={\mathbf{0}}.

It is noted that W^ri,i=1,2,5,,13\hat{W}^{r}_{i},i=1,2,5,\cdots,13, can be solved at all points in 4+×Π.{\mathbb{R}}^{4}_{+}\times\Pi. In the following, we introduce χ1Qr0\chi_{1}Q^{r}_{0} to exclude the frequencies at which ωr\omega^{r} degenerates. To ensure the invertibility of Qr0Q^{r}_{0}, we can take Ur3=1,Ur4=0U^{r}_{3}=1,U^{r}_{4}=0 for simplicity. So χ1Qr0Γ02.\chi_{1}Q^{r}_{0}\in\Gamma^{0}_{2}. In order to uppertriangularize the first order operator 𝒜r\mathcal{A}^{r} in 𝒱rp1+,\mathcal{V}^{r}_{p_{1}}\cdot{\mathbb{R}}_{+}, we need to construct Rr0R^{r}_{0} in 𝒱rp1:\mathcal{V}^{r}_{p_{1}}:

Rr0=[100000000000001000000000000001ξ000000000W¯r1W¯r2αrmrξαr(μr+ωr)ξW¯r5W¯r6W¯r7W¯r8W¯r9W¯r10W¯r11W¯r12W¯r13000010000000000000100000000000001000000000000010000000000000100000000000001000000000000010000000000000100000000000001],R^{r}_{0}=\left[\setcounter{MaxMatrixCols}{13}\begin{smallmatrix}1&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&1&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&-\frac{1}{\xi}&0&0&0&0&0&0&0&0&0\\ \bar{W}^{r}_{1}&\bar{W}^{r}_{2}&\frac{\alpha^{r}m^{r}}{\xi}&-\frac{\alpha^{r}(\mu^{r}+\omega^{r})}{\xi}&\bar{W}^{r}_{5}&\bar{W}^{r}_{6}&\bar{W}^{r}_{7}&\bar{W}^{r}_{8}&\bar{W}^{r}_{9}&\bar{W}^{r}_{10}&\bar{W}^{r}_{11}&\bar{W}^{r}_{12}&\bar{W}^{r}_{13}\\ 0&0&0&0&1&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&1&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&1&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&1&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&1&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&1&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&1&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&1&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&1\\ \end{smallmatrix}\right],

where ξ=αrmr\xi=\alpha^{r}m^{r} which equals the determinant of Qr0.Q^{r}_{0}. Here W¯r1,W¯r2,W¯r5,,W¯r13\bar{W}^{r}_{1},\bar{W}^{r}_{2},\bar{W}^{r}_{5},\cdots,\bar{W}^{r}_{13} are defined to be homogenous of degree 0. Then we have

[W¯r1W¯r2αrmrξαr(μr+ωr)ξW¯r5W¯r6W¯r7W¯r8W¯r9W¯r10W¯r11W¯r12W¯r13][kr10𝒯1,500𝒯1,800𝒯1,11000kr10𝒯2,600𝒯2,900𝒯1,120𝒯3,1𝒯3,200𝒯3,700𝒯3,1000𝒯3,13𝒯4,1𝒯4,200𝒯4,700𝒯4,1000𝒯4,13𝒯5,10kr1000000000𝒯6,20kr100000000000kr1000000𝒯8,10000kr1000000𝒯9,20000kr100000000000kr1000𝒯11,10000000kr1000𝒯12,20000000kr100000000000kr1]=𝟎.\left[\begin{smallmatrix}\bar{W}^{r}_{1}\\ \bar{W}^{r}_{2}\\ \frac{\alpha^{r}m^{r}}{\xi}\\ -\frac{\alpha^{r}(\mu^{r}+\omega^{r})}{\xi}\\ \bar{W}^{r}_{5}\\ \bar{W}^{r}_{6}\\ \bar{W}^{r}_{7}\\ \bar{W}^{r}_{8}\\ \bar{W}^{r}_{9}\\ \bar{W}^{r}_{10}\\ \bar{W}^{r}_{11}\\ \bar{W}^{r}_{12}\\ \bar{W}^{r}_{13}\end{smallmatrix}\right]^{\top}\left[\setcounter{MaxMatrixCols}{11}\begin{smallmatrix}k^{r}_{1}&0&\mathcal{T}_{1,5}&0&0&\mathcal{T}_{1,8}&0&0&\mathcal{T}_{1,11}&0&0\\ 0&k^{r}_{1}&0&\mathcal{T}_{2,6}&0&0&\mathcal{T}_{2,9}&0&0&\mathcal{T}_{1,12}&0\\ \mathcal{T}_{3,1}&\mathcal{T}_{3,2}&0&0&\mathcal{T}_{3,7}&0&0&\mathcal{T}_{3,10}&0&0&\mathcal{T}_{3,13}\\ \mathcal{T}_{4,1}&\mathcal{T}_{4,2}&0&0&\mathcal{T}_{4,7}&0&0&\mathcal{T}_{4,10}&0&0&\mathcal{T}_{4,13}\\ \mathcal{T}_{5,1}&0&k^{r}_{1}&0&0&0&0&0&0&0&0\\ 0&\mathcal{T}_{6,2}&0&k^{r}_{1}&0&0&0&0&0&0&0\\ 0&0&0&0&k^{r}_{1}&0&0&0&0&0&0\\ \mathcal{T}_{8,1}&0&0&0&0&k^{r}_{1}&0&0&0&0&0\\ 0&\mathcal{T}_{9,2}&0&0&0&0&k^{r}_{1}&0&0&0&0\\ 0&0&0&0&0&0&0&k^{r}_{1}&0&0&0\\ \mathcal{T}_{11,1}&0&0&0&0&0&0&0&k^{r}_{1}&0&0\\ 0&\mathcal{T}_{12,2}&0&0&0&0&0&0&0&k^{r}_{1}&0\\ 0&0&0&0&0&0&0&0&0&0&k^{r}_{1}\\ \end{smallmatrix}\right]=\mathbf{0}.

It follows that χ1Rr0Γ02.\chi_{1}R^{r}_{0}\in\Gamma^{0}_{2}. We can finally get the first-order symbol for the uppertriangularization.

A~r:=Rr0𝒜rQr0=[kr100Θ1𝒯1,500𝒯1,800𝒯1,11000kr10Θ10𝒯2,600𝒯2,900𝒯1,120Θ1Θ1A~r3,3000Θ100Θ100Θ1000A~r4,4000000000𝒯5,1000kr1000000000𝒯6,2000kr10000000000Θ100kr1000000𝒯8,1000000kr1000000𝒯9,2000000kr10000000Θ100000kr1000𝒯11,1000000000kr1000𝒯12,2000000000kr10000Θ100000000kr1],\begin{split}\tilde{A}^{r}&:=R^{r}_{0}\mathcal{A}^{r}Q^{r}_{0}\\ &=\left[\setcounter{MaxMatrixCols}{13}\begin{smallmatrix}k^{r}_{1}&0&0&\Theta_{1}&\mathcal{T}_{1,5}&0&0&\mathcal{T}_{1,8}&0&0&\mathcal{T}_{1,11}&0&0\\ 0&k^{r}_{1}&0&\Theta_{1}&0&\mathcal{T}_{2,6}&0&0&\mathcal{T}_{2,9}&0&0&\mathcal{T}_{1,12}&0\\ \Theta_{1}&\Theta_{1}&\tilde{A}^{r}_{3,3}&0&0&0&\Theta_{1}&0&0&\Theta_{1}&0&0&\Theta_{1}\\ 0&0&0&\tilde{A}^{r}_{4,4}&0&0&0&0&0&0&0&0&0\\ \mathcal{T}_{5,1}&0&0&0&k^{r}_{1}&0&0&0&0&0&0&0&0\\ 0&\mathcal{T}_{6,2}&0&0&0&k^{r}_{1}&0&0&0&0&0&0&0\\ 0&0&0&\Theta_{1}&0&0&k^{r}_{1}&0&0&0&0&0&0\\ \mathcal{T}_{8,1}&0&0&0&0&0&0&k^{r}_{1}&0&0&0&0&0\\ 0&\mathcal{T}_{9,2}&0&0&0&0&0&0&k^{r}_{1}&0&0&0&0\\ 0&0&0&\Theta_{1}&0&0&0&0&0&k^{r}_{1}&0&0&0\\ \mathcal{T}_{11,1}&0&0&0&0&0&0&0&0&0&k^{r}_{1}&0&0\\ 0&\mathcal{T}_{12,2}&0&0&0&0&0&0&0&0&0&k^{r}_{1}&0\\ 0&0&0&\Theta_{1}&0&0&0&0&0&0&0&0&k^{r}_{1}\\ \end{smallmatrix}\right],\end{split}

where

A~r3,3=ωri3Φr1ΦrηtanΦr2i3Φr2Φrη~tanΦr2,\tilde{A}^{r}_{3,3}=-\omega^{r}-\frac{i\partial_{3}\Phi^{r}\partial_{1}\Phi^{r}\eta}{\langle\partial_{\rm tan}\Phi^{r}\rangle^{2}}-\frac{i\partial_{3}\Phi^{r}\partial_{2}\Phi^{r}\tilde{\eta}}{\langle\partial_{\rm tan}\Phi^{r}\rangle^{2}},
A~r4,4=ωri3Φr1ΦrηtanΦr2i3Φr2Φrη~tanΦr2.\tilde{A}^{r}_{4,4}=\omega^{r}-\frac{i\partial_{3}\Phi^{r}\partial_{1}\Phi^{r}\eta}{\langle\partial_{\rm tan}\Phi^{r}\rangle^{2}}-\frac{i\partial_{3}\Phi^{r}\partial_{2}\Phi^{r}\tilde{\eta}}{\langle\partial_{\rm tan}\Phi^{r}\rangle^{2}}.

Here, Θ1Γ12\Theta_{1}\in\Gamma^{1}_{2} whose exact expression is not important for our analysis.

The following Lemma 3.3, which plays a key role in paradifferential calculus, can be proved similarly to the approach in [20].

Lemma 3.3.

With the appropriate choice of Qr1Q^{r}_{-1} and Rr1R^{r}_{-1} in Γ11,\Gamma^{-1}_{1}, there is a symbol D0=(di,j)13×13D_{0}=(d_{i,j})_{13\times 13} in Γ01\Gamma^{0}_{1} satisfying d3,4=d4,3=0,d_{3,4}=d_{4,3}=0, such that

Rr1Rr01A~rA~rQr1Qr0(3Qr10RrAr0Cr[Rr,χ2Ar]+[χ2Ar,Qr])Qr0D0R^{r}_{-1}{R^{r}_{0}}^{-1}\tilde{A}^{r}-\tilde{A}^{r}Q^{r}_{-1}Q^{r}_{0}-(\partial_{3}Q^{r-1}_{0}-R^{r}A^{r}_{0}C^{r}-[R^{r},\chi_{2}A^{r}]+[\chi_{2}A^{r},Q^{r}])Q^{r}_{0}-D_{0}

is a symbol in Γ11\Gamma^{-1}_{1} on χ2=1;\chi_{2}=1; moreover,

Rr1I2=I2Qr1,R^{r}_{-1}I_{2}=I_{2}Q^{r}_{-1},

where [,][\cdot,\cdot] is defined as

[A,B]:=1i(AδBt+AηBx1+Aη~Bx2)[A,B]:=\frac{1}{i}\left(\frac{\partial A}{\partial\delta}\frac{\partial B}{\partial t}+\frac{\partial A}{\partial\eta}\frac{\partial B}{\partial x_{1}}+\frac{\partial A}{\partial\tilde{\eta}}\frac{\partial B}{\partial x_{2}}\right)

for any symbols AA and B.B.

Now we set

Z+=Tγχ1(Qr01+Qr1)W+p1.Z^{+}=T^{\gamma}_{\chi_{1}({Q^{r}_{0}}^{-1}+Q^{r}_{-1})}W^{+}_{p_{1}}.

Define Qr=Qr01+Qr1Q^{r}={Q^{r}_{0}}^{-1}+Q^{r}_{-1} and Rr=Rr0+Rr1,R^{r}=R^{r}_{0}+R^{r}_{-1}, we obtain

I23Z+=I2Tγ(3χ1)QrW+p1+I2Tγχ13QrW+p1+I2Tγχ1Qr3W+p1=I2Tγ(3χ1)QrW+p1+I2Tγχ13QrW+p1+Tγχ1RrI23W+p1.\begin{split}I_{2}\partial_{3}Z^{+}&=I_{2}T^{\gamma}_{(\partial_{3}\chi_{1})Q^{r}}W^{+}_{p_{1}}+I_{2}T^{\gamma}_{\chi_{1}\partial_{3}Q^{r}}W^{+}_{p_{1}}+I_{2}T^{\gamma}_{\chi_{1}Q^{r}}\partial_{3}W^{+}_{p_{1}}\\ &=I_{2}T^{\gamma}_{(\partial_{3}\chi_{1})Q^{r}}W^{+}_{p_{1}}+I_{2}T^{\gamma}_{\chi_{1}\partial_{3}Q^{r}}W^{+}_{p_{1}}+T^{\gamma}_{\chi_{1}R^{r}}I_{2}\partial_{3}W^{+}_{p_{1}}.\end{split}

3χ1\partial_{3}\chi_{1} is supported where χ1(0,1)\chi_{1}\in(0,1) and it is disjoint with the support of χp1.\chi_{p_{1}}. Then, from asymptotic expansion of the symbols, we have

Tγ(3χ1)QrW+p1=1W+.T^{\gamma}_{(\partial_{3}\chi_{1})Q^{r}}W^{+}_{p_{1}}=\mathcal{R}_{-1}W^{+}.

Using (3.41), we have

I23Z+=I2Tγχ13Qr10W+p1Tγχ1RrArW+p1Tγ[χ1Rr,χ2Ar]W+p1Tγχ1RrAr0CrW+p1+TγrW++0F+1W+=I2Tγχ13Qr10W+p1Tγχ1RrArW+p1+Tγχ2A~rTγχ1QrW+p1Tγχ2A~rTγχ1QrW+p1Tγ[χ1Rr,χ2Ar]W+p1Tγχ1RrAr0CrW+p1+TγrW++0F+1W+=Tγχ1(Rr1Rr01A~rA~rQr1Qr0)Z+Tγχ2A~rZ++I2Tγχ13Qr01W+p1Tγχ1RrAr0CrW+p1Tγχ1([Rr,χ2𝒜r][χ2A~r,Qr])W+p1+TγrW++0F+1W+.\begin{split}I_{2}\partial_{3}Z^{+}&=I_{2}T^{\gamma}_{\chi_{1}\partial_{3}Q^{r-1}_{0}}W^{+}_{p_{1}}-T^{\gamma}_{\chi_{1}R^{r}A^{r}}W^{+}_{p_{1}}-T^{\gamma}_{[\chi_{1}R^{r},\chi_{2}A^{r}]}W^{+}_{p_{1}}-T^{\gamma}_{\chi_{1}R^{r}A^{r}_{0}C^{r}}W^{+}_{p_{1}}\\ &\quad+T^{\gamma}_{r}W^{+}+\mathcal{R}_{0}F+\mathcal{R}_{-1}W^{+}\\ &=I_{2}T^{\gamma}_{\chi_{1}\partial_{3}Q^{r-1}_{0}}W^{+}_{p_{1}}-T^{\gamma}_{\chi_{1}R^{r}A^{r}}W^{+}_{p_{1}}+T^{\gamma}_{\chi_{2}\tilde{A}^{r}}T^{\gamma}_{\chi_{1}Q^{r}}W^{+}_{p_{1}}-T^{\gamma}_{\chi_{2}\tilde{A}^{r}}T^{\gamma}_{\chi_{1}Q^{r}}W^{+}_{p_{1}}\\ &\quad-T^{\gamma}_{[\chi_{1}R^{r},\chi_{2}A^{r}]}W^{+}_{p_{1}}-T^{\gamma}_{\chi_{1}R^{r}A^{r}_{0}C^{r}}W^{+}_{p_{1}}+T^{\gamma}_{r}W^{+}+\mathcal{R}_{0}F+\mathcal{R}_{-1}W^{+}\\ &=-T^{\gamma}_{\chi_{1}(R^{r}_{-1}{R^{r}_{0}}^{-1}\tilde{A}^{r}-\tilde{A}^{r}Q^{r}_{-1}Q^{r}_{0})}Z^{+}-T^{\gamma}_{\chi_{2}\tilde{A}^{r}}Z^{+}+I_{2}T^{\gamma}_{\chi_{1}\partial_{3}{Q^{r}_{0}}^{-1}}W^{+}_{p_{1}}-T^{\gamma}_{\chi_{1}R^{r}A^{r}_{0}C^{r}}W^{+}_{p_{1}}\\ &\quad-T^{\gamma}_{\chi_{1}([R^{r},\chi_{2}\mathcal{A}^{r}]-[\chi_{2}\tilde{A}^{r},Q^{r}])}W^{+}_{p_{1}}+T^{\gamma}_{r}W^{+}+\mathcal{R}_{0}F+\mathcal{R}_{-1}W^{+}.\\ \end{split}

Then, we obtain that

I23Z+=Tγχ1(Rr1Rr01A~rA~rQr1Qr0)Z+Tγχ2A~rZ++I2Tγχ13Qr01Qr0Z+Tγχ1RrAr0CrQr0Z+Tγχ1([Rr,χ2Ar][χ2A~r,Qr])Qr0Z++TγrW++0F++1W+.\begin{split}I_{2}\partial_{3}Z^{+}&=-T^{\gamma}_{\chi_{1}(R^{r}_{-1}{R^{r}_{0}}^{-1}\tilde{A}^{r}-\tilde{A}^{r}Q^{r}_{-1}Q^{r}_{0})}Z^{+}-T^{\gamma}_{\chi_{2}\tilde{A}^{r}}Z^{+}+I_{2}T^{\gamma}_{\chi_{1}\partial_{3}{Q^{r}_{0}}^{-1}Q^{r}_{0}}Z^{+}-T^{\gamma}_{\chi_{1}R^{r}A^{r}_{0}C^{r}Q^{r}_{0}}Z^{+}\\ &\quad-T^{\gamma}_{\chi_{1}([R^{r},\chi_{2}A^{r}]-[\chi_{2}\tilde{A}^{r},Q^{r}])Q^{r}_{0}}Z^{+}+T^{\gamma}_{r}W^{+}+\mathcal{R}_{0}F^{+}+\mathcal{R}_{-1}W^{+}.\\ \end{split}

From Lemma 3.2 and Lemma 3.3, we know

I23Z+=Tγχ2A~rZ++TγD0Z++TγrW++0F++1W+.\begin{split}I_{2}\partial_{3}Z^{+}=-T^{\gamma}_{\chi_{2}\tilde{A}^{r}}Z^{+}+T^{\gamma}_{D_{0}}Z^{+}+T^{\gamma}_{r}W^{+}+\mathcal{R}_{0}F^{+}+\mathcal{R}_{-1}W^{+}.\end{split} (3.42)

Since the support of the Fourier transform of Z+Z^{+} is in the support of χp1,\chi_{p_{1}}, we have

I23Z+=TγD~1Z++TγD~0Z++TγrW++0F++1W+,I_{2}\partial_{3}Z^{+}=-T^{\gamma}_{\tilde{D}_{1}}Z^{+}+T^{\gamma}_{\tilde{D}_{0}}Z^{+}+T^{\gamma}_{r}W^{+}+\mathcal{R}_{0}F^{+}+\mathcal{R}_{-1}W^{+}, (3.43)

where D~1\tilde{D}_{1} is the same as A~r\tilde{A}^{r} except replacing ωr\omega^{r} in each element by ω~r,\tilde{\omega}^{r}, ω~rΓ12.\tilde{\omega}^{r}\in\Gamma^{1}_{2}. It equals to ωr\omega^{r} on the support of χ2,\chi_{2}, D~0\tilde{D}_{0} is an extension of D0D_{0} with d3,4=d4,3=0d_{3,4}=d_{4,3}=0 to the whole space. Moreover, we see that ωrcΛ\omega^{r}\geq c\Lambda in 𝒱rp1\mathcal{V}^{r}_{p_{1}}, where ΛΓ12\Lambda\in\Gamma^{1}_{2} is defined as

Λ:=γ2+δ2+η2+η~2.\Lambda:=\sqrt{\gamma^{2}+\delta^{2}+\eta^{2}+\tilde{\eta}^{2}}. (3.44)

This suggests that we can extend as ω~rcΛ\tilde{\omega}^{r}\geq c\Lambda to the whole space. For simplicity, we will write ωr\omega^{r} instead of ω~r\tilde{\omega}^{r} in later arguments.

Denote Z+:=(Z1,Z2,,Z13)Z^{+}:=(Z_{1},Z_{2},\cdots,Z_{13})^{\top}. From the fourth equation in (3.43) we find

3Z4=Tγωr+iω¯rZ4+TγΘ0Z4+i3,4TγΘ0Zi+TγrW++0F++1W+,\partial_{3}Z_{4}=T^{\gamma}_{-\omega^{r}+i\bar{\omega}^{r}}Z_{4}+T^{\gamma}_{\Theta_{0}}Z_{4}+\sum_{i\neq 3,4}T^{\gamma}_{\Theta_{0}}Z_{i}+T^{\gamma}_{r}W^{+}+\mathcal{R}_{0}F^{+}+\mathcal{R}_{-1}W^{+},

where

ω¯r=3Φr1ΦrtanΦr2η+3Φr2ΦrtanΦr2η~.\bar{\omega}^{r}=\frac{\partial_{3}\Phi^{r}\partial_{1}\Phi^{r}}{\langle\partial_{\rm tan}\Phi^{r}\rangle^{2}}\eta+\frac{\partial_{3}\Phi^{r}\partial_{2}\Phi^{r}}{\langle\partial_{\rm tan}\Phi^{r}\rangle^{2}}\tilde{\eta}.

Consider two symmetrizers (Tγσ)TγΛTγσ(T^{\gamma}_{\sigma})^{\ast}T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma} and (TγΛ)TγΛ,(T^{\gamma}_{\Lambda})^{\ast}T^{\gamma}_{\Lambda}, where σ\sigma is defined in 4+×Σ{\mathbb{R}}^{4}_{+}\times\Sigma by (3.38) and extended to 4+×Π{\mathbb{R}}^{4}_{+}\times\Pi by homogeneity of degree 1. Thus σΓ12\sigma\in\Gamma^{1}_{2}, and

Tγσ3Z4,TγΛTγσZ4=TγΛTγσZ4,Tγσ3Z4=TγΛTγσZ4,TγσTγωr+iω¯rZ4+TγΛTγσZ4,TγσTγΘ0Z4+i3,4TγΛTγσZ4,TγσTγΘ0Zi+TγΛTγσZ4,TγσTγrW++TγΛTγσZ4,Tγσ1W++TγΛTγσZ4,TγσF+.\begin{split}\Re\langle T^{\gamma}_{\sigma}\partial_{3}Z_{4},T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}Z_{4}\rangle&=\Re\langle T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}Z_{4},T^{\gamma}_{\sigma}\partial_{3}Z_{4}\rangle\\ &=\Re\langle T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}Z_{4},T^{\gamma}_{\sigma}T^{\gamma}_{-\omega^{r}+i\bar{\omega}^{r}}Z_{4}\rangle+\Re\langle T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}Z_{4},T^{\gamma}_{\sigma}T^{\gamma}_{\Theta_{0}}Z_{4}\rangle\\ &\quad+\sum_{i\neq 3,4}\Re\langle T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}Z_{4},T^{\gamma}_{\sigma}T^{\gamma}_{\Theta_{0}}Z_{i}\rangle+\Re\langle T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}Z_{4},T^{\gamma}_{\sigma}T^{\gamma}_{r}W^{+}\rangle\\ &\quad+\Re\langle T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}Z_{4},T^{\gamma}_{\sigma}\mathcal{R}_{-1}W^{+}\rangle+\Re\langle T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}Z_{4},T^{\gamma}_{\sigma}F^{+}\rangle.\end{split} (3.45)

For the first term on the right-hand side of (3.45), using Lemma 3.2, we have

TγΛTγσZ4,TγσTγωr+iω¯rZ4=TγΛTγσZ4,Tγωr+iω¯rΛTγΛTγσZ4+TγΛTγσZ4,1Z4.\Re\langle T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}Z_{4},T^{\gamma}_{\sigma}T^{\gamma}_{-\omega^{r}+i\bar{\omega}^{r}}Z_{4}\rangle=\Re\langle T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}Z_{4},T^{\gamma}_{\frac{-\omega^{r}+i\bar{\omega}^{r}}{\Lambda}}T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}Z_{4}\rangle\\ +\Re\langle T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}Z_{4}\mathcal{,R}_{1}Z_{4}\rangle.\\

From the extension of ωr,\omega^{r}, we obtain that

ωr+iω¯rΛc,\Re\frac{-\omega^{r}+i\bar{\omega}^{r}}{\Lambda}\geq c,

for some positive cc depending on the background states. Using Gå{\rm\mathring{a}}rding’s inequality (Lemma 3.2(vi)), we have

TγΛTγσZ4,Tγωr+iω¯rΛTγΛTγσZ4cTγΛTγσZ420=cTγσZ421,γ.\Re\langle T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}Z_{4},T^{\gamma}_{\frac{-\omega^{r}+i\bar{\omega}^{r}}{\Lambda}}T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}Z_{4}\rangle\geq c\|T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}Z_{4}\|^{2}_{0}=c\|T^{\gamma}_{\sigma}Z_{4}\|^{2}_{1,\gamma}.

Using Lemma 3.2 (iii)-(iv), for the rest of the terms on the right-hand side of (3.45),

TγΛTγσZ4,1Z4εTγΛTγσZ420+1εZ421,γ,TγΛTγσZ4,TγσTγΘ0Z4εTγΛTγσZ420+1εZ421,γ,TγΛTγσZ4,TγσTγΘ0Zi=TγΛTγσZ4,TγΘ0TγσZi+TγΛTγσZ4,0ZiεTγΛTγσZ420+1ε(TγσZi20+Zi20),TγΛTγσZ4,TγσTγrW+εTγΛTγσZ420+1εTγrW+21,γ,TγΛTγσZ4,Tγσ1W+εTγΛTγσZ420+1εW+20,TγΛTγσZ4,TγσF+εTγΛTγσZ420+1εF+21,γ,\begin{split}\Re\langle T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}Z_{4},\mathcal{R}_{1}Z_{4}\rangle&\leq\varepsilon\|T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}Z_{4}\|^{2}_{0}+\frac{1}{\varepsilon}\|Z_{4}\|^{2}_{1,\gamma},\\ \Re\langle T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}Z_{4},T^{\gamma}_{\sigma}T^{\gamma}_{\Theta_{0}}Z_{4}\rangle&\leq\varepsilon\|T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}Z_{4}\|^{2}_{0}+\frac{1}{\varepsilon}\|Z_{4}\|^{2}_{1,\gamma},\\ \Re\langle T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}Z_{4},T^{\gamma}_{\sigma}T^{\gamma}_{\Theta_{0}}Z_{i}\rangle&=\Re\langle T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}Z_{4},T^{\gamma}_{\Theta_{0}}T^{\gamma}_{\sigma}Z_{i}\rangle+\Re\langle T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}Z_{4},\mathcal{R}_{0}Z_{i}\rangle\\ &\leq\varepsilon\|T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}Z_{4}\|^{2}_{0}+\frac{1}{\varepsilon}\Big{(}\|T^{\gamma}_{\sigma}Z_{i}\|^{2}_{0}+\|Z_{i}\|^{2}_{0}\Big{)},\\ \Re\langle T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}Z_{4},T^{\gamma}_{\sigma}T^{\gamma}_{r}W^{+}\rangle&\leq\varepsilon\|T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}Z_{4}\|^{2}_{0}+\frac{1}{\varepsilon}\|T^{\gamma}_{r}W^{+}\|^{2}_{1,\gamma},\\ \Re\langle T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}Z_{4},T^{\gamma}_{\sigma}\mathcal{R}_{-1}W^{+}\rangle&\leq\varepsilon\|T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}Z_{4}\|^{2}_{0}+\frac{1}{\varepsilon}\|W^{+}\|^{2}_{0},\\ \Re\langle T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}Z_{4},T^{\gamma}_{\sigma}F^{+}\rangle&\leq\varepsilon\|T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}Z_{4}\|^{2}_{0}+\frac{1}{\varepsilon}\|F^{+}\|^{2}_{1,\gamma},\end{split}

where ε>0\varepsilon>0 is taken to be small enough.

Note that

3Z4,(Tγσ)TγΛTγσZ4=3TγσZ4,TγΛTγσZ4=Tγ3σZ4,TγΛTγσZ4+TγσZ4,TγΛTγ3σZ4+TγσZ4,TγΛTγσ3Z4+Tγσ3Z4,TγΛTγσZ4.\begin{split}\partial_{3}\Re\langle Z_{4},(T^{\gamma}_{\sigma})^{\ast}T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}Z_{4}\rangle&=\Re\partial_{3}\langle T^{\gamma}_{\sigma}Z_{4},T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}Z_{4}\rangle\\ &=\Re\langle T^{\gamma}_{\partial_{3}\sigma}Z_{4},T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}Z_{4}\rangle+\Re\langle T^{\gamma}_{\sigma}Z_{4},T^{\gamma}_{\Lambda}T^{\gamma}_{\partial_{3}\sigma}Z_{4}\rangle\\ &\quad+\Re\langle T^{\gamma}_{\sigma}Z_{4},T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}\partial_{3}Z_{4}\rangle+\Re\langle T^{\gamma}_{\sigma}\partial_{3}Z_{4},T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}Z_{4}\rangle.\end{split} (3.46)

For the first three terms on the right-hand side of (3.46),

Tγ3σZ4,TγΛTγσZ4εTγΛTγσZ420+1εZ421,γ,TγσZ4,TγΛTγ3σZ4εTγΛTγσZ420+1εZ421,γ,TγσZ4,TγΛTγσ3Z4=TγΛTγσZ4,Tγσ3Z4+TγσZ4,0Tγσ3Z4.\begin{split}\Re\langle T^{\gamma}_{\partial_{3}\sigma}Z_{4},T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}Z_{4}\rangle&\leq\varepsilon\|T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}Z_{4}\|^{2}_{0}+\frac{1}{\varepsilon}\|Z_{4}\|^{2}_{1,\gamma},\\ \Re\langle T^{\gamma}_{\sigma}Z_{4},T^{\gamma}_{\Lambda}T^{\gamma}_{\partial_{3}\sigma}Z_{4}\rangle&\leq\varepsilon\|T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}Z_{4}\|^{2}_{0}+\frac{1}{\varepsilon}\|Z_{4}\|^{2}_{1,\gamma},\\ \Re\langle T^{\gamma}_{\sigma}Z_{4},T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}\partial_{3}Z_{4}\rangle&=\Re\langle T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}Z_{4},T^{\gamma}_{\sigma}\partial_{3}Z_{4}\rangle+\Re\langle T^{\gamma}_{\sigma}Z_{4},\mathcal{R}_{0}T^{\gamma}_{\sigma}\partial_{3}Z_{4}\rangle.\end{split}

The terms TγΛTγσZ4,Tγσ3Z4,\Re\langle T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}Z_{4},T^{\gamma}_{\sigma}\partial_{3}Z_{4}\rangle, TγσZ4,0Tγσ3Z4\Re\langle T^{\gamma}_{\sigma}Z_{4},\mathcal{R}_{0}T^{\gamma}_{\sigma}\partial_{3}Z_{4}\rangle can be treated similarly. Summing up (3.45) and (3.46) and integrating with respect to x3,x_{3}, we have

|||TγΛTγσZ4|||20+TγσZ4,TγΛTγσZ4|x3=0(C+1ε)|||Z4|||21,γ+i3,41ε(|||TγσZi|||20+|||Zi|||20)+1ε(|||TγrW+|||21,γ+|||W+|||20+|||F+|||21,γ).\begin{split}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}Z_{4}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}+\Re\left\langle T^{\gamma}_{\sigma}Z_{4},T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}Z_{4}\right\rangle|_{x_{3}=0}&\lesssim\left(C+\frac{1}{\varepsilon}\right){\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{4}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}+\sum_{i\neq 3,4}\frac{1}{\varepsilon}\left({\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{\sigma}Z_{i}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{i}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}\right)\\ &\quad\ +\frac{1}{\varepsilon}\left({\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{r}W^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|W^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|F^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}\right).\end{split}

Using the fact that

TγσZ4,TγΛTγσZ4|x3=0=TγΛ12TγσZ4,TγΛ12TγσZ4|x3=0+TγΛ12TγσZ4,0TγσZ4|x3=0,\Re\left\langle T^{\gamma}_{\sigma}Z_{4},T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}Z_{4}\right\rangle|_{x_{3}=0}=\Re\left.\left\langle T^{\gamma}_{\Lambda^{\frac{1}{2}}}T^{\gamma}_{\sigma}Z_{4},T^{\gamma}_{\Lambda^{\frac{1}{2}}}T^{\gamma}_{\sigma}Z_{4}\right\rangle\right|_{x_{3}=0}+\Re\left.\left\langle T^{\gamma}_{\Lambda^{\frac{1}{2}}}T^{\gamma}_{\sigma}Z_{4},\mathcal{R}_{0}T^{\gamma}_{\sigma}Z_{4}\right\rangle\right|_{x_{3}=0},

we can obtain that

|||TγΛTγσZ4|||20+TγΛ12TγσZ4|x3=020TγσZ4|x3=020+(C+1ε)|||Z4|||21,γ+i3,41ε(|||TγσZi|||20+|||Zi|||20)+1ε(|||TγrW+|||21,γ+|||W+|||20+|||F+|||21,γ).\begin{split}&{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}Z_{4}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}+\|T^{\gamma}_{\Lambda^{\frac{1}{2}}}T^{\gamma}_{\sigma}Z_{4}|_{x_{3}=0}\|^{2}_{0}\\ &\quad\lesssim\|T^{\gamma}_{\sigma}Z_{4}|_{x_{3}=0}\|^{2}_{0}+\left(C+\frac{1}{\varepsilon}\right){\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{4}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}+\sum_{i\neq 3,4}\frac{1}{\varepsilon}\left({\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{\sigma}Z_{i}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{i}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}\right)\\ &\quad\quad+\frac{1}{\varepsilon}\left({\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{r}W^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|W^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|F^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}\right).\end{split} (3.47)

In the following we apply the second symmetrizer (TγΛ)TγΛ(T^{\gamma}_{\Lambda})^{\ast}T^{\gamma}_{\Lambda} to have

3TγΛZ4,TγΛZ4=2TγΛZ4,TγΛ3Z4=2TγΛZ4,TγΛTγωr+iω¯rZ4+2TγΛZ4,TγΛTγΘ0Z4+2i3,4TγΛZ4,TγΛTγΘ0Zi+2TγΛZ4,TγΛTγrW++2TγΛZ4,TγΛ1W++2TγΛZ4,TγΛF+.\begin{split}\partial_{3}\Re\langle T^{\gamma}_{\Lambda}Z_{4},T^{\gamma}_{\Lambda}Z_{4}\rangle&=2\Re\langle T^{\gamma}_{\Lambda}Z_{4},T^{\gamma}_{\Lambda}\partial_{3}Z_{4}\rangle\\ &=2\Re\langle T^{\gamma}_{\Lambda}Z_{4},T^{\gamma}_{\Lambda}T^{\gamma}_{-\omega^{r}+i\bar{\omega}^{r}}Z_{4}\rangle+2\Re\langle T^{\gamma}_{\Lambda}Z_{4},T^{\gamma}_{\Lambda}T^{\gamma}_{\Theta_{0}}Z_{4}\rangle+2\sum_{i\neq 3,4}\Re\langle T^{\gamma}_{\Lambda}Z_{4},T^{\gamma}_{\Lambda}T^{\gamma}_{\Theta_{0}}Z_{i}\rangle\\ &\quad+2\Re\langle T^{\gamma}_{\Lambda}Z_{4},T^{\gamma}_{\Lambda}T^{\gamma}_{r}W^{+}\rangle+2\Re\langle T^{\gamma}_{\Lambda}Z_{4},T^{\gamma}_{\Lambda}\mathcal{R}_{-1}W^{+}\rangle+2\Re\langle T^{\gamma}_{\Lambda}Z_{4},T^{\gamma}_{\Lambda}F^{+}\rangle.\\ \end{split}

Hence, we get

|||Z4|||232,γ+Z4|x3=021,γC|||Z4|||21,γ+1ε|||Z4|||212,γ+i3,4(1ε|||Zi|||212,γ+1εγ|||Zi|||20)+1εγ(|||TγrW+|||21,γ+|||W+|||20+|||F+|||21,γ).\begin{split}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{4}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{\frac{3}{2},\gamma}+\|Z_{4}|_{x_{3}=0}\|^{2}_{1,\gamma}&\lesssim C{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{4}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}+\frac{1}{\varepsilon}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{4}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{\frac{1}{2},\gamma}+\sum_{i\neq 3,4}\left(\frac{1}{\varepsilon}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{i}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{\frac{1}{2},\gamma}+\frac{1}{\varepsilon\gamma}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{i}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}\right)\\ &\quad+\frac{1}{\varepsilon\gamma}\left({\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{r}W^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|W^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|F^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}\right).\end{split} (3.48)

Then, we consider 1st, 2nd, 5th, 6th, 8th, 9th, 11th, 12th of the system (3.43) which can be written as

Tγ𝐚(Z1,Z2,Z5,Z6,Z8,Z9,Z11,Z12)+TγΘ1Z4+TγΘ0Z++TγrW++1W+=0F+,T^{\gamma}_{\mathbf{a}}(Z_{1},Z_{2},Z_{5},Z_{6},Z_{8},Z_{9},Z_{11},Z_{12})^{\top}+T^{\gamma}_{\Theta_{1}}Z_{4}+T^{\gamma}_{\Theta_{0}}Z^{+}+T^{\gamma}_{r}W^{+}+\mathcal{R}_{-1}W^{+}=\mathcal{R}_{0}F^{+}, (3.49)

where Θ1\Theta_{1} is an 8×18\times 1 matrix symbol and belongs to Γ12,\Gamma^{1}_{2}, Θ0\Theta_{0} is an 8×138\times 13 matrix symbol and belongs to Γ01,\Gamma^{0}_{1}, and 𝐚Γ12\mathbf{a}\in\Gamma^{1}_{2} is an 8×88\times 8 matrix symbol given as follows

𝐚=[kr10𝐚1,30𝐚1,50𝐚1,700kr10𝐚2,40𝐚2,60𝐚2,8𝐚3,10kr1000000𝐚4,20kr10000𝐚5,1000kr10000𝐚6,2000kr100𝐚7,100000kr100𝐚8,200000kr1].\mathbf{a}=\left[\begin{array}[]{cccccccc}k^{r}_{1}&0&\mathbf{a}_{1,3}&0&\mathbf{a}_{1,5}&0&\mathbf{a}_{1,7}&0\\ 0&k^{r}_{1}&0&\mathbf{a}_{2,4}&0&\mathbf{a}_{2,6}&0&\mathbf{a}_{2,8}\\ \mathbf{a}_{3,1}&0&k^{r}_{1}&0&0&0&0&0\\ 0&\mathbf{a}_{4,2}&0&k^{r}_{1}&0&0&0&0\\ \mathbf{a}_{5,1}&0&0&0&k^{r}_{1}&0&0&0\\ 0&\mathbf{a}_{6,2}&0&0&0&k^{r}_{1}&0&0\\ \mathbf{a}_{7,1}&0&0&0&0&0&k^{r}_{1}&0\\ 0&\mathbf{a}_{8,2}&0&0&0&0&0&k^{r}_{1}\\ \end{array}\right].

Here, we denote that

𝐚1,3=𝐚2,4=𝐚3,1=𝐚4,2=iηFr11iη~Fr21,𝐚1,5=𝐚2,6=𝐚5,1=𝐚6,2=iηFr12iη~Fr22,𝐚1,7=𝐚2,8=𝐚7,1=𝐚8,2=iηFr13iη~Fr23.\begin{split}\mathbf{a}_{1,3}&=\mathbf{a}_{2,4}=\mathbf{a}_{3,1}=\mathbf{a}_{4,2}=-i\eta F^{r}_{11}-i\tilde{\eta}F^{r}_{21},\\ \mathbf{a}_{1,5}&=\mathbf{a}_{2,6}=\mathbf{a}_{5,1}=\mathbf{a}_{6,2}=-i\eta F^{r}_{12}-i\tilde{\eta}F^{r}_{22},\\ \mathbf{a}_{1,7}&=\mathbf{a}_{2,8}=\mathbf{a}_{7,1}=\mathbf{a}_{8,2}=-i\eta F^{r}_{13}-i\tilde{\eta}F^{r}_{23}.\end{split}

Now, we apply the symbol 𝐚Λ5Γ02\frac{\mathbf{a}^{\ast}}{\Lambda^{5}}\in\Gamma^{0}_{2} to (3.49) with 𝐚\mathbf{a}^{\ast} the adjoint of 𝐚.\mathbf{a}. Hence, we obtain that

TγaZj+TγΘ1Z4+iTγΘ0Zi+TγrW++1W+=0F+,T^{\gamma}_{a}Z_{j}+T^{\gamma}_{\Theta_{1}}Z_{4}+\sum_{i}T^{\gamma}_{\Theta_{0}}Z_{i}+T^{\gamma}_{r}W^{+}+\mathcal{R}_{-1}W^{+}=\mathcal{R}_{0}F^{+},

where j=1,2,5,6,8,9,11,12j=1,2,5,6,8,9,11,12 and a=(kr1)4(kr1)2+kr2Λ5.a=(k^{r}_{1})^{4}\frac{(k^{r}_{1})^{2}+k^{r}_{2}}{\Lambda^{5}}. From the definition of cut-off function, (kr1)2+kr2Λ5\frac{(k^{r}_{1})^{2}+k^{r}_{2}}{\Lambda^{5}} is non-zero in the support of χ2.\chi_{2}. Hence, we have

a=(1χ2)a+χ2(kr1)4(kr1)2+kr2Λ5.a=(1-\chi_{2})a+\chi_{2}(k^{r}_{1})^{4}\frac{(k^{r}_{1})^{2}+k^{r}_{2}}{\Lambda^{5}}.

Since Z+=Tγχ1(Qr0+Qr1)W+p1,Z^{+}=T^{\gamma}_{\chi_{1}(Q^{r}_{0}+Q^{r}_{-1})}W^{+}_{p_{1}}, we have

Tγ(1χ2)aZj=Tγ(1χ2)aTγχ1QrjTγχp2W+=1Tγχp2W+.T^{\gamma}_{(1-\chi_{2})a}Z_{j}=T^{\gamma}_{(1-\chi_{2})a}T^{\gamma}_{\chi_{1}Q^{r}_{j}}T^{\gamma}_{\chi_{p_{2}}}W^{+}=\mathcal{R}_{-1}T^{\gamma}_{\chi_{p_{2}}}W^{+}.

Here, the support of (1χ2)a(1-\chi_{2})a is disjoint with χ1Qrj\chi_{1}Q^{r}_{j}’s. σ=0\sigma=0 holds at the frequency points where kr1=0k^{r}_{1}=0 (also possibly kl1=0k^{l}_{1}=0) in the support of χ2.\chi_{2}. We can write χ2a=χ2Θ0×(γ+iσ),\chi_{2}a=\chi_{2}\Theta_{0}\times(\gamma+i\sigma), and hence

Tγχ2Θ0×(γ+iσ)Zj+TγΘ1Z4+iTγΘ0Zi+TγrW++1W+=0F+.T^{\gamma}_{\chi_{2}\Theta_{0}\times(\gamma+i\sigma)}Z_{j}+T^{\gamma}_{\Theta_{1}}Z_{4}+\sum_{i}T^{\gamma}_{\Theta_{0}}Z_{i}+T^{\gamma}_{r}W^{+}+\mathcal{R}_{-1}W^{+}=\mathcal{R}_{0}F^{+}. (3.50)

Applying the symmetrizer (Tγσ)Tγσ,(T^{\gamma}_{\sigma})^{\ast}T^{\gamma}_{\sigma}, we obtain that

TγσZj,TγσTγχ2Θ0×(γ+iσ)Zj+TγσZj,TγσTγΘ1Z4+iTγσZj,TγσTγΘ0Zi+TγσZj,TγσTγrW++TγσZj,Tγσ1W+=TγσZj,TγσF+.\begin{split}&\Re\langle T^{\gamma}_{\sigma}Z_{j},T^{\gamma}_{\sigma}T^{\gamma}_{\chi_{2}\Theta_{0}\times(\gamma+i\sigma)}Z_{j}\rangle+\Re\langle T^{\gamma}_{\sigma}Z_{j},T^{\gamma}_{\sigma}T^{\gamma}_{\Theta_{1}}Z_{4}\rangle+\sum_{i}\Re\langle T^{\gamma}_{\sigma}Z_{j},T^{\gamma}_{\sigma}T^{\gamma}_{\Theta_{0}}Z_{i}\rangle\\ &\quad+\Re\langle T^{\gamma}_{\sigma}Z_{j},T^{\gamma}_{\sigma}T^{\gamma}_{r}W^{+}\rangle+\Re\langle T^{\gamma}_{\sigma}Z_{j},T^{\gamma}_{\sigma}\mathcal{R}_{-1}W^{+}\rangle=\Re\langle T^{\gamma}_{\sigma}Z_{j},T^{\gamma}_{\sigma}F^{+}\rangle.\end{split} (3.51)

Now, using Lemma 3.2 (iii)-(iv), we estimate the above terms one by one,

TγσZj,TγσTγΘ1Z4=TγσZj,TγΘ1ΛTγΛTγσZ4+TγσZj,1Z4εγTγσZj20+1εγTγΛTγσZ420+1εγZ421,γ,TγσZj,TγσTγΘ0Zi=TγσZj,TγΘ0TγσZi+TγσZj,0ZiεγTγσZj20+1εγTγσZi20+1εγZi20,TγσZj,TγσTγrW+εγTγσZj20+1εγTγrW+21,γ,TγσZj,Tγσ1W+εγTγσZj20+1εγW+20,TγσZj,TγσF+εγTγσZj20+1εγF+21,γ.\begin{split}\Re\langle T^{\gamma}_{\sigma}Z_{j},T^{\gamma}_{\sigma}T^{\gamma}_{\Theta_{1}}Z_{4}\rangle&=\Re\langle T^{\gamma}_{\sigma}Z_{j},T^{\gamma}_{\frac{\Theta_{1}}{\Lambda}}T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}Z_{4}\rangle+\Re\langle T^{\gamma}_{\sigma}Z_{j},\mathcal{R}_{1}Z_{4}\rangle\\ &\leq\varepsilon\gamma\|T^{\gamma}_{\sigma}Z_{j}\|^{2}_{0}+\frac{1}{\varepsilon\gamma}\|T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}Z_{4}\|^{2}_{0}+\frac{1}{\varepsilon\gamma}\|Z_{4}\|^{2}_{1,\gamma},\\ \Re\langle T^{\gamma}_{\sigma}Z_{j},T^{\gamma}_{\sigma}T^{\gamma}_{\Theta_{0}}Z_{i}\rangle&=\Re\langle T^{\gamma}_{\sigma}Z_{j},T^{\gamma}_{\Theta_{0}}T^{\gamma}_{\sigma}Z_{i}\rangle+\Re\langle T^{\gamma}_{\sigma}Z_{j},\mathcal{R}_{0}Z_{i}\rangle\\ &\leq\varepsilon\gamma\|T^{\gamma}_{\sigma}Z_{j}\|^{2}_{0}+\frac{1}{\varepsilon\gamma}\|T^{\gamma}_{\sigma}Z_{i}\|^{2}_{0}+\frac{1}{\varepsilon\gamma}\|Z_{i}\|^{2}_{0},\\ \Re\langle T^{\gamma}_{\sigma}Z_{j},T^{\gamma}_{\sigma}T^{\gamma}_{r}W^{+}\rangle&\leq\varepsilon\gamma\|T^{\gamma}_{\sigma}Z_{j}\|^{2}_{0}+\frac{1}{\varepsilon\gamma}\|T^{\gamma}_{r}W^{+}\|^{2}_{1,\gamma},\\ \Re\langle T^{\gamma}_{\sigma}Z_{j},T^{\gamma}_{\sigma}\mathcal{R}_{-1}W^{+}\rangle&\leq\varepsilon\gamma\|T^{\gamma}_{\sigma}Z_{j}\|^{2}_{0}+\frac{1}{\varepsilon\gamma}\|W^{+}\|^{2}_{0},\\ \Re\langle T^{\gamma}_{\sigma}Z_{j},T^{\gamma}_{\sigma}F^{+}\rangle&\leq\varepsilon\gamma\|T^{\gamma}_{\sigma}Z_{j}\|^{2}_{0}+\frac{1}{\varepsilon\gamma}\|F^{+}\|^{2}_{1,\gamma}.\end{split}

For the first term on the left-hand side of (3.51), we obtain that

TγσZj,TγσTγχ2Θ0×(γ+iσ)Zj=TγσZj,TγσTγχ2Θ0Tγγ+iσZj+TγσZj,TγΘ0TγσZj+TγσZj,0Zj.\Re\langle T^{\gamma}_{\sigma}Z_{j},T^{\gamma}_{\sigma}T^{\gamma}_{\chi_{2}\Theta_{0}\times(\gamma+i\sigma)}Z_{j}\rangle=\Re\langle T^{\gamma}_{\sigma}Z_{j},T^{\gamma}_{\sigma}T^{\gamma}_{\chi_{2}\Theta_{0}}T^{\gamma}_{\gamma+i\sigma}Z_{j}\rangle+\Re\langle T^{\gamma}_{\sigma}Z_{j},T^{\gamma}_{\Theta_{0}}T^{\gamma}_{\sigma}Z_{j}\rangle+\Re\langle T^{\gamma}_{\sigma}Z_{j},\mathcal{R}_{0}Z_{j}\rangle.

Then, we have

TγσZj,0ZjεγTγσZj20+1εγZj20,TγσZj,TγΘ0TγσZjCTγσZj20.\begin{split}\Re\langle T^{\gamma}_{\sigma}Z_{j},\mathcal{R}_{0}Z_{j}\rangle&\leq\varepsilon\gamma\|T^{\gamma}_{\sigma}Z_{j}\|^{2}_{0}+\frac{1}{\varepsilon\gamma}\|Z_{j}\|^{2}_{0},\\ \Re\langle T^{\gamma}_{\sigma}Z_{j},T^{\gamma}_{\Theta_{0}}T^{\gamma}_{\sigma}Z_{j}\rangle&\leq C\|T^{\gamma}_{\sigma}Z_{j}\|^{2}_{0}.\end{split}

It is note that

TγσZj,TγσTγχ2Θ0Tγγ+iσZj=TγσZj,Tγχ2Θ0TγσTγγ+iσZj+TγσZj,0Tγγ+iσZj.\Re\langle T^{\gamma}_{\sigma}Z_{j},T^{\gamma}_{\sigma}T^{\gamma}_{\chi_{2}\Theta_{0}}T^{\gamma}_{\gamma+i\sigma}Z_{j}\rangle=\Re\left\langle T^{\gamma}_{\sigma}Z_{j},T^{\gamma}_{\chi_{2}\Theta_{0}}T^{\gamma}_{\sigma}T^{\gamma}_{\gamma+i\sigma}Z_{j}\right\rangle+\Re\langle T^{\gamma}_{\sigma}Z_{j},\mathcal{R}_{0}T^{\gamma}_{\gamma+i\sigma}Z_{j}\rangle.\\ (3.52)

For the second term on the right-hand side of (3.52), we have

TγσZj,0Tγγ+iσZj=TγσZj,0TγγZj+TγσZj,0TγiσZjεγTγσZj20+1εγ||TγγZj||20+CTγσZj20.\begin{split}\Re\langle T^{\gamma}_{\sigma}Z_{j},\mathcal{R}_{0}T^{\gamma}_{\gamma+i\sigma}Z_{j}\rangle&=\Re\langle T^{\gamma}_{\sigma}Z_{j},\mathcal{R}_{0}T^{\gamma}_{\gamma}Z_{j}\rangle+\Re\langle T^{\gamma}_{\sigma}Z_{j},\mathcal{R}_{0}T^{\gamma}_{i\sigma}Z_{j}\rangle\\ &\leq\varepsilon\gamma\|T^{\gamma}_{\sigma}Z_{j}\|^{2}_{0}+\frac{1}{\varepsilon\gamma}||T^{\gamma}_{\gamma}Z_{j}||^{2}_{0}+C\|T^{\gamma}_{\sigma}Z_{j}\|^{2}_{0}.\end{split}

The first term on the right-hand side of (3.52) can be written into

TγσZj,Tγχ2Θ0TγσTγγ+iσZj=TγσZj,Tγχ2Θ0TγσTγγZj+TγσZj,Tγχ2Θ0TγσTγiσZj=γTγσZj,Tγχ2Θ00Zj+TγσZj,Tγχ2Θ0Tγγ+iσTγσZj=γTγσZj,Tγχ2Θ00Zj+TγσZj,Tγχ2Θ0(γ+iσ)TγσZj+TγσZj,0TγσZj.\begin{split}&\Re\left\langle T^{\gamma}_{\sigma}Z_{j},T^{\gamma}_{\chi_{2}\Theta_{0}}T^{\gamma}_{\sigma}T^{\gamma}_{\gamma+i\sigma}Z_{j}\right\rangle=\Re\left\langle T^{\gamma}_{\sigma}Z_{j},T^{\gamma}_{\chi_{2}\Theta_{0}}T^{\gamma}_{\sigma}T^{\gamma}_{\gamma}Z_{j}\right\rangle+\Re\left\langle T^{\gamma}_{\sigma}Z_{j},T^{\gamma}_{\chi_{2}\Theta_{0}}T^{\gamma}_{\sigma}T^{\gamma}_{i\sigma}Z_{j}\right\rangle\\ &=\gamma\Re\left\langle T^{\gamma}_{\sigma}Z_{j},T^{\gamma}_{\chi_{2}\Theta_{0}}\mathcal{R}_{0}Z_{j}\right\rangle+\Re\langle T^{\gamma}_{\sigma}Z_{j},T^{\gamma}_{\chi_{2}\Theta_{0}}T^{\gamma}_{\gamma+i\sigma}T^{\gamma}_{\sigma}Z_{j}\rangle\\ &=\gamma\Re\left\langle T^{\gamma}_{\sigma}Z_{j},T^{\gamma}_{\chi_{2}\Theta_{0}}\mathcal{R}_{0}Z_{j}\right\rangle+\Re\left\langle T^{\gamma}_{\sigma}Z_{j},T^{\gamma}_{\chi_{2}\Theta_{0}(\gamma+i\sigma)}T^{\gamma}_{\sigma}Z_{j}\right\rangle+\Re\left\langle T^{\gamma}_{\sigma}Z_{j},\mathcal{R}_{0}T^{\gamma}_{\sigma}Z_{j}\right\rangle.\\ \end{split} (3.53)

The first and third terms can be estimated by Cauchy-Schwartz inequality, for the second term

TγσZj,Tγχ2Θ0(γ+iσ)TγσZj=TγσZj,Tγχ2aTγσZj=TγσZj,Tγa~TγσZj+TγσZj,Tγ(χ21)a~TγσZj,\begin{split}\Re\left\langle T^{\gamma}_{\sigma}Z_{j},T^{\gamma}_{\chi_{2}\Theta_{0}(\gamma+i\sigma)}T^{\gamma}_{\sigma}Z_{j}\right\rangle&=\Re\left\langle T^{\gamma}_{\sigma}Z_{j},T^{\gamma}_{\chi_{2}a}T^{\gamma}_{\sigma}Z_{j}\right\rangle\\ &=\Re\langle T^{\gamma}_{\sigma}Z_{j},T^{\gamma}_{\tilde{a}}T^{\gamma}_{\sigma}Z_{j}\rangle+\Re\left\langle T^{\gamma}_{\sigma}Z_{j},T^{\gamma}_{(\chi_{2}-1)\tilde{a}}T^{\gamma}_{\sigma}Z_{j}\right\rangle,\end{split} (3.54)

where a~\tilde{a} is the extension of χ2a\chi_{2}a to the whole space with |a~|cγ,|\Re\tilde{a}|\geq c\gamma, for some fixed positive constant c.c. For the second term on the right-hand side of (3.54),

Tγ(χ21)a~TγσZj=Tγ(χ21)a~TγσTγχ1QrjTγχp2W+=Tγ(χ21)a~Tγχ1QrjTγσTγχp2W++Tγ(χ21)a~TγO0Tγχp2W++Tγ(χ21)a~TγO1Tγχp2W++Tγ(χ21)a~2Tγχp2W+,\begin{split}T^{\gamma}_{(\chi_{2}-1)\tilde{a}}T^{\gamma}_{\sigma}Z_{j}&=T^{\gamma}_{(\chi_{2}-1)\tilde{a}}T^{\gamma}_{\sigma}T^{\gamma}_{\chi_{1}Q^{r}_{j}}T^{\gamma}_{\chi_{p_{2}}}W^{+}\\ &=T^{\gamma}_{(\chi_{2}-1)\tilde{a}}T^{\gamma}_{\chi_{1}Q^{r}_{j}}T^{\gamma}_{\sigma}T^{\gamma}_{\chi_{p_{2}}}W^{+}+T^{\gamma}_{(\chi_{2}-1)\tilde{a}}T^{\gamma}_{O_{0}}T^{\gamma}_{\chi_{p_{2}}}W^{+}\\ &\quad+T^{\gamma}_{(\chi_{2}-1)\tilde{a}}T^{\gamma}_{O_{-1}}T^{\gamma}_{\chi_{p_{2}}}W^{+}+T^{\gamma}_{(\chi_{2}-1)\tilde{a}}\mathcal{R}_{-2}T^{\gamma}_{\chi_{p_{2}}}W^{+},\\ \end{split}

where O0O_{0} and O1O_{-1} are only supported on the support of χ1\chi_{1} which is disjoint with the support of (χ21)a~.(\chi_{2}-1)\tilde{a}. Hence, we obtain that

Tγ(χ21)a~TγO0Tγχp2W+=1W+,T^{\gamma}_{(\chi_{2}-1)\tilde{a}}T^{\gamma}_{O_{0}}T^{\gamma}_{\chi_{p_{2}}}W^{+}=\mathcal{R}_{-1}W^{+},
Tγ(χ21)a~TγO1Tγχp2W+=1W+,T^{\gamma}_{(\chi_{2}-1)\tilde{a}}T^{\gamma}_{O_{-1}}T^{\gamma}_{\chi_{p_{2}}}W^{+}=\mathcal{R}_{-1}W^{+},
Tγ(χ21)a~Tγχ1QrjTγσTγχp2W+=1W+.T^{\gamma}_{(\chi_{2}-1)\tilde{a}}T^{\gamma}_{\chi_{1}Q^{r}_{j}}T^{\gamma}_{\sigma}T^{\gamma}_{\chi_{p_{2}}}W^{+}=\mathcal{R}_{-1}W^{+}.

Then, we obtain that

TγσZj,Tγ(χ21)a~TγσZjεγTγσZj20+1εγW+20.\Re\left\langle T^{\gamma}_{\sigma}Z_{j},T^{\gamma}_{(\chi_{2}-1)\tilde{a}}T^{\gamma}_{\sigma}Z_{j}\right\rangle\leq\varepsilon\gamma\|T^{\gamma}_{\sigma}Z_{j}\|^{2}_{0}+\frac{1}{\varepsilon\gamma}\|W^{+}\|^{2}_{0}. (3.55)

Note that |a~|cγ,|\Re\tilde{a}|\geq c\gamma, we have

|TγσZj,Tγa~TγσZj|cγTγσZj20.\qquad|\Re\langle T^{\gamma}_{\sigma}Z_{j},T^{\gamma}_{\tilde{a}}T^{\gamma}_{\sigma}Z_{j}\rangle|\geq c\gamma\|T^{\gamma}_{\sigma}Z_{j}\|^{2}_{0}. (3.56)

Estimates (3.54)-(3.56) yield

γTγσZj201εγZj20+CTγσZj20+1εZj20+1εγ(TγΛTγσZ420+Z421,γ)+i1εγ(TγσZi20+Zi20)+1εγ(TγrW+21,γ+W+20+F+21,γ),\begin{split}\gamma\|T^{\gamma}_{\sigma}Z_{j}\|^{2}_{0}&\leq\frac{1}{\varepsilon\gamma}\|Z_{j}\|^{2}_{0}+C\|T^{\gamma}_{\sigma}Z_{j}\|^{2}_{0}+\frac{1}{\varepsilon}\|Z_{j}\|^{2}_{0}+\frac{1}{\varepsilon\gamma}\left(\|T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}Z_{4}\|^{2}_{0}+\|Z_{4}\|^{2}_{1,\gamma}\right)\\ &\quad+\sum_{i}\frac{1}{\varepsilon\gamma}\left(\|T^{\gamma}_{\sigma}Z_{i}\|^{2}_{0}+\|Z_{i}\|^{2}_{0}\right)+\frac{1}{\varepsilon\gamma}\left(\|T^{\gamma}_{r}W^{+}\|^{2}_{1,\gamma}+\|W^{+}\|^{2}_{0}+\|F^{+}\|^{2}_{1,\gamma}\right),\end{split} (3.57)

for j=1,2,5,6,8,9,11,12.j=1,2,5,6,8,9,11,12.

Similar to the outgoing mode Z4,Z_{4}, we apply symmetrizer TγΛT^{\gamma}_{\Lambda} to (3.50),

Zj,TγΛTγχ2Θ0×(γ+iσ)Zj+Zj,TγΛTγΘ1Z4+iZj,TγΛTγΘ0Zi+Zj,TγΛTγrW++Zj,TγΛ1W+=Zj,TγΛF+.\begin{split}&\Re\left\langle Z_{j},T^{\gamma}_{\Lambda}T^{\gamma}_{\chi_{2}\Theta_{0}\times(\gamma+i\sigma)}Z_{j}\right\rangle+\Re\left\langle Z_{j},T^{\gamma}_{\Lambda}T^{\gamma}_{\Theta_{1}}Z_{4}\right\rangle+\sum_{i}\Re\left\langle Z_{j},T^{\gamma}_{\Lambda}T^{\gamma}_{\Theta_{0}}Z_{i}\right\rangle\\ &\quad+\Re\left\langle Z_{j},T^{\gamma}_{\Lambda}T^{\gamma}_{r}W^{+}\right\rangle+\Re\left\langle Z_{j},T^{\gamma}_{\Lambda}\mathcal{R}_{-1}W^{+}\right\rangle=\Re\left\langle Z_{j},T^{\gamma}_{\Lambda}F^{+}\right\rangle.\end{split}

In the above, the first term can be written as

Zj,TγΛTγχ2Θ0×(γ+iσ)Zj=TγΛ12Zj,TγΛ12Tγχ2Θ0×(γ+iσ)Zj+Zj,0Tγχ2Θ0×(γ+iσ)Zj=TγΛ12Zj,Tγχ2Θ0×(γ+iσ)TγΛ12Zj+TγΛ12Zj,12Zj+Zj,0Tγχ2Θ0×(γ+iσ)Zj.\begin{split}\Re\left\langle Z_{j},T^{\gamma}_{\Lambda}T^{\gamma}_{\chi_{2}\Theta_{0}\times(\gamma+i\sigma)}Z_{j}\right\rangle&=\Re\left\langle T^{\gamma}_{\Lambda^{\frac{1}{2}}}Z_{j},T^{\gamma}_{\Lambda^{\frac{1}{2}}}T^{\gamma}_{\chi_{2}\Theta_{0}\times(\gamma+i\sigma)}Z_{j}\right\rangle\\ &\quad+\Re\left\langle Z_{j},\mathcal{R}_{0}T^{\gamma}_{\chi_{2}\Theta_{0}\times(\gamma+i\sigma)}Z_{j}\right\rangle\\ &=\Re\left\langle T^{\gamma}_{\Lambda^{\frac{1}{2}}}Z_{j},T^{\gamma}_{\chi_{2}\Theta_{0}\times(\gamma+i\sigma)}T^{\gamma}_{\Lambda^{\frac{1}{2}}}Z_{j}\right\rangle+\Re\left\langle T^{\gamma}_{\Lambda^{\frac{1}{2}}}Z_{j},\mathcal{R}_{\frac{1}{2}}Z_{j}\right\rangle\\ &\quad+\Re\left\langle Z_{j},\mathcal{R}_{0}T^{\gamma}_{\chi_{2}\Theta_{0}\times(\gamma+i\sigma)}Z_{j}\right\rangle.\end{split}

For TγΛ12Zj,Tγχ2Θ0×(γ+iσ)TγΛ12Zj,\Re\left\langle T^{\gamma}_{\Lambda^{\frac{1}{2}}}Z_{j},T^{\gamma}_{\chi_{2}\Theta_{0}\times(\gamma+i\sigma)}T^{\gamma}_{\Lambda^{\frac{1}{2}}}Z_{j}\right\rangle, we can split into two terms:

TγΛ12Zj,Tγχ2Θ0×(γ+iσ)TγΛ12Zj=TγΛ12Zj,Tγa~TγΛ12Zj+TγΛ12Zj,Tγ(χ21)a~TγΛ12Zj.\begin{split}\Re\left\langle T^{\gamma}_{\Lambda^{\frac{1}{2}}}Z_{j},T^{\gamma}_{\chi_{2}\Theta_{0}\times(\gamma+i\sigma)}T^{\gamma}_{\Lambda^{\frac{1}{2}}}Z_{j}\right\rangle&=\Re\left\langle T^{\gamma}_{\Lambda^{\frac{1}{2}}}Z_{j},T^{\gamma}_{\tilde{a}}T^{\gamma}_{\Lambda^{\frac{1}{2}}}Z_{j}\right\rangle+\Re\left\langle T^{\gamma}_{\Lambda^{\frac{1}{2}}}Z_{j},T^{\gamma}_{(\chi_{2}-1)\tilde{a}}T^{\gamma}_{\Lambda^{\frac{1}{2}}}Z_{j}\right\rangle.\end{split}

We can estimate that

TγΛ12Zj,Tγ(χ21)a~TγΛ12ZjCZj212,γ+εγZj212,γ+1εγW+212,γ,|TγΛ12Zj,Tγa~TγΛ12Zj|cγZj212,γ,Zj,0Tγχ2Θ0×(γ+iσ)ZjCZj212,γ,Zj,TγΛTγΘ1Z4εγZj212,γ+1εγZ4232,γ,Zj,TγΛTγΘ0ZiεγZj212,γ+1εγZi212,γ,Zj,TγΛTγrW+εγ2Zj20+1εγ2TγrW+21,γ,Zj,TγΛ1W+εγ2Zj20+1εγ2W+20,Zj,TγΛF+εγ2Zj20+1εγ2F+21,γ.\begin{split}\Re\left\langle T^{\gamma}_{\Lambda^{\frac{1}{2}}}Z_{j},T^{\gamma}_{(\chi_{2}-1)\tilde{a}}T^{\gamma}_{\Lambda^{\frac{1}{2}}}Z_{j}\right\rangle&\leq C\|Z_{j}\|^{2}_{\frac{1}{2},\gamma}+\varepsilon\gamma\|Z_{j}\|^{2}_{\frac{1}{2},\gamma}+\frac{1}{\varepsilon\gamma}\|W^{+}\|^{2}_{-\frac{1}{2},\gamma},\\ \left|\Re\left\langle T^{\gamma}_{\Lambda^{\frac{1}{2}}}Z_{j},T^{\gamma}_{\tilde{a}}T^{\gamma}_{\Lambda^{\frac{1}{2}}}Z_{j}\right\rangle\right|&\geq c\gamma\|Z_{j}\|^{2}_{\frac{1}{2},\gamma},\\ \Re\left\langle Z_{j},\mathcal{R}_{0}T^{\gamma}_{\chi_{2}\Theta_{0}\times(\gamma+i\sigma)}Z_{j}\right\rangle&\leq C\|Z_{j}\|^{2}_{\frac{1}{2},\gamma},\\ \Re\langle Z_{j},T^{\gamma}_{\Lambda}T^{\gamma}_{\Theta_{1}}Z_{4}\rangle&\leq\varepsilon\gamma\|Z_{j}\|^{2}_{\frac{1}{2},\gamma}+\frac{1}{\varepsilon\gamma}\|Z_{4}\|^{2}_{\frac{3}{2},\gamma},\\ \Re\left\langle Z_{j},T^{\gamma}_{\Lambda}T^{\gamma}_{\Theta_{0}}Z_{i}\right\rangle&\leq\varepsilon\gamma\|Z_{j}\|^{2}_{\frac{1}{2},\gamma}+\frac{1}{\varepsilon\gamma}\|Z_{i}\|^{2}_{\frac{1}{2},\gamma},\\ \Re\left\langle Z_{j},T^{\gamma}_{\Lambda}T^{\gamma}_{r}W^{+}\right\rangle&\leq\varepsilon\gamma^{2}\|Z_{j}\|^{2}_{0}+\frac{1}{\varepsilon\gamma^{2}}\|T^{\gamma}_{r}W^{+}\|^{2}_{1,\gamma},\\ \Re\left\langle Z_{j},T^{\gamma}_{\Lambda}\mathcal{R}_{-1}W^{+}\right\rangle&\leq\varepsilon\gamma^{2}\|Z_{j}\|^{2}_{0}+\frac{1}{\varepsilon\gamma^{2}}\|W^{+}\|^{2}_{0},\\ \Re\left\langle Z_{j},T^{\gamma}_{\Lambda}F^{+}\right\rangle&\leq\varepsilon\gamma^{2}\|Z_{j}\|^{2}_{0}+\frac{1}{\varepsilon\gamma^{2}}\|F^{+}\|^{2}_{1,\gamma}.\end{split}

Thus we obtain

γZj212,γCZj212,γ+1εγZ4232,γ+1εγiZi212,γ+1εγ2(TγrW+21,γ+W+20+F+21,γ),\begin{split}\gamma\|Z_{j}\|^{2}_{\frac{1}{2},\gamma}&\leq C\|Z_{j}\|^{2}_{\frac{1}{2},\gamma}+\frac{1}{\varepsilon\gamma}\|Z_{4}\|^{2}_{\frac{3}{2},\gamma}\\ &\quad+\frac{1}{\varepsilon\gamma}\sum_{i}\|Z_{i}\|^{2}_{\frac{1}{2},\gamma}+\frac{1}{\varepsilon\gamma^{2}}\left(\|T^{\gamma}_{r}W^{+}\|^{2}_{1,\gamma}+\|W^{+}\|^{2}_{0}+\|F^{+}\|^{2}_{1,\gamma}\right),\end{split} (3.58)

for j=1,2,5,6,8,9,11,12,j=1,2,5,6,8,9,11,12, by taking ε\varepsilon small enough.

For j=7,10,13j=7,10,13 in (3.43), we have

Tγτ+ivr1η+ivr2η~Zj+TγΘ1Z4+iTγΘ0Zi+TγrW++1W+=0F+.T^{\gamma}_{\tau+iv^{r}_{1}\eta+iv^{r}_{2}\tilde{\eta}}Z_{j}+T^{\gamma}_{\Theta_{1}}Z_{4}+\sum_{i}T^{\gamma}_{\Theta_{0}}Z_{i}+T^{\gamma}_{r}W^{+}+\mathcal{R}_{-1}W^{+}=\mathcal{R}_{0}F^{+}.

Following the same estimates for ZjZ_{j} with j=1,2,5,6,8,9,11,12,j=1,2,5,6,8,9,11,12, we have

γTγσZj201εγZj20+CTγσZj20+1εZj20+1εγ(TγΛTγσZ420+Z421,γ)+i1εγ(TγσZi20+Zi20)+1εγ(TγrW+21,γ+W+20+F+21,γ),\begin{split}\gamma\|T^{\gamma}_{\sigma}Z_{j}\|^{2}_{0}&\leq\frac{1}{\varepsilon\gamma}\|Z_{j}\|^{2}_{0}+C\|T^{\gamma}_{\sigma}Z_{j}\|^{2}_{0}+\frac{1}{\varepsilon}\|Z_{j}\|^{2}_{0}+\frac{1}{\varepsilon\gamma}\left(\|T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}Z_{4}\|^{2}_{0}+\|Z_{4}\|^{2}_{1,\gamma}\right)\\ &\quad+\sum_{i}\frac{1}{\varepsilon\gamma}\left(\|T^{\gamma}_{\sigma}Z_{i}\|^{2}_{0}+\|Z_{i}\|^{2}_{0}\right)\\ &\quad+\frac{1}{\varepsilon\gamma}\left(\|T^{\gamma}_{r}W^{+}\|^{2}_{1,\gamma}+\|W^{+}\|^{2}_{0}+\|F^{+}\|^{2}_{1,\gamma}\right),\end{split} (3.59)

and

γZj212,γCZj212,γ+1εγZ4232,γ+1εγiZi212,γ+1εγ2(TγrW+21,γ+W+20+F+21,γ)\begin{split}\gamma\|Z_{j}\|^{2}_{\frac{1}{2},\gamma}&\leq C\|Z_{j}\|^{2}_{\frac{1}{2},\gamma}+\frac{1}{\varepsilon\gamma}\|Z_{4}\|^{2}_{\frac{3}{2},\gamma}\\ &\quad+\frac{1}{\varepsilon\gamma}\sum_{i}\|Z_{i}\|^{2}_{\frac{1}{2},\gamma}+\frac{1}{\varepsilon\gamma^{2}}(\|T^{\gamma}_{r}W^{+}\|^{2}_{1,\gamma}+\|W^{+}\|^{2}_{0}+\|F^{+}\|^{2}_{1,\gamma})\end{split} (3.60)

for j=7,10,13j=7,10,13. Note from (3.57)–(3.58) and (3.59)–(3.60) that the estimates for the terms with j=1,2,5,6,7,8,9,10,11,12,13j=1,2,5,6,7,8,9,10,11,12,13 are exactly the same.

For the incoming mode Z3Z_{3} of (3.43),

3Z3=Tγωr+iω¯rZ3+TγΘ1Z1+TγΘ1Z2+TγΘ1Z7+TγΘ1Z10+TγΘ1Z13+TγΘ0Z3+i3,4TγΘ0Zi+TγrW++1W++F+.\begin{split}\partial_{3}Z_{3}&=T^{\gamma}_{\omega^{r}+i\bar{\omega}^{r}}Z_{3}+T^{\gamma}_{\Theta_{1}}Z_{1}+T^{\gamma}_{\Theta_{1}}Z_{2}+T^{\gamma}_{\Theta_{1}}Z_{7}+T^{\gamma}_{\Theta_{1}}Z_{10}+T^{\gamma}_{\Theta_{1}}Z_{13}\\ &\quad+T^{\gamma}_{\Theta_{0}}Z_{3}+\sum_{i\neq 3,4}T^{\gamma}_{\Theta_{0}}Z_{i}+T^{\gamma}_{r}W^{+}+\mathcal{R}_{-1}W^{+}+F^{+}.\end{split} (3.61)

First, we apply symmetrizer (Tγσ)Tγ1ΛTγσ(T^{\gamma}_{\sigma})^{\ast}T^{\gamma}_{\frac{1}{\Lambda}}T^{\gamma}_{\sigma} to (3.61),

TγσZ3,Tγ1ΛTγσ3Z3=TγσZ3,Tγ1ΛTγσTγωr+iω¯rZ3+j=1,2,7,10,13TγσZ3,Tγ1ΛTγσTγΘ1Zj+TγσZ3,Tγ1ΛTγσTγΘ0Z3+i3,4TγσZ3,Tγ1ΛTγσTγΘ0Zi+TγσZ3,Tγ1ΛTγσTγrW++TγσZ3,Tγ1ΛTγσ1W++TγσZ3,Tγ1ΛTγσF+.\begin{split}\Re\left\langle T^{\gamma}_{\sigma}Z_{3},T^{\gamma}_{\frac{1}{\Lambda}}T^{\gamma}_{\sigma}\partial_{3}Z_{3}\right\rangle&=\Re\left\langle T^{\gamma}_{\sigma}Z_{3},T^{\gamma}_{\frac{1}{\Lambda}}T^{\gamma}_{\sigma}T^{\gamma}_{\omega^{r}+i\bar{\omega}^{r}}Z_{3}\right\rangle+\sum_{j=1,2,7,10,13}\Re\left\langle T^{\gamma}_{\sigma}Z_{3},T^{\gamma}_{\frac{1}{\Lambda}}T^{\gamma}_{\sigma}T^{\gamma}_{\Theta_{1}}Z_{j}\right\rangle\\ &\quad+\Re\left\langle T^{\gamma}_{\sigma}Z_{3},T^{\gamma}_{\frac{1}{\Lambda}}T^{\gamma}_{\sigma}T^{\gamma}_{\Theta_{0}}Z_{3}\right\rangle+\sum_{i\neq 3,4}\Re\left\langle T^{\gamma}_{\sigma}Z_{3},T^{\gamma}_{\frac{1}{\Lambda}}T^{\gamma}_{\sigma}T^{\gamma}_{\Theta_{0}}Z_{i}\right\rangle\\ &\quad+\Re\left\langle T^{\gamma}_{\sigma}Z_{3},T^{\gamma}_{\frac{1}{\Lambda}}T^{\gamma}_{\sigma}T^{\gamma}_{r}W^{+}\right\rangle+\Re\left\langle T^{\gamma}_{\sigma}Z_{3},T^{\gamma}_{\frac{1}{\Lambda}}T^{\gamma}_{\sigma}\mathcal{R}_{-1}W^{+}\right\rangle\\ &\quad+\Re\left\langle T^{\gamma}_{\sigma}Z_{3},T^{\gamma}_{\frac{1}{\Lambda}}T^{\gamma}_{\sigma}F^{+}\right\rangle.\end{split}

Similar to the case for the outgoing modes, we obtain

3TγσZ3,Tγ1ΛTγσZ3=Tγ3σZ3,Tγ1ΛTγσZ3+TγσZ3,Tγ1ΛTγ3σZ3+Tγσ3Z3,Tγ1ΛTγσZ3+TγσZ3,Tγ1ΛTγσ3Z3,TγσZ3,Tγ1ΛTγσTγωr+iω¯rZ3=TγσZ3,Tγωr+iω¯rΛTγσZ3+TγσZ3,0Z3,Tγ3σZ3,Tγ1ΛTγσZ3εTγσZ320+1εZ320,TγσZ3,Tγ1ΛTγ3σZ3εTγσZ320+1εZ320,Tγσ3Z3,Tγ1ΛTγσZ3=Tγ1ΛTγσ3Z3,TγσZ3+Tγσ3Z3,2TγσZ3,TγσZ3,Tγωr+iω¯rΛTγσZ3cTγσZ320,TγσZ3,0Z3εTγσZ320+1εZ320,TγσZ3,Tγ1ΛTγσTγΘ1Zj=TγσZ3,Tγ1ΛTγΘ1TγσZj+TγσZ3,0Zj,εTγσZ320+1εTγσZj20+1εZj20,j=1,2,7,10,13,TγσZ3,Tγ1ΛTγσTγΘ0Z3=TγσZ3,Tγ1ΛTγΘ0TγσZ3+TγσZ3,1Z3εTγσZ320+1εTγσZ321,γ+1εZ321,γ,TγσZ3,Tγ1ΛTγσTγΘ0ZiεTγσZ320+1εTγσZi21,γ+1εZi21,γ,i3,4,TγσZ3,Tγ1ΛTγσTγrW+εTγσZ320+1εTγrW+20,TγσZ3,Tγ1ΛTγσ1W+εTγσZ320+1εW+21,γ,\begin{split}\partial_{3}\Re\left\langle T^{\gamma}_{\sigma}Z_{3},T^{\gamma}_{\frac{1}{\Lambda}}T^{\gamma}_{\sigma}Z_{3}\right\rangle&=\Re\left\langle T^{\gamma}_{\partial_{3}\sigma}Z_{3},T^{\gamma}_{\frac{1}{\Lambda}}T^{\gamma}_{\sigma}Z_{3}\right\rangle+\Re\left\langle T^{\gamma}_{\sigma}Z_{3},T^{\gamma}_{\frac{1}{\Lambda}}T^{\gamma}_{\partial_{3}\sigma}Z_{3}\right\rangle\\ &\quad+\Re\left\langle T^{\gamma}_{\sigma}\partial_{3}Z_{3},T^{\gamma}_{\frac{1}{\Lambda}}T^{\gamma}_{\sigma}Z_{3}\right\rangle+\Re\left\langle T^{\gamma}_{\sigma}Z_{3},T^{\gamma}_{\frac{1}{\Lambda}}T^{\gamma}_{\sigma}\partial_{3}Z_{3}\right\rangle,\\ \Re\left\langle T^{\gamma}_{\sigma}Z_{3},T^{\gamma}_{\frac{1}{\Lambda}}T^{\gamma}_{\sigma}T^{\gamma}_{\omega^{r}+i\bar{\omega}^{r}}Z_{3}\right\rangle&=\Re\left\langle T^{\gamma}_{\sigma}Z_{3},T^{\gamma}_{\frac{\omega^{r}+i\bar{\omega}^{r}}{\Lambda}}T^{\gamma}_{\sigma}Z_{3}\right\rangle+\Re\left\langle T^{\gamma}_{\sigma}Z_{3},\mathcal{R}_{0}Z_{3}\right\rangle,\\ \Re\left\langle T^{\gamma}_{\partial_{3}\sigma}Z_{3},T^{\gamma}_{\frac{1}{\Lambda}}T^{\gamma}_{\sigma}Z_{3}\right\rangle&\leq\varepsilon\|T^{\gamma}_{\sigma}Z_{3}\|^{2}_{0}+\frac{1}{\varepsilon}\|Z_{3}\|^{2}_{0},\\ \Re\left\langle T^{\gamma}_{\sigma}Z_{3},T^{\gamma}_{\frac{1}{\Lambda}}T^{\gamma}_{\partial_{3}\sigma}Z_{3}\right\rangle&\leq\varepsilon\|T^{\gamma}_{\sigma}Z_{3}\|^{2}_{0}+\frac{1}{\varepsilon}\|Z_{3}\|^{2}_{0},\\ \Re\left\langle T^{\gamma}_{\sigma}\partial_{3}Z_{3},T^{\gamma}_{\frac{1}{\Lambda}}T^{\gamma}_{\sigma}Z_{3}\right\rangle&=\Re\left\langle T^{\gamma}_{\frac{1}{\Lambda}}T^{\gamma}_{\sigma}\partial_{3}Z_{3},T^{\gamma}_{\sigma}Z_{3}\right\rangle+\Re\left\langle T^{\gamma}_{\sigma}\partial_{3}Z_{3},\mathcal{R}_{-2}T^{\gamma}_{\sigma}Z_{3}\right\rangle,\\ \Re\left\langle T^{\gamma}_{\sigma}Z_{3},T^{\gamma}_{\frac{\omega^{r}+i\bar{\omega}^{r}}{\Lambda}}T^{\gamma}_{\sigma}Z_{3}\right\rangle&\leq-c\|T^{\gamma}_{\sigma}Z_{3}\|^{2}_{0},\\ \Re\left\langle T^{\gamma}_{\sigma}Z_{3},\mathcal{R}_{0}Z_{3}\right\rangle&\leq\varepsilon\|T^{\gamma}_{\sigma}Z_{3}\|^{2}_{0}+\frac{1}{\varepsilon}\|Z_{3}\|^{2}_{0},\\ \Re\left\langle T^{\gamma}_{\sigma}Z_{3},T^{\gamma}_{\frac{1}{\Lambda}}T^{\gamma}_{\sigma}T^{\gamma}_{\Theta_{1}}Z_{j}\right\rangle&=\Re\left\langle T^{\gamma}_{\sigma}Z_{3},T^{\gamma}_{\frac{1}{\Lambda}}T^{\gamma}_{\Theta_{1}}T^{\gamma}_{\sigma}Z_{j}\right\rangle+\Re\left\langle T^{\gamma}_{\sigma}Z_{3},\mathcal{R}_{0}Z_{j}\right\rangle,\\ &\leq\varepsilon\|T^{\gamma}_{\sigma}Z_{3}\|^{2}_{0}+\frac{1}{\varepsilon}\|T^{\gamma}_{\sigma}Z_{j}\|^{2}_{0}+\frac{1}{\varepsilon}\|Z_{j}\|^{2}_{0},\quad j=1,2,7,10,13,\\ \Re\left\langle T^{\gamma}_{\sigma}Z_{3},T^{\gamma}_{\frac{1}{\Lambda}}T^{\gamma}_{\sigma}T^{\gamma}_{\Theta_{0}}Z_{3}\right\rangle&=\Re\left\langle T^{\gamma}_{\sigma}Z_{3},T^{\gamma}_{\frac{1}{\Lambda}}T^{\gamma}_{\Theta_{0}}T^{\gamma}_{\sigma}Z_{3}\right\rangle+\Re\left\langle T^{\gamma}_{\sigma}Z_{3},\mathcal{R}_{-1}Z_{3}\right\rangle\\ &\leq\varepsilon\|T^{\gamma}_{\sigma}Z_{3}\|^{2}_{0}+\frac{1}{\varepsilon}\|T^{\gamma}_{\sigma}Z_{3}\|^{2}_{-1,\gamma}+\frac{1}{\varepsilon}\|Z_{3}\|^{2}_{-1,\gamma},\\ \Re\left\langle T^{\gamma}_{\sigma}Z_{3},T^{\gamma}_{\frac{1}{\Lambda}}T^{\gamma}_{\sigma}T^{\gamma}_{\Theta_{0}}Z_{i}\right\rangle&\leq\varepsilon\|T^{\gamma}_{\sigma}Z_{3}\|^{2}_{0}+\frac{1}{\varepsilon}\|T^{\gamma}_{\sigma}Z_{i}\|^{2}_{-1,\gamma}+\frac{1}{\varepsilon}\|Z_{i}\|^{2}_{-1,\gamma},\quad i\neq 3,4,\\ \Re\left\langle T^{\gamma}_{\sigma}Z_{3},T^{\gamma}_{\frac{1}{\Lambda}}T^{\gamma}_{\sigma}T^{\gamma}_{r}W^{+}\right\rangle&\leq\varepsilon\|T^{\gamma}_{\sigma}Z_{3}\|^{2}_{0}+\frac{1}{\varepsilon}\|T^{\gamma}_{r}W^{+}\|^{2}_{0},\\ \Re\left\langle T^{\gamma}_{\sigma}Z_{3},T^{\gamma}_{\frac{1}{\Lambda}}T^{\gamma}_{\sigma}\mathcal{R}_{-1}W^{+}\right\rangle&\leq\varepsilon\|T^{\gamma}_{\sigma}Z_{3}\|^{2}_{0}+\frac{1}{\varepsilon}\|W^{+}\|^{2}_{-1,\gamma},\end{split}
TγσZ3,Tγ1ΛTγσF+εTγσZ320+1εF+20.\begin{split}\Re\left\langle T^{\gamma}_{\sigma}Z_{3},T^{\gamma}_{\frac{1}{\Lambda}}T^{\gamma}_{\sigma}F^{+}\right\rangle&\leq\varepsilon\|T^{\gamma}_{\sigma}Z_{3}\|^{2}_{0}+\frac{1}{\varepsilon}\|F^{+}\|^{2}_{0}.\end{split}

Then, we have

|||TγσZ3|||20TγσZ3,Tγ1ΛTγσZ3|x3=0+1ε|||Z3|||20+1εj=1,2,7,10,13(|||TγσZj|||20+|||Zj|||20)+1ε(|||TγσZ3|||21,γ+|||Z3|||21,γ)+i3,41ε(|||TγσZi|||21,γ+|||Zi|||21,γ)+1ε(|||TγrW+|||20+|||W+|||21,γ+|||F+|||20).\begin{split}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{\sigma}Z_{3}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}&\leq\Re\left\langle T^{\gamma}_{\sigma}Z_{3},T^{\gamma}_{\frac{1}{\Lambda}}T^{\gamma}_{\sigma}Z_{3}\right\rangle\Big{|}_{x_{3}=0}+\frac{1}{\varepsilon}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{3}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}+\frac{1}{\varepsilon}\sum_{j=1,2,7,10,13}\left({\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{\sigma}Z_{j}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{j}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}\right)\\ &\quad+\frac{1}{\varepsilon}\left({\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{\sigma}Z_{3}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{-1,\gamma}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{3}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{-1,\gamma}\right)+\sum_{i\neq 3,4}\frac{1}{\varepsilon}\left({\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{\sigma}Z_{i}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{-1,\gamma}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{i}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{-1,\gamma}\right)\\ &\quad+\frac{1}{\varepsilon}\left({\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{r}W^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|W^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{-1,\gamma}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|F^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}\right).\end{split} (3.62)

Now, we apply symmetrizer 11 to obtain that

3Z3,Z3=2Z3,3Z3=2Z3,Tγωr+iω¯rZ3+j=1,2,7,10,132Z3,TγΘ1Zj+2Z3,TγΘ0Z3+i3,42Z3,TγΘ0Zi+2Z3,TγrW++2Z3,1W++2Z3,F+.\begin{split}\partial_{3}\Re\langle Z_{3},Z_{3}\rangle&=2\Re\langle Z_{3},\partial_{3}Z_{3}\rangle\\ &=2\Re\left\langle Z_{3},T^{\gamma}_{\omega^{r}+i\bar{\omega}^{r}}Z_{3}\right\rangle+\sum_{j=1,2,7,10,13}2\Re\left\langle Z_{3},T^{\gamma}_{\Theta_{1}}Z_{j}\right\rangle+2\Re\left\langle Z_{3},T^{\gamma}_{\Theta_{0}}Z_{3}\right\rangle\\ &\quad+\sum_{i\neq 3,4}2\Re\left\langle Z_{3},T^{\gamma}_{\Theta_{0}}Z_{i}\right\rangle+2\Re\left\langle Z_{3},T^{\gamma}_{r}W^{+}\right\rangle\\ &\quad+2\Re\left\langle Z_{3},\mathcal{R}_{-1}W^{+}\right\rangle+2\Re\left\langle Z_{3},F^{+}\right\rangle.\end{split}

It is noted that

3Z3,Z3=2Z3,3Z3=2Z3,Tγωr+iω¯rZ3+j=1,2,7,10,132Z3,TγΘ1Zj+2Z3,TγΘ0Z3+i3,42Z3,TγΘ0Zi+2Z3,TγrW++2Z3,1W++2Z3,F+,\begin{split}\partial_{3}\Re\langle Z_{3},Z_{3}\rangle&=2\Re\langle Z_{3},\partial_{3}Z_{3}\rangle\\ &=2\Re\left\langle Z_{3},T^{\gamma}_{\omega^{r}+i\bar{\omega}^{r}}Z_{3}\right\rangle+\sum_{j=1,2,7,10,13}2\Re\left\langle Z_{3},T^{\gamma}_{\Theta_{1}}Z_{j}\right\rangle+2\Re\left\langle Z_{3},T^{\gamma}_{\Theta_{0}}Z_{3}\right\rangle\\ &\quad+\sum_{i\neq 3,4}2\Re\left\langle Z_{3},T^{\gamma}_{\Theta_{0}}Z_{i}\right\rangle+2\Re\left\langle Z_{3},T^{\gamma}_{r}W^{+}\right\rangle\\ &\quad+2\Re\left\langle Z_{3},\mathcal{R}_{-1}W^{+}\right\rangle+2\Re\left\langle Z_{3},F^{+}\right\rangle,\end{split}

and

2Z3,Tγωr+iω¯rZ3=2Z3,(TγΛ12)Tγωr+iω¯rΛ12Z3+2Z3,0Z3=2TγΛ12Z3,Tγωr+iω¯rΛ12TγΛ12Z3+2TγΛ12Z3,12Z3+2Z3,0Z3.\begin{split}2\Re\left\langle Z_{3},T^{\gamma}_{\omega^{r}+i\bar{\omega}^{r}}Z_{3}\right\rangle&=2\Re\left\langle Z_{3},(T^{\gamma}_{\Lambda^{\frac{1}{2}}})^{\ast}T^{\gamma}_{\frac{\omega^{r}+i\bar{\omega}^{r}}{\Lambda^{\frac{1}{2}}}}Z_{3}\right\rangle+2\Re\langle Z_{3},\mathcal{R}_{0}Z_{3}\rangle\\ &=2\Re\left\langle T^{\gamma}_{\Lambda^{\frac{1}{2}}}Z_{3},T^{\gamma}_{\frac{\omega^{r}+i\bar{\omega}^{r}}{\Lambda^{\frac{1}{2}}}}T^{\gamma}_{\Lambda^{\frac{1}{2}}}Z_{3}\right\rangle+2\Re\left\langle T^{\gamma}_{\Lambda^{\frac{1}{2}}}Z_{3},\mathcal{R}_{-\frac{1}{2}}Z_{3}\right\rangle+2\Re\langle Z_{3},\mathcal{R}_{0}Z_{3}\rangle.\end{split}

We can obtain that

TγΛ12Z3,Tγωr+iω¯rΛ12TγΛ12Z3cZ3212,γ,TγΛ12Z3,12Z3εZ3212,γ+1εZ3212,γ,Z3,0Z3CZ320.\begin{split}\Re\left\langle T^{\gamma}_{\Lambda^{\frac{1}{2}}}Z_{3},T^{\gamma}_{\frac{\omega^{r}+i\bar{\omega}^{r}}{\Lambda^{\frac{1}{2}}}}T^{\gamma}_{\Lambda^{\frac{1}{2}}}Z_{3}\right\rangle&\leq-c\|Z_{3}\|^{2}_{\frac{1}{2},\gamma},\\ \Re\left\langle T^{\gamma}_{\Lambda^{\frac{1}{2}}}Z_{3},\mathcal{R}_{-\frac{1}{2}}Z_{3}\right\rangle&\leq\varepsilon\|Z_{3}\|^{2}_{\frac{1}{2},\gamma}+\frac{1}{\varepsilon}\|Z_{3}\|^{2}_{-\frac{1}{2},\gamma},\\ \Re\langle Z_{3},\mathcal{R}_{0}Z_{3}\rangle&\leq C\|Z_{3}\|^{2}_{0}.\end{split}

Hence it follows that

|||Z3|||212,γZ3|x3=020+(C+1ε)|||Z3|||20+1εj=1,2,7,10,13|||Zj|||212,γ+i3,41ε|||Zi|||212,γ+1ε(|||TγrW+|||212,γ+|||W+|||232,γ+|||F+|||212,γ).\begin{split}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{3}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{\frac{1}{2},\gamma}&\leq\|Z_{3}|_{x_{3}=0}\|^{2}_{0}+\left(C+\frac{1}{\varepsilon}\right){\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{3}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}+\frac{1}{\varepsilon}\sum_{j=1,2,7,10,13}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{j}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{\frac{1}{2},\gamma}+\sum_{i\neq 3,4}\frac{1}{\varepsilon}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{i}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{-\frac{1}{2},\gamma}\\ &\quad+\frac{1}{\varepsilon}\left({\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{r}W^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{-\frac{1}{2},\gamma}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|W^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{-\frac{3}{2},\gamma}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|F^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{-\frac{1}{2},\gamma}\right).\end{split} (3.63)

Considering (3.47),(3.48),(3.57),(3.58),(3.62),(3.63), dividing them by the appropriate power of γ,\gamma, we obtain that

1γ|||TγΛTγσZ4|||20+1γ|||TγΛ12TγσZ4|x3=0|||201γTγσZ4|x3=020+(C+1ε)1γ|||Z4|||21,γ+i3,41εγ(|||TγσZi|||20+|||Zi|||20)+1εγ(|||TγrW+|||21,γ+|||W+|||20+|||F+|||21,γ),|||Z4|||232,γ+|||Z4|x3=0|||21,γC|||Z4|||21,γ+1ε|||Z4|||212,γ+i3,4(1ε|||Zi|||212,γ+1εγ|||Zi|||20)+1εγ(|||TγrW+|||21,γ+|||W+|||20+|||F+|||21,γ),\begin{split}\frac{1}{\gamma}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}Z_{4}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}+\frac{1}{\gamma}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{\Lambda^{\frac{1}{2}}}T^{\gamma}_{\sigma}Z_{4}|_{x_{3}=0}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}&\lesssim\frac{1}{\gamma}\|T^{\gamma}_{\sigma}Z_{4}|_{x_{3}=0}\|^{2}_{0}+\left(C+\frac{1}{\varepsilon}\right)\frac{1}{\gamma}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{4}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}\\ &\quad+\sum_{i\neq 3,4}\frac{1}{\varepsilon\gamma}\left({\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{\sigma}Z_{i}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{i}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}\right)\\ &\quad+\frac{1}{\varepsilon\gamma}\left({\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{r}W^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|W^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|F^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}\right),\\ {\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{4}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{\frac{3}{2},\gamma}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{4}|_{x_{3}=0}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}&\lesssim C{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{4}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}+\frac{1}{\varepsilon}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{4}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{\frac{1}{2},\gamma}\\ &\quad+\sum_{i\neq 3,4}\left(\frac{1}{\varepsilon}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{i}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{\frac{1}{2},\gamma}+\frac{1}{\varepsilon\gamma}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{i}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}\right)\\ &\quad+\frac{1}{\varepsilon\gamma}\left({\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{r}W^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|W^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|F^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}\right),\end{split}
γ|||TγσZ3|||20γTγσZ3,Tγ1ΛTγσZ3|x3=0+γε|||Z3|||20+γε(|||TγσZj|||20+|||Zj|||20)+γε(|||TγσZ3|||21,γ+|||Z3|||21,γ)+i3,4γε(|||TγσZi|||21,γ+|||Zi|||21,γ)+γε(|||TγrW+|||20+|||W+|||21,γ+|||F+|||20),γ2|||Z3|||212,γγ2Z3|x3=020+(C+1ε)γ2|||Z3|||20+γ2ε|||Zj|||212,γ+i3,4γ2ε|||Zi|||212,γ+γ2ε(|||TγrW+|||212,γ+|||W+|||232,γ+|||F+|||212,γ).\begin{split}\gamma{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{\sigma}Z_{3}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}&\leq\gamma\Re\left\langle T^{\gamma}_{\sigma}Z_{3},T^{\gamma}_{\frac{1}{\Lambda}}T^{\gamma}_{\sigma}Z_{3}\right\rangle\Big{|}_{x_{3}=0}+\frac{\gamma}{\varepsilon}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{3}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}+\frac{\gamma}{\varepsilon}\left({\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{\sigma}Z_{j}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{j}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}\right)\\ &\quad+\frac{\gamma}{\varepsilon}\left({\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{\sigma}Z_{3}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{-1,\gamma}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{3}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{-1,\gamma}\right)+\sum_{i\neq 3,4}\frac{\gamma}{\varepsilon}\left({\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{\sigma}Z_{i}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{-1,\gamma}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{i}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{-1,\gamma}\right)\\ &\quad+\frac{\gamma}{\varepsilon}({\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{r}W^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|W^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{-1,\gamma}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|F^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}),\\ \gamma^{2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{3}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{\frac{1}{2},\gamma}&\leq\gamma^{2}\|Z_{3}|_{x_{3}=0}\|^{2}_{0}+\left(C+\frac{1}{\varepsilon}\right)\gamma^{2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{3}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}+\frac{\gamma^{2}}{\varepsilon}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{j}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{\frac{1}{2},\gamma}+\sum_{i\neq 3,4}\frac{\gamma^{2}}{\varepsilon}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{i}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{-\frac{1}{2},\gamma}\\ &\quad+\frac{\gamma^{2}}{\varepsilon}\left({\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{r}W^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{-\frac{1}{2},\gamma}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|W^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{-\frac{3}{2},\gamma}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|F^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{-\frac{1}{2},\gamma}\right).\end{split}

For j3,4j\neq 3,4,

γTγσZj201εγZj20+CTγσZj20+1εZj20+1εγ(TγΛTγσZ420+Z421,γ)+i1εγ(TγσZi20+Zi20)+1εγ(|||TγrW+|||21,γ+|||W+|||20+|||F+|||21,γ),γ2Zj212,γCγZj212,γ+1ε(Z4232,γ+1εZi212,γ)+1εγ(|||TγrW+|||21,γ+|||W|||+0+|||F+|||21,γ).\begin{split}\gamma\|T^{\gamma}_{\sigma}Z_{j}\|^{2}_{0}&\leq\frac{1}{\varepsilon\gamma}\|Z_{j}\|^{2}_{0}+C\|T^{\gamma}_{\sigma}Z_{j}\|^{2}_{0}+\frac{1}{\varepsilon}\|Z_{j}\|^{2}_{0}+\frac{1}{\varepsilon\gamma}\left(\|T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}Z_{4}\|^{2}_{0}+\|Z_{4}\|^{2}_{1,\gamma}\right)\\ &\quad+\sum_{i}\frac{1}{\varepsilon\gamma}\left(\|T^{\gamma}_{\sigma}Z_{i}\|^{2}_{0}+\|Z_{i}\|^{2}_{0}\right)+\frac{1}{\varepsilon\gamma}\left({\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{r}W^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|W^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|F^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}\right),\\ \gamma^{2}\|Z_{j}\|^{2}_{\frac{1}{2},\gamma}&\leq C\gamma\|Z_{j}\|^{2}_{\frac{1}{2},\gamma}+\frac{1}{\varepsilon}\left(\|Z_{4}\|^{2}_{\frac{3}{2},\gamma}+\frac{1}{\varepsilon}\|Z_{i}\|^{2}_{\frac{1}{2},\gamma}\right)+\frac{1}{\varepsilon\gamma}\left({\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{r}W^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|W\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{+}_{0}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|F^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}\right).\end{split}

Summing up the above estimates and taking γ\gamma sufficiently large, we have for 1j131\leq j\leq 13 and j4j\neq 4,

1γ(|||TγΛTγσZ4|||20+TγΛ12TγσZ4|x3=020)+|||Z4|||232,γ+Z4|x3=021,γ+γ|||TγσZj|||20+γ2|||Zj|||212,γγTγσZ3,Tγ1ΛTγσZ3|x3=0+γ2Z3|x3=020+1γ|||Z4|||21,γ+i(|||Zi|||212,γ+1γ|||TγσZi|||20)+1γ(|||TγrW+|||21,γ+|||W+|||20+|||F+|||21,γ)γTγσZ3,Tγ1ΛTγσZ3|x3=0+γ2Z3|x3=020+1γ(|||TγrW+|||21,γ+|||W+|||20+|||F+|||21,γ).\begin{split}&\frac{1}{\gamma}\left({\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}Z_{4}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}+\left\|T^{\gamma}_{\Lambda^{\frac{1}{2}}}T^{\gamma}_{\sigma}Z_{4}|_{x_{3}=0}\right\|^{2}_{0}\right)+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{4}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{\frac{3}{2},\gamma}+\|Z_{4}|_{x_{3}=0}\|^{2}_{1,\gamma}+\gamma{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{\sigma}Z_{j}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}+\gamma^{2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{j}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{\frac{1}{2},\gamma}\\ &\ \leq\gamma\Re\left\langle T^{\gamma}_{\sigma}Z_{3},T^{\gamma}_{\frac{1}{\Lambda}}T^{\gamma}_{\sigma}Z_{3}\right\rangle\Big{|}_{x_{3}=0}+\gamma^{2}\|Z_{3}|_{x_{3}=0}\|^{2}_{0}+\frac{1}{\gamma}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{4}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}\\ &\ \quad+\sum_{i}\left({\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{i}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{\frac{1}{2},\gamma}+\frac{1}{\gamma}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{\sigma}Z_{i}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}\right)+\frac{1}{\gamma}\left({\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{r}W^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|W^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|F^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}\right)\\ &\ \leq\gamma\Re\left\langle T^{\gamma}_{\sigma}Z_{3},T^{\gamma}_{\frac{1}{\Lambda}}T^{\gamma}_{\sigma}Z_{3}\right\rangle\Big{|}_{x_{3}=0}+\gamma^{2}\|Z_{3}|_{x_{3}=0}\|^{2}_{0}+\frac{1}{\gamma}\left({\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{r}W^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|W^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|F^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}\right).\\ \end{split} (3.64)

We remark that the extra degree of freedom can cause complicated interaction between the poles of W+W^{+} and W.W^{-}. Hence, τ=ivr1ηivr2η~\tau=-iv^{r}_{1}\eta-iv^{r}_{2}\tilde{\eta} is also the pole of the differential equation for WW^{-} in (3.33), as long as (vr1vl1,vr2vl2)(η,η~)=0.(v^{r}_{1}-v^{l}_{1},v^{r}_{2}-v^{l}_{2})\cdot(\eta,\tilde{\eta})=0. This is a key point in 3D analysis, since it is possible that the poles for the two equations coincide. In a similar way as before, we obtain for 14j2614\leq j\leq 26 and j17j\neq 17 that

1γ(|||TγΛTγσZ17|||20+TγΛ12TγσZ17|x3=020)+|||Z17|||232,γ+Z17|x3=021,γ+γ|||TγσZj|||20+γ2|||Zj|||212,γγTγσZ16,Tγ1ΛTγσZ16|x3=0+γ2Z16|x3=020+1γ(|||TγrW|||21,γ+|||W|||20+|||F|||21,γ),\begin{split}&\frac{1}{\gamma}\left({\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}Z_{17}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}+\left\|T^{\gamma}_{\Lambda^{\frac{1}{2}}}T^{\gamma}_{\sigma}Z_{17}|_{x_{3}=0}\right\|^{2}_{0}\right)+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{17}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{\frac{3}{2},\gamma}+\|Z_{17}|_{x_{3}=0}\|^{2}_{1,\gamma}\\ &\quad\quad+\gamma{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{\sigma}Z_{j}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}+\gamma^{2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{j}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{\frac{1}{2},\gamma}\\ &\quad\leq\gamma\Re\left\langle T^{\gamma}_{\sigma}Z_{16},T^{\gamma}_{\frac{1}{\Lambda}}T^{\gamma}_{\sigma}Z_{16}\right\rangle\Big{|}_{x_{3}=0}+\gamma^{2}\|Z_{16}|_{x_{3}=0}\|^{2}_{0}\\ &\quad\quad+\frac{1}{\gamma}\left({\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{r}W^{-}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|W^{-}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|F^{-}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}\right),\\ \end{split} (3.65)

where Z=(Z14,,Z26):=Tγχ1QlTγχp1WZ^{-}=(Z_{14},\cdots,Z_{26})^{\top}:=T^{\gamma}_{\chi_{1}Q^{l}}T^{\gamma}_{\chi_{p_{1}}}W^{-} and QlQ^{l} is the transformation matrix for W,W^{-}, which is defined in a similarly way as for Qr.Q^{r}. We write Z4Z_{4} and Z17Z_{17} for the outgoing modes and Z3Z_{3} and Z16Z_{16} for the incoming modes. Then we have

Zin=(Z3,Z16) and Zout=(Z4,Z17).Z_{\mathrm{in}}=(Z_{3},Z_{16})^{\top}\quad\text{ and }\quad Z_{\mathrm{out}}=(Z_{4},Z_{17})^{\top}.

So the last step is to use the boundary conditions in (3.31) to estimate the terms Z3|x3=020\|Z_{3}|_{x_{3}=0}\|^{2}_{0}, Z16|x3=020\|Z_{16}|_{x_{3}=0}\|^{2}_{0}, γTγσZ3,Tγ1ΛTγσZ3|x3=0\gamma\Re\left\langle T^{\gamma}_{\sigma}Z_{3},T^{\gamma}_{\frac{1}{\Lambda}}T^{\gamma}_{\sigma}Z_{3}\right\rangle\Big{|}_{x_{3}=0}, and γTγσZ16,Tγ1ΛTγσZ16|x3=0\gamma\Re\left\langle T^{\gamma}_{\sigma}Z_{16},T^{\gamma}_{\frac{1}{\Lambda}}T^{\gamma}_{\sigma}Z_{16}\right\rangle\Big{|}_{x_{3}=0}. Notice that

γTγσZ3,Tγ1ΛTγσZ3|x3=0\displaystyle\gamma\Re\left\langle T^{\gamma}_{\sigma}Z_{3},T^{\gamma}_{\frac{1}{\Lambda}}T^{\gamma}_{\sigma}Z_{3}\right\rangle\Big{|}_{x_{3}=0} TγσZ3|x3=020,\displaystyle\lesssim\|T^{\gamma}_{\sigma}Z_{3}|_{x_{3}=0}\|^{2}_{0},
γTγσZ16,Tγ1ΛTγσZ16|x3=0\displaystyle\gamma\Re\left\langle T^{\gamma}_{\sigma}Z_{16},T^{\gamma}_{\frac{1}{\Lambda}}T^{\gamma}_{\sigma}Z_{16}\right\rangle\Big{|}_{x_{3}=0} TγσZ16|x3=020.\displaystyle\lesssim\|T^{\gamma}_{\sigma}Z_{16}|_{x_{3}=0}\|^{2}_{0}.

Therefore we only need to estimate the boundary terms TγσZin|x3=0T^{\gamma}_{\sigma}Z_{\mathrm{in}}|_{x_{3}=0} and Zin|x3=0Z_{\mathrm{in}}|_{x_{3}=0}. The goal is to use the boundary conditions (3.31) to prove the following estimate:

γ2Zin|x3=020+TγσZin|x3=020G21,γ+Zout|x3=021,γ+Wnc|x3=020.\gamma^{2}\|Z_{\mathrm{in}}|_{x_{3}=0}\|^{2}_{0}+\left\|T^{\gamma}_{\sigma}Z_{\mathrm{in}}|_{x_{3}=0}\right\|^{2}_{0}\lesssim\|G\|^{2}_{1,\gamma}+\|Z_{\mathrm{out}}|_{x_{3}=0}\|^{2}_{1,\gamma}+\left\|W^{nc}|_{x_{3}=0}\right\|^{2}_{0}. (3.66)

Let us rewrite the Lopatinskii˘\breve{\mathrm{i}} matrix as

β[Er𝟎𝟎El]=:[ς1ς2ς3ς4].\begin{split}\beta\left[\begin{matrix}E^{r}&{\mathbf{0}}\\ \mathbf{0}&E^{l}\\ \end{matrix}\right]=:\left[\begin{matrix}\varsigma_{1}&\varsigma_{2}\\ \varsigma_{3}&\varsigma_{4}\\ \end{matrix}\right].\end{split} (3.67)

We calculate its determinant at x3=0x_{3}=0 to satisfy

ς1ς4ς2ς3=kr1kl1h(t,x1,x2,τ,η,η~),whereh(t,x1,x2,τ,η,η~)0\varsigma_{1}\varsigma_{4}-\varsigma_{2}\varsigma_{3}=k^{r}_{1}k^{l}_{1}h(t,x_{1},x_{2},\tau,\eta,\tilde{\eta}),\quad\text{where}\quad h(t,x_{1},x_{2},\tau,\eta,\tilde{\eta})\neq 0

in a neighborhood of (ivr1ηivr2η~,η,η~)Σ(-iv^{r}_{1}\eta-iv^{r}_{2}\tilde{\eta},\eta,\tilde{\eta})\in\Sigma and in a neighborhood of (ivl1ηivl2η~,η,η~)Σ.(-iv^{l}_{1}\eta-iv^{l}_{2}\tilde{\eta},\eta,\tilde{\eta})\in\Sigma. Similar to the constant-coefficient case [19, Lemma 3.6], let us assume without loss of generality that ς10\varsigma_{1}\neq 0.

Define the following matrices in a suitably small neighborhood of 𝒱rp1𝒱rp2\mathcal{V}^{r}_{p_{1}}\cup\mathcal{V}^{r}_{p_{2}}:

P1:=[1ς10ς3ς1hΛ21hΛ2],P2:=[1ς20ς1].P_{1}:=\left[\begin{matrix}\frac{1}{\varsigma_{1}}&0\\ -\frac{\varsigma_{3}}{\varsigma_{1}h\Lambda^{2}}&\frac{1}{h\Lambda^{2}}\end{matrix}\right],\qquad P_{2}:=\left[\begin{matrix}1&-\varsigma_{2}\\ 0&\varsigma_{1}\\ \end{matrix}\right]. (3.68)

It is easily seen that P1,P2Γ02.P_{1},P_{2}\in\Gamma^{0}_{2}. Shrinking further 𝒱rp1𝒱rp2\mathcal{V}^{r}_{p_{1}}\cup\mathcal{V}^{r}_{p_{2}} if necessary, we have

βin:=P1β[Er𝟎𝟎El]P2=[100Λ2(γ+iσ1)(γ+iσ2)],\beta_{\rm{in}}:=P_{1}\beta\left[\begin{matrix}E^{r}&{\mathbf{0}}\\ {\mathbf{0}}&E^{l}\end{matrix}\right]P_{2}=\left[\begin{matrix}1&0\\ 0&\Lambda^{-2}(\gamma+i\sigma_{1})(\gamma+i\sigma_{2})\end{matrix}\right], (3.69)

with σ1,σ2Γ12\sigma_{1},\sigma_{2}\in\Gamma^{1}_{2} being some real-valued scalar symbols, whose explicit forms are not important for our analysis. We now fix the four cut-off functions χ~1,\tilde{\chi}_{1}, χ~2,\tilde{\chi}_{2}, χ~3\tilde{\chi}_{3} and χ~4\tilde{\chi}_{4} such that

χ~11 in a neighborhood of suppχ1{x3=0}.\displaystyle\tilde{\chi}_{1}\equiv 1\text{ in a neighborhood of }{\rm supp}\chi_{1}\cap\{x_{3}=0\}.
χ~j1 in a neighborhood of suppχ~j1, for j=2,3,4.\displaystyle\tilde{\chi}_{j}\equiv 1\text{ in a neighborhood of }{\rm supp}\tilde{\chi}_{j-1},\text{ for }j=2,3,4.
suppχ~4𝒱rp1𝒱rp2{x3=0}×Σ.\displaystyle{\rm supp}\tilde{\chi}_{4}\subseteq\mathcal{V}^{r}_{p_{1}}\cup\mathcal{V}^{r}_{p_{2}}\cap\{x_{3}=0\}\times\Sigma.

Following the argument of [20, Section 3.4.3], we can obtain the following estimate by using the localized Gå{\rm\mathring{a}}rding’s inequality:

Tγχ~2ΛβinTγχ~1Tγχ~4P12Zin|x3=00G1,γ+Zout|x3=01,γ+Wnc|x3=00.\left\|T^{\gamma}_{\tilde{\chi}_{2}\Lambda\beta_{\mathrm{in}}}T^{\gamma}_{\tilde{\chi}_{1}}T^{\gamma}_{\tilde{\chi}_{4}P^{-1}_{2}}Z_{\mathrm{in}}|_{x_{3}=0}\right\|_{0}\lesssim\|G\|_{1,\gamma}+\|Z_{\mathrm{out}}|_{x_{3}=0}\|_{1,\gamma}+\left\|W^{nc}|_{x_{3}=0}\right\|_{0}. (3.70)

Now, we use the special structure of βin\beta_{\mathrm{in}} to obtain a lower bound for the term on the left-hand side of (3.70). Define

(ϑ1,ϑ2):=Tγχ~4P12Zin|x3=0.\displaystyle(\vartheta_{1},\vartheta_{2})^{\top}:=T^{\gamma}_{\tilde{\chi}_{4}P^{-1}_{2}}Z_{\mathrm{in}}|_{x_{3}=0}. (3.71)

From (3.69), we have

Tγχ~2ΛβinTγχ~1Tγχ~4P12Zin|x3=020=Tγχ~2ΛTγχ~1ϑ120+Tγχ~2Θ0(γ+iσ3)Tγχ~1ϑ220,\left\|T^{\gamma}_{\tilde{\chi}_{2}\Lambda\beta_{\mathrm{in}}}T^{\gamma}_{\tilde{\chi}_{1}}T^{\gamma}_{\tilde{\chi}_{4}P^{-1}_{2}}Z_{\mathrm{in}}|_{x_{3}=0}\right\|^{2}_{0}=\left\|T^{\gamma}_{\tilde{\chi}_{2}\Lambda}T^{\gamma}_{\tilde{\chi}_{1}}\vartheta_{1}\right\|^{2}_{0}+\left\|T^{\gamma}_{\tilde{\chi}_{2}\Theta_{0}(\gamma+i\sigma_{3})}T^{\gamma}_{\tilde{\chi}_{1}}\vartheta_{2}\right\|^{2}_{0}, (3.72)

where Θ0Γ02,\Theta_{0}\in\Gamma^{0}_{2}, and σ3\sigma_{3} is a scalar real symbol in Γ12\Gamma^{1}_{2}. Applying the localized Gå{\rm\mathring{a}}rding’s inequality (see Lemma 3.2 (vii)), we have

Tγχ~2ΛTγχ~1ϑ120=(Tγχ~2Λ)Tγχ~2ΛTγχ~1ϑ1,Tγχ~1ϑ1Tγχ~22Λ2Tγχ~1ϑ1,Tγχ~1ϑ1CTγχ~1ϑ10Tγχ~1ϑ11,γcTγχ~1ϑ121,γCϑ120CTγχ~1ϑ120ϑ121,γCZin|x3=020γ2ϑ120+Tγσ3ϑ120CZin|x3=020,\begin{split}\left\|T^{\gamma}_{\tilde{\chi}_{2}\Lambda}T^{\gamma}_{\tilde{\chi}_{1}}\vartheta_{1}\right\|^{2}_{0}&=\left\langle(T^{\gamma}_{\tilde{\chi}_{2}\Lambda})^{\ast}T^{\gamma}_{\tilde{\chi}_{2}\Lambda}T^{\gamma}_{\tilde{\chi}_{1}}\vartheta_{1},T^{\gamma}_{\tilde{\chi}_{1}}\vartheta_{1}\right\rangle\\ &\geq\Re\left\langle T^{\gamma}_{\tilde{\chi}^{2}_{2}\Lambda^{2}}T^{\gamma}_{\tilde{\chi}_{1}}\vartheta_{1},T^{\gamma}_{\tilde{\chi}_{1}}\vartheta_{1}\right\rangle-C\left\|T^{\gamma}_{\tilde{\chi}_{1}}\vartheta_{1}\right\|_{0}\left\|T^{\gamma}_{\tilde{\chi}_{1}}\vartheta_{1}\right\|_{1,\gamma}\\ &\geq c\left\|T^{\gamma}_{\tilde{\chi}_{1}}\vartheta_{1}\right\|^{2}_{1,\gamma}-C\|\vartheta_{1}\|^{2}_{0}-C\left\|T^{\gamma}_{\tilde{\chi}_{1}}\vartheta_{1}\right\|^{2}_{0}\\ &\gtrsim\|\vartheta_{1}\|^{2}_{1,\gamma}-C\|Z_{\mathrm{in}}|_{x_{3}=0}\|^{2}_{0}\\ &\gtrsim\gamma^{2}\|\vartheta_{1}\|^{2}_{0}+\left\|T^{\gamma}_{\sigma_{3}}\vartheta_{1}\right\|^{2}_{0}-C\|Z_{\mathrm{in}}|_{x_{3}=0}\|^{2}_{0},\end{split} (3.73)

for sufficiently large γ.\gamma. Similarly, we can obtain that, for sufficiently large γ,\gamma,

Tγχ~2Θ0(γ+iσ3)Tγχ~1ϑ220γ2ϑ220+Tγσ3ϑ220CZin|x3=020.\left\|T^{\gamma}_{\tilde{\chi}_{2}\Theta_{0}(\gamma+i\sigma_{3})}T^{\gamma}_{\tilde{\chi}_{1}}\vartheta_{2}\right\|^{2}_{0}\geq\gamma^{2}\|\vartheta_{2}\|^{2}_{0}+\left\|T^{\gamma}_{\sigma_{3}}\vartheta_{2}\right\|^{2}_{0}-C\|Z_{\mathrm{in}}|_{x_{3}=0}\|^{2}_{0}.

Inserting the above two estimates into (3.72), we have

Tγχ~2ΛβinTγχ~1Tγχ~4P12Zin|x3=020γ2(ϑ1,ϑ2)20+Tγσ3(ϑ1,ϑ2)20CZin|x3=020.\left\|T^{\gamma}_{\tilde{\chi}_{2}\Lambda\beta_{\mathrm{in}}}T^{\gamma}_{\tilde{\chi}_{1}}T^{\gamma}_{\tilde{\chi}_{4}P^{-1}_{2}}Z_{\mathrm{in}}|_{x_{3}=0}\right\|^{2}_{0}\gtrsim\gamma^{2}\|(\vartheta_{1},\vartheta_{2})\|^{2}_{0}+\left\|T^{\gamma}_{\sigma_{3}}(\vartheta_{1},\vartheta_{2})\right\|^{2}_{0}-C\|Z_{\mathrm{in}}|_{x_{3}=0}\|^{2}_{0}. (3.74)

Using the fact that χ~3χ1χ1,\tilde{\chi}_{3}\chi_{1}\equiv\chi_{1}, we obtain that

Tγχ~3Tγσ3Zin=Tγσ3Tγχ~3Zin+0Zin=Tγσ3Zin+0Zin.T^{\gamma}_{\tilde{\chi}_{3}}T^{\gamma}_{\sigma_{3}}Z_{\mathrm{in}}=T^{\gamma}_{\sigma_{3}}T^{\gamma}_{\tilde{\chi}_{3}}Z_{\mathrm{in}}+\mathcal{R}_{0}Z_{\mathrm{in}}=T^{\gamma}_{\sigma_{3}}Z_{\mathrm{in}}+\mathcal{R}_{0}Z_{\mathrm{in}}.

Then, we have

Tγσ3(ϑ1,ϑ2)\displaystyle T^{\gamma}_{\sigma_{3}}(\vartheta_{1},\vartheta_{2}) =Tγχ~4P12Tγσ3Zin|x3=0+0Zin|x3=0\displaystyle=T^{\gamma}_{\tilde{\chi}_{4}P^{-1}_{2}}T^{\gamma}_{\sigma_{3}}Z_{\mathrm{in}}|_{x_{3}=0}+\mathcal{R}_{0}Z_{\mathrm{in}}|_{x_{3}=0}
=Tγχ~4P12Tγχ~3Tγσ3Zin|x3=0+0Zin|x3=0.\displaystyle=T^{\gamma}_{\tilde{\chi}_{4}P^{-1}_{2}}T^{\gamma}_{\tilde{\chi}_{3}}T^{\gamma}_{\sigma_{3}}Z_{\mathrm{in}}|_{x_{3}=0}+\mathcal{R}_{0}Z_{\mathrm{in}}|_{x_{3}=0}.

Using the ellipticity of (P12)P12(P^{-1}_{2})^{\ast}P^{-1}_{2} on the support of χ~4\tilde{\chi}_{4} and that σ3\sigma_{3}\in\mathbb{R}, we apply the localized Gå{\rm\mathring{a}}rding’s inequality (Lemma 3.2 (vii)) to obtain that, for sufficiently large γ,\gamma,

Tγσ3(ϑ1,ϑ2)20(Tγχ~4P12)Tγχ4~P12Tγχ~3Tγσ3Zin|x3=0,Tγχ~3Tγσ3Zin|x3=0CZin|x3=020Tγχ~3Tγσ3Zin|x3=020CTγσ3Zin|x3=021,γCTγχ~3Tγσ3Zin|x3=021,γCZin|x3=02.\begin{split}&\left\|T^{\gamma}_{\sigma_{3}}(\vartheta_{1},\vartheta_{2})\right\|^{2}_{0}\\ &\ \gtrsim\left\langle(T^{\gamma}_{\tilde{\chi}_{4}P^{-1}_{2}})^{\ast}T^{\gamma}_{\tilde{\chi_{4}}P^{-1}_{2}}T^{\gamma}_{\tilde{\chi}_{3}}T^{\gamma}_{\sigma_{3}}Z_{\mathrm{in}}|_{x_{3}=0},\ T^{\gamma}_{\tilde{\chi}_{3}}T^{\gamma}_{\sigma_{3}}Z_{\mathrm{in}}|_{x_{3}=0}\right\rangle-C\|Z_{\mathrm{in}}|_{x_{3}=0}\|^{2}_{0}\\ &\ \gtrsim\left\|T^{\gamma}_{\tilde{\chi}_{3}}T^{\gamma}_{\sigma_{3}}Z_{\mathrm{in}}|_{x_{3}=0}\right\|^{2}_{0}-C\left\|T^{\gamma}_{\sigma_{3}}Z_{\mathrm{in}}|_{x_{3}=0}\right\|^{2}_{-1,\gamma}-C\left\|T^{\gamma}_{\tilde{\chi}_{3}}T^{\gamma}_{\sigma_{3}}Z_{\mathrm{in}}|_{x_{3}=0}\right\|^{2}_{-1,\gamma}-C\|Z_{\mathrm{in}}|_{x_{3}=0}\|^{2}.\end{split}

Then, for sufficiently large γ,\gamma, we have

Tγσ3(ϑ1,ϑ2)20Tγσ3Zin|x3=020C||Zin||20.\displaystyle\left\|T^{\gamma}_{\sigma_{3}}(\vartheta_{1},\vartheta_{2})\right\|^{2}_{0}\gtrsim\left\|T^{\gamma}_{\sigma_{3}}Z_{\mathrm{in}}|_{x_{3}=0}\right\|^{2}_{0}-C||Z_{\mathrm{in}}||^{2}_{0}. (3.75)

Similarly, we can prove

(ϑ1,ϑ2)20Zin|x3=020CZin|x3=021,γZin|x3=020Cγ2Zin|x3=020.\begin{split}\|(\vartheta_{1},\vartheta_{2})\|^{2}_{0}&\gtrsim\|Z_{\mathrm{in}}|_{x_{3}=0}\|^{2}_{0}-C\|Z_{\mathrm{in}}|_{x_{3}=0}\|^{2}_{-1,\gamma}\\ &\gtrsim\|Z_{\mathrm{in}}|_{x_{3}=0}\|^{2}_{0}-\frac{C}{\gamma^{2}}\|Z_{\mathrm{in}}|_{x_{3}=0}\|^{2}_{0}.\end{split} (3.76)

Combining (3.70),(3.74)-(3.76), and taking γ\gamma sufficiently large, we derive (3.66), which is crucial.

From (3.48), we have

Zout|x3=021,γi3,4|||Zi|||212,γ+1γ(|||TγrW|||21,γ+|||W|||20+|||F|||21,γ).\|Z_{\mathrm{out}}|_{x_{3}=0}\|^{2}_{1,\gamma}\lesssim\sum_{i\neq 3,4}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{i}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{\frac{1}{2},\gamma}+\frac{1}{\gamma}\left({\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{r}W^{-}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|W^{-}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|F\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}\right). (3.77)

Combining (3.64)-(3.66),(3.77), we obtain that

1γ|||TγΛTγσZout|||20+|||Zout|||232,γ+γ|||TγσZc|||20+γ2|||Zc|||212,γ+γ|||TγσZin|||20+γ2|||Zin|||212,γ+1γTγΛ12TγσZout|x3=020+Zout|x3=021,γ+γ2Zin|x3=020+TγσZin|x3=020G21,γ+Wnc|x3=020+1γ(|||TγrW|||21,γ+|||W|||20+|||F|||21,γ),\begin{split}&\frac{1}{\gamma}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}Z_{\mathrm{out}}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{\mathrm{out}}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{\frac{3}{2},\gamma}+\gamma{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{\sigma}Z_{\rm c}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}+\gamma^{2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{\rm c}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{\frac{1}{2},\gamma}+\gamma{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{\sigma}Z_{\mathrm{in}}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}\\ &\quad\quad+\gamma^{2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{\mathrm{in}}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{\frac{1}{2},\gamma}+\frac{1}{\gamma}\left\|T^{\gamma}_{\Lambda^{\frac{1}{2}}}T^{\gamma}_{\sigma}Z_{\mathrm{out}}|_{x_{3}=0}\right\|^{2}_{0}\\ &\quad\quad+\|Z_{\mathrm{out}}|_{x_{3}=0}\|^{2}_{1,\gamma}+\gamma^{2}\|Z_{\mathrm{in}}|_{x_{3}=0}\|^{2}_{0}+\left\|T^{\gamma}_{\sigma}Z_{\mathrm{in}}|_{x_{3}=0}\right\|^{2}_{0}\\ &\quad\leq\|G\|^{2}_{1,\gamma}+\left\|W^{nc}|_{x_{3}=0}\right\|^{2}_{0}+\frac{1}{\gamma}\left({\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{r}W\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|W\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|F\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}\right),\end{split} (3.78)

where Zc=(Z1,Z2,Z5,,Z13,Z14,Z15,Z18,,Z26).Z_{\rm c}=(Z_{1},Z_{2},Z_{5},\cdots,Z_{13},Z_{14},Z_{15},Z_{18},\cdots,Z_{26})^{\top}.

3.7. Case 2: Points in Υ(2)r\Upsilon^{(2)}_{r}

We need to estimate the part of W±W^{\pm} corresponding to 𝒱1r,𝒱2r.\mathcal{V}^{1}_{r},\mathcal{V}^{2}_{r}. For simplicity, we discuss the differential equations for W+W^{+} in 𝒱1r.\mathcal{V}^{1}_{r}. The remaining neighborhood of 𝒱2r\mathcal{V}^{2}_{r} and the discussion for W,W^{-}, we obtain the same estimates. Now consider the cut-off function χrt\chi_{rt} in Γ0k\Gamma^{0}_{k} for any integer k,k, whose support on 4+×Σ{\mathbb{R}}^{4}_{+}\times\Sigma is contained in 𝒱1r,\mathcal{V}^{1}_{r}, and is equal to 11 in a smaller neighborhood of the strip where τ=iV1η2+η~2.\tau=iV_{1}\sqrt{\eta^{2}+\tilde{\eta}^{2}}. Denote

W+rt:=TγχrtW+.W^{+}_{rt}:=T^{\gamma}_{\chi_{rt}}W^{+}.

Hence, we obtain that

TγτAr0+iηAr1+iη~Ar2W+rt+TγAr0CrW+rt+TγrW++I23W+rt=TγχrtF++1W+.T^{\gamma}_{\tau A^{r}_{0}+i\eta A^{r}_{1}+i\tilde{\eta}A^{r}_{2}}W^{+}_{rt}+T^{\gamma}_{A^{r}_{0}C^{r}}W^{+}_{rt}+T^{\gamma}_{r}W^{+}+I_{2}\partial_{3}W^{+}_{rt}=T^{\gamma}_{\chi_{rt}}F^{+}+\mathcal{R}_{-1}W^{+}.

Here, rr is in Γ01\Gamma^{0}_{1}, bounded and supported only in the set where χrt(0,1).\chi_{rt}\in(0,1). Then, we take two cut-off functions χ1\chi_{1} and χ2\chi_{2} in the class Γ0k\Gamma^{0}_{k} for any integer k.k. Both of the functions are supported in 𝒱rt,\mathcal{V}_{rt}, χ1=1\chi_{1}=1 on the support of χrt\chi_{rt} and χ2=1\chi_{2}=1 on the support of χ1.\chi_{1}. Similar to the previous discussion, after applying the cut-off symbol, we can find transformation matrices Qr0Q^{r}_{0} and Qr1Q^{r}_{-1} and symmetrizers Rr0R^{r}_{0} and Rr1R^{r}_{-1} to obtain

I23Z+=Tγχ2A~rZ++TγD0Z++TγrW++0F++1W+,I_{2}\partial_{3}Z^{+}=-T^{\gamma}_{\chi_{2}\tilde{A}^{r}}Z^{+}+T^{\gamma}_{D_{0}}Z^{+}+T^{\gamma}_{r}W^{+}+\mathcal{R}_{0}F^{+}+\mathcal{R}_{-1}W^{+},

where A~r\tilde{A}^{r} is the same as in (3.42) in previous case, χ1Qr0\chi_{1}Q^{r}_{0} and χ1Rr0\chi_{1}R^{r}_{0} are invertible symbols in Γ02,\Gamma^{0}_{2}, and Qr1,Rr1Γ11.Q^{r}_{-1},R^{r}_{-1}\in\Gamma^{-1}_{1}. Define

Z+=Tγχ1(Qr01+Qr1)W+rt.Z^{+}=T^{\gamma}_{\chi_{1}({Q^{r}_{0}}^{-1}+Q^{r}_{-1})}W^{+}_{rt}.

After same argument for χ2A~r\chi_{2}\tilde{A}^{r} and D0,D_{0}, we obtain that

I23Z+=TγD1~Z++TγD~0Z++TγrW++0F++1W+.I_{2}\partial_{3}Z^{+}=-T^{\gamma}_{\tilde{D_{1}}}Z^{+}+T^{\gamma}_{\tilde{D}_{0}}Z^{+}+T^{\gamma}_{r}W^{+}+\mathcal{R}_{0}F^{+}+\mathcal{R}_{-1}W^{+}. (3.79)

In D~1\tilde{D}_{1} we have ωrΓ12,\omega^{r}\in\Gamma^{1}_{2}, ωrcΛ,\omega^{r}\geq c\Lambda, and in D~0\tilde{D}_{0} we have d3,4=d4,3=0d_{3,4}=d_{4,3}=0. Denote

Z+=(Z1,Z2,,Z13).Z^{+}=(Z_{1},Z_{2},\cdots,Z_{13})^{\top}.

It follows that

3Z4=Tγωr+iω¯rZ4+TγΘ0Z4+i3,4TγΘ0Zi+TγrW++0F++1W+.\partial_{3}Z_{4}=T^{\gamma}_{-\omega^{r}+i\bar{\omega}^{r}}Z_{4}+T^{\gamma}_{\Theta_{0}}Z_{4}+\sum_{i\neq 3,4}T^{\gamma}_{\Theta_{0}}Z_{i}+T^{\gamma}_{r}W^{+}+\mathcal{R}_{0}F^{+}+\mathcal{R}_{-1}W^{+}.

Applying the two symmetrizers (Tγσ)TγΛTγσ(T^{\gamma}_{\sigma})^{\ast}T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma} and (TγΛ)TγΛ(T^{\gamma}_{\Lambda})^{\ast}T^{\gamma}_{\Lambda}, we have

|||TγΛTγσZ4|||20+|||TγΛ12TγσZ4|x3=0|||20TγσZ4|x3=020+(C+1ε)|||Z4|||21,γ+i3,41ε(|||TγσZi|||20+|||Zi|||20)+1ε(|||TγrW+|||21,γ+|||W+|||20+|||F+|||21,γ),|||Z4|||232,γ+|||Z4|x3=0|||21,γC|||Z4|||21,γ+1ε|||Z4|||212,γ+i3,4(1ε|||Zi|||212,γ+1εγ|||Zi|||20)+1εγ(|||TγrW+|||21,γ+|||W+|||20+|||F+|||21,γ).\begin{split}&{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}Z_{4}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{\Lambda^{\frac{1}{2}}}T^{\gamma}_{\sigma}Z_{4}|_{x_{3}=0}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}\\ &\quad\lesssim\|T^{\gamma}_{\sigma}Z_{4}|_{x_{3}=0}\|^{2}_{0}+\left(C+\frac{1}{\varepsilon}\right){\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{4}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}+\sum_{i\neq 3,4}\frac{1}{\varepsilon}\left({\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{\sigma}Z_{i}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{i}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}\right)\\ &\quad\quad+\frac{1}{\varepsilon}\left({\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{r}W^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|W^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|F^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}\right),\\ &{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{4}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{\frac{3}{2},\gamma}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{4}|_{x_{3}=0}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}\\ &\quad\lesssim C{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{4}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}+\frac{1}{\varepsilon}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{4}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{\frac{1}{2},\gamma}+\sum_{i\neq 3,4}\left(\frac{1}{\varepsilon}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{i}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{\frac{1}{2},\gamma}+\frac{1}{\varepsilon\gamma}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{i}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}\right)\\ &\quad\quad+\frac{1}{\varepsilon\gamma}\left({\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{r}W^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|W^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|F^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}\right).\end{split}

The roots of the Lopatinskii˘\breve{\mathrm{i}} determinant do not coincide with the poles of the differential equations. Thus we can estimate ZjZ_{j} for j=1,2,5,7,,13j=1,2,5,7,\cdots,13 in the same way. Multiplying (3.79) with some appropriate choosen matrix symbol in Γ01,\Gamma^{0}_{1}, we obtain that

TγaZj+TγΘ1Z4+iTγΘ0Zi+TγrW++1W+=0F+.T^{\gamma}_{a}Z_{j}+T^{\gamma}_{\Theta_{1}}Z_{4}+\sum_{i}T^{\gamma}_{\Theta_{0}}Z_{i}+T^{\gamma}_{r}W^{+}+\mathcal{R}_{-1}W^{+}=\mathcal{R}_{0}F^{+}.\\ (3.80)

Here, |a|cΛ|\Re a|\geq c\Lambda on the support of χ2.\chi_{2}. We can extend aa into a new symbol a~\tilde{a} satisfying |a~|cΛ.|\Re\tilde{a}|\geq c\Lambda. Applying the two symmetrizers (Tγσ)Tγσ(T^{\gamma}_{\sigma})^{\ast}T^{\gamma}_{\sigma} and TγΛ,T^{\gamma}_{\Lambda}, we have

TγσZj212,γCZj21,γ+1εZ4232,γ+i1εZi212,γ+1ε(TγrW+212,γ+W+212,γ+F+212,γ),Zj21,γ1εZj20+1εZ421,γ+i1εZi20+1ε(TγrW+20+W+21,γ+F+20),\begin{split}\|T^{\gamma}_{\sigma}Z_{j}\|^{2}_{\frac{1}{2},\gamma}&\leq C\|Z_{j}\|^{2}_{1,\gamma}+\frac{1}{\varepsilon}\|Z_{4}\|^{2}_{\frac{3}{2},\gamma}+\sum_{i}\frac{1}{\varepsilon}\|Z_{i}\|^{2}_{\frac{1}{2},\gamma}\\ &\quad+\frac{1}{\varepsilon}\left(\|T^{\gamma}_{r}W^{+}\|^{2}_{\frac{1}{2},\gamma}+\|W^{+}\|^{2}_{-\frac{1}{2},\gamma}+\|F^{+}\|^{2}_{\frac{1}{2},\gamma}\right),\\ \|Z_{j}\|^{2}_{1,\gamma}&\leq\frac{1}{\varepsilon}\|Z_{j}\|^{2}_{0}+\frac{1}{\varepsilon}\|Z_{4}\|^{2}_{1,\gamma}\\ &\quad+\sum_{i}\frac{1}{\varepsilon}\|Z_{i}\|^{2}_{0}+\frac{1}{\varepsilon}\left(\|T^{\gamma}_{r}W^{+}\|^{2}_{0}+\|W^{+}\|^{2}_{-1,\gamma}+\|F^{+}\|^{2}_{0}\right),\end{split}
|||TγσZ3|||20TγσZ3,Tγ1ΛTγσZ3|x3=0+1ε|||Z3|||20+1ε(|||TγσZj|||20+|||Zj|||20)+1ε(|||TγσZ3|||21,γ+|||Z3|||21,γ)+i3,41ε(|||TγσZi|||21,γ+|||Zi|||21,γ)+1ε(|||TγrW+|||20+|||W+|||21,γ+|||F+|||20),||||Z3|||212,γZ3|x3=020+(C+1ε)|||Z3|||20+1ε|||Zj|||212,γ+i3,41ε|||Zi|||212,γ+1ε(|||TγrW+|||212,γ+|||W+|||232,γ+|||F+|||212,γ).\begin{split}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{\sigma}Z_{3}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}&\leq\Re\left\langle T^{\gamma}_{\sigma}Z_{3},T^{\gamma}_{\frac{1}{\Lambda}}T^{\gamma}_{\sigma}Z_{3}\right\rangle\Big{|}_{x_{3}=0}+\frac{1}{\varepsilon}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{3}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}+\frac{1}{\varepsilon}\left({\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{\sigma}Z_{j}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{j}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}\right)\\ &\quad+\frac{1}{\varepsilon}\left({\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{\sigma}Z_{3}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{-1,\gamma}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{3}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{-1,\gamma}\right)+\sum_{i\neq 3,4}\frac{1}{\varepsilon}\left({\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{\sigma}Z_{i}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{-1,\gamma}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{i}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{-1,\gamma}\right)\\ &\quad+\frac{1}{\varepsilon}\left({\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{r}W^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|W^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{-1,\gamma}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|F^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}\right),\\ |{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{3}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{\frac{1}{2},\gamma}&\leq\|Z_{3}|_{x_{3}=0}\|^{2}_{0}+\left(C+\frac{1}{\varepsilon}\right){\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{3}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}+\frac{1}{\varepsilon}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{j}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{\frac{1}{2},\gamma}+\sum_{i\neq 3,4}\frac{1}{\varepsilon}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{i}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{-\frac{1}{2},\gamma}\\ &\quad+\frac{1}{\varepsilon}\left({\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{r}W^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{-\frac{1}{2},\gamma}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|W^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{-\frac{3}{2},\gamma}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|F^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{-\frac{1}{2},\gamma}\right).\end{split}

Combining the above estimates and dividing by γ\gamma to an appropriate power and then taking γ\gamma large enough, we obtain that

1γ|||TγΛTγσZ4|||20+|||Z4|||232,γ+|||TγσZj|||212,γ+γ|||Zj|||21,γ+γ|||TγσZ3|||20+γ2|||Z3|||212,γ+1γTγΛ12TγσZ4|x3=020+Z4|x3=021,γγTγσZ3,Tγ1ΛTγσZ3|x3=0+γ2Z3|x3=020+1γ(|||TγrW+|||21,γ+|||W+|||20+|||F+|||21,γ).\begin{split}&\frac{1}{\gamma}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}Z_{4}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{4}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{\frac{3}{2},\gamma}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{\sigma}Z_{j}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{\frac{1}{2},\gamma}+\gamma{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{j}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}+\gamma{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{\sigma}Z_{3}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}\\ &\quad\quad+\gamma^{2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{3}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{\frac{1}{2},\gamma}+\frac{1}{\gamma}\left\|T^{\gamma}_{\Lambda^{\frac{1}{2}}}T^{\gamma}_{\sigma}Z_{4}|_{x_{3}=0}\right\|^{2}_{0}+\|Z_{4}|_{x_{3}=0}\|^{2}_{1,\gamma}\\ &\quad\leq\gamma\Re\left\langle T^{\gamma}_{\sigma}Z_{3},T^{\gamma}_{\frac{1}{\Lambda}}T^{\gamma}_{\sigma}Z_{3}\right\rangle|_{x_{3}=0}\\ &\quad\quad+\gamma^{2}\|Z_{3}|_{x_{3}=0}\|^{2}_{0}+\frac{1}{\gamma}\left({\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{r}W^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|W^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|F^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}\right).\\ \end{split} (3.81)

For Z=(Z14,,Z26):=Tγχ1(Ql10+Ql1)TγχrtWZ^{-}=(Z_{14},\cdots,Z_{26})^{\top}:=T^{\gamma}_{\chi_{1}(Q^{l-1}_{0}+Q^{l}_{-1})}T^{\gamma}_{\chi_{rt}}W^{-} we have

1γ|||TγΛTγσZ17|||20+|||Z17|||232,γ+|||TγσZj|||212,γ+γ|||Zj|||21,γ+γ|||TγσZ16|||20+γ2|||Z16|||212,γ+1γTγΛ12TγσZ17|x3=020+Z17|x3=021,γγTγσZ16,Tγ1ΛTγσZ16|x3=0+γ2Z16|x3=020+1γ(|||TγrW|||21,γ+|||W|||20+|||F|||21,γ).\begin{split}&\frac{1}{\gamma}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}Z_{17}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{17}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{\frac{3}{2},\gamma}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{\sigma}Z_{j}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{\frac{1}{2},\gamma}+\gamma{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{j}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}+\gamma{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{\sigma}Z_{16}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}\\ &\quad\quad+\gamma^{2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{16}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{\frac{1}{2},\gamma}+\frac{1}{\gamma}\|T^{\gamma}_{\Lambda^{\frac{1}{2}}}T^{\gamma}_{\sigma}Z_{17}|_{x_{3}=0}\|^{2}_{0}+\|Z_{17}|_{x_{3}=0}\|^{2}_{1,\gamma}\\ &\quad\leq\gamma\Re\left\langle T^{\gamma}_{\sigma}Z_{16},T^{\gamma}_{\frac{1}{\Lambda}}T^{\gamma}_{\sigma}Z_{16}\right\rangle|_{x_{3}=0}\\ &\quad\quad+\gamma^{2}\|Z_{16}|_{x_{3}=0}\|^{2}_{0}+\frac{1}{\gamma}\left({\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{r}W^{-}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|W^{-}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|F^{-}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}\right).\\ \end{split} (3.82)

Similar to Case 1, the boundary terms in (3.33) can be used to estimate Z3|x3=020\|Z_{3}|_{x_{3}=0}\|^{2}_{0} and Z16|x3=020,\|Z_{16}|_{x_{3}=0}\|^{2}_{0}, and γTγσZ3,Tγ1ΛTγσZ3|x3=0\gamma\Re\left\langle T^{\gamma}_{\sigma}Z_{3},T^{\gamma}_{\frac{1}{\Lambda}}T^{\gamma}_{\sigma}Z_{3}\right\rangle\Big{|}_{x_{3}=0} and γTγσZ16,Tγ1ΛTγσZ16|x3=0.\gamma\Re\left\langle T^{\gamma}_{\sigma}Z_{16},T^{\gamma}_{\frac{1}{\Lambda}}T^{\gamma}_{\sigma}Z_{16}\right\rangle\Big{|}_{x_{3}=0}. Using (3.81) and (3.82), we have

1γ|||TγΛTγσZout|||20+|||Zout|||232,γ+|||TγσZc|||212,γ+γ|||Zc|||21,γ+γ|||TγσZin|||20+γ2|||Zin|||212,γ+1γTγΛ12TγσZout|x3=020+Zout|x3=021,γ+γ2Zin|x3=020+TγσZin|x3=020G21,γ+Wnc|x3=020+1γ(|||TγrW|||21,γ+|||W|||20+|||F|||21,γ),\begin{split}&\frac{1}{\gamma}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{\Lambda}T^{\gamma}_{\sigma}Z_{\rm out}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{\rm out}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{\frac{3}{2},\gamma}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{\sigma}Z_{\rm c}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{\frac{1}{2},\gamma}+\gamma{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{\rm c}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}\\ &\quad\quad+\gamma{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{\sigma}Z_{\rm in}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}+\gamma^{2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{\rm in}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{\frac{1}{2},\gamma}+\frac{1}{\gamma}\left\|T^{\gamma}_{\Lambda^{\frac{1}{2}}}T^{\gamma}_{\sigma}Z_{\rm out}|_{x_{3}=0}\right\|^{2}_{0}+\|Z_{\rm out}|_{x_{3}=0}\|^{2}_{1,\gamma}\\ &\quad\quad+\gamma^{2}\|Z_{\rm in}|_{x_{3}=0}\|^{2}_{0}+\left\|T^{\gamma}_{\sigma}Z_{\rm in}|_{x_{3}=0}\right\|^{2}_{0}\\ &\quad\lesssim\|G\|^{2}_{1,\gamma}+\left\|W^{nc}|_{x_{3}=0}\right\|^{2}_{0}+\frac{1}{\gamma}\left({\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{r}W\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|W\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|F\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}\right),\\ \end{split} (3.83)

where Zc=(Z1,Z2,Z5,,Z13,Z14,Z15,Z18,,Z26).Z_{\rm c}=(Z_{1},Z_{2},Z_{5},\cdots,Z_{13},Z_{14},Z_{15},Z_{18},\cdots,Z_{26})^{\top}.

3.8. Case 3: Points in Υ(2)p\Upsilon^{(2)}_{p}

In this section, we discuss the poles that are not the roots of Lopatinskii˘\breve{\mathrm{i}} determinant. Our discussion focuses on the neighborhoods 𝒱1p2,𝒱2p2,𝒱3p2\mathcal{V}^{1}_{p_{2}},\mathcal{V}^{2}_{p_{2}},\mathcal{V}^{3}_{p_{2}} and 𝒱4p2.\mathcal{V}^{4}_{p_{2}}. As an example, consider 𝒱1p1\mathcal{V}^{1}_{p_{1}}. This neighborhood contains a strip in the frequency space where τ=i(vr1η+vr2η~+(η2+η~2)gr(θ)).\tau=-i(v^{r}_{1}\eta+v^{r}_{2}\tilde{\eta}+\sqrt{(\eta^{2}+\tilde{\eta}^{2})g_{r}(\theta)}). Here τ\tau represents a pole of the differential equations for W+,W^{+}, but not for W.W^{-}. In this case, the equation for WW^{-} can be reduced to a non-characteristic one. The arguments apply to both W+W^{+} and WW^{-}, provided that the points where ωr,l=0\omega^{r,l}=0 are excluded from the neighborhood. For simplicity, we restrict our discussion to the case of W+.W^{+}. First, we introduce the cut-off functions χp2,\chi_{p_{2}}, χ1\chi_{1} and χ2,\chi_{2}, which are defined in the pole case. Using the matrices Qr0Q^{r}_{0} and Qr1Q^{r}_{-1} and symmetrizers Rr0R^{r}_{0} and Rr1,R^{r}_{-1}, along with appropriate adjustments to χ2A~r\chi_{2}\tilde{A}^{r} and D0D_{0}, we derive the following equation:

I23Z+=TγD~1Z++TγD~0Z++TγrW++0F++1W+,I_{2}\partial_{3}Z^{+}=-T^{\gamma}_{\tilde{D}_{1}}Z^{+}+T^{\gamma}_{\tilde{D}_{0}}Z^{+}+T^{\gamma}_{r}W^{+}+\mathcal{R}_{0}F^{+}+\mathcal{R}_{-1}W^{+}, (3.84)

where

Z+=Tγχ1(Qr01+Qr1)Tγχp2W+.Z^{+}=T^{\gamma}_{\chi_{1}({Q^{r}_{0}}^{-1}+Q^{r}_{-1})}T^{\gamma}_{\chi_{p_{2}}}W^{+}.

The symbols in this equation are consistent with those introduced in the previous cases. The equation for Z4Z_{4} yields

3Z4=Tγωr+iω¯rZ4+TγΘ0Z4+i3,4TγΘ0Zi+TγrW++0F++1W+.\partial_{3}Z_{4}=T^{\gamma}_{-\omega^{r}+i\bar{\omega}^{r}}Z_{4}+T^{\gamma}_{\Theta_{0}}Z_{4}+\sum_{i\neq 3,4}T^{\gamma}_{\Theta_{0}}Z_{i}+T^{\gamma}_{r}W^{+}+\mathcal{R}_{0}F^{+}+\mathcal{R}_{-1}W^{+}.

Consider the symmetrizer (TγΛ)TγΛTγΛ,(T^{\gamma}_{\Lambda})^{\ast}T^{\gamma}_{\Lambda}T^{\gamma}_{\Lambda}, we obtain that

TγΛTγΛZ4,TγΛ3Z4=TγΛTγΛZ4,TγΛTγωr+iω¯rZ4+TγΛTγΛZ4,TγΛTγΘ0Z4+i3,4TγΛTγΛZ4,TγΛTγΘ0Zi+TγΛTγΛZ4,TγΛTγrW++TγΛTγΛZ4,TγΛ1W++TγΛTγΛZ4,TγΛF+.\begin{split}\Re\left\langle T^{\gamma}_{\Lambda}T^{\gamma}_{\Lambda}Z_{4},T^{\gamma}_{\Lambda}\partial_{3}Z_{4}\right\rangle&=\Re\left\langle T^{\gamma}_{\Lambda}T^{\gamma}_{\Lambda}Z_{4},T^{\gamma}_{\Lambda}T^{\gamma}_{-\omega^{r}+i\bar{\omega}^{r}}Z_{4}\right\rangle+\Re\left\langle T^{\gamma}_{\Lambda}T^{\gamma}_{\Lambda}Z_{4},T^{\gamma}_{\Lambda}T^{\gamma}_{\Theta_{0}}Z_{4}\right\rangle\\ &\quad+\sum_{i\neq 3,4}\Re\left\langle T^{\gamma}_{\Lambda}T^{\gamma}_{\Lambda}Z_{4},T^{\gamma}_{\Lambda}T^{\gamma}_{\Theta_{0}}Z_{i}\right\rangle+\Re\left\langle T^{\gamma}_{\Lambda}T^{\gamma}_{\Lambda}Z_{4},T^{\gamma}_{\Lambda}T^{\gamma}_{r}W^{+}\right\rangle\\ &\quad+\Re\left\langle T^{\gamma}_{\Lambda}T^{\gamma}_{\Lambda}Z_{4},T^{\gamma}_{\Lambda}\mathcal{R}_{-1}W^{+}\right\rangle+\Re\left\langle T^{\gamma}_{\Lambda}T^{\gamma}_{\Lambda}Z_{4},T^{\gamma}_{\Lambda}F^{+}\right\rangle.\end{split}

Taking ε\varepsilon small enough, we have

|||Z4|||22,γ+|||Z4|x3=0|||232,γZ4|x3=021,γ+(1ε+C)|||Z4|||21,γ+i3,41ε|||Zi|||21,γ+1ε(|||TγrW+|||21,γ+|||W+|||20+|||F+|||21,γ).\begin{split}&{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{4}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{2,\gamma}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{4}|_{x_{3}=0}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{\frac{3}{2},\gamma}\\ &\quad\lesssim\|Z_{4}|_{x_{3}=0}\|^{2}_{1,\gamma}+\left(\frac{1}{\varepsilon}+C\right){\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{4}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}+\sum_{i\neq 3,4}\frac{1}{\varepsilon}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{i}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}\\ &\quad\quad+\frac{1}{\varepsilon}\left({\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{r}W^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|W^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|F^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}\right).\end{split}

For j=1,2,5,13j=1,2,5\cdots,13 in (3.84), applying the symmetrizer (TγΛ)TγΛ,(T^{\gamma}_{\Lambda})^{\ast}T^{\gamma}_{\Lambda}, we have

γZj21,γCZj21,γ+1γZ422,γ+i1γZi21,γ+1γ(TγrW+21,γ+W+20+F+21,γ).\begin{split}\gamma\|Z_{j}\|^{2}_{1,\gamma}&\leq C\|Z_{j}\|^{2}_{1,\gamma}+\frac{1}{\gamma}\|Z_{4}\|^{2}_{2,\gamma}\\ &\quad+\sum_{i}\frac{1}{\gamma}\|Z_{i}\|^{2}_{1,\gamma}+\frac{1}{\gamma}\left(\|T^{\gamma}_{r}W^{+}\|^{2}_{1,\gamma}+\|W^{+}\|^{2}_{0}+\|F^{+}\|^{2}_{1,\gamma}\right).\end{split}

For the incoming mode Z3,Z_{3}, we take the symmetrizer TγΛ,T^{\gamma}_{\Lambda},

|||Z3|||21,γZ3,TγΛZ3|x3=0+1ε|||Z3|||20+1ε|||Zj|||21,γ+i3,41ε|||Zi|||20+1ε(|||TγrW+|||20+|||W+|||21,γ+|||F|||20).\begin{split}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{3}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}&\leq\Re\left\langle Z_{3},T^{\gamma}_{\Lambda}Z_{3}\right\rangle\big{|}_{x_{3}=0}+\frac{1}{\varepsilon}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{3}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}+\frac{1}{\varepsilon}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{j}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}+\sum_{i\neq 3,4}\frac{1}{\varepsilon}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{i}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}\\ &\quad+\frac{1}{\varepsilon}\left({\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{r}W^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|W^{+}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{-1,\gamma}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|F\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}\right).\end{split}

Combining all the estimates above, we obtain that

1γ|||Z4|||21,γ+γZj21,γ+γ|||Z3|||21,γ+1γZ4|x3=0232,γγZ3,TγΛZ3|x3=0+1γ(TγrW+21,γ+W+20+F+21,γ).\begin{split}&\frac{1}{\gamma}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{4}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}+\gamma\|Z_{j}\|^{2}_{1,\gamma}+\gamma{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{3}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}+\frac{1}{\gamma}\|Z_{4}|_{x_{3}=0}\|^{2}_{\frac{3}{2},\gamma}\\ &\quad\lesssim\gamma\Re\left\langle Z_{3},T^{\gamma}_{\Lambda}Z_{3}\right\rangle|_{x_{3}=0}+\frac{1}{\gamma}\left(\|T^{\gamma}_{r}W^{+}\|^{2}_{1,\gamma}+\|W^{+}\|^{2}_{0}+\|F^{+}\|^{2}_{1,\gamma}\right).\end{split}

For Z=(Z14,,Z26):=Tγχ1QlTγχp2WZ^{-}=(Z_{14},\cdots,Z_{26})^{\top}:=T^{\gamma}_{\chi_{1}Q^{l}}T^{\gamma}_{\chi_{p_{2}}}W^{-}, we obtain that

1γ|||Z17|||21,γ+γ|||Zj|||21,γ+γ|||Z16|||21,γ+1γZ17|x3=0232,γγZ16,TγΛZ16|x3=0+1γ(TγrW21,γ+W20+F21,γ).\begin{split}&\frac{1}{\gamma}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{17}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}+\gamma{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{j}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}+\gamma{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{16}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}+\frac{1}{\gamma}\|Z_{17}|_{x_{3}=0}\|^{2}_{\frac{3}{2},\gamma}\\ &\quad\lesssim\gamma\Re\left\langle Z_{16},T^{\gamma}_{\Lambda}Z_{16}\right\rangle|_{x_{3}=0}+\frac{1}{\gamma}\left(\|T^{\gamma}_{r}W^{-}\|^{2}_{1,\gamma}+\|W^{-}\|^{2}_{0}+\|F^{-}\|^{2}_{1,\gamma}\right).\end{split}

Now, we estimate γZ3,TγΛZ3|x3=0\gamma\Re\langle Z_{3},T^{\gamma}_{\Lambda}Z_{3}\rangle|_{x_{3}=0} and γZ16,TγΛZ16|x3=0\gamma\Re\langle Z_{16},T^{\gamma}_{\Lambda}Z_{16}\rangle|_{x_{3}=0}. These terms can be controlled by Zin|x3=021,γ.\|Z_{\rm in}|_{x_{3}=0}\|^{2}_{1,\gamma}. Using the boundary conditions (3.33) and using the fact that the Lopatinskii˘\breve{\mathrm{i}} determinant has a positive lower bound in the open neighourhood 𝒱1p1\mathcal{V}^{1}_{p_{1}}, we have

Zin|x3=021,γG21,γ+Zout|x3=021,γ+Wnc|x3=020.\|Z_{\rm in}|_{x_{3}=0}\|^{2}_{1,\gamma}\lesssim\|G\|^{2}_{1,\gamma}+\|Z_{\rm out}|_{x_{3}=0}\|^{2}_{1,\gamma}+\left\|W^{nc}|_{x_{3}=0}\right\|^{2}_{0}.

Putting together, we have

1γ|||Zout|||22,γ+γ|||Zc|||21,γ+γ|||Zin|||21,γ+1γZout|x3=0232,γ+Zin|x3=021,γG21,γ+Wnc|x3=020+1γ(TγrW21,γ+W20+F21,γ),\begin{split}&\frac{1}{\gamma}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{\rm out}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{2,\gamma}+\gamma{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{\rm c}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}+\gamma{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Z_{\rm in}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}+\frac{1}{\gamma}\|Z_{\rm out}|_{x_{3}=0}\|^{2}_{\frac{3}{2},\gamma}+\|Z_{\rm in}|_{x_{3}=0}\|^{2}_{1,\gamma}\\ &\quad\lesssim\|G\|^{2}_{1,\gamma}+\left\|W^{nc}|_{x_{3}=0}\right\|^{2}_{0}+\frac{1}{\gamma}\left(\|T^{\gamma}_{r}W\|^{2}_{1,\gamma}+\|W\|^{2}_{0}+\|F\|^{2}_{1,\gamma}\right),\end{split} (3.85)

where Zc=(Z1,Z2,Z5,,Z13,Z14,Z15,Z18,,Z26).Z_{\rm c}=(Z_{1},Z_{2},Z_{5},\cdots,Z_{13},Z_{14},Z_{15},Z_{18},\cdots,Z_{26})^{\top}.

3.9. Other Case

The remaining points are those where the Lopatinskii˘\breve{\mathrm{i}} determinant is non-zero, allowing the system to be reduced into a non-characteristic form. In this case, a Kreiss’s symmetrizer can be constructed. This corresponds to the good frequency case in [24]. Consider the cut-off symbol χre=1χ¯p1χ¯p2χ¯rt\chi_{re}=1-\bar{\chi}_{p_{1}}-\bar{\chi}_{p_{2}}-\bar{\chi}_{rt} in Γ0k\Gamma^{0}_{k} for any integer k,k, where χ¯p1\bar{\chi}_{p_{1}} is the sum of four cut-off functions χp1\chi_{p_{1}} for four neighborhood 𝒱ip1,i=1,2,3,4,\mathcal{V}^{i}_{p_{1}},i=1,2,3,4, χ¯p2\bar{\chi}_{p_{2}} is the sum of two cut-off functions χp2\chi_{p_{2}} for two neighborhood 𝒱1p2\mathcal{V}^{1}_{p_{2}} and 𝒱2p2\mathcal{V}^{2}_{p_{2}} and χ¯rt\bar{\chi}_{rt} is the sum of two cut-off functions χrt\chi_{rt} for the two neighborhood 𝒱irt,i=1,2.\mathcal{V}^{i}_{rt},i=1,2. χre\chi_{re} is also the cut-off function which is 0 near the roots of the Lopatinskii˘\breve{\mathrm{i}} determinant Υr\Upsilon_{r} and Υp.\Upsilon_{p}. We can construct an open neighborhood 𝒱re\mathcal{V}_{re} that contains the support of χre\chi_{re} but does not contain a small neighborhood of Υr\Upsilon_{r} and Υp.\Upsilon_{p}. Denote that

W±re:=TγreW±, and Wre:=(W+re,Wre).W^{\pm}_{re}:=T^{\gamma}_{re}W^{\pm},\text{ and }W_{re}:=(W^{+}_{re},W^{-}_{re})^{\top}.

Following the approach in [24], we can eliminate all components of W±reW^{\pm}_{re} in the kernel of I2.I_{2}. This leads to a differential equation for Wncre:=TγχreWncW^{nc}_{re}:=T^{\gamma}_{\chi_{re}}W^{nc} of the form

3Wncre=Tγχ2𝔸Wnc+Tγ𝔼Wnc+TγrW+0F+1W,\partial_{3}W^{nc}_{re}=T^{\gamma}_{\chi_{2}\mathbb{A}}W^{nc}+T^{\gamma}_{\mathbb{E}}W^{nc}+T^{\gamma}_{r}W+\mathcal{R}_{0}F+\mathcal{R}_{-1}W, (3.86)

where 𝔸=diag{𝔸r,𝔸l}\mathbb{A}=\mathrm{diag}\{\mathbb{A}^{r},\mathbb{A}^{l}\} and 𝔼,rΓ01\mathbb{E},r\in\Gamma^{0}_{1} which are supported in the place where χre(0,1).\chi_{re}\in(0,1). Using (3.31), similar to [20, 24], we have the following estimate

γ|||Wre|||21,γ+Wncre|x3=021,γG21,γ+Wnc|x3=020+1γ(|||F|||21,γ+|||W|||20+|||TγrW|||21,γ).\begin{split}&\gamma{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|W_{re}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}+\|W^{nc}_{re}|_{x_{3}=0}\|^{2}_{1,\gamma}\\ &\quad\lesssim\|G\|^{2}_{1,\gamma}+\left\|W^{nc}|_{x_{3}=0}\right\|^{2}_{0}+\frac{1}{\gamma}\left({\left|\kern-1.07639pt\left|\kern-1.07639pt\left|F\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|W\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{r}W\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}\right).\end{split} (3.87)

3.10. Proof of Theorem 3.1

Proof.

We now summarize all the estimates from the four cases discussed above. Taking γ\gamma sufficiently large and summing up (3.78), (3.83), (3.85),(3.87),we have that the left-hand side of the sum is bounded by

γ3|||W|||20+γ2Wnc|x3=020.\gamma^{3}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|W\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}+\gamma^{2}\left\|W^{nc}|_{x_{3}=0}\right\|^{2}_{0}.

The support of rr is contained in the following set:

{(t,x1,x2,x3,δ,η,η~)4+×Π:χ¯p1(0,1) or χ¯p2(0,1) or χ¯rt(0,1) or χ¯re(0,1)}.\left\{(t,x_{1},x_{2},x_{3},\delta,\eta,\tilde{\eta})\in{\mathbb{R}}^{4}_{+}\times\Pi:\bar{\chi}_{p_{1}}\in(0,1)\text{ or }\bar{\chi}_{p_{2}}\in(0,1)\text{ or }\bar{\chi}_{rt}\in(0,1)\text{ or }\bar{\chi}_{re}\in(0,1)\right\}.

Note that χ¯p1+χ¯p2+χ¯rt+χre=1\bar{\chi}_{p_{1}}+\bar{\chi}_{p_{2}}+\bar{\chi}_{rt}+\chi_{re}=1. Then r=0r=0 when χ¯p1,χ¯p2,χ¯rt\bar{\chi}_{p_{1}},\bar{\chi}_{p_{2}},\bar{\chi}_{rt}, or χre\chi_{re} equals 1.1. We also have that σ\sigma vanishes only at some points where χ¯p1=1\bar{\chi}_{p_{1}}=1 or χ¯rt=1.\bar{\chi}_{rt}=1. Thus σ\sigma has a lower bound on the support of rr and we write

r=ap2χ¯p2+areχre+ap1σχp11[Qr𝟎𝟎Ql]χ¯p1+artσχrt1[Qr𝟎𝟎Ql]χ¯rt,r=a_{p_{2}}\bar{\chi}_{p_{2}}+a_{re}\chi_{re}+a_{p_{1}}\sigma\chi^{p_{1}}_{1}\left[\begin{array}[]{cc}Q^{r}&{\mathbf{0}}\\ {\mathbf{0}}&Q^{l}\end{array}\right]\bar{\chi}_{p_{1}}+a_{rt}\sigma\chi^{rt}_{1}\left[\begin{array}[]{cc}Q^{r}&{\mathbf{0}}\\ {\mathbf{0}}&Q^{l}\end{array}\right]\bar{\chi}_{rt},

where ap2,are,ap1,arta_{p_{2}},a_{re},a_{p_{1}},a_{rt} all have block diagonal structures in Γ01.\Gamma^{0}_{1}. Let χp11\chi^{p_{1}}_{1} and χrt1\chi^{rt}_{1} denote the corresponding cut-off functions in Case 1 and 2. So the term 1γ|||TγrW|||21,γ\frac{1}{\gamma}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{r}W\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma} can be absorbed by

γ|||TγσTγχ¯p1W|||20+γ|||TγσTγχ¯rtW|||20+γ|||Tγχ¯p2W|||21,γ+γ|||TγχreW|||21,γ.\gamma{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{\sigma}T^{\gamma}_{\bar{\chi}_{p_{1}}}W\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}+\gamma{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{\sigma}T^{\gamma}_{\bar{\chi}_{rt}}W\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{0}+\gamma{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{\bar{\chi}_{p_{2}}}W\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}+\gamma{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|T^{\gamma}_{\chi_{re}}W\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}.

This term can also be controlled by the left-hand side of the sum of (3.78),(3.83),(3.85),(3.87). Hence it follows that

Wnc|x3=020C0(1γ3|||F~|||21,γ+1γ2G~21,γ),\left\|W^{nc}|_{x_{3}=0}\right\|^{2}_{0}\leq C_{0}\left(\frac{1}{\gamma^{3}}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\tilde{F}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{1,\gamma}+\frac{1}{\gamma^{2}}\|\tilde{G}\|^{2}_{1,\gamma}\right),

which completes the proof of Theorem 3.1. ∎

4. Well-posedness of the Linearized Problem

In this section we analyze the linearized problem for (2.11) and establish the well-posedness of solutions in the standard Sobolev spaces HmH^{m} for all integers mm.

4.1. Variable Coefficient Linearized Problem

We begin by linearizing problem (2.11) around a given basic state (Uˇ±,Φˇ±)(\check{U}^{\pm},\check{\varPhi}^{\pm}). We suppose that

supp(Vˇ±,Ψˇ±){Tt2T,x30,|x|2},\displaystyle\mathrm{supp}\,(\check{V}^{\pm},\check{\varPsi}^{\pm})\subset\{-T\leq t\leq 2T,\ x_{3}\geq 0,\ |x|\leq 2\}, (4.1)
Vˇ±W2,(Ω)+Ψˇ±W3,(Ω)K,\displaystyle\big{\|}\check{V}^{\pm}\big{\|}_{W^{2,\infty}(\Omega)}+\big{\|}\check{\varPsi}^{\pm}\big{\|}_{W^{3,\infty}(\Omega)}\leq K, (4.2)

for Vˇ±:=Uˇ±U¯±\check{V}^{\pm}:=\check{U}^{\pm}-\bar{U}^{\pm} and Ψˇ±:=Φˇ±Φ¯±\check{\varPsi}^{\pm}:=\check{\varPhi}^{\pm}-\bar{\varPhi}^{\pm}, where TT and KK are positive constants, and (U¯±,Φ¯±)(\bar{U}^{\pm},\bar{\varPhi}^{\pm}) is the background state given by (2.17). Moreover, we assume the basic state (Uˇ±,Φˇ±)(\check{U}^{\pm},\check{\varPhi}^{\pm}) satisfies (2.6), (2.11b), and (2.14), i.e.,

±3Φˇ±κ0>0\displaystyle\pm\partial_{3}\check{\varPhi}^{\pm}\geq{\kappa_{0}}>0  if x30,\displaystyle\qquad\text{ if }x_{3}\geq 0, (4.3a)
tΦˇ±+vˇ1±1Φˇ±+vˇ2±2Φˇ±vˇ3±=0\displaystyle\partial_{t}\check{\varPhi}^{\pm}+\check{v}_{1}^{\pm}\partial_{1}\check{\varPhi}^{\pm}+\check{v}_{2}^{\pm}\partial_{2}\check{\varPhi}^{\pm}-\check{v}_{3}^{\pm}=0 if x30,\displaystyle\text{ if }x_{3}\geq 0, (4.3b)
Fˇ3j±=Fˇ1j±1Φˇ±+Fˇ2j±2Φˇ±for j=1,2,3\displaystyle\check{F}_{3j}^{\pm}=\check{F}_{1j}^{\pm}\partial_{1}\check{\varPhi}^{\pm}+\check{F}_{2j}^{\pm}\partial_{2}\check{\varPhi}^{\pm}\quad\textrm{for }\ j=1,2,3 if x30,\displaystyle\text{ if }x_{3}\geq 0, (4.3c)
Φˇ+=Φˇ=φˇ\displaystyle\check{\varPhi}^{+}=\check{\varPhi}^{-}=\check{\varphi}  if x3=0,\displaystyle\qquad\text{ if }x_{3}=0, (4.3d)
𝔹(Uˇ+,Uˇ,φˇ)=𝟎\displaystyle\mathbb{B}\big{(}\check{U}^{+},\check{U}^{-},\check{\varphi}\big{)}={\mathbf{0}}  if x3=0,\displaystyle\qquad\text{ if }x_{3}=0, (4.3e)

for some constant κ0>0\kappa_{0}>0. Constraints (4.3b) and (4.3c) ensure that the rank of the boundary matrix for the linearized problem remains constant on the domain Ω¯\bar{\Omega}. Denote Uˇ:=(Uˇ+,Uˇ)\check{U}:=(\check{U}^{+},\check{U}^{-})^{\top}, Vˇ:=(Vˇ+,Vˇ)\check{V}:=(\check{V}^{+},\check{V}^{-})^{\top}, Φˇ:=(Φˇ+,Φˇ)\check{\varPhi}:=(\check{\varPhi}^{+},\check{\varPhi}^{-})^{\top}, and Ψˇ:=(Ψˇ+,Ψˇ)\check{\varPsi}:=(\check{\varPsi}^{+},\check{\varPsi}^{-})^{\top} for simplicity.

We need to absorb (4.3c) into (4.3e) and write the boundary into an enlarged form and later will analyze separately for the Nash-Moser iteration. The linearized operators can be defined as follows:

𝕃(U,Φ)(V,Ψ):=(L(U,Φ)+𝒞(U,Φ))V13Φ(L(U,Φ)Ψ)3U,\displaystyle\mathbb{L}^{\prime}(U,\varPhi)(V,\varPsi):=\left(L(U,\varPhi)+\mathcal{C}(U,\varPhi)\right)V-{{\frac{1}{\partial_{3}\varPhi}(L(U,\varPhi)\varPsi)\partial_{3}U}}, (4.4)
𝔹(Uˇ,φˇ)(V,ψ):=bˇψ+BˇV|x3=0,\displaystyle\mathbb{B}^{\prime}\big{(}\check{U},\check{\varphi}\big{)}(V,\psi):=\check{b}\nabla\psi+\check{B}V|_{x_{3}=0}, (4.5)

where V:=(V+,V)V:=(V^{+},V^{-})^{\top}, and 𝒞(U,Φ)\mathcal{C}(U,\varPhi), bˇ\check{b} and Bˇ\check{B} are defined separately by

𝒞(U,Φ)V\displaystyle\mathcal{C}(U,\varPhi)V :=(UiA1(U)1U+UiA2(U)2U+UiA~3(U,Φ)3U)Vi,\displaystyle:=\left(\partial_{U_{i}}A_{1}(U)\partial_{1}U+\partial_{U_{i}}A_{2}(U)\partial_{2}U+\partial_{U_{i}}\widetilde{A}_{3}(U,\varPhi)\partial_{3}U\right)V_{i}, (4.6)
bˇ(t,x1,x2)\displaystyle\check{b}(t,x_{1},x_{2}) :=[0(vˇ1+vˇ1)|x3=0(vˇ2+vˇ2)|x3=01vˇ1+|x3=0vˇ2+|x3=00000(Fˇ+11Fˇ11)|x3=0(Fˇ+21Fˇ21)|x3=00Fˇ+11|x3=0Fˇ21|x3=00(Fˇ+12Fˇ12)|x3=0(Fˇ+22Fˇ22)|x3=00Fˇ+12|x3=0Fˇ22|x3=00(Fˇ+13Fˇ13)|x3=0(Fˇ+23Fˇ23)|x3=00Fˇ+13|x3=0Fˇ23|x3=0],\displaystyle:=\begin{bmatrix}0&(\check{v}_{1}^{+}-\check{v}_{1}^{-})|_{x_{3}=0}&(\check{v}_{2}^{+}-\check{v}_{2}^{-})|_{x_{3}=0}\\ 1&\check{v}_{1}^{+}|_{x_{3}=0}&\check{v}_{2}^{+}|_{x_{3}=0}\\ 0&0&0\\ 0&(\check{F}^{+}_{11}-\check{F}^{-}_{11})|_{x_{3}=0}&(\check{F}^{+}_{21}-\check{F}^{-}_{21})|_{x_{3}=0}\\ 0&\check{F}^{+}_{11}|_{x_{3}=0}&\check{F}^{-}_{21}|_{x_{3}=0}\\ 0&(\check{F}^{+}_{12}-\check{F}^{-}_{12})|_{x_{3}=0}&(\check{F}^{+}_{22}-\check{F}^{-}_{22})|_{x_{3}=0}\\ 0&\check{F}^{+}_{12}|_{x_{3}=0}&\check{F}^{-}_{22}|_{x_{3}=0}\\ 0&(\check{F}^{+}_{13}-\check{F}^{-}_{13})|_{x_{3}=0}&(\check{F}^{+}_{23}-\check{F}^{-}_{23})|_{x_{3}=0}\\ 0&\check{F}^{+}_{13}|_{x_{3}=0}&\check{F}^{-}_{23}|_{x_{3}=0}\end{bmatrix}, (4.7)

and

Bˇ(t,x1,x2):=\displaystyle\check{B}(t,x_{1},x_{2}):=
[01φˇ2φˇ100000000001φˇ2φˇ100000000001φˇ2φˇ100000000001φˇ2φˇ10000000001000000000000100000000000000001φˇ2φˇ100000000001φˇ2φˇ100000000001φˇ2φˇ1000000000000000000000000001φˇ2φˇ100000000001φˇ2φˇ100000000001φˇ2φˇ100000000000000000000000001φˇ2φˇ1000000000001φˇ2φˇ10000000001φˇ2φˇ100000000000000],\displaystyle\ \left[\setcounter{MaxMatrixCols}{26}\begin{smallmatrix}0&\partial_{1}\check{\varphi}&\partial_{2}\check{\varphi}&-1&0&0&0&0&0&0&0&0&0&0&-\partial_{1}\check{\varphi}&-\partial_{2}\check{\varphi}&1&0&0&0&0&0&0&0&0&0\\ 0&\partial_{1}\check{\varphi}&\partial_{2}\check{\varphi}&-1&0&0&0&0&0&0&0&0&0&0&-\partial_{1}\check{\varphi}&-\partial_{2}\check{\varphi}&1&0&0&0&0&0&0&0&0&0\\ 1&0&0&0&0&0&0&0&0&0&0&0&0&-1&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&\partial_{1}\check{\varphi}&\partial_{2}\check{\varphi}&-1&0&0&0&0&0&0&0&0&0&0&-\partial_{1}\check{\varphi}&-\partial_{2}\check{\varphi}&1&0&0&0&0&0&0\\ 0&0&0&0&\partial_{1}\check{\varphi}&\partial_{2}\check{\varphi}&-1&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&\partial_{1}\check{\varphi}&\partial_{2}\check{\varphi}&-1&0&0&0&0&0&0&0&0&0&0&-\partial_{1}\check{\varphi}&-\partial_{2}\check{\varphi}&-1&0&0&0\\ 0&0&0&0&0&0&0&\partial_{1}\check{\varphi}&\partial_{2}\check{\varphi}&-1&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&\partial_{1}\check{\varphi}&\partial_{2}\check{\varphi}&-1&0&0&0&0&0&0&0&0&0&0&0&-\partial_{1}\check{\varphi}&-\partial_{2}\check{\varphi}&1\\ 0&0&0&0&0&0&0&0&0&\partial_{1}\check{\varphi}&\partial_{2}\check{\varphi}&-1&0&0&0&0&0&0&0&0&0&0&0&0&0&0\end{smallmatrix}\right], (4.8)

Motivated by Alinhac [1], we get

𝕃(Uˇ±,Φˇ±)(V±,Ψ±)=L(Uˇ±,Φˇ±)V˙±+𝒞(Uˇ±,Φˇ±)V˙±+Ψ±3Φˇ±3𝕃(Uˇ±,Φˇ±),\displaystyle\mathbb{L}^{\prime}(\check{U}^{\pm},\check{\varPhi}^{\pm})(V^{\pm},\varPsi^{\pm})=L(\check{U}^{\pm},\check{\varPhi}^{\pm})\dot{V}^{\pm}+\mathcal{C}(\check{U}^{\pm},\check{\varPhi}^{\pm})\dot{V}^{\pm}+\frac{\varPsi^{\pm}}{\partial_{3}\check{\varPhi}^{\pm}}\partial_{3}\mathbb{L}(\check{U}^{\pm},\check{\varPhi}^{\pm}),

where V˙±\dot{V}^{\pm} are the “good unknowns”:

V˙±:=V±3Uˇ±3Φˇ±Ψ±.\displaystyle\dot{V}^{\pm}:=V^{\pm}-\frac{\partial_{3}\check{U}^{\pm}}{\partial_{3}\check{\varPhi}^{\pm}}\varPsi^{\pm}. (4.9)

We now consider effective linear system:

𝕃e(Uˇ±,Φˇ±)V˙±:=L(Uˇ±,Φˇ±)V˙±+𝒞(Uˇ±,Φˇ±)V˙±=f±\displaystyle\mathbb{L}^{\prime}_{e}\big{(}\check{U}^{\pm},\check{\varPhi}^{\pm}\big{)}\dot{V}^{\pm}:=L\big{(}\check{U}^{\pm},\check{\varPhi}^{\pm}\big{)}\dot{V}^{\pm}+\mathcal{C}(\check{U}^{\pm},\check{\varPhi}^{\pm})\dot{V}^{\pm}=f^{\pm}\quad if x3>0,\displaystyle\text{ if }x_{3}>0, (4.10a)
𝔹e(Uˇ,Φˇ)(V˙,ψ):=bˇψ+bˇψ+BˇV˙|x3=0=g\displaystyle\mathbb{B}^{\prime}_{e}\big{(}\check{U},\check{\varPhi}\big{)}(\dot{V},\psi):=\check{b}\nabla\psi+\check{b}_{\natural}\psi+\check{B}\dot{V}|_{x_{3}=0}=g\quad if x3=0,\displaystyle\text{ if }x_{3}=0, (4.10b)
Ψ+=Ψ=ψ\displaystyle\varPsi^{+}=\varPsi^{-}=\psi\quad if x3=0,\displaystyle\text{ if }x_{3}=0, (4.10c)

where L(Uˇ±,Φˇ±)L(\check{U}^{\pm},\check{\varPhi}^{\pm}), 𝒞(Uˇ±,Φˇ±)\mathcal{C}(\check{U}^{\pm},\check{\varPhi}^{\pm}), bˇ\check{b}, and Bˇ\check{B} are given in (2.12), (4.6), (4.7) and (4.1), separately, V˙:=(V˙+,V˙)\dot{V}:=(\dot{V}^{+},\dot{V}^{-})^{\top}, and

bˇ(t,x1,x2):=Bˇ(t,x1,x2)[3Uˇ+/3Φˇ+3Uˇ/3Φˇ]|x3=0.\displaystyle\check{b}_{\natural}(t,x_{1},x_{2}):=\check{B}(t,x_{1},x_{2})\left.\begin{bmatrix}{\partial_{3}\check{U}^{+}}/{\partial_{3}\check{\varPhi}^{+}}\\[2.84526pt] {\partial_{3}\check{U}^{-}}/{\partial_{3}\check{\varPhi}^{-}}\end{bmatrix}\right|_{x_{3}=0}. (4.11)

Here, 𝒞(Uˇ±,Φˇ±)\mathcal{C}(\check{U}^{\pm},\check{\varPhi}^{\pm}) are two smooth functions of (Vˇ±,Vˇ±,Ψˇ±)(\check{V}^{\pm},\nabla\check{V}^{\pm},\nabla\check{\varPsi}^{\pm}) that vanish at the origin, bˇ\check{b} is a smooth function of trace Vˇ|x3=0,\check{V}|_{x_{3}=0}, while bˇ\check{b}_{\natural} is a smooth vector-function of (Vˇ|x3=0,Ψˇ|x3=0)(\nabla\check{V}|_{x_{3}=0},\nabla\check{\varPsi}|_{x_{3}=0}), which also vanishes at the origin. Additionally, the matrix Bˇ\check{B} is a smooth matrix function of φˇ\nabla\check{\varphi}. It is important to note that the boundary condition (4.10b) depends on the traces of V˙\dot{V} solely through (φˇ)V˙±|x3=0\mathbb{P}(\check{\varphi})\dot{V}^{\pm}|_{x_{3}=0}, where

(φˇ)V±:=(V˙nc+,V˙nc).\displaystyle\mathbb{P}(\check{\varphi})V^{\pm}:=\left(\dot{V}^{nc+},\quad\dot{V}^{nc-}\right)^{\top}. (4.12)

To transform the linearized problem (4.10) into a form with a constant diagonal boundary matrix, we introduce the following matrices:

R(U,Φ):=[00tanΦtanΦ00000000010c(ρ)ρ1Φc(ρ)ρ1Φ00000000001c(ρ)ρ1Φc(ρ)ρ2Φ0000000001Φ2Φc(ρ)ρc(ρ)ρ000000000000010000000000000100000000000001000000000000010000000000000100000000000001000000000000010000000000000100000000000001]R(U,\varPhi):=\,\left[\setcounter{MaxMatrixCols}{13}\begin{smallmatrix}0&0&\langle\partial_{\rm tan}\varPhi\rangle&\langle\partial_{\rm tan}\varPhi\rangle&0&0&0&0&0&0&0&0&0\\[2.84526pt] 1&0&-\frac{c(\rho)}{\rho}\partial_{1}\varPhi&\frac{c(\rho)}{\rho}\partial_{1}\varPhi&0&0&0&0&0&0&0&0&0\\[2.84526pt] 0&1&-\frac{c(\rho)}{\rho}\partial_{1}\varPhi&-\frac{c(\rho)}{\rho}\partial_{2}\varPhi&0&0&0&0&0&0&0&0&0\\[2.84526pt] \partial_{1}\varPhi&\partial_{2}\varPhi&\frac{c(\rho)}{\rho}&-\frac{c(\rho)}{\rho}&0&0&0&0&0&0&0&0&0\\[2.84526pt] 0&0&0&0&1&0&0&0&0&0&0&0&0\\[2.84526pt] 0&0&0&0&0&1&0&0&0&0&0&0&0\\[2.84526pt] 0&0&0&0&0&0&1&0&0&0&0&0&0\\[2.84526pt] 0&0&0&0&0&0&0&1&0&0&0&0&0\\[2.84526pt] 0&0&0&0&0&0&0&0&1&0&0&0&0\\[2.84526pt] 0&0&0&0&0&0&0&0&0&1&0&0&0\\[2.84526pt] 0&0&0&0&0&0&0&0&0&0&1&0&0\\[2.84526pt] 0&0&0&0&0&0&0&0&0&0&0&1&0\\[2.84526pt] 0&0&0&0&0&0&0&0&0&0&0&0&1\\ \end{smallmatrix}\right] (4.13)

and

A~0(U,Φ):=\displaystyle\widetilde{A}_{0}(U,\varPhi):=\, diag(1,1,2Φc(ρ)tanΦ,3Φc(ρ)tanΦ, 1, 1, 1, 1, 1, 1, 1, 1, 1),\displaystyle\mathrm{diag}\left(1,1,\,\frac{\partial_{2}\varPhi}{c(\rho)\langle\partial_{\rm tan}\varPhi\rangle},\,-\frac{\partial_{3}\varPhi}{c(\rho)\langle\partial_{\rm tan}\varPhi\rangle},\,1,\,1,\,1,\,1,\,1,\,1,\,1,\,1,\,1\right), (4.14)

where tanΦ:=(1+(1Φ)2+(2Φ)2)1/2\langle\partial_{\rm tan}\varPhi\rangle:=(1+(\partial_{1}\varPhi)^{2}+(\partial_{2}\varPhi)^{2})^{1/2} and c(ρ)c(\rho) is the sound speed given in (1.2). Then it follows from constraints (4.3b) and (4.3c) that

A~0R1A~2R(Uˇ±,Φˇ±)=I2.\displaystyle\widetilde{A}_{0}R^{-1}\widetilde{A}_{2}R\big{(}\check{U}^{\pm},\check{\varPhi}^{\pm}\big{)}=I_{2}.

Using the new variables

W±:=R1(Uˇ±,Φˇ±)V˙±,\displaystyle W^{\pm}:=R^{-1}\big{(}\check{U}^{\pm},\check{\varPhi}^{\pm}\big{)}\dot{V}^{\pm}, (4.15)

the problem (4.10) can be equivalently reformulated as

𝒜0±tW±+𝒜1±1W±+𝒜2±2W±+I23W±+𝒜4±W±=F±\displaystyle\mathcal{A}_{0}^{\pm}\partial_{t}W^{\pm}+\mathcal{A}_{1}^{\pm}\partial_{1}W^{\pm}+\mathcal{A}_{2}^{\pm}\partial_{2}W^{\pm}+I_{2}\partial_{3}W^{\pm}+\mathcal{A}_{4}^{\pm}W^{\pm}=F^{\pm}\quad if x3>0,\displaystyle\text{ if }x_{3}>0, (4.16a)
bˇψ+bˇψ+𝑩Wnc=g\displaystyle\check{b}\nabla\psi+\check{b}_{\natural}\psi+\bm{B}W^{\rm nc}=g\quad if x3=0,\displaystyle\text{ if }x_{3}=0, (4.16b)
Ψ+=Ψ=ψ\displaystyle\varPsi^{+}=\varPsi^{-}=\psi\quad if x3=0,\displaystyle\text{ if }x_{3}=0, (4.16c)

where

𝒜0±:=A~0(Uˇ±,Φˇ±),𝒜1±:=A~0R1A1R(Uˇ±,Φˇ±),𝒜2±:=A~0R1A2R(Uˇ±,Φˇ±),F±:=A~0R1(Uˇ±,Φˇ±)f±,𝒜4±:=A~0(R1tR+R1A11R+R1A22R+R1A~33R+R1𝒞R)(Uˇ±,Φˇ±).\begin{split}\mathcal{A}_{0}^{\pm}&:=\widetilde{A}_{0}\left(\check{U}^{\pm},\check{\varPhi}^{\pm}\right),\qquad\mathcal{A}_{1}^{\pm}:=\widetilde{A}_{0}R^{-1}A_{1}R\left(\check{U}^{\pm},\check{\varPhi}^{\pm}\right),\\ \mathcal{A}_{2}^{\pm}&:=\widetilde{A}_{0}R^{-1}A_{2}R\left(\check{U}^{\pm},\check{\varPhi}^{\pm}\right),\qquad F^{\pm}:=\widetilde{A}_{0}R^{-1}\left(\check{U}^{\pm},\check{\varPhi}^{\pm}\right)f^{\pm},\\ \mathcal{A}_{4}^{\pm}&:=\widetilde{A}_{0}\left(R^{-1}\partial_{t}R+R^{-1}A_{1}\partial_{1}R+R^{-1}A_{2}\partial_{2}R+R^{-1}{\widetilde{A}}_{3}\partial_{3}R+R^{-1}\mathcal{C}R\right)\left(\check{U}^{\pm},\check{\varPhi}^{\pm}\right).\end{split}

In (4.16b), the coefficients bˇ\check{b} and bˇ\check{b}_{\natural} are defined by (4.7) and (4.11) respectively. The matrix is given by

𝑩(t,x1,x2)\displaystyle\bm{B}(t,x_{1},x_{2}) :=[c(ρˇ)ρˇtanφˇ2c(ρˇ)ρˇtanφˇ2c(ρˇ)ρˇtanφˇ2c(ρˇ)ρˇtanφˇ2c(ρˇ)ρˇtanφˇ2c(ρˇ)ρˇtanφˇ200tanφˇtanφˇtanφˇtanφˇ]|x3=0,\displaystyle:=\left.\left[\begin{matrix}-\dfrac{c(\check{\rho})}{\check{\rho}}\langle\partial_{\rm tan}\check{\varphi}\rangle^{2}\phantom{\,}&\phantom{\,}\dfrac{c(\check{\rho})}{\check{\rho}}\langle\partial_{\rm tan}\check{\varphi}\rangle^{2}\phantom{\,}&\phantom{\,}\dfrac{c(\check{\rho})}{\check{\rho}}\langle\partial_{\rm tan}\check{\varphi}\rangle^{2}\phantom{\,}&\phantom{\,}-\dfrac{c(\check{\rho})}{\check{\rho}}\langle\partial_{\rm tan}\check{\varphi}\rangle^{2}\\[11.38109pt] -\dfrac{c(\check{\rho})}{\check{\rho}}\langle\partial_{\rm tan}\check{\varphi}\rangle^{2}&\dfrac{c(\check{\rho})}{\check{\rho}}\langle\partial_{\rm tan}\check{\varphi}\rangle^{2}&0&0\\[11.38109pt] \langle\partial_{\rm tan}\check{\varphi}\rangle&\langle\partial_{\rm tan}\check{\varphi}\rangle&-\langle\partial_{\rm tan}\check{\varphi}\rangle&-\langle\partial_{\rm tan}\check{\varphi}\rangle\end{matrix}\right]\right|_{x_{3}=0}, (4.17)

and Wnc:=(Wnc+,Wnc)W^{\mathrm{nc}}:=(W^{\mathrm{nc}}_{+},W^{\mathrm{nc}}_{-})^{\top} represents the non-characteristic part of W:=(W+,W)W:=(W^{+},W^{-})^{\top} with Wnc±:=(W3,W4,W16,W17)W^{\mathrm{nc}}_{\pm}:=(W_{3},W_{4},W_{16},W_{17})^{\top}. It is evident that 𝒜0±,\mathcal{A}_{0}^{\pm}, 𝒜1±\mathcal{A}_{1}^{\pm} and 𝒜2±\mathcal{A}_{2}^{\pm} are smooth functions of (Vˇ±,Ψˇ±)(\check{V}^{\pm},\nabla\check{\varPsi}^{\pm}), 𝒜4±\mathcal{A}_{4}^{\pm} are smooth matrix-functions of (Vˇ±,Vˇ±,Ψˇ±,2Ψˇ±)(\check{V}^{\pm},\nabla\check{V}^{\pm},\nabla\check{\varPsi}^{\pm},\nabla^{2}\check{\varPsi}^{\pm}), and 𝑩\bm{B} is a smooth matrix-function of (Vˇ|x3=0,φˇ)(\check{V}|_{x_{3}=0},\nabla\check{\varphi}).

We are now prepared to state the following theorem. The proof of the theorem will comprise the rest of the section.

Theorem 4.1.

Let T>0T>0 and mm\in\mathbb{N} with m2m\geq 2 being fixed. Suppose that the background state (2.17) satisfies (3.12) and (3.13), and that (Vˇ±,Ψˇ±)(\check{V}^{\pm},\check{\varPsi}^{\pm}) belong to Hm+3γ(ΩT)H^{m+3}_{\gamma}(\Omega_{T}) for all γ1\gamma\geq 1, and satisfy (4.1)–(4.3) and

(Vˇ±,Ψˇ±)H6γ(ΩT)+(Vˇ±,Ψˇ±)H5γ(ωT)K.\|(\check{V}^{\pm},\check{\varPsi}^{\pm})\|_{H^{6}_{\gamma}(\Omega_{T})}+\|(\check{V}^{\pm},\check{\varPsi}^{\pm})\|_{H^{5}_{\gamma}(\omega_{T})}\leq K. (4.18)

Suppose further that the source terms (f,g)Hm+1(ΩT)×Hm+1(ωT)(f,g)\in H^{m+1}(\Omega_{T})\times H^{m+1}(\omega_{T}) vanish in the past. Then there exist constants K0>0K_{0}>0 and γ01\gamma_{0}\geq 1 such that, if KK0K\leq K_{0} and γγ0\gamma\geq\gamma_{0}, the problem (4.10) has a unique solution (V˙±,ψ)Hm(ΩT)×Hm+1(ωT)(\dot{V}^{\pm},\psi)\in H^{m}(\Omega_{T})\times H^{m+1}(\omega_{T}) vanishing in the past and satisfying the tame estimates

V˙Hmγ(ΩT)+(φˇ)V˙±Hmγ(ωT)+ψHm+1γ(ωT)fHm+1γ(ΩT)+gHm+1γ(ωT)+(fH3γ(ΩT)+gH3γ(ωT))(Vˇ±,Ψˇ±)Hm+3γ(ΩT).\begin{split}&\|\dot{V}\|_{H^{m}_{\gamma}(\Omega_{T})}+\|\mathbb{P}(\check{\varphi})\dot{V}^{\pm}\|_{H^{m}_{\gamma}(\omega_{T})}+\|\psi\|_{H^{m+1}_{\gamma}(\omega_{T})}\\ &\quad\lesssim\|f\|_{H^{m+1}_{\gamma}(\Omega_{T})}+\|g\|_{H^{m+1}_{\gamma}(\omega_{T})}+\left(\|f\|_{H^{3}_{\gamma}(\Omega_{T})}+\|g\|_{H^{3}_{\gamma}(\omega_{T})}\right)\|(\check{V}^{\pm},\check{\varPsi}^{\pm})\|_{H^{m+3}_{\gamma}(\Omega_{T})}.\end{split} (4.19)

When ff and gg vanish in the past (which is equivalent to zero initial data), Theorem 4.1 applies. The case of general initial data will be addressed in Section 5, where approximate solutions are constructed prior to applying the Nash-Moser iteration scheme.

4.2. Well-Posedness in L2L^{2}

We recall the following L2L^{2} a priori energy estimate for the linearized problem (4.10), as derived in Theorem 3.1.

Theorem 4.2.

Suppose that the background state (U¯±,Φ¯±)(\bar{U}^{\pm},\bar{\varPhi}^{\pm}) defined by (2.17) satisfies (3.12) and (3.13), and the basic state (Uˇ±,Φˇ±)\big{(}\check{U}^{\pm},\check{\varPhi}^{\pm}\big{)} satisfies (4.1)–(4.3). Then there exist constants K0>0K_{0}>0 and γ01\gamma_{0}\geq 1 such that, if KK0K\leq K_{0} and γγ0\gamma\geq\gamma_{0}, then

γV˙L2γ(Ω)2+(φˇ)V˙L2γ(Ω)2+ψH1γ(3)2γ3|||𝕃e(Uˇ±,Φˇ±)V˙±|||L2(Hγ1)2+γ2𝔹e(Uˇ,Φˇ)(V˙,ψ)H1γ(3)2\begin{split}&\gamma\|\dot{V}\|_{L^{2}_{\gamma}(\Omega)}^{2}+\|\mathbb{P}(\check{\varphi})\dot{V}\|_{L^{2}_{\gamma}(\partial\Omega)}^{2}+\|\psi\|_{H^{1}_{\gamma}(\mathbb{R}^{3})}^{2}\\ &\qquad\lesssim\gamma^{-3}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbb{L}^{\prime}_{e}\left(\check{U}^{\pm},\check{\varPhi}^{\pm}\right)\dot{V}^{\pm}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{L^{2}(H_{\gamma}^{1})}^{2}+\gamma^{-2}\left\|\mathbb{B}_{e}^{\prime}\left(\check{U},\check{\varPhi}\right)(\dot{V},\psi)\right\|_{H^{1}_{\gamma}(\mathbb{R}^{3})}^{2}\end{split} (4.20)

for all (V˙,ψ)H2γ(Ω)×H2γ(3)(\dot{V},\psi)\in H^{2}_{\gamma}(\Omega)\times H^{2}_{\gamma}(\mathbb{R}^{3}), where the operators (φˇ)\mathbb{P}(\check{\varphi}), 𝕃e\mathbb{L}^{\prime}_{e}, and 𝔹e\mathbb{B}^{\prime}_{e} are defined by (4.12), (4.10a), and (4.10b), respectively.

System (4.10a) is symmetrizable hyperbolic, with coefficients satisfying the regularity assumptions by Coulombel [22]. Consequently, it is necessary to construct a dual problem that satisfies an appropriate energy estimate. To this end, we define

ςˇ1±:=ρˇ±3Φˇ±,ςˇ2±:=c(ρˇ±)21φˇ2ρˇ±3Φˇ±,ςˇ3±:=c(ρˇ±)22φˇ2ρˇ±3Φˇ±,ςˇ4±:=c(ρˇ±)22ρˇ±3Φˇ±.\check{\varsigma}_{1}^{\pm}:=-\frac{\check{\rho}^{\pm}}{\partial_{3}\check{\varPhi}^{\pm}},\qquad\check{\varsigma}_{2}^{\pm}:=-\frac{c(\check{\rho}^{\pm})^{2}\partial_{1}\check{\varphi}}{2\check{\rho}^{\pm}\partial_{3}\check{\varPhi}^{\pm}},\qquad\check{\varsigma}_{3}^{\pm}:=-\frac{c(\check{\rho}^{\pm})^{2}\partial_{2}\check{\varphi}}{2\check{\rho}^{\pm}\partial_{3}\check{\varPhi}^{\pm}},\qquad\check{\varsigma}_{4}^{\pm}:=\frac{c(\check{\rho}^{\pm})^{2}}{2\check{\rho}^{\pm}\partial_{3}\check{\varPhi}^{\pm}}.

We use (4.3b) and (4.3c) to calculate

Bˇ1Bˇ+Dˇ1Dˇ=diag(A~3(Uˇ+,Φˇ+),A~3(Uˇ,Φˇ))|x3=0,\check{B}_{1}^{\top}\check{B}+\check{D}_{1}^{\top}\check{D}=\mathrm{diag}\,\big{(}\widetilde{A}_{3}(\check{U}^{+},\check{\varPhi}^{+}),\,\widetilde{A}_{3}(\check{U}^{-},\check{\varPhi}^{-})\big{)}\big{|}_{x_{3}=0},

where Bˇ\check{B} is given in (4.1). Following [39, Section 3.2], we define the dual problem for (4.10) as:

{𝕃e(Uˇ±,Φˇ±)U±=f±, if x3>0,Dˇ1U=𝟎,div(bˇBˇ1U)bˇBˇ1U=𝟎, if x3=0,\displaystyle\begin{cases}\mathbb{L}^{\prime}_{e}\big{(}\check{U}^{\pm},\check{\varPhi}^{\pm}\big{)}^{\ast}U^{\pm}=f^{\ast}_{\pm},&\text{ if }x_{3}>0,\\ \check{D}_{1}U={\mathbf{0}},\quad\mathrm{div}(\check{b}^{\top}\check{B}_{1}U)-\check{b}_{\natural}\check{B}_{1}U={\mathbf{0}},&\text{ if }x_{3}=0,\end{cases}

where bˇ\check{b}, bˇ\check{b}_{\natural} are given in (4.7), (4.11) respectively. Bˇ1\check{B}_{1}, and Dˇ1\check{D}_{1} are defined as follows:

Bˇ1\displaystyle\check{B}_{1}^{\top} :=[0000000000000ςˇ1000000000000ςˇ1+000000000000ςˇ10000000000000ςˇ2+ςˇ3+ςˇ4+000000000ςˇ2ςˇ3ςˇ40000000000],\displaystyle:=\left[\setcounter{MaxMatrixCols}{26}\begin{smallmatrix}0&0&0&0&0&0&0&0&0&0&0&0&0&-\check{\varsigma}_{1}^{-}&0&0&0&0&0&0&0&0&0&0&0&0\\ \check{\varsigma}_{1}^{+}&0&0&0&0&0&0&0&0&0&0&0&0&-\check{\varsigma}_{1}^{-}&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&\check{\varsigma}_{2}^{+}&\check{\varsigma}_{3}^{+}&\check{\varsigma}_{4}^{+}&0&0&0&0&0&0&0&0&0&-\check{\varsigma}_{2}^{-}&-\check{\varsigma}_{3}^{-}&-\check{\varsigma}_{4}^{-}&0&0&0&0&0&0&0&0&0&0\\ \end{smallmatrix}\right],
Dˇ1\displaystyle\check{D}_{1}^{\top} :=[00000000000000000000000000000000000000000000000000000ςˇ2ςˇ3ςˇ40000000000000000000000],\displaystyle:=\left[\setcounter{MaxMatrixCols}{26}\begin{smallmatrix}0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&\check{\varsigma}_{2}^{-}&\check{\varsigma}_{3}^{-}&\check{\varsigma}_{4}^{-}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ \end{smallmatrix}\right],

and the symbol div\mathrm{div} represents the divergence operator in 3\mathbb{R}^{3}. 𝕃e(Uˇ±,Φˇ±)\mathbb{L}_{e}^{\prime}\big{(}\check{U}^{\pm},\check{\varPhi}^{\pm}\big{)}^{*} are the adjoints of 𝕃e(Uˇ±,Φˇ±)\mathbb{L}_{e}^{\prime}\big{(}\check{U}^{\pm},\check{\varPhi}^{\pm}\big{)}, respectively.

Using the same analysis as in [25, Section 3.4], we can obtain the well-posedness of the linearized problem (4.10) in L2L^{2}.

Theorem 4.3.

Let T>0T>0 be fixed. Suppose that fL2(+;H1(ωT))f\in L^{2}(\mathbb{R}_{+};H^{1}(\omega_{T})) and gH1(ωT)g\in H^{1}(\omega_{T}) vanish in the past and all the hypotheses in Theorem 4.2 are satisfied. Then there exist constants K0>0K_{0}>0 and γ01\gamma_{0}\geq 1 such that, if KK0K\leq K_{0} and γγ0\gamma\geq\gamma_{0}, then there exists a unique solution (V˙+,V˙,ψ)L2(ΩT)×L2(ΩT)×H1(ωT)(\dot{V}^{+},\dot{V}^{-},\psi)\in L^{2}(\Omega_{T})\times L^{2}(\Omega_{T})\times H^{1}(\omega_{T}) to the problem (4.10a)–(4.10b) that vanishes in the past and satisfies

γV˙2L2γ(Ωt)+(φˇ)V˙2L2γ(ωt)+ψ2H1γ(ωt)γ3|||f|||2L2(Hγ1(ωt))+γ2g2H1γ(ωt)\gamma\|\dot{V}\|^{2}_{L^{2}_{\gamma}(\Omega_{t})}+\|\mathbb{P}(\check{\varphi})\dot{V}\|^{2}_{L^{2}_{\gamma}(\omega_{t})}+\|\psi\|^{2}_{H^{1}_{\gamma}(\omega_{t})}\lesssim\gamma^{-3}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|f\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{L^{2}(H_{\gamma}^{1}(\omega_{t}))}+\gamma^{-2}\|g\|^{2}_{H^{1}_{\gamma}(\omega_{t})} (4.21)

for all γγ0\gamma\geq\gamma_{0} and t[0,T]t\in[0,T].

For the reformulated problem (4.16), Theorem 4.3 implies that

γW2L2γ(ΩT)+Wnc2L2γ(ωT)+ψ2H1γ(ωT)γ3|||F±|||2L2(H1γ(ωT))+γ2g2H1γ(ωT).\gamma\|W\|^{2}_{L^{2}_{\gamma}(\Omega_{T})}+\|W^{\mathrm{nc}}\|^{2}_{L^{2}_{\gamma}(\omega_{T})}+\|\psi\|^{2}_{H^{1}_{\gamma}(\omega_{T})}\lesssim\gamma^{-3}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|F^{\pm}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{L^{2}(H^{1}_{\gamma}(\omega_{T}))}+\gamma^{-2}\|g\|^{2}_{H^{1}_{\gamma}(\omega_{T})}. (4.22)

For any nonnegative integer mm, a generic smooth matrix-valued function of {(αVˇ,αΨˇ):|α|m}\{(\partial^{\alpha}\check{V},\partial^{\alpha}\check{\varPsi}):|\alpha|\leq m\} is denoted by cˇm\check{\rm c}_{m}, and we write cˇ¯m\underline{\check{\rm c}}_{m} to denote such a function that vanishes at the origin. For example, the equations for ρ˙±\dot{\rho}^{\pm} in (4.10a) can be rewritten as:

(tΦˇ±+vˇ±Φˇ±)ρ˙±+ρˇ±Φˇ±v˙±=cˇ0f+cˇ¯1V˙.\displaystyle(\partial_{t}^{\check{\varPhi}^{\pm}}+\check{v}^{\pm}_{\ell}\partial_{\ell}^{\check{\varPhi}^{\pm}})\dot{\rho}^{\pm}+\check{\rho}^{\pm}\partial_{\ell}^{\check{\varPhi}^{\pm}}\dot{v}_{\ell}^{\pm}=\check{\rm c}_{0}{f}+\underline{\check{\rm c}}_{1}\dot{V}. (4.23)

The precise forms of cˇm\check{\rm c}_{m} and cˇ¯m\underline{\check{\rm c}}_{m} may vary from line to line.

4.3. Tangential Derivatives

The following lemma provides an estimate for the tangential derivatives:

Lemma 4.1.

If the hypotheses of Theorem 4.1 hold, then there exists a constant γm1\gamma_{m}\geq 1, independent of TT, such that

γ1/2|||W|||L2(Hmγ(ωT))+WncHmγ(ωT)+ψHm+1γ(ωT)\displaystyle\gamma^{1/2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|W\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{L^{2}(H^{m}_{\gamma}(\omega_{T}))}+\|W^{\mathrm{nc}}\|_{H^{m}_{\gamma}(\omega_{T})}+\|\psi\|_{H^{m+1}_{\gamma}(\omega_{T})}
γ3/2|||F±|||L2(Hm+1γ(ωT))+γ3/2WL(ΩT)(Vˇ,Ψˇ)Hm+3γ(ΩT)\displaystyle\quad\lesssim\gamma^{-{3}/{2}}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|F^{\pm}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{L^{2}(H^{m+1}_{\gamma}(\omega_{T}))}+\gamma^{-{3}/{2}}\|W\|_{L^{\infty}(\Omega_{T})}\|(\check{V},\check{\varPsi})\|_{H^{m+3}_{\gamma}(\Omega_{T})}
+γ1gHm+1γ(ωT)+γ1(Wnc,ψ)L(ωT)(Vˇ,Ψˇ)Hm+2γ(ωT),\displaystyle\quad\quad\,+\gamma^{-1}\|g\|_{H^{m+1}_{\gamma}(\omega_{T})}+\gamma^{-1}\|(W^{\mathrm{nc}},\psi)\|_{L^{\infty}(\omega_{T})}\|(\check{V},\check{\varPsi})\|_{{H^{m+2}_{\gamma}(\omega_{T})}}, (4.24)

for all γγm\gamma\geq\gamma_{m} and solutions (W,ψ)Hm+2γ(ΩT)×Hm+2γ(ωT)(W,\psi)\in H^{m+2}_{\gamma}(\Omega_{T})\times H^{m+2}_{\gamma}(\omega_{T}) to the problem (4.16).

Proof.

We will follow the approach of [25, Proposition 1] to consider the enlarged system. However, for estimating the source terms, we will use the Moser-type calculus inequalities (2.22)–(2.25) instead of the Gagliardo–Nirenberg and Hölder inequalities used in [25, Proposition 1].

Let \ell\in\mathbb{N} with 1m1\leq\ell\leq m. Let α=(α0,α1,α2,0)4\alpha=(\alpha_{0},\alpha_{1},\alpha_{2},0)\in\mathbb{N}^{4} with |α|=|\alpha|=\ell so that α=tα01α12α2\partial^{\alpha}=\partial_{t}^{\alpha_{0}}\partial_{1}^{\alpha_{1}}\partial_{2}^{\alpha_{2}} is a tangential derivative satisfying α0+α1+α2=\alpha_{0}+\alpha_{1}+\alpha_{2}=\ell. We then apply the operator α\partial^{\alpha} to (4.16a) to obtain

𝒜0±tαW±+𝒜1±1αW±+𝒜2±2αW±+I23αW±+𝒜4±αW±+|β|=1,βαCα,β(β𝒜0±tαβW±+β𝒜1±1αβW±+β𝒜2±2αβW±)=α±,\begin{split}&\mathcal{A}_{0}^{\pm}\partial_{t}\partial^{\alpha}W^{\pm}+\mathcal{A}_{1}^{\pm}\partial_{1}\partial^{\alpha}W^{\pm}+\mathcal{A}_{2}^{\pm}\partial_{2}\partial^{\alpha}W^{\pm}+I_{2}\partial_{3}\partial^{\alpha}W^{\pm}+\mathcal{A}_{4}^{\pm}\partial^{\alpha}W^{\pm}\\ &\quad+\sum_{\begin{subarray}{c}|\beta|=1,\,\beta\leq\alpha\end{subarray}}C_{\alpha,\beta}\big{(}\partial^{\beta}\mathcal{A}_{0}^{\pm}\partial_{t}\partial^{\alpha-\beta}W^{\pm}+\partial^{\beta}\mathcal{A}_{1}^{\pm}\partial_{1}\partial^{\alpha-\beta}W^{\pm}+\partial^{\beta}\mathcal{A}_{2}^{\pm}\partial_{2}\partial^{\alpha-\beta}W^{\pm}\big{)}=\mathscr{F}^{\alpha}_{\pm},\end{split} (4.25)

where

α±:=αF±+0<βαCα,ββ𝒜4±αβW±+|β|2,βαCα,β(β𝒜0±tαβW±+β𝒜1±1αβW±+β𝒜2±2αβW±).\begin{split}\mathscr{F}^{\alpha}_{\pm}:=&\,\partial^{\alpha}F^{\pm}+\sum_{\begin{subarray}{c}0<\beta\leq\alpha\end{subarray}}C_{\alpha,\beta}\partial^{\beta}\mathcal{A}_{4}^{\pm}\partial^{\alpha-\beta}W^{\pm}\\ &+\sum_{\begin{subarray}{c}|\beta|\geq 2,\,\beta\leq\alpha\end{subarray}}C_{\alpha,\beta}\big{(}\partial^{\beta}\mathcal{A}_{0}^{\pm}\partial_{t}\partial^{\alpha-\beta}W^{\pm}+\partial^{\beta}\mathcal{A}_{1}^{\pm}\partial_{1}\partial^{\alpha-\beta}W^{\pm}+\partial^{\beta}\mathcal{A}_{2}^{\pm}\partial_{2}\partial^{\alpha-\beta}W^{\pm}\big{)}.\end{split}

Similarly, from (4.16b) we have

bˇαψ+bˇαψ+𝑩αWnc=𝒢αon ωT,\check{b}\nabla\partial^{\alpha}\psi+\check{b}_{\natural}\partial^{\alpha}\psi+\bm{B}\partial^{\alpha}W^{\rm nc}=\mathscr{G}^{\alpha}\quad\textrm{on }\ \omega_{T}, (4.26)

where

𝒢α:=αg[α,bˇ]ψ[α,bˇ]ψ[α,𝑩]Wnc.\mathscr{G}^{\alpha}:=\partial^{\alpha}g-[\partial^{\alpha},\check{b}]\nabla\psi-[\partial^{\alpha},\check{b}_{\natural}]\psi-[\partial^{\alpha},\bm{B}]W^{\rm nc}.

Since the terms involving tangential derivatives of order \ell in (4.25) do not solely contain αW±\partial^{\alpha}W^{\pm}, as in [25, Proposition 1], we write an enlarged system that accounts for all the tangential derivatives of order \ell. This allows us to apply the L2L^{2} a priori estimate of Theorem 4.2. It is important to note that the last term on the left-hand side of (4.25) cannot be treated simply as source terms due to the loss of derivatives in (4.20). We define

W()±:={tα01α12α2W±:α0+α1+α2=},ψ():={tα01α12α2ψ:α0+α1+α2=},{W}^{(\ell)}_{\pm}:=\left\{\partial_{t}^{\alpha_{0}}\partial_{1}^{\alpha_{1}}\partial_{2}^{\alpha_{2}}W^{\pm}:\alpha_{0}+\alpha_{1}+\alpha_{2}=\ell\right\},\quad{\psi}^{(\ell)}:=\left\{\partial_{t}^{\alpha_{0}}\partial_{1}^{\alpha_{1}}\partial_{2}^{\alpha_{2}}\psi:\alpha_{0}+\alpha_{1}+\alpha_{2}=\ell\right\},

and from (4.25)–(4.26), we obtain the following system:

𝒜0±tW()±+𝒜1±1W()±+𝒜2±2W()±+3W()±+𝒞±W()±=()±,\displaystyle\mathscr{A}_{0}^{\pm}\partial_{t}W^{(\ell)}_{\pm}+\mathscr{A}_{1}^{\pm}\partial_{1}W^{(\ell)}_{\pm}+\mathscr{A}_{2}^{\pm}\partial_{2}W^{(\ell)}_{\pm}+\mathscr{I}\partial_{3}W^{(\ell)}_{\pm}+\mathscr{C}^{\pm}W^{(\ell)}_{\pm}=\mathscr{F}^{(\ell)}_{\pm}, (4.27a)
ψ()+ψ()+W()nc=𝒢(),\displaystyle\mathscr{B}\nabla\psi^{(\ell)}+\mathscr{B}_{\natural}\psi^{(\ell)}+\mathscr{M}W^{(\ell)}_{\rm nc}=\mathscr{G}^{(\ell)}, (4.27b)

where 𝒜0±\mathscr{A}_{0}^{\pm}, 𝒜1±\mathscr{A}_{1}^{\pm}, 𝒜2±\mathscr{A}_{2}^{\pm} and \mathscr{I} are block diagonal matrices with blocks 𝒜0±\mathcal{A}_{0}^{\pm}, 𝒜1±\mathcal{A}_{1}^{\pm}, 𝒜2±\mathcal{A}_{2}^{\pm} and 2\mathcal{I}_{2}, respectively. Matrices 𝒞±\mathscr{C}^{\pm} belong to W1,(Ω)W^{1,\infty}(\Omega). The source terms ()±\mathscr{F}^{(\ell)}_{\pm} and 𝒢()\mathscr{G}^{(\ell)} consist of α±\mathscr{F}^{\alpha}_{\pm} and 𝒢α\mathscr{G}^{\alpha} for all α=(α0,α1,α2,0)\alpha=(\alpha_{0},\alpha_{1},\alpha_{2},0) with |α|=|\alpha|=\ell, respectively. The enlarged problem (4.27) satisfies an energy estimate similar to (4.22), i.e.,

γ1/2W()L2γ(ΩT)+W()ncL2γ(ωT)+ψ()H1γ(ωT)γ3/2|||()|||L2(H1γ(ωT))+γ1𝒢()H1γ(ωT).\begin{split}&{\gamma}^{1/2}\|W^{(\ell)}\|_{L^{2}_{\gamma}(\Omega_{T})}+\|W^{(\ell)}_{\mathrm{nc}}\|_{L^{2}_{\gamma}(\omega_{T})}+\|\psi^{(\ell)}\|_{H^{1}_{\gamma}(\omega_{T})}\\ &\qquad\qquad\qquad\lesssim\gamma^{-{3}/{2}}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathscr{F}^{(\ell)}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{L^{2}(H^{1}_{\gamma}(\omega_{T}))}+\gamma^{-1}\|\mathscr{G}^{(\ell)}\|_{H^{1}_{\gamma}(\omega_{T})}.\end{split} (4.28)

Now, by using Moser-type calculus inequalities (2.22)–(2.25), we estimate the source terms ()±\mathscr{F}^{(\ell)}_{\pm} and 𝒢().\mathscr{G}^{(\ell)}. First, we have from definition,

|||αF|||L2(H1γ(ωT))(γαF,tαF,1αF,2αF)L2γ(ΩT)|||F|||L2(H+1γ(ωT)),αgH1γ(ωT)gH+1γ(ωT).\begin{split}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\partial^{\alpha}F\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{L^{2}(H^{1}_{\gamma}(\omega_{T}))}&\lesssim\|(\gamma\partial^{\alpha}F,\partial_{t}\partial^{\alpha}F,\partial_{1}\partial^{\alpha}F,\partial_{2}\partial^{\alpha}F)\|_{L^{2}_{\gamma}(\Omega_{T})}\lesssim{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|F\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{L^{2}(H^{\ell+1}_{\gamma}(\omega_{T}))},\\ \|\partial^{\alpha}g\|_{H^{1}_{\gamma}(\omega_{T})}&\lesssim\|g\|_{H^{\ell+1}_{\gamma}(\omega_{T})}.\end{split}

For 0<βα0<\beta\leq\alpha, we obtain

β𝒜4αβWH1γ(ωT)(γβ𝒜4αβW,t,x1,x2(β𝒜4αβW))L2γ(ωT).\|\partial^{\beta}\mathcal{A}_{4}\partial^{\alpha-\beta}W\|_{H^{1}_{\gamma}(\omega_{T})}\lesssim\|(\gamma\partial^{\beta}\mathcal{A}_{4}\partial^{\alpha-\beta}W,\nabla_{t,x_{1},x_{2}}(\partial^{\beta}\mathcal{A}_{4}\partial^{\alpha-\beta}W))\|_{L^{2}_{\gamma}(\omega_{T})}. (4.29)

Applying Moser-type calculus inequality (2.22) yields that

β𝒜4αβWL2γ(ωT)=ββ(β𝒜4)αβWL2γ(ωT)β𝒜4L(ωT)WH1γ(ωT)+β𝒜4H1γ(ωT)WL(ωT)WH1γ(ωT)+(Vˇ,Ψˇ)H+2γ(ωT)WL(ωT),\begin{split}&\|\partial^{\beta}\mathcal{A}_{4}\partial^{\alpha-\beta}W\|_{L^{2}_{\gamma}(\omega_{T})}=\|\partial^{\beta-\beta^{\prime}}(\partial^{\beta^{\prime}}\mathcal{A}_{4})\partial^{\alpha-\beta}W\|_{L^{2}_{\gamma}(\omega_{T})}\\ &\quad\lesssim\|\partial^{\beta^{\prime}}\mathcal{A}_{4}\|_{L^{\infty}(\omega_{T})}\|W\|_{H^{\ell-1}_{\gamma}(\omega_{T})}+\|\partial^{\beta^{\prime}}\mathcal{A}_{4}\|_{H^{\ell-1}_{\gamma}(\omega_{T})}\|W\|_{L^{\infty}(\omega_{T})}\\ &\quad\lesssim\|W\|_{H^{\ell-1}_{\gamma}(\omega_{T})}+\|(\check{V},\check{\varPsi})\|_{H^{\ell+2}_{\gamma}(\omega_{T})}\|W\|_{L^{\infty}(\omega_{T})},\end{split} (4.30)

where ββ\beta^{\prime}\leq\beta with |β|=1|\beta^{\prime}|=1. Moreover, we have

t,x1,x2(β𝒜4αβW)L2γ(ωT)WHγ(ωT)+(Vˇ,Ψˇ)H+3γ(ωT)WL(ωT).\|\nabla_{t,x_{1},x_{2}}(\partial^{\beta}\mathcal{A}_{4}\partial^{\alpha-\beta}W)\|_{L^{2}_{\gamma}(\omega_{T})}\lesssim\|W\|_{H^{\ell}_{\gamma}(\omega_{T})}+\|(\check{V},\check{\varPsi})\|_{H^{\ell+3}_{\gamma}(\omega_{T})}\|W\|_{L^{\infty}(\omega_{T})}.

Combining (4.29) and (4.30), we have

|||β𝒜4αβW|||L2(H1γ(ωT))|||W|||L2(Hγ(ωT))+(Vˇ,Ψˇ)H+3γ(ΩT)WL(ΩT).{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\partial^{\beta}\mathcal{A}_{4}\partial^{\alpha-\beta}W\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{L^{2}(H^{1}_{\gamma}(\omega_{T}))}\lesssim{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|W\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{L^{2}(H^{\ell}_{\gamma}(\omega_{T}))}+\|(\check{V},\check{\varPsi})\|_{H^{\ell+3}_{\gamma}(\Omega_{T})}\|W\|_{L^{\infty}(\Omega_{T})}. (4.31)

For βα\beta\leq\alpha with |α|2|\alpha|\geq 2, similar to (4.31), we use (2.22) to derive

|||β𝒜0tαβW|||L2(H1γ(ωT))+|||β𝒜11αβW|||L2(H1γ(ωT))+|||β𝒜22αβW|||L2(H1γ(ωT))\displaystyle{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\partial^{\beta}\mathcal{A}_{0}\partial_{t}\partial^{\alpha-\beta}W\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{L^{2}(H^{1}_{\gamma}(\omega_{T}))}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\partial^{\beta}\mathcal{A}_{1}\partial_{1}\partial^{\alpha-\beta}W\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{L^{2}(H^{1}_{\gamma}(\omega_{T}))}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\partial^{\beta}\mathcal{A}_{2}\partial_{2}\partial^{\alpha-\beta}W\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{L^{2}(H^{1}_{\gamma}(\omega_{T}))}
|||W|||L2(Hγ(ωT))+(Vˇ,Ψˇ)H+3γ(ΩT)WL(ΩT).\displaystyle\qquad\lesssim{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|W\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{L^{2}(H^{\ell}_{\gamma}(\omega_{T}))}+\|(\check{V},\check{\varPsi})\|_{H^{\ell+3}_{\gamma}(\Omega_{T})}\|W\|_{L^{\infty}(\Omega_{T})}. (4.32)

Combining (4.3), (4.31), and (4.32) leads to

|||()|||L2(H1γ(ωT))|||F|||L2(H+1γ(ωT))+|||W|||L2(Hγ(ωT))+(Vˇ,Ψˇ)H+3γ(ΩT)WL(ΩT).{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathscr{F}^{(\ell)}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{L^{2}(H^{1}_{\gamma}(\omega_{T}))}\lesssim{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|F\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{L^{2}(H^{\ell+1}_{\gamma}(\omega_{T}))}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|W\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{L^{2}(H^{\ell}_{\gamma}(\omega_{T}))}+\|(\check{V},\check{\varPsi})\|_{H^{\ell+3}_{\gamma}(\Omega_{T})}\|W\|_{L^{\infty}(\Omega_{T})}. (4.33)

Using (2.24)–(2.25), we obtain

[α,bˇ]ψH1γ(ωT)\displaystyle\left\|[\partial^{\alpha},\check{b}]\nabla\psi\right\|_{H^{1}_{\gamma}(\omega_{T})} γ[α,bˇ]ψL2γ(ωT)+|β|=1β[α,bˇ]ψL2γ(ωT)\displaystyle\lesssim\gamma\left\|[\partial^{\alpha},\check{b}]\nabla\psi\right\|_{L^{2}_{\gamma}(\omega_{T})}+\sum_{|\beta|=1}\left\|\partial^{\beta}[\partial^{\alpha},\check{b}]\nabla\psi\right\|_{L^{2}_{\gamma}(\omega_{T})}
ψH+1γ(ωT)+cˇ¯0H+2γ(ωT)ψL(ωT)\displaystyle\lesssim\|\psi\|_{H^{\ell+1}_{\gamma}(\omega_{T})}+\|\underline{\check{\rm c}}_{0}\|_{H^{\ell+2}_{\gamma}(\omega_{T})}\|\psi\|_{L^{\infty}(\omega_{T})}
ψH+1γ(ωT)+(Vˇ,Ψˇ)H+2γ(ωT)ψL(ωT).\displaystyle\lesssim\|\psi\|_{H^{\ell+1}_{\gamma}(\omega_{T})}+\|(\check{V},\check{\varPsi})\|_{H^{\ell+2}_{\gamma}(\omega_{T})}\|\psi\|_{L^{\infty}(\omega_{T})}.

Applying Moser-type calculus inequalities (2.24)–(2.25) to the other terms in 𝒢α\mathscr{G}^{\alpha}, we get

𝒢()H1γ(ωT)gH+1γ(ωT)+WncHγ(ωT)+ψH+1γ(ωT)+(Vˇ,Ψˇ)H+2γ(ωT)(Wnc,ψ)L(ωT).\begin{split}\|\mathscr{G}^{(\ell)}\|_{H^{1}_{\gamma}(\omega_{T})}\lesssim\;&\|g\|_{H^{\ell+1}_{\gamma}(\omega_{T})}+\|W^{\rm nc}\|_{H^{\ell}_{\gamma}(\omega_{T})}+\|\psi\|_{H^{\ell+1}_{\gamma}(\omega_{T})}\\ &+\|(\check{V},\check{\varPsi})\|_{H^{\ell+2}_{\gamma}(\omega_{T})}\|(W^{\rm nc},\psi)\|_{L^{\infty}(\omega_{T})}.\end{split} (4.34)

Substitute equations (4.33) and (4.34) into (4.28), multiply the resulting estimate by γm\gamma^{m-\ell}. By choosing γ\gamma large enough, we conclude the desired tame estimate (4.24). This completes the proof of the lemma. ∎

4.4. Normal Derivatives of the Noncharacteristic Variables

Following [16], we compensate for the loss of normal derivatives by utilizing the estimates of the linearized divergences and vorticities. From equation (4.16a), we obtain:

[03Wnc±𝟎]=F±𝒜0±tW±𝒜1±1W±𝒜2±2W±𝒜4±W±.\left[\begin{matrix}0\\ \partial_{3}W^{\rm nc}_{\pm}\\ {\mathbf{0}}\end{matrix}\right]=F^{\pm}-\mathcal{A}_{0}^{\pm}\partial_{t}W^{\pm}-\mathcal{A}_{1}^{\pm}\partial_{1}W^{\pm}-\mathcal{A}_{2}^{\pm}\partial_{2}W^{\pm}-\mathcal{A}_{4}^{\pm}W^{\pm}. (4.35)

This leads to

|||3Wnc|||L2(Hm1γ(ωT))|||(F,cˇ1tW,cˇ11W,cˇ12W,cˇ¯2W)|||L2(Hm1γ(ωT)).{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\partial_{3}W^{\rm nc}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{L^{2}(H^{m-1}_{\gamma}(\omega_{T}))}\lesssim{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|(F,\check{\rm c}_{1}\partial_{t}W,\check{\rm c}_{1}\partial_{1}W,\check{\rm c}_{1}\partial_{2}W,\underline{\check{\rm c}}_{2}W)\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{L^{2}(H^{m-1}_{\gamma}(\omega_{T}))}.

It follows from (2.22)–(2.23) that

cˇ¯2WHm1γ(ωT)\displaystyle\|\underline{\check{\rm c}}_{2}W\|_{H^{m-1}_{\gamma}(\omega_{T})} cˇ¯2L(ωT)WHm1γ(ωT)+cˇ¯2Hm1γ(ωT)WL(ωT)\displaystyle\lesssim\|\underline{\check{\rm c}}_{2}\|_{L^{\infty}(\omega_{T})}\|W\|_{H^{m-1}_{\gamma}(\omega_{T})}+\|\underline{\check{\rm c}}_{2}\|_{H^{m-1}_{\gamma}(\omega_{T})}\|W\|_{L^{\infty}(\omega_{T})}
WHm1γ(ωT)+(Vˇ,Ψˇ)Hm+1γ(ωT)WL(ωT),\displaystyle\lesssim\|W\|_{H^{m-1}_{\gamma}(\omega_{T})}+\|(\check{V},\check{\varPsi})\|_{H^{m+1}_{\gamma}(\omega_{T})}\|W\|_{L^{\infty}(\omega_{T})},

and

cˇ¯1WHmγ(ωT)WHmγ(ωT)+(Vˇ,Ψˇ)Hm+1γ(ωT)WL(ωT).\|\underline{\check{\rm c}}_{1}W\|_{H^{m}_{\gamma}(\omega_{T})}\lesssim\|W\|_{H^{m}_{\gamma}(\omega_{T})}+\|(\check{V},\check{\varPsi})\|_{H^{m+1}_{\gamma}(\omega_{T})}\|W\|_{L^{\infty}(\omega_{T})}.

It is easy to check that

cˇ1t,x1,x2WHm1γ(ωT)\displaystyle\|\check{\rm c}_{1}\nabla_{t,x_{1},x_{2}}W\|_{H^{m-1}_{\gamma}(\omega_{T})} cˇ1WHmγ(ωT)+t,x1,x2cˇ1WHm1γ(ωT)\displaystyle\lesssim\|\check{\rm c}_{1}W\|_{H^{m}_{\gamma}(\omega_{T})}+\|\nabla_{t,x_{1},x_{2}}\check{\rm c}_{1}W\|_{H^{m-1}_{\gamma}(\omega_{T})}
WHmγ(ωT)+cˇ¯1WHmγ(ωT)+cˇ¯2WHm1γ(ωT).\displaystyle\lesssim\|W\|_{H^{m}_{\gamma}(\omega_{T})}+\|\underline{\check{\rm c}}_{1}W\|_{H^{m}_{\gamma}(\omega_{T})}+\|\underline{\check{\rm c}}_{2}W\|_{H^{m-1}_{\gamma}(\omega_{T})}.

Using the estimate above, we get

|||3Wnc|||L2(Hm1γ(ωT))FHm1γ(ΩT)+WL2(Hmγ(ωT))+|||(Vˇ,Ψˇ)|||L2(Hm+1γ(ωT))WL(ΩT).\begin{split}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\partial_{3}W^{\rm nc}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{L^{2}(H^{m-1}_{\gamma}(\omega_{T}))}\lesssim\;&\|F\|_{H^{m-1}_{\gamma}(\Omega_{T})}+\|W\|_{L^{2}(H^{m}_{\gamma}(\omega_{T}))}\\ &+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|(\check{V},\check{\varPsi})\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{L^{2}(H^{m+1}_{\gamma}(\omega_{T}))}\|W\|_{L^{\infty}(\Omega_{T})}.\end{split} (4.36)

Next, we introduce the linearized divergences and vorticities, whose estimates allow us to recover the normal derivatives of the characteristic variables

W1=1tanΦ2[(1+(2Φ)2)v˙1(1Φ2Φ)v˙2+1Φv˙3],W2=1tanΦ2[(1Φ2Φ)v˙1+(1+(1Φ)2)v˙2+2Φv˙3],W5=1tanΦ2[(1+(2Φ)2)F˙11(1Φ2Φ)F˙21+1ΦF˙31],W6=1tanΦ2[((1Φ2Φ)F˙11(1+(1Φ)2)F˙21+2ΦF˙31],W7=1tanΦ2(1ΦF˙112ΦF˙21+F˙31),W8=1tanΦ2[(1+(2Φ)2F˙121Φ2ΦF˙22+1ΦF˙32],W9=1tanΦ2[(1Φ2Φ)F˙12+(1+(1Φ)2)F˙22+2ΦF˙32],W10=1tanΦ2(1ΦF˙122ΦF˙22+2ΦF˙32),W11=1tanΦ2[(1+(2Φ)2)F˙131Φ2ΦF˙23+1ΦF˙33],W12=1tanΦ2[1Φ2ΦF˙13+(1+(1Φ)2)F˙23+2ΦF˙33],W13=1tanΦ2(1ΦF˙132ΦF˙23+F˙33),\begin{split}&W_{1}=\frac{1}{{\langle\partial_{\rm tan}\Phi\rangle}^{2}}\Big{[}\big{(}1+(\partial_{2}\Phi)^{2}\big{)}\dot{v}_{1}-(\partial_{1}\Phi\partial_{2}\Phi)\dot{v}_{2}+\partial_{1}\Phi\dot{v}_{3}\Big{]},\\ &W_{2}=\frac{1}{{\langle\partial_{\rm tan}\Phi\rangle}^{2}}\Big{[}\big{(}-\partial_{1}\Phi\partial_{2}\Phi\big{)}\dot{v}_{1}+\big{(}1+(\partial_{1}\Phi)^{2}\big{)}\dot{v}_{2}+\partial_{2}\Phi\dot{v}_{3}\Big{]},\\ &W_{5}=\frac{1}{{\langle\partial_{\rm tan}\Phi\rangle}^{2}}\Big{[}\big{(}1+(\partial_{2}\Phi)^{2}\big{)}\dot{F}_{11}-(\partial_{1}\Phi\partial_{2}\Phi)\dot{F}_{21}+\partial_{1}\Phi\dot{F}_{31}\Big{]},\\ &W_{6}=\frac{1}{{\langle\partial_{\rm tan}\Phi\rangle}^{2}}\Big{[}\big{(}(-\partial_{1}\Phi\partial_{2}\Phi)\dot{F}_{11}-\big{(}1+(\partial_{1}\Phi)^{2}\big{)}\dot{F}_{21}+\partial_{2}\Phi\dot{F}_{31}\Big{]},\\ &W_{7}=\frac{1}{{\langle\partial_{\rm tan}\Phi\rangle}^{2}}(-\partial_{1}\Phi\dot{F}_{11}-\partial_{2}\Phi\dot{F}_{21}+\dot{F}_{31}),\\ &W_{8}=\frac{1}{{\langle\partial_{\rm tan}\Phi\rangle}^{2}}\Big{[}\big{(}1+(\partial_{2}\Phi)^{2}\dot{F}_{12}-\partial_{1}\Phi\partial_{2}\Phi\dot{F}_{22}+\partial_{1}\Phi\dot{F}_{32}\Big{]},\\ &W_{9}=\frac{1}{{\langle\partial_{\rm tan}\Phi\rangle}^{2}}\Big{[}\big{(}-\partial_{1}\Phi\partial_{2}\Phi\big{)}\dot{F}_{12}+\big{(}1+(\partial_{1}\Phi)^{2}\big{)}\dot{F}_{22}+\partial_{2}\Phi\dot{F}_{32}\Big{]},\\ &W_{10}=\frac{1}{{\langle\partial_{\rm tan}\Phi\rangle}^{2}}(-\partial_{1}\Phi\dot{F}_{12}-\partial_{2}\Phi\dot{F}_{22}+\partial_{2}\Phi\dot{F}_{32}),\\ &W_{11}=\frac{1}{{\langle\partial_{\rm tan}\Phi\rangle}^{2}}\Big{[}\big{(}1+(\partial_{2}\Phi)^{2}\big{)}\dot{F}_{13}-\partial_{1}\Phi\partial_{2}\Phi\dot{F}_{23}+\partial_{1}\Phi\dot{F}_{33}\Big{]},\\ &W_{12}=\frac{1}{{\langle\partial_{\rm tan}\Phi\rangle}^{2}}\Big{[}-\partial_{1}\Phi\partial_{2}\Phi\dot{F}_{13}+\big{(}1+(\partial_{1}\Phi)^{2}\big{)}\dot{F}_{23}+\partial_{2}\Phi\dot{F}_{33}\Big{]},\\ &W_{13}=\frac{1}{{\langle\partial_{\rm tan}\Phi\rangle}^{2}}(-\partial_{1}\Phi\dot{F}_{13}-\partial_{2}\Phi\dot{F}_{23}+\dot{F}_{33}),\\ \end{split} (4.37)

according to the transformation given in (4.15).

4.5. Divergences

Inspired by the involutions in (2.15), we introduce the linearized divergences ζ±j\zeta^{\pm}_{j} for j=1,2,3j=1,2,3 as follows:

ζj±:=iΦˇ±(ρˇ±F˙ij±+Fˇij±ρ˙±),\displaystyle\zeta_{j}^{\pm}:=\partial_{i}^{\check{\varPhi}^{\pm}}\left(\check{\rho}_{\pm}\dot{{F}}_{ij}^{\pm}+\check{F}_{ij}^{\pm}\dot{\rho}^{\pm}\right),\qquad (4.38)

where the partial derivatives iΦˇ±\partial_{i}^{\check{\varPhi}^{\pm}} (with i=1,2,3i=1,2,3) are defined in (2.16). We now present the following estimates for ζ1±,\zeta_{1}^{\pm}, ζ2±\zeta_{2}^{\pm} and ζ3±\zeta_{3}^{\pm}.

Lemma 4.2 (Estimates for the divergences).

If the hypotheses of Theorem 4.1 hold, then there exists a constant γm1\gamma_{m}\geq 1, independent of TT, such that

γ(ζ1±,ζ2±,ζ3±)Hm1γ(ΩT)(W,f)Hmγ(ΩT)+(Vˇ,Ψˇ)Hm+2γ(ΩT)(W,f)L(ΩT),\displaystyle\gamma\|(\zeta_{1}^{\pm},\zeta_{2}^{\pm},\zeta_{3}^{\pm})\|_{H^{m-1}_{\gamma}(\Omega_{T})}\lesssim\|(W,f)\|_{H^{m}_{\gamma}(\Omega_{T})}+\|(\check{V},\check{\varPsi})\|_{H^{m+2}_{\gamma}(\Omega_{T})}\|(W,f)\|_{L^{\infty}(\Omega_{T})}, (4.39)

for all γγm\gamma\geq\gamma_{m} and solutions (W,ψ)Hm+2γ(ΩT)×Hm+2γ(ωT)(W,\psi)\in H^{m+2}_{\gamma}(\Omega_{T})\times H^{m+2}_{\gamma}(\omega_{T}) to the problem (4.16).

Proof.

The equations for F˙ij\dot{F}_{ij} in (4.10a) can be written as

(tΦˇ+vˇΦˇ)F˙ijFˇjΦˇv˙i=cˇ0f+cˇ¯1V˙.\displaystyle(\partial_{t}^{\check{\varPhi}}+\check{v}_{\ell}\partial_{\ell}^{\check{\varPhi}})\dot{F}_{ij}-\check{{F}}_{\ell j}\partial_{\ell}^{\check{\varPhi}}\dot{v}_{i}=\check{\rm c}_{0}f+\underline{\check{\rm c}}_{1}\dot{V}. (4.40)

Using equations (4.23) and (4.40), we apply the operator iΦˇ\partial_{i}^{\check{\varPhi}} and use

ρˇFˇ1iΦˇΦˇv˙iρˇFˇi1iΦˇΦˇv˙=ρˇFˇi1[Φˇ,iΦˇ]v˙=cˇ2V˙\displaystyle\check{\rho}\check{{F}}_{\ell 1}\partial_{i}^{\check{\varPhi}}\partial_{\ell}^{\check{\varPhi}}\dot{v}_{i}-\check{\rho}\check{{F}}_{i1}\partial_{i}^{\check{\varPhi}}\partial_{\ell}^{\check{\varPhi}}\dot{v}_{\ell}=\check{\rho}\check{{F}}_{i1}\big{[}\partial_{\ell}^{\check{\varPhi}},\partial_{i}^{\check{\varPhi}}\big{]}\dot{v}_{\ell}=\check{\rm c}_{2}\nabla\dot{V}

to obtain that

(tΦˇ+vˇΦˇ)ζj=cˇ1f+cˇ1f+cˇ2W+cˇ2W.\displaystyle(\partial_{t}^{\check{\varPhi}}+\check{v}_{\ell}\partial_{\ell}^{\check{\varPhi}})\zeta_{j}=\check{\rm c}_{1}\nabla f+\check{\rm c}_{1}f+\check{\rm c}_{2}\nabla W+\check{\rm c}_{2}W. (4.41)

Applying operator eγtα\mathrm{e}^{-\gamma t}\partial^{\alpha} with |α|m1|\alpha|\leq m-1 to (4.41) yields

(tΦˇ+vˇΦˇ)(eγtαζj)+γeγtαζj\displaystyle(\partial_{t}^{\check{\varPhi}}+\check{v}_{\ell}\partial_{\ell}^{\check{\varPhi}})\big{(}\mathrm{e}^{-\gamma t}\partial^{\alpha}\zeta_{j}\big{)}+\gamma\mathrm{e}^{-\gamma t}\partial^{\alpha}\zeta_{j}
=eγtα(cˇ1f+cˇ1f+cˇ2W+cˇ2W)eγt[α,tΦˇ+vˇΦˇ]ζj.\displaystyle\quad=\mathrm{e}^{-\gamma t}\partial^{\alpha}(\check{\rm c}_{1}\nabla f+\check{\rm c}_{1}f+\check{\rm c}_{2}\nabla W+\check{\rm c}_{2}W)-\mathrm{e}^{-\gamma t}[\partial^{\alpha},\partial_{t}^{\check{\varPhi}}+\check{v}_{\ell}\partial_{\ell}^{\check{\varPhi}}]\zeta_{j}.

Multiplying the last identity by eγtαζj\mathrm{e}^{-\gamma t}\partial^{\alpha}\zeta_{j} and integrating over ΩT\Omega_{T}, we have

γαζjL2γ(ΩT)\displaystyle\gamma\|\partial^{\alpha}\zeta_{j}\|_{L^{2}_{\gamma}(\Omega_{T})}\lesssim\; α(cˇ1f+cˇ1f+cˇ2W+cˇ2W)L2γ(ΩT)\displaystyle\|\partial^{\alpha}(\check{\rm c}_{1}\nabla f+\check{\rm c}_{1}f+\check{\rm c}_{2}\nabla W+\check{\rm c}_{2}W)\|_{L^{2}_{\gamma}(\Omega_{T})}
+[α,tΦˇ+vˇΦˇ]ζjL2γ(ΩT),\displaystyle+\|[\partial^{\alpha},\partial_{t}^{\check{\varPhi}}+\check{v}_{\ell}\partial_{\ell}^{\check{\varPhi}}]\zeta_{j}\|_{L^{2}_{\gamma}(\Omega_{T})}, (4.42)

for γ1\gamma\geq 1 sufficiently large, where we have used the constraints (4.3b) and

(tΦˇ+vˇΦˇ)=t+vˇ11+vˇ22if x30.(\partial_{t}^{\check{\varPhi}}+\check{v}_{\ell}\partial_{\ell}^{\check{\varPhi}})=\partial_{t}+\check{v}_{1}\partial_{1}+\check{v}_{2}\partial_{2}\qquad\textrm{if }\ x_{3}\geq 0.

Using Moser-type calculus inequality (2.24), we obtain

α(cˇ1f+cˇ1f)Lγ2(ΩT)\displaystyle\|\partial^{\alpha}(\check{\rm c}_{1}\nabla f+\check{\rm c}_{1}f)\|_{L_{\gamma}^{2}(\Omega_{T})} (cˇ1αf,cˇ1αf)Lγ2(ΩT)+([α,cˇ1]f,[α,cˇ1]f)L2γ(ΩT)\displaystyle\lesssim\|(\check{\rm c}_{1}\partial^{\alpha}\nabla f,\check{\rm c}_{1}\partial^{\alpha}f)\|_{L_{\gamma}^{2}(\Omega_{T})}+\|([\partial^{\alpha},\check{\rm c}_{1}]\nabla f,[\partial^{\alpha},\check{\rm c}_{1}]f)\|_{L^{2}_{\gamma}(\Omega_{T})}
fHγ|α|+1(ΩT)+(Vˇ,Ψˇ)Hγ|α|+2(ΩT)fL(ΩT).\displaystyle\lesssim\|f\|_{H_{\gamma}^{|\alpha|+1}(\Omega_{T})}+\|(\check{V},\check{\varPsi})\|_{H_{\gamma}^{|\alpha|+2}(\Omega_{T})}\|f\|_{L^{\infty}(\Omega_{T})}. (4.43)

Notice that ζj=cˇ1W+cˇ1W\zeta_{j}=\check{\rm c}_{1}W+\check{\rm c}_{1}\nabla W, we apply Moser-type calculus inequalities (2.24)–(2.25) to deduce that

α(cˇ2W+cˇ2W)L2γ(ΩT)+[α,tΦˇ+vˇΦˇ]ζjL2γ(ΩT)\displaystyle\|\partial^{\alpha}(\check{\rm c}_{2}\nabla W+\check{\rm c}_{2}W)\|_{L^{2}_{\gamma}(\Omega_{T})}+\|[\partial^{\alpha},\partial_{t}^{\check{\varPhi}}+\check{v}_{\ell}\partial_{\ell}^{\check{\varPhi}}]\zeta_{j}\|_{L^{2}_{\gamma}(\Omega_{T})}
(cˇ2αW,cˇ2αW,[α,cˇ2]W,[α,cˇ2]W,[α,cˇ1]2W)L2γ(ΩT)\displaystyle\quad\lesssim\left\|(\check{\rm c}_{2}\partial^{\alpha}\nabla W,\check{\rm c}_{2}\partial^{\alpha}W,[\partial^{\alpha},\check{\rm c}_{2}]W,[\partial^{\alpha},\check{\rm c}_{2}]\nabla W,[\partial^{\alpha},\check{\rm c}_{1}]\nabla^{2}W)\right\|_{L^{2}_{\gamma}(\Omega_{T})}
WHγ|α|+1(ΩT)+(Vˇ,Ψˇ)Hγ|α|+3(ΩT)WL(ΩT).\displaystyle\quad\lesssim\|W\|_{H_{\gamma}^{|\alpha|+1}(\Omega_{T})}+\|(\check{V},\check{\varPsi})\|_{H_{\gamma}^{|\alpha|+3}(\Omega_{T})}\|W\|_{L^{\infty}(\Omega_{T})}. (4.44)

Substituting (4.43) and (4.44) into (4.42) yields the following estimate:

γm|α|αζjL2γ(ΩT)(W,f)Hγm(ΩT)+(Vˇ,Ψˇ)Hγm+2(ΩT)(W,f)L(ΩT),\displaystyle\gamma^{m-|\alpha|}\|\partial^{\alpha}\zeta_{j}\|_{L^{2}_{\gamma}(\Omega_{T})}\lesssim\|(W,f)\|_{H_{\gamma}^{m}(\Omega_{T})}+\|(\check{V},\check{\varPsi})\|_{H_{\gamma}^{m+2}(\Omega_{T})}\|(W,f)\|_{L^{\infty}(\Omega_{T})},

from which we obtain estimate (4.39) and complete the proof of the lemma. ∎

4.6. Vorticities

The linearized vorticities ξ±j\xi^{\pm}_{j} for the velocities v˙±,\dot{v}^{\pm}, and the linearized vorticities ηj±\eta_{j}^{\pm} for the columns of the deformation gradient, are defined as follows:

ξ±1:=2Φˇ±v˙3±3Φˇ±v˙2±,\displaystyle\xi^{\pm}_{1}:=\partial_{2}^{\check{\varPhi}^{\pm}}\dot{v}_{3}^{\pm}-\partial_{3}^{\check{\varPhi}^{\pm}}\dot{v}_{2}^{\pm}, (4.45)
ξ±2:=3Φˇ±v˙1±1Φˇ±v˙3±,\displaystyle\xi^{\pm}_{2}:=\partial_{3}^{\check{\varPhi}^{\pm}}\dot{v}_{1}^{\pm}-\partial_{1}^{\check{\varPhi}^{\pm}}\dot{v}_{3}^{\pm}, (4.46)
ξ±3:=1Φˇ±v˙2±2Φˇ±v˙1±,\displaystyle\xi^{\pm}_{3}:=\partial_{1}^{\check{\varPhi}^{\pm}}\dot{v}_{2}^{\pm}-\partial_{2}^{\check{\varPhi}^{\pm}}\dot{v}_{1}^{\pm}, (4.47)
η1±:=2Φˇ±F˙3j±3Φˇ±F˙2j±,\displaystyle\eta_{1}^{\pm}:=\partial_{2}^{\check{\varPhi}^{\pm}}\dot{F}_{3j}^{\pm}-\partial_{3}^{\check{\varPhi}^{\pm}}\dot{F}_{2j}^{\pm}, (4.48)
η2±:=3Φˇ±F˙1j±1Φˇ±F˙3j±,\displaystyle\eta_{2}^{\pm}:=\partial_{3}^{\check{\varPhi}^{\pm}}\dot{F}_{1j}^{\pm}-\partial_{1}^{\check{\varPhi}^{\pm}}\dot{F}_{3j}^{\pm}, (4.49)
η3±:=1Φˇ±F˙2j±2Φˇ±F˙1j±,\displaystyle\eta_{3}^{\pm}:=\partial_{1}^{\check{\varPhi}^{\pm}}\dot{F}_{2j}^{\pm}-\partial_{2}^{\check{\varPhi}^{\pm}}\dot{F}_{1j}^{\pm}, (4.50)

for j=1,2,3j=1,2,3. The estimates of ξ±j\xi^{\pm}_{j}, ηj±\eta_{j}^{\pm} for j=1,2,3j=1,2,3 are provided by the following lemma.

Lemma 4.3 (Estimates for the vorticities).

If the hypotheses of Theorem 4.1 hold, then there exists a constant γm1\gamma_{m}\geq 1, independent of TT, such that

γ(ξ±j,ηj±)Hm1γ(ΩT)(W,f)Hmγ(ΩT)+(Vˇ,Ψˇ)Hm+2γ(ΩT)(W,f)L(ΩT),\displaystyle\gamma\|(\xi^{\pm}_{j},\eta_{j}^{\pm})\|_{H^{m-1}_{\gamma}(\Omega_{T})}\lesssim\|(W,f)\|_{H^{m}_{\gamma}(\Omega_{T})}+\|(\check{V},\check{\varPsi})\|_{H^{m+2}_{\gamma}(\Omega_{T})}\|(W,f)\|_{L^{\infty}(\Omega_{T})}, (4.51)

for all j=1,2,3,j=1,2,3, γγm\gamma\geq\gamma_{m} and solutions (W,ψ)Hm+2γ(ΩT)×Hm+2γ(ωT)(W,\psi)\in H^{m+2}_{\gamma}(\Omega_{T})\times H^{m+2}_{\gamma}(\omega_{T}) of problem (4.16).

Proof.

The equations for v˙1,\dot{v}_{1}, v˙2,\dot{v}_{2}, and v˙3\dot{v}_{3} in (4.10a) are given by

(tΦˇ+vˇΦˇ)v˙iFˇjΦˇF˙ij+c(ρˇ)2ρˇiΦˇρ˙=cˇ0f+cˇ¯1V˙,\displaystyle(\partial_{t}^{\check{\varPhi}}+\check{v}_{\ell}\partial_{\ell}^{\check{\varPhi}})\dot{v}_{i}-\check{{F}}_{\ell j}\partial_{\ell}^{\check{\varPhi}}\dot{F}_{ij}+\frac{c(\check{\rho})^{2}}{\check{\rho}}\partial_{i}^{\check{\varPhi}}\dot{\rho}=\check{\rm c}_{0}f+\underline{\check{\rm c}}_{1}\dot{V}, (4.52)

which leads to the transport equation

(tΦˇ+vˇΦˇ)ξjFˇjΦˇηj=cˇ1f+cˇ1f+cˇ2W+cˇ2W,\displaystyle(\partial_{t}^{\check{\varPhi}}+\check{v}_{\ell}\partial_{\ell}^{\check{\varPhi}})\xi_{j}-\check{{F}}_{\ell j}\partial_{\ell}^{\check{\varPhi}}\eta_{j}=\check{\rm c}_{1}\nabla f+\check{\rm c}_{1}f+\check{\rm c}_{2}\nabla W+\check{\rm c}_{2}W, (4.53)

and similarly form (4.40), we have

(tΦˇ+vˇΦˇ)ηjFˇjΦˇξj=cˇ1f+cˇ1f+cˇ2W+cˇ2W.\displaystyle(\partial_{t}^{\check{\varPhi}}+\check{v}_{\ell}\partial_{\ell}^{\check{\varPhi}})\eta_{j}-\check{{F}}_{\ell j}\partial_{\ell}^{\check{\varPhi}}\xi_{j}=\check{\rm c}_{1}\nabla f+\check{\rm c}_{1}f+\check{\rm c}_{2}\nabla W+\check{\rm c}_{2}W. (4.54)

Next, apply the operator eγtα\mathrm{e}^{-\gamma t}\partial^{\alpha} with |α|m1|\alpha|\leq m-1 to (4.53) (resp. (4.54)) and multiply the resulting identity by eγtαξj\mathrm{e}^{-\gamma t}\partial^{\alpha}\xi_{j} (respeγtαηj\mathrm{e}^{-\gamma t}\partial^{\alpha}\eta_{j}) to obtain

12(tΦˇ+vˇΦˇ){3j=1|eγtαξj|2+3j=1|eγtαηj|2}\displaystyle\frac{1}{2}(\partial_{t}^{\check{\varPhi}}+\check{v}_{\ell}\partial_{\ell}^{\check{\varPhi}})\Big{\{}\sum^{3}_{j=1}|\mathrm{e}^{-\gamma t}\partial^{\alpha}\xi_{j}|^{2}+\sum^{3}_{j=1}|\mathrm{e}^{-\gamma t}\partial^{\alpha}\eta_{j}|^{2}\Big{\}}
FˇjΦˇ(e2γtαξjαηj)+γ{3j=1|eγtαξj|2+3j=1|eγtαηj|2}\displaystyle\quad-\check{{F}}_{\ell j}\partial_{\ell}^{\check{\varPhi}}\left(\mathrm{e}^{-2\gamma t}\partial^{\alpha}\xi_{j}\partial^{\alpha}\eta_{j}\right)+\gamma\Big{\{}\sum^{3}_{j=1}|\mathrm{e}^{-\gamma t}\partial^{\alpha}\xi_{j}|^{2}+\sum^{3}_{j=1}|\mathrm{e}^{-\gamma t}\partial^{\alpha}\eta_{j}|^{2}\Big{\}}
=e2γtαξj{α(cˇ1f+cˇ1f+cˇ2W+cˇ2W)[α,tΦˇ+vˇΦˇ]ξj}\displaystyle=\mathrm{e}^{-2\gamma t}\partial^{\alpha}\xi_{j}\left\{\partial^{\alpha}\left(\check{\rm c}_{1}\nabla f+\check{\rm c}_{1}f+\check{\rm c}_{2}\nabla W+\check{\rm c}_{2}W\right)-[\partial^{\alpha},\partial_{t}^{\check{\varPhi}}+\check{v}_{\ell}\partial_{\ell}^{\check{\varPhi}}]\xi_{j}\right\}
+e2γtαηj{α(cˇ1f+cˇ1f+cˇ2W+cˇ2W)[α,tΦˇ+vˇΦˇ]ηj}\displaystyle\quad+\mathrm{e}^{-2\gamma t}\partial^{\alpha}\eta_{j}\left\{\partial^{\alpha}\left(\check{\rm c}_{1}\nabla f+\check{\rm c}_{1}f+\check{\rm c}_{2}\nabla W+\check{\rm c}_{2}W\right)-[\partial^{\alpha},\partial_{t}^{\check{\varPhi}}+\check{v}_{\ell}\partial_{\ell}^{\check{\varPhi}}]\eta_{j}\right\}
+e2γt{αξj[α,FˇjΦˇ]ηj+αηj[α,FˇjΦˇ]ξj}.\displaystyle\quad+\mathrm{e}^{-2\gamma t}\left\{\partial^{\alpha}\xi_{j}[\partial^{\alpha},\check{{F}}_{\ell j}\partial_{\ell}^{\check{\varPhi}}]\eta_{j}+\partial^{\alpha}\eta_{j}[\partial^{\alpha},\check{{F}}_{\ell j}\partial_{\ell}^{\check{\varPhi}}]\xi_{j}\right\}. (4.55)

It follows from the constraints in (4.3c) that

FˇjΦˇ=Fˇ1j1+Fˇ2j2,x30.\displaystyle\check{{F}}_{\ell j}\partial_{\ell}^{\check{\varPhi}}=\check{{F}}_{1j}\partial_{1}+\check{{F}}_{2j}\partial_{2},\quad x_{3}\geq 0.

We now integrate the identity (4.55) over ΩT\Omega_{T} and perform a similar analysis as for ζj\zeta_{j} in Lemma 4.2 to obtain the desired estimates (4.51). The proof of the lemma is thus complete. ∎

4.7. Proof of Theorem 4.1

Thanks to Lemmas 4.2 and 4.3, we can derive the estimates for the normal derivative of characteristic variables defined by (4.37). More precisely, in view of (4.37), (4.45) and (4.46), and (2.16), we obtain

ξ±1=13Φˇ±3(tanΦˇ±2W1±)+cˇ11W+cˇ12W+cˇ2W,\displaystyle\xi^{\pm}_{1}=-\frac{1}{\partial_{3}\check{\varPhi}^{\pm}}\partial_{3}\left({\langle\partial_{\rm tan}\check{\varPhi}^{\pm}\rangle^{2}}W_{1}^{\pm}\right)+\check{\rm c}_{1}\partial_{1}W+\check{\rm c}_{1}\partial_{2}W+\check{\rm c}_{2}W,
ξ±2=13Φˇ±3(tanΦˇ±2W2±)+cˇ11W+cˇ12W+cˇ2W,\displaystyle\xi^{\pm}_{2}=-\frac{1}{\partial_{3}\check{\varPhi}^{\pm}}\partial_{3}\left({\langle\partial_{\rm tan}\check{\varPhi}^{\pm}\rangle^{2}}W_{2}^{\pm}\right)+\check{\rm c}_{1}\partial_{1}W+\check{\rm c}_{1}\partial_{2}W+\check{\rm c}_{2}W,

which implies that

3W1,2±=cˇ1ξ±j+cˇ11W+cˇ22W+cˇ2W.\displaystyle\partial_{3}W_{1,2}^{\pm}=\check{\rm c}_{1}\xi^{\pm}_{j}+\check{\rm c}_{1}\partial_{1}W+\check{\rm c}_{2}\partial_{2}W+\check{\rm c}_{2}W. (4.56)

Similarly, it follows from (4.38) and (4.48) that

3F˙ij±=cˇ1ζj±+cˇ1ηj±+cˇ11W+cˇ12W+cˇ2W,\displaystyle\partial_{3}\dot{F}_{ij}^{\pm}=\check{\rm c}_{1}\zeta_{j}^{\pm}+\check{\rm c}_{1}\eta_{j}^{\pm}+\check{\rm c}_{1}\partial_{1}W+\check{\rm c}_{1}\partial_{2}W+\check{\rm c}_{2}W, (4.57)

for i,j=1,2,3i,j=1,2,3. Using identities (4.56)–(4.57), we apply Moser-type calculus inequalities (2.22)–(2.25) and use (4.36), (4.39), and (4.51) to obtain that

|||3kW|||L2(Hmkγ(ωT))|||W|||L2(Hmγ(ωT))+γ1(W,f)Hmγ(ΩT)+γ1(Vˇ,Ψˇ)Hm+2γ(ΩT)(W,f)L(ΩT)\begin{split}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\partial_{3}^{k}W\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{L^{2}(H^{m-k}_{\gamma}(\omega_{T}))}\lesssim\;&{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|W\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{L^{2}(H^{m}_{\gamma}(\omega_{T}))}+\gamma^{-1}\|(W,f)\|_{H^{m}_{\gamma}(\Omega_{T})}\\ &+\gamma^{-1}\|(\check{V},\check{\varPsi})\|_{H^{m+2}_{\gamma}(\Omega_{T})}\|(W,f)\|_{L^{\infty}(\Omega_{T})}\end{split} (4.58)

holds for k=1k=1.

Using identities (4.35), (4.56), and (4.57), we can combine estimates (4.38) and (4.51) to prove (4.58) by finite induction in k=1,,mk=1,\ldots,m. Since

WHmγ(ΩT)k=0m|||3kW|||L2(Hmkγ(ωT)),\displaystyle\|W\|_{H^{m}_{\gamma}(\Omega_{T})}\sim\sum_{k=0}^{m}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\partial_{3}^{k}W\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{L^{2}(H^{m-k}_{\gamma}(\omega_{T}))},

we utilize (4.24) and (4.58) to obtain

γ1/2WHmγ(ΩT)+Wnc|x3=0Hmγ(ωT)+ψHm+1γ(ωT)γ1/2fHmγ(ΩT)+γ3/2|||f|||L2(Hm+1γ(ωT))+γ1gHm+1γ(ωT)+γ1(W,f)L(ΩT)(Vˇ,Ψˇ)Hm+3γ(ΩT)+γ1(Wnc,ψ)L(ωT)(Vˇ,Ψˇ)Hm+2γ(ωT),\begin{split}&\gamma^{1/2}\|W\|_{H^{m}_{\gamma}(\Omega_{T})}+\|W^{\mathrm{nc}}|_{x_{3}=0}\|_{H^{m}_{\gamma}(\omega_{T})}+\|\psi\|_{H^{m+1}_{\gamma}(\omega_{T})}\\[2.84526pt] &\quad\lesssim\gamma^{-{1}/{2}}\big{\|}f\big{\|}_{H^{m}_{\gamma}(\Omega_{T})}+\gamma^{-{3}/{2}}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|f\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{L^{2}(H^{m+1}_{\gamma}(\omega_{T}))}+\gamma^{-1}\|g\|_{H^{m+1}_{\gamma}(\omega_{T})}\\[2.84526pt] &\quad\quad\,+\gamma^{-1}\|(W,f)\|_{L^{\infty}(\Omega_{T})}\big{\|}\big{(}\check{V},\check{\varPsi}\big{)}\big{\|}_{H^{m+3}_{\gamma}(\Omega_{T})}+\gamma^{-1}\|(W^{\mathrm{nc}},\psi)\|_{L^{\infty}(\omega_{T})}\big{\|}\big{(}\check{V},\check{\varPsi}\big{)}\big{\|}_{{H^{m+2}_{\gamma}(\omega_{T})}},\end{split} (4.59)

for γ\gamma sufficiently large.

Theorem 4.3 establishes the well-posedness of the effective linear problem (4.10) for the source terms (f±,g)L2(H1(ωT))×H1(ωT)(f^{\pm},g)\in L^{2}(H^{1}(\omega_{T}))\times H^{1}(\omega_{T}) vanishing in the past. Building on the results in [47, 9], we can use the tame estimate (4.59) to reformulate Theorem 4.3 as a well-posdness statement for (4.10) in HmH^{m}. Specifically, as shown in Theorem 4.1, there exists a unique solution (V˙±,ψ)Hm(ΩT)×Hm+1(ωT)(\dot{V}^{\pm},\psi)\in H^{m}(\Omega_{T})\times H^{m+1}(\omega_{T}), which vanishes in the past and satisfies (4.59) for all γγm\gamma\geq\gamma_{m}.

The tame estimate (4.19) can be derived as follows. By applying the Sobolev embedding inequalities, WL(ΩT)WH3(ΩT)\|W\|_{L^{\infty}(\Omega_{T})}\lesssim\|W\|_{H^{3}(\Omega_{T})} and ψW1,(ωT)ψH3(ωT)\|\psi\|_{W^{1,\infty}(\omega_{T})}\lesssim\|\psi\|_{H^{3}(\omega_{T})}, as well as (4.59) with m=3m=3, we obtain:

WL(ΩT)+ψW1,(ωT)CT,γ(fH3γ(ΩT)+gH3γ(ωT)).\|W\|_{L^{\infty}(\Omega_{T})}+\|\psi\|_{W^{1,\infty}(\omega_{T})}\leq C_{T,\gamma}\left(\big{\|}f\big{\|}_{H^{3}_{\gamma}(\Omega_{T})}+\|g\|_{H^{3}_{\gamma}(\omega_{T})}\right). (4.60)

Substituting (4.60) into (4.59) gives the tame estimate (4.19), thus completing the proof of Theorem 4.1. ∎

5. Compatibility Conditions and Approximate Solutions

To apply Theorem 4.1 in the general setting, we follow the approach in [25], and transform the original nonlinear problem (2.6)–(2.11) into a form with zero initial data. To achieve this, we introduce approximate solutions that incorporate the initial data into the interior equations. The construction of smooth approximate solutions imposes necessary compatibility conditions on the initial data.

5.1. Compatibility Conditions

Let mm\in\mathbb{N} with m3m\geq 3. Assume that the initial data (U0±,φ0)(U_{0}^{\pm},\varphi_{0}) satisfy U~0±:=U0±U¯±Hm+1/2(3+)\widetilde{U}_{0}^{\pm}:=U_{0}^{\pm}-\bar{U}^{\pm}\in H^{m+1/2}(\mathbb{R}^{3}_{+}) and φ0Hm+1(2)\varphi_{0}\in H^{m+1}(\mathbb{R}^{2}), and (U~0±,φ0)(\widetilde{U}_{0}^{\pm},\varphi_{0}) has the following compact support,

suppU~0±{x30,x12+x22+x321},suppφ0[1,1]×[1,1].\displaystyle{\rm supp}\,\widetilde{U}_{0}^{\pm}\subset\{x_{3}\geq 0,\,x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\leq 1\},\qquad{\rm supp}\,\varphi_{0}\subset[-1,1]\times[-1,1]. (5.1)

Using the trace theorem, we can construct Φ~0+=Φ~0Hm+3/2(+3)\widetilde{\varPhi}_{0}^{+}=\widetilde{\varPhi}_{0}^{-}\in H^{m+3/2}(\mathbb{R}_{+}^{3}) satisfying

Φ~0±|x3=0=φ0,suppΦ~0±{x30,x12+x22+x322},\displaystyle\widetilde{\varPhi}_{0}^{\pm}|_{x_{3}=0}=\varphi_{0},\quad{\rm supp}\,\widetilde{\varPhi}_{0}^{\pm}\subset\left\{x_{3}\geq 0,\,x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\leq 2\right\}, (5.2)
Φ~0±Hm+3/2(+3)Cφ0Hm+1(2).\displaystyle\big{\|}\widetilde{\varPhi}_{0}^{\pm}\big{\|}_{H^{m+3/2}(\mathbb{R}_{+}^{3})}\leq C\|\varphi_{0}\|_{H^{m+1}(\mathbb{R}^{2})}. (5.3)

Define Φ0±:=Φ~0±+Φ¯0±\varPhi_{0}^{\pm}:=\widetilde{\varPhi}_{0}^{\pm}+\bar{\varPhi}_{0}^{\pm}, which represents the initial data for the problem (2.6),

Φ±|t=0=Φ0±.\displaystyle\varPhi^{\pm}|_{t=0}=\varPhi_{0}^{\pm}. (5.4)

By (5.3) and the Sobolev embedding theorem, we have

±3Φ0±7/8for all x+3,\displaystyle\pm\partial_{3}\varPhi_{0}^{\pm}\geq{7}/{8}\qquad\,\,\textrm{for all }x\in\mathbb{R}_{+}^{3}, (5.5)

for sufficiently small φ0\varphi_{0} in Hm+1(2)H^{m+1}(\mathbb{R}^{2}).

Let the perturbation be denoted by (U~±,Φ~±):=(U±U¯±,Φ±Φ¯±)(\widetilde{U}^{\pm},\widetilde{\varPhi}^{\pm}):=(U^{\pm}-\bar{U}^{\pm},\varPhi^{\pm}-\bar{\varPhi}^{\pm}), and define the traces of the k{k}-th order time derivatives at {t=0}\{t=0\} as follows:

U~±(k):=tkU~±|t=0,Φ~±(k):=tkΦ~±|t=0for k.\displaystyle\widetilde{U}^{\pm}_{({k})}:=\partial_{t}^{{k}}\widetilde{U}^{\pm}\Big{|}_{t=0},\quad\widetilde{\varPhi}^{\pm}_{({k})}:=\partial_{t}^{{k}}\widetilde{\varPhi}^{\pm}\Big{|}_{t=0}\qquad\textrm{for }\ {k}\in\mathbb{N}. (5.6)

Note that U~±(0)=U~±0\widetilde{U}^{\pm}_{(0)}=\widetilde{U}^{\pm}_{0} and Φ~±(0)=Φ~±0\widetilde{\varPhi}^{\pm}_{(0)}=\widetilde{\varPhi}^{\pm}_{0}.

Let 𝒲±:=(U~±,xU~±,xΦ~±)42\mathcal{W}^{\pm}:=(\widetilde{U}^{\pm},\nabla_{x}\widetilde{U}^{\pm},\nabla_{x}\widetilde{\varPhi}^{\pm})^{\top}\in\mathbb{R}^{42}, then the first equation in (2.6) and the equation (2.11a) can be written as

tΦ~±=𝐆1(𝒲±),tU~±=𝐆2(𝒲±),\displaystyle\partial_{t}\widetilde{\varPhi}^{\pm}=\mathbf{G}_{1}(\mathcal{W}^{\pm}),\qquad\partial_{t}\widetilde{U}^{\pm}=\mathbf{G}_{2}(\mathcal{W}^{\pm}), (5.7)

where 𝐆1\mathbf{G}_{1} and 𝐆2\mathbf{G}_{2} are two CC^{\infty} functions vanishing at the origin. Next, we apply kt\partial^{k}_{t} to (5.7), take the initial traces, and use the generalized Faà di Bruno’s formula (see [43, Theorem 2.1]) to obtain

Φ~±(k+1)=αi42,|α1|++k|αk|=kDα1++αk𝐆1(𝒲±(0))i=1kk!αi!(𝒲(i)±i!)αi,\displaystyle\widetilde{\varPhi}^{\pm}_{({k}+1)}=\sum_{\alpha_{i}\in\mathbb{N}^{42},|\alpha_{1}|+\cdots+{k}|\alpha_{{k}}|={k}}D^{\alpha_{1}+\cdots+\alpha_{k}}\mathbf{G}_{1}(\mathcal{W}^{\pm}_{(0)})\prod_{i=1}^{k}\frac{{k}!}{\alpha_{i}!}\left(\frac{\mathcal{W}_{(i)}^{\pm}}{i!}\right)^{\alpha_{i}}, (5.8)
U~±(k+1)=αi42,|α1|++k|αk|=kDα1++αk𝐆2(𝒲±(0))i=1kk!αi!(𝒲(i)±i!)αi,\displaystyle\widetilde{U}^{\pm}_{({k}+1)}=\sum_{\alpha_{i}\in\mathbb{N}^{42},|\alpha_{1}|+\cdots+{k}|\alpha_{{k}}|={k}}D^{\alpha_{1}+\cdots+\alpha_{k}}\mathbf{G}_{2}(\mathcal{W}^{\pm}_{(0)})\prod_{i=1}^{k}\frac{{k}!}{\alpha_{i}!}\left(\frac{\mathcal{W}_{(i)}^{\pm}}{i!}\right)^{\alpha_{i}}, (5.9)

where 𝒲(i)±\mathcal{W}_{(i)}^{\pm} denote the traces (U~(i)±,xU~(i)±,xΦ~(i)±)(\widetilde{U}_{(i)}^{\pm},\nabla_{x}\widetilde{U}_{(i)}^{\pm},\nabla_{x}\widetilde{\varPhi}_{(i)}^{\pm}). This leads to the following lemma (cf. [39, Lemma 4.2.1]).

Lemma 5.1.

If (5.1)–(5.5) hold, then relations (5.8) and (5.9) determine U~±(k)Hm+1/2k(+3)\widetilde{U}^{\pm}_{({k})}\in H^{m+1/2-{k}}(\mathbb{R}_{+}^{3}) for k=1,,m{k}=1,\ldots,m, and Φ~±(k)Hm+3/2k(+3)\widetilde{\varPhi}^{\pm}_{({k})}\in H^{m+3/2-{k}}(\mathbb{R}_{+}^{3}) for k=1,,m+1{k}=1,\ldots,m+1, which satisfy

suppU~(k)±{x30,x12+x22+x321},suppΦ~(k)±{x30,x12+x22+x322},\displaystyle{\rm supp}\,\widetilde{U}_{({k})}^{\pm}\subset\{x_{3}\geq 0,\,x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\leq 1\},\quad{\rm supp}\,\widetilde{\varPhi}_{({k})}^{\pm}\subset\{x_{3}\geq 0,\,x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\leq 2\},
k=0mU~±(k)Hm+1/2k(+3)+k=0m+1Φ~±(k)Hm+3/2k(+3)\displaystyle\sum_{{k}=0}^{m}\big{\|}\widetilde{U}^{\pm}_{({k})}\big{\|}_{H^{m+1/2-{k}}(\mathbb{R}_{+}^{3})}+\sum_{{k}=0}^{m+1}\big{\|}\widetilde{\varPhi}^{\pm}_{({k})}\big{\|}_{H^{m+3/2-{k}}(\mathbb{R}_{+}^{3})}\phantom{\qquad\qquad\qquad}
C(U~±0Hm+1/2(+3)+φ0Hm+1(2)),\displaystyle\phantom{\qquad\qquad\qquad\qquad\qquad}\leq C\Big{(}\big{\|}\widetilde{U}^{\pm}_{0}\big{\|}_{H^{m+1/2}(\mathbb{R}_{+}^{3})}+\|\varphi_{0}\|_{H^{m+1}(\mathbb{R}^{2})}\Big{)}, (5.10)

for some constant C>0C>0 depending solely upon (U~±0,Φ~±0)W1,(+3)\|(\widetilde{U}^{\pm}_{0},\widetilde{\varPhi}^{\pm}_{0})\|_{W^{1,\infty}(\mathbb{R}_{+}^{3})} and mm.

To guarantee the smoothness of the approximate solutions, the initial data must satisfy the following compatibility conditions.

Definition 5.1.

Let mm\in\mathbb{N} with m3m\geq 3. Let U~±0:=U0±U¯0±Hm+1/2(+3)\widetilde{U}^{\pm}_{0}:=U_{0}^{\pm}-\bar{U}_{0}^{\pm}\in H^{m+1/2}(\mathbb{R}_{+}^{3}) and φ0Hm+1(2)\varphi_{0}\in H^{m+1}(\mathbb{R}^{2}) satisfy (5.1). The initial data U0±U_{0}^{\pm} and φ0\varphi_{0} are said to be compatible up to order mm if there exist functions Φ~0±Hm+3/2(+3)\widetilde{\varPhi}_{0}^{\pm}\in H^{m+3/2}(\mathbb{R}_{+}^{3}) satisfying (5.2)–(5.5) and

F3j,0±=F1j,0±1Φ0±+F2j,0±2Φ0±for j=1,2,3\displaystyle F_{3j,0}^{\pm}=F_{1j,0}^{\pm}\partial_{1}\varPhi_{0}^{\pm}+F_{2j,0}^{\pm}\partial_{2}\varPhi_{0}^{\pm}\qquad\textrm{for }j=1,2,3 (5.11)

such that functions U~±(0),,U~±(m),Φ~±(0),,Φ~±(m+1)\widetilde{U}^{\pm}_{(0)},\ldots,\widetilde{U}^{\pm}_{(m)},\widetilde{\varPhi}^{\pm}_{(0)},\ldots,\widetilde{\varPhi}^{\pm}_{(m+1)} determined by (5.6) and (5.8)–(5.9) satisfy

(Φ~+(k)Φ~(k))|x3=0=0\displaystyle\big{(}\widetilde{\varPhi}^{+}_{({k})}-\widetilde{\varPhi}^{-}_{({k})}\big{)}\big{|}_{x_{3}=0}=0\qquad for k=0,,m,\displaystyle\textrm{for }\ {k}=0,\ldots,m, (5.12a)
(ρ~+(k)ρ~(k))|x3=0=0\displaystyle\big{(}\tilde{\rho}^{+}_{({k})}-\tilde{\rho}^{-}_{({k})}\big{)}\big{|}_{x_{3}=0}=0\qquad\,\, for k=0,,m1,\displaystyle\textrm{for }\ {k}=0,\ldots,m-1, (5.12b)

and

+3|Φ~+(m+1)Φ~(m+1)|2dx1dx2dx3x3<,\displaystyle\int_{\mathbb{R}_{+}^{3}}\big{|}\widetilde{\varPhi}^{+}_{(m+1)}-\widetilde{\varPhi}^{-}_{(m+1)}\big{|}^{2}{\rm d}x_{1}{\rm d}x_{2}\frac{{\rm d}x_{3}}{x_{3}}<\infty, (5.13a)
+3|ρ~+(m)ρ~(m)|2dx1dx2dx3x3<.\displaystyle\int_{\mathbb{R}_{+}^{3}}\big{|}\tilde{\rho}^{+}_{(m)}-\tilde{\rho}^{-}_{(m)}\big{|}^{2}{\rm d}x_{1}{\rm d}x_{2}\frac{{\rm d}x_{3}}{x_{3}}<\infty. (5.13b)

5.2. Approximate Solutions

Following the approach in [25], we now introduce approximate solutions that satisfy the problem (2.6)–(2.11) in the sense of Taylor’s expansions at t=0t=0.

Lemma 5.2.

Let mm\in\mathbb{N} with m3m\geq 3. Assume that U~±0:=U0±U¯0±Hm+1/2(+3)\widetilde{U}^{\pm}_{0}:=U_{0}^{\pm}-\bar{U}_{0}^{\pm}\in H^{m+1/2}(\mathbb{R}_{+}^{3}) and φ0Hm+1(2)\varphi_{0}\in H^{m+1}(\mathbb{R}^{2}) satisfy (5.1), and that initial data U0±U_{0}^{\pm} and φ0\varphi_{0} are compatible up to order mm. If U~±0\widetilde{U}^{\pm}_{0} and φ0\varphi_{0} are sufficiently small, then there exist functions Ua±U^{a\pm}, Φa±\varPhi^{a\pm}, and φa\varphi^{a} such that U~a±:=Ua±U¯±Hm(Ω)\widetilde{U}^{a\pm}:=U^{a\pm}-\bar{U}^{\pm}\in H^{m}(\Omega), Φ~a±:=Φa±Φ¯±Hm+2(Ω)\widetilde{\varPhi}^{a\pm}:=\varPhi^{a\pm}-\bar{\varPhi}^{\pm}\in H^{m+2}(\Omega), φaHm+3/2(Ω)\varphi^{a}\in H^{m+3/2}(\partial\Omega), and

tj𝕃(Ua±,Φa±)|t=0=𝟎\displaystyle\partial_{t}^{j}\mathbb{L}(U^{a\pm},\varPhi^{a\pm})|_{t=0}={\mathbf{0}}\qquad for j=0,,m2,\displaystyle\textrm{for }\ j=0,\ldots,m-2, (5.14a)
tΦa±+v1a±1Φa±+v2a±2Φa±v3a±=0\displaystyle\partial_{t}\varPhi^{a\pm}+v_{1}^{a\pm}\partial_{1}\varPhi^{a\pm}+v_{2}^{a\pm}\partial_{2}\varPhi^{a\pm}-v_{3}^{a\pm}=0\qquad in Ω,\displaystyle\textrm{in }\ \Omega, (5.14b)
±3Φa±3/4\displaystyle\pm\partial_{3}\varPhi^{a\pm}\geq{3}/{4}\qquad in Ω,\displaystyle\textrm{in }\ \Omega, (5.14c)
Φa+=Φa=φa\displaystyle\varPhi^{a+}=\varPhi^{a-}=\varphi^{a}\qquad on Ω,\displaystyle\textrm{on }\ \partial\Omega, (5.14d)
𝔹(Ua+,Ua,φa)=𝟎\displaystyle\mathbb{B}(U^{a+},U^{a-},\varphi^{a})={\mathbf{0}}\qquad on Ω,\displaystyle\textrm{on }\ \partial\Omega, (5.14e)
F3ja±=F1ja±1Φa±+F2ja±2Φa±\displaystyle{F}_{3j}^{a\pm}={F}_{1j}^{a\pm}\partial_{1}\varPhi^{a\pm}+{F}_{2j}^{a\pm}\partial_{2}\varPhi^{a\pm}\qquad on Ω¯,for j=1,2,3.\displaystyle\textrm{on }\ \bar{\Omega},\quad\textrm{for }\ j=1,2,3. (5.14f)

Moreover, we have

supp(U~a±,Φ~a±){t[T,T],x30,x12+x22+x323},\displaystyle{\rm supp}\big{(}\widetilde{U}^{a\pm},\widetilde{\varPhi}^{a\pm}\big{)}\subset\left\{t\in[-T,T],\,x_{3}\geq 0,\,x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\leq 3\right\}, (5.15)
U~a±Hm(Ω)+Φ~a±Hm+2(Ω)+φaHm+3/2(Ω)\displaystyle\big{\|}\widetilde{U}^{a\pm}\big{\|}_{H^{m}(\Omega)}+\big{\|}\widetilde{\varPhi}^{a\pm}\big{\|}_{H^{m+2}(\Omega)}+\|\varphi^{a}\|_{H^{m+3/2}(\partial\Omega)}
ε0(U~±0Hm+1/2(+3)+φ0Hm+1(2)),\displaystyle\qquad\qquad\qquad\quad\ \leq\varepsilon_{0}\Big{(}\big{\|}\widetilde{U}^{\pm}_{0}\big{\|}_{H^{m+1/2}(\mathbb{R}_{+}^{3})}+\|\varphi_{0}\|_{H^{m+1}(\mathbb{R}^{2})}\Big{)}, (5.16)

where we write ε0()\varepsilon_{0}(\cdot) as a generic function that tends to zero as its argument tends to zero.

Proof.

The proof is divided into four steps.

Step 1.  First we consider ρ~a,v~1a±,v~2a±Hm+1(Ω)\tilde{\rho}^{a-},\tilde{v}_{1}^{a\pm},\tilde{v}_{2}^{a\pm}\in H^{m+1}(\Omega) and Φ~aHm+2(Ω)\widetilde{\varPhi}^{a-}\in H^{m+2}(\Omega) such that the following conditions are satisfied:

(tkρ~a,tkv~1a±,tkv~2a±)|t=0=\displaystyle\big{(}\partial_{t}^{{k}}\tilde{\rho}^{a-},\,\partial_{t}^{{k}}\tilde{v}_{1}^{a\pm},\partial_{t}^{{k}}\tilde{v}_{2}^{a\pm}\big{)}\big{|}_{t=0}=\; (ρ~(k),v~1(k),±,v~2(k)±),\displaystyle\big{(}\tilde{\rho}_{({k})}^{-},\tilde{v}_{1({k}),}^{\pm},\tilde{v}_{2({k})}^{\pm}\big{)}, for k=0,,m,\displaystyle\qquad\textrm{for }{k}=0,\ldots,m,
tkΦ~a|t=0=\displaystyle\partial_{t}^{{k}}\widetilde{\varPhi}^{a-}\big{|}_{t=0}=\; Φ~(k),\displaystyle\widetilde{\varPhi}^{-}_{({k})}, for k=0,,m+1,\displaystyle\qquad\textrm{for }{k}=0,\ldots,m+1,

where ρ~(k)\tilde{\rho}_{({k})}^{-}, v~1(k)±\tilde{v}_{1({k})}^{\pm}, v~2(k)±\tilde{v}_{2({k})}^{\pm} and Φ~(k)\widetilde{\varPhi}^{-}_{({k})} are constructed in Lemma 5.1. Utilizing the compatibility conditions (5.12)–(5.13), we apply the lifting result from [35, Theorem 2.3] to select ρ~a+Hm+1(Ω)\tilde{\rho}^{a+}\in H^{m+1}(\Omega) and Φ~a+Hm+2(Ω)\widetilde{\varPhi}^{a+}\in H^{m+2}(\Omega) such that

tkρ~a+|t=0=\displaystyle\partial_{t}^{{k}}\tilde{\rho}^{a+}\big{|}_{t=0}=\; ρ~(k)+,\displaystyle\tilde{\rho}_{({k})}^{+}, for k=0,,m,\displaystyle\qquad\textrm{for }{k}=0,\ldots,m,
tkΦ~a+|t=0=\displaystyle\partial_{t}^{{k}}\widetilde{\varPhi}^{a+}\big{|}_{t=0}=\; Φ~+(k),\displaystyle\widetilde{\varPhi}^{+}_{({k})}, for k=0,,m+1,\displaystyle\qquad\textrm{for }{k}=0,\ldots,m+1,

and

[ρ~a]=0,[Φ~a]=0on Ω.\displaystyle[\tilde{\rho}^{a}]=0,\qquad[\widetilde{\varPhi}^{a}]=0\qquad\textrm{on }\ \partial\Omega.

Furthermore, ρ~a±,\tilde{\rho}^{a\pm}, v~1a±\tilde{v}_{1}^{a\pm},v~2a±\tilde{v}_{2}^{a\pm} and Φ~a±\widetilde{\varPhi}^{a\pm} can be chosen to satisfy (5.15), since (U~±(k),Φ~±(k))(\widetilde{U}^{\pm}_{({k})},\widetilde{\varPhi}^{\pm}_{({k})}) have a compact support.

Step 2.  Now, we define

φa=Φ~a+|x3=0=Φ~a|x3=0Hm+3/2(Ω),\displaystyle\varphi^{a}=\widetilde{\varPhi}^{a+}\big{|}_{x_{3}=0}=\widetilde{\varPhi}^{a-}\big{|}_{x_{3}=0}\in H^{m+3/2}(\partial\Omega),
v~3a±=tΦ~a±+(v~1a±±v¯)1Φ~a±+(v~2a±±v¯)2Φ~a±Hm+1(Ω).\displaystyle\tilde{v}_{3}^{a\pm}=\partial_{t}\widetilde{\varPhi}^{a\pm}+(\tilde{v}_{1}^{a\pm}\pm\bar{v})\partial_{1}\widetilde{\varPhi}^{a\pm}+(\tilde{v}_{2}^{a\pm}\pm\bar{v})\partial_{2}\widetilde{\varPhi}^{a\pm}\in H^{m+1}(\Omega).

Thus, we deduce that the functions v~3a±\tilde{v}_{3}^{a\pm} satisfy (5.15), and (5.14b), (5.14d), and (5.14e) hold.

Step 3.  Since v~a±Hm+1(Ω)\tilde{v}^{a\pm}\in H^{m+1}(\Omega) and Φ~a±Hm+2(Ω)\widetilde{\varPhi}^{a\pm}\in H^{m+2}(\Omega) are already specified, we take F~ija±Hm(Ω)\widetilde{F}_{ij}^{a\pm}\in H^{m}(\Omega), for i,j=1,2,3i,j=1,2,3, as the unique solution of the transport equation

(tΦa±+va±Φa±)F~ija±Fja±Φa±va±i=0on Ω¯,\displaystyle\big{(}\partial_{t}^{\varPhi^{a\pm}}+v_{\ell}^{a\pm}\partial_{\ell}^{\varPhi^{a\pm}}\big{)}\widetilde{F}_{ij}^{a\pm}-{F}_{\ell j}^{a\pm}\partial_{\ell}^{\varPhi^{a\pm}}v^{a\pm}_{i}=0\qquad\textrm{on }\ \bar{\Omega}, (5.17)

supplemented with the initial data:

F~ija±|t=0=F~ij(0)±Hm+1/2(+3).\displaystyle\widetilde{F}_{ij}^{a\pm}\big{|}_{t=0}=\widetilde{F}_{ij(0)}^{\pm}\in H^{m+1/2}(\mathbb{R}_{+}^{3}). (5.18)

From equations (5.11) and (5.18), it follows that the constraints (5.14f) are satisfied at the initial time. Consequently, as in the proof of Proposition 2.1, we deduce that (5.14f) holds for all tt\in\mathbb{R}.

Step 4.  Equations (5.8)–(5.9) imply (5.14a). The estimate (5.16) is derived from (5.10) and the continuity of the lifting operator. Using (5.16) and the Sobolev embedding theorem, we deduce (5.14c), provided that the initial perturbations are sufficiently small. This completes the proof. ∎

We define Ua:=(Ua+,Ua)U^{a}:=(U^{a+},U^{a-})^{\top} and Φa:=(Φa+,Φa)\varPhi^{a}:=(\varPhi^{a+},\varPhi^{a-})^{\top} for simplicity. The vector (Ua,Φa)(U^{a},\varPhi^{a}) constructed in Lemma 5.2 serves as an approximate solution to (2.6)–(2.11). From (5.14d) and (5.15), it is clear that φa\varphi^{a} is supported within the region {TtT,x12+x22+x333}\{-T\leq t\leq T,\,x_{1}^{2}+x_{2}^{2}+x_{3}^{3}\leq 3\}. Applying (5.16) and the Sobolev embedding theorem yields the following estimate:

U~a±W2,(Ω)+Φ~a±W3,(Ω)ε0(U~±0Hm+1/2(+3)+φ0Hm+1(2))\displaystyle\big{\|}\widetilde{U}^{a\pm}\big{\|}_{W^{2,\infty}(\Omega)}+\big{\|}\widetilde{\varPhi}^{a\pm}\big{\|}_{W^{3,\infty}(\Omega)}\leq\varepsilon_{0}\left(\big{\|}\tilde{U}^{\pm}_{0}\big{\|}_{H^{m+1/2}(\mathbb{R}_{+}^{3})}+\|\varphi_{0}\|_{H^{m+1}(\mathbb{R}^{2})}\right)

for any integer m4m\geq 4.

Next, we rewrite the system (2.6)–(2.11) as a problem with zero initial data. Define the function faf^{a} as follows: fa=𝕃(Ua,Φa)f^{a}=-\mathbb{L}(U^{a},\varPhi^{a}) for t>0t>0, and fa=𝟎f^{a}={\mathbf{0}} for t<0t<0. Thus, faHm1(Ω)f^{a}\in H^{m-1}(\Omega) and suppfa{0tT,x30,x12+x223}{\rm supp}f^{a}\subset\left\{0\leq t\leq T,\,x_{3}\geq 0,\,x_{1}^{2}+x_{2}^{2}\leq 3\right\}, as implied by (5.14a), (5.15), and (U~a±,Φ~a±)Hm(Ω)(\tilde{U}^{a\pm},\nabla\widetilde{\varPhi}^{a\pm})\in H^{m}(\Omega). Using Moser-type calculus inequalities and (5.16), we obtain:

faHm1(Ω)ε0(U~±0Hm+1/2(+3)+φ0Hm+1(2)).\displaystyle\|f^{a}\|_{H^{m-1}(\Omega)}\leq\varepsilon_{0}\left(\big{\|}\tilde{U}^{\pm}_{0}\big{\|}_{H^{m+1/2}(\mathbb{R}_{+}^{3})}+\|\varphi_{0}\|_{H^{m+1}(\mathbb{R}^{2})}\right). (5.19)

Finally, based on (5.14), the solution to the original problem (2.6)–(2.11) on [0,T]×+3[0,T]\times\mathbb{R}_{+}^{3} is expressed as (U,Φ)=(Ua,Φa)+(V,Ψ)(U,\varPhi)=(U^{a},\varPhi^{a})+(V,\varPsi), where V=(V+,V)V=(V^{+},V^{-})^{\top} and Ψ=(Ψ+,Ψ)\varPsi=(\varPsi^{+},\varPsi^{-})^{\top} solve the following problem:

{(V,Ψ):=𝕃(Ua+V,Φa+Ψ)𝕃(Ua,Φa)=fain ΩT,(V,Ψ):=tΨ+(v1a+v1)1Ψ+v11Φa+(v2a+v2)2Ψ+v22Φav3=0in ΩT,(V,ψ):=𝔹(Ua+V,φa+ψ)=𝟎,Ψ+=Ψ=ψon ωT,(V,Ψ)=𝟎for t<0.\displaystyle\left\{\begin{aligned} &\mathcal{L}(V,\varPsi):=\mathbb{L}(U^{a}+V,\varPhi^{a}+\varPsi)-\mathbb{L}(U^{a},\varPhi^{a})=f^{a}\quad&&\textrm{in }\Omega_{T},\\ &\mathcal{E}(V,\varPsi):=\partial_{t}\varPsi+(v_{1}^{a}+v_{1})\partial_{1}\varPsi+v_{1}\partial_{1}\varPhi^{a}+(v_{2}^{a}+v_{2})\partial_{2}\varPsi+v_{2}\partial_{2}\varPhi^{a}-v_{3}=0\quad&&\textrm{in }\Omega_{T},\\ &\mathcal{B}(V,\psi):=\mathbb{B}(U^{a}+V,\varphi^{a}+\psi)={\mathbf{0}},\quad\varPsi^{+}=\varPsi^{-}=\psi\quad&&\textrm{on }\omega_{T},\\ &(V,\varPsi)={\mathbf{0}}\quad&&\textrm{for }t<0.\end{aligned}\right. (5.20)

Thus, solving the problem (5.20) on [0,T]×+3[0,T]\times\mathbb{R}_{+}^{3} completes the problem.

6. Nash–Moser Iteration

In this section, we analyze the problem (5.20) through a suitable modification of the Nash–Moser iteration scheme. First, we outline the iterative scheme for problem (5.20) and present the corresponding inductive hypothesis. We then complete the proof of Theorem 2.1 by demonstrating that the inductive hypothesis holds for all integers. It is worth noting that this section follows closely the standard procedure outlined in [25, 16], also see [2, 12, 48].

6.1. Iterative Scheme

We start by recalling the following result from [25, Proposition 4].

Proposition 6.1.

Let T>0T>0, γ1\gamma\geq 1, and mm\in\mathbb{N} with m4m\geq 4. Then there exists a family of smoothing operators {𝒮θ}θ1\{\mathcal{S}_{\theta}\}_{\theta\geq 1} such that

𝒮θ:γ3(ΩT)×γ3(ΩT)s3γs(ΩT)×γs(ΩT),\displaystyle\mathcal{S}_{\theta}:\ \mathcal{F}_{\gamma}^{3}(\Omega_{T})\times\mathcal{F}_{\gamma}^{3}(\Omega_{T})\longrightarrow\bigcap_{s\geq 3}\mathcal{F}_{\gamma}^{s}(\Omega_{T})\times\mathcal{F}_{\gamma}^{s}(\Omega_{T}),

where γs(ΩT):={uHsγ(ΩT):u=0 if t<0}\mathcal{F}_{\gamma}^{s}(\Omega_{T}):=\big{\{}u\in H^{s}_{\gamma}(\Omega_{T}):u=0\textrm{ if }t<0\big{\}} for s0s\geq 0. These operators satisfy the following estimates:

𝒮θuHkγ(ΩT)θ(kj)+uHjγ(ΩT)\displaystyle\|\mathcal{S}_{\theta}u\|_{H^{k}_{\gamma}(\Omega_{T})}\lesssim\theta^{(k-j)_{+}}\|u\|_{H^{j}_{\gamma}(\Omega_{T})} for j,k=1,,m,\displaystyle\quad\textrm{for }j,k=1,\ldots,m, (6.1a)
𝒮θuuHkγ(ΩT)θkjuHjγ(ΩT)\displaystyle\|\mathcal{S}_{\theta}u-u\|_{H^{k}_{\gamma}(\Omega_{T})}\lesssim\theta^{k-j}\|u\|_{H^{j}_{\gamma}(\Omega_{T})} for 1kjm,\displaystyle\quad\textrm{for }1\leq k\leq j\leq m, (6.1b)
ddθ𝒮θuHkγ(ΩT)θkj1uHjγ(ΩT)\displaystyle\left\|\frac{{\rm d}}{{\rm d}\theta}\mathcal{S}_{\theta}u\right\|_{H^{k}_{\gamma}(\Omega_{T})}\lesssim\theta^{k-j-1}\|u\|_{H^{j}_{\gamma}(\Omega_{T})} for j,k=1,,m,\displaystyle\quad\textrm{for }j,k=1,\ldots,m, (6.1c)

and

𝒮θu𝒮θwHkγ(ωT)θ(k+1j)+uwHjγ(ωT)for j,k=1,,m,\displaystyle\|\mathcal{S}_{\theta}u-\mathcal{S}_{\theta}w\|_{H^{k}_{\gamma}(\omega_{T})}\lesssim\theta^{(k+1-j)_{+}}\|u-w\|_{H^{j}_{\gamma}(\omega_{T})}\quad\textrm{for }j,k=1,\ldots,m, (6.2)

where jj and kk are integers, and (kj)+:=max{0,kj}(k-j)_{+}:=\max\{0,k-j\}. In particular, if u=wu=w on ωT\omega_{T}, then 𝒮θu=𝒮θw\mathcal{S}_{\theta}u=\mathcal{S}_{\theta}w on ωT\omega_{T}. Furthermore, smoothing operators can also be constructed for functions defined on ωT\omega_{T} (denoted by 𝒮θ\mathcal{S}_{\theta} for simplicity), which satisfy the inequalities (6.1), with norms Hγ(ωT)\|\cdot\|_{H^{\ell}_{\gamma}(\omega_{T})}.

The following lemma establishes a lifting operator that will be used in constructing the iterative scheme and the modified state (see [28, Chapter 5] and [25] for the proof).

Lemma 6.1.

Let T>0T>0, γ1\gamma\geq 1, and m+m\in\mathbb{N}_{+}. Then there exists a continuous operator T\mathcal{R}_{T} mapping γs(ωT)\mathcal{F}_{\gamma}^{s}(\omega_{T}) to γs+1/2(ΩT)\mathcal{F}_{\gamma}^{s+1/2}(\Omega_{T}) satisfying (Tu)|x3=0=u(\mathcal{R}_{T}u)|_{x_{3}=0}=u when uγs(ωT)u\in\mathcal{F}_{\gamma}^{s}(\omega_{T}) for all s[1,m]s\in[1,m].

Following [25, 12], we now describe the iteration scheme for problem (5.20). Let N1{N}\geq 1 be a given integer.

We begin by setting (V0,Ψ0,ψ0)=𝟎(V_{0},\varPsi_{0},\psi_{0})=\mathbf{0} and assume that (Vn,Ψn,ψn)(V_{n},\varPsi_{n},\psi_{n}) is given and satisfies

(Vn,Ψn,ψn)|t<0=𝟎,Ψn+|x3=0=Ψn|x3=0=ψnfor n=0,,N.\displaystyle(V_{n},\varPsi_{n},\psi_{n})\big{|}_{t<0}={\mathbf{0}},\quad\varPsi_{n}^{+}\big{|}_{x_{3}=0}=\varPsi_{n}^{-}\big{|}_{x_{3}=0}=\psi_{n}\quad\textit{for }n=0,\ldots,{N}. (6.3)

Next, we define the iteration scheme:

VN+1=VN+δVN,ΨN+1=ΨN+δΨN,ψN+1=ψN+δψN,\displaystyle V_{{N}+1}=V_{{N}}+\delta V_{{N}},\quad\varPsi_{{N}+1}=\varPsi_{{N}}+\delta\varPsi_{{N}},\quad\,\,\psi_{{N}+1}=\psi_{{N}}+\delta\psi_{{N}}, (6.4)

where the increments δVN\delta V_{{N}}, δΨN\delta\varPsi_{{N}}, and δψN\delta\psi_{{N}} are determined by the problem

{𝕃e(Ua+VN+1/2,Φa+ΨN+1/2)δV˙N=fNin ΩT,𝔹e(Ua+VN+1/2,Φa+ΨN+1/2)(δV˙N,δψN)=gNon ωT,(δV˙N,δψN)=𝟎for t<0.\displaystyle\left\{\begin{aligned} &\mathbb{L}_{e}^{\prime}(U^{a}+V_{{N}+1/2},\varPhi^{a}+\varPsi_{{N}+1/2})\delta\dot{V}_{{N}}=f_{{N}}\qquad&&\textrm{in }\Omega_{T},\\ &\mathbb{B}_{e}^{\prime}(U^{a}+V_{{N}+1/2},\varPhi^{a}+\varPsi_{{N}+1/2})(\delta\dot{V}_{{N}},\delta\psi_{{N}})=g_{{N}}\qquad&&\textrm{on }\omega_{T},\\ &(\delta\dot{V}_{{N}},\delta\psi_{{N}})={\mathbf{0}}\qquad&&\textrm{for }t<0.\end{aligned}\right. (6.5)

Here, the operators 𝕃e\mathbb{L}_{e}^{\prime} and 𝔹e\mathbb{B}_{e}^{\prime} are defined in (4.10a) and (4.10b), respectively. The pair (VN+1/2,ΨN+1/2)(V_{{N}+1/2},\varPsi_{{N}+1/2}) represents a modified state such that (Ua+VN+1/2,Φa+ΨN+1/2)(U^{a}+V_{{N}+1/2},\varPhi^{a}+\varPsi_{{N}+1/2}) satisfies constraints (4.2)–(4.3). The source term (fN,gN)(f_{{N}},g_{{N}}) will be determined later on. For a detailed construction of the modified state, see Section 6.3. Following (4.9), we write

δV˙N:=δVN3(Ua+VN+1/2)3(Φa+ΨN+1/2)δΨN.\displaystyle\delta\dot{V}_{{N}}:=\delta V_{{N}}-\frac{\partial_{3}(U^{a}+V_{{N}+1/2})}{\partial_{3}(\varPhi^{a}+\varPsi_{{N}+1/2})}\delta\varPsi_{{N}}. (6.6)

Then, we set f0:=𝒮θ0faf_{0}:=\mathcal{S}_{\theta_{0}}f^{a} and (e0,e~0,g0):=𝟎(e_{0},\tilde{e}_{0},g_{0}):={\mathbf{0}} for sufficiently large θ01\theta_{0}\geq 1. Let (fn,gn,en,e~n)(f_{n},g_{n},e_{n},\tilde{e}_{n}) be given and vanish in the past for n=0,,N1n=0,\ldots,{N}-1. The terms fNf_{{N}} and gNg_{{N}} are determined by the equations

n=0Nfn+𝒮θNEN=𝒮θNfa,n=0Ngn+𝒮θNE~N=𝟎,\displaystyle\sum_{n=0}^{{N}}f_{n}+\mathcal{S}_{\theta_{{N}}}E_{{N}}=\mathcal{S}_{\theta_{{N}}}f^{a},\qquad\sum_{n=0}^{{N}}g_{n}+\mathcal{S}_{\theta_{{N}}}\widetilde{E}_{{N}}={\mathbf{0}}, (6.7)

where

EN:=n=0N1en26,E~N:=n=0N1e~n3.\displaystyle E_{{N}}:=\sum_{n=0}^{{N}-1}e_{n}\in\mathbb{R}^{26},\qquad\widetilde{E}_{{N}}:=\sum_{n=0}^{{N}-1}\tilde{e}_{n}\in\mathbb{R}^{3}. (6.8)

Here, 𝒮θN\mathcal{S}_{\theta_{{N}}} are the smoothing operators from Proposition 6.1, with {θN}\{\theta_{{N}}\} defined as

θ01,θN=θ20+N.\displaystyle\theta_{0}\geq 1,\qquad\theta_{{N}}=\sqrt{\theta^{2}_{0}+{N}}. (6.9)

As a consequence, we can apply Theorem 4.1 to solve (δV˙N,δψN)(\delta\dot{V}_{{N}},\delta\psi_{{N}}) for problem (6.5).

Noticing (6.6), we need to construct functions δΨN+\delta\varPsi_{{N}}^{+} and δΨN\delta\varPsi_{{N}}^{-} such that δΨN±|x3=0=δψN\delta\varPsi_{{N}}^{\pm}\big{|}_{x_{3}=0}=\delta\psi_{{N}}. From the boundary conditions in (6.5) (cf. (4.7), (4.1), and (4.11)), we obtain that δψN\delta\psi_{{N}} satisfies

t(δψN)+UN+1/2,2+1(δψN)+UN+1/2,3+2(δψN)\displaystyle\partial_{t}(\delta\psi_{{N}})+U_{{N}+1/2,2}^{+}\partial_{1}(\delta\psi_{{N}})+U_{{N}+1/2,3}^{+}\partial_{2}(\delta\psi_{{N}})
+(1ΦN+1/2+3UN+1/2,2+3ΦN+1/2++2ΦN+1/2+3UN+1/2,3+3ΦN+1/2+3UN+1/2,4+3ΦN+1/2+)δψN\displaystyle\quad+\left(\partial_{1}\varPhi_{{N}+1/2}^{+}\frac{\partial_{3}U_{{N}+1/2,2}^{+}}{\partial_{3}\varPhi_{{N}+1/2}^{+}}+\partial_{2}\varPhi_{{N}+1/2}^{+}\frac{\partial_{3}U_{{N}+1/2,3}^{+}}{\partial_{3}\varPhi_{{N}+1/2}^{+}}-\frac{\partial_{3}U_{{N}+1/2,4}^{+}}{\partial_{3}\varPhi_{{N}+1/2}^{+}}\right)\delta\psi_{{N}}
+1ΦN+1/2+δV˙N,2++2ΦN+1/2+δV˙N,3+δV˙N,4+=gN,2on ωT,\displaystyle\qquad\qquad\qquad\qquad+\partial_{1}\varPhi_{{N}+1/2}^{+}\delta\dot{V}_{{N},2}^{+}+\partial_{2}\varPhi_{{N}+1/2}^{+}\delta\dot{V}_{{N},3}^{+}-\delta\dot{V}_{{N},4}^{+}=g_{{N},2}\qquad\qquad\quad\textrm{on }\ \omega_{T},
t(δψN)+UN+1/2,21(δψN)+UN+1/2,32(δψN)\displaystyle\partial_{t}(\delta\psi_{{N}})+U_{{N}+1/2,2}^{-}\partial_{1}(\delta\psi_{{N}})+U_{{N}+1/2,3}^{-}\partial_{2}(\delta\psi_{{N}})
+(1ΦN+1/23UN+1/2,23ΦN+1/2+2ΦN+1/23UN+1/2,33ΦN+1/23UN+1/2,43ΦN+1/2)δψN\displaystyle\quad+\left(\partial_{1}\varPhi_{{N}+1/2}^{-}\frac{\partial_{3}U_{{N}+1/2,2}^{-}}{\partial_{3}\varPhi_{{N}+1/2}^{-}}+\partial_{2}\varPhi_{{N}+1/2}^{-}\frac{\partial_{3}U_{{N}+1/2,3}^{-}}{\partial_{3}\varPhi_{{N}+1/2}^{-}}-\frac{\partial_{3}U_{{N}+1/2,4}^{-}}{\partial_{3}\varPhi_{{N}+1/2}^{-}}\right)\delta\psi_{{N}}
+1ΦN+1/2δV˙N,2+2ΦN+1/2δV˙N,3δV˙N,4=gN,2gN,1on ωT,\displaystyle\qquad\qquad\qquad\qquad+\partial_{1}\varPhi_{{N}+1/2}^{-}\delta\dot{V}_{{N},2}^{-}+\partial_{2}\varPhi_{{N}+1/2}^{-}\delta\dot{V}_{{N},3}^{-}-\delta\dot{V}_{{N},4}^{-}=g_{{N},2}-g_{{N},1}\qquad\textrm{on }\ \omega_{T},

where we define

UN+1/2±:=Ua±+V±N+1/2,ΦN+1/2±:=Φa±+Ψ±N+1/2U_{{N}+1/2}^{\pm}:=U^{a\pm}+V^{\pm}_{{N}+1/2},\quad\varPhi_{{N}+1/2}^{\pm}:=\varPhi^{a\pm}+\varPsi^{\pm}_{{N}+1/2}

for simplifying the presentation. In accordance with the identities above, we take δΨN+\delta\varPsi_{{N}}^{+} and δΨN\delta\varPsi_{{N}}^{-} as the solutions to the transport equations

t(δΨN+)+UN+1/2,2+1(δΨN+)+UN+1/2,3+2(δΨN+)\displaystyle\partial_{t}(\delta\varPsi_{{N}}^{+})+U_{{N}+1/2,2}^{+}\partial_{1}(\delta\varPsi_{{N}}^{+})+U_{{N}+1/2,3}^{+}\partial_{2}(\delta\varPsi_{{N}}^{+})
+(1ΦN+1/2+3UN+1/2,2+3ΦN+1/2++2ΦN+1/2+3UN+1/2,3+3ΦN+1/2+3UN+1/2,4+3ΦN+1/2+)δΨN+\displaystyle+\left(\partial_{1}\varPhi_{{N}+1/2}^{+}\frac{\partial_{3}U_{{N}+1/2,2}^{+}}{\partial_{3}\varPhi_{{N}+1/2}^{+}}+\partial_{2}\varPhi_{{N}+1/2}^{+}\frac{\partial_{3}U_{{N}+1/2,3}^{+}}{\partial_{3}\varPhi_{{N}+1/2}^{+}}-\frac{\partial_{3}U_{{N}+1/2,4}^{+}}{\partial_{3}\varPhi_{{N}+1/2}^{+}}\right)\delta\varPsi_{{N}}^{+}
+1ΦN+1/2+δV˙N,2++2ΦN+1/2+δV˙N,3+δV˙N,4+=TgN,2+hN+,\displaystyle\qquad\qquad\qquad\qquad+\partial_{1}\varPhi_{{N}+1/2}^{+}\delta\dot{V}_{{N},2}^{+}+\partial_{2}\varPhi_{{N}+1/2}^{+}\delta\dot{V}_{{N},3}^{+}-\delta\dot{V}_{{N},4}^{+}=\mathcal{R}_{T}g_{{N},2}+h_{N}^{+}, (6.10)
t(δΨN)+UN+1/2,21(δΨN)+UN+1/2,32(δΨN)\displaystyle\partial_{t}(\delta\varPsi_{{N}}^{-})+U_{{N}+1/2,2}^{-}\partial_{1}(\delta\varPsi_{{N}}^{-})+U_{{N}+1/2,3}^{-}\partial_{2}(\delta\varPsi_{{N}}^{-})
+(1ΦN+1/23UN+1/2,23ΦN+1/2+2ΦN+1/23UN+1/2,33ΦN+1/23UN+1/2,43ΦN+1/2)δΨN\displaystyle+\left(\partial_{1}\varPhi_{{N}+1/2}^{-}\frac{\partial_{3}U_{{N}+1/2,2}^{-}}{\partial_{3}\varPhi_{{N}+1/2}^{-}}+\partial_{2}\varPhi_{{N}+1/2}^{-}\frac{\partial_{3}U_{{N}+1/2,3}^{-}}{\partial_{3}\varPhi_{{N}+1/2}^{-}}-\frac{\partial_{3}U_{{N}+1/2,4}^{-}}{\partial_{3}\varPhi_{{N}+1/2}^{-}}\right)\delta\varPsi_{{N}}^{-}
+1ΦN+1/2δV˙N,2+2ΦN+1/2δV˙N,3δV˙N,4=T(gN,2gN,1)+hN.\displaystyle\qquad\qquad\qquad\qquad+\partial_{1}\varPhi_{{N}+1/2}^{-}\delta\dot{V}_{{N},2}^{-}+\partial_{2}\varPhi_{{N}+1/2}^{-}\delta\dot{V}_{{N},3}^{-}-\delta\dot{V}_{{N},4}^{-}=\mathcal{R}_{T}(g_{{N},2}-g_{{N},1})+h_{N}^{-}. (6.11)

Here, T\mathcal{R}_{T} is the lifting operator from Lemma 6.1, and the source terms hN±h_{{N}}^{\pm} will be chosen via a decomposition of the operator \mathcal{E}, as defined in (5.20).

Finally, we set (h0+,h0,e^0)=𝟎(h_{0}^{+},h_{0}^{-},\hat{e}_{0})={\mathbf{0}}, and assume that (hn+,hn,e^n)(h_{n}^{+},h_{n}^{-},\hat{e}_{n}) are given and vanish in the past for n=0,,N1n=0,\ldots,{N}-1. Under these conditions, we determine hN+h_{{N}}^{+} and hNh_{{N}}^{-} using the equations

𝒮θN(E^N+TE~N,2)+n=0Nhn+=0,\displaystyle\mathcal{S}_{\theta_{{N}}}\left(\widehat{E}_{{N}}^{+}-\mathcal{R}_{T}\widetilde{E}_{{N},2}\right)+\sum_{n=0}^{{N}}h_{n}^{+}=0, (6.12a)
𝒮θN(E^NTE~N,2+TE~N,1)+n=0Nhn=0,\displaystyle\mathcal{S}_{\theta_{{N}}}\left(\widehat{E}_{{N}}^{-}-\mathcal{R}_{T}\widetilde{E}_{{N},2}+\mathcal{R}_{T}\widetilde{E}_{{N},1}\right)+\sum_{n=0}^{{N}}h_{n}^{-}=0, (6.12b)

where

E^N=(E^N+,E^N)=n=0N1e^n2,\displaystyle\widehat{E}_{{N}}=(\widehat{E}_{{N}}^{+},\widehat{E}_{{N}}^{-})^{\top}=\sum_{n=0}^{{N}-1}\hat{e}_{n}\in\mathbb{R}^{2}, (6.13)

and hN±=0h_{{N}}^{\pm}=0 for t<0t<0. As in [28], we can show that the traces of hN±h_{{N}}^{\pm} on ωT\omega_{T} vanish. Consequently, it follows that δΨN±=0\delta\varPsi_{{N}}^{\pm}=0, for t<0t<0 and δΨN±|x3=0=δψN\delta\varPsi_{{N}}^{\pm}|_{x_{3}=0}=\delta\psi_{{N}}. These are the unique smooth solutions satisfying transport equations (6.10)–(6.11). Hence, δVN\delta V_{{N}} can be derived from (6.6) and (VN+1,ΨN+1,ψN+1)(V_{{N}+1},\varPsi_{{N}+1},\psi_{{N}+1}) can be derived from (6.4).

From (6.8)–(6.7) and (6.12)–(6.13), it suffices to define the error terms eNe_{{N}}, e~N\tilde{e}_{{N}}, and e^N\hat{e}_{{N}}. To this end, by an analogous argument in [25, 12], we decompose

(VN+1,ΨN+1)(VN,ΨN)\displaystyle\mathcal{L}(V_{{N}+1},\varPsi_{{N}+1})-\mathcal{L}(V_{{N}},\varPsi_{{N}})
=𝕃e(Ua+VN+1/2,Φa+ΨN+1/2)δV˙N+eN+eN+eN+DN+1/2δΨN\displaystyle\quad=\mathbb{L}_{e}^{\prime}(U^{a}+V_{{N}+1/2},\varPhi^{a}+\varPsi_{{N}+1/2})\delta\dot{V}_{{N}}+e_{{N}}^{\prime}+e_{{N}}^{\prime\prime}+e_{{N}}^{\prime\prime\prime}+D_{{N}+1/2}\delta\varPsi_{{N}} (6.14)

and

(VN+1,ψN+1)(VN,ψN)\displaystyle\mathcal{B}(V_{{N}+1},\psi_{{N}+1})-\mathcal{B}(V_{{N}},\psi_{{N}})
=𝔹e(Ua+VN+1/2,Φa+ΨN+1/2)(δV˙N,δψN)+e~N+e~N+e~N,\displaystyle\quad=\mathbb{B}_{e}^{\prime}(U^{a}+V_{{N}+1/2},\varPhi^{a}+\varPsi_{{N}+1/2})(\delta\dot{V}_{{N}},\delta\psi_{{N}})+\tilde{e}_{{N}}^{\prime}+\tilde{e}_{{N}}^{\prime\prime}+\tilde{e}_{{N}}^{\prime\prime\prime}, (6.15)

where

eN:=(VN+1,ΨN+1)(VN,ΨN)𝕃(Ua+VN,Φa+ΨN)(δVN,δΨN),\displaystyle e_{{N}}^{\prime}:=\mathcal{L}(V_{{N}+1},\varPsi_{{N}+1})-\mathcal{L}(V_{{N}},\varPsi_{{N}})-\mathbb{L}^{\prime}(U^{a}+V_{{N}},\varPhi^{a}+\varPsi_{{N}})(\delta V_{{N}},\delta\varPsi_{{N}}),
eN:=𝕃(Ua+VN,Φa+ΨN)(δVN,δΨN)𝕃(Ua+𝒮θNVN,Φa+𝒮θNΨN)(δVN,δΨN),\displaystyle e_{{N}}^{\prime\prime}:=\mathbb{L}^{\prime}(U^{a}+V_{{N}},\varPhi^{a}+\varPsi_{{N}})(\delta V_{{N}},\delta\varPsi_{{N}})-\mathbb{L}^{\prime}(U^{a}+\mathcal{S}_{\theta_{{N}}}V_{{N}},\varPhi^{a}+\mathcal{S}_{\theta_{{N}}}\varPsi_{{N}})(\delta V_{{N}},\delta\varPsi_{{N}}),
eN:=𝕃(Ua+𝒮θNVN,Φa+𝒮θNΨN)(δVN,δΨN)𝕃(Ua+VN+1/2,Φa+ΨN+1/2)(δVN,δΨN),\displaystyle e_{{N}}^{\prime\prime\prime}:=\mathbb{L}^{\prime}(U^{a}+\mathcal{S}_{\theta_{{N}}}V_{{N}},\varPhi^{a}+\mathcal{S}_{\theta_{{N}}}\varPsi_{{N}})(\delta V_{{N}},\delta\varPsi_{{N}})-\mathbb{L}^{\prime}(U^{a}+V_{{N}+1/2},\varPhi^{a}+\varPsi_{{N}+1/2})(\delta V_{{N}},\delta\varPsi_{{N}}),
DN+1/2:=(3(Φa+ΨN+1/2))13𝕃(Ua+VN+1/2,Φa+ΨN+1/2),\displaystyle D_{{N}+1/2}:=\left(\partial_{3}(\varPhi^{a}+\varPsi_{{N}+1/2})\right)^{-1}\partial_{3}\mathbb{L}(U^{a}+V_{{N}+1/2},\varPhi^{a}+\varPsi_{{N}+1/2}), (6.16)

and

e~N:=(VN+1,ψN+1)(VN,ψN)𝔹(Ua+VN,φa+ψN)(δVN,δψN),\displaystyle\tilde{e}_{{N}}^{\prime}:=\mathcal{B}(V_{{N}+1},\psi_{{N}+1})-\mathcal{B}(V_{{N}},\psi_{{N}})-\mathbb{B}^{\prime}(U^{a}+V_{{N}},\varphi^{a}+\psi_{{N}})(\delta V_{{N}},\delta\psi_{{N}}),
e~N:=𝔹(Ua+VN,φa+ψN)(δVN,δψN)\displaystyle\tilde{e}_{{N}}^{\prime\prime}:=\mathbb{B}^{\prime}(U^{a}+V_{{N}},\varphi^{a}+\psi_{{N}})(\delta V_{{N}},\delta\psi_{{N}})
𝔹(Ua+𝒮θNVN,φa+(𝒮θNΨN)|x3=0)(δVN,δψN),\displaystyle\qquad\ \ -\mathbb{B}^{\prime}(U^{a}+\mathcal{S}_{\theta_{{N}}}V_{{N}},\varphi^{a}+(\mathcal{S}_{\theta_{{N}}}\varPsi_{{N}})|_{x_{3}=0})(\delta V_{{N}},\delta\psi_{{N}}),
e~N:=𝔹(Ua+𝒮θNVN,φa+(𝒮θNΨN)|x3=0)(δVN,δψN)\displaystyle\tilde{e}_{{N}}^{\prime\prime\prime}:=\mathbb{B}^{\prime}(U^{a}+\mathcal{S}_{\theta_{{N}}}V_{{N}},\varphi^{a}+(\mathcal{S}_{\theta_{{N}}}\varPsi_{{N}})|_{x_{3}=0})(\delta V_{{N}},\delta\psi_{{N}})
𝔹e(Ua+VN+1/2,Φa+ΨN+1/2)(δV˙N,δψN).\displaystyle\qquad\ \ -\mathbb{B}_{e}^{\prime}(U^{a}+V_{{N}+1/2},\varPhi^{a}+\varPsi_{{N}+1/2})(\delta\dot{V}_{{N}},\delta\psi_{{N}}).

Take

eN:=eN+eN+eN+DN+1/2δΨN,e~N:=e~N+e~N+e~N.\displaystyle e_{{N}}:=e_{{N}}^{\prime}+e_{{N}}^{\prime\prime}+e_{{N}}^{\prime\prime\prime}+D_{{N}+1/2}\delta\varPsi_{{N}},\qquad\tilde{e}_{{N}}:=\tilde{e}_{{N}}^{\prime}+\tilde{e}_{{N}}^{\prime\prime}+\tilde{e}_{{N}}^{\prime\prime\prime}. (6.17)

As for error term e^N\hat{e}_{{N}}, we decompose

(VN+1,ΨN+1)(VN,ΨN)=(VN+1/2,ΨN+1/2)(δVN,δΨN)+e^N+e^N+e^N,\displaystyle\mathcal{E}(V_{{N}+1},\varPsi_{{N}+1})-\mathcal{E}(V_{{N}},\varPsi_{{N}})=\mathcal{E}^{\prime}(V_{{N}+1/2},\varPsi_{{N}+1/2})(\delta V_{{N}},\delta\varPsi_{{N}})+\hat{e}_{{N}}^{\prime}+\hat{e}_{{N}}^{\prime\prime}+\hat{e}_{{N}}^{\prime\prime\prime}, (6.18)

and set

e^N:=e^N+e^N+e^N,\displaystyle\hat{e}_{{N}}:=\hat{e}_{{N}}^{\prime}+\hat{e}_{{N}}^{\prime\prime}+\hat{e}_{{N}}^{\prime\prime\prime}, (6.19)

where

e^N:=(VN+1,ΨN+1)(VN,ΨN)(VN,ΨN)(δVN,δΨN),\displaystyle\hat{e}_{{N}}^{\prime}:=\mathcal{E}(V_{{N}+1},\varPsi_{{N}+1})-\mathcal{E}(V_{{N}},\varPsi_{{N}})-\mathcal{E}^{\prime}(V_{{N}},\varPsi_{{N}})(\delta V_{{N}},\delta\varPsi_{{N}}),
e^N:=(VN,ΨN)(δVN,δΨN)(𝒮θNVN,𝒮θNΨN)(δVN,δΨN),\displaystyle\hat{e}_{{N}}^{\prime\prime}:=\mathcal{E}^{\prime}(V_{{N}},\varPsi_{{N}})(\delta V_{{N}},\delta\varPsi_{{N}})-\mathcal{E}^{\prime}(\mathcal{S}_{\theta_{{N}}}V_{{N}},\mathcal{S}_{\theta_{{N}}}\varPsi_{{N}})(\delta V_{{N}},\delta\varPsi_{{N}}),
e^N:=(𝒮θNVN,𝒮θNΨN)(δVN,δΨN)(VN+1/2,ΨN+1/2)(δVN,δΨN).\displaystyle\hat{e}_{{N}}^{\prime\prime\prime}:=\mathcal{E}^{\prime}(\mathcal{S}_{\theta_{{N}}}V_{{N}},\mathcal{S}_{\theta_{{N}}}\varPsi_{{N}})(\delta V_{{N}},\delta\varPsi_{{N}})-\mathcal{E}^{\prime}(V_{{N}+1/2},\varPsi_{{N}+1/2})(\delta V_{{N}},\delta\varPsi_{{N}}).

It follows from (5.14b) that

(V,Ψ)=t(Φa+Ψ)+(v1a+v1)1(Φa+Ψ)+(v2a+v2)2(Φa+Ψ)(v3a+v3).\displaystyle\mathcal{E}(V,\varPsi)=\partial_{t}(\varPhi^{a}+\varPsi)+(v_{1}^{a}+v_{1})\partial_{1}(\varPhi^{a}+\varPsi)+(v_{2}^{a}+v_{2})\partial_{2}(\varPhi^{a}+\varPsi)-(v_{3}^{a}+v_{3}).

Then we derive from (6.10)–(6.11) and (6.18) that

[(VN+1+,ΨN+1+)(VN+,ΨN+)(VN+1,ΨN+1)(VN,ΨN)]=[TgN,2+hN++e^N+T(gN,2gN,1)+hN+e^N].\displaystyle\begin{bmatrix}\mathcal{E}(V_{{N}+1}^{+},\varPsi_{{N}+1}^{+})-\mathcal{E}(V_{{N}}^{+},\varPsi_{{N}}^{+})\\[2.84526pt] \mathcal{E}(V_{{N}+1}^{-},\varPsi_{{N}+1}^{-})-\mathcal{E}(V_{{N}}^{-},\varPsi_{{N}}^{-})\end{bmatrix}=\begin{bmatrix}\mathcal{R}_{T}g_{{N},2}+h_{{N}}^{+}+\hat{e}_{{N}}^{+}\\[2.84526pt] \mathcal{R}_{T}(g_{{N},2}-g_{{N},1})+h_{{N}}^{-}+\hat{e}_{{N}}^{-}\end{bmatrix}.

Thus, by (V0,Ψ0)=0\mathcal{E}(V_{0},\varPsi_{0})=0, one has

(VN+1,ΨN+1)=T(n=0N(gn,2gn,1))+n=0Nhn+E^N+1.\displaystyle\mathcal{E}(V_{{N}+1}^{-},\varPsi_{{N}+1}^{-})=\mathcal{R}_{T}\left(\sum_{n=0}^{{N}}(g_{n,2}-g_{n,1})\right)+\sum_{n=0}^{{N}}h_{n}^{-}+\widehat{E}_{{N}+1}^{-}. (6.20)

Moreover, from (6.5) and (6.15), we have

gN=(VN+1,ψN+1)(VN,ψN)e~N.\displaystyle g_{{N}}=\mathcal{B}(V_{{N}+1},\psi_{{N}+1})-\mathcal{B}(V_{{N}},\psi_{{N}})-\tilde{e}_{{N}}. (6.21)

Denote by (VN+1,ψN+1)j\mathcal{B}(V_{{N}+1},\psi_{{N}+1})_{j} the jjth component of the vector (VN+1,ψN+1)\mathcal{B}(V_{{N}+1},\psi_{{N}+1}) for j=1,2.j=1,2. From (5.20) and (2.13),

(VN+1,ψN+1)2\displaystyle\mathcal{B}(V_{{N}+1},\psi_{{N}+1})_{2} =(VN+1+,ΨN+1+)|x3=0=(VN+1,ΨN+1)|x3=0+(VN+1,ψN+1)1.\displaystyle=\mathcal{E}(V_{{N}+1}^{+},\varPsi_{{N}+1}^{+})|_{x_{3}=0}=\mathcal{E}(V_{{N}+1}^{-},\varPsi_{{N}+1}^{-})|_{x_{3}=0}+\mathcal{B}(V_{{N}+1},\psi_{{N}+1})_{1}. (6.22)

Using (6.21), we have

gN,2gN,1=(VN+1,ΨN+1)|x3=0(VN,ΨN)|x3=0e~N,2+e~N,1.\displaystyle g_{{N},2}-g_{{N},1}=\mathcal{E}(V_{{N}+1}^{-},\varPsi_{{N}+1}^{-})|_{x_{3}=0}-\mathcal{E}(V_{{N}}^{-},\varPsi_{{N}}^{-})|_{x_{3}=0}-\tilde{e}_{{N},2}+\tilde{e}_{{N},1}. (6.23)

Then, (6.23) and (6.20) yield

(VN+1,ΨN+1)=T((VN+1,ΨN+1)|x3=0E~N+1,2+E~N+1,1)+n=0Nhn+E^N+1,\displaystyle\mathcal{E}(V_{{N}+1}^{-},\varPsi_{{N}+1}^{-})=\mathcal{R}_{T}\left(\mathcal{E}\left(V_{{N}+1}^{-},\varPsi_{{N}+1}^{-}\right)|_{x_{3}=0}-\widetilde{E}_{{N}+1,2}+\widetilde{E}_{{N}+1,1}\right)+\sum_{n=0}^{{N}}h_{n}^{-}+\widehat{E}_{{N}+1}^{-}, (6.24)

and similarly,

(VN+1+,ΨN+1+)=T((VN+1+,ΨN+1+)|x3=0E~N+1,2)+n=0Nhn++E^N+1+.\displaystyle\mathcal{E}(V_{{N}+1}^{+},\varPsi_{{N}+1}^{+})=\mathcal{R}_{T}\left(\mathcal{E}\left(V_{{N}+1}^{+},\varPsi_{{N}+1}^{+}\right)|_{x_{3}=0}-\widetilde{E}_{{N}+1,2}\right)+\sum_{n=0}^{{N}}h_{n}^{+}+\widehat{E}_{{N}+1}^{+}. (6.25)

From (6.14) and (6.21), together with (6.5) and (6.7), one has

(VN+1,ΨN+1)=N=0NfN+EN+1=𝒮θNfa+(I𝒮θN)EN+eN,\displaystyle\mathcal{L}(V_{N+1},\varPsi_{N+1})=\sum_{{N}=0}^{N}f_{{N}}+E_{N+1}=\mathcal{S}_{\theta_{N}}f^{a}+(I-\mathcal{S}_{\theta_{N}})E_{N}+e_{N}, (6.26)
(VN+1,ψN+1)=N=0NgN+E~N+1=(I𝒮θN)E~N+e~N.\displaystyle\mathcal{B}(V_{N+1},\psi_{N+1})=\sum_{{N}=0}^{N}g_{{N}}+\widetilde{E}_{N+1}=(I-\mathcal{S}_{\theta_{N}})\widetilde{E}_{N}+\tilde{e}_{N}. (6.27)

Substituting (6.12) into (6.24)–(6.25) and using (6.22), we get

{(VN+1,ΨN+1)=T((VN+1,ψN+1)2(VN+1,ψN+1)1)+(I𝒮θN)(E^NT(E~N,2E~N,1))+e^NT(e~N,2e~N,1),(VN+1+,ΨN+1+)=T((VN+1,ψN+1)2)+(I𝒮θN)(E^N+TE~N,2)+e^N+Te~N,2.\displaystyle\left\{\begin{aligned} \mathcal{E}(V_{N+1}^{-},\varPsi_{N+1}^{-})=\;&\mathcal{R}_{T}\big{(}\mathcal{B}(V_{{N}+1},\psi_{{N}+1})_{2}-\mathcal{B}(V_{{N}+1},\psi_{{N}+1})_{1}\big{)}\\ &+(I-\mathcal{S}_{\theta_{N}})\Big{(}\widehat{E}_{N}^{-}-\mathcal{R}_{T}\big{(}\widetilde{E}_{{N},2}-\widetilde{E}_{N,1}\big{)}\Big{)}\\ &+\hat{e}_{N}^{-}-\mathcal{R}_{T}\big{(}\tilde{e}_{N,2}-\tilde{e}_{N,1}\big{)},\\[2.84526pt] \mathcal{E}(V_{N+1}^{+},\varPsi_{N+1}^{+})=\;&\mathcal{R}_{T}\big{(}\mathcal{B}(V_{{N}+1},\psi_{{N}+1})_{2}\big{)}\\ &+(I-\mathcal{S}_{\theta_{N}})\big{(}\widehat{E}_{N}^{+}-\mathcal{R}_{T}\widetilde{E}_{N,2}\big{)}+\hat{e}_{N}^{+}-\mathcal{R}_{T}\tilde{e}_{N,2}.\end{aligned}\right. (6.28)

From 𝒮θNId\mathcal{S}_{\theta_{N}}\to Id as NN\to\infty, we conclude that if the error terms (eN,e~N,e^N)(e_{N},\tilde{e}_{N},\hat{e}_{N}) tend to zero, then

((VN+1,ΨN+1),(VN+1,ψN+1),(VN+1,ΨN+1))(fa,𝟎,0),(\mathcal{L}(V_{N+1},\varPsi_{N+1}),\mathcal{B}(V_{N+1},\psi_{N+1}),\mathcal{E}(V_{N+1},\varPsi_{N+1}))\to(f^{a},\mathbf{0},0),

thus, the solution to (5.20) can be obtained formally.

In order to estimate the error terms, we need to introduce the inductive hypothesis as follows. Let us take an integer μ4{\mu}\geq 4, a small number ϵ>0\epsilon>0, and another integer μ~>μ\tilde{\mu}>{\mu}, which will be determined later. Suppose that we have the estimate

U~aHμ~+4γ(ΩT)+Φ~aHμ~+5γ(ΩT)+φaHμ~+9/2γ(ωT)+faHμ~+3γ(ΩT)ϵ,\displaystyle\|\widetilde{U}^{a}\|_{H^{\tilde{\mu}+4}_{\gamma}(\Omega_{T})}+\|\widetilde{\varPhi}^{a}\|_{H^{\tilde{\mu}+5}_{\gamma}(\Omega_{T})}+\|\varphi^{a}\|_{H^{\tilde{\mu}+9/2}_{\gamma}(\omega_{T})}+\|f^{a}\|_{H^{\tilde{\mu}+3}_{\gamma}(\Omega_{T})}\leq\epsilon, (6.29)

then our inductive hypothesis 𝐇N1\mathrm{\bf H}_{{N}-1} consists of the following four parts:

(i)(δVn,δΨn)Hmγ(ΩT)+δψnHm+1γ(ωT)ϵθnmμ1Δn,n=0,,N1,m=2,,μ~,\displaystyle\textrm{(i)}\;\|(\delta V_{n},\delta\varPsi_{n})\|_{H^{m}_{\gamma}(\Omega_{T})}+\|\delta\psi_{n}\|_{H^{m+1}_{\gamma}(\omega_{T})}\leq\epsilon\theta_{n}^{m-{\mu}-1}\Delta_{n},\quad{n}=0,\ldots,{N}-1,\,m=2,\ldots,\tilde{\mu},
(ii)(Vn,Ψn)faHmγ(ΩT)2ϵθnmμ1,n=0,,N1,m=2,,μ~1,\displaystyle\textrm{(ii)}\,\|\mathcal{L}(V_{n},\varPsi_{n})-f^{a}\|_{H^{m}_{\gamma}(\Omega_{T})}\leq 2\epsilon\theta_{n}^{m-{\mu}-1},\quad{n}=0,\ldots,{N}-1,\,m=2,\ldots,\tilde{\mu}-1,
(iii)(Vn,ψn)Hmγ(ωT)ϵθnmμ1,n=0,,N1,m=3,,μ,\displaystyle\textrm{(iii)}\,\|\mathcal{B}(V_{n},\psi_{n})\|_{H^{m}_{\gamma}(\omega_{T})}\leq\epsilon\theta_{n}^{m-{\mu}-1},\quad{n}=0,\ldots,{N}-1,\,m=3,\ldots,{{\mu}},
(iv)(Vn,Ψn)H3γ(ΩT)ϵθn2μ,n=0,,N1,\displaystyle\textrm{(iv)}\,\|\mathcal{E}(V_{n},\varPsi_{n})\|_{H^{3}_{\gamma}(\Omega_{T})}\leq\epsilon\theta_{n}^{2-{\mu}},\quad{n}=0,\ldots,{N}-1,

where θn\theta_{n} is given in (6.9) and Δn:=θn+1θn\Delta_{n}:=\theta_{n+1}-\theta_{n} decreases to zero with

13θnΔn:=θn+1θn=θn2+1θn12θn,n.\displaystyle\frac{1}{3\theta_{n}}\leq\Delta_{n}:=\theta_{n+1}-\theta_{n}=\sqrt{\theta_{n}^{2}+1}-\theta_{n}\leq\frac{1}{2\theta_{n}},\quad{n}\in\mathbb{N}. (6.30)

We will show that for sufficiently small ϵ\epsilon and faf^{a}, and for sufficiently large θ01\theta_{0}\geq 1, 𝐇0\mathrm{\bf H}_{0} is true and 𝐇N1\mathrm{\bf H}_{{N}-1} implies 𝐇N\mathrm{\bf H}_{{N}}, thus 𝐇N\mathrm{\bf H}_{{N}} is true for all nn\in\mathbb{N}, which will allow us to prove Theorem 2.1 completely.

Now we assume that 𝐇N1\mathrm{\bf H}_{{N}-1} holds, hence have the following estimates as in [25, Lemmas 6–7].

Lemma 6.2.

If θ0\theta_{0} is sufficiently large, then

(Vn,Ψn)Hmγ(ΩT)+ψnHm+1γ(ωT){ϵθn(mμ)+,if mμ,ϵlogθn,if m=μ,\displaystyle\|(V_{n},\varPsi_{n})\|_{H^{m}_{\gamma}(\Omega_{T})}+\|\psi_{n}\|_{H^{m+1}_{\gamma}(\omega_{T})}\leq\left\{\begin{aligned} &\epsilon\theta_{n}^{(m-{\mu})_{+}},\quad&&\textrm{if \ }m\neq{\mu},\\ &\epsilon\log\theta_{n},\quad&&\textrm{if \ }m={\mu},\end{aligned}\right. (6.31)
((I𝒮θn)Vn,(I𝒮θn)Ψn)Hmγ(ΩT)Cϵθnmμ,\displaystyle\|((I-\mathcal{S}_{\theta_{n}})V_{n},(I-\mathcal{S}_{\theta_{n}})\varPsi_{n})\|_{H^{m}_{\gamma}(\Omega_{T})}\leq C\epsilon\theta_{n}^{m-{\mu}}, (6.32)

for n=0,,Nn=0,\ldots,{N}, and m=2,,μ~m=2,\ldots,\tilde{\mu}. Furthermore,

(𝒮θnVn,𝒮θnΨn)Hmγ(ΩT){Cϵθn(mμ)+,if mμ,Cϵlogθn,if m=μ,\displaystyle\|(\mathcal{S}_{\theta_{n}}V_{n},\mathcal{S}_{\theta_{n}}\varPsi_{n})\|_{H^{m}_{\gamma}(\Omega_{T})}\leq\left\{\begin{aligned} &C\epsilon\theta_{n}^{(m-{\mu})_{+}},\quad&&\textrm{if \ }m\neq{\mu},\\ &C\epsilon\log\theta_{n},\quad&&\textrm{if \ }m={\mu},\end{aligned}\right. (6.33)

for n=0,,Nn=0,\ldots,{N}, and m=2,,μ~+5m=2,\ldots,\tilde{\mu}+5.

6.2. Estimate of the Quadratic and First Substitution Error Terms

First, we rewrite quadratic error terms ene^{\prime}_{n}, e~n\tilde{e}_{n}^{\prime}, and e^n\hat{e}_{n}^{\prime}, from (6.14), (6.15), and (6.18) respectively, as follows:

en=\displaystyle e_{n}^{\prime}= 01𝕃(Ua+Vn+τδVn,Φa+Ψn+τδΨn)((δVn,δΨn),(δVn,δΨn))(1τ)dτ,\displaystyle\int_{0}^{1}\mathbb{L}^{\prime\prime}\big{(}U^{a}+V_{n}+\tau\delta V_{n},\varPhi^{a}+\varPsi_{n}+\tau\delta\varPsi_{n}\big{)}\big{(}(\delta V_{n},\delta\varPsi_{n}),(\delta V_{n},\delta\varPsi_{n})\big{)}(1-\tau)\,{\rm d}\tau,
e~n=\displaystyle\tilde{e}_{n}^{\prime}= 01𝔹(Ua+Vn+τδVn,φa+ψn+τδψn)((δVn,δψn),(δVn,δψn))(1τ)dτ,\displaystyle\int_{0}^{1}\mathbb{B}^{\prime\prime}\big{(}U^{a}+V_{n}+\tau\delta V_{n},\varphi^{a}+\psi_{n}+\tau\delta\psi_{n}\big{)}\big{(}(\delta V_{n},\delta\psi_{n}),(\delta V_{n},\delta\psi_{n})\big{)}(1-\tau)\,{\rm d}\tau,
e^n=\displaystyle\hat{e}_{n}^{\prime}= 01(Vn+τδVn,Ψn+τδΨn)((δVn,δΨn),(δVn,δΨn))(1τ)dτ,\displaystyle\int_{0}^{1}\mathcal{E}^{\prime\prime}\big{(}V_{n}+\tau\delta V_{n},\varPsi_{n}+\tau\delta\varPsi_{n}\big{)}\big{(}(\delta V_{n},\delta\varPsi_{n}),(\delta V_{n},\delta\varPsi_{n})\big{)}(1-\tau)\,{\rm d}\tau,

where 𝕃\mathbb{L}^{\prime\prime}, 𝔹\mathbb{B}^{\prime\prime}, and \mathcal{E}^{\prime\prime} are the second derivatives of operators 𝕃\mathbb{L}, 𝔹\mathbb{B}, and \mathcal{E} respectively. More precisely, we define

𝕃(Uˇ,Φˇ)((V,Ψ),(V~,Ψ~)):=ddθ𝕃(Uˇ+θV~,Φˇ+θΨ~)(V,Ψ)|θ=0,\displaystyle\mathbb{L}^{\prime\prime}\big{(}\check{U},\check{\varPhi}\big{)}\big{(}(V,\varPsi),(\widetilde{V},\widetilde{\varPsi})\big{)}:=\left.\frac{{\rm d}}{{\rm d}\theta}\mathbb{L}^{\prime}\big{(}\check{U}+\theta\widetilde{V},\check{\varPhi}+\theta\widetilde{\varPsi}\big{)}\big{(}V,\varPsi\big{)}\right|_{\theta=0},
𝔹(Uˇ,φˇ)((V,ψ),(V~,ψ~)):=ddθ𝔹(Uˇ+θV~,φˇ+θψ~)(V,ψ)|θ=0,\displaystyle\mathbb{B}^{\prime\prime}(\check{U},\check{\varphi})\big{(}(V,\psi),(\widetilde{V},\tilde{\psi})\big{)}:=\left.\frac{{\rm d}}{{\rm d}\theta}\mathbb{B}^{\prime}(\check{U}+\theta\widetilde{V},\check{\varphi}+\theta\tilde{\psi})(V,\psi)\right|_{\theta=0},
(Vˇ,Ψˇ)((V,Ψ),(V~,Ψ~)):=ddθ(Vˇ+θV~,Ψˇ+θΨ~)(V,Ψ)|θ=0,\displaystyle\mathcal{E}^{\prime\prime}\big{(}\check{V},\check{\varPsi}\big{)}\big{(}(V,\varPsi),(\widetilde{V},\widetilde{\varPsi})\big{)}:=\left.\frac{{\rm d}}{{\rm d}\theta}\mathcal{E}^{\prime}\big{(}\check{V}+\theta\widetilde{V},\check{\varPsi}+\theta\widetilde{\varPsi}\big{)}\big{(}V,\varPsi\big{)}\right|_{\theta=0},

where operators 𝕃\mathbb{L}^{\prime} and 𝔹\mathbb{B}^{\prime} are given in (4.4)–(4.5), and \mathcal{E}^{\prime} is defined by

(Vˇ,Ψˇ)(V,Ψ):=ddθ(Vˇ+θV,Ψˇ+θΨ)|θ=0.\displaystyle\mathcal{E}^{\prime}\big{(}\check{V},\check{\varPsi}\big{)}(V,\varPsi):=\left.\frac{\mathrm{d}}{\mathrm{d}\theta}\mathcal{E}\big{(}\check{V}+\theta V,\check{\varPsi}+\theta\varPsi\big{)}\right|_{\theta=0}.

In fact, in our case, we have the following:

𝔹(Uˇ,φˇ)((V,ψ),(V~,ψ~))=[[v~1]1ψ+[v~2]2ψ+1ψ~[v1]+2ψ~[v2]v~1+|x3=01ψ+v~2+|x3=02ψ+1ψ~v1+|x3=0+2ψ~v2+|x3=00],\displaystyle\mathbb{B}^{\prime\prime}(\check{U},\check{\varphi})\big{(}(V,\psi),(\widetilde{V},\tilde{\psi})\big{)}=\begin{bmatrix}[\tilde{v}_{1}]\partial_{1}\psi+[\tilde{v}_{2}]\partial_{2}\psi+\partial_{1}\tilde{\psi}[v_{1}]+\partial_{2}\tilde{\psi}[v_{2}]\\[2.84526pt] \tilde{v}_{1}^{+}|_{x_{3}=0}\partial_{1}\psi+\tilde{v}_{2}^{+}|_{x_{3}=0}\partial_{2}\psi+\partial_{1}\tilde{\psi}v_{1}^{+}|_{x_{3}=0}+\partial_{2}\tilde{\psi}v_{2}^{+}|_{x_{3}=0}\\[2.84526pt] 0\end{bmatrix}, (6.34)
(Vˇ,Ψˇ)((V,Ψ),(V~,Ψ~))=v~1+1Ψ+1Ψ~v1++v~2+2Ψ+2Ψ~v2+.\displaystyle\mathcal{E}^{\prime\prime}\big{(}\check{V},\check{\varPsi}\big{)}\big{(}(V,\varPsi),(\widetilde{V},\widetilde{\varPsi})\big{)}=\tilde{v}_{1}^{+}\partial_{1}\varPsi+\partial_{1}\widetilde{\varPsi}v_{1}^{+}+\tilde{v}_{2}^{+}\partial_{2}\varPsi+\partial_{2}\widetilde{\varPsi}v_{2}^{+}. (6.35)

A straightforward computation with an application of the Moser-type calculus inequality (2.22) yields the next proposition (see [25, Proposition 5]).

Proposition 6.2.

Let T>0T>0 and mm\in\mathbb{N} with m2m\geq 2. If (V~,Ψ~)(\widetilde{V},\widetilde{\varPsi}) belongs to Hm+1γ(ΩT)H^{m+1}_{\gamma}(\Omega_{T}) for all γ1\gamma\geq 1 and satisfies (V~,Ψ~)W1,(ΩT)K~\|(\widetilde{V},\widetilde{\varPsi})\|_{W^{1,\infty}(\Omega_{T})}\leq\widetilde{K} for some positive constant K~\widetilde{K}, then there exist two constants K~0>0\widetilde{K}_{0}>0 and C>0C>0, independent of TT and γ\gamma, such that, if K~K~0\widetilde{K}\leq\widetilde{K}_{0} and γ1\gamma\geq 1, then

𝕃(U¯+V~,Φ¯+Ψ~)((V1,Ψ1),(V2,Ψ2))Hmγ(ΩT)\displaystyle\big{\|}\mathbb{L}^{\prime\prime}\big{(}\bar{U}+\widetilde{V},\bar{\varPhi}+\widetilde{\varPsi}\big{)}\big{(}(V_{1},\varPsi_{1}),(V_{2},\varPsi_{2})\big{)}\big{\|}_{H^{m}_{\gamma}(\Omega_{T})}
C(V1,Ψ1)W1,(ΩT)(V2,Ψ2)W1,(ΩT)(V~,Ψ~)Hm+1γ(ΩT)\displaystyle\qquad\leq C\|(V_{1},\varPsi_{1})\|_{W^{1,\infty}(\Omega_{T})}\|(V_{2},\varPsi_{2})\|_{W^{1,\infty}(\Omega_{T})}\big{\|}\big{(}\widetilde{V},\widetilde{\varPsi}\big{)}\big{\|}_{H^{m+1}_{\gamma}(\Omega_{T})}
+Cij(Vi,Ψi)Hm+1γ(ΩT)(Vj,Ψj)W1,(ΩT),\displaystyle\qquad\quad\,+C\sum_{i\neq j}\|(V_{i},\varPsi_{i})\|_{H^{m+1}_{\gamma}(\Omega_{T})}\|(V_{j},\varPsi_{j})\|_{W^{1,\infty}(\Omega_{T})},
(V~,Ψ~)((V1,Ψ1),(V2,Ψ2))Hmγ(ΩT)\displaystyle\big{\|}\mathcal{E}^{\prime\prime}\big{(}\widetilde{V},\widetilde{\varPsi}\big{)}\big{(}(V_{1},\varPsi_{1}),(V_{2},\varPsi_{2})\big{)}\big{\|}_{H^{m}_{\gamma}(\Omega_{T})}
Cij{ViHmγ(ΩT)ΨjW1,(ΩT)+ViL(ΩT)ΨjHm+1γ(ΩT)},\displaystyle\qquad\leq C\sum_{i\neq j}\left\{\|V_{i}\|_{H^{m}_{\gamma}(\Omega_{T})}\|\varPsi_{j}\|_{W^{1,\infty}(\Omega_{T})}+\|V_{i}\|_{L^{\infty}(\Omega_{T})}\|\varPsi_{j}\|_{H^{m+1}_{\gamma}(\Omega_{T})}\right\},

and

𝔹(U¯+V~,ψ~)((W1,ψ1),(W2,ψ2))Hmγ(ωT)\displaystyle\big{\|}\mathbb{B}^{\prime\prime}\big{(}\bar{U}+\widetilde{V},\tilde{\psi}\big{)}\big{(}(W_{1},\psi_{1}),(W_{2},\psi_{2})\big{)}\big{\|}_{H^{m}_{\gamma}(\omega_{T})}
Cij{WiHmγ(ωT)ψjW1,(ωT)+WiL(ωT)ψjHm+1γ(ωT)},\displaystyle\qquad\leq C\sum_{i\neq j}\left\{\|W_{i}\|_{H^{m}_{\gamma}(\omega_{T})}\|\psi_{j}\|_{W^{1,\infty}(\omega_{T})}+\|W_{i}\|_{L^{\infty}(\omega_{T})}\|\psi_{j}\|_{H^{m+1}_{\gamma}(\omega_{T})}\right\},

where (Vi,Ψi)Hm+1γ(ΩT)(V_{i},\varPsi_{i})\in H^{m+1}_{\gamma}(\Omega_{T}) and (Wi,ψi)Hmγ(ωT)×Hm+1γ(ωT)(W_{i},\psi_{i})\in H^{m}_{\gamma}(\omega_{T})\times H^{m+1}_{\gamma}(\omega_{T}) for i=1,2i=1,2, symbol ψ~\tilde{\psi} denotes the trace of Ψ~\widetilde{\varPsi} on ωT\omega_{T}, and (U¯,Φ¯)(\bar{U},\bar{\varPhi}) represents the background state defined by (2.17).

In light of (6.29)–(6.31) and the assumption 𝐇N1\mathrm{\bf H}_{{N}-1}, as showin in [25, Lemma 8] or [12, Lemma 8.3], we can apply Proposition 6.2, the Sobolev embedding theorem, and the trace estimate to derive the following estimate.

Lemma 6.3.

If μ4{\mu}\geq 4, then there exist suitably small ϵ>0\epsilon>0 and sufficiently large θ01\theta_{0}\geq 1 such that

(en,e^n)Hmγ(ΩT)+e~nHmγ(ωT)Cϵ2θn1(m)1Δn,\displaystyle\|(e_{n}^{\prime},\hat{e}_{n}^{\prime})\|_{H^{m}_{\gamma}(\Omega_{T})}+\|\tilde{e}_{n}^{\prime}\|_{H^{m}_{\gamma}(\omega_{T})}\leq C\epsilon^{2}\theta_{n}^{\ell_{1}(m)-1}\Delta_{n},

for m=2,,μ~1m=2,\ldots,\tilde{\mu}-1, and n=0,,N1n=0,\ldots,{N}-1, where 1(m):=max{(m+1μ)++42μ,m+22μ}\ell_{1}(m):=\max\{(m+1-{\mu})_{+}+4-2{\mu},m+2-2{\mu}\}.

For the first substitution error terms ene_{n}^{\prime\prime}, e~n\tilde{e}_{n}^{\prime\prime}, and e^n\hat{e}_{n}^{\prime\prime} defined in (6.14), (6.15), and (6.18), as in [25, Lemma 9] or [12, Lemma 8.4], we can apply Proposition 6.2 and use (6.29), (6.32)–(6.33), hypothesis (Hn1H_{n-1}), and the trace theorem to derive the next lemma.

Lemma 6.4.

If μ4{\mu}\geq 4, then there exist ϵ>0\epsilon>0 suitably small and θ01\theta_{0}\geq 1 large enough such that

(en,e^n)Hmγ(ΩT)\displaystyle\|(e_{n}^{\prime\prime},\hat{e}_{n}^{\prime\prime})\|_{H^{m}_{\gamma}(\Omega_{T})} Cϵ2θn2(m)1Δn\displaystyle\leq C\epsilon^{2}\theta_{n}^{\ell_{2}(m)-1}\Delta_{n} if m=2,,μ~1,\displaystyle\quad\ \textrm{if }\ m=2,\ldots,\tilde{\mu}-1,
e~nHmγ(ωT)\displaystyle\|\tilde{e}_{n}^{\prime\prime}\|_{H^{m}_{\gamma}(\omega_{T})} Cϵ2θn2(m)1Δn\displaystyle\leq C\epsilon^{2}\theta_{n}^{\ell_{2}(m)-1}\Delta_{n} if m=2,,μ~2,\displaystyle\quad\ \textrm{if }\ m=2,\ldots,\tilde{\mu}-2,

for n=0,,N1,n=0,\ldots,{N}-1, where

2(m):=max{(m+1μ)++62μ,m+52μ}.\ell_{2}(m):=\max\{(m+1-{\mu})_{+}+6-2{\mu},m+5-2{\mu}\}.

We emphasize that Proposition 6.2 reduces the estimate for e~nHmγ(ωT)\|\tilde{e}_{n}^{\prime\prime}\|_{H^{m}_{\gamma}(\omega_{T})} to that for the terms involving (I𝒮θn)ΨnHm+2γ(ΩT)\|(I-\mathcal{S}_{\theta_{n}})\varPsi_{n}\|_{H^{m+2}_{\gamma}(\Omega_{T})}, which requires condition mμ~2m\leq\tilde{\mu}-2 in order to apply inequality (6.32).

6.3. Construction and Estimate of the Modified State

To control the remaining error terms, we construct and analyze the modified state (VN+1/2,ΨN+1/2,ψN+1/2),(V_{{N}+1/2},\varPsi_{{N}+1/2},\psi_{{N}+1/2}), as described in the following lemma.

Lemma 6.5.

If μ5{\mu}\geq 5, then there exist functions VN+1/2V_{{N}+1/2}, ΦN+1/2\varPhi_{{N}+1/2}, and ψN+1/2\psi_{{N}+1/2}, which vanish in the past, such that (Ua+VN+1/2,Φa+ΨN+1/2,φa+ψN+1/2)(U^{a}+V_{{N}+1/2},\varPhi^{a}+\varPsi_{{N}+1/2},\varphi^{a}+\psi_{{N}+1/2}) satisfies (4.3b)–(4.3c), where (Ua,Φa)(U^{a},\varPhi^{a}) is the approximate solution constructed in Lemma 5.2. Moreover,

ΨN+1/2±=𝒮θnΨN±,ψN+1/2=(𝒮θnΨN±)|x3=0,\displaystyle\varPsi_{{N}+1/2}^{\pm}=\mathcal{S}_{\theta_{n}}\varPsi_{{N}}^{\pm},\quad\psi_{{N}+1/2}=(\mathcal{S}_{\theta_{n}}\varPsi_{{N}}^{\pm})|_{x_{3}=0}, (6.36)
vN+1/2,1±=𝒮θnvN,1±,vN+1/2,2±=𝒮θnvN,2±,\displaystyle v_{{N}+1/2,1}^{\pm}=\mathcal{S}_{\theta_{n}}v_{{N},1}^{\pm},\quad v_{{N}+1/2,2}^{\pm}=\mathcal{S}_{\theta_{n}}v_{{N},2}^{\pm}, (6.37)
𝒮θnVNVN+1/2Hmγ(ΩT)Cϵθnm+2μfor m=2,,μ~+3.\displaystyle\|\mathcal{S}_{\theta_{n}}V_{{N}}-V_{{N}+1/2}\|_{H^{m}_{\gamma}(\Omega_{T})}\leq C\epsilon\theta_{n}^{m+2-{\mu}}\quad\textrm{for }m=2,\ldots,\tilde{\mu}+3. (6.38)
Proof.

We divide the proof into four steps.

Step 1.  It follows from (6.2)–(6.3) that (𝒮θnΨN+)|x3=0=(𝒮θnΨN)|x3=0(\mathcal{S}_{\theta_{n}}\varPsi_{{N}}^{+})|_{x_{3}=0}=(\mathcal{S}_{\theta_{n}}\varPsi_{{N}}^{-})|_{x_{3}=0}, and hence we can define ΨN+1/2±\varPsi_{{N}+1/2}^{\pm}, ψN+1/2\psi_{{N}+1/2}, and vN+1/2,1±,vN+1/2,2±v_{{N}+1/2,1}^{\pm},v_{{N}+1/2,2}^{\pm} by (6.36)–(6.37). Thanks to (5.14d), constraint (4.3d) holds for (Φa+ΨN+1/2,φa+ψN+1/2)(\varPhi^{a}+\varPsi_{{N}+1/2},\varphi^{a}+\psi_{{N}+1/2}). As in [25, Proposition 7], we define

ρN+1/2±\displaystyle\rho_{{N}+1/2}^{\pm} :=𝒮θNρN±12T((𝒮θNρN+)|x3=0(𝒮θNρN)|x3=0),\displaystyle:=\mathcal{S}_{\theta_{N}}\rho_{N}^{\pm}\mp\frac{1}{2}\mathcal{R}_{T}\left((\mathcal{S}_{\theta_{N}}\rho_{N}^{+})|_{x_{3}=0}-(\mathcal{S}_{\theta_{N}}\rho_{N}^{-})|_{x_{3}=0}\right),
vN+1/2,3±\displaystyle v_{{N}+1/2,3}^{\pm} :=tΨN+1/2±+(v1a±+vN+1/2,1±)1ΨN+1/2±+vN+1/2,1±1Φa±\displaystyle:=\partial_{t}\varPsi_{{N}+1/2}^{\pm}+\left(v_{1}^{a\pm}+v_{{N}+1/2,1}^{\pm}\right)\partial_{1}\varPsi_{{N}+1/2}^{\pm}+v_{{N}+1/2,1}^{\pm}\partial_{1}\varPhi^{a\pm}
+(v2a±+vN+1/2,2±)2ΨN+1/2±+vN+1/2,2±2Φa±,\displaystyle+\left(v_{2}^{a\pm}+v_{{N}+1/2,2}^{\pm}\right)\partial_{2}\varPsi_{{N}+1/2}^{\pm}+v_{{N}+1/2,2}^{\pm}\partial_{2}\varPhi^{a\pm},

so that [ρa+ρN+1/2]=0[\rho^{a}+\rho_{{N}+1/2}]=0 on Ω\partial\Omega, and constraints (4.3b), (4.3e) hold for

(va+vN+1/2,Φa+ΨN+1/2,φa+ψN+1/2),(v^{a}+v_{{N}+1/2},\varPhi^{a}+\varPsi_{{N}+1/2},\varphi^{a}+\psi_{{N}+1/2}),

using (5.14e), Lemma 6.1, and (5.14b).

Step 2.  Utilizing (6.4), the trace theorem, and the hypothesis 𝐇N1\mathrm{\bf H}_{{N}-1}, we obtain

ρN+ρNHmγ(ωT)\displaystyle\|\rho_{N}^{+}-\rho_{N}^{-}\|_{H^{m}_{\gamma}(\omega_{T})} ρN1+ρN1Hmγ(ωT)+δρN1+δρN1Hmγ(ωT)\displaystyle\leq\|\rho_{{N}-1}^{+}-\rho_{{N}-1}^{-}\|_{H^{m}_{\gamma}(\omega_{T})}+\|\delta\rho_{{N}-1}^{+}-\delta\rho_{{N}-1}^{-}\|_{H^{m}_{\gamma}(\omega_{T})}
(VN1,ψN1)Hmγ(ωT)+CδρN1Hm+1γ(ΩT)\displaystyle\leq\|\mathcal{B}(V_{{N}-1},\psi_{{N}-1})\|_{H^{m}_{\gamma}(\omega_{T})}+C\|\delta\rho_{{N}-1}\|_{H^{m+1}_{\gamma}(\Omega_{T})}
CϵθNmμ1for m[3,μ].\displaystyle\leq C\epsilon\theta_{N}^{m-{\mu}-1}\qquad\textrm{for }\ m\in[3,{\mu}]. (6.39)

Then we use Lemma 6.1, (6.2), and (6.39) to obtain

ρN+1/2𝒮θNρNHmγ(ΩT)C𝒮θNρN+𝒮θNρNHmγ(ωT)\displaystyle\|\rho_{{N}+1/2}-\mathcal{S}_{\theta_{{N}}}\rho_{N}\|_{H^{m}_{\gamma}(\Omega_{T})}\leq C\|\mathcal{S}_{\theta_{{N}}}\rho_{N}^{+}-\mathcal{S}_{\theta_{{N}}}\rho_{N}^{-}\|_{H^{m}_{\gamma}(\omega_{T})}
{CρN+ρNHm+1γ(ωT)CϵθNmμ,if  2mμ1,CθNm+1μρN+ρNHμγ(ωT)CϵθNmμ,if mμ.\displaystyle\quad\leq\left\{\begin{aligned} &C\|\rho_{N}^{+}-\rho_{N}^{-}\|_{H^{m+1}_{\gamma}(\omega_{T})}\leq C\epsilon\theta_{N}^{m-{\mu}},&&\textrm{if }\ 2\leq m\leq{\mu}-1,\\ &C\theta_{N}^{m+1-{\mu}}\|\rho_{N}^{+}-\rho_{N}^{-}\|_{H^{{\mu}}_{\gamma}(\omega_{T})}\leq C\epsilon\theta_{N}^{m-{\mu}},&\ \ &\textrm{if }\ m\geq{\mu}.\end{aligned}\right. (6.40)

Step 3.  Using (6.36), we have

vN+1/2,3𝒮θNvN,3=\displaystyle v_{{N}+1/2,3}-\mathcal{S}_{\theta_{{N}}}v_{{N},3}=\; 𝒮θN(VN,ΨN)+[t+v1a1,𝒮θN]ΨN+[1Φa,𝒮θN]vN,1\displaystyle\mathcal{S}_{\theta_{{N}}}\mathcal{E}(V_{{N}},\varPsi_{{N}})+[\partial_{t}+v_{1}^{a}\partial_{1},\mathcal{S}_{\theta_{{N}}}]\varPsi_{{N}}+[\partial_{1}\varPhi^{a},\mathcal{S}_{\theta_{{N}}}]v_{{N},1}
+[t+v2a2,𝒮θN]ΨN+[2Φa,𝒮θN]vN,2\displaystyle+[\partial_{t}+v_{2}^{a}\partial_{2},\mathcal{S}_{\theta_{{N}}}]\varPsi_{{N}}+[\partial_{2}\varPhi^{a},\mathcal{S}_{\theta_{{N}}}]v_{{N},2}
+𝒮θNvN,11𝒮θNΨN𝒮θN(vN,11ΨN)\displaystyle+\mathcal{S}_{\theta_{{N}}}v_{{N},1}\partial_{1}\mathcal{S}_{\theta_{{N}}}\varPsi_{{N}}-\mathcal{S}_{\theta_{{N}}}(v_{{N},1}\partial_{1}\varPsi_{{N}})
+𝒮θNvN,22𝒮θNΨN𝒮θN(vN,22ΨN).\displaystyle+\mathcal{S}_{\theta_{{N}}}v_{{N},2}\partial_{2}\mathcal{S}_{\theta_{{N}}}\varPsi_{{N}}-\mathcal{S}_{\theta_{{N}}}(v_{{N},2}\partial_{2}\varPsi_{{N}}). (6.41)

Decomposing

(VN,ΨN)=\displaystyle\mathcal{E}(V_{{N}},\varPsi_{{N}})=\; (VN1,ΨN1)+t(δΨN1)+(v1a+vN1,1)1(δΨN1)\displaystyle\mathcal{E}(V_{{N}-1},\varPsi_{{N}-1})+\partial_{t}(\delta\varPsi_{{N}-1})+(v_{1}^{a}+v_{{N}-1,1})\partial_{1}(\delta\varPsi_{{N}-1})
+(v2a+vN1,2)2(δΨN1)+δvN1,11(Φa+ΨN)\displaystyle+(v_{2}^{a}+v_{{N}-1,2})\partial_{2}(\delta\varPsi_{{N}-1})+\delta v_{{N}-1,1}\partial_{1}(\varPhi^{a}+\varPsi_{{N}})
+δvN1,22(Φa+ΨN)δvN1,3,\displaystyle+\delta v_{{N}-1,2}\partial_{2}(\varPhi^{a}+\varPsi_{{N}})-\delta v_{{N}-1,3},

the Moser-type calculus inequality (2.22), hypothesis (HN1H_{{N}-1}), and (6.31) implies

(VN,ΨN)H3γ(ΩT)CϵθN2μ,\displaystyle\|\mathcal{E}(V_{{N}},\varPsi_{{N}})\|_{H^{3}_{\gamma}(\Omega_{T})}\leq C\epsilon\theta_{N}^{2-{\mu}},

which together with (6.1a) yields that

𝒮θN(VN,ΨN)Hmγ(ΩT)CϵθNmμ,for m2.\displaystyle\|\mathcal{S}_{\theta_{{N}}}\mathcal{E}(V_{{N}},\varPsi_{{N}})\|_{H^{m}_{\gamma}(\Omega_{T})}\leq C\epsilon\theta_{N}^{m-{\mu}},\qquad\textrm{for }m\geq 2. (6.42)

The rest of terms on the right-hand side of (6.41) consist entirely of commutators. Let us detail the estimate of [v1a1,𝒮θN]ΨN[v_{1}^{a}\partial_{1},\mathcal{S}_{\theta_{{N}}}]\varPsi_{{N}}. Using (2.22), the Sobolev embedding theorem, (6.1a), (6.29), and (6.33), we obtain

[v1a1,𝒮θN]ΨNHmγ(ΩT)\displaystyle\|[v_{1}^{a}\partial_{1},\mathcal{S}_{\theta_{{N}}}]\varPsi_{{N}}\|_{H^{m}_{\gamma}(\Omega_{T})}\leq\; v1a1(𝒮θNΨN)Hmγ(ΩT)+𝒮θN(v1a1ΨN)Hmγ(ΩT)\displaystyle\|v_{1}^{a}\partial_{1}(\mathcal{S}_{\theta_{{N}}}\varPsi_{{N}})\|_{H^{m}_{\gamma}(\Omega_{T})}+\|\mathcal{S}_{\theta_{{N}}}(v_{1}^{a}\partial_{1}\varPsi_{{N}})\|_{H^{m}_{\gamma}(\Omega_{T})}
\displaystyle\leq\; C𝒮θNΨNHm+1γ(ΩT)+Cv~1aHmγ(ΩT)𝒮θNΨNH3γ(ΩT)\displaystyle C\|\mathcal{S}_{\theta_{{N}}}\varPsi_{{N}}\|_{H^{m+1}_{\gamma}(\Omega_{T})}+C\|\tilde{v}_{1}^{a}\|_{H^{m}_{\gamma}(\Omega_{T})}\|\mathcal{S}_{\theta_{{N}}}\varPsi_{{N}}\|_{H^{3}_{\gamma}(\Omega_{T})}
+CθNmμv1a1ΨNHμγ(ΩT)\displaystyle+C\theta_{N}^{m-{\mu}}\|v_{1}^{a}\partial_{1}\varPsi_{{N}}\|_{H^{{\mu}}_{\gamma}(\Omega_{T})}
\displaystyle\leq\; CϵθNmμ+1for μ+1mμ~+4.\displaystyle C\epsilon\theta_{N}^{m-{\mu}+1}\qquad\textrm{for }\ {\mu}+1\leq m\leq\tilde{\mu}+4.

Similarly, we obtain that

[v2a2,𝒮θN]ΨNHmγ(ΩT)\displaystyle\|[v_{2}^{a}\partial_{2},\mathcal{S}_{\theta_{{N}}}]\varPsi_{{N}}\|_{H^{m}_{\gamma}(\Omega_{T})}\leq\; CϵθNmμ+1for μ+1mμ~+4.\displaystyle C\epsilon\theta_{N}^{m-{\mu}+1}\qquad\textrm{for }\ {\mu}+1\leq m\leq\tilde{\mu}+4.

If 2mμ2\leq m\leq{\mu}, it follows from (6.1b) and (6.31)–(6.32) that

[v1a1,𝒮θN]ΨNHmγ(ΩT)\displaystyle\|[v_{1}^{a}\partial_{1},\mathcal{S}_{\theta_{{N}}}]\varPsi_{{N}}\|_{H^{m}_{\gamma}(\Omega_{T})} v1a1((𝒮θNI)ΨN)Hmγ(ΩT)+(I𝒮θN)(v1a1ΨN)Hmγ(ΩT)\displaystyle\leq\|v_{1}^{a}\partial_{1}((\mathcal{S}_{\theta_{{N}}}-I)\varPsi_{{N}})\|_{H^{m}_{\gamma}(\Omega_{T})}+\|(I-\mathcal{S}_{\theta_{{N}}})(v_{1}^{a}\partial_{1}\varPsi_{{N}})\|_{H^{m}_{\gamma}(\Omega_{T})}
C(𝒮θNI)ΨNHm+1γ(ΩT)+CθNmμv1a1ΨNHμγ(ΩT)CϵθNmμ+1.\displaystyle\leq C\|(\mathcal{S}_{\theta_{{N}}}-I)\varPsi_{{N}}\|_{H^{m+1}_{\gamma}(\Omega_{T})}+C\theta_{N}^{m-{\mu}}\|v_{1}^{a}\partial_{1}\varPsi_{{N}}\|_{H^{{\mu}}_{\gamma}(\Omega_{T})}\leq C\epsilon\theta_{N}^{m-{\mu}+1}.

Similarly, we have

[v2a2,𝒮θN]ΨNHmγ(ΩT)CϵθNmμ+1.\displaystyle\|[v_{2}^{a}\partial_{2},\mathcal{S}_{\theta_{{N}}}]\varPsi_{{N}}\|_{H^{m}_{\gamma}(\Omega_{T})}\leq C\epsilon\theta_{N}^{m-{\mu}+1}.

Applying the same analysis to the other commutators in (6.41) and using (6.42), we obtain

vN+1/2,3𝒮θNvN,3Hmγ(ΩT)CϵθNmμ+1for m=2,,μ~+4.\displaystyle\|v_{{N}+1/2,3}-\mathcal{S}_{\theta_{{N}}}v_{{N},3}\|_{H^{m}_{\gamma}(\Omega_{T})}\leq C\epsilon\theta_{N}^{m-{\mu}+1}\quad\ \textrm{for }\ m=2,\ldots,\tilde{\mu}+4. (6.43)

Step 4.  Now, we construct and estimate 𝑭N+1/2,\bm{F}_{{N}+1/2}, following the approach of Secchi–Trakhinin [49, Proposition 28]. As outlined in Step 1, the functions vN+1/2v_{{N}+1/2} and ΨN+1/2\varPsi_{{N}+1/2} have already been specified. Next, we define 𝑭N+1/2\bm{F}_{{N}+1/2} as the unique solution, vanishing in the past, of the linear equations

𝕃Fij(va+vN+1/2,𝑭a+𝑭N+1/2,Φa+ΨN+1/2)=0for i,j=1,2,3,\displaystyle\mathbb{L}_{{F}_{ij}}(v^{a}+v_{{N}+1/2},\bm{F}^{a}+\bm{F}_{{N}+1/2},\varPhi^{a}+\varPsi_{{N}+1/2})=0\quad\textrm{for }\ i,j=1,2,3, (6.44)

where 𝕃Fij\mathbb{L}_{{F}_{ij}} represents the component of operator 𝕃\mathbb{L} corresponding to Fij{F}_{ij}, defined as:

𝕃Fij(v,𝑭,Φ):=(tΦ+vΦ)FijFjΦvi.\displaystyle\mathbb{L}_{{F}_{ij}}(v,\bm{F},\varPhi):=\left(\partial_{t}^{\varPhi}+v_{\ell}\partial_{\ell}^{\varPhi}\right){{F}}_{ij}-{{F}}_{\ell j}\partial_{\ell}^{{\varPhi}}{v_{i}}. (6.45)

Since (va+vN+1/2,Φa+ΨN+1/2)(v^{a}+v_{{N}+1/2},\varPhi^{a}+\varPsi_{{N}+1/2}) satisfies (4.3b), the equations (6.44) do not require additional boundary condition.

To estimate 𝑭N+1/2𝒮θN𝑭N\bm{F}_{{N}+1/2}-\mathcal{S}_{\theta_{N}}\bm{F}_{N}, we apply standard energy method. From (6.44), we deduce:

𝕃Fij(va+vN+1/2,𝑭N+1/2𝒮θN𝑭N,Φa+ΨN+1/2)=1+2+3,\displaystyle\mathbb{L}_{{F}_{ij}}(v^{a}+v_{{N}+1/2},\bm{F}_{{N}+1/2}-\mathcal{S}_{\theta_{N}}\bm{F}_{N},\varPhi^{a}+\varPsi_{{N}+1/2})=\mathcal{H}_{1}+\mathcal{H}_{2}+\mathcal{H}_{3}, (6.46)

where

1:=\displaystyle\mathcal{H}_{1}:=\; 𝕃Fij(va+vN+1/2,𝑭a+𝒮θN𝑭N,Φa+ΨN+1/2)\displaystyle-\mathbb{L}_{{F}_{ij}}(v^{a}+v_{{N}+1/2},\bm{F}^{a}+\mathcal{S}_{\theta_{N}}\bm{F}_{N},\varPhi^{a}+\varPsi_{{N}+1/2})
+𝕃Fij(va+𝒮θNvN,𝑭a+𝒮θN𝑭N,Φa+𝒮θNΨN),\displaystyle+\mathbb{L}_{{F}_{ij}}(v^{a}+\mathcal{S}_{\theta_{N}}v_{N},\bm{F}^{a}+\mathcal{S}_{\theta_{N}}\bm{F}_{N},\varPhi^{a}+\mathcal{S}_{\theta_{N}}\varPsi_{{N}}),
2:=\displaystyle\mathcal{H}_{2}:=\; 𝕃Fij(va+𝒮θNvN,𝑭a+𝒮θN𝑭N,Φa+𝒮θNΨN)\displaystyle-\mathbb{L}_{{F}_{ij}}(v^{a}+\mathcal{S}_{\theta_{N}}v_{N},\bm{F}^{a}+\mathcal{S}_{\theta_{N}}\bm{F}_{N},\varPhi^{a}+\mathcal{S}_{\theta_{N}}\varPsi_{{N}})
+𝒮θN𝕃Fij(va+vN,𝑭a+𝑭N,Φa+ΨN),\displaystyle+\mathcal{S}_{\theta_{N}}\mathbb{L}_{{F}_{ij}}(v^{a}+v_{N},\bm{F}^{a}+\bm{F}_{N},\varPhi^{a}+\varPsi_{{N}}),

and 3:=𝒮θN𝕃Fij(va+vN,𝑭a+𝑭N,Φa+ΨN).\mathcal{H}_{3}:=-\mathcal{S}_{\theta_{N}}\mathbb{L}_{{F}_{ij}}(v^{a}+v_{N},\bm{F}^{a}+\bm{F}_{N},\varPhi^{a}+\varPsi_{{N}}). From (6.36), we compute

1=\displaystyle\mathcal{H}_{1}=\; (𝒮θNvN,vN+1/2,)Φa+ΨN+1/2(Fija+𝒮θNFN,ij)\displaystyle(\mathcal{S}_{\theta_{N}}v_{{N},\ell}-v_{{N}+1/2,\ell})\partial_{\ell}^{\varPhi^{a}+\varPsi_{{N}+1/2}}(F_{ij}^{a}+\mathcal{S}_{\theta_{N}}F_{{N},ij})
(Fja+𝒮θNFN,j)Φa+ΨN+1/2(𝒮θNvN,ivN+1/2,i).\displaystyle-(F_{\ell j}^{a}+\mathcal{S}_{\theta_{N}}F_{{N},\ell j})\partial_{\ell}^{\varPhi^{a}+\varPsi_{{N}+1/2}}(\mathcal{S}_{\theta_{N}}v_{{N},i}-v_{{N}+1/2,i}).

Applying Moser-type calculus inequality (2.22), the Sobolev embedding theorem, (6.36)–(6.37), (6.43), (6.29), and (6.33), we obtain

1Hmγ(ΩT)\displaystyle\|\mathcal{H}_{1}\|_{H^{m}_{\gamma}(\Omega_{T})}\leq\; C𝒮θNvNvN+1/2H3γ(ΩT)(𝑭~a,𝒮θN𝑭N,Φ~a,𝒮θNΨN)Hm+1γ(ΩT)\displaystyle C\|\mathcal{S}_{\theta_{N}}v_{N}-v_{{N}+1/2}\|_{H^{3}_{\gamma}(\Omega_{T})}\|(\widetilde{\bm{F}}^{a},\mathcal{S}_{\theta_{N}}\bm{F}_{N},\widetilde{\varPhi}^{a},\mathcal{S}_{\theta_{N}}\varPsi_{N})\|_{H^{m+1}_{\gamma}(\Omega_{T})}
+C𝒮θNvNvN+1/2Hm+1γ(ΩT)\displaystyle+C\|\mathcal{S}_{\theta_{N}}v_{N}-v_{{N}+1/2}\|_{H^{m+1}_{\gamma}(\Omega_{T})}
\displaystyle\leq\; CϵθNmμ+2for m=2,,μ~+3.\displaystyle C\epsilon\theta_{N}^{m-{\mu}+2}\qquad\quad\textrm{for }\ m=2,\ldots,\tilde{\mu}+3. (6.47)

For 2\mathcal{H}_{2}, we follow the same strategy used to estimate [v1a1,𝒮θN]ΨN[v_{1}^{a}\partial_{1},\mathcal{S}_{\theta_{{N}}}]\varPsi_{{N}} in Step 3 and obtain:

2Hmγ(ΩT)CϵθNmμ+2for m=2,,μ~+3.\displaystyle\|\mathcal{H}_{2}\|_{H^{m}_{\gamma}(\Omega_{T})}\leq C\epsilon\theta_{N}^{m-{\mu}+2}\qquad\textrm{for }\ m=2,\ldots,\tilde{\mu}+3. (6.48)

Regarding 3\mathcal{H}_{3}, from (6.1a), (5.17), and the inductive hypothesis 𝐇N1\mathrm{\bf H}_{{N}-1}, we find

𝒮θN𝕃Fij(va+vN1,𝑭a+𝑭N1,Φa+ΨN1)Hmγ(ΩT)\displaystyle\|\mathcal{S}_{\theta_{N}}\mathbb{L}_{{F}_{ij}}(v^{a}+v_{N-1},\bm{F}^{a}+\bm{F}_{N-1},\varPhi^{a}+\varPsi_{{N-1}})\|_{H^{m}_{\gamma}(\Omega_{T})}
CθNm2𝕃Fij(va+vN1,𝑭a+𝑭N1,Φa+ΨN1)H2γ(ΩT)CϵθNmμ1\displaystyle\quad\leq C\theta_{{N}}^{m-2}\|\mathbb{L}_{{F}_{ij}}(v^{a}+v_{N-1},\bm{F}^{a}+\bm{F}_{N-1},\varPhi^{a}+\varPsi_{{N-1}})\|_{H^{2}_{\gamma}(\Omega_{T})}\leq C\epsilon\theta_{{N}}^{m-{\mu}-1}

for m2m\geq 2. Using (6.1a), (2.22), hypothesis 𝐇N1\mathrm{\bf H}_{N-1}, and (6.31) yields

𝒮θN(𝕃Fij(va+vN,𝑭a+𝑭N,Φa+ΨN)\displaystyle\|\mathcal{S}_{\theta_{N}}\big{(}\mathbb{L}_{{F}_{ij}}(v^{a}+v_{N},\bm{F}^{a}+\bm{F}_{N},\varPhi^{a}+\varPsi_{{N}})
𝕃Fij(va+vN1,𝑭a+𝑭N1,Φa+ΨN1))Hmγ(ΩT)CϵθNmμ+2\displaystyle\qquad\ -\mathbb{L}_{{F}_{ij}}(v^{a}+v_{N-1},\bm{F}^{a}+\bm{F}_{N-1},\varPhi^{a}+\varPsi_{{N-1}})\big{)}\|_{H^{m}_{\gamma}(\Omega_{T})}\leq C\epsilon\theta_{{N}}^{m-{\mu}+2}

for m2m\geq 2. Combining these estimates with (6.47)–(6.48), we have

=13Hmγ(ΩT)CϵθNmμ+2,for m=2,,μ~+3.\displaystyle\sum_{\ell=1}^{3}\|\mathcal{H}_{\ell}\|_{H^{m}_{\gamma}(\Omega_{T})}\leq C\epsilon\theta_{N}^{m-{\mu}+2},\qquad\textrm{for }\ m=2,\ldots,\tilde{\mu}+3. (6.49)

Applying a standard energy argument to equations (6.46) and using estimate (6.49), we conclude

𝑭N+1/2𝒮θN𝑭NHmγ(ΩT)CϵθNmμ+2for m=2,,μ~+3.\displaystyle\|\bm{F}_{{N}+1/2}-\mathcal{S}_{\theta_{N}}\bm{F}_{N}\|_{H^{m}_{\gamma}(\Omega_{T})}\leq C\epsilon\theta_{N}^{m-{\mu}+2}\qquad\textrm{for }\ m=2,\ldots,\tilde{\mu}+3. (6.50)

Finally, estimate (6.38) follows from (6.37), (6.40), (6.43), and (6.50). This completes the proof. ∎

Remark 6.1.

Using the Sobolev embedding theorem, (6.29), (6.33), and (6.38), we obtain constraint (4.2). Constraint (4.3a) can be satisfied by choosing ϵ\epsilon sufficiently small. Meanwhile, constraint (4.1) is ensured by applying an appropriate cut-off function, so that the terms (VN+1/2,ΨN+1/2,ψN+1/2)(V_{{N}+1/2},\varPsi_{{N}+1/2},\psi_{{N}+1/2}) can be truncated.

6.4. Estimate of the Second Substitution and Last Error Terms

The following lemma provides the estimates for the second substitution error terms ene_{n}^{\prime\prime\prime}, e~n\tilde{e}_{n}^{\prime\prime\prime}, and e^n\hat{e}_{n}^{\prime\prime\prime}, as defined in (6.14), (6.15), and (6.18), respectively.

Lemma 6.6.

If μ5{\mu}\geq 5, then there exist ϵ>0\epsilon>0 suitably small and θ01\theta_{0}\geq 1 large enough such that

(e~n,e^n)=𝟎,enHmγ(ΩT)Cϵ2θn3(m)1Δnif m=2,,μ~1,\displaystyle(\tilde{e}_{n}^{\prime\prime\prime},\hat{e}_{n}^{\prime\prime\prime})={\mathbf{0}},\qquad\|e_{n}^{\prime\prime\prime}\|_{H^{m}_{\gamma}(\Omega_{T})}\leq C\epsilon^{2}\theta_{n}^{\ell_{3}(m)-1}\Delta_{n}\quad\ \textrm{if }\ m=2,\ldots,\tilde{\mu}-1,

for n=0,,N1,n=0,\ldots,{N}-1, where 3(m):=max{(m+1μ)++92μ,m+62μ}\ell_{3}(m):=\max\{(m+1-{\mu})_{+}+9-2{\mu},m+6-2{\mu}\}.

Proof.

From (6.34) and (6.36)–(6.37), we have

e~n=\displaystyle\tilde{e}_{n}^{\prime\prime\prime}=\; 𝔹(Ua+𝒮θnVn,φa+(𝒮θnΨn)|x3=0)(δVn,δψn)\displaystyle\mathbb{B}^{\prime}(U^{a}+\mathcal{S}_{\theta_{n}}V_{n},\varphi^{a}+(\mathcal{S}_{\theta_{n}}\varPsi_{n})|_{x_{3}=0})(\delta V_{n},\delta\psi_{n})
𝔹(Ua+Vn+1/2,φa+(𝒮θnΨn)|x3=0)(δVn,δψn)=𝟎.\displaystyle-\mathbb{B}^{\prime}(U^{a}+V_{n+1/2},\varphi^{a}+(\mathcal{S}_{\theta_{n}}\varPsi_{n})|_{x_{3}=0})(\delta V_{n},\delta\psi_{n})={\mathbf{0}}.

Using (6.35)–(6.37), we deduce that e^n=𝟎\hat{e}_{n}^{\prime\prime\prime}={\mathbf{0}}. Thanks to (6.36), the error term en{e}_{n}^{\prime\prime\prime} can be rewritten as

en=01𝕃(Ua+Vn+1/2+τ(𝒮θnVnVn+1/2),Φa+𝒮θnΨn)\displaystyle{e}_{n}^{\prime\prime\prime}=\int_{0}^{1}\mathbb{L}^{\prime\prime}\big{(}U^{a}+V_{n+1/2}+\tau(\mathcal{S}_{\theta_{n}}V_{n}-V_{n+1/2}),\,\varPhi^{a}+\mathcal{S}_{\theta_{n}}\varPsi_{n}\big{)}
((δVn,δΨn),(𝒮θnVnVn+1/2,0))dτ.\displaystyle\qquad\qquad\big{(}(\delta V_{n},\delta\varPsi_{n}),(\mathcal{S}_{\theta_{n}}V_{n}-V_{n+1/2},0)\big{)}{\rm d}\tau.

Apply the Sobolev embedding theorem, (6.29), (6.33), and (6.38), we find that

(U~a,Vn+1/2,𝒮θnVnVn+1/2,Φ~a,𝒮θnΨn)W1,(ΩT)Cϵ,\displaystyle\|(\widetilde{U}^{a},\,V_{n+1/2},\,\mathcal{S}_{\theta_{n}}V_{n}-V_{n+1/2},\,\widetilde{\varPhi}^{a},\,\mathcal{S}_{\theta_{n}}\varPsi_{n})\|_{W^{1,\infty}(\Omega_{T})}\leq C\epsilon,

allowing us to use Proposition 6.2 for ϵ\epsilon suitably small. Furthermore, from (6.29)–(6.31) and (6.38), we have

(U~a,Vn+1/2,𝒮θnVn,Φ~a,𝒮θnΨn)Hm+1γ(ΩT)Cϵ(θn(m+1μ)++1+θnm+3μ)\displaystyle\|(\widetilde{U}^{a},\,V_{n+1/2},\,\mathcal{S}_{\theta_{n}}V_{n},\,\widetilde{\varPhi}^{a},\,\mathcal{S}_{\theta_{n}}\varPsi_{n})\|_{H^{m+1}_{\gamma}(\Omega_{T})}\leq C\epsilon\left(\theta_{n}^{(m+1-{\mu})_{+}+1}+\theta_{n}^{m+3-{\mu}}\right)

for 2mμ~12\leq m\leq\tilde{\mu}-1. Using Proposition 6.2, hypothesis 𝐇n1\mathrm{\bf H}_{n-1}, and (6.38), we obtain the estimate for term en,{e}_{n}^{\prime\prime\prime}, thereby completing the proof of lemma. ∎

For the last error term (6.16),

Dn+1/2δΨn=δΨn3(Φa+Ψn+1/2)Rn,where Rn:=3𝕃(Ua+Vn+1/2,Φa+Ψn+1/2),\displaystyle D_{n+1/2}\delta\varPsi_{n}=\frac{\delta\varPsi_{n}}{\partial_{3}(\varPhi^{a}+\varPsi_{n+1/2})}R_{n},\quad\text{where }R_{n}:=\partial_{3}\mathbb{L}(U^{a}+V_{n+1/2},\varPhi^{a}+\varPsi_{n+1/2}),

we first observe that

|3(Φa±+Ψn+1/2±)|12,\displaystyle|\partial_{3}(\varPhi^{a\pm}+\varPsi_{n+1/2}^{\pm})|\geq\frac{1}{2},

as deduced from (5.14c), (6.36), and (6.33) for sufficiently small ϵ\epsilon. Consequently, we arrive at the following lemma, analogous to [25, Lemma 8.6] or [12, Lemma 12]. The proof is omitted here for brevity.

Lemma 6.7.

If μ5{\mu}\geq 5 and μ~>μ\tilde{\mu}>{\mu}, then there exist ϵ>0\epsilon>0 suitably small and θ01\theta_{0}\geq 1 large enough such that

Dn+1/2δΨnHmγ(ΩT)Cϵ2θn4(m)1Δnif m=2,,μ~1,\displaystyle\|D_{n+1/2}\delta\varPsi_{n}\|_{H^{m}_{\gamma}(\Omega_{T})}\leq C\epsilon^{2}\theta_{n}^{\ell_{4}(m)-1}\Delta_{n}\quad\ \textrm{if }\ m=2,\ldots,\tilde{\mu}-1, (6.51)

for n=0,,N1n=0,\ldots,{N}-1, where

4(m):=max{(m+2μ)++82μ,(m+1μ)++92μ,m+62μ}.\ell_{4}(m):=\max\{(m+2-{\mu})_{+}+8-2{\mu},(m+1-{\mu})_{+}+9-2{\mu},m+6-2{\mu}\}.

Lemmas 6.36.7 provide the following estimates for ene_{n}, e~n\tilde{e}_{n}, and e^n\hat{e}_{n} defined in (6.17) and (6.19).

Corollary 6.1.

If μ5{\mu}\geq 5 and μ~>μ\tilde{\mu}>{\mu}, then there exist ϵ>0\epsilon>0 suitably small and θ01\theta_{0}\geq 1 large enough such that

enHmγ(ΩT)\displaystyle\|e_{n}\|_{H^{m}_{\gamma}(\Omega_{T})} Cϵ2θn4(m)1Δn\displaystyle\leq C\epsilon^{2}\theta_{n}^{\ell_{4}(m)-1}\Delta_{n} if m=2,,μ~1,\displaystyle\quad\ \textrm{if }\ m=2,\ldots,\tilde{\mu}-1, (6.52)
e^nHmγ(ΩT)\displaystyle\|\hat{e}_{n}\|_{H^{m}_{\gamma}(\Omega_{T})} Cϵ2θn2(m)1Δn\displaystyle\leq C\epsilon^{2}\theta_{n}^{\ell_{2}(m)-1}\Delta_{n} if m=2,,μ~1,\displaystyle\quad\ \textrm{if }\ m=2,\ldots,\tilde{\mu}-1, (6.53)
e~nHmγ(ωT)\displaystyle\|\tilde{e}_{n}\|_{H^{m}_{\gamma}(\omega_{T})} Cϵ2θn2(m)1Δn\displaystyle\leq C\epsilon^{2}\theta_{n}^{\ell_{2}(m)-1}\Delta_{n} if m=2,,μ~2,\displaystyle\quad\ \textrm{if }\ m=2,\ldots,\tilde{\mu}-2, (6.54)

for n=0,,N1,n=0,\ldots,{N}-1, where 2(m)\ell_{2}(m) and 4(m)\ell_{4}(m) are defined in Lemma 6.4 and Lemma 6.7, respectively.

6.5. Proof of Theorem 2.1

We first prove the following lemma for accumulated error terms EnE_{n}, E~n\widetilde{E}_{n}, and E^n\hat{E}_{n} that are defined in (6.8) and (6.13).

Lemma 6.8.

If μ7{\mu}\geq 7 and μ~=μ+3\tilde{\mu}={\mu}+3, then there exist ϵ>0\epsilon>0 suitably small and θ01\theta_{0}\geq 1 large enough such that

ENHμ+2γ(ΩT)Cϵ2θN,\displaystyle\|E_{{N}}\|_{H^{{\mu}+2}_{\gamma}(\Omega_{T})}\leq C\epsilon^{2}\theta_{{N}}, (6.55)
E~NHμ+1γ(ωT)+E^NHμ+1γ(ΩT)Cϵ2.\displaystyle\|\widetilde{E}_{{N}}\|_{H^{{\mu}+1}_{\gamma}(\omega_{T})}+\|\widehat{E}_{{N}}\|_{H^{{\mu}+1}_{\gamma}(\Omega_{T})}\leq C\epsilon^{2}. (6.56)
Proof.

Following [25, 12], we first note that 4(μ+2)1\ell_{4}({\mu}+2)\leq 1 when μ7{\mu}\geq 7. From (6.52), one has

ENHμ+2γ(ΩT)n=0N1enHμ+2γ(ΩT)n=0N1Cϵ2ΔnCϵ2θN,\displaystyle\|E_{{N}}\|_{H^{{\mu}+2}_{\gamma}(\Omega_{T})}\leq\sum_{n=0}^{{N}-1}\|e_{n}\|_{H^{{\mu}+2}_{\gamma}(\Omega_{T})}\leq\sum_{n=0}^{{N}-1}C\epsilon^{2}\Delta_{n}\leq C\epsilon^{2}\theta_{{N}},

for μ7{\mu}\geq 7 and μ+2μ~1{\mu}+2\leq\tilde{\mu}-1. Since 2(μ+1)=6μ1\ell_{2}({\mu}+1)=6-{\mu}\leq-1 for μ7{\mu}\geq 7 and μ+1μ~2{\mu}+1\leq\tilde{\mu}-2, from (6.53)–(6.54), we have

E~NHμ+1γ(ωT)+E^NHμ+1γ(ΩT)\displaystyle\|\widetilde{E}_{{N}}\|_{H^{{\mu}+1}_{\gamma}(\omega_{T})}+\|\widehat{E}_{{N}}\|_{H^{{\mu}+1}_{\gamma}(\Omega_{T})} n=0N1{e~nHμ+1γ(ωT)+e^nHμ+1γ(ΩT)}\displaystyle\leq\sum_{n=0}^{{N}-1}\left\{\|\tilde{e}_{n}\|_{H^{{\mu}+1}_{\gamma}(\omega_{T})}+\|\hat{e}_{n}\|_{H^{{\mu}+1}_{\gamma}(\Omega_{T})}\right\}
n=0N1Cϵ2θn2ΔnCϵ2,\displaystyle\leq\sum_{n=0}^{{N}-1}C\epsilon^{2}\theta_{n}^{-2}\Delta_{n}\leq C\epsilon^{2},

where we have utilized (6.9) and (6.30) to obtain the last inequality. The minimal possible μ~\tilde{\mu} is μ+3{\mu}+3. The proof of the lemma is completed. ∎

Using the lemma above, we have the estimates for fNf_{{N}}, gNg_{{N}}, and hN±h_{{N}}^{\pm}.

Lemma 6.9.

If μ7{\mu}\geq 7 and μ~=μ+3\tilde{\mu}={\mu}+3, then there exist ϵ>0\epsilon>0 suitably small and θ01\theta_{0}\geq 1 large enough such that

fNHmγ(ΩT)CΔN{θNmμ2(faHμ+1γ(ΩT)+ϵ2)+ϵ2θN4(m)1},\displaystyle\|f_{{N}}\|_{H^{m}_{\gamma}(\Omega_{T})}\leq C\Delta_{{N}}\left\{\theta_{{N}}^{m-{\mu}-2}\left(\|f^{a}\|_{H^{{\mu}+1}_{\gamma}(\Omega_{T})}+\epsilon^{2}\right)+\epsilon^{2}\theta_{{N}}^{\ell_{4}(m)-1}\right\}, (6.57)
gNHmγ(ωT)Cϵ2ΔN(θNmμ2+θN2(m)1),\displaystyle\|g_{{N}}\|_{H^{m}_{\gamma}(\omega_{T})}\leq C\epsilon^{2}\Delta_{{N}}\big{(}\theta_{{N}}^{m-{\mu}-2}+\theta_{{N}}^{\ell_{2}(m)-1}\big{)}, (6.58)

for m=2,,μ~+1m=2,\ldots,\tilde{\mu}+1, and

hN±Hmγ(ΩT)Cϵ2ΔN(θNmμ2+θN2(m)1)for m=2,,μ~.\displaystyle\|h_{{N}}^{\pm}\|_{H^{m}_{\gamma}(\Omega_{T})}\leq C\epsilon^{2}\Delta_{{N}}\big{(}\theta_{{N}}^{m-{\mu}-2}+\theta_{{N}}^{\ell_{2}(m)-1}\big{)}\quad\ \textrm{for }\ m=2,\ldots,\tilde{\mu}. (6.59)
Proof.

Using θN1θN2θN1\theta_{{N}-1}\leq\theta_{{N}}\leq\sqrt{2}\theta_{{N}-1} and ΔN13ΔN\Delta_{{N}-1}\leq 3\Delta_{{N}}, from (6.1a), (6.1c), (6.52), and (6.55), we obtain

fNHmγ(ΩT)\displaystyle\|f_{N}\|_{H^{m}_{\gamma}(\Omega_{T})} (𝒮θN𝒮θN1)fa(𝒮θN𝒮θN1)EN1𝒮θNeN1Hmγ(ΩT)\displaystyle\leq\|(\mathcal{S}_{\theta_{{N}}}-\mathcal{S}_{\theta_{{N}-1}})f^{a}-(\mathcal{S}_{\theta_{{N}}}-\mathcal{S}_{\theta_{{N}-1}})E_{{N}-1}-\mathcal{S}_{\theta_{{N}}}e_{{N}-1}\|_{H^{m}_{\gamma}(\Omega_{T})}
CΔNθNmμ2(faHμ+1γ(ΩT)+θN1EN1Hμ+2γ(ΩT))+𝒮θNeN1Hmγ(ΩT)\displaystyle\leq C\Delta_{{N}}\theta_{{N}}^{m-{\mu}-2}\big{(}\|f^{a}\|_{H^{{\mu}+1}_{\gamma}(\Omega_{T})}+\theta_{{N}}^{-1}\|E_{{N}-1}\|_{H^{{\mu}+2}_{\gamma}(\Omega_{T})}\big{)}+\|\mathcal{S}_{\theta_{{N}}}e_{{N}-1}\|_{H^{m}_{\gamma}(\Omega_{T})}
CΔN{θNmμ2(faHμ+1γ(ΩT)+ϵ2)+ϵ2θN4(m)1}.\displaystyle\leq C\Delta_{{N}}\left\{\theta_{{N}}^{m-{\mu}-2}(\|f^{a}\|_{H^{{\mu}+1}_{\gamma}(\Omega_{T})}+\epsilon^{2})+\epsilon^{2}\theta_{{N}}^{\ell_{4}(m)-1}\right\}.

By using (6.54) and (6.56), we get

gNHmγ(ωT)\displaystyle\|g_{N}\|_{H^{m}_{\gamma}(\omega_{T})} (𝒮θN𝒮θN1)E~N1𝒮θNe~N1Hmγ(ΩT)\displaystyle\leq\|(\mathcal{S}_{\theta_{{N}}}-\mathcal{S}_{\theta_{{N}-1}})\widetilde{E}_{{N}-1}-\mathcal{S}_{\theta_{{N}}}\tilde{e}_{{N}-1}\|_{H^{m}_{\gamma}(\Omega_{T})}
CΔNθNmμ2E~N1Hμ+1γ(ΩT)+𝒮θNe~N1Hmγ(ΩT)\displaystyle\leq C\Delta_{{N}}\theta_{{N}}^{m-{\mu}-2}\|\widetilde{E}_{{N}-1}\|_{H^{{\mu}+1}_{\gamma}(\Omega_{T})}+\|\mathcal{S}_{\theta_{{N}}}\tilde{e}_{{N}-1}\|_{H^{m}_{\gamma}(\Omega_{T})}
Cϵ2ΔN(θNmμ2+θN2(m)1).\displaystyle\leq C\epsilon^{2}\Delta_{{N}}\big{(}\theta_{{N}}^{m-{\mu}-2}+\theta_{{N}}^{\ell_{2}(m)-1}\big{)}.

Similarly, we can obtain (6.59) for hN±h_{N}^{\pm} from (6.53) and (6.56). The proof of Lemma 6.9 is completed. ∎

In the following lemma, we obtain the estimate of differences δVN,\delta V_{{N}}, δΨN\delta\varPsi_{{N}}, and δψN,\delta\psi_{{N}}, by using the tame estimate (4.19). See [25, Lemma 16] or [12, Lemma 8.10] for the proof.

Lemma 6.10.

Let μ7{\mu}\geq 7 and μ~=μ+3\tilde{\mu}={\mu}+3. If ϵ>0\epsilon>0 and faHμ+1γ(ΩT)/ϵ\|f^{a}\|_{H^{{\mu}+1}_{\gamma}(\Omega_{T})}/\epsilon are suitably small and θ01\theta_{0}\geq 1 is large enough, then

(δVN,δΨN)Hmγ(ΩT)+δψNHm+1γ(ωT)ϵθNmμ1ΔNfor m=2,,μ~.\displaystyle\|(\delta V_{{N}},\delta\varPsi_{{N}})\|_{H^{m}_{\gamma}(\Omega_{T})}+\|\delta\psi_{{N}}\|_{H^{m+1}_{\gamma}(\omega_{T})}\leq\epsilon\theta_{{N}}^{m-{\mu}-1}\Delta_{{N}}\quad\textrm{for $m=2,\ldots,\tilde{\mu}$.} (6.60)

Lemma 6.10 establishes the first part of the hypothesis 𝐇N\mathrm{\bf H}_{{N}}. The following lemma addresses the remaining components of 𝐇N\mathrm{\bf H}_{{N}}.

Lemma 6.11.

Let μ7{\mu}\geq 7 and μ~=μ+3\tilde{\mu}={\mu}+3. If ϵ>0\epsilon>0 and faHμ+1γ(ΩT)/ϵ\|f^{a}\|_{H^{{\mu}+1}_{\gamma}(\Omega_{T})}/\epsilon are suitably small and θ01\theta_{0}\geq 1 is large enough, then

(VN,ΨN)faHmγ(ΩT)2ϵθNmμ1\displaystyle\|\mathcal{L}(V_{{N}},\varPsi_{{N}})-f^{a}\|_{H^{m}_{\gamma}(\Omega_{T})}\leq 2\epsilon\theta_{{N}}^{m-{\mu}-1} for m=2,,μ~1,\displaystyle\quad\textrm{for }m=2,\ldots,\tilde{\mu}-1, (6.61)
(VN,ψN)Hmγ(ωT)ϵθNmμ1\displaystyle\|\mathcal{B}(V_{{N}},\psi_{{N}})\|_{H^{m}_{\gamma}(\omega_{T})}\leq\epsilon\theta_{{N}}^{m-{\mu}-1} for m=3,,μ,\displaystyle\quad\textrm{for }m=3,\ldots,{{\mu}}, (6.62)
(VN,ΨN)H3γ(ΩT)ϵθN2μ.\displaystyle\|\mathcal{E}(V_{{N}},\varPsi_{{N}})\|_{H^{3}_{\gamma}(\Omega_{T})}\leq\epsilon\theta_{{N}}^{2-{\mu}}. (6.63)

We refer to [25, Lemmas 17–18] or [12, Lemma 8.11] for the proof of Lemma 6.11. Let us assume μ7{\mu}\geq 7, μ~=μ+3\tilde{\mu}={\mu}+3, ϵ>0\epsilon>0 and faHμ+1γ(ΩT)/ϵ\|f^{a}\|_{H^{{\mu}+1}_{\gamma}(\Omega_{T})}/\epsilon sufficiently small. Additionally, let θ01\theta_{0}\geq 1 be large enough to satisfy the assumptions of Lemmas 6.106.11, from which the inductive hypothesis 𝐇N\mathrm{\bf H}_{{N}} follows. Then, as shown in [25, Lemma 19] or [12, Lemma 8.12], it can be proved that the hypothesis 𝐇0\mathrm{\bf H}_{{0}} holds.

Lemma 6.12.

If faHμ+1γ(ΩT)/ϵ\|f^{a}\|_{H^{{\mu}+1}_{\gamma}(\Omega_{T})}/\epsilon is small enough, then the hypothesis 𝐇0\mathrm{\bf H}_{{0}} holds.

With this, we are ready to complete the proof of Theorem 2.1. Our proof closely follows the idea in [25, 12], but is included here for completeness.

Proof of Theorem 2.1. Let μ~:=s0410\tilde{\mu}:=s_{0}-4\geq 10 and μ:=μ~37{\mu}:=\tilde{\mu}-3\geq 7. Under the assumptions of Theorem 2.1, the initial data (U0±,φ0)(U_{0}^{\pm},\varphi_{0}) are compatible up to order s0=μ~+4s_{0}=\tilde{\mu}+4. If (U~0±,φ0)(\tilde{U}_{0}^{\pm},\varphi_{0}) is sufficiently small in Hs0+1/2(3+)×Hs0+1(2)H^{s_{0}+1/2}(\mathbb{R}^{3}_{+})\times H^{s_{0}+1}(\mathbb{R}^{2}), where U~0±:=U0±U¯±\widetilde{U}_{0}^{\pm}:=U_{0}^{\pm}-\bar{U}^{\pm}, then the assumption (6.29) and all the requirements of Lemmas 6.106.12 are satisfied, due to (5.16) and (5.19). Thus, 𝐇N\mathrm{\bf H}_{{N}} holds for all N{N}\in\mathbb{N}. From the estimate

n=0((δVn,δΨn)Hmγ(ΩT)+δψnHm+1γ(ωT))Cn=0θnmμ2<,3mμ1,\displaystyle\sum_{n=0}^{\infty}\left(\|(\delta V_{n},\delta\varPsi_{n})\|_{H^{m}_{\gamma}(\Omega_{T})}+\|\delta\psi_{n}\|_{H^{m+1}_{\gamma}(\omega_{T})}\right)\leq C\sum_{n=0}^{\infty}\theta_{n}^{m-{\mu}-2}<\infty,\quad 3\leq m\leq{\mu}-1,

we conclude that (Vn,Ψn)(V_{n},\varPsi_{n}) converges to some (V,Ψ)(V,\varPsi) in Hμ1γ(ΩT)H^{{\mu}-1}_{\gamma}(\Omega_{T}), and ψn\psi_{n} converges to some ψ\psi in Hμγ(ΩT)H^{{\mu}}_{\gamma}(\Omega_{T}). Taking the limit in (6.61)–(6.62) for m=μ1=s08m={\mu}-1=s_{0}-8, and in (6.63), we obtain that (V,Ψ)(V,\varPsi) satisfies (5.20). Consequently, (U,Φ)=(Ua+V,Φa+Ψ)(U,\varPhi)=(U^{a}+V,\varPhi^{a}+\varPsi) is a solution to (2.6)–(2.11) in ΩT+\Omega_{T}^{+}. The proof of Theorem 2.1 is complete. ∎

Acknowledgments

R. M. Chen was supported in part by the NSF grant DMS-2205910. F. Huang was supported in part by National Key R&D Program of China, grant No. 2021YFA1000800, and the National Natural Sciences Foundation of China, grant No. 12288201. D. Wang was supported in part by NSF grants DMS-1907519 and DMS-2219384. D. Yuan was supported by EPSRC grant EP/V051121/1, Fundamental Research Funds for the Central Universities No. 2233100021 and No. 2233300008.

References

  • [1] S. Alinhac, Existence d’ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels, Comm. Partial Differential Equations, 14 (1989), pp. 173–230.
  • [2] S. Alinhac and P. Gérard, Opérateurs pseudo-différentiels et théorème de Nash-Moser, Savoirs Actuels. [Current Scholarship], InterEditions, Paris; Éditions du Centre National de la Recherche Scientifique (CNRS), Meudon, 1991.
  • [3] M. Artola and A. J. Majda, Nonlinear development of instabilities in supersonic vortex sheets. I. The basic kink modes, Phys. D, 28 (1987), pp. 253–281.
  • [4]  , Nonlinear development of instabilities in supersonic vortex sheets. II. Resonant interaction among kink modes, SIAM J. Appl. Math., 49 (1989), pp. 1310–1349.
  • [5]  , Nonlinear kink modes for supersonic vortex sheets, Phys. Fluids A, 1 (1989), pp. 583–596.
  • [6] J. Azaiez and G. M. Homsy, Linear stability of free shear flow of viscoelastic liquids, J. Fluid Mech., 268 (1994), pp. 37–69.
  • [7] S. Benzoni-Gavage and D. Serre, Multi-dimensional hyperbolic partial differential equations: First-order Systems and Applications, OUP Oxford, 2006.
  • [8] J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup. (4), 14 (1981), pp. 209–246.
  • [9] J. Chazarain and A. Piriou, Introduction to the theory of linear partial differential equations, vol. 14 of Studies in Mathematics and its Applications, North-Holland Publishing Co., Amsterdam-New York, 1982. Translated from the French.
  • [10] G.-Q. Chen and Y.-G. Wang, Existence and stability of compressible current-vortex sheets in three-dimensional magnetohydrodynamics, Arch. Ration. Mech. Anal., 187 (2008), pp. 369–408.
  • [11] G.-Q. G. Chen and M. Feldman, The mathematics of shock reflection-diffraction and von Neumann’s conjectures, vol. 197 of Annals of Mathematics Studies, Princeton University Press, Princeton, NJ, 2018.
  • [12] G.-Q. G. Chen, P. Secchi, and T. Wang, Nonlinear stability of relativistic vortex sheets in three-dimensional Minkowski spacetime, Arch. Ration. Mech. Anal., 232 (2019), pp. 591–695.
  • [13]  , Nonlinear stability of relativistic vortex sheets in three-dimensional Minkowski spacetime, Arch. Ration. Mech. Anal., 232 (2019), pp. 591–695.
  • [14] R. M. Chen, J. Hu, and D. Wang, Linear stability of compressible vortex sheets in two-dimensional elastodynamics, Adv. Math., 311 (2017), pp. 18–60.
  • [15]  , Linear stability of compressible vortex sheets in 2D elastodynamics: variable coefficients, Math. Ann., 376 (2020), pp. 863–912.
  • [16] R. M. Chen, J. Hu, D. Wang, T. Wang, and D. Yuan, Nonlinear stability and existence of compressible vortex sheets in 2D elastodynamics, J. Differential Equations, 269 (2020), pp. 6899–6940.
  • [17] R. M. Chen, F. Huang, D. Wang, and D. Yuan, On the stability of two-dimensional nonisentropic elastic vortex sheets, Commun. Pure Appl. Anal., 20 (2021), pp. 2519–2533.
  • [18]  , On the vortex sheets of compressible flows, Commun. Appl. Math. Comput., 5 (2023), pp. 967–986.
  • [19]  , Stabilization effect of elasticity on three-dimensional compressible vortex sheets, J. Math. Pures Appl. (9), 172 (2023), pp. 105–138.
  • [20] J.-F. c. Coulombel, Weak stability of nonuniformly stable multidimensional shocks, SIAM J. Math. Anal., 34 (2002), pp. 142–172.
  • [21]  , Weakly stable multidimensional shocks, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 21 (2004), pp. 401–443.
  • [22]  , Well-posedness of hyperbolic initial boundary value problems, J. Math. Pures Appl. (9), 84 (2005), pp. 786–818.
  • [23] J.-F. c. Coulombel and A. Morando, Stability of contact discontinuities for the nonisentropic Euler equations, Ann. Univ. Ferrara Sez. VII (N.S.), 50 (2004), pp. 79–90.
  • [24] J.-F. c. Coulombel and P. Secchi, The stability of compressible vortex sheets in two space dimensions, Indiana Univ. Math. J., 53 (2004), pp. 941–1012.
  • [25]  , Nonlinear compressible vortex sheets in two space dimensions, Ann. Sci. Éc. Norm. Supér. (4), 41 (2008), pp. 85–139.
  • [26] C. M. Dafermos, Hyperbolic conservation laws in continuum physics, vol. 325 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 2000.
  • [27] J. A. Fejer and J. W. Miles, On the stability of a plane vortex sheet with respect to three-dimensional disturbances, J. Fluid Mech., 15 (1963), pp. 335–336.
  • [28] J. Francheteau and G. Métivier, Existence de chocs faibles pour des systèmes quasi-linéaires hyperboliques multidimensionnels, Astérisque, (2000), pp. viii+198.
  • [29] M. E. Gurtin, An introduction to continuum mechanics, vol. 158 of Mathematics in Science and Engineering, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981.
  • [30] X. Hu and D. Wang, Formation of singularity for compressible viscoelasticity, Acta Math. Sci. Ser. B (Engl. Ed.), 32 (2012), pp. 109–128.
  • [31] R. Huilgol, Propagation of a vortex sheet in viscoelastic liquids—the rayleigh problem, Journal of Non-Newtonian Fluid Mechanics, 8 (1981), pp. 337–347.
  • [32] R. R. Huilgol and G. C. Georgiou, Fluid mechanics of viscoplasticity, Springer, Cham, second ed., [2022] ©2022.
  • [33] D. D. Joseph, Fluid dynamics of viscoelastic liquids, vol. 84 of Applied Mathematical Sciences, Springer-Verlag, New York, 1990.
  • [34] P. D. Lax and R. S. Phillips, Local boundary conditions for dissipative symmetric linear differential operators, Comm. Pure Appl. Math., 13 (1960), pp. 427–455.
  • [35] J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. Vol. II, vol. Band 182 of Die Grundlehren der mathematischen Wissenschaften, Springer-Verlag, New York-Heidelberg, 1972. Translated from the French by P. Kenneth.
  • [36] A. Majda, The existence of multidimensional shock fronts, Mem. Amer. Math. Soc., 43 (1983), pp. v+93.
  • [37]  , The stability of multidimensional shock fronts, Mem. Amer. Math. Soc., 41 (1983), pp. iv+95.
  • [38] A. Majda and S. Osher, Initial-boundary value problems for hyperbolic equations with uniformly characteristic boundary, Comm. Pure Appl. Math., 28 (1975), pp. 607–675.
  • [39] G. Métivier, Stability of multidimensional shocks, in Advances in the theory of shock waves, vol. 47 of Progr. Nonlinear Differential Equations Appl., Birkhäuser Boston, Boston, MA, 2001, pp. 25–103.
  • [40] G. Métivier and K. Zumbrun, Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems, Mem. Amer. Math. Soc., 175 (2005), pp. vi+107.
  • [41] J. W. Miles, On the reflection of sound at an interface of relative motion, J. Acoust. Soc. Amer., 29 (1957), pp. 226–228.
  • [42]  , On the disturbed motion of a plane vortex sheet, J. Fluid Mech., 4 (1958), pp. 538–552.
  • [43] R. L. Mishkov, Generalization of the formula of Faa di Bruno for a composite function with a vector argument, Int. J. Math. Math. Sci., 24 (2000), pp. 481–491.
  • [44] A. Morando, P. Secchi, P. Trebeschi, and D. Yuan, Nonlinear stability and existence of two-dimensional compressible current-vortex sheets, Arch. Ration. Mech. Anal., 247 (2023), pp. Paper No. 50, 83.
  • [45] A. Morando and P. Trebeschi, Two-dimensional vortex sheets for the nonisentropic Euler equations: linear stability, J. Hyperbolic Differ. Equ., 5 (2008), pp. 487–518.
  • [46] A. Morando, P. Trebeschi, and T. Wang, Two-dimensional vortex sheets for the nonisentropic Euler equations: nonlinear stability, J. Differential Equations, 266 (2019), pp. 5397–5430.
  • [47] J. B. Rauch and F. J. Massey, III, Differentiability of solutions to hyperbolic initial-boundary value problems, Trans. Amer. Math. Soc., 189 (1974), pp. 303–318.
  • [48] P. Secchi, On the Nash-Moser iteration technique, in Recent developments of mathematical fluid mechanics, Adv. Math. Fluid Mech., Birkhäuser/Springer, Basel, 2016, pp. 443–457.
  • [49] P. Secchi and Y. Trakhinin, Well-posedness of the plasma-vacuum interface problem, Nonlinearity, 27 (2014), pp. 105–169.
  • [50] D. Serre, Systems of conservation laws. 2, Cambridge University Press, Cambridge, 2000. Geometric structures, oscillations, and initial-boundary value problems, Translated from the 1996 French original by I. N. Sneddon.
  • [51] B. Stevens, Short-time structural stability of compressible vortex sheets with surface tension, Arch. Ration. Mech. Anal., 222 (2016), pp. 603–730.
  • [52] Y. Trakhinin, The existence of current-vortex sheets in ideal compressible magnetohydrodynamics, Arch. Ration. Mech. Anal., 191 (2009), pp. 245–310.
  • [53] Y.-G. Wang and F. Yu, Stability of contact discontinuities in three-dimensional compressible steady flows, J. Differential Equations, 255 (2013), pp. 1278–1356.
  • [54]  , Stabilization effect of magnetic fields on two-dimensional compressible current-vortex sheets, Arch. Ration. Mech. Anal., 208 (2013), pp. 341–389.
  • [55]  , Structural stability of supersonic contact discontinuities in three-dimensional compressible steady flows, SIAM J. Math. Anal., 47 (2015), pp. 1291–1329.
  • [56] Y.-G. Wang and H. Yuan, Weak stability of transonic contact discontinuities in three-dimensional steady non-isentropic compressible Euler flows, Z. Angew. Math. Phys., 66 (2015), pp. 341–388.