This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Nonlinear Faraday magneto-optic effects in a helically wound optical fiber

Peng Gao1,2    Bin Sun2    Jie Liu2 [email protected] 1School of Physics, Xidian University, Xi’an 710071, China 2Graduate School, China Academy of Engineering Physics, Beijing 100193, China
Abstract

We thoroughly investigate the Faraday magneto-optical effects in a helically wound nonlinear optical fiber. We find the emergence of an additional rotation angle proportional to the optical intensity, arised from the nonlinear corrections to both the Verdet constant and the fiber torsion. By analyzing an oscillator model describing the electron motions in the fiber medium, we can obtain the third-order susceptibility in the presence of the magnetic field. According to the Maxwell’s equations and the minimal coupling principle in the metric expression of the curved space, we derive the propagation equations of light in a helically wound optical fiber. Finally, we have obtained the analytic expressions of Faraday rotation angle for both linearly and elliptically polarized lights, which explicitly indicates an important nonlinear correction on the Faraday rotation angles. Possible experimental observations and some implications of our theoretical findings are discussed.

I Introduction

The Faraday magneto-optical effect, or the Faraday rotation, is a fundamental and significant physical phenomenon. It describes the rotation of a light beam’s polarization when passing through a medium under the influence of a magnetic field Faraday-1846 . This circular-birefringence phenomenon induced by external fields has found numerous applications in areas such as optical isolators Aplet-1964 ; Takeda-2008 ; Efimkin-2013 , fiber optic sensing Mihailovic-2021 , and magnetic field measurement Budker-2000 . Under non-resonant conditions, where the optical frequency are considerably smaller than the lowest electronic resonance frequency of the material, its physical mechanism can be effectively explained by the classical oscillator model Boyd-book ; Sato-2022 : electrons rotate in a fixed direction under the Lorentz force, which impacts the medium’s response to left- and right-handed circularly polarized lights. Under near-resonant conditions, quantum theory needs to be introduced to analyze the underlying mechanism Bennett-1965 ; Schatz-1969 ; Sato-2022 , which can explain the distinct nonlinear dependence of Faraday rotation angle on the magnetic field Kanorsky-1993 ; Budker-2002 ; Zhu-2013 . More interestingly, the rotation of a light beam’s polarization can be also generated by the spatial geometric torsion when a light beam propagates through a helically wound optical fiber Ross-1984 ; Tomita-1986 . Underlying mechanism can be understood by the celebrated Berry phase Berry-1984 ; Chiao-1986 ; Berry-1987 associated with parallel transport Kugler-1988 ; Cisowski-2022 .

However, conventional Faraday effects are restricted to the situation that the incident light intensity is weak so that the nonlinear response to an intense light is ignored. With the development of nonlinear optics and strong laser field technologies Brabec-2000 ; Toulouse-2005 , some studies recently attempt to consider the nonlinear polarization effects in varied systems, such as multi-level atomic and molecule systems Yu-1977 ; Giraud-Cotton-1985 . The nonlinear Faraday effect in optical fibers might be more interesting, not only due to its possible applications in optical communications Keiser-book and sensors Day-1982 ; Annovazzi-1992 ; Lee-2003 , but also because its fundamental physical meanings on the parallel transport and Berry phase in the nonlinear systems Liu-2010 ; Liu-book .

In this paper, we investigate the effects of third-order optical nonlinear response on the rotation angle of light polarization, for a helically wound fiber in the presence of an external magnetic field. In the non-resonant situation, we obtain the third-order susceptibility of the fiber in the magnetic field, through an electron oscillator model. From the Maxwell’s equations, we derive the evolution equation of optical amplitude with the fiber’s arc length, and consequently obtain the rotation angle for both linearly and elliptically polarized lights. We find that, the Faraday rotation angle exhibits additional terms proportional to the light intensity, which are viewed as the nonlinear corrections to the Verdet constant as well as the helical geometry. In the absence of magnetic field, the above finding indicates a possible correction on the Berry phase in the nonlinear quantum evolution Liu-2010 ; Liu-book ; Zhang-2011 . Finally, we take a As2S3\rm As_{2}S_{3} fiber as an example to calculate the nonlinear rotation angle and give its observable condition.

II Physical model

II.1 Light propagating in a helically wound nonlinear optical fiber

We consider a model of a helically wound nonlinear optical fiber, as illustrated in Fig. 1. A segment of optical fiber with length LL is wound around a cylinder of radius RR, which is placed along the zz direction. The pitch of the winding is H=L2(2πR)2H=\sqrt{L^{2}-(2\pi R)^{2}}. A magnetic field B=LHBz^\vec{B}=\frac{L}{H}B\,\hat{z} is applied in the positive zz direction, such that the magnetic field intensity in the tangential direction of the optical fiber is equal to BB. A linearly polarized light beam, polarized along the xx direction, is input at the left end of the optical fiber. Due to the presence of the external magnetic field, the helical configuration, and nonlinear effects, the light beam output from the right end will have a polarization direction different from the incident light. The angle by which the polarization direction differs, denoted by θ\theta, is the rotation angle. In the absence of magnetic fields and the nonlinearity, this configuration of light propagation has been considered by Refs. Ross-1984 ; Tomita-1986 ; Berry-1987 .

Refer to caption
Figure 1: The schematic diagram of the light beam propagating through the helically wound optical fiber in the presence of an external magnetic field B\vec{B} is shown below. Here, RR and HH represent the radius and pitch of the winding, respectively, and θ\theta is the rotation angle. The basis vectors x^,y^,z^\hat{x},\hat{y},\hat{z} constitute a laboratory coordinate system, while n^,b^,α^\hat{n},\hat{b},\hat{\alpha} constitute a Frenet coordinate system.

Influenced by the geometric configuration, the light waves in the wound fiber will always propagate tangentially to the fiber. Studying their propagation in the laboratory coordinate system (x^,y^,z^)(\hat{x},\hat{y},\hat{z}) is inconvenient. Therefore, we will construct a coordinate system dependent on the geometric configuration—the Frenet coordinate system (n^,b^,α^)(\hat{n},\hat{b},\hat{\alpha}). The three basis vectors, dependent on the configuration of fiber, have the tangential, normal, and binormal directions of fiber, respectively. When the origins of the two coordinate systems are the same, dependent on the arc length ss, a position vector r\vec{r} can be decomposed in the two coordinate systems as follows:

r=xx^+yy^+zz^=nn^+bb^+αα^,\displaystyle\begin{split}\vec{r}=x\,\hat{x}+y\,\hat{y}+z\,\hat{z}=n\,\hat{n}+b\,\hat{b}+\alpha\hat{\alpha},\end{split} (1)

thus, this vector can be expressed in both coordinate systems as rL=[xyz]T\vec{r}_{L}=\begin{bmatrix}x&y&z\end{bmatrix}^{\rm T}, rF=[nbα]T\vec{r}_{F}=\begin{bmatrix}n&b&\alpha\end{bmatrix}^{\rm T}, where subscripts LL and FF represent representations in the laboratory coordinate system and the Frenet coordinate system, respectively. One can obtain the expressions for the curvature and torsion of the fiber:

κ=(2π)2RL2,τ=2πHL2,\displaystyle\begin{split}&\kappa=\frac{(2\pi)^{2}R}{L^{2}},\quad\tau=\frac{2\pi H}{L^{2}},\end{split} (2)

and the three-dimensional covariant metric tensor:

gij=[10G101G2G1G2G12+G22+G32]ij,\displaystyle\begin{split}g_{ij}=\begin{bmatrix}1&0&G_{1}\\ 0&1&G_{2}\\ G_{1}&G_{2}&G_{1}^{2}+G_{2}^{2}+G_{3}^{2}\\ \end{bmatrix}_{ij},\end{split} (3)

where G1=κατb,G2=τn,G3=1κnG_{1}=\kappa\alpha-\tau b,G_{2}=\tau n,G_{3}=1-\kappa n. The specific calculations about them can be seen in Appendix I.

II.2 Third-order susceptibility under an external magnetic field

Before addressing the propagation of polarized lights in the fiber, we need to analyze the nonlinear response of fiber on the light. Considering that the molecules in fiber belong to the symmetric ones, the nonlinear response is mainly described by the third-order susceptibility Agrawal-book . The classical oscillator model can effectively analyze the polarization properties of the medium under non-resonant conditions, where linear and nonlinear polarizations are distinguished by the harmonic and non-harmonic parts of the electron vibration potential Boyd-book . Here, we will utilize the oscillator model to analyze the influence of the external magnetic field on the third-order susceptibility of the optical fiber, preparing for the subsequent calculation of the Faraday rotation angle.

The equation of motion for the electrons in the optical fiber can be expressed as Boyd-book :

mer¨=eE(k0+k2|r|2)rer˙×B,\displaystyle m_{e}\ddot{\vec{r}}=-e\vec{E}-(k_{0}+k_{2}|\vec{r}|^{2})\vec{r}-e\dot{\vec{r}}\times\vec{B}, (4)

where ee and mem_{e} are the unit charge quantity and mass of electron. The three terms on the right-hand side represent the electric field force, restoring force, and Lorentz force, respectively. k0k_{0} and k2k_{2} are the coefficients of the harmonic and non-harmonic parts of the electron vibration potential. Assuming the electric field vector always lies in the xx-yy plane, at a fixed position, the electric field components can be expressed as:

Ej(t)=12(Ajeiωt+Ajeiωt),\displaystyle E_{j}(t)=\frac{1}{2}(A_{j}e^{-i\omega t}+A_{j}^{*}e^{i\omega t}), (5)

where j=1,2j=1,2 corresponding to the directions of xx and yy, respectively. Electrons will always move in the xx-yy plane. Due to the introduction of the non-harmonic potential, the electron’s oscillation will contain two parts: the fundamental part with frequency ω\omega and the third harmonic part with frequency 3ω3\omega. Therefore, the displacements in different directions of the electrons can be set as

rj(t)=12[rj(1)eiωt+rj(1)eiωt+rj(3)e3iωt+rj(3)e3iωt],\displaystyle r_{j}(t)=\frac{1}{2}[r_{j}^{(1)}e^{-i\omega t}+r_{j}^{(1)*}e^{i\omega t}+r_{j}^{(3)}e^{-3i\omega t}+r_{j}^{(3)*}e^{3i\omega t}], (6)

where r1=xr_{1}=x and r2=yr_{2}=y. Considering that the third harmonic part arises from the non-harmonic potential, and the non-harmonic potential is much lower than the harmonic potential, i.e., k2|r|2k0k_{2}|\vec{r}|^{2}\ll k_{0}, we can assume that the amplitude of the third harmonic part is much smaller than that of the fundamental part: |x(3)|,|y(3)||x(1)|,|y(1)||x^{(3)}|,|y^{(3)}|\ll|x^{(1)}|,|y^{(1)}| Boyd-book .

Firstly, substituting Eq. (6) into Eq. (4), retaining terms containing eiωte^{-i\omega t}, and ignoring terms containing k2k_{2} and x(3),y(3)x^{(3)},y^{(3)}, we can solve the amplitudes of the fundamental part x(1),y(1)x^{(1)},y^{(1)} [see Eq. (A25) in Appendix II], which are the linear functions about AxA_{x} and AyA_{y}. We know that the linear polarization vector P(L)\vec{P}^{(L)} only contains the fundamental wave with frequency ω\omega, and its ii-th component has two different expressions:

Pi(L)=ϵ0χij(1)Ej=Neri(1),\displaystyle P^{(L)}_{i}=\epsilon_{0}\chi^{(1)}_{ij}E_{j}=-Ner^{(1)}_{i}, (7)

where χ(1)\chi^{(1)} is the first-order susceptibility, and r1(1)=x(1)r^{(1)}_{1}=x^{(1)}, r2(1)=y(1)r^{(1)}_{2}=y^{(1)}. From Eq. (7) and the derived expressions of x(1),y(1)x^{(1)},y^{(1)}, we can obtain the matrix form of the first-order susceptibility:

χ(1)\displaystyle\chi^{(1)} =χ0(ω)1Ωc2[1iΩciΩc1],\displaystyle=\frac{\chi_{0}(\omega)}{1-\Omega_{c}^{2}}\begin{bmatrix}1&i\Omega_{c}\\ -i\Omega_{c}&1\end{bmatrix}, (8)

where Ωc\Omega_{c} is a dimensionless quantity proportional to BB:

Ωc=ωωcω02ω2=2[1+χ0(ω)]χ0(ω)VdBβ,\displaystyle\Omega_{c}=\frac{\omega\omega_{c}}{\omega_{0}^{2}-\omega^{2}}=\frac{2[1+\chi_{0}(\omega)]}{\chi_{0}(\omega)}\frac{V_{d}B}{\beta}, (9)

ω0=k0/me\omega_{0}=\sqrt{k_{0}/m_{e}} is the angular frequency of harmonic vibration, and ωc=eB/me\omega_{c}=eB/m_{e} is the cyclotron frequency. The Verdet constant is Vd(ω)=eω2mecdndωV_{d}(\omega)=\frac{e\omega}{2m_{e}c}\frac{d{n}}{d\omega}. χ0(ω)\chi_{0}(\omega) is the first-order susceptibility without an external magnetic field:

χ0(ω)=Ne2/meϵ0ω02ω2,\displaystyle\chi_{0}(\omega)=\frac{{Ne^{2}}/{m_{e}\epsilon_{0}}}{\omega_{0}^{2}-\omega^{2}}, (10)

where NN and ϵ0\epsilon_{0} are the effective density of electron number and permittivity of vacuum. The refractive index without a magnetic field is n(ω)=1+χ0(ω)n(\omega)=\sqrt{1+\chi_{0}(\omega)}, and furthermore the propagation constant is β=n(ω)ω/c\beta=n(\omega)\omega/c, where cc is the speed of light in vacuum. The tensor χ(1)\chi^{(1)} in Eq. (8) possesses rotational invariance,

χij(1)=Rii1χij(1)Rjj,Rij=[cosθsinθsinθcosθ]ij,\displaystyle\chi^{(1)}_{i^{\prime}j^{\prime}}={\rm R}^{-1}_{i^{\prime}i}\chi^{(1)}_{ij}{\rm R}_{jj^{\prime}},\quad{\rm R}_{ij}=\begin{bmatrix}\cos\theta&\sin\theta\\ -\sin\theta&\cos\theta\end{bmatrix}_{ij}, (11)

which is an important property ensuring that the third-order susceptibility remains unchanged during the rotation of the optical fiber. Therefore, the effects of slight twisting during the coiling process can be ignored. In current experiments of optical fiber, we always have VdBβV_{d}B\ll\beta, so we neglect the second-order term of Ωc\Omega_{c} and obtain χ(1)=χ0(𝐈Ωcσ^2)\chi^{(1)}=\chi_{0}(\mathbf{I}-\Omega_{c}\hat{\sigma}_{2}), where σ^2\hat{\sigma}_{2} is Pauli matrix.

Next, substituting equation (6) into equation (4), retaining terms containing e3iωte^{-3i\omega t}, and ignoring higher-order terms of k2k_{2} and x(3),y(3)x^{(3)},y^{(3)}, we obtain the amplitudes of the third-harmonic part x(3),y(3)x^{(3)},y^{(3)} [see Eq. (A28) in Appendix II], which are the nonlinear functions about AxA_{x} and AyA_{y}. We know that the nonlinear polarization vector has the following form:

Pi(N)\displaystyle{P}_{i}^{(N)} =ϵ0χijkl(3)EjEkEl\displaystyle=\epsilon_{0}{\chi}^{(3)}_{ijkl}E_{j}E_{k}E_{l}
=ϵ08χijkl(3)[(AjAkAl+AjAkAl+AjAkAl)eiωt\displaystyle=\frac{\epsilon_{0}}{8}{\chi}^{(3)}_{ijkl}[({A^{*}_{j}}A_{k}A_{l}+A_{j}{A^{*}_{k}}A_{l}+A_{j}A_{k}{A^{*}_{l}})e^{-i\omega t}
+(AjAkAl+AjAkAl+AjAkAl)eiωt\displaystyle\qquad+({A_{j}}A^{*}_{k}A^{*}_{l}+A^{*}_{j}{A_{k}}A^{*}_{l}+A^{*}_{j}A^{*}_{k}{A_{l}})e^{i\omega t}
+AjAkAle3iωt+AjAkAle3iωt]\displaystyle\qquad+A_{j}A_{k}A_{l}e^{-3i\omega t}+A_{j}^{*}A_{k}^{*}A_{l}^{*}e^{3i\omega t}]
12(Ni(1)eiωt+Ni(1)eiωt+Ni(3)e3iωt+Ni(3)e3iωt),\displaystyle\equiv\frac{1}{2}(N_{i}^{(1)}e^{-i\omega t}+N_{i}^{(1)*}e^{i\omega t}+N_{i}^{(3)}e^{-3i\omega t}+N_{i}^{(3)*}e^{3i\omega t}), (12)

where Ni(1)N_{i}^{(1)} and Ni(3)N_{i}^{(3)} are the amplitudes of the fundamental and the third harmonic parts, respectively. For the third harmonic part, there is a relationship between the nonlinear polarization vector and the electron displacement vector (their ii-th components are Pi(N)P_{i}^{(N)} and rir_{i}, respectively): Pi(N)|3ω=Neri|3ωP_{i}^{(N)}|_{3\omega}=-Ner_{i}|_{3\omega}. Here NN is the number of electrons per unit volume. From Eqs. (II.2) and (6), we know Nx(3)=Nex(3)N_{x}^{(3)}=-Nex^{(3)} and Ny(3)=Ney(3)N_{y}^{(3)}=-Ney^{(3)}. By comparing them with equation (II.2), we can obtain the components of the third-order susceptibility tensor χ(3)\chi^{(3)}:

χxxxx(3)=χyyyy(3)=ϵ03χ03(ω)χ0(3ω)N3e4k2,\displaystyle\chi^{(3)}_{xxxx}=\chi^{(3)}_{yyyy}=-\frac{\epsilon_{0}^{3}\chi_{0}^{3}(\omega)\chi_{0}(3\omega)}{N^{3}e^{4}}k_{2}, (13a)
χxxyy(3)=χxyyx(3)=χxyxy(3)=χyxxy(3)=χyyxx(3)=χyxyx(3)=13χxxxx(3),\displaystyle\chi^{(3)}_{xxyy}=\chi^{(3)}_{xyyx}=\chi^{(3)}_{xyxy}=\chi^{(3)}_{yxxy}=\chi^{(3)}_{yyxx}=\chi^{(3)}_{yxyx}=\frac{1}{3}\chi^{(3)}_{xxxx}, (13b)
χxyyy(3)=χyxxx(3)=4iχ0(3ω)χ0(3ω)Ωcχxxxx(3),\displaystyle\chi^{(3)}_{xyyy}=-\chi^{(3)}_{yxxx}=\frac{4i\chi_{0}(3\omega)}{\chi_{0}(\sqrt{3}\omega)}\Omega_{c}\chi^{(3)}_{xxxx}, (13c)
χxxxy(3)=χxxyx(3)=χxyxx(3)=13χxyyy(3),\displaystyle\chi^{(3)}_{xxxy}=\chi^{(3)}_{xxyx}=\chi^{(3)}_{xyxx}=\frac{1}{3}\chi^{(3)}_{xyyy}, (13d)
χyxyy(3)=χyyxy(3)=χyyyx(3)=13χxyyy(3).\displaystyle\chi^{(3)}_{yxyy}=\chi^{(3)}_{yyxy}=\chi^{(3)}_{yyyx}=-\frac{1}{3}\chi^{(3)}_{xyyy}. (13e)

This tensor χ(3)\chi^{(3)} also possesses rotational invariance, χijkl(3)=Rii1Rjj1χijkl(3)RkkRll\chi^{(3)}_{i^{\prime}j^{\prime}k^{\prime}l^{\prime}}={\rm R}^{-1}_{i^{\prime}i}{\rm R}^{-1}_{j^{\prime}j}\chi^{(3)}_{ijkl}{\rm R}_{kk^{\prime}}{\rm R}_{ll^{\prime}}, to ensure that it remains unchanged during the rotation of the optical fiber in tangential direction. In the absence of the external magnetic field (Ωc=0\Omega_{c}=0), the last eight elements of this tensor will become 0, and the derived χ(3)\chi^{(3)} is the same as the result in Ref. Boyd-book .

II.3 Nonlinear optical propagation equation

We consider a helically wound single-mode nonlinear fiber, as shown in Fig. 1. Due to the polarization vector P=P(L)+P(N)\vec{P}=\vec{P}^{(L)}+\vec{P}^{(N)}, in the Frenet coordinate system, the propagation equation of electric field of the light is

2E(s,t)s2=1c22E(s,t)t2+μ02P(L)(s,t)t2+μ02P(N)(s,t)t2,\displaystyle\frac{\partial^{2}\vec{E}(s,t)}{\partial s^{2}}=\frac{1}{c^{2}}\frac{\partial^{2}\vec{E}(s,t)}{\partial t^{2}}+\mu_{0}\frac{\partial^{2}\vec{P}^{(L)}(s,t)}{\partial t^{2}}+\mu_{0}\frac{\partial^{2}\vec{P}^{(N)}(s,t)}{\partial t^{2}}, (14)

where the electric field vector E(s,t)=En(s,t)n^(s)+Eb(s,t)b^(s)\vec{E}(s,t)=E_{n}(s,t)\hat{n}(s)+E_{b}(s,t)\hat{b}(s), and the propagation distance is represented by the arc length ss. The specific calculation process of Eq. (14) can be seen in Appendix I. When we input a continuous wave, the electric field vector can be written as

E(s,t)=12[A(s)ei(βsωt)+A(s)ei(βsωt)],\displaystyle\begin{split}\vec{E}(s,t)=\frac{1}{2}[\vec{A}(s)\,e^{i({\beta}s-\omega t)}+\vec{A}^{*}(s)\,e^{-i({\beta}s-\omega t)}],\end{split} (15)

where the propagation constant is β=n(ω)ω/c\beta=n(\omega)\omega/c and the complex amplitude vector of the electric field is A(s)=An(s)n^(s)+Ab(s)b^(s)\vec{A}(s)=A_{n}(s)\hat{n}(s)+A_{b}(s)\hat{b}(s).

The linear polarization vector is P(L)(s,t)=ϵ0χ(1)E(s,t)\vec{P}^{(L)}(s,t)=\epsilon_{0}\chi^{(1)}\vec{E}(s,t), where the first-order susceptibility has the expression (8); the nonlinear one is P(N)(s,t)=ϵ0χ(3)E(s,t)E(s,t)E(s,t)\vec{P}^{(N)}(s,t)=\epsilon_{0}{\chi}^{(3)}\vdots\,\vec{E}(s,t)\vec{E}(s,t)\vec{E}(s,t), where the third-order susceptibility has the expression (13a). Ignoring the third-harmonic waves in the fiber, we recall the nonlinear polarization vector (II.2) and write

P(N)(s)=12[N(1)(s)ei(βsωt)+N(1)(s)ei(βsωt)].\displaystyle\vec{P}^{(N)}(s)=\frac{1}{2}[\vec{N}^{(1)}(s)e^{i({\beta}s-\omega t)}+\vec{N}^{*(1)}(s)e^{-i({\beta}s-\omega t)}]. (16)

where N(1)(s)=Nn(1)(s)n^(s)+Nb(1)(s)b^(s)\vec{N}^{(1)}(s)=N_{n}^{(1)}(s)\hat{n}(s)+N_{b}^{(1)}(s)\hat{b}(s) and

Ni(1)=ϵ04χijkl(3)(AjAkAl+AjAkAl+AjAkAl).\displaystyle\begin{split}{N}_{i}^{(1)}=\frac{\epsilon_{0}}{4}{\chi}^{(3)}_{ijkl}({A^{*}_{j}}A_{k}A_{l}+A_{j}{A^{*}_{k}}A_{l}+A_{j}A_{k}{A^{*}_{l}}).\end{split} (17)

Furthermore, substituting the expression (13a) of χ(3)\chi^{(3)} into it, one can obtain

Nn(1)=3ϵ04χxxxx(3)(h1+iCBVdBβh2),\displaystyle N_{n}^{(1)}=\frac{3\epsilon_{0}}{4}{\chi}^{(3)}_{xxxx}\Big{(}h_{1}+iC_{B}\frac{V_{d}B}{\beta}h_{2}\Big{)}, (18a)
Nb(1)=3ϵ04χxxxx(3)(h2iCBVdBβh1).\displaystyle N_{b}^{(1)}=\frac{3\epsilon_{0}}{4}{\chi}^{(3)}_{xxxx}\Big{(}h_{2}-iC_{B}\frac{V_{d}B}{\beta}h_{1}\Big{)}. (18b)

where

h1=(|An|2+23|Ab|2)An+13AnAb2,\displaystyle h_{1}=(|{A_{n}}|^{2}+\frac{2}{3}|{A_{b}}|^{2})A_{n}+\frac{1}{3}{A^{*}_{n}}A_{b}^{2}, (19a)
h2=(23|An|2+|Ab|2)Ab+13An2Ab,\displaystyle h_{2}=(\frac{2}{3}|{A_{n}}|^{2}+|{A_{b}}|^{2})A_{b}+\frac{1}{3}A_{n}^{2}{A^{*}_{b}}, (19b)

and CBC_{B} is a dimensionless function about light frequency:

CB=8χ0(3ω)[1+χ0(ω)]χ0(ω)χ0(3ω).\displaystyle C_{B}=\frac{8\chi_{0}(3\omega)[1+\chi_{0}(\omega)]}{\chi_{0}(\omega)\chi_{0}(\sqrt{3}\omega)}. (20)
Table 1: Rotation angle θ/l\theta/l of light in a nonlinear fiber (per unit evolution distance)
Straight fiber with an external magnetic Helically wound fiber without an external magnetic field Helically wound fiber with an external magnetic field
Linearly polarized light (1CBσA2β)VdB(1-C_{B}\frac{\sigma^{\prime}A^{2}}{\beta})V_{d}B (1+σA2β)τ-(1+\frac{\sigma^{\prime}A^{2}}{\beta})\tau (1CBσA2β)VdB(1+σA2β)τ(1-C_{B}\frac{\sigma^{\prime}A^{2}}{\beta})V_{d}B-(1+\frac{\sigma^{\prime}A^{2}}{\beta})\tau
Elliptically polarized light (1CBσA2β)VdB+13σA2sin2χ(1-C_{B}\frac{\sigma^{\prime}A^{2}}{\beta})V_{d}B+\frac{1}{3}{\sigma^{\prime}}A^{2}\sin 2\chi (1+σA2β)τ+13σA2sin2χ-(1+\frac{\sigma^{\prime}A^{2}}{\beta})\tau+\frac{1}{3}{\sigma^{\prime}}A^{2}\sin 2\chi (1CBσA2β)VdB(1+σA2β)τ+13σA2sin2χ(1-C_{B}\frac{\sigma^{\prime}A^{2}}{\beta})V_{d}B-(1+\frac{\sigma^{\prime}A^{2}}{\beta})\tau+\frac{1}{3}{\sigma^{\prime}}A^{2}\sin 2\chi

Next, we substitute the expressions of E\vec{E} (15), P(L)\vec{P}^{(L)}, and P(N)\vec{P}^{(N)} (16) into Eq. (14) to obtain:

2iβdAds+d2Ads22βVdBσ^2A+μ0ω2N(1)=0.\displaystyle 2i\beta\frac{d\vec{A}}{ds}+\frac{d^{2}\vec{A}}{ds^{2}}-2\beta V_{d}B\hat{\sigma}_{2}\vec{A}+\mu_{0}\omega^{2}\vec{N}^{(1)}=0. (21)

Due to dα^ds=κn^\frac{d\hat{\alpha}}{ds}=\kappa\hat{n}, dn^ds=κα^+τb^\frac{d\hat{n}}{ds}=-\kappa\hat{\alpha}+\tau\hat{b}, db^ds=τn^\frac{d\hat{b}}{ds}=-\tau\hat{n}, considering the slowly varying envelope approximation and neglecting the terms of d2Aids2\frac{d^{2}A_{i}}{ds^{2}} in the above equations, we can obtain

dAnds=iβ(τ2κ22VdBτ)2(β2τ2)An+2β2ττ32VdBβ22(β2τ2)Ab\displaystyle\frac{dA_{n}}{ds}=\frac{i\beta(\tau^{2}-\kappa^{2}-2V_{d}B\tau)}{2(\beta^{2}-\tau^{2})}A_{n}+\frac{2\beta^{2}\tau-\tau^{3}-2V_{d}B\beta^{2}}{2(\beta^{2}-\tau^{2})}A_{b}
+iμ0ω22(β2τ2)(βNniτNb),\displaystyle\qquad+\frac{i\mu_{0}\omega^{2}}{2(\beta^{2}-\tau^{2})}(\beta N_{n}-i\tau N_{b}), (22a)
dAbds=τ(κ2+τ22β2)+2VdBβ22(β2τ2)An+iβτ(τ2VdB)2(β2τ2)Ab\displaystyle\frac{dA_{b}}{ds}=\frac{\tau(\kappa^{2}+\tau^{2}-2\beta^{2})+2V_{d}B\beta^{2}}{2(\beta^{2}-\tau^{2})}A_{n}+\frac{i\beta\tau(\tau-2V_{d}B)}{2(\beta^{2}-\tau^{2})}A_{b}
+iμ0ω22(β2τ2)(iτNn+βNb).\displaystyle\qquad+\frac{i\mu_{0}\omega^{2}}{2(\beta^{2}-\tau^{2})}(i\tau N_{n}+\beta N_{b}). (22b)

Then, we consider the practical condition τ,κ,VdBβ\tau,\kappa,V_{d}B\ll\beta, neglect the quadratic terms of the small quantities τ/β\tau/\beta, κ/β\kappa/\beta, and VdB/βV_{d}B/\beta, and substitute the expressions (18) of NnN_{n} and NbN_{b} into the above equations. Due to practical reasons, in Eq. (18), AxA_{x} and AyA_{y} are expressed in units of electric field (V/m). We introduce A\vec{A}^{\prime} such that |A|2|\vec{A}^{\prime}|^{2} to represent optical power:

|A|2=12ncϵ0S|A|2,\displaystyle|\vec{A}^{\prime}|^{2}=\frac{1}{2}nc\epsilon_{0}S|\vec{A}|^{2}, (23)

where SS is the effective cross-sectional area of the fiber core. After substituting the above relation, for simplicity, we omit the prime notation from AxA^{\prime}_{x} and AyA^{\prime}_{y}. Then we can obtain:

idAds=[K^+(VdBτ)σ^2\displaystyle i\frac{d\vec{A}}{ds}=\Big{[}\hat{K}+(V_{d}B-\tau)\hat{\sigma}_{2} +1β(τ+CBVdB)σ^2h^\displaystyle+\frac{1}{\beta}(\tau+C_{B}V_{d}B)\hat{\sigma}_{2}\hat{h}^{\prime}
+(1+VdBτβ2CB)h^]A,\displaystyle+(1+\frac{V_{d}B\tau}{\beta^{2}}C_{B})\hat{h}^{\prime}\Big{]}\vec{A}, (24)

where h^\hat{h}^{\prime} is the Homitonian in a straight nonlinear fiber when the magnetic field is absent:

h^=σ[|An|2+23|Ab|213AnAb13AnAb23|An|2+|Ab|2],\displaystyle\hat{h}^{\prime}=-\sigma^{\prime}\begin{bmatrix}|{A_{n}}|^{2}+\frac{2}{3}|{A_{b}}|^{2}&\frac{1}{3}A_{n}^{*}A_{b}\\ \frac{1}{3}A_{n}A_{b}^{*}&\frac{2}{3}|{A_{n}}|^{2}+|{A_{b}}|^{2}\\ \end{bmatrix}, (25)

and σ=3χxxxx(3)ω4n2c2ϵ0S\sigma^{\prime}=\frac{3{\chi}^{(3)}_{xxxx}\omega}{4n^{2}c^{2}\epsilon_{0}S}. The matrix K^\hat{K} is

K^=[κ22β000]+2VdBττ22β[1001].\displaystyle\hat{K}=\begin{bmatrix}\frac{\kappa^{2}}{2\beta}&0\\ 0&0\\ \end{bmatrix}+\frac{2V_{d}B\tau-\tau^{2}}{2\beta}\begin{bmatrix}1&0\\ 0&1\end{bmatrix}. (26)

The first part arises from the linear birefringence induced by curvature κ\kappa, which can be neglected by considering 2πRH2\pi R\ll H such that κτ\kappa\ll\tau. The second part represents the change in propagation constants, but due to Δβ=2VdBττ22ββ\Delta\beta=\frac{2V_{d}B\tau-\tau^{2}}{2\beta}\ll\beta, it can be ignored. Therefore, we can ignore K^\hat{K} and the quadratic small quantity VdBτβ2\frac{V_{d}B\tau}{\beta^{2}}, yielding:

idAds=[(VdBτ)σ^2+1β(τ+CBVdB)σ^2h^+h^]A.\displaystyle i\frac{d\vec{A}}{ds}=\Big{[}(V_{d}B-\tau)\hat{\sigma}_{2}+\frac{1}{\beta}(\tau+C_{B}V_{d}B)\hat{\sigma}_{2}\hat{h}^{\prime}+\hat{h}^{\prime}\Big{]}\vec{A}. (27)

This is the evolution equation of the amplitude vector A\vec{A} with the arc length ss.

Three interesting situations will be discussed as follows. In the absence of the nonlinear effect (σ=0\sigma^{\prime}=0), Eq. (27) will become isA=(VdBτ)σ^2Ai\partial_{s}\vec{A}=(V_{d}B-\tau)\hat{\sigma}_{2}\vec{A}, where the equivalence between VdBV_{d}B and τ\tau indicates that the torsion τ\tau can be viewed as an effective magnetic field Berry-1987 ; Ross-1984 ; Tabor-1969 ; Smith-1978 ; Rashleigh-1983 , i.e., the so-called geometry-induced gauge fields Guinea-2010 ; Zhang-2014 ; Wang-2014 ; Tan-2021 ; Wang-2022 . In a straight fiber without the external magnetic field (B=0B=0 and τ=0\tau=0), Eq. (27) will become isA=h^Ai\partial_{s}\vec{A}=\hat{h}^{\prime}\vec{A}, which describes the evolution of a continuous wave in an isotropic nonlinear fiber Crosignani-1985 ; Trillo-1986 ; Akhmediev-1994 ; Barad-1997 . In a helically wound fiber with an external magnetic field, Eq. (27) describes the evolution of a continuous wave under the combined impact of the magnetic field, helical geometry, and the nonlinear effect. In this equation, the term 1β(τ+CBVdB)σ^2h^\frac{1}{\beta}(\tau+C_{B}V_{d}B)\hat{\sigma}_{2}\hat{h}^{\prime} manifests an interesting interplay between the three effects, providing a comparable correction of rotation angle in the cases with intense lights.

III Nonlinear Faraday effect in a helically wound fiber

III.1 Analytic expressions of the nonlinear Faraday angle

We analyze the evolution of polarization states in this system from another perspective Barad-1997 . Introducing the Stokes vector S=Sxe^x+Sye^y+Sze^z\vec{S}=S_{x}\hat{e}_{x}+S_{y}\hat{e}_{y}+S_{z}\hat{e}_{z}, where the components are defined as:

Sx=|Ax|2|Ay|2,Sy=AxAy+AxAy,Sz=i(AxAyAxAy).\displaystyle S_{x}=|A_{x}|^{2}-|A_{y}|^{2},\;S_{y}=A_{x}^{*}A_{y}+A_{x}A_{y}^{*},\;S_{z}=i(A_{x}A_{y}^{*}-A_{x}^{*}A_{y}). (28)

It’s noted that the amplitude of this vector is conserved: |S|=|Ax|2+|Ay|2=A2|\vec{S}|=|A_{x}|^{2}+|A_{y}|^{2}=A^{2}, i.e., it equals to the light power. Substituting Eq. (28) into Eq. (27), we obtain:

dSdz=2[VdBτσA2β(τ+CBVdB)+13σSz]S×e^z.\displaystyle\frac{d\vec{S}}{dz}=-2\Big{[}V_{d}B-\tau-\frac{\sigma^{\prime}A^{2}}{\beta}(\tau+C_{B}V_{d}B)+\frac{1}{3}{\sigma^{\prime}}S_{z}\Big{]}\vec{S}\times\hat{e}_{z}. (29)

It describes the rotation of vector S\vec{S} around e^z\hat{e}_{z} axis, which indicates that SzS_{z} is conserved. The rotation solution to this motion equation is:

S\displaystyle\vec{S} =(Sx,Sy,Sz)=A2cos2χ[cos(2Ωz),sin(2Ωz),tan2χ],\displaystyle=(S_{x},S_{y},S_{z})=A^{2}\cos 2\chi[\cos(2\Omega z),\,\sin(2\Omega z),\,\tan 2\chi], (30)

where

Ω=VdBτσA2β(τ+CBVdB)+13σA2sin2χ.\displaystyle\Omega=V_{d}B-\tau-\frac{\sigma^{\prime}A^{2}}{\beta}(\tau+C_{B}V_{d}B)+\frac{1}{3}{\sigma^{\prime}}A^{2}\sin 2\chi. (31)

χ\chi represents the elliptic angle, whose zero or non-zero values correspond to linearly or elliptically polarized states, respectively.

The solution (30) describes a rotation process of different polarized states in the Poincare´\rm\acute{e} sphere. Its rotation frequency of S\vec{S} in the sphere is twice the rotation frequency of the light’s polarization in the real space of nn-bb. Therefore, we can derive the rotation angle per unit length for linearly polarized light (χ=0\chi=0) as:

θ/l=Ω=(1CBσA2β)VdB(1+σA2β)τ,\displaystyle{\theta}/{l}=\Omega=\Big{(}1-C_{B}\frac{\sigma^{\prime}A^{2}}{\beta}\Big{)}V_{d}B-\Big{(}1+\frac{\sigma^{\prime}A^{2}}{\beta}\Big{)}\tau, (32)

and for elliptically polarized light (χ0\chi\neq 0) as:

θ/l=Ω=(1\displaystyle{\theta}/{l}=\Omega=\Big{(}1- CBσA2β)VdB(1+σA2β)τ+13σA2sin2χ,\displaystyle C_{B}\frac{\sigma^{\prime}A^{2}}{\beta}\Big{)}V_{d}B-\Big{(}1+\frac{\sigma^{\prime}A^{2}}{\beta}\Big{)}\tau+\frac{1}{3}{\sigma^{\prime}}A^{2}\sin 2\chi, (33)

where θ\theta is total rotation angle of light and ll is total propagation distance,. The dimensionless quantity CBC_{B} has the expression (20), which measures the impact of nonlinear effect on the Faraday rotation angle. For a nonlinear fiber, the rotation angle θ/l\theta/l in different situations is illustrated in Tab. 1.

III.2 Some discussions

We firstly focus on the rotation of linearly polarized light, as shown in the second row of Tab. 1. In a straight fiber with an external magnetic field, nonlinear effects will exert a correction on the Verdet constant, resulting in a modified Verdet constant of Vd(N)=(1CBσA2β)VdV_{d}^{(N)}=(1-C_{B}\frac{\sigma^{\prime}A^{2}}{\beta})V_{d}. Similarly, in a helically wound fiber without an external magnetic field, nonlinear effects will also influence the rotation angle in the Faraday-like effect, equivalent to exerting a correction to the torsion of the fiber, resulting in a modified torsion of τ(N)=(1+σA2β)τ\tau^{(N)}=(1+\frac{\sigma^{\prime}A^{2}}{\beta})\tau. When considering both the winding of the fiber and the external magnetic field simultaneously, the obtained rotation angle is a linear combination of the first two results.

Then, we shift our focus to elliptically polarized light, as shown in the third row of Tab. 1. In the three cases mentioned above, the only difference between the rotation angles of linearly and elliptically polarized light is the emergence of an additional term 13σA2sin2χ\frac{1}{3}{\sigma^{\prime}}A^{2}\sin 2\chi. It indicates that the rotation angle of an elliptically polarized light will also depend on its own ellipticity angle χ\chi. In a straight fiber without an external magnetic field, due to the presence of this term, an elliptically polarized light also exhibits rotation. This kind of intensity-induced rotation is fundamentally different from the Faraday and Faraday-like rotations, and has been earlier studied in various systems including nonlinear fibers Crosignani-1985 ; Maker-1964 ; Agrawal-book .

Among these situations in Tab. 1, an interesting one is a helically wound optical fiber without an external magnetic field, where the rotation angle is θ/l=(1+σA2β)τ\theta/l=-(1+\frac{\sigma^{\prime}A^{2}}{\beta})\tau. In the absence of the nonlinearity, the torsion geometry serves as the magnetic field, and is closely related to the celebrated Berry phase, as discussed by Ref. Berry-1987 . The geometry induced gauge field is rather interesting and constantly attract much attention Wang-2014 ; Wang-2022 . In the presence of the nonlinearity, it is seen that the rotation angle is due to the interplay between the geometry and nonlinearity, which indicates the emergence of a nonlinear Berry phase Liu-2010 ; Liu-book .

III.3 The observations of nonlinear Faraday rotation

Parameter Settings We use the optical fibers made of As2S3\rm As_{2}S_{3} as the medium for light propagation, which is a type of chalcogenide fiber. Compared to traditional SiO2\rm SiO_{2} fibers, this type of fiber exhibits larger nonlinear refractive index and Verdet constant, making it suitable for observing nonlinear and magnetic field-induced effects. The nonlinear refractive index Sanghera-2008 and the Verdet constant Ruan-2005 of As2S3\rm As_{2}S_{3} fibers have been measured in previous experiments, and here we will refer to the parameters provided in the two experimental works.

Firstly, for the nonlinearity coefficient k2k_{2}, we can estimate it using the following formula Boyd-book :

k2=k0d2=meω02d2,\displaystyle k_{2}=-\frac{k_{0}}{d^{2}}=-\frac{m_{e}\omega_{0}^{2}}{d^{2}}, (34)

where ω0\omega_{0} is the lowest resonant frequency of the atom. dd is a typical value for the atomic scale, which can be taken as the Bohr radius: da0=4πϵ02mee2d\approx a_{0}=\frac{4\pi\epsilon_{0}\hbar^{2}}{m_{e}e^{2}}.

In the non-resonant limit (ωω0\omega\ll\omega_{0}), from Eq. (10), the first-order polarization without an external magnetic field can be expressed as:

χ0Ne2meϵ0ω02.\displaystyle\chi_{0}\approx\frac{Ne^{2}}{m_{e}\epsilon_{0}\omega_{0}^{2}}. (35)

Meanwhile, from Eq. (13a), the typical component of the third-order polarization can be written as:

χxxxx\displaystyle\chi_{xxxx} =ϵ03χ03(ω)χ0(3ω)N3e4k2Ne4me3ϵ0d2ω06.\displaystyle=-\frac{\epsilon_{0}^{3}\chi_{0}^{3}(\omega)\chi_{0}(3\omega)}{N^{3}e^{4}}k_{2}\approx\frac{Ne^{4}}{m_{e}^{3}\epsilon_{0}d^{2}\omega_{0}^{6}}. (36)

The Verdet constant can be written as:

Vd=eω2mecdndω\displaystyle V_{d}=\frac{e\omega}{2m_{e}c}\frac{d{n}}{d\omega} =Nϵ0e3ω22cϵ0me(ω02ω2)+Ne2\displaystyle=\frac{N\epsilon_{0}e^{3}\omega^{2}}{2c\sqrt{\epsilon_{0}m_{e}(\omega_{0}^{2}-\omega^{2})+Ne^{2}}}
Nϵ0e3ω22cϵ0meω02+Ne2\displaystyle\approx\frac{N\epsilon_{0}e^{3}\omega^{2}}{2c\sqrt{\epsilon_{0}m_{e}\omega_{0}^{2}+Ne^{2}}} (37)

It has been experimentally measured that the lowest bandgap of As2S3\rm As_{2}S_{3} is Eg=2.38eVE_{g}=2.38\,{\rm eV}, thus the lowest resonant frequency is ω0=Eg/=3.6×1015Hz\omega_{0}=E_{g}/\hbar=3.6\times 10^{15}\,{\rm Hz}. Based on it, the following are the calculations of some parameters:

  • Density of As2S3\rm As_{2}S_{3} fiber: ρ=3.46g/cm3\rho=3.46\,{\rm g/cm^{3}}, molecular mass: M=246.04×1.661×1027kgM=246.04\times 1.661\times 10^{-27}\,{\rm kg}, thus the number density of molecules: N=ρ/M=8.47×1027/m3N=\rho/M=8.47\times 10^{27}/{\rm m^{3}}.

  • Refractive index: n=1+χ0=1.75n=\sqrt{1+\chi_{0}}=1.75, experimental result: n¯=2.4\bar{n}=2.4.

  • Typical component of the third-order polarization: χxxxx=1.33×1019m2/V2\chi_{xxxx}=1.33\times 10^{-19}\,{\rm m^{2}/V^{2}}, experimental result: χ¯xxxx=4.1×1019m2/V2\bar{\chi}_{xxxx}=4.1\times 10^{-19}\,{\rm m^{2}/V^{2}}.

  • Nonlinear refractive index: n2=34n2ϵ0cχxxxx(3)=1.23×1017m2/Wn_{2}=\frac{3}{4n^{2}\epsilon_{0}c}\chi^{(3)}_{xxxx}=1.23\times 10^{-17}\,{\rm m^{2}/W}, experimental result: n¯2=2×1017m2/W\bar{n}_{2}=2\times 10^{-17}\,{\rm m^{2}/W}.

  • Verdet constant: Vd=39.2/T/mV_{d}=39.2\,{\rm/T/m}, experimental result: V¯d=14.5/T/m\bar{V}_{d}=14.5{\rm/T/m}.

Nonlinear Correction to Verdet Constant Here, we focus on the situation of a straight fiber to discuss the correction induced by the third-order nonlinear effect for Verdet constant. From Eqs. (32) and (33), in the presence of an external magnetic field and considering third-order nonlinear effects, the rotation angle per unit distance of linearly polarized light (χ=0\chi=0) in a straight fiber is given by

θ/l=Ω=(1σA2βCB)VdB,\displaystyle\theta/l=\Omega=\Big{(}1-\frac{\sigma^{\prime}A^{2}}{\beta}C_{B}\Big{)}V_{d}B, (38)

and the one of elliptically polarized light (χ0\chi\neq 0) is given by

θ/l=Ω=(1σA2βCB)VdB+13σA2sin2χ.\displaystyle\theta/l=\Omega=\Big{(}1-\frac{\sigma^{\prime}A^{2}}{\beta}C_{B}\Big{)}V_{d}B+\frac{1}{3}{\sigma^{\prime}}A^{2}\sin 2\chi. (39)

CBC_{B} is an important parameter, measuring the influence of third-order nonlinear effects on the Faraday rotation angle. Interestingly, it can considered as a nonlinear correction to the Verdet constant, i.e., in the nonlinear case, the Verdet constant becomes

Vd(N)=(1σA2βCB)Vd.\displaystyle V_{d}^{(N)}=\Big{(}1-\frac{\sigma^{\prime}A^{2}}{\beta}C_{B}\Big{)}V_{d}. (40)

In the non-resonant limit, from Eq. (20), the parameter CBC_{B} can be approximated as:

CB8(1+χ0)χ0=8n2n21=8(1+meϵ0ω02Ne2).\displaystyle C_{B}\approx\frac{8(1+\chi_{0})}{\chi_{0}}=\frac{8n^{2}}{n^{2}-1}=8\Big{(}1+\frac{m_{e}\epsilon_{0}\omega_{0}^{2}}{Ne^{2}}\Big{)}. (41)

Using the practical refractive index n¯\bar{n}, the value of CBC_{B} in As2S3\rm As_{2}S_{3} fibers is CB=8n¯2/(n¯21)=11.33C_{B}=8\bar{n}^{2}/(\bar{n}^{2}-1)=11.33. In materials with refractive index greater than 1, the value of CBC_{B} decreases with increasing refractive index.

According to Ref. Sanghera-2008 , we take the diameter of the fiber core as dc=4.2μmd_{c}=4.2\,{\rm\mu m}, core cross-sectional area as S=13.85μm2S=13.85\,{\rm\mu m^{2}}, incident wavelength as λ=1550nm\lambda=1550\,{\rm nm}, and propagation constant as β=2π/λ=5.87×106m1\beta=2\pi/\lambda=5.87\times 10^{6}\,{\rm m^{-1}}. Assuming the light has approximately uniform distribution in the radial direction, we can obtain the nonlinear coefficient σ\sigma^{\prime} as

σ=2πn¯2λS=5.85/W/m=3.6/W/m.\displaystyle\sigma^{\prime}=\frac{2\pi\bar{n}_{2}}{\lambda S}=5.85\,{\rm/W/m}=3.6\,{\rm/W/m}. (42)

For a linearly polarized light, according to Eq. (32), we need CBσA2/βC_{B}\sigma^{\prime}A^{2}/\beta to be comparable to 1 to ensure the correction part is significant. Here, we set the condition as CBσA2/β>0.01C_{B}\sigma^{\prime}A^{2}/\beta>0.01, which results in a required optical power: A2>0.01β/σCB=611.6WA^{2}>0.01\beta/\sigma^{\prime}C_{B}=611.6\,{\rm W}, thus the required incident intensity is I=A2/S>4.42×109W/cm2I=A^{2}/S>4.42\times 10^{9}\,{\rm W/cm^{2}}.

It is worthy noting that the nonlinear coefficient σ\sigma^{\prime} is also dependent on the refractive index nn, thus the realistic correction of nonlinear effects for Verdet constant is measured by σCB\sigma^{\prime}C_{B}. Its expression is

σCB=3ϵ0ω4c2N2e2d2S(n21)2.\displaystyle\sigma^{\prime}C_{B}=\frac{3\epsilon_{0}\omega}{4c^{2}N^{2}e^{2}d^{2}S}\,(n^{2}-1)^{2}. (43)

In materials with refractive index greater than 1, the value of σCB\sigma^{\prime}C_{B} increases with increasing nn. Therefore, to exhibit a greater correction part of the rotation angle, it is preferable to choose a material with a higher refractive index.

Observation of Rotation Angle in a Hellically Wound Fiber To better observe the influence of nonlinear effects on the rotation angle, we choose to observe in a wound fiber system In this system, by selecting an appropriate geometric configuration, the effects of external magnetic field and curvature cancel each other out, i.e., τ=VdB\tau=V_{d}B. The deflection angle per unit distance of linearly polarized light becomes

θ/l=Ω=(1+CB)σA2τβ.\displaystyle\theta/l=\Omega=-(1+C_{B})\sigma^{\prime}A^{2}\frac{\tau}{\beta}. (44)

It means that the rotation angle is proportional to the light power, thus provides the possibility of measuring the power of a strong light and the nonlinear coefficient. To satisfy κτ\kappa\ll\tau, taking the helix pitch of the fiber winding as H=19cmH=19\,{\rm cm}, the length of one turn of the fiber winding as L=20cmL=20\,{\rm cm}, the winding radius is R=L2H2/2π=1cmR=\sqrt{L^{2}-H^{2}}/2\pi=1\,{\rm cm}, thus the curvature is κ=(2π)2RL2=9.8/m\kappa=\frac{(2\pi)^{2}R}{L^{2}}=9.8\,{\rm/m}, and the torsion rate is τ=2πHL2=29.8/m\tau=\frac{2\pi H}{L^{2}}=29.8\,{\rm/m}. Considering that the required tangential field intensity is B=τ/VdB={\tau}/{V_{d}}, the magnetic field intensity in the zz direction is

Bz=LHB=2πLVd=2.17T.\displaystyle B_{z}=\frac{L}{H}B=\frac{2\pi}{LV_{d}}=2.17\,{\rm T}. (45)

According to Eq. (44), to observe a rotation angle whose absolute value is greater than θm=0.01×2πrad\theta_{m}=0.01\times 2\pi\,{\rm rad}, the optical power required is

A2>βθm(1+CB)στL591.6W.\displaystyle A^{2}>\frac{\beta\theta_{m}}{(1+C_{B})\sigma^{\prime}\tau L}\approx 591.6\,{\rm W}. (46)

Thus, the required incident intensity is I=A2/S>4.27×109W/cm2I=A^{2}/S>4.27\times 10^{9}\,{\rm W/cm^{2}}.

IV Conclusion

In summary, we analyze the influence of third-order nonlinear optical effects on the Faraday rotation and find that the nonlinearity might modify the Verdet constant as well as the geometric torsion, leading to additional terms in the expressions of the rotation angle for both linearly and elliptically polarized lights. Possible observations of our findings in As2S3\rm As_{2}S_{3} fibers are discussed. Our theoretical results bring a prospect for the observations of the light-intensity-dependent Faraday rotation and the nonlinear Berry phase, and might have potential applications in various areas such as the measurements of strong electromagnetic fields.

Acknowledgement

This work was supported by NSAF (No.U2330401) and National Natural Science Foundation of China (No. 12247110).

Appendix I: Propagation equation of light in the Frenet coordinate system

For the self-consistence of the paper, here, we present the detailed deductions of propagation equation of light in the Frenet coordinate system. First, we investigate the propagation equation of light waves in the laboratory coordinate system (x^,y^,z^\hat{x},\hat{y},\hat{z}). For light waves propagating in optical fibers, the evolution of their electric and magnetic field components satisfies the Maxwell’s equations:

×E(r,t)=B(r,t)t,×H(r,t)=D(r,t)t,\displaystyle\nabla\times\vec{E}(\vec{r},t)=-\frac{\partial\vec{B}(\vec{r},t)}{\partial t},\quad\nabla\times\vec{H}(\vec{r},t)=\frac{\partial\vec{D}(\vec{r},t)}{\partial t},
D(r,t)=0,B(r,t)=0.\displaystyle\qquad\qquad\nabla\cdot\vec{D}(\vec{r},t)=0,\quad\nabla\cdot\vec{B}(\vec{r},t)=0. (A1)

Substituting D(r,t)=ϵ0E(r,t)+P(r,t)\vec{D}(\vec{r},t)=\epsilon_{0}\vec{E}(\vec{r},t)+\vec{P}(\vec{r},t) and B(r,t)=μ0H(r,t)\vec{B}(\vec{r},t)=\mu_{0}\vec{H}(\vec{r},t), we obtain

[E(r,t)]2E(r,t)=1c22E(r,t)t2μ02P(r,t)t2,\displaystyle\begin{split}\nabla[\nabla\cdot\vec{E}(\vec{r},t)]-\nabla^{2}\vec{E}(\vec{r},t)=-\frac{1}{c^{2}}\,\frac{\partial^{2}\vec{E}(\vec{r},t)}{\partial t^{2}}-\mu_{0}\frac{\partial^{2}\vec{P}(\vec{r},t)}{\partial t^{2}},\end{split} (A2)

where P\vec{P} is the polarization vector, and cc is the speed of light in vacuum. Here we consider weakly guiding optical fibers commonly used in communication, with a small difference in refractive index between the core and cladding, so the rate of change of the relative dielectric tensor in the transverse direction is small. Thus, we have E(r,t)ϵ1ϵ0D(r,t)=0\nabla\cdot\vec{E}(\vec{r},t)\approx\frac{\epsilon^{-1}}{\epsilon_{0}}\nabla\cdot\vec{D}(\vec{r},t)=0. Substituting this into Equation (A2) eliminates the first term, resulting in the transmission equation for the electric field in the laboratory coordinate system (subscript LL):

L2E(rL,t)=1c22E(rL,t)t2+μ02P(rL,t)t2.\displaystyle\begin{split}\nabla_{L}^{2}\vec{E}(\vec{r}_{L},t)=\frac{1}{c^{2}}\,\frac{\partial^{2}\vec{E}(\vec{r}_{L},t)}{\partial t^{2}}+\mu_{0}\frac{\partial^{2}\vec{P}(\vec{r}_{L},t)}{\partial t^{2}}.\end{split} (A3)

Here, rL=[x,y,z]T\vec{r}_{L}=[x,y,z]^{\rm T} is the position vector in the laboratory coordinate system, and L2=2x2+2y2+2z2\nabla^{2}_{L}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}} is the three-dimensional Laplacian operator in the laboratory coordinate system.

If the coordinate origin is set at the center of the left end of the cylinder, in the laboratory coordinate system, the position curve of the fiber can be expressed as

fL(s)=[fX(s)fY(s)fZ(s)]=[Rcos(2πLs)Rsin(2πLs)HLs],\displaystyle\begin{split}\vec{f}_{L}(s)=\begin{bmatrix}f_{X}(s)\\ f_{Y}(s)\\ f_{Z}(s)\end{bmatrix}=\begin{bmatrix}R\cos(\frac{2\pi}{L}s)\\ R\sin(\frac{2\pi}{L}s)\\ \frac{H}{L}s\end{bmatrix},\end{split} (A4)

where ss is the arc length of the fiber curve, RR is the radius of the cylinder, HH is the pitch of the fiber (i.e., the distance the light moves in the zz direction after one winding cycle), and L=(2πR)2+H2L=\sqrt{(2\pi R)^{2}+H^{2}} is the length of the fiber within one winding cycle. Therefore, the expressions for the Frenet coordinate base vectors in the laboratory coordinate system are obtained as follows:

α^L=sfL|sfL|=[2πRLsin(2πLs)2πRLcos(2πLs)HL],\displaystyle\hat{\alpha}_{L}=\frac{\partial_{s}\vec{f}_{L}}{|\partial_{s}\vec{f}_{L}|}=\begin{bmatrix}-\frac{2\pi R}{L}\sin(\frac{2\pi}{L}s)\\ \frac{2\pi R}{L}\cos(\frac{2\pi}{L}s)\\ \frac{H}{L}\end{bmatrix}, (A5a)
n^L=s2fL|s2fL|=[cos(2πLs)sin(2πLs)0],\displaystyle\hat{n}_{L}=\frac{\partial_{s}^{2}\vec{f}_{L}}{|\partial_{s}^{2}\vec{f}_{L}|}=\begin{bmatrix}-\cos(\frac{2\pi}{L}s)\\ -\sin(\frac{2\pi}{L}s)\\ 0\end{bmatrix}, (A5b)
b^L=α^L×n^L=[HLsin(2πLs)HLcos(2πLs)2πRL].\displaystyle\hat{b}_{L}=\hat{\alpha}_{L}\times\hat{n}_{L}=\begin{bmatrix}\frac{H}{L}\sin(\frac{2\pi}{L}s)\\ -\frac{H}{L}\cos(\frac{2\pi}{L}s)\\ \frac{2\pi R}{L}\end{bmatrix}. (A5c)

as well as the expressions for the curvature and torsion of the fiber:

κ=|d2fLds2|=(2π)2RL2,\displaystyle\kappa=\Big{|}\frac{d^{2}\vec{f}_{L}}{ds^{2}}\Big{|}=\frac{(2\pi)^{2}R}{L^{2}}, (A6a)
τ=dfLds[d2fLds2×d3fLds3]/|d2fLds2|2=2πHL2.\displaystyle\tau=\frac{d\vec{f}_{L}}{ds}\cdot\Big{[}\frac{d^{2}\vec{f}_{L}}{ds^{2}}\times\frac{d^{3}\vec{f}_{L}}{ds^{3}}\Big{]}/\Big{|}\frac{d^{2}\vec{f}_{L}}{ds^{2}}\Big{|}^{2}=\frac{2\pi H}{L^{2}}. (A6b)

The transformation of the position vector in the laboratory coordinate system and the Frenet coordinate system is given by

rL=[n^Lb^Lα^L]rF𝐌(s)rF,\displaystyle\begin{split}&\vec{r}_{L}=\begin{bmatrix}\hat{n}_{L}&\hat{b}_{L}&\hat{\alpha}_{L}\end{bmatrix}\vec{r}_{F}\equiv{\mathbf{M}}(s)\,\vec{r}_{F},\end{split} (A7)

where

𝐌(s)=[cos(2πLs)HLsin(2πLs)2πRLsin(2πLs)sin(2πLs)HLcos(2πLs)2πRLcos(2πLs)02πRLHL].\displaystyle\begin{split}\mathbf{M}(s)=\begin{bmatrix}-\cos(\frac{2\pi}{L}s)&\frac{H}{L}\sin(\frac{2\pi}{L}s)&-\frac{2\pi R}{L}\sin(\frac{2\pi}{L}s)\\ -\sin(\frac{2\pi}{L}s)&-\frac{H}{L}\cos(\frac{2\pi}{L}s)&\frac{2\pi R}{L}\cos(\frac{2\pi}{L}s)\\ 0&\frac{2\pi R}{L}&\frac{H}{L}\end{bmatrix}.\end{split} (A8)

For convenience in calculation, let us rewrite the above equation in tensor form:

xi(L)=Mijxj(F),\displaystyle\begin{split}x_{i}^{(L)}={\rm M}^{\prime}_{ij}\,x_{j}^{(F)},\end{split} (A9)

where the superscripts (L)(L) and (F)(F) correspond to the laboratory and Frenet coordinate systems, respectively. Taking the differential of both sides, we obtain

dxi(L)=Mijdxj(F)+xj(F)dMijdsds.\displaystyle\begin{split}dx_{i}^{(L)}={\rm M}^{\prime}_{ij}\,dx_{j}^{(F)}+x_{j}^{(F)}\frac{d{\rm M}^{\prime}_{ij}}{ds}\,ds.\end{split} (A10)

We know

dαds=dfL(s)dsα^L(s)=1.\displaystyle\frac{d\alpha}{ds}=\frac{d\vec{f}_{L}(s)}{ds}\cdot\hat{\alpha}_{L}(s)=1. (A11)

Thus, we can replace dsds in Eq. (A10) with dαd\alpha:

dxi(L)=Mijdxj(F)+xj(F)dMijdsdα.\displaystyle dx_{i}^{(L)}={\rm M}^{\prime}_{ij}\,dx_{j}^{(F)}+x_{j}^{(F)}\frac{d{\rm M}^{\prime}_{ij}}{ds}\,d\alpha. (A12)

This yields

[dxdydz]=𝐌d(s)[dndbdα],\displaystyle\begin{split}&\begin{bmatrix}{dx}\\ {dy}\\ {dz}\end{bmatrix}=\mathbf{M}_{d}(s)\begin{bmatrix}{dn}\\ {db}\\ {d\alpha}\end{bmatrix},\end{split} (A13)

where

𝐌d(s)=[cos(2πLs)HLsin(2πLs)2πRLsin(2πLs)+m1sin(2πLs)HLcos(2πLs)2πRLcos(2πLs)+m202πRLHL],\displaystyle\mathbf{M}_{d}(s)=\begin{bmatrix}-\cos(\frac{2\pi}{L}s)&\frac{H}{L}\sin(\frac{2\pi}{L}s)&-\frac{2\pi R}{L}\sin(\frac{2\pi}{L}s)+m_{1}\\ -\sin(\frac{2\pi}{L}s)&-\frac{H}{L}\cos(\frac{2\pi}{L}s)&\frac{2\pi R}{L}\cos(\frac{2\pi}{L}s)+m_{2}\\ 0&\frac{2\pi R}{L}&\frac{H}{L}\ \end{bmatrix},
m1=2πLnsin(2πLs)+τbcos(2πLs)καcos(2πLs),\displaystyle m_{1}=\frac{2\pi}{L}n\sin(\frac{2\pi}{L}s)+\tau b\cos(\frac{2\pi}{L}s)-\kappa\alpha\cos(\frac{2\pi}{L}s),
m2=2πLncos(2πLs)+τbsin(2πLs)καsin(2πLs).\displaystyle m_{2}=-\frac{2\pi}{L}n\cos(\frac{2\pi}{L}s)+\tau b\sin(\frac{2\pi}{L}s)-\kappa\alpha\sin(\frac{2\pi}{L}s). (A14)

Now, the three-dimensional space interval can be expressed as

ds32\displaystyle ds_{3}^{2} =dx2+dy2+dz2=[dxdydz][dxdydz]\displaystyle=dx^{2}+dy^{2}+dz^{2}=\begin{bmatrix}dx&dy&dz\end{bmatrix}\begin{bmatrix}{dx}\\ {dy}\\ {dz}\end{bmatrix}
=[dndbdα]𝐌dT𝐌d[dndbdα].\displaystyle=\begin{bmatrix}dn&db&d\alpha\end{bmatrix}\mathbf{M}_{d}^{\rm T}\mathbf{M}_{d}\begin{bmatrix}{dn}\\ {db}\\ {d\alpha}\end{bmatrix}. (A15)

Thus, we can obtain the covariant metric tensor:

gij=(𝐌dT𝐌d)ij=[10G101G2G1G2G12+G22+G32]ij,\displaystyle\begin{split}g_{ij}=(\mathbf{M}_{d}^{\rm T}\mathbf{M}_{d})_{ij}=\begin{bmatrix}1&0&G_{1}\\ 0&1&G_{2}\\ G_{1}&G_{2}&G_{1}^{2}+G_{2}^{2}+G_{3}^{2}\\ \end{bmatrix}_{ij},\end{split} (A16)

where G1=κατb,G2=τn,G3=1κnG_{1}=\kappa\alpha-\tau b,G_{2}=\tau n,G_{3}=1-\kappa n. Subsequently, we can obtain the contravariant metric tensor:

gij=[(𝐌dT𝐌d)1]ij=1G32[G12+G32G1G2G1G1G2G22+G32G2G1G21]ij,\displaystyle\begin{split}g^{ij}=[(\mathbf{M}_{d}^{\rm T}\mathbf{M}_{d})^{-1}]_{ij}=\frac{1}{G_{3}^{2}}\begin{bmatrix}G_{1}^{2}+G_{3}^{2}&G_{1}G_{2}&-G_{1}\\ G_{1}G_{2}&G_{2}^{2}+G_{3}^{2}&-G_{2}\\ -G_{1}&-G_{2}&1\\ \end{bmatrix}_{ij},\end{split} (A17)

Therefore, in the Frenet coordinate system, the Laplacian operator is

F2\displaystyle\nabla_{F}^{2} =1detgxFi(detggijxFi)\displaystyle=\frac{1}{\sqrt{\det g}}\frac{\partial}{\partial x_{F}^{i}}(\sqrt{\det g}g^{ij}\frac{\partial}{\partial x_{F}^{i}})
=(1+G12G32)2n2+(1+G22G32)2b2+1G322α2\displaystyle=\Big{(}1+\frac{G_{1}^{2}}{G_{3}^{2}}\Big{)}\frac{\partial^{2}}{\partial n^{2}}+\Big{(}1+\frac{G_{2}^{2}}{G_{3}^{2}}\Big{)}\frac{\partial^{2}}{\partial b^{2}}+\frac{1}{G_{3}^{2}}\frac{\partial^{2}}{\partial\alpha^{2}} (A18)
+2G1G2G322nb2G1G322nα2G1G2G322bα\displaystyle\quad+\frac{2G_{1}G_{2}}{G_{3}^{2}}\frac{\partial^{2}}{\partial n\partial b}-\frac{2G_{1}}{G_{3}^{2}}\frac{\partial^{2}}{\partial n\partial\alpha}-\frac{2G_{1}G_{2}}{G_{3}^{2}}\frac{\partial^{2}}{\partial b\partial\alpha}
+[κ(G12G331G321G3)τG2G32]nτG1G33bκG12G33α.\displaystyle\quad+\Big{[}\kappa\Big{(}\frac{G_{1}^{2}}{G_{3}^{3}}-\frac{1}{G_{3}^{2}}-\frac{1}{G_{3}}\Big{)}-\tau\frac{G_{2}}{G_{3}^{2}}\Big{]}\frac{\partial}{\partial n}-\tau\frac{G_{1}}{G_{3}^{3}}\frac{\partial}{\partial b}-\kappa\frac{G_{1}^{2}}{G_{3}^{3}}\frac{\partial}{\partial\alpha}.

Considering that the coordinate scale inside the fiber is much smaller than the fiber length, i.e., n,b,αLn,b,\alpha\ll L, and the curvature κ\kappa and torsion τ\tau are of the same order as 1/L1/L, we have G1,G2G31G_{1},G_{2}\ll G_{3}\approx 1. Therefore, we can neglect terms containing G1/G3G_{1}/G_{3} and G2/G3G_{2}/G_{3} in the above equation, yielding

F2=2n2+2b2+2α22κn.\displaystyle\begin{split}\nabla_{F}^{2}&=\frac{\partial^{2}}{\partial n^{2}}+\frac{\partial^{2}}{\partial b^{2}}+\frac{\partial^{2}}{\partial\alpha^{2}}-2\kappa\frac{\partial}{\partial n}.\end{split} (A19)

Substituting it into Eq. (A3), we obtain

F2E(rF,t)=1c22E(rF,t)t2+μ02P(rF,t)t2.\displaystyle\begin{split}\nabla_{F}^{2}\vec{E}(\vec{r}_{F},t)=\frac{1}{c^{2}}\,\frac{\partial^{2}\vec{E}(\vec{r}_{F},t)}{\partial t^{2}}+\mu_{0}\frac{\partial^{2}\vec{P}(\vec{r}_{F},t)}{\partial t^{2}}.\end{split} (A20)

Thus, the propagation equation for light waves in the Frenet coordinate system is

(2n2+2b2\displaystyle\Big{(}\frac{\partial^{2}}{\partial n^{2}}+\frac{\partial^{2}}{\partial b^{2}} +2α22κn)E(rF,t)\displaystyle+\frac{\partial^{2}}{\partial\alpha^{2}}-2\kappa\frac{\partial}{\partial n}\Big{)}\vec{E}(\vec{r}_{F},t)
=1c22E(rF,t)t2+μ02P(rF,t)t2.\displaystyle=\frac{1}{c^{2}}\,\frac{\partial^{2}\vec{E}(\vec{r}_{F},t)}{\partial t^{2}}+\mu_{0}\frac{\partial^{2}\vec{P}(\vec{r}_{F},t)}{\partial t^{2}}. (A21)

For a single-mode optical fiber, only the lowest mode (i.e., TEM mode) exists, where its electric field and magnetic field are perpendicular to each other and both perpendicular to the propagation direction α^\hat{\alpha}, thus it can be assumed that Eα=0E_{\alpha}=0. Additionally, since the optical field is distributed near the center of the core and there is no interference from other modes, we approximately consider that the variation of the optical field in the transverse direction is very small, neglecting terms containing nE,n2E,b2E\partial_{n}\vec{E},\partial_{n}^{2}\vec{E},\partial_{b}^{2}\vec{E}, yielding

2E(α,t)α2=1c22E(α,t)t2+μ02P(α,t)t2.\displaystyle\begin{split}\frac{\partial^{2}\vec{E}(\alpha,t)}{\partial\alpha^{2}}=\frac{1}{c^{2}}\,\frac{\partial^{2}\vec{E}(\alpha,t)}{\partial t^{2}}+\mu_{0}\frac{\partial^{2}\vec{P}(\alpha,t)}{\partial t^{2}}.\end{split} (A22)

Considering that dα/ds=1d\alpha/ds=1 and it is not convenient to deal with in the moving local coordinate α\alpha, we can replace the moving coordinate α\alpha in the above equation with the absolute coordinate ss, obtaining

2E(s,t)s2=1c22E(s,t)t2+μ02P(s,t)t2.\displaystyle\begin{split}\frac{\partial^{2}\vec{E}(s,t)}{\partial s^{2}}=\frac{1}{c^{2}}\,\frac{\partial^{2}\vec{E}(s,t)}{\partial t^{2}}+\mu_{0}\frac{\partial^{2}\vec{P}(s,t)}{\partial t^{2}}.\end{split} (A23)

Appendix II: Formulas about electron oscillation

The amplitude x(1),y(1)x^{(1)},y^{(1)} of fundamental part of electron’s oscillation satisfies the following equations:

meω02x(1)meω2x(1)+eAximeωωcy(1)=0,\displaystyle m_{e}\omega_{0}^{2}x^{(1)}-m_{e}\omega^{2}x^{(1)}+eA_{x}-im_{e}\omega\omega_{c}y^{(1)}=0, (A24a)
meω02y(1)meω2y(1)+eAy+imeωωcx(1)=0.\displaystyle m_{e}\omega_{0}^{2}y^{(1)}-m_{e}\omega^{2}y^{(1)}+eA_{y}+im_{e}\omega\omega_{c}x^{(1)}=0. (A24b)

The solution of x(1),y(1)x^{(1)},y^{(1)} in them is

x(1)=e/me(ω02ω2)2ω2ωc2[(ω02ω2)Ax+iωωcAy],\displaystyle x^{(1)}=-\frac{e/m_{e}}{(\omega_{0}^{2}-\omega^{2})^{2}-\omega^{2}\omega_{c}^{2}}[(\omega_{0}^{2}-\omega^{2})A_{x}+i\omega\omega_{c}A_{y}], (A25a)
y(1)=e/me(ω02ω2)2ω2ωc2[iωωcAx+(ω02ω2)Ay].\displaystyle y^{(1)}=-\frac{e/m_{e}}{(\omega_{0}^{2}-\omega^{2})^{2}-\omega^{2}\omega_{c}^{2}}[-i\omega\omega_{c}A_{x}+(\omega_{0}^{2}-\omega^{2})A_{y}]. (A25b)

The amplitude x(3),y(3)x^{(3)},y^{(3)} of third-harmonic part of electron’s oscillation satisfies the following equations:

me(ω029ω2)x(1)+k24[(x(1)2+y(1)2)x(1)+2(3|x(1)|2+|y(1)|2)x(3)\displaystyle m_{e}(\omega_{0}^{2}-9\omega^{2})x^{(1)}+\frac{k_{2}}{4}[(x^{(1)2}+y^{(1)2})x^{(1)}+2(3|x^{(1)}|^{2}+|y^{(1)}|^{2})x^{(3)}
+2(x(1)y(1)+x(1)y(1))y(3)]3imeωωcy(3)=0,\displaystyle\quad+2(x^{(1)*}y^{(1)}+x^{(1)}y^{(1)*})y^{(3)}]-3im_{e}\omega\omega_{c}y^{(3)}=0, (A26a)
me(ω029ω2)y(1)+k24[(x(1)2+y(1)2)y(1)+2(|x(1)|2+3|y(1)|2)y(3)\displaystyle m_{e}(\omega_{0}^{2}-9\omega^{2})y^{(1)}+\frac{k_{2}}{4}[(x^{(1)2}+y^{(1)2})y^{(1)}+2(|x^{(1)}|^{2}+3|y^{(1)}|^{2})y^{(3)}
+2(x(1)y(1)+x(1)y(1))x(3)]+3imeωωcx(3)=0.\displaystyle\quad+2(x^{(1)*}y^{(1)}+x^{(1)}y^{(1)*})x^{(3)}]+3im_{e}\omega\omega_{c}x^{(3)}=0. (A26b)

Considering the approximation,

k2|E|2(Neϵ0χ0)2k0=k03e2.\displaystyle k_{2}|\vec{E}|^{2}\ll\Big{(}\frac{Ne}{\epsilon_{0}\chi_{0}}\Big{)}^{2}k_{0}=\frac{k_{0}^{3}}{e^{2}}. (A27)

the solution of x(3),y(3)x^{(3)},y^{(3)} is

x(3)=C1Ax3+C2Ax2Ay+C3AxAy2+C4Ay3,\displaystyle x^{(3)}=C_{1}A_{x}^{3}+C_{2}A_{x}^{2}A_{y}+C_{3}A_{x}A_{y}^{2}+C_{4}A_{y}^{3}, (A28a)
y(3)=C5Ax3+C6Ax2Ay+C7AxAy2+C8Ay3\displaystyle y^{(3)}=C_{5}A_{x}^{3}+C_{6}A_{x}^{2}A_{y}+C_{7}A_{x}A_{y}^{2}+C_{8}A_{y}^{3} (A28b)

where

C1=e3k24me4(ω02ω2)3(ω029ω2)=14e5(ϵN)4χ03(ω)χ0(3ω),\displaystyle C_{1}=\frac{e^{3}k_{2}}{4m_{e}^{4}(\omega_{0}^{2}-\omega^{2})^{3}(\omega_{0}^{2}-9\omega^{2})}=\frac{1}{4e^{5}}\Big{(}\frac{\epsilon}{N}\Big{)}^{4}\chi_{0}^{3}(\omega)\chi_{0}(3\omega),
C2=ie3k2(ω023ω2)Ωcme4(ω02ω2)3(ω029ω2)2=ie5(ϵN)4χ03(ω)χ02(3ω)χ0(3ω),\displaystyle C_{2}=\frac{ie^{3}k_{2}(\omega_{0}^{2}-3\omega^{2})\Omega_{c}}{m_{e}^{4}(\omega_{0}^{2}-\omega^{2})^{3}(\omega_{0}^{2}-9\omega^{2})^{2}}=\frac{i}{e^{5}}\Big{(}\frac{\epsilon}{N}\Big{)}^{4}\frac{\chi_{0}^{3}(\omega)\chi_{0}^{2}(3\omega)}{\chi_{0}(\sqrt{3}\omega)},
C3=C1,C4=C2,C5=C2,\displaystyle C_{3}=C_{1},\quad C_{4}=C_{2},\quad C_{5}=-C_{2},
C6=C1,C7=C2,C8=C1.\displaystyle C_{6}=C_{1},\quad C_{7}=-C_{2},\quad C_{8}=C_{1}. (A29)

References

  • (1) M. Faraday, II. Experimental researches in electricity. Twentieth series, Philos. Trans. R. Soc. London 136, 1 (1846).
  • (2) L. J. Aplet and J. W. Carson, A Faraday effect optical isolator, Applied Optics 3, 544 (1964).
  • (3) H. Takeda and S. John, Compact optical one-way waveguide isolators for photonic-band-gap microchips, Phys. Rev. A 78, 023804 (2008).
  • (4) D. K. Efimkin and Yu. E. Lozovik, Resonant manifestations of chiral excitons in Faraday and Kerr effects in a topological insulator film, Phys. Rev. B 87, 245416 (2013).
  • (5) P. Mihailovic and S. Petricevic, Fiber optic sensors based on the Faraday effect, Sensors 21, 6564 (2021).
  • (6) D. Budker, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and M. Zolotorev, Sensitive magnetometry based on nonlinear magneto-optical rotation, Phys. Rev. A 62, 043403 (2000).
  • (7) R. W. Boyd, Nonlinear Optics (Academic Press, Elsevier, 2008).
  • (8) K. Sato and T. Ishibashi, Fundamentals of magneto-optical spectroscopy, Front. Phys.-Lausanne 10, 946515 (2022).
  • (9) H. S. Bennett and E. A. Stern, Faraday effect in solids, Phys. Rev. 137, A448 (1965).
  • (10) P. N. Schatz and A. J. McCaffery, The faraday effect, Q. Rev. Chem. Soc. 23, 552 (1969).
  • (11) S. I. Kanorsky, A. Weis, J. Wurster, and T. W. Hansch, Quantitative investigation of the resonant nonlinear Faraday effect under conditions of optical hyperfine pumping, Phys. Rev. A 47, 1220 (1993).
  • (12) D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, Resonant nonlinear magneto-optical effects in atoms, Rev. Mod. Phys. 74, 1153 (2002).
  • (13) C. Zhu, L. Deng, and E. W. Hagley, Linear and nonlinear Faraday rotations of light polarization in a four-level active-Raman-gain medium, Phys. Rev. A 88, 023854 (2013).
  • (14) J. N. Ross, The rotation of the polarization in low birefringence monomode optical fibres due to geometric effects, Opt. Quant. Electron. 16, 455 (1984).
  • (15) A. Tomita and R. Y. Chiao, Observation of Berry’s topological phase by use of an optical fiber, Phys. Rev. Lett. 57, 937 (1986).
  • (16) M. V. Berry, Quantal phase factors accompanying adiabatic changes, Proc. R. Soc. Lond. A 392, 45 (1984).
  • (17) R. Y. Chiao and Y. S. Wu, Manifestations of Berry’s topological phase for the photon, Phys. Rev. Lett. 57, 933 (1986).
  • (18) M. V. Berry, Interpreting the anholonomy of coiled light, Nature 326, 277 (1987).
  • (19) M. Kugler and S. Shtrikman, Berry’s phase, locally inertial frames, and classical analogues, Phys. Rev. D 37, 934 (1988).
  • (20) C. Cisowski, J. B. Götte, and S. Franke-Arnold, Colloquium: Geometric phases of light: Insights from fiber bundle theory, Rev. Mod. Phys. 94, 031001 (2022).
  • (21) T. Brabec and F. Krausz, Intense few-cycle laser fields: Frontiers of nonlinear optics, Rev. Mod. Phys. 72, 545 (2000).
  • (22) J. Toulouse, Optical nonlinearities in fibers: review, recent examples, and systems applications, J. Lightwave Technol. 23, 3625 (2005).
  • (23) Y. J. Yu and R. K. Osborn, Effect of a nonlinear refractive index on Faraday rotation, Phys. Rev. A 15, 2404 (1977).
  • (24) S. Giraud-Cotton, V. P. Kaftandjian, and L. Klein L, Magnetic optical activity in intense laser fields. I. Self-rotation and Verdet constant, Phys. Rev. A 32, 2211 (1985).
  • (25) G. Keiser, Optical Fiber Communications (Wiley, New York, 2003).
  • (26) G. W. Day, D. N. Payne, A. J. Barlow, and J. J. Ramskov-Hansent, Faraday rotation in coiled, monomode optical fibers: isolators, filters, and magnetic sensors, Opt. Lett. 7, 238 (1982).
  • (27) V. Annovazzi-Lodi, S. Donati, and S. Merlo, Coiled-fiber sensor for vectorial measurement of magnetic field, J. Lightwave Technol. 10, 2006 (1992).
  • (28) B. Lee, Review of the present status of optical fiber sensors, Opt. Fiber Technol. 9, 57 (2003).
  • (29) J. Liu and L. B. Fu, Berry phase in nonlinear systems, Phys. Rev. A 81, 052112 (2010).
  • (30) J. Liu, S. -C. Li, L. -B. Fu, and D. -F. Ye, Nonlinear Adiabatic Evolution of Quantum Systems: Geometric Phase and Virtual Magnetic Monopole. Springer, 2018, 49-72.
  • (31) L. D. Zhang, L.B. Fu, and J. Liu, Adiabatic geometric phase in the nonlinear coherent coupler, Eur. Phys. J. D 65, 557–561 (2011).
  • (32) W. J. Tabor and F. S. Chen, Electromagnetic Propagation through Materials Possessing Both Faraday Rotation and Birefringence: Experiments with Ytterbium Orthoferrite, J. Appl. Phys. 40, 2760 (1969).
  • (33) A. M. Smith, Polarization and magnetooptic properties of single-mode optical fiber, Appl. Opt. 17, 52 (1978).
  • (34) S. Rashleigh, Origins and control of polarization effects in single-mode fibers, J. Lightwave Technol. 1, 312 (1983).
  • (35) F. Guinea, M. I. Katsnelson, and A. K. Geim, Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering, Nat. Phys. 6, 30 (2010).
  • (36) D. -B. Zhang, G. Seifert, and K. Chang,Strain-induced pseudomagnetic fields in twisted graphene nanoribbons, Phys. Rev. Lett. 112, 096805 (2014).
  • (37) Y. L. Wang, L. Du, C. T. Xu, X. J. Liu, and H. S. Zong, Pauli equation for a charged spin particle on a curved surface in an electric and magnetic field, Phys. Rev. A 90, 042117 (2014).
  • (38) X. Tan, D.-W. Zhang, W. Zheng, X. Yang, S. Song, Z. Han, Y. Dong, Z. Wang, D. Lan, H. Yan, S.-L. Zhu, and Y. Yu, Experimental observation of tensor monopoles with a superconducting qudit, Phys. Rev. Lett. 126, 017702 (2021).
  • (39) Y. L. Wang, H. Zhao, H. Jiang, H. Liu, and Y. F. Chen, Geometry-induced monopole magnetic field and quantum spin Hall effects, Phys. Rev. B 106, 235403 (2022).
  • (40) B. Crosignani and P. Di Porto, Intensity-induced rotation of the polarization ellipse in low-birefringence, single-mode optical fibres, Optica Acta: Int. J. Opt. 32, 1251 (1985).
  • (41) S. Trillo, S. Wabnitz, R. H. Stolen, G. Assanto, C. T. Seaton, and G. I. Stegeman, Experimental observation of polarization instability in a birefringent optical fiber, Appl. Phys. Lett. 49, 1224 (1986).
  • (42) N. Akhmediev, A. Buryak, and J. M. Soto-Crespo, Elliptically polarised solitons in birefringent optical fibers, Opt. Commun. 112, 278 (1994).
  • (43) Y. Barad and Y. Silberberg, Polarization evolution and polarization instability of solitons in a birefringent optical fiber, Phys. Rev. Lett. 78, 3290 (1997).
  • (44) G. P. Agrawal, Nonlinear fiber optics, (Academic, 2007)
  • (45) P. D. Maker, R. W. Terhune, and C. M. Savage, Intensity-dependent changes in the refractive index of liquids, Phys. Rev. Lett. 12, 507 (1964).
  • (46) J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, Non-linear properties of chalcogenide glasses and fibers, J. Non-Cryst. Solids 354, 462 (2008).
  • (47) Y. Ruan, R. A. Jarvis, A. V. Rode, S. Madden, and B. Luther-Davies, Wavelength dispersion of Verdet constants in chalcogenide glasses for magneto-optical waveguide devices, Opt. Commun. 252, 39 (2005).