This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Nonlinear asymptotic stability of inhomogeneous steady solutions to boundary problems of Vlasov-Poisson equation

Chanwoo Kim Department of Mathematics, University of Wisconsin-Madison, Madison, WI 53706, USA [email protected]
Abstract.

We consider an ensemble of mass collisionless particles, which interact mutually either by an attraction of Newton’s law of gravitation or by an electrostatic repulsion of Coulomb’s law, under a background downward gravity in a horizontally-periodic 3D half-space, whose inflow distribution at the boundary is prescribed. We investigate a nonlinear asymptotic stability of its generic steady states in the dynamical kinetic PDE theory of the Vlasov-Poisson equations. We construct Lipschitz continuous space-inhomogeneous steady states and establish exponentially fast asymptotic stability of these steady states with respect to small perturbation in a weighted Sobolev topology. In this proof, we crucially use the Lipschitz continuity in the velocity of the steady states. Moreover, we establish well-posedness and regularity estimates for both steady and dynamic problems.

1. Introduction

We consider the Vlasov-Poisson equations ([14, 33]) subjected to a vertical downward gravity of a fixed gravitational constant g>0g>0 in a 3D half space (x1,x2,x3)Ω:=𝕋2×(0,)(x_{1},x_{2},x_{3})\in\Omega:=\mathbb{T}^{2}\times(0,\infty) with a periodic cube 𝕋2={(x1,x2):12xi<12,i=1,2}\mathbb{T}^{2}=\{(x_{1},x_{2}):-\frac{1}{2}\leq x_{i}<\frac{1}{2},i=1,2\}:

tF+vxFx(ϕF+gx3)vF=0\displaystyle\partial_{t}F+v\cdot\nabla_{x}F-\nabla_{x}(\phi_{F}+gx_{3})\cdot\nabla_{v}F=0\ \ in+×Ω×3,\displaystyle\text{in}\ \mathbb{R}_{+}\times\Omega\times\mathbb{R}^{3}, (1.1)
F(0,x,v)=F0(x,v)\displaystyle F(0,x,v)=F_{0}(x,v)\ \ inΩ×3.\displaystyle\text{in}\ \Omega\times\mathbb{R}^{3}. (1.2)

Here, the potential of an intermolecular force solves Poisson equations as

ΔxϕF=η3FdvinΩ,\begin{split}\Delta_{x}\phi_{F}=\eta\int_{\mathbb{R}^{3}}F\mathrm{d}v\ \ \text{in}\ \Omega,\end{split} (1.3)

for either η=+1\eta=+1 (an attractive potential of the Newton’s law of gravitation) or η=1\eta=-1 (a repulsive potential of the Coulomb’s law). In our paper, all results hold for η=1\eta=1 and η=1\eta=-1. For the sake of simplicity, we have set physical constants such as masses and size of charges of identical particles to be 11. At the incoming boundary γ:={(x,v):x3=0and v3>0}\gamma_{-}:=\{(x,v):x_{3}=0\ \text{and }v_{3}>0\}, the distribution FF satisfies an in-flow boundary condition: For a given function G(x,v)0G(x,v)\geq 0 on γ\gamma_{-},

F=Gonγ:={(x,v):x3=0and v3>0};F=G\ \ \text{on}\ \ \gamma_{-}:=\{(x,v):x_{3}=0\ \text{and }v_{3}>0\}; (1.4)

while the potential satisfies the zero Dirichlet boundary condition at the boundary:

ϕF|x3=0=0.\phi_{F}|_{x_{3}=0}=0. (1.5)

About the application of this problem, we refer to [6, 5, 23, 24, 25, 26]. For example, see an application in the stellar atmosphere such as the solar wind theory of the Pannekoek-Rosseland condition in [6] and the references therein.

In the contents of nonlinear Vlasov systems, constructing steady states ([19, 32, 13, 15]) and studying their stability ([20, 12]) or instability ([21, 29]) have been important subjects. Several boundary problems have been studied in [12, 13, 15, 17, 18, 22, 33]. Among others, we discuss some literature concerning the asymptotic stability of the Vlasov-Poisson system in a confining setting. In [28], Landau looked into analytical solutions of the linearized Vlasov-Poisson system around the Maxwellian and observed that the self-consistent field xϕF\nabla_{x}\phi_{F} is subject to temporal decay even in the absence of collisions (cf. Boltzmann equation [7]). A rigorous justification of the Landau damping in a nonlinear dynamical sense has been a long-standing major open problem. In [22, 4], it was shown that there exist certain analytical perturbations for which the fields decay exponentially at the nonlinear level. Recently, Mouhot-Villani settled the nonlinear Landau damping affirmatively for general real-analytical perturbations of stable space-homogeneous equilibria with exponential decay in [31]. Bedrossian-Masmoudi-Mouhot establishes the theory in the Gevrey regular perturbations in [3]. We also refer to [16] for a very recent result in this direction.

In this celebrated justification of nonlinear Landau damping, the high regularity such as real-analyticity or Gevrey regularity of perturbation seems crucial as some counterexamples are constructed for Sobolev regular perturbations ([30, 2]). Moreover, the theories of [31, 3, 16] strictly apply to space-homogeneous equilibria but not space-inhomogeneous states. However, in many physical cases, the boundary problems do not allow these two constraints in general. Any steady solution to (1.1)-(1.3), if exists, is space-inhomogeneous unless the boundary datum GG in (1.4) is space-homogeneous. Moreover, derivatives of any solution FF to (1.1) are singular in general ([18, 6]).

In this paper, we establish a different stabilizing effect of downward gravity and the boundary in the content of the nonlinear Vlasov-Poisson system. Namely, we construct space-inhomogeneous steady states h(x,v)h(x,v), which are Lipschitz continuous, and establish exponentially fast asymptotic stability of these steady states with respect to small (in a weighted LL^{\infty} topology) perturbation ff:

F(t,x,v)=h(x,v)+f(t,x,v).F(t,x,v)=h(x,v)+f(t,x,v). (1.6)

For the initial datum in (1.1), we set F0(x,v)=h(x,v)+f0(x,v)F_{0}(x,v)=h(x,v)+f_{0}(x,v).

1.1. Illustration of the Bootstrap argument

We shall illustrate how a strong gravity may stabilize the Vlasov system for a certain class of steady solutions. As far as the author knows, this stability mechanism is new in the nonlinear contents. For simplicity, we pick a simplified toy PDE (the real PDE in (2.5)): for given E=E(t,x)E=E(t,x),

tf+vxfgv3f=Evhin+×Ω×3in+×Ω×3.\begin{split}\partial_{t}f+v\cdot\nabla_{x}f-g\partial_{v_{3}}f=E\cdot\nabla_{v}h\ \ \text{in}\ \mathbb{R}_{+}\times\Omega\times\mathbb{R}^{3}\ \ &\text{in}\ \mathbb{R}_{+}\times\Omega\times\mathbb{R}^{3}.\end{split}

We add EvhE\cdot\nabla_{v}h to count the nonlinear contribution of the Vlasov-Poisson equation (cf. [24]). The natural boundary condition of ff is the absorption boundary condition f=0f=0 on γ\gamma_{-} as in (2.7).

The characteristics of (1.1) is explicitly given by 𝒳˙=𝒱\dot{\mathcal{X}}=\mathcal{V} and 𝒱˙=g𝐞3\dot{\mathcal{V}}=-g\mathbf{e}_{3}; or 𝒳i(s;t,x,v)=xi(ts)vigδi3(ts)22\mathcal{X}_{i}(s;t,x,v)=x_{i}-(t-s)v_{i}-g\delta_{i3}\frac{(t-s)^{2}}{2} and 𝒱i(s;t,x,v)=vi+gδi3(ts)\mathcal{V}_{i}(s;t,x,v)=v_{i}+g\delta_{i3}(t-s). The unique non-negative time lapse t𝐁(t,x,v)0t_{\mathbf{B}}(t,x,v)\geq 0, satisfying 𝒳3(tt𝐁(t,x,v);t,x,v)=0\mathcal{X}_{3}(t-t_{\mathbf{B}}(t,x,v);t,x,v)=0, is given by t𝐁(t,x,v)=1g(|v3|2+2gx3v3)t_{\mathbf{B}}(t,x,v)=\frac{1}{g}\big{(}\sqrt{|v_{3}|^{2}+2gx_{3}}-v_{3}\big{)}. Therefore, due to a crucial effect of gravity, we can control t𝐁t_{\mathbf{B}} by the total energy of the particle:

t𝐁(t,x,v)2g|v|2+2gx3.t_{\mathbf{B}}(t,x,v)\leq\frac{2}{g}\sqrt{|v|^{2}+2gx_{3}}. (1.7)

Now we can bound a local density ϱ(t,x)=3f(t,x,v)dv\varrho(t,x)=\int_{\mathbb{R}^{3}}f(t,x,v)\mathrm{d}v (see (2.8)) by

|ϱ(t,x)|3tt𝐁(t,x,v)t|E(s,𝒳(s;t,x,v))||vh(s,𝒳(s;t,x,v),𝒱(s;t,x,v))|dsdv+.\begin{split}|\varrho(t,x)|&\leq\int_{\mathbb{R}^{3}}\int^{t}_{t-t_{\mathbf{B}}(t,x,v)}|E(s,\mathcal{X}(s;t,x,v))|\underbrace{|\nabla_{v}h(s,\mathcal{X}(s;t,x,v),\mathcal{V}(s;t,x,v))|}\mathrm{d}s\mathrm{d}v+\cdots.\end{split} (1.8)

A major challenge is to achieve an EvhE\cdot\nabla_{v}h-control, which corresponds to the nonlinear contribution for the real problem (2.5). Let us impose a crucial condition, namely vh(x,v)\nabla_{v}h(x,v) has some Gaussian upper bound with respect to the total energy: for a universal positive constant C¿0,

|vh(x,v)|Ceβ(|v|2+2gx3).|\nabla_{v}h(x,v)|\leq Ce^{-\beta(|v|^{2}+2gx_{3})}. (1.9)

From the fact that the energy is conserved along the characteristics, we can derive that |ϱ(t,x)||\varrho(t,x)| is bounded above by

eλt(3t𝐁(t,x,v)eλt𝐁(t,x,v)eβ(|v|2+gx3)dv)sup(s,x)eλs|E(s,x)|sup(x,v)eβ(|v|2+2gx3)|vh(x,v)|.\begin{split}e^{-\lambda t}\left(\int_{\mathbb{R}^{3}}\frac{t_{\mathbf{B}}(t,x,v)e^{\lambda t_{\mathbf{B}}(t,x,v)}}{e^{\beta(|v|^{2}+gx_{3})}}\mathrm{d}v\right)\sup_{(s,x)}e^{\lambda s}|E(s,x)|\sup_{(x,v)}e^{\beta(|v|^{2}+2gx_{3})}|\nabla_{v}h(x,v)|.\end{split}

Now using the crucial bound (1.7) of t𝐁t_{\mathbf{B}} with respect to the total energy, we can control the term in the parenthesis above by O(1gβ2eCλ2g2β).O\Big{(}\frac{1}{g\beta^{2}}e^{C\frac{\lambda^{2}}{g^{2}\beta}}\Big{)}. Therefore we might hope that

supteλtϱ(t)L(Ω)Cgβ2eCλ2g2βeβ(|v|2+2gx3)vhL(Ω×3)supteλtE(t)L(Ω)+.\begin{split}\sup_{t}e^{\lambda t}\|\varrho(t)\|_{L^{\infty}(\Omega)}&\leq\frac{C}{g\beta^{2}}e^{C\frac{\lambda^{2}}{g^{2}\beta}}\|e^{\beta(|v|^{2}+2gx_{3})}\nabla_{v}h\|_{L^{\infty}(\Omega\times\mathbb{R}^{3})}\sup_{t}e^{\lambda t}\|E(t)\|_{L^{\infty}(\Omega)}+\cdots.\end{split}

On the other hand, for the real nonlinear problem (2.5), the Poisson equation (2.9) of E=xΨE=\nabla_{x}\Psi might suggest a control of E(t,x)E(t,x) pointwisely (at least locally) by some weighted pointwise bound of ϱ(t,x)\varrho(t,x) mainly. Therefore, as far as we have chosen gβ2g\beta^{2} large enough, depending on our possible control of eβ(|v|2+2gx3)vhL(Ω×3)\|e^{\beta(|v|^{2}+2gx_{3})}\nabla_{v}h\|_{L^{\infty}(\Omega\times\mathbb{R}^{3})} and λ\lambda, we find “a small factor” in the nonlinear contribution.

Applying this idea to a real nonlinear problem is challenging as the steady and dynamic characteristics are governed by the different self-contained fields. Moreover, as the total energy is not conserved along the dynamic characteristics, we cannot simply deduce a crucial Gaussian upper bound of the underbraced term in (1.8), even (1.9) is granted. Indeed, we need a fine control of the nonlinear characteristics for both steady and dynamic problems. To realize the idea in the real nonlinear problem, we ought to overcome two major difficulties: nonlinear regularity estimate of steady solutions with a weight of the total energy as (1.9); nonlinear control of characteristics, involving some elliptic estimates in 𝕋2×(0,)\mathbb{T}^{2}\times(0,\infty). These issues are nontrivial as even linear transport equations have a singularity at the grazing set γ0={x3=0andv3=0}\gamma_{0}=\{x_{3}=0\ \text{and}\ v_{3}=0\} in general ([6, 18, 27]).

Notations: Throughout this paper, we often use the following notations: C>0C>0 is a universal positive constant unless it is specified; xyx\lesssim y means xCyx\leq Cy.

2. Main Results

Consider the steady problem (for h=h(x,v)h=h(x,v)):

vxhx(Φ+gx3)vh=0\displaystyle v\cdot\nabla_{x}h-\nabla_{x}(\Phi+gx_{3})\cdot\nabla_{v}h=0\ \ inΩ×3,\displaystyle\text{in}\ \Omega\times\mathbb{R}^{3}, (2.1)
h=G\displaystyle h=G\ \ onγ:={(x,v):x3=0and v3>0}.\displaystyle\text{on}\ \gamma_{-}:=\{(x,v):x_{3}=0\ \text{and }v_{3}>0\}. (2.2)

We define a steady local density (whenever h(x,)L1(3)h(x,\cdot)\in L^{1}(\mathbb{R}^{3}))

ρ(x)=3h(x,v)dv.\rho(x)=\int_{\mathbb{R}^{3}}h(x,v)\mathrm{d}v. (2.3)

Then the potential of a steady distribution solves (let ηΔ01ρ\eta\Delta_{0}^{-1}\rho denote Φ\Phi)

ΔxΦ(x)=ηρ(x)inΩ,andΦ=0onΩ.\begin{split}\Delta_{x}\Phi(x)=\eta\rho(x)\ \ \text{in}\ \Omega,\ \ \ \text{and}\ \ \Phi=0\ \ \text{on}\ \partial\Omega.\end{split} (2.4)

Next we consider the dynamical problem (1.1)-(1.5) as a perturbation f(t,x,v)f(t,x,v) in (1.6) around the steady solution (h,Φ)(h,\Phi) to (2.1)-(2.4):

tf+vxfx(Ψ+Φ+gx3)vf=xΨvh\displaystyle\partial_{t}f+v\cdot\nabla_{x}f-\nabla_{x}(\Psi+\Phi+gx_{3})\cdot\nabla_{v}f=\nabla_{x}\Psi\cdot\nabla_{v}h\ \ in+×Ω×3,\displaystyle\text{in}\ \mathbb{R}_{+}\times\Omega\times\mathbb{R}^{3}, (2.5)
f(0,x,v)=f0(x,v)\displaystyle f(0,x,v)=f_{0}(x,v)\ \ inΩ×3,\displaystyle\text{in}\ \Omega\times\mathbb{R}^{3}, (2.6)
f=0\displaystyle f=0\ \ onγ.\displaystyle\text{on}\ \gamma_{-}. (2.7)

We define a local density of the dynamical fluctuation

ϱ(t,x)=3f(t,x,v)dv.\varrho(t,x)=\int_{\mathbb{R}^{3}}f(t,x,v)\mathrm{d}v. (2.8)

Then the electrostatic potential Ψ=ηΔ01ϱ\Psi=\eta\Delta_{0}^{-1}\varrho solves

ΔxΨ(t,x)=ηϱ(t,x)in+×Ω,and Ψ(t,x)=0on+×Ω.\displaystyle\Delta_{x}\Psi(t,x)=\eta\varrho(t,x)\ \ \text{in}\ \mathbb{R}_{+}\times\Omega,\ \text{and }\ \Psi(t,x)=0\ \ \text{on}\ \mathbb{R}_{+}\times\partial\Omega. (2.9)

Often we let ηΔ01ϱ\eta\Delta_{0}^{-1}\varrho denote Ψ\Psi. The evolution of ϱ\varrho is determined by a continuity equation

tϱ+xb=0in+×Ω,\partial_{t}\varrho+\nabla_{x}\cdot b=0\ \ \text{in}\ \mathbb{R}_{+}\times\Omega, (2.10)

where the flux is defined by

b(t,x):=3vf(t,x,v)dv.b(t,x):=\int_{\mathbb{R}^{3}}vf(t,x,v)\mathrm{d}v. (2.11)

2.1. Lagrangian approach

Consider the characteristics Z(s;x,v)=(X(s;x,v),V(s;x,v))Z(s;x,v)=(X(s;x,v),V(s;x,v)) for the steady problem (2.1):

dX(s;x,v)ds=V(s;x,v),dV(s;x,v)ds=xΦ(X(s;x,v))g𝐞3,\begin{split}\frac{dX(s;x,v)}{ds}=V(s;x,v),\ \ \frac{dV(s;x,v)}{ds}=-\nabla_{x}\Phi(X(s;x,v))-g\mathbf{e}_{3},\end{split} (2.12)

where ΦC1(Ω¯)C2(Ω)\Phi\in C^{1}(\bar{\Omega})\cap C^{2}(\Omega) solves (2.4) and 𝐞3=(0,0,1)T\mathbf{e}_{3}=(0,0,1)^{T}. The data at s=0s=0 is given by Z(0;x,v)=(X(0;x,v),V(0;x,v))=(x,v)=zZ(0;x,v)=(X(0;x,v),V(0;x,v))=(x,v)=z.

We also define the characteristics 𝒵(s;t,x,v)=(𝒳(s;t,x,v),𝒱(s;t,x,v))\mathcal{Z}(s;t,x,v)=(\mathcal{X}(s;t,x,v),\mathcal{V}(s;t,x,v)) for the dynamical problem (2.5) solving

d𝒳(s;t,x,v)ds=𝒱(s;t,x,v),d𝒱(s;t,x,v)ds=xΨ(s,𝒳(s;t,x,v))xΦ(𝒳(s;t,x,v))g𝐞3,\begin{split}\frac{d\mathcal{X}(s;t,x,v)}{ds}&=\mathcal{V}(s;t,x,v),\\ \frac{d\mathcal{V}(s;t,x,v)}{ds}&=-\nabla_{x}\Psi(s,\mathcal{X}(s;t,x,v))-\nabla_{x}\Phi(\mathcal{X}(s;t,x,v))-g\mathbf{e}_{3},\end{split} (2.13)

and satisfying 𝒵(t;t,x,v)=(𝒳(t;t,x,v),𝒱(t;t,x,v))=(x,v)=z.\mathcal{Z}(t;t,x,v)=(\mathcal{X}(t;t,x,v),\mathcal{V}(t;t,x,v))=(x,v)=z. Here, Ψ(t,)C1(Ω¯)C2(Ω)\Psi(t,\cdot)\in C^{1}(\bar{\Omega})\cap C^{2}(\Omega) and ΦC1(Ω¯)C2(Ω)\Phi\in C^{1}(\bar{\Omega})\cap C^{2}(\Omega) solve (2.9) and (2.4), respectively. Note that the Picard theorem ensures that the unique solutions ZZ and 𝒵\mathcal{Z} to ODEs (2.12) and (2.13) exist, respectively.

Definition 2.1.

(1) Suppose xΦC1(Ω)\nabla_{x}\Phi\in C^{1}(\Omega) for p>2p>2. Then Z(s;x,v)Z(s;x,v) is well-defined as long as X(s;x,v)ΩX(s;x,v)\in\Omega. There exists a backward/forward exit time

t𝐛(x,v):=sup{s[0,):X3(τ;x,v)>0for all τ(0,s)}0,t𝐟(x,v):=sup{s[0,):X3(+τ;x,v)>0for all τ(0,s)}0.\begin{split}t_{\mathbf{b}}(x,v)&:=\sup\{s\in[0,\infty):X_{3}(-\tau;x,v)>0\ \text{for all }\tau\in(0,s)\}\geq 0,\\ t_{\mathbf{f}}(x,v)&:=\sup\{s\in[0,\infty):X_{3}(+\tau;x,v)>0\ \text{for all }\tau\in(0,s)\}\geq 0.\end{split} (2.14)

In particular, X3(t𝐛(x,v);x,v)=0X_{3}(-t_{\mathbf{b}}(x,v);x,v)=0. Moreover, Z(s;x,v)Z(s;x,v) is continuously extended in a closed interval of s[t𝐛(x,v),0]s\in[-t_{\mathbf{b}}(x,v),0].

We also define backward exit position and velocity:

x𝐛(x,v)=X(t𝐛(x,v);x,v)Ω,v𝐛(x,v)=V(t𝐛(x,v);x,v).x_{\mathbf{b}}(x,v)=X(-t_{\mathbf{b}}(x,v);x,v)\in\partial\Omega,\ \ v_{\mathbf{b}}(x,v)=V(-t_{\mathbf{b}}(x,v);x,v). (2.15)

(2) Suppose xΦ,xΨ(t,)C1(Ω)\nabla_{x}\Phi,\nabla_{x}\Psi(t,\cdot)\in C^{1}(\Omega) for p>1p>1. Then 𝒵(s;t,x,v)\mathcal{Z}(s;t,x,v) is well-defined as long as 𝒳(s;t,x,v)Ω\mathcal{X}(s;t,x,v)\in\Omega. There exists a backward/forward exit time

t𝐁(t,x,v):=sup{s[0,):𝒳3(tτ;t,x,v)>0for all τ(0,s)}0,t𝐅(t,x,v):=sup{s[0,):𝒳3(t+τ;t,x,v)>0for all τ(0,s)}0,\begin{split}t_{\mathbf{B}}(t,x,v)&:=\sup\{s\in[0,\infty):\mathcal{X}_{3}(t-\tau;t,x,v)>0\ \text{for all }\tau\in(0,s)\}\geq 0,\\ {t}_{\mathbf{F}}(t,x,v)&:=\sup\{s\in[0,\infty):\mathcal{X}_{3}(t+\tau;t,x,v)>0\ \text{for all }\tau\in(0,s)\}\geq 0,\end{split} (2.16)

such that X3(tt𝐁(t,x,v);t,x,v)=0X_{3}(t-t_{\mathbf{B}}(t,x,v);t,x,v)=0 and backward exit position and velocity are defined

x𝐁(t,x,v)=𝒳(tt𝐁(t,x,v);t,x,v)Ω,v𝐁(t,x,v)=𝒱(tt𝐁(t,x,v);t,x,v).x_{\mathbf{B}}(t,x,v)=\mathcal{X}(t-t_{\mathbf{B}}(t,x,v);t,x,v)\in\partial\Omega,\ \ v_{\mathbf{B}}(t,x,v)=\mathcal{V}(t-t_{\mathbf{B}}(t,x,v);t,x,v). (2.17)

Then 𝒵(s;t,x,v)\mathcal{Z}(s;t,x,v) is continuously extended in a closed interval of s[tt𝐁(t,x,v),t]s\in[t-t_{\mathbf{B}}(t,x,v),t].

Definition 2.2 (Mild solution).

For given C2C^{2} potentials and their characteristics, it is well-known that any weak solutions are the Lagrangian solution. For the steady problem (2.1)-(2.4) and dynamic problem (2.5)-(2.9), they take the form of

h(x,v)=𝟏tt𝐛(x,v)h(X(t;x,v),V(t;x,v))+𝟏t>t𝐛(x,v)G(x𝐛(x,v),v𝐛(x,v)));\begin{split}h(x,v)=\mathbf{1}_{t\leq t_{\mathbf{b}}(x,v)}h(X(-t;x,v),V(-t;x,v))+\mathbf{1}_{t>t_{\mathbf{b}}(x,v)}G(x_{\mathbf{b}}(x,v),v_{\mathbf{b}}(x,v)));\end{split} (2.18)

and

f(t,x,v)=𝟏tt𝐁(t,x,v)f(0,𝒳(0;t,x,v),𝒱(0;t,x,v))+max{0,tt𝐁(t,x,v)}txΨ(s,𝒳(s;t,x,v))vh(𝒳(s;t,x,v),𝒱(s;t,x,v))ds.\begin{split}f(t,x,v)&=\mathbf{1}_{t\leq t_{\mathbf{B}}(t,x,v)}f(0,\mathcal{X}(0;t,x,v),\mathcal{V}(0;t,x,v))\\ &+\int^{t}_{\max\{0,t-t_{\mathbf{B}}(t,x,v)\}}\nabla_{x}\Psi(s,\mathcal{X}(s;t,x,v))\cdot\nabla_{v}h(\mathcal{X}(s;t,x,v),\mathcal{V}(s;t,x,v))\mathrm{d}s.\end{split} (2.19)

As we have described across (1.9) in the introduction, Gaussian weight functions have a crucial role in our analysis.

Definition 2.3.

For an arbitrary β>0\beta>0, we set weight functions for the steady problem (2.1) and for dynamic problem (1.1) and (2.5)

w(x,v)\displaystyle w(x,v) =wβ(x,v)=eβ(|v|2+2Φ(x)+2gx3),\displaystyle=w_{\beta}(x,v)=e^{\beta\big{(}|v|^{2}+2\Phi(x)+2gx_{3}\big{)}}, (2.20)
𝔴(t,x,v)\displaystyle\mathfrak{w}(t,x,v) =𝔴β(t,x,v)=eβ(|v|2+2Φ(x)+2Ψ(t,x)+2gx3).\displaystyle=\mathfrak{w}_{\beta}(t,x,v)=e^{\beta\big{(}|v|^{2}+2\Phi(x)+2\Psi(t,x)+2gx_{3}\big{)}}. (2.21)
Remark 2.4.

Few basic properties: (i) the steady weight w(x,v)w(x,v) in (2.20) is invariant along the steady characteristics (2.12):

w(X(s;x,v),V(s;x,v))=w(x,v)for alls[t𝐛(x,v),0].w(X(s;x,v),V(s;x,v))=w(x,v)\ \ \text{for all}\ s\in[-t_{\mathbf{b}}(x,v),0]. (2.22)

(ii) The dynamic weight 𝔴(t,x,v)\mathfrak{w}(t,x,v) is not invariant along the dynamic characteristics, as the dynamic total energy is not invariant :

dds(|𝒱(s;t,x,v)|2+2Φ(𝒳(s;t,x,v))+2Ψ(s,𝒳(s;t,x,v))+2g𝒳3(s;t,x,v))=2tΨ(s,𝒳(s;t,x,v)).\begin{split}&\frac{d}{ds}\big{(}|\mathcal{V}(s;t,x,v)|^{2}+2\Phi(\mathcal{X}(s;t,x,v))+2\Psi(s,\mathcal{X}(s;t,x,v))+2g\mathcal{X}_{3}(s;t,x,v)\big{)}\\ &=2\partial_{t}\Psi(s,\mathcal{X}(s;t,x,v)).\end{split} (2.23)

(iii) If the Dirichlet boundary conditions (2.4) and (2.9) hold then we have that at the boundary

wβ(x,v)𝔴β(t,x,v)eβ|v|2atx3=0.w_{\beta}(x,v)\equiv\mathfrak{w}_{\beta}(t,x,v)\equiv e^{\beta|v|^{2}}\ \ \text{at}\ \ x_{3}=0. (2.24)

(iv) At the initial plan t=0t=0,

𝔴β(0,x,v)=eβ(|v|2+2Φ(x)+2Ψ(0,x)+2gx3)=𝔴β,0(x,v):=wβ(x,v)e2ηΔ013f0(x,v)dv.\mathfrak{w}_{\beta}(0,x,v)=e^{\beta\big{(}|v|^{2}+2\Phi(x)+2\Psi(0,x)+2gx_{3}\big{)}}=\mathfrak{w}_{\beta,0}(x,v):=w_{\beta}(x,v)e^{2\eta\Delta_{0}^{-1}\int_{\mathbb{R}^{3}}f_{0}(x,v)\mathrm{d}v}. (2.25)

Here, Δ013f0(x,v)dv=ΩG(x,y)3f0(y,v)dvdy\Delta_{0}^{-1}\int_{\mathbb{R}^{3}}f_{0}(x,v)\mathrm{d}v=\int_{\Omega}G(x,y)\int_{\mathbb{R}^{3}}f_{0}(y,v)\mathrm{d}v\mathrm{d}y as in (3.2).

As we have described across (1.7) in the introduction, the next lemma is crucial in our analysis.

Lemma 2.5.

(i) Recall the steady characteristics (2.12) and its self-consistent potential ΦC1(Ω¯)C2(Ω)\Phi\in C^{1}(\bar{\Omega})\cap C^{2}(\Omega) in (2.4). Suppose the condition (2.44) holds. Then the backward exit time (2.14) is bounded above as

t𝐛(x,v)2gmin{|v3|2+gx3v3,|v𝐛,3(x,v)|2gx3+v𝐛,3(x,v)}.t_{\mathbf{b}}(x,v)\leq\frac{2}{g}\min\Big{\{}\sqrt{|v_{3}|^{2}+gx_{3}}-v_{3},\sqrt{|v_{\mathbf{b},3}(x,v)|^{2}-gx_{3}}+v_{\mathbf{b},3}(x,v)\Big{\}}. (2.26)

(ii) Recall the dynamic characteristics (2.13) and its self-consistent potentials ΦC1(Ω¯)C2(Ω)\Phi\in C^{1}(\bar{\Omega})\cap C^{2}(\Omega) and Ψ(t,)C1(Ω¯)C2(Ω)\Psi(t,\cdot)\in C^{1}(\bar{\Omega})\cap C^{2}(\Omega) in (2.4) and (2.9), respectively. Suppose the condition (2.35) holds.

Then the backward/forward exit time (2.16) is bounded above as, for all (t,x,v)[0,T]×Ω¯×3(t,x,v)\in[0,T]\times\bar{\Omega}\times\mathbb{R}^{3},

t𝐁(t,x,v)2gmin{|v3|2+gx3v3,|v𝐁,3(t,x,v)|2gx3+v𝐁,3(t,x,v)},t𝐁(t,x,v)+t𝐅(t,x,v)4g|v3|2+gx3.\begin{split}&t_{\mathbf{B}}(t,x,v)\leq\frac{2}{g}\min\Big{\{}\sqrt{|v_{3}|^{2}+gx_{3}}-v_{3},\sqrt{|v_{\mathbf{B},3}(t,x,v)|^{2}-gx_{3}}+v_{\mathbf{B},3}(t,x,v)\Big{\}},\\ &t_{\mathbf{B}}(t,x,v)+{t}_{\mathbf{F}}(t,x,v)\leq\frac{4}{g}\sqrt{|v_{3}|^{2}+gx_{3}}.\end{split} (2.27)
Proof.

We only prove the dynamical part (2.27) as the steady part (2.26) can be proved similarly. From the bootstrap assumption (2.35), the vertical acceleration is bounded from above as

ddsV3(s;t,x,v)g/2.\frac{d}{ds}V_{3}(s;t,x,v)\leq-{g}/{2}. (2.28)

Note that

X3(s;t,x,v)=x3+ts(v3+tτdV3(τ;t,x,v)dτdτ)dτx3v3(ts)g4|ts|2.\begin{split}X_{3}(s;t,x,v)=x_{3}+\int^{s}_{t}\Big{(}v_{3}+\int^{\tau}_{t}\frac{dV_{3}(\tau^{\prime};t,x,v)}{d\tau^{\prime}}\mathrm{d}\tau^{\prime}\Big{)}\mathrm{d}\tau\leq x_{3}-v_{3}(t-s)-\frac{g}{4}|t-s|^{2}.\end{split} (2.29)

The zeros of the above quadratic form are {2v3±2|v3|2+gx3}/g.\{-2v_{3}\pm 2\sqrt{|v_{3}|^{2}+gx_{3}}\}/{g}. Then, from the definition of t𝐁t_{\mathbf{B}} at (2.16), we can prove that

t𝐁(t,x,v)2(|v3|2+gx3v3)/g.t_{\mathbf{B}}(t,x,v)\leq 2\big{(}\sqrt{|v_{3}|^{2}+gx_{3}}-v_{3}\big{)}/g. (2.30)

By expanding (2.29) at tt𝐁(t,x,v)t-t_{\mathbf{B}}(t,x,v) and using (2.28), we derive that

X3(tt𝐁(t,x,v);t,x,v)=x3+ttt𝐁(t,x,v)(v𝐁,3(t,x,v)+tt𝐁(t,x,v)τdV3(τ;t,x,v)dτdτ)dτx3v𝐁,3(t,x,v)t𝐁+g4|t𝐁|2.\begin{split}&X_{3}(t-t_{\mathbf{B}}(t,x,v);t,x,v)\\ &=x_{3}+\int^{t-t_{\mathbf{B}}(t,x,v)}_{t}\Big{(}v_{\mathbf{B},3}(t,x,v)+\int^{\tau}_{t-t_{\mathbf{B}}(t,x,v)}\frac{dV_{3}(\tau^{\prime};t,x,v)}{d\tau^{\prime}}\mathrm{d}\tau^{\prime}\Big{)}\mathrm{d}\tau\\ &\leq x_{3}-v_{\mathbf{B},3}(t,x,v)t_{\mathbf{B}}+\frac{g}{4}|t_{\mathbf{B}}|^{2}.\end{split} (2.31)

The zeros of the above quadratic form (of t𝐁t_{\mathbf{B}}) are {2v𝐁,3(t,x,v)±2|v𝐁,3(t,x,v)|2gx3}/g.\left\{2v_{\mathbf{B},3}(t,x,v)\pm 2\sqrt{|v_{\mathbf{B},3}(t,x,v)|^{2}-gx_{3}}\right\}/{g}. Hence we conclude

t𝐁(t,x,v)2g(|v𝐁,3(t,x,v)|2gx3+v𝐁,3(t,x,v)).t_{\mathbf{B}}(t,x,v)\leq\frac{2}{g}\Big{(}\sqrt{|v_{\mathbf{B},3}(t,x,v)|^{2}-gx_{3}}+v_{\mathbf{B},3}(t,x,v)\Big{)}. (2.32)

Combining (2.30) and (2.32) together, we conclude that the first bound of (2.27). Following the same argument we can have the bound for t𝐅(t,x,v){t}_{\mathbf{F}}(t,x,v). ∎

2.2. Asymptotic Stability Criterion

As the main purpose of this paper, we establish a bootstrap machinery of starting with linear decay due to gravity effect to prove nonlinear decay.

Theorem 2.6 (Asymptotic Stability Criterion).

Suppose (h,Φ)(h,\Phi) solves (2.1)-(2.4), and (f,ϱ,Ψ)(f,\varrho,\Psi) solves (2.5)-(2.9) globally-in-time in the sense of Definition 2.2. Suppose xbLloc(+×Ω)\nabla_{x}\cdot b\in L^{\infty}_{{loc}}(\mathbb{R}_{+}\times\Omega).

Assume that the following three conditions hold, for g,β>0g,\beta>0

wβvhL(Ω)\displaystyle\|w_{\beta}\nabla_{v}h\|_{L^{\infty}(\Omega)} <,\displaystyle<\infty, (2.33)
supt0eβ2(|v|2+gx3)f(t)L(Ω×3)\displaystyle\sup_{t\geq 0}\|e^{\frac{\beta}{2}(|v|^{2}+gx_{3})}f(t)\|_{L^{\infty}(\Omega\times\mathbb{R}^{3})} (ln2)12g12β3264π(1+1βg),\displaystyle\leq\frac{(\ln 2)^{\frac{1}{2}}g^{\frac{1}{2}}\beta^{\frac{3}{2}}}{64\pi(1+\frac{1}{\beta g})}, (2.34)
xΦL(Ω)+supt0xΨ(t)L(Ω)\displaystyle\|\nabla_{x}\Phi\|_{L^{\infty}(\Omega)}+\sup_{t\geq 0}\|\nabla_{x}\Psi(t)\|_{L^{\infty}(\Omega)} g2.\displaystyle\leq\frac{g}{2}. (2.35)

Then there exists a computable number λ=λ(g,β,wβvhL(Ω))>0\lambda_{\infty}=\lambda_{\infty}(g,\beta,\|w_{\beta}\nabla_{v}h\|_{L^{\infty}(\Omega)})>0 such that (f(t),ϱ(t))(f(t),\varrho(t)) decays exponentially fast as tt\rightarrow\infty:

supt0eλtϱ(t)L(Ω)\displaystyle\sup_{t\geq 0}e^{\lambda_{\infty}t}\|\varrho(t)\|_{L^{\infty}(\Omega)} 𝔴β,0f0L(Ω×3),\displaystyle\lesssim\|\mathfrak{w}_{\beta,0}f_{0}\|_{L^{\infty}(\Omega\times\mathbb{R}^{3})}, (2.36)
supt0eλteβ8(|v|2+gx3)f(t)L(Ω×3)\displaystyle\sup_{t\geq 0}e^{\lambda_{\infty}t}\|e^{\frac{\beta}{8}(|v|^{2}+gx_{3})}f(t)\|_{L^{\infty}(\Omega\times\mathbb{R}^{3})} (1+wβvhL(Ω))𝔴β,0f0L(Ω×3).\displaystyle\lesssim\left(1+\|w_{\beta}\nabla_{v}h\|_{L^{\infty}(\Omega)}\right)\|\mathfrak{w}_{\beta,0}f_{0}\|_{L^{\infty}(\Omega\times\mathbb{R}^{3})}. (2.37)
Remark 2.7.

An exponent, which we will derive in (4.10), depends on gg and β\beta as λg2β\lambda_{\infty}\sim g^{2}\beta roughly. This is somewhat intuitive: larger β\beta implies lesser particles of high momentum while a large gravity gg would trap the particles rapidly.

2.3. Construction of a steady solution

To carry out the idea of stabilizing effect in Section 1.1, it is important to construct steady solutions that satisfy the same in-flow boundary condition (1.4) as the perturbation, so that the zero in-flow boundary condition is exactly satisfied. Although some previous constructions have been made in bounded domains ([32, 15]), there seems to be no result in the half-space, which is relevant to the solar wind model (e.g., corona-heating problem). In general, the uniqueness theorem plays an important role in asymptotic stability. We prove the uniqueness of the solution to the nonlinear problem by establishing the regularity theorem. Moreover, in a proof of asymptotic stability, it is crucial to establish some Gaussian upper bound of the derivatives of the steady solutions (see an explanation across (1.9) in the introduction). Generally speaking, the regularity estimate is difficult, as the derivatives blow up at the grazing set γ0={x3=0andv3=0}\gamma_{0}=\{x_{3}=0\ \text{and}\ v_{3}=0\}.

Theorem 2.8 (Construction of Steady Solutions).

Suppose the inflow boundary data satisfy

eβ|v|2GL(γ)+eβ~|v|2x,vG(x,v)L(γ)<,\|e^{\beta|v|^{2}}G\|_{L^{\infty}(\gamma_{-})}+\|e^{{\tilde{\beta}}|v|^{2}}\nabla_{x_{\parallel},v}G(x,v)\|_{L^{\infty}(\gamma_{-})}<\infty,

for β,β~>0\beta,\tilde{\beta}>0. For g>0g>0, assume that β>β~>max{1,4g}\beta>\tilde{\beta}>\max\{1,\frac{4}{g}\}. We also assume that

π3/2β3/2(1+1βg)eβ|v|2GL(γ)g2,\mathfrak{C}\frac{\pi^{3/2}}{\beta^{3/2}}\Big{(}1+\frac{1}{\beta g}\Big{)}\|e^{\beta|v|^{2}}G\|_{L^{\infty}(\gamma_{-})}\leq\frac{g}{2}, (2.38)
1β3/2eβ|v|2GL(γ){1gβ+log(e+1β~(1+1β~1/2+1gβ~)eβ~|v|2x,vGL(γ))}β~g216.\frac{\mathfrak{C}_{1}}{\beta^{3/2}}\|e^{\beta|v|^{2}}G\|_{L^{\infty}(\gamma_{-})}\bigg{\{}\frac{1}{g\beta}+\log\bigg{(}e+\frac{1}{\tilde{\beta}}\Big{(}1+\frac{1}{\tilde{\beta}^{1/2}}+\frac{1}{g\tilde{\beta}}\Big{)}\|e^{\tilde{\beta}|v|^{2}}\nabla_{x_{\parallel},v}G\|_{L^{\infty}(\gamma_{-})}\bigg{)}\bigg{\}}\leq\frac{\tilde{\beta}g^{2}}{16}. (2.39)

Here, ,1>0\mathfrak{C},\mathfrak{C}_{1}>0 are the computable constants, which appeared in (5.48) and (LABEL:est:phi_C2). For sufficiently small ε1>0\varepsilon_{1}>0, suppose the following bound also hold:

gβ~2{1+1gβ~}(1+1gβ~1/2)eβ~|v|2x,vGL(γ)ε1.\frac{\mathfrak{C}}{g\tilde{\beta}^{2}}\left\{1+\frac{1}{g\tilde{\beta}}\right\}\left(1+\frac{1}{g{\tilde{\beta}}^{1/2}}\right)\|e^{\tilde{\beta}|v|^{2}}\nabla_{x_{\parallel},v}G\|_{L^{\infty}(\gamma_{-})}\leq\varepsilon_{1}. (2.40)

Then there exists a unique strong solution (h,ρ,Φ)(h,\rho,\Phi) to (2.1)-(2.4). Moreover, we have

hL(Ω¯×3)\displaystyle\|h\|_{L^{\infty}(\bar{\Omega}\times\mathbb{R}^{3})} GL(γ),\displaystyle\leq\|G\|_{L^{\infty}(\gamma_{-})}, (2.41)
wβhL(Ω¯×3)\displaystyle\|w_{\beta}h\|_{L^{\infty}(\bar{\Omega}\times\mathbb{R}^{3})} eβ|v|2GL(γ),\displaystyle\leq\|e^{\beta|v|^{2}}G\|_{L^{\infty}(\gamma_{-})}, (2.42)
eβgx3ρL(Ω¯)\displaystyle\|e^{\beta gx_{3}}\rho\|_{L^{\infty}(\bar{\Omega})} π3/2β3/2wβhL(Ω¯×3)π3/2β3/2eβ|v|2GL(γ),\displaystyle\leq\frac{\pi^{3/2}}{\beta^{3/2}}\|w_{\beta}h\|_{L^{\infty}(\bar{\Omega}\times\mathbb{R}^{3})}\leq\frac{\pi^{3/2}}{\beta^{3/2}}\|e^{\beta|v|^{2}}G\|_{L^{\infty}(\gamma_{-})}, (2.43)
xΦL(Ω¯)\displaystyle\|\nabla_{x}\Phi\|_{L^{\infty}(\bar{\Omega})} g2.\displaystyle\leq\frac{g}{2}. (2.44)

Furthermore,

eβ~g2x3|xiρ(x)|\displaystyle e^{\frac{\tilde{\beta}g}{2}x_{3}}|\partial_{x_{i}}\rho(x)| g,β~(1+δi3𝟏|x3|1|ln(|x3|2+gx3)|)eβ~|v|2x,vGL(γ),\displaystyle\lesssim_{g,\tilde{\beta}}\Big{(}1+\delta_{i3}\mathbf{1}_{|x_{3}|\leq 1}|\ln(|x_{3}|^{2}+gx_{3})|\Big{)}\|e^{\tilde{\beta}|v|^{2}}\nabla_{x_{\parallel},v}G\|_{L^{\infty}({\gamma_{-}})}, (2.45)
x2ΦL(Ω¯)\displaystyle\|\nabla_{x}^{2}\Phi\|_{L^{\infty}(\bar{\Omega})} g,β~(1+ln(e+eβ~|v|2x,vGL(γ)))eβ|v|2GL(γ),\displaystyle\lesssim_{g,\tilde{\beta}}\Big{(}1+\ln\big{(}e+\|e^{\tilde{\beta}|v|^{2}}\nabla_{x_{\parallel},v}G\|_{L^{\infty}(\gamma_{-})}\big{)}\Big{)}\|e^{\beta|v|^{2}}G\|_{L^{\infty}(\gamma_{-})}, (2.46)
eβ~2|v|2eβ~g2x3vhL(Ω×3)\displaystyle\|e^{\frac{\tilde{\beta}}{2}|v|^{2}}e^{\frac{\tilde{\beta}g}{2}x_{3}}\nabla_{v}h\|_{L^{\infty}(\Omega\times\mathbb{R}^{3})} g,β~(1+xΦ)eβ~|v|2x,vGL(γ),\displaystyle\lesssim_{g,\tilde{\beta}}\big{(}1+\|\nabla_{x}\Phi\|_{\infty}\big{)}\|e^{\tilde{\beta}|v|^{2}}\nabla_{x_{\parallel},v}G\|_{L^{\infty}(\gamma_{-})}, (2.47)
eβ~2|v|2eβ~g2x3|xih(x,v)|\displaystyle e^{\frac{\tilde{\beta}}{2}|v|^{2}}e^{\frac{\tilde{\beta}g}{2}x_{3}}|\partial_{x_{i}}h(x,v)| g,β~(1+δi3α(x,v))eβ~|v|2x,vGL(γ).\displaystyle\lesssim_{g,\tilde{\beta}}\Big{(}1+\frac{\delta_{i3}}{\alpha(x,v)}\Big{)}\|e^{\tilde{\beta}|v|^{2}}\nabla_{x_{\parallel},v}G\|_{L^{\infty}(\gamma_{-})}. (2.48)

Here, a kinetic distance for a steady problem is defined as

α(x,v)=|v3|2+|x3|2+2x3Φ(x,0)x3+2gx3.\alpha(x,v)=\sqrt{|v_{3}|^{2}+|x_{3}|^{2}+2\partial_{x_{3}}\Phi(x_{\parallel},0)x_{3}+2gx_{3}}. (2.49)

In particular, α(x,v)=|v3|\alpha(x,v)=|v_{3}| when xΩx\in\partial\Omega (i.e. x3=0x_{3}=0).

Remark 2.9.

An exponential decay-in-(x,v)(x,v) result of (2.47) is crucially important in our later proof of an asymptotic stability of a dynamical perturbation.

2.4. Construction of a global-in-time dynamical solution and Asymptotic stability

Theorem 2.10 (Construction of Dynamic Solutions).

Assume a compatibility condition:

F0(x,v)=G(x,v)on(x,v)γ.F_{0}(x,v)=G(x,v)\ \ \text{on}\ \ (x,v)\in\gamma_{-}. (2.50)

For β,β~,g>0\beta,\tilde{\beta},g>0, assume that β>β~>max{1,4g}\beta>\tilde{\beta}>\max\{1,\frac{4}{g}\}. Suppose ε>0\varepsilon>0 is sufficiently small such that

1β3/2{𝔴β,0F0L(Ω×3)+eβ|v|2GL(γ)}εg,\frac{1}{\beta^{3/2}}\big{\{}\|\mathfrak{w}_{\beta,0}F_{0}\|_{L^{\infty}(\Omega\times\mathbb{R}^{3})}+\|e^{\beta|v|^{2}}G\|_{L^{\infty}(\gamma_{-})}\big{\}}\leq\varepsilon g, (2.51)
1β~3𝔴β~,0x,vF0L(Ω×3)+1β~5/2eβ~|v|2x,vGL(γ)εg1/2,\frac{1}{\tilde{\beta}^{3}}\|\mathfrak{w}_{\tilde{\beta},0}\nabla_{x,v}F_{0}\|_{L^{\infty}(\Omega\times\mathbb{R}^{3})}+\frac{1}{\tilde{\beta}^{5/2}}\|e^{\tilde{\beta}|v|^{2}}\nabla_{x_{\parallel},v}G\|_{L^{\infty}(\gamma_{-})}\leq\varepsilon{g^{1/2}}, (2.52)
1β2{𝔴β,0F0L(Ω×3)+eβ|v|2GL(γ)}×log(e+1β~3/2𝔴β~,0x,vF0L(Ω×3)+1β~eβ~|v|2x,vGL(γ))εg.\begin{split}&\frac{1}{\beta^{2}}\big{\{}\|\mathfrak{w}_{\beta,0}F_{0}\|_{L^{\infty}(\Omega\times\mathbb{R}^{3})}+\|e^{\beta|v|^{2}}G\|_{L^{\infty}(\gamma_{-})}\big{\}}\\ &\times\log\bigg{(}e+\frac{1}{\tilde{\beta}^{3/2}}\|\mathfrak{w}_{\tilde{\beta},0}\nabla_{x,v}F_{0}\|_{L^{\infty}(\Omega\times\mathbb{R}^{3})}+\frac{1}{\tilde{\beta}}\|e^{\tilde{\beta}|v|^{2}}\nabla_{x_{\parallel},v}G\|_{L^{\infty}(\gamma_{-})}\bigg{)}\leq\varepsilon g.\end{split} (2.53)

Then there exists a unique global-in-time strong solution (f,ϱ,Ψ)(f,\varrho,\Psi) to (2.5)-(2.9). Moreover, for all (t,x,v)+×Ω¯×3(t,x,v)\in\mathbb{R}_{+}\times\bar{\Omega}\times\mathbb{R}^{3},

eβ2(|v|2+gx3)|f(t,x,v)|+1β3/2eβ2gx3|ϱ(t,x)|𝔴β,0F0L(Ω×3)+eβ|v|2GL(γ),\begin{split}e^{\frac{\beta}{2}(|v|^{2}+gx_{3})}|f(t,x,v)|+\frac{1}{\beta^{3/2}}e^{\frac{\beta}{2}gx_{3}}|\varrho(t,x)|\lesssim\|\mathfrak{w}_{\beta,0}F_{0}\|_{L^{\infty}(\Omega\times\mathbb{R}^{3})}+\|e^{\beta|v|^{2}}G\|_{L^{\infty}(\gamma_{-})},\end{split} (2.54)
eβ~4(|v|2+gx3)|vF(t,x,v)|𝔴β~,0x,vF0L(Ω×3)+(1+1gβ~1/2)eβ~|v|2x,vGL(γ),\begin{split}e^{\frac{\tilde{\beta}}{4}(|v|^{2}+gx_{3})}|\nabla_{v}F(t,x,v)|\lesssim\|\mathfrak{w}_{\tilde{\beta},0}\nabla_{x,v}F_{0}\|_{L^{\infty}(\Omega\times\mathbb{R}^{3})}+\Big{(}1+\frac{1}{g\tilde{\beta}^{1/2}}\Big{)}\|e^{\tilde{\beta}|v|^{2}}\nabla_{x_{\parallel},v}G\|_{L^{\infty}(\gamma_{-})},\end{split} (2.55)
eβ~4(|v|2+gx3)|xiF(t,x,v)|𝔴β~,0x,vF0L(Ω×3)+[(1+1gβ~1/2)+(1+1β~1/2)δi3αF(t,x,v)]eβ~|v|2x,vGL(γ),\begin{split}&e^{\frac{\tilde{\beta}}{4}(|v|^{2}+gx_{3})}|\partial_{x_{i}}F(t,x,v)|\lesssim\|\mathfrak{w}_{\tilde{\beta},0}\nabla_{x,v}F_{0}\|_{L^{\infty}(\Omega\times\mathbb{R}^{3})}\\ &\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +\left[\left(1+\frac{1}{g\tilde{\beta}^{1/2}}\right)+\left(1+\frac{1}{\tilde{\beta}^{1/2}}\right)\frac{\delta_{i3}}{\alpha_{F}(t,x,v)}\right]\|e^{\tilde{\beta}|v|^{2}}\nabla_{x_{\parallel},v}G\|_{L^{\infty}(\gamma_{-})},\end{split} (2.56)
|xϕF+1(t,x)|1β3/2(1+1βg){𝔴β,0F0L(Ω×3)+eβ|v|2GL(γ)}g2,|\nabla_{x}\phi_{F^{\ell+1}}(t,x)|\lesssim\frac{1}{\beta^{3/2}}\Big{(}1+\frac{1}{\beta g}\Big{)}\big{\{}\|\mathfrak{w}_{\beta,0}F_{0}\|_{L^{\infty}(\Omega\times\mathbb{R}^{3})}+\|e^{\beta|v|^{2}}G\|_{L^{\infty}(\gamma_{-})}\big{\}}\leq\frac{g}{2}, (2.57)

and

supt0x2ϕF(t)L(Ω)1β3/2{𝔴β,0F0L(Ω×3)+eβ|v|2GL(γ)}×{1gβ+log(e+1β~3/2𝔴β~,0x,vF0L(Ω×3)+1β~(1+1β~1/2+1gβ~)eβ~|v|2x,vGL(γ))}.\begin{split}&\sup_{t\geq 0}\|\nabla_{x}^{2}\phi_{F}(t)\|_{L^{\infty}(\Omega)}\leq\frac{\mathfrak{C}_{1}}{\beta^{3/2}}\big{\{}\|\mathfrak{w}_{\beta,0}F_{0}\|_{L^{\infty}(\Omega\times\mathbb{R}^{3})}+\|e^{\beta|v|^{2}}G\|_{L^{\infty}(\gamma_{-})}\big{\}}\\ &\times\bigg{\{}\frac{1}{g\beta}+\log\bigg{(}e+\frac{1}{\tilde{\beta}^{3/2}}\|\mathfrak{w}_{\tilde{\beta},0}\nabla_{x,v}F_{0}\|_{L^{\infty}(\Omega\times\mathbb{R}^{3})}+\frac{1}{\tilde{\beta}}\Big{(}1+\frac{1}{\tilde{\beta}^{1/2}}+\frac{1}{g\tilde{\beta}}\Big{)}\|e^{\tilde{\beta}|v|^{2}}\nabla_{x_{\parallel},v}G\|_{L^{\infty}(\gamma_{-})}\bigg{)}\bigg{\}}.\end{split} (2.58)

Here, αF(t,x,v)=[|v3|2+|x3|2+2x3ϕF(t,x,0)x3+2gx3]1/2\alpha_{F}(t,x,v)=\big{[}|v_{3}|^{2}+|x_{3}|^{2}+2\partial_{x_{3}}\phi_{F}(t,x_{\parallel},0)x_{3}+2gx_{3}\big{]}^{1/2} is a kinetic distance for a dynamical problem.

As a direct consequence of Theorem 2.6, Theorem 2.8 and Theorem 2.10, we conclude the following dynamical asymptotic stability.

Theorem 2.11 (Asymptotic Stability).

Suppose all conditions in Theorem 2.8 and Theorem 2.10 hold. Then the dynamical solution (F(t),ϕF(t))(h,Φ)(F(t),\phi_{F}(t))\rightarrow(h,\Phi) converges exponentially fast to the steady solution of Theorem 2.10 as in (2.36)-(2.37).

Structure of the paper: In Section 3, we construct a Green function of the Poisson equation (2.4) in Ω\Omega; in Section 4, we prove the asymptotic stability criterion (Theorem 2.6) using the Lagrangian proof; in Section 5, we establish the steady theorem (Theorem 2.8); and in Section 6, we prove the dynamic theorem (Theorem 2.10).

Notation: We will use an abbreviation of gLt,x=supτ[0,t]g(t)L(Ω)\|g\|_{L^{\infty}_{t,x}}=\sup_{\tau\in[0,t]}\|g(t)\|_{L^{\infty}(\Omega)} for some t0t\geq 0. (2.59)

3. Green function

In this section, we construct and study the Green’s function G(x,y)G(x,y) of the following Poisson equation in the horizontally-periodic 3D half-space:

Δϕ(x)=ρ(x)inxΩ:=𝕋2×[0,),ϕ(x)=0onxΩ:=𝕋2×{0},\begin{split}\Delta\phi(x)=\rho(x)\ \ &\text{in}\ x\in\Omega:=\mathbb{T}^{2}\times[0,\infty),\\ \phi(x)=0\ \ &\text{on}\ x\in\partial\Omega:=\mathbb{T}^{2}\times\{0\},\end{split} (3.1)

such that ϕ\phi solving (3.1) takes the form of

ϕ(x)=𝕋2×[0,)G(x,y)ρ(y)dy.\phi(x)=\int_{\mathbb{T}^{2}\times[0,\infty)}G(x,y)\rho(y)\mathrm{d}y. (3.2)

We will construct G(x,y)G(x,y) and prove its properties in Proposition 3.1.

The 2D Green’s function in 𝕋×[0,)\mathbb{T}\times[0,\infty) has an explicit formula. It is so-called the Green’s function for the one-dimensional grating in 2\mathbb{R}^{2} (see [1]). However, there seems no known explicit form in 3D. In this section, we utilize a classical argument of multiple Fourier series (e.g. Theorem 2.17 in [34]) to study the 3D problem.

Theorem 3.1.

The Green’s function for (3.1) takes a form of

G(x,y)=|x3y3|2|x3+y3|2𝒢(x,y),forx,yΩ:=𝕋2×[0,).G(x,y)=\frac{|x_{3}-y_{3}|}{2}-\frac{|x_{3}+y_{3}|}{2}-\mathcal{G}(x,y),\ \ \text{for}\ x,y\in\Omega:=\mathbb{T}^{2}\times[0,\infty). (3.3)

When |x3y3|1|x_{3}-y_{3}|\geq 1 and x,yΩx,y\in\Omega, 𝒢(x,y)\mathcal{G}(x,y) satisfies

|x,ykx3iy3j𝒢(x,x3,y,y3)|e|x3y3|for 0k,i+j2 and |x3y3|1.|\nabla_{x_{\parallel},y_{\parallel}}^{k}\partial_{x_{3}}^{i}\partial_{y_{3}}^{j}\mathcal{G}(x_{\parallel},x_{3},y_{\parallel},y_{3})|\lesssim e^{-|x_{3}-y_{3}|}\ \ \text{for $0\leq k,i+j\leq 2$ and $|x_{3}-y_{3}|\geq 1$}. (3.4)

When |x3y3|1|x_{3}-y_{3}|\leq 1 and x,yΩx,y\in\Omega,

𝒢(x,y):=c2|xy|c2|x~y|+𝒢0(x,y)for |x3y3|1,\displaystyle\mathcal{G}(x,y):=\frac{c_{2}}{|x-y|}-\frac{c_{2}}{|\tilde{x}-y|}+\mathcal{G}_{0}(x,y)\ \ \text{for $|x_{3}-y_{3}|\leq 1$,} (3.5)
𝒢0(,x3,,y3),x3𝒢0(,x3,,y3),y3𝒢0(,x3,,y3)C(𝕋2×𝕋2)\mathcal{G}_{0}(\cdot,x_{3},\cdot,y_{3}),\partial_{x_{3}}\mathcal{G}_{0}(\cdot,x_{3},\cdot,y_{3}),\partial_{y_{3}}\mathcal{G}_{0}(\cdot,x_{3},\cdot,y_{3})\in C^{\infty}(\mathbb{T}^{2}\times\mathbb{T}^{2}) for |x3y3|1|x_{3}-y_{3}|\leq 1. (3.6)

Here, x~=(x1,x2,x3)\tilde{x}=(x_{1},x_{2},-x_{3}), and c2:=12π3/2Γ(3/2)c_{2}:=\frac{1}{2\pi^{3/2}}\Gamma(3/2) with the Gamma function Γ\Gamma. Moreover,

x32𝒢0(x,y)=δ0(x3y3)𝒢1(x,y)+𝒢2(x,y) for |x3y3|1,𝒢1(x3,,y3,),𝒢2(x3,,y3,)C(𝕋2×𝕋2) for |x3y3|1.\begin{split}\partial_{x_{3}}^{2}\mathcal{G}_{0}(x,y)=\delta_{0}(x_{3}-y_{3})\mathcal{G}_{1}(x,y)+\mathcal{G}_{2}(x,y)\ \ \text{ for $|x_{3}-y_{3}|\leq 1$},\\ \text{$\mathcal{G}_{1}(x_{3},\cdot,y_{3},\cdot),\mathcal{G}_{2}(x_{3},\cdot,y_{3},\cdot)\in C^{\infty}(\mathbb{T}^{2}\times\mathbb{T}^{2})$ for $|x_{3}-y_{3}|\leq 1$}.\end{split} (3.7)

Once we have the following lemma, the proof of Theorem 3.1 is straightforward.

Lemma 3.2.

We construct a function in 𝕋2×\mathbb{T}^{2}\times\mathbb{R}, which solves the following equation

ΔG~(x)=m2δ0(x+(m,0))=m1,m2δ0(x+m,x3)in 𝕋2×.\Delta\tilde{G}(x)=\sum\limits_{m\in\mathbb{Z}^{2}}\delta_{0}(x+(m,0))=\sum_{m_{1},m_{2}\in\mathbb{Z}}\delta_{0}(x_{\parallel}+m,x_{3})\ \ \text{in $\mathbb{T}^{2}\times\mathbb{R}$.} (3.8)

This Green’s function takes the form of

G~(x,x3)=12|x3|+c𝒢~(x,x3).\begin{split}\tilde{G}(x_{\parallel},x_{3})=\frac{1}{2}|x_{3}|+c-\tilde{\mathcal{G}}(x_{\parallel},x_{3}).\end{split} (3.9)

Here, 𝒢~\tilde{\mathcal{G}} is defined in (3.26) and cc is an arbitrary constant. When |x3|1|x_{3}|\geq 1, 𝒢~\tilde{\mathcal{G}} satisfies that

|xnx3i𝒢~(x,x3)|e|x3|for |x3|1, and ni=0,1,2.|\nabla_{x_{\parallel}}^{n}\partial_{x_{3}}^{i}\tilde{\mathcal{G}}(x_{\parallel},x_{3})|\lesssim e^{-|x_{3}|}\ \ \text{for $|x_{3}|\geq 1$, and $n\in\mathbb{N}$, $i=0,1,2.$} (3.10)

When |x3|1|x_{3}|\leq 1, the function can be decomposed as

𝒢~(x)=c2(|x|2+|x3|2)1/2+d~(x)+r~(x),for|x3|1.\begin{split}\tilde{\mathcal{G}}(x)=\frac{c_{2}}{(|x_{\parallel}|^{2}+|x_{3}|^{2})^{1/2}}+\tilde{d}(x)+\tilde{r}(x),\ \ \text{for}\ |x_{3}|\leq 1.\end{split} (3.11)

Then d~\tilde{d} and r~\tilde{r} satisfy

d~(,x3),x3d~(,x3)C(2)\tilde{d}(\cdot,x_{3}),\partial_{x_{3}}\tilde{d}(\cdot,x_{3})\in C^{\infty}(\mathbb{R}^{2}); (3.12)
x32d~(,x3)=δ0(x3)d~1(,x3)+d~2(,x3)\partial_{x_{3}}^{2}\tilde{d}(\cdot,x_{3})=\delta_{0}(x_{3})\tilde{d}_{1}(\cdot,x_{3})+\tilde{d}_{2}(\cdot,x_{3}), d~1(,x3),d~2(,x3)C(2)\tilde{d}_{1}(\cdot,x_{3}),\tilde{d}_{2}(\cdot,x_{3})\in C^{\infty}(\mathbb{R}^{2}); (3.13)
j=0,1|xnx3jd~(x,x3)|+i=1,2|xnd~i(x,x3)|n,N(1+|x|)N\sum_{j=0,1}|\nabla_{x_{\parallel}}^{n}\partial_{x_{3}}^{j}\tilde{d}(x_{\parallel},x_{3})|+\sum_{i=1,2}|\nabla_{x_{\parallel}}^{n}\tilde{d}_{i}(x_{\parallel},x_{3})|\lesssim_{n,N}(1+|x_{\parallel}|)^{-N} for |x3|1|x_{3}|\leq 1, (3.14)

and

xnx32r~(x,x3)=δ0(x3)r~1(x,x3)+r~2(x,x3),j=0,1|xnx3jr~(x,x3)|+i=1,2|xnr~i(x,x3)|ne|x3|.\begin{split}\nabla_{x_{\parallel}}^{n}\partial_{x_{3}}^{2}\tilde{r}(x_{\parallel},x_{3})=\delta_{0}(x_{3})\tilde{r}_{1}(x_{\parallel},x_{3})+\tilde{r}_{2}(x_{\parallel},x_{3}),&\\ \sum_{j=0,1}|\nabla_{x_{\parallel}}^{n}\partial_{x_{3}}^{j}\tilde{r}(x_{\parallel},x_{3})|+\sum_{i=1,2}|\nabla_{x_{\parallel}}^{n}\tilde{r}_{i}(x_{\parallel},x_{3})|\lesssim_{n}e^{-|x_{3}|}.&\end{split} (3.15)
Proof of Theorem 3.1.

With the Green’s function G~(x)\tilde{G}(x) to (3.8) in our hand, it is straightforward to construct the Green’s function of (3.1) by setting

G(x,y)=G~(xy)G~(x~y),G(x,y)=\tilde{G}(x-y)-\tilde{G}(\tilde{x}-y), (3.16)

where x~=(x1,x2,x3)\tilde{x}=(x_{1},x_{2},-x_{3}). We can easily show (3.4)-(3.7) from Lemma 3.2. ∎

We postpone the proof of Theorem 3.1 and first study some elliptic estimates.

Lemma 3.3.

Suppose |ρ(x)|AeBx3|\rho(x)|\leq Ae^{-Bx_{3}} for A>0A>0 and B>1B>1.

Then ϕ(x)\phi(x) in (3.2) satisfies that, for some >0\mathfrak{C}>0,

|xjϕ(x)|A{eBmin{0,x31}+eBx3B+min{B1,𝟏B>1B1ex3}}for x𝕋2×[0,).|\partial_{x_{j}}\phi(x)|\leq\mathfrak{C}A\left\{e^{-B\min\{0,x_{3}-1\}}+\frac{e^{-{B}x_{3}}}{B}+\min\left\{B^{-1},\frac{\mathbf{1}_{B>1}}{B-1}e^{-x_{3}}\right\}\right\}\ \ \text{for }\ x\in\mathbb{T}^{2}\times[0,\infty). (3.17)

Moreover, for any δ>0\delta>0, ϕ(x)\phi(x) in (3.2) satisfies that

x2ϕL(Ω)δρL(Ω)log(e+[ρ]C0,δ(Ω))+AB1.\begin{split}\|\nabla_{x}^{2}\phi\|_{L^{\infty}(\Omega)}&\lesssim_{\delta}\|\rho\|_{L^{\infty}(\Omega)}\log(e+[\rho]_{C^{0,\delta}(\Omega)})+AB^{-1}.\end{split} (3.18)
Proof.

Proof of (3.17). From (3.3) and (3.2), we have

|xjϕ(x)|=|(xjGρ)(x)|I1+I2+I3+I4=δj30𝕋2|x3|x3y3|2x3|x3+y3|2|AeBy3dydy3+0𝕋2𝟏|x3y3|1|xjc2|xy|xjc2|x~y||AeBy3dydy3+0𝕋2𝟏|x3y3|1|xjb(x,y)|AeBy3dydy3+0𝕋2𝟏|x3y3|1|xjb0(x,y)|AeBy3dydy3.\begin{split}|\partial_{x_{j}}\phi(x)|&=|(\partial_{x_{j}}G*\rho)(x)|\leq I_{1}+I_{2}+I_{3}+I_{4}\\ &=\delta_{j3}\int_{0}^{\infty}\int_{\mathbb{T}^{2}}\left|\partial_{x_{3}}\frac{|x_{3}-y_{3}|}{2}-\partial_{x_{3}}\frac{|x_{3}+y_{3}|}{2}\right|Ae^{-By_{3}}\mathrm{d}y_{\parallel}\mathrm{d}y_{3}\\ &\ \ +\int_{0}^{\infty}\int_{\mathbb{T}^{2}}\mathbf{1}_{|x_{3}-y_{3}|\leq 1}\left|\partial_{x_{j}}\frac{c_{2}}{|x-y|}-\partial_{x_{j}}\frac{c_{2}}{|\tilde{x}-y|}\right|Ae^{-By_{3}}\mathrm{d}y_{\parallel}\mathrm{d}y_{3}\\ &\ \ +\int_{0}^{\infty}\int_{\mathbb{T}^{2}}\mathbf{1}_{|x_{3}-y_{3}|\geq 1}|\partial_{x_{j}}b(x,y)|Ae^{-By_{3}}\mathrm{d}y_{\parallel}\mathrm{d}y_{3}\\ &\ \ +\int_{0}^{\infty}\int_{\mathbb{T}^{2}}\mathbf{1}_{|x_{3}-y_{3}|\leq 1}|\partial_{x_{j}}b_{0}(x,y)|Ae^{-By_{3}}\mathrm{d}y_{\parallel}\mathrm{d}y_{3}.\end{split} (3.19)

The first term can be easily bounded as

I1=δj32𝕋20|𝟏x3>y3𝟏x3<y3𝟏x3>y3+𝟏x3<y3|AeBy3dy3dy=δj3𝕋2x3AeBy3dy3dyδj3AB1eBx3.\begin{split}I_{1}&=\frac{\delta_{j3}}{2}\int_{\mathbb{T}^{2}}\int_{0}^{\infty}\Big{|}\mathbf{1}_{x_{3}>y_{3}}-\mathbf{1}_{x_{3}<y_{3}}-\mathbf{1}_{x_{3}>-y_{3}}+\mathbf{1}_{x_{3}<-y_{3}}\Big{|}Ae^{-By_{3}}\mathrm{d}y_{3}\mathrm{d}y_{\parallel}\\ &=\delta_{j3}\int_{\mathbb{T}^{2}}\int^{\infty}_{x_{3}}Ae^{-By_{3}}\mathrm{d}y_{3}\mathrm{d}y_{\parallel}\leq\delta_{j3}AB^{-1}e^{-{B}x_{3}}.\end{split} (3.20)

For the second term, using |x~y||xy||\tilde{x}-y|\geq|x-y| for x3,y30x_{3},y_{3}\geq 0, we derive that

I22x31x3+1𝕋21|xy|2AeBy3dydy32x31x3+1AeBy30122πrdrr2+|x3y3|2dy3=2πAx31x3+1eBy3ln(1+12|x3y3|2)dy3AeBmin{0,x31}.\begin{split}I_{2}&\leq 2\int_{x_{3}-1}^{x_{3}+1}\int_{\mathbb{T}^{2}}\frac{1}{|x-y|^{2}}Ae^{-By_{3}}\mathrm{d}y_{\parallel}\mathrm{d}y_{3}\leq 2\int_{x_{3}-1}^{x_{3}+1}Ae^{-By_{3}}\int_{0}^{\frac{1}{\sqrt{2}}}\frac{2\pi r\mathrm{d}r}{r^{2}+|x_{3}-y_{3}|^{2}}\mathrm{d}y_{3}\\ &=2\pi A\int_{x_{3}-1}^{x_{3}+1}e^{-By_{3}}\ln\left(1+\frac{1}{2|x_{3}-y_{3}|^{2}}\right)\mathrm{d}y_{3}\lesssim Ae^{-B\min\{0,x_{3}-1\}}.\\ \end{split} (3.21)

For the third term, using (3.4), we derive that

I30𝕋2𝟏|x3y3|1e|x3y3|AeBy3dydy30x31e(x3y3)AeBy3dy3+x3+1e(y3x3)AeBy3dy3min{AB1,A𝟏B>1B1ex3}+A(B+1)e(B+1)eBx3.\begin{split}I_{3}&\lesssim\int_{0}^{\infty}\int_{\mathbb{T}^{2}}\mathbf{1}_{|x_{3}-y_{3}|\geq 1}e^{-|x_{3}-y_{3}|}Ae^{-By_{3}}\mathrm{d}y_{\parallel}\mathrm{d}y_{3}\\ &\lesssim\int_{0}^{x_{3}-1}e^{-(x_{3}-y_{3})}Ae^{-By_{3}}\mathrm{d}y_{3}+\int^{\infty}_{x_{3}+1}e^{-(y_{3}-x_{3})}Ae^{-By_{3}}\mathrm{d}y_{3}\\ &\lesssim\min\left\{AB^{-1},A\frac{\mathbf{1}_{B>1}}{B-1}e^{-x_{3}}\right\}+\frac{A}{(B+1)e^{(B+1)}}e^{-Bx_{3}}.\end{split} (3.22)

Lastly, using (3.6), we derive that

I4x31x3+1AeBy3dy3AeBmin{0,x31}.\begin{split}I_{4}\lesssim\int_{x_{3}-1}^{x_{3}+1}Ae^{-By_{3}}\mathrm{d}y_{3}\lesssim Ae^{-B\min\{0,x_{3}-1\}}.\end{split} (3.23)

Combining (3.20)-(3.23), we conclude (3.17).

Proof of (3.18). First we note that

𝕋2×[0,)G(x,y)ρ(y)dy=𝕋2G(x,y)ρ~(y)dydy3in x𝕋2×[0,),\begin{split}\int_{\mathbb{T}^{2}\times[0,\infty)}G(x,y)\rho(y)\mathrm{d}y=\int_{-\infty}^{\infty}\int_{\mathbb{T}^{2}}G(x,y)\tilde{\rho}(y)\mathrm{d}y_{\parallel}\mathrm{d}y_{3}\ \ \text{in $x\in\mathbb{T}^{2}\times[0,\infty),$}\end{split} (3.24)

where ρ~\tilde{\rho} is defined in y𝕋2×y\in\mathbb{T}^{2}\times\mathbb{R} as

ρ~(y,y3):=12{[ρ(y,y3)ρ(y,0)][ρ(y,y3)ρ(y,0)]}.\tilde{\rho}(y_{\parallel},y_{3}):=\frac{1}{2}\left\{[\rho(y_{\parallel},y_{3})-\rho(y_{\parallel},0)]-[\rho(y_{\parallel},-y_{3})-\rho(y_{\parallel},0)]\right\}. (3.25)

Then we apply a standard result of the potential theory ([33] or Section 4.2.5 of [14]). The last term in (3.18) comes from ρL1(Ω)AB1\|\rho\|_{L^{1}(\Omega)}\lesssim AB^{-1}. ∎

Proof of Lemma 3.2.

Step 1. We claim that G~\tilde{G} takes the following form: for some constant cc,

G~(x,x3)=12|x3|+c𝒢~(x,x3)with 𝒢~(x,x3):=m2|m|>0e2π|m||x3|4π|m|ei2πmx.\begin{split}\tilde{G}(x_{\parallel},x_{3})=\frac{1}{2}|x_{3}|+c-\tilde{\mathcal{G}}(x_{\parallel},x_{3})\ \ \text{with }\ \ \tilde{\mathcal{G}}(x_{\parallel},x_{3}):=\sum_{\begin{subarray}{c}m\in\mathbb{Z}^{2}\\ |m|>0\end{subarray}}\frac{e^{-2\pi|m||x_{3}|}}{4\pi|m|}e^{i2\pi m\cdot x_{\parallel}}.\end{split} (3.26)

For any x=(x1,x2,x3)𝕋2×x=(x_{1},x_{2},x_{3})\in\mathbb{T}^{2}\times\mathbb{R}, we have

m1,m2δ0(x+(m1,m2,0))=m1m2δ0(x1+m1)δ0(x2+m2)δ0(x3).\begin{split}\sum\limits_{m_{1},m_{2}\in\mathbb{Z}}\delta_{0}(x+(m_{1},m_{2},0))=\sum\limits_{m_{1}\in\mathbb{Z}}\sum\limits_{m_{2}\in\mathbb{Z}}\delta_{0}(x_{1}+m_{1})\delta_{0}(x_{2}+m_{2})\delta_{0}(x_{3}).\end{split}

Recall the Poisson summation formula nδ0(y+n)=nei2πny\sum\limits_{n\in\mathbb{Z}}\delta_{0}(y+n)=\sum\limits_{n\in\mathbb{Z}}e^{i2\pi ny} for yy\in\mathbb{R}. Thus, we have

m1m2δ0(x1+m1)δ0(x2+m2)δ0(x3)=m1,m2δ0(x3)ei2πm1x1ei2πm2x2.\begin{split}\sum\limits_{m_{1}\in\mathbb{Z}}\sum\limits_{m_{2}\in\mathbb{Z}}\delta_{0}(x_{1}+m_{1})\delta_{0}(x_{2}+m_{2})\delta_{0}(x_{3})=\sum\limits_{m_{1},m_{2}\in\mathbb{Z}}\delta_{0}(x_{3})e^{i2\pi m_{1}x_{1}}e^{i2\pi m_{2}x_{2}}.\end{split} (3.27)

Now we try the following Ansatz to solve (3.8): With unknown functions wm=wm1,m2:w_{m}=w_{m_{1},m_{2}}:\mathbb{R}\mapsto\mathbb{R},

G~(x)=m1,m2wm1,m2(x3)ei2πm1x1ei2πm2x2.\tilde{G}(x)=\sum\limits_{m_{1},m_{2}\in\mathbb{Z}}w_{m_{1},m_{2}}(x_{3})e^{i2\pi m_{1}x_{1}}e^{i2\pi m_{2}x_{2}}. (3.28)

By inserting (3.28) in (3.8), we compute that

ΔG~(x)=m1,m2(wm1,m2′′(x3)+((i2πm1)2+(i2πm2)2)wm1,m2(x3))ei2πm1x1ei2πm2x2=m1,m2(wm1,m2′′(x3)+(i2π)2(m12+m22)wm1,m2(x3))ei2πm1x1ei2πm2x2.\begin{split}\Delta\tilde{G}(x)&=\sum\limits_{m_{1},m_{2}\in\mathbb{Z}}\Big{(}w_{m_{1},m_{2}}^{\prime\prime}(x_{3})+\big{(}(i2\pi m_{1})^{2}+(i2\pi m_{2})^{2}\big{)}w_{m_{1},m_{2}}(x_{3})\Big{)}e^{i2\pi m_{1}x_{1}}e^{i2\pi m_{2}x_{2}}\\ &=\sum\limits_{m_{1},m_{2}\in\mathbb{Z}}\Big{(}w_{m_{1},m_{2}}^{\prime\prime}(x_{3})+(i2\pi)^{2}(m_{1}^{2}+m_{2}^{2})w_{m_{1},m_{2}}(x_{3})\Big{)}e^{i2\pi m_{1}x_{1}}e^{i2\pi m_{2}x_{2}}.\end{split}

To solve (3.8), we ought to solve a second order linear ODE with the Dirac delta source term:

wm1,m2′′(x3)+(i2π)2(m12+m22)wm1,m2(x3)=δ0(x3).w_{m_{1},m_{2}}^{\prime\prime}(x_{3})+(i2\pi)^{2}(m_{1}^{2}+m_{2}^{2})w_{m_{1},m_{2}}(x_{3})=\delta_{0}(x_{3}).

Explicit solutions are given by

wm(x3)=wm1,m2(x3):={12|x3|+c,if m1=m2=0,e2π|m||x3|4π|m|=e2πm12+m22|x3|4πm12+m22,otherwise,w_{m}(x_{3})=w_{m_{1},m_{2}}(x_{3}):=\begin{cases}\frac{1}{2}|x_{3}|+c,&\text{if }m_{1}=m_{2}=0,\\ \frac{-e^{-2\pi|m||x_{3}|}}{4\pi|m|}=\frac{-e^{-2\pi\sqrt{m_{1}^{2}+m_{2}^{2}}|x_{3}|}}{4\pi\sqrt{m_{1}^{2}+m_{2}^{2}}},&\text{otherwise},\end{cases} (3.29)

where cc is a constant. Finally, inserting (3.29) in (3.28), we complete the proof of (3.26).

Step 2. Define ι=ι(x)=ι(|x|)C(2)\iota=\iota(x_{\parallel})=\iota(|x_{\parallel}|)\in C^{\infty}(\mathbb{R}^{2}) such that

ι(x)={0for |x|1/2,an increasing function of |x|for 1/2|x|1,1for |x|1.\iota(x_{\parallel})=\begin{cases}0&\text{for }|x_{\parallel}|\leq 1/2,\\ \text{an increasing function of $|x_{\parallel}|$}&\text{for }1/2\leq|x_{\parallel}|\leq 1,\\ 1&\text{for }|x_{\parallel}|\geq 1.\end{cases} (3.30)

Define QQ and its inverse horizontal Fourier transform qq: for (x,x3)2×,(x_{\parallel},x_{3})\in\mathbb{R}^{2}\times\mathbb{R},

Q(x,x3):=ι(x)e2π|x||x3|4π|x|,q(x,x3):=2Q(ξ,x3)e2πiξxdξ.\displaystyle Q(x_{\parallel},x_{3}):=\iota(x_{\parallel})\frac{e^{-2\pi|x_{\parallel}||x_{3}|}}{4\pi|x_{\parallel}|},\ \ \ q(x_{\parallel},x_{3}):=\int_{\mathbb{R}^{2}}Q(\xi,x_{3})e^{2\pi i\xi\cdot x_{\parallel}}\mathrm{d}\xi. (3.31)

From the Poisson summation formula and (3.26), (3.31), we obtain that

𝒢~(x,x3)=m2Q(m,x3)e2πixm=m2q(x+m,x3).\tilde{\mathcal{G}}(x_{\parallel},x_{3})=\sum_{m\in\mathbb{Z}^{2}}Q(m,x_{3})e^{2\pi ix_{\parallel}\cdot m}=\sum_{m\in\mathbb{Z}^{2}}q(x_{\parallel}+m,x_{3}). (3.32)

Step 3. We claim that

|xnq(x,x3)|\displaystyle|\nabla^{n}_{x_{\parallel}}q(x_{\parallel},x_{3})| n,N|x|Ne|x3| for all n,N2 such that N|n|+2,\displaystyle\lesssim_{n,N}|x_{\parallel}|^{-N}e^{-|x_{3}|}\ \text{ for all $n,N\in\mathbb{N}^{2}$ such that $N\geq|n|+2$,} (3.33)
|xnx3q(x,x3)|\displaystyle|\nabla^{n}_{x_{\parallel}}\partial_{x_{3}}q(x_{\parallel},x_{3})| n,N|x|Ne|x3| for all n,N2 such that N|n|+3.\displaystyle\lesssim_{n,N}|x_{\parallel}|^{-N}e^{-|x_{3}|}\ \text{ for all $n,N\in\mathbb{N}^{2}$ such that $N\geq|n|+3$.} (3.34)

As QQ vanishes for |ξ|1/2|\xi|\leq 1/2, we take derivatives to (3.31) and derive that, for n=(n1,n2)2,n^{\prime}=(n^{\prime}_{1},n^{\prime}_{2})\in\mathbb{N}^{2},

(2πix)nxnq(x,x3)=2ξ1n1ξ2n2(ι(ξ)e2π|ξ||x3|4π|ξ|)¯xne2πiξxdξ.(-2\pi ix_{\parallel})^{n^{\prime}}\nabla_{x_{\parallel}}^{n}q(x_{\parallel},x_{3})=\int_{\mathbb{R}^{2}}\underline{\partial_{\xi_{1}}^{n_{1}^{\prime}}\partial_{\xi_{2}}^{n_{2}^{\prime}}\left(\iota(\xi)\frac{e^{-2\pi|\xi||x_{3}|}}{4\pi|\xi|}\right)}\nabla_{x_{\parallel}}^{n}e^{2\pi i\xi\cdot x_{\parallel}}\mathrm{d}\xi. (3.35)

Using the fact that ι(ξ)=0\iota(\xi)=0 if |ξ|1/2|\xi|\leq 1/2 and ξι(ξ)=0\nabla_{\xi}\iota(\xi)=0 if |ξ|1|\xi|\geq 1 from (3.30), we bound the above underlined term in (3.35) by

C(n)ιC|n|(2)𝟏|ξ|12{1|ξ||n|+(|ξ||x3|)|n||ξ||n|+𝟏|ξ|1m=0|n|1(1|ξ|m+(|ξ||x3|)m|ξ|m)}e2π|ξ||x3||ξ|n,ι𝟏|ξ|12(1|ξ||n|+1+𝟏|ξ|1|ξ|)e|x3|.\begin{split}&C(n^{\prime})\|\iota\|_{C^{|n^{\prime}|}(\mathbb{R}^{2})}\mathbf{1}_{|\xi|\geq\frac{1}{2}}\left\{\frac{1}{|\xi|^{|n^{\prime}|}}+\frac{(|\xi||x_{3}|)^{|n^{\prime}|}}{|\xi|^{|n^{\prime}|}}+\mathbf{1}_{|\xi|\leq 1}\sum_{m=0}^{|n^{\prime}|-1}\Big{(}\frac{1}{|\xi|^{m}}+\frac{(|\xi||x_{3}|)^{m}}{|\xi|^{m}}\Big{)}\right\}\frac{e^{-2\pi|\xi||x_{3}|}}{|\xi|}\\ &\lesssim_{n^{\prime},\iota}\mathbf{1}_{|\xi|\geq\frac{1}{2}}\left(\frac{1}{|\xi|^{|n^{\prime}|+1}}+\frac{\mathbf{1}_{|\xi|\leq 1}}{|\xi|}\right)e^{-|x_{3}|}.\end{split}

Suppose |n||n|+2|n^{\prime}|\geq|n|+2, then

|xn||xnq(x,x3)|n,n,ιe|x3|(|ξ|12dξ|ξ||n||n|+1+12|ξ|1|ξ||n||ξ|dξ)n,n,ιe|x3|.|x_{\parallel}^{n^{\prime}}||\nabla_{x_{\parallel}}^{n}q(x_{\parallel},x_{3})|\lesssim_{n,n^{\prime},\iota}{e^{-|x_{3}|}}\left(\int_{|\xi|\geq\frac{1}{2}}\frac{\mathrm{d}\xi}{|\xi|^{|n^{\prime}|-|n|+1}}+\int_{\frac{1}{2}\leq|\xi|\leq 1}\frac{|\xi|^{|n|}}{|\xi|}\mathrm{d}\xi\right)\lesssim_{n,n^{\prime},\iota}{e^{-|x_{3}|}}. (3.36)

Summing (3.36) over all possible n2n^{\prime}\in\mathbb{Z}^{2} such that |n|=max{N,|n|+2}|n^{\prime}|=\max\{N,|n|+2\}, we conclude (3.33).

From (3.35) we compute that

(2πix)nxnx3q(x,x3)=2ξ1n1ξ2n2(ι(ξ)x3|x3|e2π|ξ||x3|2)xne2πiξx¯dξ.\begin{split}(-2\pi ix_{\parallel})^{n^{\prime}}\nabla_{x_{\parallel}}^{n}\partial_{x_{3}}q(x_{\parallel},x_{3})=&-\int_{\mathbb{R}^{2}}\underline{\partial_{\xi_{1}}^{n_{1}^{\prime}}\partial_{\xi_{2}}^{n_{2}^{\prime}}\left(\iota(\xi)\frac{x_{3}}{|x_{3}|}\frac{e^{-2\pi|\xi||x_{3}|}}{2}\right)\nabla_{x_{\parallel}}^{n}e^{2\pi i\xi\cdot x_{\parallel}}}\mathrm{d}\xi.\end{split} (3.37)

We bound the underlined terms of (3.37) respectively by

Cn,n,ι𝟏|ξ|12{(|ξ||x3|)|n||ξ||n||n|+𝟏|ξ|1m=0|n|1(|ξ||x3|)m|ξ||m||n|}e2π|ξ||x3|(𝟏|ξ|12|ξ||n||n|+𝟏12|ξ|1)e|x3|.\begin{split}&{\text{\small$C_{n^{\prime},n,\iota}\mathbf{1}_{|\xi|\geq\frac{1}{2}}\left\{\frac{(|\xi||x_{3}|)^{|n^{\prime}|}}{|\xi|^{|n^{\prime}|-|n|}}+\mathbf{1}_{|\xi|\leq 1}\sum_{m=0}^{|n^{\prime}|-1}\frac{(|\xi||x_{3}|)^{m}}{|\xi|^{|m|-|n|}}\right\}e^{-2\pi|\xi||x_{3}|}\lesssim\left(\frac{\mathbf{1}_{|\xi|\geq\frac{1}{2}}}{|\xi|^{|n^{\prime}|-|n|}}+\mathbf{1}_{\frac{1}{2}\leq|\xi|\leq 1}\right)e^{-|x_{3}|}.$}}\end{split} (3.38)

Choose |n|=max{N,|n|+3}|n^{\prime}|=\max\{N,|n|+3\}. Then the above upper bounds are integrable-in-ξ\xi in 2\mathbb{R}^{2}. This allows us to prove (3.47).

Step 4. We claim that

xnx32q(x,x3)=δ0(x3)q1(x,x3)+q2(x,x3),|xnqi(x,x3)|n,N|x|Ne|x3| for i=1,2, and all n,N2N|n|+4.\begin{split}\nabla^{n}_{x_{\parallel}}\partial_{x_{3}}^{2}q(x_{\parallel},x_{3})&=\delta_{0}(x_{3})q_{1}(x_{\parallel},x_{3})+q_{2}(x_{\parallel},x_{3}),\\ |\nabla^{n}_{x_{\parallel}}q_{i}(x_{\parallel},x_{3})|&\lesssim_{n,N}|x_{\parallel}|^{-N}e^{-|x_{3}|}\ \text{ for $i=1,2,$ and all $n,N\in\mathbb{N}^{2}$, $N\geq|n|+4$.}\end{split} (3.39)

From (3.37) we compute that

(2πix)nxnx32q(x,x3)=δ0(x3)2ξ1n1ξ2n2(ι(ξ)e2π|ξ||x3|)xne2πiξx¯dξ+π2ξ1n1ξ2n2(ι(ξ)|ξ|e2π|ξ||x3|)xne2πiξx¯dξ.\begin{split}(-2\pi ix_{\parallel})^{n^{\prime}}\nabla_{x_{\parallel}}^{n}\partial_{x_{3}}^{2}q(x_{\parallel},x_{3})=&-\delta_{0}(x_{3})\int_{\mathbb{R}^{2}}\underline{\partial_{\xi_{1}}^{n_{1}^{\prime}}\partial_{\xi_{2}}^{n_{2}^{\prime}}\left(\iota(\xi)e^{-2\pi|\xi||x_{3}|}\right)\nabla_{x_{\parallel}}^{n}e^{2\pi i\xi\cdot x_{\parallel}}}\mathrm{d}\xi\\ &+\pi\int_{\mathbb{R}^{2}}\underline{\partial_{\xi_{1}}^{n_{1}^{\prime}}\partial_{\xi_{2}}^{n_{2}^{\prime}}\left(\iota(\xi)|\xi|e^{-2\pi|\xi||x_{3}|}\right)\nabla_{x_{\parallel}}^{n}e^{2\pi i\xi\cdot x_{\parallel}}}\mathrm{d}\xi.\end{split} (3.40)

Following the argument of the previous step, we bound first underlined term by (LABEL:est:DTtq); and bound the second underlined term of (3.40) by

Cn,n,ι𝟏|ξ|12{(|ξ||x3|)|n||ξ||n||n|1+𝟏|ξ|1m=0|n|1(|ξ||x3|)m|ξ||m||n|1}e2π|ξ||x3|(𝟏|ξ|12|ξ||n||n|1+𝟏12|ξ|1)e|x3|.\begin{split}&{\text{\small$C_{n^{\prime},n,\iota}\mathbf{1}_{|\xi|\geq\frac{1}{2}}\left\{\frac{(|\xi||x_{3}|)^{|n^{\prime}|}}{|\xi|^{|n^{\prime}|-|n|-1}}+\mathbf{1}_{|\xi|\leq 1}\sum_{m=0}^{|n^{\prime}|-1}\frac{(|\xi||x_{3}|)^{m}}{|\xi|^{|m|-|n|-1}}\right\}e^{-2\pi|\xi||x_{3}|}\lesssim\left(\frac{\mathbf{1}_{|\xi|\geq\frac{1}{2}}}{|\xi|^{|n^{\prime}|-|n|-1}}+\mathbf{1}_{\frac{1}{2}\leq|\xi|\leq 1}\right)e^{-|x_{3}|}.$}}\end{split}

Choose |n|=max{N,|n|+4}|n^{\prime}|=\max\{N,|n|+4\}. Then the above upper bounds are integrable-in-ξ\xi in 2\mathbb{R}^{2}. This allows us to prove (3.39).

Step 5. Define

r~(x,x3):=|m|>0q(x+m,x3).\tilde{r}(x_{\parallel},x_{3}):=\sum_{|m|>0}q(x_{\parallel}+m,x_{3}). (3.41)

From (3.33), (3.47), and (3.39), we conclude that the series (3.41) is absolutely convergent and hence (3.15) holds.

Step 6. We claim that when |x3|1|x_{3}|\leq 1, we can decompose b~\tilde{b} as (3.11) where r~\tilde{r} satisfies (3.41)-(3.15), and (3.12)-(3.14) hold. Recall the following horizontal Fourier transform:

e2π|x3||ξ|4π|ξ|=2c2(|x|2+|x3|2)1/2e2πixξdx.\frac{e^{-2\pi|x_{3}||\xi|}}{4\pi|\xi|}=\int_{\mathbb{R}^{2}}\frac{c_{2}}{\left(|x_{\parallel}|^{2}+|x_{3}|^{2}\right)^{1/2}}e^{-2\pi ix_{\parallel}\cdot\xi}\mathrm{d}x_{\parallel}. (3.42)

Here, c2=12π3/2Γ(3/2)c_{2}=\frac{1}{2\pi^{3/2}}\Gamma(3/2) where Γ\Gamma is the Gamma function.

We decompose qq and use the duality of Fourier transform with (3.42) to get that

q(x,x3)=c2(|x|2+|x3|2)1/2+d~(x,x3),d~(x):=2(ι(ξ)1)e2π|ξ||x3|4π|ξ|e2πiξxdξ.\begin{split}q(x_{\parallel},x_{3})=\frac{c_{2}}{\left(|x_{\parallel}|^{2}+|x_{3}|^{2}\right)^{1/2}}+\tilde{d}(x_{\parallel},x_{3}),\ \ \tilde{d}(x):=\int_{\mathbb{R}^{2}}(\iota(\xi)-1)\frac{e^{-2\pi|\xi||x_{3}|}}{4\pi|\xi|}e^{2\pi i\xi\cdot x_{\parallel}}\mathrm{d}\xi.\end{split} (3.43)

Now we only need to prove the properties of d~\tilde{d}, which are (3.12)-(3.14). Note that d~(,x3)\tilde{d}(\cdot,x_{3}) is the inverse horizontal Fourier transforms of an integrable function with bounded support in 2\mathbb{R}^{2} horizontally. Hence d~(,x3)C(2)\tilde{d}(\cdot,x_{3})\in C^{\infty}(\mathbb{R}^{2}). Next, we compute its derivatives of d~\tilde{d}. For any n=(n1,n2)2n=(n_{1},n_{2})\in\mathbb{N}^{2} and n=(n1,n2)2n^{\prime}=(n^{\prime}_{1},n^{\prime}_{2})\in\mathbb{N}^{2},

(2πix)nxnx3d~(x,x3)=2ξn((ι(ξ)1)x32|x3|e2π|ξ||x3|)xne2πiξxdξ¯,(2πix)nxnx32d~(x,x3)=δ0(x3)(2πix)nxnd~1(x,x3)+(2πix)nxnd~2(x,x3)=δ0(x3)2ξn((ι(ξ)1)e2π|ξ||x3|)xne2πiξxdξ¯+π2ξn((ι(ξ)1)|ξ|e2π|ξ||x3|)xne2πiξxdξ¯.\begin{split}(-2\pi ix_{\parallel})^{n^{\prime}}\nabla_{x_{\parallel}}^{n}\partial_{x_{3}}\tilde{d}(x_{\parallel},x_{3})&=\underline{\int_{\mathbb{R}^{2}}\nabla_{\xi}^{n^{\prime}}\left((\iota(\xi)-1)\frac{x_{3}}{-2|x_{3}|}e^{-2\pi|\xi||x_{3}|}\right)\nabla_{x_{\parallel}}^{n}e^{2\pi i\xi\cdot x_{\parallel}}\mathrm{d}\xi},\\ (-2\pi ix_{\parallel})^{n^{\prime}}\nabla_{x_{\parallel}}^{n}\partial_{x_{3}}^{2}\tilde{d}(x_{\parallel},x_{3})&=\delta_{0}(x_{3})(-2\pi ix_{\parallel})^{n^{\prime}}\nabla_{x_{\parallel}}^{n}\tilde{d}_{1}(x_{\parallel},x_{3})+(-2\pi ix_{\parallel})^{n^{\prime}}\nabla_{x_{\parallel}}^{n}\tilde{d}_{2}(x_{\parallel},x_{3})\\ &=-\delta_{0}(x_{3})\underline{\int_{\mathbb{R}^{2}}\nabla_{\xi}^{n^{\prime}}\left((\iota(\xi)-1)e^{-2\pi|\xi||x_{3}|}\right)\nabla_{x_{\parallel}}^{n}e^{2\pi i\xi\cdot x_{\parallel}}\mathrm{d}\xi}\\ &\ \ \ +\pi\underline{\int_{\mathbb{R}^{2}}\nabla_{\xi}^{n^{\prime}}\left((\iota(\xi)-1)|\xi|e^{-2\pi|\xi||x_{3}|}\right)\nabla_{x_{\parallel}}^{n}e^{2\pi i\xi\cdot x_{\parallel}}\mathrm{d}\xi}.\end{split} (3.44)

Here, we have used two functions defined as

d~1(x,x3)\displaystyle\tilde{d}_{1}(x_{\parallel},x_{3}) :=2(ι(ξ)1)e2π|ξ||x3|e2πiξxdξ,\displaystyle:=-\int_{\mathbb{R}^{2}}(\iota(\xi)-1)e^{-2\pi|\xi||x_{3}|}e^{2\pi i\xi\cdot x_{\parallel}}\mathrm{d}\xi, (3.45)
d~2(x,x3)\displaystyle\tilde{d}_{2}(x_{\parallel},x_{3}) :=π2(ι(ξ)1)|ξ|e2π|ξ||x3|e2πiξxdξ.\displaystyle:=\pi\int_{\mathbb{R}^{2}}(\iota(\xi)-1)|\xi|e^{-2\pi|\xi||x_{3}|}e^{2\pi i\xi\cdot x_{\parallel}}\mathrm{d}\xi. (3.46)

Note that the three underlined integrals in the right hand side of (3.44) are the inverse horizontal Fourier transform of integrable functions with bounded support in 2\mathbb{R}^{2} horizontally. By summing (3.44) over |n|N|n^{\prime}|\leq N in n2n^{\prime}\in\mathbb{Z}^{2}, we conclude (3.12)-(3.14).

Step 7. We consider the case of |x3|1|x_{3}|\geq 1. We claim that (3.10) holds.

We first prove that

|xnx3iq(x,x3)|(1+|x|)Ne|x3||\nabla^{n}_{x_{\parallel}}\partial_{x_{3}}^{i}q(x_{\parallel},x_{3})|\lesssim(1+|x_{\parallel}|)^{-N}e^{-|x_{3}|} for |x3|1|x_{3}|\geq 1 and n,Nn,N\in\mathbb{N}. (3.47)

We compute that, for n=(n1,n2)2n^{\prime}=(n^{\prime}_{1},n^{\prime}_{2})\in\mathbb{N}^{2},

(2πix)nxnx3q(x)=x32|x3|2ξn(ι(ξ)e2π|ξ||x3|)xne2πiξx¯Idξ,(2πix)nxnx32q(x)=2πξn(ι(ξ)|ξ|e2π|ξ||x3|)xne2πiξx¯IIdξ.\begin{split}(-2\pi ix_{\parallel})^{n^{\prime}}\nabla_{x_{\parallel}}^{n}\partial_{x_{3}}q(x)&=\frac{x_{3}}{-2|x_{3}|}\int_{\mathbb{R}^{2}}\underline{\nabla_{\xi}^{n^{\prime}}\Big{(}\iota(\xi)e^{-2\pi|\xi||x_{3}|}\Big{)}\nabla_{x_{\parallel}}^{n}e^{2\pi i\xi\cdot x_{\parallel}}}_{I}\mathrm{d}\xi,\\ (-2\pi ix_{\parallel})^{n^{\prime}}\nabla_{x_{\parallel}}^{n}\partial_{x_{3}}^{2}q(x)&=\int_{\mathbb{R}^{2}}\underline{\pi\nabla_{\xi}^{n^{\prime}}\Big{(}\iota(\xi)|\xi|e^{-2\pi|\xi||x_{3}|}\Big{)}\nabla_{x_{\parallel}}^{n}e^{2\pi i\xi\cdot x_{\parallel}}}_{II}\mathrm{d}\xi.\end{split} (3.48)

We bound each of underlined terms in (3.48) as follows: for |x3|1|x_{3}|\geq 1,

I\displaystyle I n,ι𝟏|ξ|12|ξ||n|(1+|x3||n|)e2π|ξ||x3|n,ιe|ξ|e|x3|,\displaystyle\lesssim_{n,\iota}\mathbf{1}_{|\xi|\geq\frac{1}{2}}|\xi|^{|n|}(1+|x_{3}|^{|n^{\prime}|})e^{-2\pi|\xi||x_{3}|}\lesssim_{n,\iota}e^{-|\xi|}e^{-|x_{3}|},
II\displaystyle II n,n,ι𝟏|ξ|12|ξ||n|(1+|ξ||x3||n|)e2π|ξ||x3|n,n,ιe|ξ|e|x3|.\displaystyle\lesssim_{n,n^{\prime},\iota}\mathbf{1}_{|\xi|\geq\frac{1}{2}}|\xi|^{|n|}(1+|\xi||x_{3}|^{|n^{\prime}|})e^{-2\pi|\xi||x_{3}|}\lesssim_{n,n^{\prime},\iota}e^{-|\xi|}e^{-|x_{3}|}.

Then we follow the argument to prove (3.36) and derive that

|xnx3q(x)|+|xnx32q(x)|n,n,ι|x||n|e|x3|for |x3|1.|\nabla_{x_{\parallel}}^{n}\partial_{x_{3}}q(x)|+|\nabla_{x_{\parallel}}^{n}\partial_{x_{3}}^{2}q(x)|\lesssim_{n,n^{\prime},\iota}|x_{\parallel}|^{-|n^{\prime}|}e^{-|x_{3}|}\ \ \text{for $|x_{3}|\geq 1$.}

Now by choosing |n|=N|n^{\prime}|=N, we conclude (3.47).

Using (3.47) with N3N\geq 3, we conclude that the summation (3.32) is absolutely convergent. Using this together with (3.26) and (3.47), we conclude (3.10).∎

4. Asymptotic Stability Criterion

The goal of current section is to give a proof of Theorem 2.6. In this section we always assume all conditions of Theorem 2.6 hold. For example, global-in-time self-consistent potentials Φ(),Ψ(t,)C1(Ω¯)C2(Ω)\Phi(\cdot),\Psi(t,\cdot)\in C^{1}(\bar{\Omega})\cap C^{2}(\Omega), and f(t,x,v)f(t,x,v) is a global-in-time Lagrangian solution in the sense of Definition 2.2 and (2.19). We also assume that vhL\nabla_{v}h\in L^{\infty}. Recall the Lagrangian formulation of ff solving (2.5)-(2.9):

f(t,x,v)=(t,x,v)+𝒩(t,x,v),\begin{split}f(t,x,v)&=\mathcal{I}(t,x,v)+\mathcal{N}(t,x,v),\end{split} (4.1)

where

(t,x,v)\displaystyle\mathcal{I}(t,x,v) :=𝟏t<t𝐁(t,x,v)f0(𝒵(0;t,x,v)),\displaystyle:=\mathbf{1}_{t<t_{\mathbf{B}}(t,x,v)}f_{0}(\mathcal{Z}(0;t,x,v)), (4.2)
𝒩(t,x,v)\displaystyle\mathcal{N}(t,x,v) :=max{0,tt𝐁(t,x,v)}txΨ(s,𝒳(s;t,x,v))vh(𝒵(s;t,x,v))ds.\displaystyle:=\int^{t}_{\max\{0,t-t_{\mathbf{B}}(t,x,v)\}}\nabla_{x}\Psi(s,\mathcal{X}(s;t,x,v))\cdot\nabla_{v}h(\mathcal{Z}(s;t,x,v))\mathrm{d}s. (4.3)

Recall b(t,x)b(t,x) in (2.11) and the continuity equation (2.10). Assume that xbLloc(+×Ω)\nabla_{x}\cdot b\in L^{\infty}_{{loc}}(\mathbb{R}_{+}\times\Omega). Then a weak solution ϱ\varrho of the continuity equation is absolutely continuous in time. Therefore we can take a time derivative to the Poisson equation (2.9). This leads to

tΨ(t,x)=ηΔ01tϱ(t,x)=ηΔ01(xb)(t,x).\begin{split}\partial_{t}\Psi(t,x)=\eta\Delta_{0}^{-1}\partial_{t}\varrho(t,x)=-\eta\Delta_{0}^{-1}(\nabla_{x}\cdot b)(t,x).\\ \end{split} (4.4)

Recall the dynamic weight function 𝔴β\mathfrak{w}_{\beta} in (2.21). Using (2.23) and (4.4), we have that

dds(|𝒱(s;t,x,v)|2+2Φ(𝒳(s;t,x,v))+2Ψ(s,𝒳(s;t,x,v))+2g𝒳3(s;t,x,v))=2tΨ(s,𝒳(s;t,x,v))=2Δ01tϱ(s,𝒳(s;t,x,v))=2Δ01(xb)(s,𝒳(s;t,x,v)).\begin{split}&\frac{d}{ds}\big{(}|\mathcal{V}(s;t,x,v)|^{2}+2\Phi(\mathcal{X}(s;t,x,v))+2\Psi(s,\mathcal{X}(s;t,x,v))+2g\mathcal{X}_{3}(s;t,x,v)\big{)}\\ &=2\partial_{t}\Psi(s,\mathcal{X}(s;t,x,v))=2\Delta_{0}^{-1}\partial_{t}\varrho(s,\mathcal{X}(s;t,x,v))=-2\Delta_{0}^{-1}(\nabla_{x}\cdot b)(s,\mathcal{X}(s;t,x,v)).\end{split} (4.5)

The forcing term 2Δ01(xb)(s,𝒳(s;t,x,v))-2\Delta_{0}^{-1}(\nabla_{x}\cdot b)(s,\mathcal{X}(s;t,x,v)) is bounded pointwisely if a distribution ff decays fast with respect to vv and x3x_{3} in LL^{\infty}:

Lemma 4.1.

Assume that ff and bb are related as in (2.11). Suppose bLloc(+;C1(Ω¯))b\in L^{\infty}_{loc}(\mathbb{R}_{+};C^{1}(\bar{\Omega})). Then we have that

Δ01(xb(t,x))L(Ω)1+1βgβ2eβ2(|v|2+gx3)f(t)L(Ω¯).\begin{split}\|\Delta_{0}^{-1}(\nabla_{x}\cdot b(t,x))\|_{L^{\infty}(\Omega)}\lesssim\frac{1+\frac{1}{\beta g}}{\beta^{2}}\|e^{\frac{\beta}{2}(|v|^{2}+gx_{3})}f(t)\|_{L^{\infty}(\bar{\Omega})}.\end{split} (4.6)
Proof.

Recall the Green function G(x,y)G(x,y) constructed in Lemma 3.1. By the integration by parts, we derive that

Δ01(b)(t,x)=𝕋2×+G(x,y)yb(y)dy=𝕋2×+b(y)yG(x,y)dy𝕋2G(x,y,0)b3(y,0)dy.\begin{split}\Delta_{0}^{-1}(\nabla\cdot b)(t,x)&=\int_{\mathbb{T}^{2}\times\mathbb{R}_{+}}G(x,y)\nabla_{y}\cdot b(y)\mathrm{d}y\\ &=-\int_{\mathbb{T}^{2}\times\mathbb{R}_{+}}b(y)\cdot\nabla_{y}G(x,y)\mathrm{d}y-\int_{\mathbb{T}^{2}}G(x,y_{\parallel},0)b_{3}(y_{\parallel},0)\mathrm{d}y_{\parallel}.\end{split} (4.7)

From (3.3), we have G(x,y,0)=𝒢(x,y,0)G(x,y_{\parallel},0)=-\mathcal{G}(x,y_{\parallel},0) at y3=0y_{3}=0. From (3.5), when |y3|1|y_{3}|\leq 1 then 𝒢(x,y,0)=𝒢0(x,y,0)\mathcal{G}(x,y_{\parallel},0)=\mathcal{G}_{0}(x,y_{\parallel},0). We also note that

|b(t,x)|3|v||f(t,x,v)|dv(eβ2gx33|v|eβ2|v|2dv)eβ2(|v|2+gx3)f(t)L(Ω¯)8πeβ2gx3β2eβ2(|v|2+gx3)f(t)L(Ω¯).\begin{split}|b(t,x)|&\leq\int_{\mathbb{R}^{3}}|v||f(t,x,v)|\mathrm{d}v\leq\left(e^{-\frac{\beta}{2}gx_{3}}\int_{\mathbb{R}^{3}}|v|e^{-\frac{\beta}{2}|v|^{2}}\mathrm{d}v\right)\|e^{\frac{\beta}{2}(|v|^{2}+gx_{3})}f(t)\|_{L^{\infty}(\bar{\Omega})}\\ &\leq\frac{8\pi e^{-\frac{\beta}{2}gx_{3}}}{\beta^{2}}\|e^{\frac{\beta}{2}(|v|^{2}+gx_{3})}f(t)\|_{L^{\infty}(\bar{\Omega})}.\end{split}

Now we utilize Lemma 3.1, and follow the proof of Lemma 3.3 to conclude the lemma. ∎

In the stability analysis, it is important to compare weight functions along the characteristics.

Lemma 4.2.

Suppose the assumption (2.35) holds. Recall wβ(x,v)w_{\beta}(x,v) in (2.20), 𝔴β(t,x,v)\mathfrak{w}_{\beta}(t,x,v) in (2.21), and (𝒳,𝒱)(\mathcal{X},\mathcal{V}) solving (2.13). Then, for s,s[tt𝐁(t,x,v),t+t𝐅(t,x,v)]s,s^{\prime}\in[t-t_{\mathbf{B}}(t,x,v),t+t_{\mathbf{F}}(t,x,v)],

𝔴β(s,𝒵(s;t,x,v))𝔴β(s,𝒵(s;t,x,v))e8βgΔ01(xb)Lt,x|v3|2+gx3,1𝔴β(s,𝒵(s;t,x,v))e64βgΔ01(xb)Lt,x2eβ2|v|2eβ2gx3,\begin{split}\frac{\mathfrak{w}_{\beta}(s^{\prime},\mathcal{Z}(s^{\prime};t,x,v))}{\mathfrak{w}_{\beta}(s,\mathcal{Z}(s;t,x,v))}&\leq e^{\frac{8\beta}{g}\|\Delta_{0}^{-1}(\nabla_{x}\cdot b)\|_{L^{\infty}_{t,x}}\sqrt{|v_{3}|^{2}+gx_{3}}},\\ \frac{1}{\mathfrak{w}_{\beta}(s,\mathcal{Z}(s;t,x,v))}&\leq e^{\frac{64\beta}{g}\|\Delta_{0}^{-1}(\nabla_{x}\cdot b)\|_{L^{\infty}_{t,x}}^{2}}e^{-\frac{\beta}{2}|v|^{2}}e^{-\frac{\beta}{2}gx_{3}},\end{split} (4.8)

and

1wβ(𝒵(s;t,x,v))e162β2g2Δ01(xb)Lt,x2eβ4|v|2eβg4x3.\frac{1}{w_{\beta}(\mathcal{Z}(s;t,x,v))}\leq e^{\frac{16^{2}\beta}{2g^{2}}\|\Delta_{0}^{-1}(\nabla_{x}\cdot b)\|_{L^{\infty}_{t,x}}^{2}}e^{-\frac{\beta}{4}|v|^{2}}e^{-\frac{\beta g}{4}x_{3}}. (4.9)

Here, we have used the notation Lt,xL^{\infty}_{t,x} defined in (2.59).

Proof.

The proof follows (4.5) and (4.6). For the detail, we refer to the proof of Lemma 6.3. ∎

Lemma 4.3.

Suppose (2.35) and (2.34) hold. Set

λ=g2β26ln(2+gβ22172+2gπ32wβvhL(Ω)).\lambda_{\infty}=\frac{g^{2}\beta}{2^{6}}\ln\left(2+\frac{g\beta^{2}}{2^{\frac{17}{2}+\frac{2}{g}}\pi^{\frac{3}{2}}\|w_{\beta}\nabla_{v}h\|_{L^{\infty}(\Omega)}}\right). (4.10)

Then

(t,x,v)\displaystyle\mathcal{I}(t,x,v) 2eβ4(|v|2+gx3)eλte16λ2βg2𝔴β,0f0L(Ω×3),\displaystyle\leq 2e^{-\frac{\beta}{4}(|v|^{2}+gx_{3})}e^{-\lambda_{\infty}t}e^{\frac{16\lambda_{\infty}^{2}}{\beta g^{2}}}\|\mathfrak{w}_{\beta,0}f_{0}\|_{L^{\infty}(\Omega\times\mathbb{R}^{3})}, (4.11)
𝒩(t,x,v)\displaystyle\mathcal{N}(t,x,v) eβ8|v|2eβg8x3eλt841/ggβ1/2e162λ24g2βsups[0,t]eλsϱ(s)L(Ω)wβvhL(Ω×3).\displaystyle\leq e^{-\frac{\beta}{8}|v|^{2}}e^{-\frac{\beta g}{8}x_{3}}e^{-\lambda_{\infty}t}\frac{8\cdot 4^{1/g}}{g\beta^{1/2}}e^{\frac{16^{2}\lambda_{\infty}^{2}}{4g^{2}\beta}}\sup_{s\in[0,t]}\|e^{\lambda_{\infty}s}\varrho(s)\|_{L^{\infty}(\Omega)}\|w_{\beta}\nabla_{v}h\|_{L^{\infty}(\Omega\times\mathbb{R}^{3})}. (4.12)
Proof.

Using Lemma 4.1, applying (4.7) to (2.34), we derive that

e64βgsup0tTΔ01(xb)L(Ω)2e64(8π)2(1+1βg)2gβ3sup0tTeβ2(|v|2+gx3)f(t)L(Ω×3)22.\begin{split}e^{\frac{64\beta}{g}\sup_{0\leq t\leq T}\|\Delta_{0}^{-1}(\nabla_{x}\cdot b)\|_{L^{\infty}(\Omega)}^{2}}&\leq e^{\frac{64(8\pi)^{2}(1+\frac{1}{\beta g})^{2}}{g\beta^{3}}\sup_{0\leq t\leq T}\|e^{\frac{\beta}{2}(|v|^{2}+gx_{3})}f(t)\|_{L^{\infty}(\Omega\times\mathbb{R}^{3})}^{2}}\leq 2.\end{split} (4.13)

First we prove (4.11). For that, we will apply Lemma 2.5, Lemma 4.2 (since (2.35) holds), and Lemma 4.1. Then we derive that

(t,x,v)/𝔴β,0f0L(Ω×3)𝟏tt𝐁(t,x,v)𝔴β(0,𝒳(0;t,x,v),𝒱(0;t,x,v))𝟏gt/4|v3|2+gx3e64βgΔ01(xb)Lt,x2eβ2|v|2eβ2gx32eg2β64t2eβ4(|v|2+gx3).\begin{split}&\mathcal{I}(t,x,v)/\|\mathfrak{w}_{\beta,0}f_{0}\|_{L^{\infty}(\Omega\times\mathbb{R}^{3})}\leq\frac{\mathbf{1}_{t\leq t_{\mathbf{B}}(t,x,v)}}{\mathfrak{w}_{\beta}(0,\mathcal{X}(0;t,x,v),\mathcal{V}(0;t,x,v))}\\ &\leq\mathbf{1}_{gt/4\leq\sqrt{|v_{3}|^{2}+gx_{3}}}e^{\frac{64\beta}{g}\|\Delta_{0}^{-1}(\nabla_{x}\cdot b)\|_{L^{\infty}_{t,x}}^{2}}e^{-\frac{\beta}{2}|v|^{2}}e^{-\frac{\beta}{2}gx_{3}}\leq 2e^{-\frac{g^{2}\beta}{64}t^{2}}e^{-\frac{\beta}{4}(|v|^{2}+gx_{3})}.\end{split} (4.14)

We have used (2.27) and (4.8) from the first to second line; and from the second to third line we have used (4.13) and the fact that if t4g|v3|2+gx34g|v|2+gx3t\leq\frac{4}{g}\sqrt{|v_{3}|^{2}+gx_{3}}\leq\frac{4}{g}\sqrt{|v|^{2}+gx_{3}} then

𝟏t4g|v3|2+gx3eβ2(|v|2+gx3)𝟏t4g|v|2+gx3eβ2(|v|2+gx3)eg2β64t2eβ4(|v|2+gx3).\begin{split}\mathbf{1}_{t\leq\frac{4}{g}\sqrt{|v_{3}|^{2}+gx_{3}}}e^{-\frac{\beta}{2}\big{(}|v|^{2}+gx_{3}\big{)}}\leq\mathbf{1}_{t\leq\frac{4}{g}\sqrt{|v|^{2}+gx_{3}}}e^{-\frac{\beta}{2}\big{(}|v|^{2}+gx_{3}\big{)}}\leq e^{-\frac{g^{2}\beta}{64}t^{2}}e^{-\frac{\beta}{4}\big{(}|v|^{2}+gx_{3}\big{)}}.\end{split}

Now we have, by completing the square,

eβg264t2=eβg264(t32λβg2)2e16λ2βg2eλte16λ2βg2eλt.\begin{split}e^{-\frac{\beta g^{2}}{64}t^{2}}&=e^{-\frac{\beta g^{2}}{64}\big{(}t-\frac{32\lambda_{\infty}}{\beta g^{2}}\big{)}^{2}}e^{\frac{16\lambda_{\infty}^{2}}{\beta g^{2}}}e^{-\lambda_{\infty}t}\leq e^{\frac{16\lambda_{\infty}^{2}}{\beta g^{2}}}e^{-\lambda_{\infty}t}.\end{split}

Combining this with (LABEL:bound:tB/w), we derive (4.11).

Next we prove (4.12). Using (4.9) and (4.13), we obtain

vh(𝒵(s;t,x,v))1wβ(𝒳(s;t,x,v),𝒱(s;t,x,v))wβvhe162β2g2Δ01(xb)Lt,x2eβ4|v|2eβg4x3wβvh41/geβ4|v|2eβg4x3wβvh,\begin{split}&\nabla_{v}h(\mathcal{Z}(s;t,x,v))\leq\frac{1}{w_{\beta}(\mathcal{X}(s;t,x,v),\mathcal{V}(s;t,x,v))}\|w_{\beta}\nabla_{v}h\|_{\infty}\\ &\leq e^{\frac{16^{2}\beta}{2g^{2}}\|\Delta_{0}^{-1}(\nabla_{x}\cdot b^{\ell})\|_{L^{\infty}_{t,x}}^{2}}e^{-\frac{\beta}{4}|v|^{2}}e^{-\frac{\beta g}{4}x_{3}}\|w_{\beta}\nabla_{v}h\|_{\infty}\leq 4^{1/g}e^{-\frac{\beta}{4}|v|^{2}}e^{-\frac{\beta g}{4}x_{3}}\|w_{\beta}\nabla_{v}h\|_{\infty},\end{split} (4.15)

where we have used that e162β2g2Δ01(xb)Lt,x2e2gln241ge^{\frac{16^{2}\beta}{2g^{2}}\|\Delta_{0}^{-1}(\nabla_{x}\cdot b^{\ell})\|_{L^{\infty}_{t,x}}^{2}}\leq e^{\frac{2}{g}\ln 2}\leq 4^{\frac{1}{g}} from (4.13).

Using (4.15), we now bound 𝒩\mathcal{N}:

|𝒩(t,x,v)|41/gtt𝐁(t,x,v)teλssups[0,t]eλsϱ(s)eβ4|v|2eβg4x3wβvhdst𝐁(t,x,v)eλt𝐁(t,x,v)eβ4|v|2eβg4x3¯×41/geλtsups[0,t]eλsϱ(s)wβvh.\begin{split}|\mathcal{N}(t,x,v)|&\leq 4^{1/g}\int^{t}_{t-t_{\mathbf{B}}(t,x,v)}e^{-\lambda_{\infty}s}\sup_{s\in[0,t]}\|e^{\lambda_{\infty}s}\varrho(s)\|_{\infty}e^{-\frac{\beta}{4}|v|^{2}}e^{-\frac{\beta g}{4}x_{3}}\|w_{\beta}\nabla_{v}h\|_{\infty}\mathrm{d}s\\ &\leq\underline{t_{\mathbf{B}}(t,x,v)e^{\lambda_{\infty}{t_{\mathbf{B}}(t,x,v)}}e^{-\frac{\beta}{4}|v|^{2}}e^{-\frac{\beta g}{4}x_{3}}}\times 4^{1/g}e^{-\lambda_{\infty}t}\sup_{s\in[0,t]}\|e^{\lambda_{\infty}s}\varrho^{\ell}(s)\|_{\infty}\|w_{\beta}\nabla_{v}h\|_{\infty}.\end{split}

Then using (2.27) for t𝐁(t,x,v)t_{\mathbf{B}}(t,x,v), we bound the above underlined term as

t𝐁(t,x,v)eλt𝐁(t,x,v)4g|v3|2+gx3e4λg(|v3|+gx3)8gβ1/2eβ8|v|2+4λg|v|eβg8x3+4λggx3eβ8|v|2eβg8x38gβ1/2e162λ24g2βeβ8|v|2eβg8x3.\begin{split}&t_{\mathbf{B}}(t,x,v)e^{\lambda_{\infty}{t_{\mathbf{B}}(t,x,v)}}\leq\frac{4}{g}\sqrt{|v_{3}|^{2}+gx_{3}}e^{\frac{4\lambda_{\infty}}{g}(|v_{3}|+\sqrt{gx_{3}})}\\ &\leq\frac{8}{g\beta^{1/2}}e^{-\frac{\beta}{8}|v|^{2}+\frac{4\lambda_{\infty}}{g}|v|}e^{-\frac{\beta g}{8}x_{3}+\frac{4\lambda_{\infty}}{g}\sqrt{gx_{3}}}e^{\frac{\beta}{8}|v|^{2}}e^{\frac{\beta g}{8}x_{3}}\leq\frac{8}{g\beta^{1/2}}e^{\frac{16^{2}\lambda_{\infty}^{2}}{4g^{2}\beta}}e^{\frac{\beta}{8}|v|^{2}}e^{\frac{\beta g}{8}x_{3}}.\end{split}

Therefore we get (4.12).∎

Proof of Theorem 2.6.

Taking vv-integration to (4.1) and using (4.11)-(4.12), we derive that

eλt|ϱ(t,x)|eλt{3|(t,x,v)|dv+3|𝒩(t,x,v)|dv}1β3/2{(4π)3/22eβ4gx3e16λ2βg2𝔴β,0f0Lx,v+(8π)3/2eβ8gx3841/ggβ1/2e162λ24g2βwβvhsups[0,t]eλsϱ(s)}16π3/2β3/2e16λ2βg2𝔴β,0f0Lx,v+12sups[0,t]eλsϱ(s).\begin{split}&e^{\lambda_{\infty}t}|\varrho(t,x)|\leq e^{\lambda_{\infty}t}\left\{\int_{\mathbb{R}^{3}}|\mathcal{I}(t,x,v)|\mathrm{d}v+\int_{\mathbb{R}^{3}}|\mathcal{N}(t,x,v)|\mathrm{d}v\right\}\\ &\leq\frac{1}{\beta^{3/2}}\left\{(4\pi)^{3/2}2e^{-\frac{\beta}{4}gx_{3}}e^{\frac{16\lambda_{\infty}^{2}}{\beta g^{2}}}\|\mathfrak{w}_{\beta,0}f_{0}\|_{L^{\infty}_{x,v}}\right.\\ &\left.\ \ \ \ \ \ \ \ \ \ \ \ +(8\pi)^{3/2}e^{-\frac{\beta}{8}gx_{3}}\frac{8\cdot 4^{1/g}}{g\beta^{1/2}}e^{\frac{16^{2}\lambda_{\infty}^{2}}{4g^{2}\beta}}\|w_{\beta}\nabla_{v}h\|_{\infty}\sup_{s\in[0,t]}\|e^{\lambda_{\infty}s}\varrho^{\ell}(s)\|_{\infty}\right\}\\ &\leq\frac{16\pi^{3/2}}{\beta^{3/2}}e^{\frac{16\lambda_{\infty}^{2}}{\beta g^{2}}}\|\mathfrak{w}_{\beta,0}f_{0}\|_{L^{\infty}_{x,v}}+\frac{1}{2}\sup_{s\in[0,t]}\|e^{\lambda_{\infty}s}\varrho^{\ell}(s)\|_{\infty}.\end{split} (4.16)

Here, at the last line, we have used (2.33). By absorbing the last term, we conclude (2.36). We can prove (2.37) using (2.36) and (4.11)-(4.12).∎

5. Steady solutions

For the construction of a solution to the steady problem (2.1)-(2.4), we use a sequence of solutions. For an arbitrary number \ell\in\mathbb{N}, we suppose that

ΦC2(Ω)C1(Ω¯),Φ=0onΩ,\displaystyle\Phi^{\ell}\in C^{2}(\Omega)\cap C^{1}(\bar{\Omega}),\ \Phi^{\ell}=0\ \ \text{on}\ \partial\Omega, (5.1)
|xΦ|g/4inΩ¯:=ΩΩ.\displaystyle|\nabla_{x}\Phi^{\ell}|\leq{g}/4\ \ \text{in}\ \bar{\Omega}:=\Omega\cup\partial\Omega. (5.2)

Then we can solve the characteristics (X+1(t;x,v),V+1(t;x,v))(X^{\ell+1}(t;x,v),V^{\ell+1}(t;x,v)), as in (2.12), to

dX+1dt=V+1,dV+1dt=xΦ(X+1)+g𝐞3,\frac{dX^{\ell+1}}{dt}=V^{\ell+1},\ \ \ \frac{dV^{\ell+1}}{dt}=-\nabla_{x}\Phi^{\ell}(X^{\ell+1})+g\mathbf{e}_{3}, (5.3)

with X+1(t;x,v)|t=0=xX^{\ell+1}(t;x,v)|_{t=0}=x and V+1(t;x,v)|t=0=vV^{\ell+1}(t;x,v)|_{t=0}=v and 𝐞3=(0,0,1)T\mathbf{e}_{3}=(0,0,1)^{T}. A continuous-in-(t,x,v)(t,x,v) solution exists uniquely due to the Picard theorem. As long as (X+1,V+1)Ω×3(X^{\ell+1},V^{\ell+1})\in\Omega\times\mathbb{R}^{3} exists, then

V+1(t;x,v)=v+0t(xΦ(X+1(s;x,v))+g𝐞3)ds,X+1(t;x,v)=x+vt+0t0s(xΦ(X+1(τ;x,v))+g𝐞3)dτds.\begin{split}V^{\ell+1}(t;x,v)&=v+\int^{t}_{0}\Big{(}-\nabla_{x}\Phi^{\ell}(X^{\ell+1}(s;x,v))+g\mathbf{e}_{3}\Big{)}\mathrm{d}s,\\ X^{\ell+1}(t;x,v)&=x+vt+\int^{t}_{0}\int^{s}_{0}\Big{(}-\nabla_{x}\Phi^{\ell}(X^{\ell+1}(\tau;x,v))+g\mathbf{e}_{3}\Big{)}\mathrm{d}\tau\mathrm{d}s.\end{split} (5.4)

With (X+1,V+1)(X^{\ell+1},V^{\ell+1}), we define the backward exit time, position, and velocity as in Definition 2.1:

t𝐛+1(x,v):=sup{s[0,):X3+1(τ;x,v)for all τ(0,s)}0,x𝐛+1(x,v)=X+1(t𝐛+1(x,v);x,v),v𝐛+1(x,v)=V+1(t𝐛+1(x,v);x,v).\begin{split}&t_{\mathbf{b}}^{\ell+1}(x,v):=\sup\{s\in[0,\infty):X_{3}^{\ell+1}(-\tau;x,v)\ \text{for all }\tau\in(0,s)\}\geq 0,\\ &x_{\mathbf{b}}^{\ell+1}(x,v)=X^{\ell+1}(-t_{\mathbf{b}}^{\ell+1}(x,v);x,v),\ \ v_{\mathbf{b}}^{\ell+1}(x,v)=V^{\ell+1}(-t_{\mathbf{b}}^{\ell+1}(x,v);x,v).\end{split} (5.5)

From (5.2), it is easy to check that t𝐛+1(x,v)<t_{\mathbf{b}}^{\ell+1}(x,v)<\infty for each (x,v)Ω¯×3(x,v)\in\bar{\Omega}\times\mathbb{R}^{3}.

Now we define that, for a given in-flow boundary datum GG in (1.4),

h+1(x,v)=G(x𝐛+1(x,v),v𝐛+1(x,v)).\begin{split}h^{\ell+1}(x,v)=G(x_{\mathbf{b}}^{\ell+1}(x,v),v_{\mathbf{b}}^{\ell+1}(x,v)).\end{split} (5.6)

Note that this h+1(x,v)h^{\ell+1}(x,v) is a unique solution for given Φ\Phi^{\ell} to

vxh+1x(Φ+gx3)vh+1=0\displaystyle v\cdot\nabla_{x}h^{\ell+1}-\nabla_{x}(\Phi^{\ell}+gx_{3})\cdot\nabla_{v}h^{\ell+1}=0 inΩ,\displaystyle\ \ \text{in}\ \Omega, (5.7)
h+1=G\displaystyle h^{\ell+1}=G onγ.\displaystyle\ \ \text{on}\ \gamma_{-}. (5.8)

Then we define the density

ρ+1(x)=3h+1(x,v)dvinΩ.\rho^{\ell+1}(x)=\int_{\mathbb{R}^{3}}h^{\ell+1}(x,v)\mathrm{d}v\ \ \text{in}\ \Omega. (5.9)

Next, as (2.20), we define a weight function which is invariant along the characteristics

wβ+1(x,v)=eβ(|v|2+2Φ(x)+2gx3).w^{\ell+1}_{\beta}(x,v)=e^{\beta\big{(}|v|^{2}+2\Phi^{\ell}(x)+2gx_{3}\big{)}}. (5.10)

Note that, as (2.24), at the boundary

wβ+1(x,v)=eβ|v|2onxΩ.w^{\ell+1}_{\beta}(x,v)=e^{\beta|v|^{2}}\ \ \text{on}\ x\in\partial\Omega. (5.11)

Using (5.6), (5.8), and (5.11), as long as t𝐛+1(x,v)<t_{\mathbf{b}}^{\ell+1}(x,v)<\infty, then we have

wβ+1(x,v)h+1(x,v)=wβ+1(x𝐛+1(x,v),v𝐛+1(x,v))G(x𝐛+1(x,v),v𝐛+1(x,v))=eβ|v𝐛+1(x,v)|2G(x𝐛+1(x,v),v𝐛+1(x,v)).\begin{split}w^{\ell+1}_{\beta}(x,v)h^{\ell+1}(x,v)&=w^{\ell+1}_{\beta}(x_{\mathbf{b}}^{\ell+1}(x,v),v^{\ell+1}_{\mathbf{b}}(x,v))G(x_{\mathbf{b}}^{\ell+1}(x,v),v^{\ell+1}_{\mathbf{b}}(x,v))\\ &=e^{\beta|v^{\ell+1}_{\mathbf{b}}(x,v)|^{2}}G(x_{\mathbf{b}}^{\ell+1}(x,v),v^{\ell+1}_{\mathbf{b}}(x,v)).\end{split} (5.12)
Lemma 5.1.

For an arbitrary g>0g>0 and a given xΦ\nabla_{x}\Phi^{\ell}, we assume that (5.1) and (5.2) hold. Then h+1h^{\ell+1} solving (5.7)-(5.8) and ρ+1\rho^{\ell+1} defined (5.9) satisfy the following estimates:

h+1L(Ω¯×3)\displaystyle\|h^{\ell+1}\|_{L^{\infty}(\bar{\Omega}\times\mathbb{R}^{3})} GL(γ),\displaystyle\leq\|G\|_{L^{\infty}(\gamma_{-})}, (5.13)
wβ+1h+1L(Ω¯×3)\displaystyle\|w^{\ell+1}_{\beta}h^{\ell+1}\|_{L^{\infty}(\bar{\Omega}\times\mathbb{R}^{3})} wβGL(γ),\displaystyle\leq\|w_{\beta}G\|_{L^{\infty}(\gamma_{-})}, (5.14)
eβgx3ρ+1L(Ω¯)\displaystyle\|e^{\beta gx_{3}}\rho^{\ell+1}\|_{L^{\infty}(\bar{\Omega})} π3/2β3/2wβGL(γ).\displaystyle\leq\pi^{3/2}\beta^{-3/2}\|w_{\beta}G\|_{L^{\infty}(\gamma_{-})}. (5.15)

Furthermore, Φ/x3L\Phi^{\ell}/\langle x_{3}\rangle\in L^{\infty} and

wβ+1(x,v)eβ(|v|2+gx3).w_{\beta}^{\ell+1}(x,v)\geq e^{\beta\big{(}|v|^{2}+gx_{3}\big{)}}. (5.16)
Proof.

From (5.6) and (5.12), we prove that (5.13) and (5.14), respectively.

Using (5.9) and (5.14), we have

|ρ(x)|=|3wβh(x,v)1wβ(x,v)dv|wβGL(γ)3dvwβ(x,v).\displaystyle|\rho^{\ell}(x)|=\Big{|}\int_{\mathbb{R}^{3}}w^{\ell}_{\beta}h^{\ell}(x,v)\frac{1}{w_{\beta}^{\ell}(x,v)}\mathrm{d}v\Big{|}\leq\|w_{\beta}G\|_{L^{\infty}(\gamma_{-})}\int_{\mathbb{R}^{3}}\frac{\mathrm{d}v}{w^{\ell}_{\beta}(x,v)}.

Since (5.2) holds, using (5.1) we derive that

|Φ(x,x3)|=|Φ(x,0)=0+0x33Φ(x,y3)dy3|g2x3.\begin{split}|\Phi^{\ell}(x_{\parallel},x_{3})|=\Big{|}\underbrace{\Phi^{\ell}(x_{\parallel},0)}_{=0}+\int^{x_{3}}_{0}\partial_{3}\Phi^{\ell}(x_{\parallel},y_{3})\mathrm{d}y_{3}\Big{|}\leq\frac{g}{2}x_{3}.\end{split}

Therefore we deduce that

wβ(x,v)eβ(|v|22|Φ(x)|+2gx3)eβ(|v|2+gx3),w^{\ell}_{\beta}(x,v)\geq e^{\beta\big{(}|v|^{2}-2|\Phi^{\ell}(x)|+2gx_{3}\big{)}}\geq e^{\beta\big{(}|v|^{2}+gx_{3}\big{)}},

which implies

31wβ(x,v)dv3eβ(|v|2+gx3)dv=π3/2β3/2eβgx3.\int_{\mathbb{R}^{3}}\frac{1}{w_{\beta}^{\ell}(x,v)}\mathrm{d}v\leq\int_{\mathbb{R}^{3}}e^{-\beta\big{(}|v|^{2}+gx_{3}\big{)}}\mathrm{d}v=\frac{\pi^{3/2}}{\beta^{3/2}}e^{-\beta gx_{3}}.

Therefore we conclude (5.15). In addition, we have derived (5.16). ∎

Next, we move to construct h+2h^{\ell+2}. The starting point is defining Φ+1(x):=ηΩG(x,y)ρ+1(y)dy\Phi^{\ell+1}(x):=\eta\int_{\Omega}G(x,y)\rho^{\ell+1}(y)\mathrm{d}y as (3.2). From (3.1), we deduce that Φ+1\Phi^{\ell+1} is a weak solution to

ΔΦ+1=ηρ+1in ΩΦ+1=0on Ω.\Delta\Phi^{\ell+1}=\eta\rho^{\ell+1}\ \ \text{in $\Omega$, }\ \Phi^{\ell+1}=0\ \ \text{on $\partial\Omega$.} (5.17)

To repeat the process to construct h+2h^{\ell+2} as in (5.3), we verify that Φ+1C2(Ω)C1(Ω¯)\Phi^{\ell+1}\in C^{2}(\Omega)\cap C^{1}(\bar{\Omega}). We achieve this by establishing the regularity estimate of h+1h^{\ell+1} and ρ+1\rho^{\ell+1} and then using an elliptic estimate to (5.17).

5.1. Regularity Estimate

In this section, we establish a regularity estimate of (h+1,ρ+1)(h^{\ell+1},\rho^{\ell+1}) which are given in (5.6) and (5.9). We utilize the kinetic distance function (2.49):

α+1(x,v)=|v3|2+|x3|2+2x3Φ(x,0)x3+2gx3.\alpha^{\ell+1}(x,v)=\sqrt{|v_{3}|^{2}+|x_{3}|^{2}+2\partial_{x_{3}}\Phi^{\ell}(x_{\parallel},0)x_{3}+2gx_{3}}. (5.18)
Lemma 5.2.

Suppose a condition (5.2) holds. For all (x,v)Ω×3(x,v)\in\Omega\times\mathbb{R}^{3} and t[t𝐛+1(x,v),0]t\in[-t_{\mathbf{b}}^{\ell+1}(x,v),0],

α+1(X+1(t;x,v),V+1(t;x,v))α+1(x,v)e(1+x32ΦL(Ω))|t|e1gxx3ΦL(Ω)0|t||V+1(s;x,v)|ds,α+1(X+1(t;x,v),V+1(t;x,v))α+1(x,v)e(1+x32ΦL(Ω))|t|e1gxx3ΦL(Ω)|t|0|V+1(s;x,v)|ds.\begin{split}&\alpha^{\ell+1}(X^{\ell+1}(t;x,v),V^{\ell+1}(t;x,v))\\ &\leq\alpha^{\ell+1}(x,v)e^{(1+\|\partial_{x_{3}}^{2}\Phi^{\ell}\|_{L^{\infty}({\Omega})})|t|}e^{\frac{1}{g}\|\nabla_{x_{\parallel}}\partial_{x_{3}}\Phi^{\ell}\|_{L^{\infty}(\partial\Omega)}\int_{0}^{|t|}|V_{\parallel}^{\ell+1}(s;x,v)|\mathrm{d}s},\\ &\alpha^{\ell+1}(X^{\ell+1}(t;x,v),V^{\ell+1}(t;x,v))\\ &\geq\alpha^{\ell+1}(x,v)e^{-(1+\|\partial_{x_{3}}^{2}\Phi^{\ell}\|_{L^{\infty}({\Omega})})|t|}e^{\frac{-1}{g}\|\nabla_{x_{\parallel}}\partial_{x_{3}}\Phi^{\ell}\|_{L^{\infty}(\partial\Omega)}\int^{0}_{|t|}|V^{\ell+1}_{\parallel}(s;x,v)|\mathrm{d}s}.\end{split} (5.19)

In particular, the last inequality implies that

|v𝐛,3+1(x,v)|α+1(x,v)e(1+x32ΦL(Ω¯))t𝐛+1(x,v)e1gxx3ΦL(Ω)t𝐛+1(x,v)0|V+1(s;x,v)|ds.|v_{\mathbf{b},3}^{\ell+1}(x,v)|\geq\alpha^{\ell+1}(x,v)e^{-(1+\|\partial_{x_{3}}^{2}\Phi^{\ell}\|_{L^{\infty}(\bar{\Omega})})t_{\mathbf{b}}^{\ell+1}(x,v)}e^{\frac{-1}{g}\|\nabla_{x_{\parallel}}\partial_{x_{3}}\Phi^{\ell}\|_{L^{\infty}(\partial\Omega)}\int_{-t_{\mathbf{b}}^{\ell+1}(x,v)}^{0}|V_{\parallel}^{\ell+1}(s;x,v)|\mathrm{d}s}. (5.20)
Proof.

Note that

[vxx(Φ(x)+gx3)v]|v3|2+|x3|2+2x3Φ(x,0)x3+2gx3=(x3Φ(x)+g)v3+v3x3+3Φ(x,0)v3+gv3+vx3Φ(x,0)x3|v3|2+|x3|2+x3Φ(x,0)x3+2gx3(1+33ΦL(Ω))|v3||x3|+|v|3ΦL(Ω)|x3||v3|2+|x3|2+2x3Φ(x,0)x3+2gx3,\begin{split}&[v\cdot\nabla_{x}-\nabla_{x}(\Phi^{\ell}(x)+gx_{3})\cdot\nabla_{v}]\sqrt{{|v_{3}|^{2}}+{|x_{3}|^{2}}+2\partial_{x_{3}}\Phi^{\ell}(x_{\parallel},0)x_{3}+2gx_{3}}\\ &=\frac{-(\partial_{x_{3}}\Phi^{\ell}(x)+g)v_{3}+v_{3}x_{3}+\partial_{3}\Phi^{\ell}(x_{\parallel},0)v_{3}+gv_{3}+v_{\parallel}\cdot\nabla_{x_{\parallel}}\partial_{3}\Phi^{\ell}(x_{\parallel},0)x_{3}}{\sqrt{{|v_{3}|^{2}}+{|x_{3}|^{2}}+\partial_{x_{3}}\Phi^{\ell}(x_{\parallel},0)x_{3}+2gx_{3}}}\\ &\leq\frac{\big{(}1+\|\partial_{3}\partial_{3}\Phi^{\ell}\|_{L^{\infty}(\Omega)}\big{)}|v_{3}||x_{3}|+|v_{\parallel}|\|\nabla_{\parallel}\partial_{3}\Phi^{\ell}\|_{L^{\infty}(\partial\Omega)}|x_{3}|}{\sqrt{{|v_{3}|^{2}}+{|x_{3}|^{2}}+2\partial_{x_{3}}\Phi^{\ell}(x_{\parallel},0)x_{3}+2gx_{3}}},\end{split}

where we have used 3Φ(x,x3)+3Φ(x,0)=x3033Φ(x,y3)dy3-\partial_{3}\Phi^{\ell}(x_{\parallel},x_{3})+\partial_{3}\Phi^{\ell}(x_{\parallel},0)=\int^{0}_{x_{3}}\partial_{3}\partial_{3}\Phi^{\ell}(x_{\parallel},y_{3})\mathrm{d}y_{3}.

Using (2.44), we deduce that

|[vxx(Φ(x)+gx3)v]α+1(x,v)|(1+x3x3ΦL(Ω)+1g|v|x3ΦL(Ω))α+1(x,v).\begin{split}&\big{|}[v\cdot\nabla_{x}-\nabla_{x}(\Phi^{\ell}(x)+gx_{3})\cdot\nabla_{v}]\alpha^{\ell+1}(x,v)\big{|}\\ &\leq\big{(}1+\|\partial_{x_{3}}\partial_{x_{3}}\Phi^{\ell}\|_{L^{\infty}(\Omega)}+\frac{1}{g}|v_{\parallel}|\|\nabla_{\parallel}\partial_{x_{3}}\Phi^{\ell}\|_{L^{\infty}(\partial\Omega)}\big{)}\alpha^{\ell+1}(x,v).\end{split}

By the Gronwall’s inequality, we conclude both inequalities of (5.19). The inequality (5.20) is a direct consequence of (5.19).∎

Lemma 5.3.

Suppose a condition (5.2) holds. Then

t𝐛+1(x,v)2gmin{|v3|2+gx3v3,|v𝐛,3+1(x,v)|2gx3+v𝐛,3+1(x,v)},t_{\mathbf{b}}^{\ell+1}(x,v)\leq\frac{2}{g}\min\Big{\{}\sqrt{|v_{3}|^{2}+gx_{3}}-v_{3},\sqrt{|v^{\ell+1}_{\mathbf{b},3}(x,v)|^{2}-gx_{3}}+v^{\ell+1}_{\mathbf{b},3}(x,v)\Big{\}}, (5.21)
|v𝐛,3+1(x,v)|α+1(x,v)e4g(1+x32ΦL(Ω))|v𝐛,3+1|e4g2xx3ΦL(Ω)(1+2gxΦL(Ω))|v𝐛+1|2.|v_{\mathbf{b},3}^{\ell+1}(x,v)|\geq{\alpha^{\ell+1}(x,v)}e^{-\frac{4}{g}(1+\|\partial_{x_{3}}^{2}\Phi^{\ell}\|_{L^{\infty}(\Omega)})|v_{\mathbf{b},3}^{\ell+1}|}e^{-\frac{4}{g^{2}}\|\nabla_{x_{\parallel}}\partial_{x_{3}}\Phi^{\ell}\|_{L^{\infty}(\partial\Omega)}(1+\frac{2}{g}\|\nabla_{x}\Phi^{\ell}\|_{L^{\infty}(\Omega)})|v_{\mathbf{b}}^{\ell+1}|^{2}}. (5.22)
Proof.

The proof of (5.21) follows one for (2.26). Now we prove (5.22). Using (5.20), (5.3), and (5.21), we have

t𝐛+1(x,v)0|V+1(s;x,v)|ds|v𝐛+1|t𝐛+1+|t𝐛+1|22xΦL(Ω)4g(1+2gxΦL(Ω))|v𝐛+1|2,\int_{-t_{\mathbf{b}}^{\ell+1}(x,v)}^{0}|V_{\parallel}^{\ell+1}(s;x,v)|\mathrm{d}s\leq|v_{\mathbf{b}}^{\ell+1}|t_{\mathbf{b}}^{\ell+1}+\frac{|t_{\mathbf{b}}^{\ell+1}|^{2}}{2}\|\nabla_{x}\Phi^{\ell}\|_{L^{\infty}(\Omega)}\leq\frac{4}{g}\Big{(}1+\frac{2}{g}\|\nabla_{x}\Phi^{\ell}\|_{L^{\infty}(\Omega)}\Big{)}|v_{\mathbf{b}}^{\ell+1}|^{2},

and therefore we prove (5.22). ∎

Lemma 5.4.

Suppose (5.4) holds for all (t,x,v)(t,x,v). Then

xiXj+1(t;x,v)=δij+0txiVj+1(s;x,v)ds=δij0t0sxiX+1(τ;x,v)xxjΦ(X+1(τ;x,v))dτds,xiVj+1(t;x,v)=0txiX+1(s;x,v)xxjΦ(X+1(s;x,v))ds,\begin{split}\partial_{x_{i}}X^{\ell+1}_{j}(t;x,v)&=\delta_{ij}+\int^{t}_{0}\partial_{x_{i}}V^{\ell+1}_{j}(s;x,v)\mathrm{d}s\\ &=\delta_{ij}-\int^{t}_{0}\int^{s}_{0}\partial_{x_{i}}X^{\ell+1}(\tau;x,v)\cdot\nabla_{x}\partial_{x_{j}}\Phi(X^{\ell+1}(\tau;x,v))\mathrm{d}\tau\mathrm{d}s,\\ \partial_{x_{i}}V^{\ell+1}_{j}(t;x,v)&=-\int^{t}_{0}\partial_{x_{i}}X^{\ell+1}(s;x,v)\cdot\nabla_{x}\partial_{x_{j}}\Phi^{\ell}(X^{\ell+1}(s;x,v))\mathrm{d}s,\end{split} (5.23)

and

viXj+1(t;x,v)=0tviVj+1(s;x,v)ds=tδij0t0sviX+1(τ;x,v)xxjΦ(X+1(τ;x,v))dτds,viVj+1(t;x,v)=δij0tviX+1(s;x,v)xxjΦ(X+1(s;x,v))ds.\begin{split}\partial_{v_{i}}X^{\ell+1}_{j}(t;x,v)&=\int^{t}_{0}\partial_{v_{i}}V^{\ell+1}_{j}(s;x,v)\mathrm{d}s\\ &=t\delta_{ij}-\int^{t}_{0}\int^{s}_{0}\partial_{v_{i}}X^{\ell+1}(\tau;x,v)\cdot\nabla_{x}\partial_{x_{j}}\Phi^{\ell}(X^{\ell+1}(\tau;x,v))\mathrm{d}\tau\mathrm{d}s,\\ \partial_{v_{i}}V^{\ell+1}_{j}(t;x,v)&=\delta_{ij}-\int^{t}_{0}\partial_{v_{i}}X^{\ell+1}(s;x,v)\cdot\nabla_{x}\partial_{x_{j}}\Phi^{\ell}(X^{\ell+1}(s;x,v))\mathrm{d}s.\end{split} (5.24)

Moreover,

|xX+1(t;x,v)|\displaystyle|\nabla_{x}X^{\ell+1}(t;x,v)| min{et22x2ΦL(Ω),e(1+x2ΦL(Ω))t},\displaystyle\leq\min\big{\{}e^{\frac{t^{2}}{2}\|\nabla_{x}^{2}\Phi^{\ell}\|_{L^{\infty}(\Omega)}},e^{(1+\|\nabla_{x}^{2}\Phi^{\ell}\|_{L^{\infty}(\Omega)})t}\big{\}}, (5.25)
|xV+1(t;x,v)|\displaystyle|\nabla_{x}V^{\ell+1}(t;x,v)| min{tx2ΦL(Ω)et22x2ΦL(Ω),e(1+x2ΦL(Ω))t},\displaystyle\leq\min\big{\{}t\|\nabla_{x}^{2}\Phi^{\ell}\|_{L^{\infty}(\Omega)}e^{\frac{t^{2}}{2}\|\nabla_{x}^{2}\Phi^{\ell}\|_{L^{\infty}(\Omega)}},e^{(1+\|\nabla_{x}^{2}\Phi\|_{L^{\infty}(\Omega)})t}\big{\}}, (5.26)
|vX+1(t;x,v)|\displaystyle|\nabla_{v}X^{\ell+1}(t;x,v)| min{tet22x2ΦL(Ω),e(1+x2ΦL(Ω))t},\displaystyle\leq\min\big{\{}te^{\frac{t^{2}}{2}\|\nabla_{x}^{2}\Phi^{\ell}\|_{L^{\infty}(\Omega)}},e^{(1+\|\nabla_{x}^{2}\Phi\|_{L^{\infty}(\Omega)})t}\big{\}}, (5.27)
|vV+1(t;x,v)|\displaystyle|\nabla_{v}V^{\ell+1}(t;x,v)| min{et22x2ΦL(Ω),e(1+x2ΦL(Ω))t}.\displaystyle\leq\min\big{\{}e^{\frac{t^{2}}{2}\|\nabla_{x}^{2}\Phi^{\ell}\|_{L^{\infty}(\Omega)}},e^{(1+\|\nabla_{x}^{2}\Phi^{\ell}\|_{L^{\infty}(\Omega)})t}\big{\}}. (5.28)
Proof.

From (5.4), we directly compute (5.23) and (5.24).

For xiXj+1\partial_{x_{i}}X^{\ell+1}_{j} and viXj+1\partial_{v_{i}}X^{\ell+1}_{j}, we change the order of integrals in each last double integral to get

xiXj+1=δij0t(tτ)xiX+1(τ;x,v)xxjΦ(X+1(τ;x,v))dτ,viXj+1=tδij0t(tτ)viX+1(τ;x,v)xxjΦ(X+1(τ;x,v))dτ.\begin{split}\partial_{x_{i}}X_{j}^{\ell+1}&=\delta_{ij}-\int^{t}_{0}(t-\tau)\partial_{x_{i}}X^{\ell+1}(\tau;x,v)\cdot\nabla_{x}\partial_{x_{j}}\Phi^{\ell}(X^{\ell+1}(\tau;x,v))\mathrm{d}\tau,\\ \partial_{v_{i}}X_{j}^{\ell+1}&=t\delta_{ij}-\int^{t}_{0}(t-\tau)\partial_{v_{i}}X^{\ell+1}(\tau;x,v)\cdot\nabla_{x}\partial_{x_{j}}\Phi^{\ell}(X^{\ell+1}(\tau;x,v))\mathrm{d}\tau.\end{split}

Now applying the Gronwall’s inequality, we derive that

|xiX+1(t;x,v)|e0t(tτ)x2ΦL(Ω)dτet22x2ΦL(Ω),|viX+1(t;x,v)|te0t(tτ)x2ΦL(Ω)dτtet22x2ΦL(Ω).\begin{split}|\partial_{x_{i}}X^{\ell+1}(t;x,v)|&\leq e^{\int^{t}_{0}(t-\tau)\|\nabla_{x}^{2}\Phi^{\ell}\|_{L^{\infty}(\Omega)}\mathrm{d}\tau}\leq e^{\frac{t^{2}}{2}\|\nabla_{x}^{2}\Phi^{\ell}\|_{L^{\infty}(\Omega)}},\\ |\partial_{v_{i}}X^{\ell+1}(t;x,v)|&\leq te^{\int^{t}_{0}(t-\tau)\|\nabla_{x}^{2}\Phi^{\ell}\|_{L^{\infty}(\Omega)}\mathrm{d}\tau}\leq te^{\frac{t^{2}}{2}\|\nabla_{x}^{2}\Phi^{\ell}\|_{L^{\infty}(\Omega)}}.\end{split} (5.29)

Next using (5.29) and the second identities of (5.23), we have

|xiVj+1(t;x,v)|tx2ΦL(Ω)et22x2ΦL(Ω).|\partial_{x_{i}}V_{j}^{\ell+1}(t;x,v)|\leq t\|\nabla_{x}^{2}\Phi^{\ell}\|_{L^{\infty}(\Omega)}e^{\frac{t^{2}}{2}\|\nabla_{x}^{2}\Phi^{\ell}\|_{L^{\infty}(\Omega)}}. (5.30)

From the second line of (5.24) and the viv_{i}-derivative to the first line of (5.4), we obtain that

|viVj+1(t;x,v)|=|δij0t0sviVj+1(τ;x,v)xxjΦ(X+1(s;x,v))dτds|=|δij0tviV+1(τ;x,v)τtxxjΦ(X+1(s;x,v))dsdτ|δij+0t(tτ)x2ΦL(Ω)|viV+1(τ;x,v)|dτ,\begin{split}|\partial_{v_{i}}V^{\ell+1}_{j}(t;x,v)|&=\Big{|}\delta_{ij}-\int^{t}_{0}\int^{s}_{0}\partial_{v_{i}}V^{\ell+1}_{j}(\tau;x,v)\cdot\nabla_{x}\partial_{x_{j}}\Phi^{\ell}(X^{\ell+1}(s;x,v))\mathrm{d}\tau\mathrm{d}s\Big{|}\\ &=\Big{|}\delta_{ij}-\int^{t}_{0}\partial_{v_{i}}V^{\ell+1}(\tau;x,v)\cdot\int_{\tau}^{t}\nabla_{x}\partial_{x_{j}}\Phi^{\ell}(X^{\ell+1}(s;x,v))\mathrm{d}s\mathrm{d}\tau\Big{|}\\ &\leq\delta_{ij}+\int_{0}^{t}(t-\tau)\|\nabla_{x}^{2}\Phi^{\ell}\|_{L^{\infty}(\Omega)}|\partial_{v_{i}}V^{\ell+1}(\tau;x,v)|\mathrm{d}\tau,\end{split}

and hence, by the Gronwall’s inequality,

|viV+1(t;x,v)|et22x2ΦL(Ω).|\partial_{v_{i}}V^{\ell+1}(t;x,v)|\leq e^{\frac{t^{2}}{2}\|\nabla_{x}^{2}\Phi^{\ell}\|_{L^{\infty}(\Omega)}}. (5.31)

On the other hand, we could derive the following inequalities by adding the first equalities of (5.23) and (5.24):

|xX+1(t;x,v)|+|xV+1(t;x,v)|1+0t{1+|x2Φ(X(s;x,v))|}{|xX+1|+|xV+1|}ds,|vX+1(t;x,v)|+|vV+1(t;x,v)|1+0t{1+|x2Φ(X+1(s;x,v))|}{|vV+1|+|vX+1|}ds.\begin{split}|\nabla_{x}X^{\ell+1}(t;x,v)|+|\nabla_{x}V^{\ell+1}(t;x,v)|\leq 1+\int^{t}_{0}\{1+|\nabla_{x}^{2}\Phi^{\ell}(X(s;x,v))|\}\{|\nabla_{x}X^{\ell+1}|+|\nabla_{x}V^{\ell+1}|\}\mathrm{d}s,\\ |\nabla_{v}X^{\ell+1}(t;x,v)|+|\nabla_{v}V^{\ell+1}(t;x,v)|\leq 1+\int^{t}_{0}\{1+|\nabla_{x}^{2}\Phi^{\ell}(X^{\ell+1}(s;x,v))|\}\{|\nabla_{v}V^{\ell+1}|+|\nabla_{v}X^{\ell+1}|\}\mathrm{d}s.\end{split}

Using the Gronwall’s inequality, we derive that

|xX+1(t;x,v)|+|xV+1(t;x,v)|e(1+x2ΦL(Ω))t,|vX+1(t;x,v)|+|vV+1(t;x,v)|e(1+x2ΦL(Ω))t.\begin{split}|\nabla_{x}X^{\ell+1}(t;x,v)|+|\nabla_{x}V^{\ell+1}(t;x,v)|\leq e^{(1+\|\nabla_{x}^{2}\Phi^{\ell}\|_{L^{\infty}(\Omega)})t},\\ |\nabla_{v}X^{\ell+1}(t;x,v)|+|\nabla_{v}V^{\ell+1}(t;x,v)|\leq e^{(1+\|\nabla_{x}^{2}\Phi^{\ell}\|_{L^{\infty}(\Omega)})t}.\end{split} (5.32)

Finally we finish the proof of (5.25)-(5.28) by combining (5.29), (5.30), (5.31), and (5.32). ∎

Lemma 5.5.

Recall (t𝐛+1(x,v),x𝐛+1(x,v),v𝐛+1(x,v))(t_{\mathbf{b}}^{\ell+1}(x,v),x_{\mathbf{b}}^{\ell+1}(x,v),v_{\mathbf{b}}^{\ell+1}(x,v)) in Definition 2.1. The following identities hold:

xit𝐛+1(x,v)=xiX3+1(t𝐛+1(x,v);x,v)v𝐛,3+1(x,v)=1v𝐛,3+1(x,v){δi30t𝐛+1(x,v)0sxiX+1(τ;x,v)xx3Φ(X+1(τ;x,v))dτds},\begin{split}&\partial_{x_{i}}t_{\mathbf{b}}^{\ell+1}(x,v)=\frac{\partial_{x_{i}}X_{3}^{\ell+1}(-t_{\mathbf{b}}^{\ell+1}(x,v);x,v)}{v^{\ell+1}_{\mathbf{b},3}(x,v)}\\ &\ \ =\frac{1}{v^{\ell+1}_{\mathbf{b},3}(x,v)}\Big{\{}\delta_{i3}-\int^{-t_{\mathbf{b}}^{\ell+1}(x,v)}_{0}\int^{s}_{0}\partial_{x_{i}}X^{\ell+1}(\tau;x,v)\cdot\nabla_{x}\partial_{x_{3}}\Phi^{\ell}(X^{\ell+1}(\tau;x,v))\mathrm{d}\tau\mathrm{d}s\Big{\}},\end{split} (5.33)
vit𝐛+1(x,v)=viX3+1(t𝐛+1(x,v);x,v)v𝐛,3+1(x,v)=1v𝐛,3+1(x,v){t𝐛+1(x,v)δi30t𝐛+1(x,v)0sviX+1(τ;x,v)xx3Φ(X+1(τ;x,v))dτds},\begin{split}&\partial_{v_{i}}t_{\mathbf{b}}^{\ell+1}(x,v)=\frac{\partial_{v_{i}}X_{3}^{\ell+1}(-t_{\mathbf{b}}^{\ell+1}(x,v);x,v)}{v_{\mathbf{b},3}^{\ell+1}(x,v)}\\ &=\frac{1}{v_{\mathbf{b},3}^{\ell+1}(x,v)}\Big{\{}t_{\mathbf{b}}^{\ell+1}(x,v)\delta_{i3}-\int^{-t_{\mathbf{b}}^{\ell+1}(x,v)}_{0}\int^{s}_{0}\partial_{v_{i}}X^{\ell+1}(\tau;x,v)\cdot\nabla_{x}\partial_{x_{3}}\Phi^{\ell}(X^{\ell+1}(\tau;x,v))\mathrm{d}\tau\mathrm{d}s\Big{\}},\end{split} (5.34)

and

xix𝐛+1(x,v)=xiX3+1(t𝐛+1(x,v);x,v)v𝐛,3+1v𝐛+1(x,v)+xiX+1(t𝐛+1(x,v);x,v),\partial_{x_{i}}x_{\mathbf{b}}^{\ell+1}(x,v)=-\frac{\partial_{x_{i}}X^{\ell+1}_{3}(-t_{\mathbf{b}}^{\ell+1}(x,v);x,v)}{v_{\mathbf{b},3}^{\ell+1}}v_{\mathbf{b}}^{\ell+1}(x,v)+\partial_{x_{i}}X^{\ell+1}(-t_{\mathbf{b}}^{\ell+1}(x,v);x,v), (5.35)
vix𝐛+1(x,v)=viX3+1(t𝐛+1(x,v);x,v)v𝐛,3+1v𝐛+1(x,v)+viX+1(t𝐛+1(x,v);x,v),\partial_{v_{i}}x_{\mathbf{b}}^{\ell+1}(x,v)=-\frac{\partial_{v_{i}}X_{3}^{\ell+1}(-t_{\mathbf{b}}^{\ell+1}(x,v);x,v)}{v_{\mathbf{b},3}^{\ell+1}}v_{\mathbf{b}}^{\ell+1}(x,v)+\partial_{v_{i}}X^{\ell+1}(-t_{\mathbf{b}}^{\ell+1}(x,v);x,v), (5.36)

and

xiv𝐛+1(x,v)=xiX3+1(t𝐛+1(x,v);x,v)v𝐛,3+1(x,v)xΦ(x𝐛+1(x,v))0t𝐛+1(x,v)(xiX+1(s;x,v)x)xΦ(X+1(s;x,v))ds,\begin{split}\partial_{x_{i}}v_{\mathbf{b}}^{\ell+1}(x,v)&=\frac{\partial_{x_{i}}X_{3}^{\ell+1}(-t_{\mathbf{b}}^{\ell+1}(x,v);x,v)}{v^{\ell+1}_{\mathbf{b},3}(x,v)}\nabla_{x}\Phi^{\ell}(x_{\mathbf{b}}^{\ell+1}(x,v))\\ &\ \ -\int^{-t_{\mathbf{b}}^{\ell+1}(x,v)}_{0}(\partial_{x_{i}}X^{\ell+1}(s;x,v)\cdot\nabla_{x})\nabla_{x}\Phi^{\ell}(X^{\ell+1}(s;x,v))\mathrm{d}s,\end{split} (5.37)
viv𝐛+1(x,v)=viX3+1(t𝐛+1(x,v);x,v)v𝐛,3+1(x,v)xΦ(x𝐛+1(x,v))+ei0t𝐛+1(x,v)(viX+1(s;x,v)x)xΦ(X+1(s;x,v))ds.\begin{split}\partial_{v_{i}}v_{\mathbf{b}}^{\ell+1}(x,v)&=\frac{\partial_{v_{i}}X_{3}^{\ell+1}(-t_{\mathbf{b}}^{\ell+1}(x,v);x,v)}{v_{\mathbf{b},3}^{\ell+1}(x,v)}\nabla_{x}\Phi^{\ell}(x_{\mathbf{b}}^{\ell+1}(x,v))\\ &\ \ +e_{i}-\int^{-t_{\mathbf{b}}^{\ell+1}(x,v)}_{0}(\partial_{v_{i}}X^{\ell+1}(s;x,v)\cdot\nabla_{x})\nabla_{x}\Phi^{\ell}(X^{\ell+1}(s;x,v))\mathrm{d}s.\end{split} (5.38)
Proof.

By taking derivatives to X3+1(t𝐛+1(x,v);x,v)=0X^{\ell+1}_{3}(-t_{\mathbf{b}}^{\ell+1}(x,v);x,v)=0 (see (2.1)), we get

xit𝐛+1(x,v)V3+1(t𝐛+1(x,v);x,v)+xiX3+1(t𝐛+1(x,v);x,v)=0,vit𝐛+1(x,v)V3+1(t𝐛+1(x,v);x,v)+viX3+1(t𝐛+1(x,v);x,v)=0,\begin{split}-\partial_{x_{i}}t_{\mathbf{b}}^{\ell+1}(x,v)V_{3}^{\ell+1}(-t_{\mathbf{b}}^{\ell+1}(x,v);x,v)+\partial_{x_{i}}X_{3}^{\ell+1}(-t_{\mathbf{b}}^{\ell+1}(x,v);x,v)&=0,\\ -\partial_{v_{i}}t_{\mathbf{b}}^{\ell+1}(x,v)V_{3}^{\ell+1}(-t_{\mathbf{b}}^{\ell+1}(x,v);x,v)+\partial_{v_{i}}X_{3}^{\ell+1}(-t_{\mathbf{b}}^{\ell+1}(x,v);x,v)&=0,\end{split}

which imply the first identities of (5.33) and (LABEL:tb_v). Then using the first identity of (5.23), we derive (5.33). Similarly, using the first identity of (5.24), we have (LABEL:tb_v).

By taking derivatives to x𝐛+1(x,v)x_{\mathbf{b}}^{\ell+1}(x,v) in (2.17), we derive that

xix𝐛+1=xit𝐛+1v𝐛+1+xiX+1(t𝐛+1;x,v),vix𝐛+1=vit𝐛+1v𝐛+1+viX+1(t𝐛+1;x,v).\begin{split}\partial_{x_{i}}x_{\mathbf{b}}^{\ell+1}&=-\partial_{x_{i}}t_{\mathbf{b}}^{\ell+1}v_{\mathbf{b}}^{\ell+1}+\partial_{x_{i}}X^{\ell+1}(-t_{\mathbf{b}}^{\ell+1};x,v),\\ \partial_{v_{i}}x_{\mathbf{b}}^{\ell+1}&=-\partial_{v_{i}}t_{\mathbf{b}}^{\ell+1}v_{\mathbf{b}}^{\ell+1}+\partial_{v_{i}}X^{\ell+1}(-t_{\mathbf{b}}^{\ell+1};x,v).\end{split}

Then using the first identities of (5.23) and (5.24), we conclude (5.35) and (5.36).

Finally we take derivatives to v𝐛+1(x,v)v_{\mathbf{b}}^{\ell+1}(x,v) in (2.17)

xiv𝐛+1(x,v)=xit𝐛+1(x,v)V˙+1(t𝐛+1(x,v);x,v)+xiV+1(t𝐛+1(x,v);x,v)=xit𝐛+1(x,v)xΦ(x𝐛+1(x,v))+xiV+1(t𝐛+1(x,v);x,v),viv𝐛+1(x,v)=vit𝐛+1(x,v)xΦ(x𝐛+1(x,v))+viV+1(t𝐛+1(x,v);x,v).\begin{split}\partial_{x_{i}}v_{\mathbf{b}}^{\ell+1}(x,v)&=-\partial_{x_{i}}t_{\mathbf{b}}^{\ell+1}(x,v)\dot{V}^{\ell+1}(-t_{\mathbf{b}}^{\ell+1}(x,v);x,v)+\partial_{x_{i}}V^{\ell+1}(-t_{\mathbf{b}}^{\ell+1}(x,v);x,v)\\ &=\partial_{x_{i}}t_{\mathbf{b}}^{\ell+1}(x,v)\nabla_{x}\Phi^{\ell}(x_{\mathbf{b}}^{\ell+1}(x,v))+\partial_{x_{i}}V^{\ell+1}(-t_{\mathbf{b}}^{\ell+1}(x,v);x,v),\\ \partial_{v_{i}}v_{\mathbf{b}}^{\ell+1}(x,v)&=\partial_{v_{i}}t_{\mathbf{b}}^{\ell+1}(x,v)\nabla_{x}\Phi^{\ell}(x_{\mathbf{b}}^{\ell+1}(x,v))+\partial_{v_{i}}V^{\ell+1}(-t_{\mathbf{b}}^{\ell+1}(x,v);x,v).\end{split}

Finally we use the second identities of (5.23) and (5.24) and conclude (5.37) and (5.38). ∎

Lemma 5.6.
|xix𝐛+1(x,v)||v𝐛+1(x,v)||v𝐛,3+1(x,v)|δi3+(1+|v𝐛+1(x,v)||v𝐛,3+1(x,v)||t𝐛+1(x,v)|22x2Φ)min{e|t𝐛+1|22x2Φ,e(1+x2Φ)t𝐛},\begin{split}&|\partial_{x_{i}}x_{\mathbf{b}}^{\ell+1}(x,v)|\leq\frac{|v_{\mathbf{b}}^{\ell+1}(x,v)|}{|v_{\mathbf{b},3}^{\ell+1}(x,v)|}\delta_{i3}\\ &\ \ +\Big{(}1+\frac{|v_{\mathbf{b}}^{\ell+1}(x,v)|}{|v_{\mathbf{b},3}^{\ell+1}(x,v)|}\frac{|t_{\mathbf{b}}^{\ell+1}(x,v)|^{2}}{2}\|\nabla_{x}^{2}\Phi^{\ell}\|_{\infty}\Big{)}\min\big{\{}e^{\frac{|t_{\mathbf{b}}^{\ell+1}|^{2}}{2}\|\nabla_{x}^{2}\Phi^{\ell}\|_{\infty}},e^{(1+\|\nabla_{x}^{2}\Phi^{\ell}\|_{\infty})t_{\mathbf{b}}}\big{\}},\end{split} (5.39)
|vix𝐛+1(x,v)||v𝐛+1(x,v)||t𝐛+1(x,v)||v𝐛,3+1(x,v)|δi3+(1+|v𝐛+1(x,v)||v𝐛,3+1(x,v)||t𝐛+1(x,v)|22x2Φ)min{t𝐛e|t𝐛+1|22x2Φ,e(1+x2Φ)t𝐛},\begin{split}&|\partial_{v_{i}}x_{\mathbf{b}}^{\ell+1}(x,v)|\leq\frac{|v_{\mathbf{b}}^{\ell+1}(x,v)||t_{\mathbf{b}}^{\ell+1}(x,v)|}{|v_{\mathbf{b},3}^{\ell+1}(x,v)|}\delta_{i3}\\ &\ \ +\Big{(}1+\frac{|v_{\mathbf{b}}^{\ell+1}(x,v)|}{|v_{\mathbf{b},3}^{\ell+1}(x,v)|}\frac{|t_{\mathbf{b}}^{\ell+1}(x,v)|^{2}}{2}\|\nabla_{x}^{2}\Phi^{\ell}\|_{\infty}\Big{)}\min\big{\{}t_{\mathbf{b}}e^{\frac{|t_{\mathbf{b}}^{\ell+1}|^{2}}{2}\|\nabla_{x}^{2}\Phi^{\ell}\|_{\infty}},e^{(1+\|\nabla_{x}^{2}\Phi^{\ell}\|_{\infty})t_{\mathbf{b}}}\big{\}},\end{split} (5.40)
|xiv𝐛,j+1(x,v)|δi3|xjΦ(x𝐛+1(x,v))||v𝐛,3+1(x,v)|+(1+|t𝐛+1(x,v)|xΦ|v𝐛,3+1(x,v)|)|t𝐛+1(x,v)|x2Φmin{e|t𝐛+1|22x2Φ,e(1+x2Φ)t𝐛},\begin{split}&|\partial_{x_{i}}v_{\mathbf{b},j}^{\ell+1}(x,v)|\leq\delta_{i3}\frac{|\partial_{x_{j}}\Phi^{\ell}(x_{\mathbf{b}}^{\ell+1}(x,v))|}{|v_{\mathbf{b},3}^{\ell+1}(x,v)|}\\ &\ \ +\Big{(}1+\frac{|t_{\mathbf{b}}^{\ell+1}(x,v)|\|\nabla_{x}\Phi^{\ell}\|_{\infty}}{|v_{\mathbf{b},3}^{\ell+1}(x,v)|}\Big{)}|t_{\mathbf{b}}^{\ell+1}(x,v)|\|\nabla_{x}^{2}\Phi^{\ell}\|_{\infty}\min\big{\{}e^{\frac{|t_{\mathbf{b}}^{\ell+1}|^{2}}{2}\|\nabla_{x}^{2}\Phi^{\ell}\|_{\infty}},e^{(1+\|\nabla_{x}^{2}\Phi^{\ell}\|_{\infty})t_{\mathbf{b}}}\big{\}},\end{split} (5.41)
|viv𝐛,j+1(x,v)|δi3|t𝐛+1(x,v)||xjΦ(x𝐛+1(x,v))||v𝐛,3+1(x,v)|+δij+(1+|t𝐛+1(x,v)|xΦ|v𝐛,3+1(x,v)|)|t𝐛+1(x,v)|x2Φmin{t𝐛+1e|t𝐛+1|22x2Φ,e(1+x2Φ)t𝐛}.\begin{split}&|\partial_{v_{i}}v_{\mathbf{b},j}^{\ell+1}(x,v)|\leq\delta_{i3}\frac{|t_{\mathbf{b}}^{\ell+1}(x,v)||\partial_{x_{j}}\Phi^{\ell}(x_{\mathbf{b}}^{\ell+1}(x,v))|}{|v_{\mathbf{b},3}^{\ell+1}(x,v)|}+\delta_{ij}\\ &\ \ +\Big{(}1+\frac{|t_{\mathbf{b}}^{\ell+1}(x,v)|\|\nabla_{x}\Phi^{\ell}\|_{\infty}}{|v^{\ell+1}_{\mathbf{b},3}(x,v)|}\Big{)}|t_{\mathbf{b}}^{\ell+1}(x,v)|\|\nabla_{x}^{2}\Phi^{\ell}\|_{\infty}\min\big{\{}t_{\mathbf{b}}^{\ell+1}e^{\frac{|t_{\mathbf{b}}^{\ell+1}|^{2}}{2}\|\nabla_{x}^{2}\Phi^{\ell}\|_{\infty}},e^{(1+\|\nabla_{x}^{2}\Phi^{\ell}\|_{\infty})t_{\mathbf{b}}}\big{\}}.\end{split} (5.42)
Proof.

Lemma 5.4 and Lemma 5.5 yield the estimates. ∎

Lemma 5.7.

Recall (h+1,ρ+1)(h^{\ell+1},\rho^{\ell+1}), which are constructed in (5.6) and (5.9). Suppose the condition (5.2) holds. For arbitrary numbers β>β~>0\beta>\tilde{\beta}>0, we assume that eβ|v|2G(x,v)L(γ)+eβ~|v|2x,vG(x,v)L(γ)<\|e^{{\beta}|v|^{2}}G(x,v)\|_{L^{\infty}(\gamma_{-})}+\|e^{{\tilde{\beta}}|v|^{2}}\nabla_{x_{\parallel},v}G(x,v)\|_{L^{\infty}(\gamma_{-})}<\infty and

16g2x2ΦL(Ω)β~.\frac{16}{g^{2}}\|\nabla_{x}^{2}\Phi^{\ell}\|_{L^{\infty}(\Omega)}\leq\tilde{\beta}. (5.43)

Then for (x,v)Ω¯×3(x,v)\in\bar{\Omega}\times\mathbb{R}^{3}

wβ~/2+1(x,v)|vh+1(x,v)|(1+1gβ~1/2)eβ~|v|2x,vGL(γ),w^{\ell+1}_{{\tilde{\beta}}/{2}}(x,v)|\nabla_{v}h^{\ell+1}(x,v)|\lesssim\left(1+\frac{1}{g{\tilde{\beta}}^{1/2}}\right)\|e^{\tilde{\beta}|v|^{2}}\nabla_{x_{\parallel},v}G\|_{L^{\infty}(\gamma_{-})}, (5.44)
wβ~/2+1(x,v)|xih+1(x,v)|[(1+1gβ~1/2)+(1+1β~1/2)δi3α+1(x,v)]eβ~|v|2x,vGL(γ),w^{\ell+1}_{{\tilde{\beta}}/{2}}(x,v)|\partial_{x_{i}}h^{\ell+1}(x,v)|\lesssim\left[\left(1+\frac{1}{g\tilde{\beta}^{1/2}}\right)+\left(1+\frac{1}{\tilde{\beta}^{1/2}}\right)\frac{\delta_{i3}}{\alpha^{\ell+1}(x,v)}\right]\|e^{\tilde{\beta}|v|^{2}}\nabla_{x_{\parallel},v}G\|_{L^{\infty}(\gamma_{-})}, (5.45)

where wβ~/2+1(x,v)eβ~2|v|2eβ~g2x3w^{\ell+1}_{{\tilde{\beta}}/{2}}(x,v)\geq e^{\frac{\tilde{\beta}}{2}|v|^{2}}e^{\frac{\tilde{\beta}g}{2}x_{3}}.

Moreover, for all xΩ¯x\in\bar{\Omega},

eβ~g2x3|xiρ+1(x)|1β~3/2(1+1gβ~1/2)eβ~|v|2x,vGL(γ)+δi3β~(1+1β~1/2)(1+𝟏|x3|1|ln(|x3|2+gx3)|+1β~1/2)eβ~|v|2x,vGL(γ),\begin{split}&e^{\frac{\tilde{\beta}g}{2}x_{3}}|\partial_{x_{i}}\rho^{\ell+1}(x)|\lesssim\frac{1}{\tilde{\beta}^{3/2}}\Big{(}1+\frac{1}{g\tilde{\beta}^{1/2}}\Big{)}\|e^{\tilde{\beta}|v|^{2}}\nabla_{x_{\parallel},v}G\|_{L^{\infty}({\gamma_{-}})}\\ &+\frac{\delta_{i3}}{\tilde{\beta}}\left(1+\frac{1}{\tilde{\beta}^{1/2}}\right)\Big{(}1+\mathbf{1}_{|x_{3}|\leq 1}|\ln(|x_{3}|^{2}+gx_{3})|+\frac{1}{\tilde{\beta}^{1/2}}\Big{)}\|e^{\tilde{\beta}|v|^{2}}\nabla_{x_{\parallel},v}G\|_{L^{\infty}({\gamma_{-}})},\end{split} (5.46)

For 0<δ<10<\delta<1,

[ρ+1]C0,δδ1β~(1+1β~1/2+1gβ~)eβ~|v|2x,vGL(γ).[\rho^{\ell+1}]_{C^{0,\delta}}\lesssim_{\delta}\frac{1}{\tilde{\beta}}\Big{(}1+\frac{1}{\tilde{\beta}^{1/2}}+\frac{1}{g\tilde{\beta}}\Big{)}\|e^{\tilde{\beta}|v|^{2}}\nabla_{x_{\parallel},v}G\|_{L^{\infty}(\gamma_{-})}. (5.47)

Furthermore, ΦC1(Ω¯)C2(Ω)\Phi^{\ell}\in C^{1}(\bar{\Omega})\cap C^{2}(\Omega) and

xΦ+1L(Ω)π3/2β3/2(1+2βg)eβ|v|2GL(γ),\|\nabla_{x}\Phi^{\ell+1}\|_{L^{\infty}(\Omega)}\leq\mathfrak{C}\frac{\pi^{3/2}}{\beta^{3/2}}\Big{(}1+\frac{2}{\beta g}\Big{)}\|e^{\beta|v|^{2}}G\|_{L^{\infty}(\gamma_{-})}, (5.48)
x2Φ+1L(Ω)1β3/2eβ|v|2GL(γ){1gβ+log(e+1β~(1+1β~1/2+1gβ~)eβ~|v|2x,vGL(γ))}.\begin{split}&\|\nabla_{x}^{2}\Phi^{\ell+1}\|_{L^{\infty}(\Omega)}\\ &\leq\frac{\mathfrak{C}_{1}}{\beta^{3/2}}\|e^{\beta|v|^{2}}G\|_{L^{\infty}(\gamma_{-})}\bigg{\{}\frac{1}{g\beta}+\log\bigg{(}e+\frac{1}{\tilde{\beta}}\Big{(}1+\frac{1}{\tilde{\beta}^{1/2}}+\frac{1}{g\tilde{\beta}}\Big{)}\|e^{\tilde{\beta}|v|^{2}}\nabla_{x_{\parallel},v}G\|_{L^{\infty}(\gamma_{-})}\bigg{)}\bigg{\}}.\end{split} (5.49)
Remark 5.8.

To iterate this construction of sequence of solutions, we need to verify the iteration assumption (5.2) and (5.43).

Proof.

Taking a derivative to (5.12), we derive that

x,vh+1(x,v)=x,vx𝐛+1xG(z𝐛+1)+x,vv𝐛+1vG(z𝐛+1),\nabla_{x,v}h^{\ell+1}(x,v)=\nabla_{x,v}x_{\mathbf{b}}^{\ell+1}\cdot\nabla_{x_{\parallel}}G(z_{\mathbf{b}}^{\ell+1})+\nabla_{x,v}v_{\mathbf{b}}^{\ell+1}\cdot\nabla_{v}G(z_{\mathbf{b}}^{\ell+1}), (5.50)

where z𝐛+1=(x𝐛+1,v𝐛+1)z_{\mathbf{b}}^{\ell+1}=(x_{\mathbf{b}}^{\ell+1},v_{\mathbf{b}}^{\ell+1}) and their derivatives in the right hand side were evaluated at (x,v)(x,v).

Step 1. Proof of (5.44). From (5.50),

|vh+1(x,v)||vx𝐛+1(x,v)|+|vv𝐛+1(x,v)|eβ~|v𝐛+1(x,v)|2eβ~|v|2x,vGL(γ).\begin{split}|\nabla_{v}h^{\ell+1}(x,v)|\leq\frac{|\nabla_{v}x_{\mathbf{b}}^{\ell+1}(x,v)|+|\nabla_{v}v_{\mathbf{b}}^{\ell+1}(x,v)|}{e^{\tilde{\beta}|v_{\mathbf{b}}^{\ell+1}(x,v)|^{2}}}\|e^{\tilde{\beta}|v|^{2}}\nabla_{x_{\parallel},v}G\|_{L^{\infty}(\gamma_{-})}.\end{split} (5.51)

Using (5.40), (5.21), and (5.43), we have

|vix𝐛+1(x,v)|eβ~|v𝐛+1(x,v)|24g|v𝐛+1|eβ~|v𝐛+1|2δi3+(1+8x2Φg2|v𝐛+1||v𝐛,3+1|)eβ~|v𝐛+1|2×min{4|v𝐛,3+1|ge8g2x2Φ|v𝐛,3+1|2,e4g(1+x2Φ)|v𝐛,3+1|}16gβ~1/2(1+8g2β~x2Φ)eβ~2|v𝐛+1|224gβ~1/2wβ~/2+1(x,v),\begin{split}\frac{|\partial_{v_{i}}x_{\mathbf{b}}^{\ell+1}(x,v)|}{e^{\tilde{\beta}|v_{\mathbf{b}}^{\ell+1}(x,v)|^{2}}}&\leq\frac{4}{g}|v_{\mathbf{b}}^{\ell+1}|e^{-\tilde{\beta}|v_{\mathbf{b}}^{\ell+1}|^{2}}\delta_{i3}+\Big{(}1+\frac{8\|\nabla_{x}^{2}\Phi^{\ell}\|_{\infty}}{g^{2}}|v_{\mathbf{b}}^{\ell+1}||v_{\mathbf{b},3}^{\ell+1}|\Big{)}e^{-\tilde{\beta}|v_{\mathbf{b}}^{\ell+1}|^{2}}\\ &\ \ \times\min\Big{\{}\frac{4|v_{\mathbf{b},3}^{\ell+1}|}{g}e^{\frac{8}{g^{2}}\|\nabla_{x}^{2}\Phi^{\ell}\|_{\infty}|v_{\mathbf{b},3}^{\ell+1}|^{2}},e^{\frac{4}{g}(1+\|\nabla_{x}^{2}\Phi^{\ell}\|_{\infty})|v_{\mathbf{b},3}^{\ell+1}|}\Big{\}}\\ &\leq\frac{16}{g{\tilde{\beta}}^{1/2}}\Big{(}1+\frac{8}{g^{2}\tilde{\beta}}\|\nabla_{x}^{2}\Phi^{\ell}\|_{\infty}\Big{)}e^{-\frac{\tilde{\beta}}{2}|v_{\mathbf{b}}^{\ell+1}|^{2}}\leq\frac{24}{g{\tilde{\beta}}^{1/2}}w^{\ell+1}_{\tilde{\beta}/2}(x,v),\end{split} (5.52)

Here, we have used the following lower bound, from (5.2),

|v𝐛+1(x,v)|22=|v|22+Φ(x)+gx3|v|22+(gxΦ)x3|v|22+g2x3.\frac{|v_{\mathbf{b}}^{\ell+1}(x,v)|^{2}}{2}=\frac{|v|^{2}}{2}+\Phi^{\ell}(x)+gx_{3}\geq\frac{|v|^{2}}{2}+\big{(}g-\|\nabla_{x}\Phi^{\ell}\|_{\infty}\big{)}x_{3}\geq\frac{|v|^{2}}{2}+\frac{g}{2}x_{3}. (5.53)

Similarly, using (5.42), (5.21), and (5.53), we derive that

|viv𝐛+1(x,v)|eβ~|v𝐛+1(x,v)|2(1+4gxΦ)eβ~|v𝐛+1|2+(1+4gxΦ)4gx2Φ|v𝐛,3+1(x,v)|eβ~|v𝐛+1|2×min{4|v𝐛,3+1|ge8g2x2Φ|v𝐛,3+1|2,e4g(1+x2Φ)|v𝐛,3+1|}(1+4gxΦ)(1+32g2β~x2Φ)eβ~2|v𝐛|29wβ~/2+1(x,v).\begin{split}\frac{|\partial_{v_{i}}v_{\mathbf{b}}^{\ell+1}(x,v)|}{e^{\tilde{\beta}|v_{\mathbf{b}}^{\ell+1}(x,v)|^{2}}}&\leq\Big{(}1+\frac{4}{g}\|\nabla_{x}\Phi^{\ell}\|_{\infty}\Big{)}e^{-\tilde{\beta}|v_{\mathbf{b}}^{\ell+1}|^{2}}\\ &\ +\Big{(}1+\frac{4}{g}\|\nabla_{x}\Phi^{\ell}\|_{\infty}\Big{)}\frac{4}{g}\|\nabla_{x}^{2}\Phi^{\ell}\|_{\infty}|v_{\mathbf{b},3}^{\ell+1}(x,v)|e^{-\tilde{\beta}|v_{\mathbf{b}}^{\ell+1}|^{2}}\\ &\ \ \ \ \times\min\Big{\{}\frac{4|v_{\mathbf{b},3}^{\ell+1}|}{g}e^{\frac{8}{g^{2}}\|\nabla_{x}^{2}\Phi^{\ell}\|_{\infty}|v_{\mathbf{b},3}^{\ell+1}|^{2}},e^{\frac{4}{g}(1+\|\nabla_{x}^{2}\Phi^{\ell}\|_{\infty})|v_{\mathbf{b},3}^{\ell+1}|}\Big{\}}\\ &\leq\Big{(}1+\frac{4}{g}\|\nabla_{x}\Phi^{\ell}\|_{\infty}\Big{)}\Big{(}1+\frac{32}{g^{2}\tilde{\beta}}\|\nabla_{x}^{2}\Phi^{\ell}\|_{\infty}\Big{)}e^{-\frac{\tilde{\beta}}{2}|v_{\mathbf{b}}|^{2}}\leq 9w^{\ell+1}_{\tilde{\beta}/2}(x,v).\end{split} (5.54)

Finally we complete the prove of (5.44) using (5.51), (5.52), and (5.54) altogether.

Step 2. From (5.50),

|xih+1(x,v)||xix𝐛+1(x,v)|eβ~|v𝐛+1(x,v)|2eβ~|v|2xGL(γ)+|xiv𝐛+1(x,v)|eβ~|v𝐛+1(x,v)|2eβ~|v|2vGL(γ).\begin{split}|\partial_{x_{i}}h^{\ell+1}(x,v)|\leq\frac{|\partial_{x_{i}}x_{\mathbf{b}}^{\ell+1}(x,v)|}{e^{\tilde{\beta}|v_{\mathbf{b}}^{\ell+1}(x,v)|^{2}}}\|e^{\tilde{\beta}|v|^{2}}\nabla_{x_{\parallel}}G\|_{L^{\infty}(\gamma_{-})}+\frac{|\partial_{x_{i}}v_{\mathbf{b}}^{\ell+1}(x,v)|}{e^{\tilde{\beta}|v_{\mathbf{b}}^{\ell+1}(x,v)|^{2}}}\|e^{\tilde{\beta}|v|^{2}}\nabla_{v}G\|_{L^{\infty}(\gamma_{-})}.\end{split} (5.55)

Using (5.22), (5.39), and (5.21), we derive that

|xix𝐛+1(x,v)|eβ~|v𝐛+1(x,v)|2|v𝐛+1(x,v)||v𝐛,3+1(x,v)|eβ~|v𝐛+1|2δi3+(1+8x2Φg2|v𝐛+1||v𝐛,3+1|)eβ~|v𝐛+1|2×min{e8g2x2Φ|v𝐛,3+1|2,e4g(1+x2Φ)|v𝐛,3+1|}|v𝐛+1(x,v)|α+1(x,v)e4g(1+x2Φ)|v𝐛,3+1|e(β~+4g2x2Φ(1+2gxΦ))|v𝐛+1|2+16gβ~1/2(1+8g2β~x2Φ)eβ~2|v𝐛+1|2(δi3β~1/21α+1(x,v)+16gβ~1/2(1+8g2β~x2Φ))eβ~2|v|2eβ~g2x3(δi3β~1/21α+1(x,v)+32gβ~1/2)eβ~2|v|2eβ~g2x3,\begin{split}\frac{|\partial_{x_{i}}x_{\mathbf{b}}^{\ell+1}(x,v)|}{e^{\tilde{\beta}|v_{\mathbf{b}}^{\ell+1}(x,v)|^{2}}}&\leq\frac{|v_{\mathbf{b}}^{\ell+1}(x,v)|}{|v_{\mathbf{b},3}^{\ell+1}(x,v)|}e^{-\tilde{\beta}|v_{\mathbf{b}}^{\ell+1}|^{2}}\delta_{i3}+\Big{(}1+\frac{8\|\nabla_{x}^{2}\Phi^{\ell}\|_{\infty}}{g^{2}}|v_{\mathbf{b}}^{\ell+1}||v_{\mathbf{b},3}^{\ell+1}|\Big{)}e^{-\tilde{\beta}|v_{\mathbf{b}}^{\ell+1}|^{2}}\\ &\ \ \ \times\min\Big{\{}e^{\frac{8}{g^{2}}\|\nabla_{x}^{2}\Phi^{\ell}\|_{\infty}|v_{\mathbf{b},3}^{\ell+1}|^{2}},e^{\frac{4}{g}(1+\|\nabla_{x}^{2}\Phi^{\ell}\|_{\infty})|v_{\mathbf{b},3}^{\ell+1}|}\Big{\}}\\ &\leq\frac{|v_{\mathbf{b}}^{\ell+1}(x,v)|}{\alpha^{\ell+1}(x,v)}e^{\frac{4}{g}(1+\|\nabla_{x}^{2}\Phi^{\ell}\|_{\infty})|v_{\mathbf{b},3}^{\ell+1}|}e^{\big{(}-\tilde{\beta}+\frac{4}{g^{2}}\|\nabla_{x}^{2}\Phi^{\ell}\|_{\infty}(1+\frac{2}{g}\|\nabla_{x}\Phi^{\ell}\|_{\infty})\big{)}|v_{\mathbf{b}}^{\ell+1}|^{2}}\\ &\ \ +\frac{16}{g{\tilde{\beta}}^{1/2}}\Big{(}1+\frac{8}{g^{2}\tilde{\beta}}\|\nabla_{x}^{2}\Phi^{\ell}\|_{\infty}\Big{)}e^{-\frac{\tilde{\beta}}{2}|v_{\mathbf{b}}^{\ell+1}|^{2}}\\ &\leq\left(\frac{\delta_{i3}}{\tilde{\beta}^{1/2}}\frac{1}{\alpha^{\ell+1}(x,v)}+\frac{16}{g{\tilde{\beta}}^{1/2}}\Big{(}1+\frac{8}{g^{2}\tilde{\beta}}\|\nabla_{x}^{2}\Phi^{\ell}\|_{\infty}\Big{)}\right)e^{-\frac{\tilde{\beta}}{2}|v|^{2}}e^{-\frac{\tilde{\beta}g}{2}x_{3}}\\ &\leq\left(\frac{\delta_{i3}}{\tilde{\beta}^{1/2}}\frac{1}{\alpha^{\ell+1}(x,v)}+\frac{32}{g{\tilde{\beta}}^{1/2}}\right)e^{-\frac{\tilde{\beta}}{2}|v|^{2}}e^{-\frac{\tilde{\beta}g}{2}x_{3}},\end{split} (5.56)

where we have used 4g(1+x2Φ)|v𝐛,3|+(β~+4g2x2Φ(1+2gxΦ))|v𝐛|2β~2|v𝐛|2\frac{4}{g}(1+\|\nabla_{x}^{2}\Phi\|_{\infty})|v_{\mathbf{b},3}|+\big{(}-\tilde{\beta}+\frac{4}{g^{2}}\|\nabla_{x}^{2}\Phi\|_{\infty}(1+\frac{2}{g}\|\nabla_{x}\Phi\|_{\infty})\big{)}|v_{\mathbf{b}}|^{2}\leq\frac{\tilde{\beta}}{2}|v_{\mathbf{b}}|^{2}.

Similarly, using (5.22), (5.41), and (2.26), we derive that

|xiv𝐛+1(x,v)|eβ~|v𝐛+1(x,v)|2xΦ|v𝐛,3+1(x,v)|eβ~|v𝐛+1|2δi3+(1+4gxΦ)4gx2Φ|v𝐛,3(x,v)|eβ~|v𝐛+1|2min{e8g2x2Φ|v𝐛,3+1|2,e4g(1+x2Φ)|v𝐛,3+1|}(xΦα+1(x,v)δi3+(1+4gxΦ))eβ~2|v|2eβ~g2x3(1/2α+1(x,v)δi3+3)eβ~2|v|2eβ~g2x3.\begin{split}&\frac{|\partial_{x_{i}}v_{\mathbf{b}}^{\ell+1}(x,v)|}{e^{\tilde{\beta}|v_{\mathbf{b}}^{\ell+1}(x,v)|^{2}}}\leq\frac{\|\nabla_{x}\Phi^{\ell}\|_{\infty}}{|v^{\ell+1}_{\mathbf{b},3}(x,v)|}e^{-\tilde{\beta}|v_{\mathbf{b}}^{\ell+1}|^{2}}\delta_{i3}\\ &\ +\Big{(}1+\frac{4}{g}\|\nabla_{x}\Phi^{\ell}\|_{\infty}\Big{)}\frac{4}{g}\|\nabla_{x}^{2}\Phi^{\ell}\|_{\infty}|v_{\mathbf{b},3}(x,v)|e^{-\tilde{\beta}|v_{\mathbf{b}}^{\ell+1}|^{2}}\min\Big{\{}e^{\frac{8}{g^{2}}\|\nabla_{x}^{2}\Phi^{\ell}\|_{\infty}|v_{\mathbf{b},3}^{\ell+1}|^{2}},e^{\frac{4}{g}(1+\|\nabla_{x}^{2}\Phi^{\ell}\|_{\infty})|v_{\mathbf{b},3}^{\ell+1}|}\Big{\}}\\ &\leq\left(\frac{\|\nabla_{x}\Phi^{\ell}\|_{\infty}}{\alpha^{\ell+1}(x,v)}\delta_{i3}+\Big{(}1+\frac{4}{g}\|\nabla_{x}\Phi^{\ell}\|_{\infty}\Big{)}\right)e^{-\frac{\tilde{\beta}}{2}|v|^{2}}e^{-\frac{\tilde{\beta}g}{2}x_{3}}\leq\left(\frac{1/2}{\alpha^{\ell+1}(x,v)}\delta_{i3}+3\right)e^{-\frac{\tilde{\beta}}{2}|v|^{2}}e^{-\frac{\tilde{\beta}g}{2}x_{3}}.\end{split} (5.57)

Step 3. Proof of (5.46). From (5.2), we obtain a lower bound of α+1\alpha^{\ell+1} in (5.18) as α+1(x,v)|v3|2+|x3|2+gx3.\alpha^{\ell+1}(x,v)\geq\sqrt{|v_{3}|^{2}+|x_{3}|^{2}+gx_{3}}. We derive that

31α+1(x,v)eβ~(|v|22+g2x3)dv31|v3|2+|x3|2+gx3eβ~(|v|22+g2x3)dv2πβ~eβ~g2x3eβ~2|v3|2|v3|2+|x3|2+gx3dv38πβ~eβ~g2x3(1+𝟏|x3|1|ln(|x3|2+gx3)|+β~1/2),\begin{split}&\int_{\mathbb{R}^{3}}\frac{1}{\alpha^{\ell+1}(x,v)}e^{-\tilde{\beta}\big{(}\frac{|v|^{2}}{2}+\frac{g}{2}x_{3}\big{)}}\mathrm{d}v\leq\int_{\mathbb{R}^{3}}\frac{1}{\sqrt{|v_{3}|^{2}+|x_{3}|^{2}+gx_{3}}}e^{-\tilde{\beta}\big{(}\frac{|v|^{2}}{2}+\frac{g}{2}x_{3}\big{)}}\mathrm{d}v\\ &\leq\frac{2\pi}{\tilde{\beta}}e^{-\frac{\tilde{\beta}g}{2}x_{3}}\int_{\mathbb{R}}\frac{e^{-\frac{\tilde{\beta}}{2}|v_{3}|^{2}}}{\sqrt{|v_{3}|^{2}+|x_{3}|^{2}+gx_{3}}}\mathrm{d}v_{3}\leq\frac{8\pi}{\tilde{\beta}}e^{-\frac{\tilde{\beta}g}{2}x_{3}}\Big{(}1+\mathbf{1}_{|x_{3}|\leq 1}|\ln(|x_{3}|^{2}+gx_{3})|+\tilde{\beta}^{-1/2}\Big{)},\end{split} (5.58)

where we have used the following computation of A=1A=1:

eβ~2|v3|2|v3|2+|x3|2+gx3dv3=|v3|A+|v3|A40Adrr2+|x3|2+gx3+4eβ~A24A2+|x3|2+g|x3|Aeβ~4r2dr4(ln|A+A2+|x3|2+gx3|ln|x3|2+gx3)+4β~eβ~4A2A2+|x3|2+g|x3|4{1+𝟏|x3|1|ln(|x3|2+gx3)|}+4β~1/2.\begin{split}&\int_{\mathbb{R}}\frac{e^{-\frac{\tilde{\beta}}{2}|v_{3}|^{2}}}{\sqrt{{|v_{3}|^{2}}+{|x_{3}|^{2}}+{g}x_{3}}}\mathrm{d}v_{3}=\int_{|v_{3}|\leq A}+\int_{|v_{3}|\geq A}\\ &\leq 4\int^{A}_{0}\frac{\mathrm{d}r}{\sqrt{r^{2}+|x_{3}|^{2}+gx_{3}}}+\frac{4e^{-\frac{\tilde{\beta}A^{2}}{4}}}{\sqrt{{A^{2}}+{|x_{3}|^{2}}+g|x_{3}|}}\int_{A}^{\infty}e^{-\frac{\tilde{\beta}}{4}r^{2}}\mathrm{d}r\\ &\leq 4\Big{(}\ln|A+\sqrt{A^{2}+|x_{3}|^{2}+gx_{3}}|-\ln\sqrt{|x_{3}|^{2}+gx_{3}}\Big{)}+\frac{\sqrt{\frac{4}{\tilde{\beta}}}e^{-\frac{\tilde{\beta}}{4}A^{2}}}{\sqrt{{A^{2}}+|x_{3}|^{2}+g|x_{3}|}}\\ &\leq 4\big{\{}1+\mathbf{1}_{|x_{3}|\leq 1}|\ln(|x_{3}|^{2}+gx_{3})|\big{\}}+4\tilde{\beta}^{-1/2}.\end{split}

Then it is straightforward to derive (5.46) using (5.45) and (5.58).

Step 4. Proof of (LABEL:est:phi_C2). We will use (3.18). For 0<|h|<10<|h|<1, using (5.46) we derive that

|ρ+1(x+hei)ρ+1(x)||h|δ1|h|δ0|h||xρ+1(x+τei)|dτeβ~|v|2x,vGL(γ){|h|1δ1β~3/2(1+1gβ~1/2)+δi3β~(1+1β~1/2)1|h|δ0|h|(1+𝟏|x3+h|1|ln(|x3+τ|2+g(x3+τ))|+β~1/2)dτ},\begin{split}&\frac{|\rho^{\ell+1}(x+he_{i})-\rho^{\ell+1}(x)|}{|h|^{\delta}}\leq\frac{1}{|h|^{\delta}}\int^{|h|}_{0}|\nabla_{x}\rho^{\ell+1}(x+\tau e_{i})|\mathrm{d}\tau\\ &\leq\|e^{\tilde{\beta}|v|^{2}}\nabla_{x_{\parallel},v}G\|_{L^{\infty}({\gamma_{-}})}\bigg{\{}|h|^{1-\delta}\frac{1}{\tilde{\beta}^{3/2}}\Big{(}1+\frac{1}{g\tilde{\beta}^{1/2}}\Big{)}\\ &\ \ \ \ \ \ +\frac{\delta_{i3}}{\tilde{\beta}}\left(1+\frac{1}{\tilde{\beta}^{1/2}}\right)\frac{1}{|h|^{\delta}}\int_{0}^{|h|}\big{(}1+\mathbf{1}_{|x_{3}+h|\leq 1}|\ln(|x_{3}+\tau|^{2}+g(x_{3}+\tau))|+{\tilde{\beta}}^{-1/2}\big{)}\mathrm{d}\tau\bigg{\}},\end{split} (5.59)

as long as x3+he30x_{3}+he_{3}\geq 0.

Note that, for 0<|h|<10<|h|<1,

|h|δ|0|h|ln(x3+τ)dτ||h|δ||h|ln(x3+|h|)+x3(ln(x3+|h|)lnx3)|h|||h|1δ|ln(x3+|h|)|+2|h|1δδ1,\begin{split}|h|^{-\delta}\Big{|}\int^{|h|}_{0}\ln(x_{3}+\tau)\mathrm{d}\tau\Big{|}&\leq{|h|}^{-\delta}\Big{|}{|h|}\ln(x_{3}+{|h|})+x_{3}\big{(}\ln(x_{3}+{|h|})-\ln x_{3}\big{)}-{|h|}\Big{|}\\ &\leq{|h|}^{1-\delta}|\ln(x_{3}+{|h|})|+2{|h|}^{1-\delta}\lesssim_{\delta}1,\end{split}

and

|h|δ|min{|h|,x3}0ln(x3+τ)dτ||h|δ{x3|lnx3ln(x3min{|h|,x3})|+|h|δmin{|h|,x3}(|lnx3ln(x3min{|h|,x3})|+|lnx3|+min{|h|,x3})2|h|δmin{|h|,x3}+min{|h|,x3}1δ|ln(min{|h|,x3})|+|h|1δδ1.\begin{split}&|h|^{-\delta}\Big{|}\int^{0}_{-\min\{{|h|},x_{3}\}}\ln(x_{3}+\tau)\mathrm{d}\tau\Big{|}\\ &\leq{|h|}^{-\delta}\big{\{}x_{3}|\ln x_{3}-\ln(x_{3}-\min\{{|h|},x_{3}\})|\\ &\ \ +{|h|}^{-\delta}\min\{{|h|},x_{3}\}\Big{(}|\ln x_{3}-\ln(x_{3}-\min\{{|h|},x_{3}\})|+|\ln x_{3}|+\min\{{|h|},x_{3}\}\Big{)}\\ &\leq 2{|h|}^{-\delta}\min\{|h|,x_{3}\}+\min\{{|h|},x_{3}\}^{1-\delta}|\ln(\min\{{|h|},x_{3}\})|+{|h|}^{1-\delta}\lesssim_{\delta}1.\end{split}

Using these bounds, we bound (5.59), for all i=1,2,3i=1,2,3, above by

sup0<|h|<1|ρ+1(x+hei)ρ+1(x)||h|δδ{1β~3/2(1+1gβ~1/2)+δi3β~(1+1β~1/2)}eβ~|v|2x,vGL(γ).\begin{split}&\sup_{0<|h|<1}\frac{|\rho^{\ell+1}(x+he_{i})-\rho^{\ell+1}(x)|}{|h|^{\delta}}\\ &\lesssim_{\delta}\left\{\frac{1}{\tilde{\beta}^{3/2}}\Big{(}1+\frac{1}{g\tilde{\beta}^{1/2}}\Big{)}+\frac{\delta_{i3}}{\tilde{\beta}}\left(1+\frac{1}{\tilde{\beta}^{1/2}}\right)\right\}\|e^{\tilde{\beta}|v|^{2}}\nabla_{x_{\parallel},v}G\|_{L^{\infty}(\gamma_{-})}.\end{split} (5.60)

Using (LABEL:est:rho_Hol), (5.15), and (3.18), we conclude (LABEL:est:phi_C2).∎

5.2. Construction of Sequences and their Stability

Let us go back to the discussion right after (5.17). Using Φ+1C2(Ω)C1(Ω¯)\Phi^{\ell+1}\in C^{2}(\Omega)\cap C^{1}(\bar{\Omega}) in (LABEL:est:phi_C2), now we can repeat the process to construct h+2h^{\ell+2} as in (5.3). In order to achieve the uniform-in-\ell estimates, we make sure the bound (LABEL:est:phi_C2) guarantees (5.43).

Theorem 5.9.

Suppose

π3/2β3/2(1+1βg)eβ|v|2GL(γ)g2,\mathfrak{C}\frac{\pi^{3/2}}{\beta^{3/2}}\Big{(}1+\frac{1}{\beta g}\Big{)}\|e^{\beta|v|^{2}}G\|_{L^{\infty}(\gamma_{-})}\leq\frac{g}{2}, (5.61)
1β3/2eβ|v|2GL(γ){1gβ+log(e+1β~(1+1β~1/2+1gβ~)eβ~|v|2x,vGL(γ))}β~g216.\frac{\mathfrak{C}_{1}}{\beta^{3/2}}\|e^{\beta|v|^{2}}G\|_{L^{\infty}(\gamma_{-})}\bigg{\{}\frac{1}{g\beta}+\log\bigg{(}e+\frac{1}{\tilde{\beta}}\Big{(}1+\frac{1}{\tilde{\beta}^{1/2}}+\frac{1}{g\tilde{\beta}}\Big{)}\|e^{\tilde{\beta}|v|^{2}}\nabla_{x_{\parallel},v}G\|_{L^{\infty}(\gamma_{-})}\bigg{)}\bigg{\}}\leq\frac{\tilde{\beta}g^{2}}{16}. (5.62)

where ,1>0\mathfrak{C},\mathfrak{C}_{1}>0 are the computable constants, which appeared in (5.48) and (LABEL:est:phi_C2). Then we can construct Φ,h+1,ρ+1,X+1,V+1\Phi^{\ell},h^{\ell+1},\rho^{\ell+1},X^{\ell+1},V^{\ell+1} solve (5.7), (5.8), (5.9), (5.17), (5.3). Moreover they satisfy (5.2) and (5.43)-(LABEL:est:phi_C2).

Proof.

We set Φ00\Phi^{0}\equiv 0 and h00h^{0}\equiv 0. Then we solve the characteristics (X1,V1)(X^{1},V^{1}) to (5.3) and initial condition with =0\ell=0. Clearly (X1,V1)C1(X^{1},V^{1})\in C^{1}. Then now we define h1,t𝐛1,x𝐛1,v𝐛1h^{1},t_{\mathbf{b}}^{1},x_{\mathbf{b}}^{1},v_{\mathbf{b}}^{1} as in (5.6) and (LABEL:def:tb_k) with =0\ell=0. Using Lemma 5.1 and (5.15), we derive that eβgx3ρ1L(Ω¯)π3/2β3/2wβGL(γ)\|e^{\beta gx_{3}}\rho^{1}\|_{L^{\infty}(\bar{\Omega})}\leq\frac{\pi^{3/2}}{\beta^{3/2}}\|w_{\beta}G\|_{L^{\infty}(\gamma_{-})}. Then using (5.48) and (LABEL:est:phi_C2), we verify the iteration assumptions (5.2) and (5.43) for =1\ell=1. Therefore using Lemma 5.7, we can iterate this process to construct Φ\Phi^{\ell}, then (X+1,V+1)(X^{\ell+1},V^{\ell+1}) and h+1h^{\ell+1} for =1,2,\ell=1,2,\cdots.∎

To pass a limit of the sequences we prove a stability lemma, which is very helpful to prove both the stability a la Cauchy and uniqueness of a limiting solution.

Lemma 5.10.

For given h¯i(x,v)\bar{h}_{i}(x,v) such that ρ¯i:=h¯idvC0,δ(Ω)\bar{\rho}_{i}:=\int\bar{h}_{i}\mathrm{d}v\in C^{0,\delta}(\Omega) for some δ>0\delta>0, suppose ΦiC1(Ω¯)×C2(Ω)\Phi_{i}\in C^{1}(\bar{\Omega})\times C^{2}(\Omega) solves

ΔΦi=ηρ¯iin Ω×3,Φi=0on Ω.\Delta\Phi_{i}=\eta\bar{\rho}_{i}\ \text{in $\Omega\times\mathbb{R}^{3}$,}\ \ \ \ \Phi_{i}=0\ \text{on $\partial\Omega$.}

Now we consider hi(x,v)h_{i}(x,v) solving, in the sense of (2.18),

vxhix(Φi+gx3)vhi=0in Ω×3,hi=Gon γ.\displaystyle v\cdot\nabla_{x}h_{i}-\nabla_{x}(\Phi_{i}+gx_{3})\cdot\nabla_{v}h_{i}=0\ \text{in $\Omega\times\mathbb{R}^{3}$,}\ \ h_{i}=G\ \text{on $\gamma_{-}$}. (5.63)

Suppose the following two condition hold for g,β¯,ε0>0g,\bar{\beta},\varepsilon_{0}>0

|Φ1(x)|g2x3,|\Phi_{1}(x)|\leq\frac{g}{2}x_{3}, (5.64)
23/2π3/2gβ¯2{1+4β¯g}wβ¯vh2L(Ω×3)ε02,\frac{2^{3/2}\pi^{3/2}\mathfrak{C}}{g\bar{\beta}^{2}}\left\{1+\frac{4}{\bar{\beta}g}\right\}\|w_{\bar{\beta}}\nabla_{v}h_{2}\|_{L^{\infty}(\Omega\times\mathbb{R}^{3})}\leq\frac{\varepsilon_{0}}{2}, (5.65)

where \mathfrak{C} had appeared in (5.48).

Then for a small number ε0>1\varepsilon_{0}>1, the following stability holds

eβ¯2(|v|2+gx3)(h1(x,v)h2(x,v))L(Ω×3)12eβ¯2(|v|2+gx3)(h¯1(x,v)h¯2(x,v))L(Ω×3).\|e^{\frac{\bar{\beta}}{2}\big{(}|v|^{2}+gx_{3}\big{)}}(h_{1}(x,v)-h_{2}(x,v))\|_{L^{\infty}(\Omega\times\mathbb{R}^{3})}\leq\frac{1}{2}\|e^{\frac{\bar{\beta}}{2}\big{(}|v|^{2}+gx_{3}\big{)}}(\bar{h}_{1}(x,v)-\bar{h}_{2}(x,v))\|_{L^{\infty}(\Omega\times\mathbb{R}^{3})}. (5.66)
Proof.

Clearly the difference of two solutions solves

vx(h1h2)x(Φ1+gx3)v(h1h2)=x(Φ1Φ2)vh2in Ω×3,h1h2=0on Ω×{v3>0}.\begin{split}v\cdot\nabla_{x}(h_{1}-h_{2})-\nabla_{x}(\Phi_{1}+gx_{3})\cdot\nabla_{v}(h_{1}-h_{2})=\nabla_{x}(\Phi_{1}-\Phi_{2})\cdot\nabla_{v}h_{2}\ \ &\text{in }\Omega\times\mathbb{R}^{3},\\ h_{1}-h_{2}=0\ \ &\text{on }\partial\Omega\times\{v_{3}>0\}.\end{split} (5.67)

Let (X1,V1)(X_{1},V_{1}) be the characteristics solving (2.12) with xΦ=xΦ1\nabla_{x}\Phi=\nabla_{x}\Phi_{1} and t𝐛,1(x,v)t_{\mathbf{b},1}(x,v) (as (2.1)) is the backward exit time of this characteristics (X1,V1)(X_{1},V_{1}). Then, as (h1h2)(X1(t𝐛,1(x,v);x,v))0(h_{1}-h_{2})(X_{1}(-t_{\mathbf{b},1}(x,v);x,v))\equiv 0,

(h1h2)(x,v)=0t𝐛,1(x,v)(xΦ1(X1(s;x,v))xΦ2(X1(s;x,v)))vh2(X1(s;x,v),V1(s;x,v))ds.\begin{split}&(h_{1}-h_{2})(x,v)\\ &=\int^{0}_{-t_{\mathbf{b},1}(x,v)}(\nabla_{x}\Phi_{1}(X_{1}(s;x,v))-\nabla_{x}\Phi_{2}(X_{1}(s;x,v)))\cdot\nabla_{v}h_{2}(X_{1}(s;x,v),V_{1}(s;x,v))\mathrm{d}s.\end{split} (5.68)

Now we bound above the right hand side of (5.68) by

t𝐛,1(x,v)sups[t𝐛,1(x,v),0](1wβ¯,1(X1(s;x,v),V1(s;x,v)))(5.69)wβ¯,1vh2L(Ω)xΦ1xΦ2L(Ω).\begin{split}\underbrace{t_{\mathbf{b},1}(x,v)\sup_{s\in[-t_{\mathbf{b},1}(x,v),0]}\left(\frac{1}{w_{\bar{\beta},1}(X_{1}(s;x,v),V_{1}(s;x,v))}\right)}_{\eqref{bound:diff_h}_{*}}\|w_{\bar{\beta},1}\nabla_{v}h_{2}\|_{L^{\infty}(\Omega)}\|\nabla_{x}\Phi_{1}-\nabla_{x}\Phi_{2}\|_{L^{\infty}(\Omega)}.\end{split} (5.69)

Note that (5.64) implies

wβ¯,1(x,v)=eβ¯(|v|2+2Φ1(x)+2gx3)eβ¯(|v|2+gx3).w_{\bar{\beta},1}(x,v)=e^{\bar{\beta}\big{(}|v|^{2}+2\Phi_{1}(x)+2gx_{3}\big{)}}\geq e^{\bar{\beta}(|v|^{2}+gx_{3})}. (5.70)

Using Lemma 2.5 (and (2.26)), (2.22) and (5.70), we bound that

(5.69)2g1(|v3|2+gx3v3)wβ¯,1(x,v)4g|v3|2+gx3eβ¯(|v|2+gx3)1gβ¯1/2β¯(|v|2+gx3)eβ¯(|v|2+gx3)1gβ¯1/2eβ¯2(|v|2+gx3).\begin{split}\eqref{bound:diff_h}_{*}&\leq\frac{2g^{-1}(\sqrt{|v_{3}|^{2}+gx_{3}}-v_{3})}{w_{\bar{\beta},1}(x,v)}\leq\frac{4}{g}\sqrt{|v_{3}|^{2}+gx_{3}}e^{-\bar{\beta}\big{(}|v|^{2}+gx_{3}\big{)}}\\ &\lesssim\frac{1}{g\bar{\beta}^{1/2}}\sqrt{\bar{\beta}\big{(}|v|^{2}+gx_{3}\big{)}}e^{-{\bar{\beta}}\big{(}|v|^{2}+gx_{3}\big{)}}\lesssim\frac{1}{g\bar{\beta}^{1/2}}e^{-\frac{\bar{\beta}}{2}\big{(}|v|^{2}+gx_{3}\big{)}}.\end{split} (5.71)

On the other hand, using Lemma 3.3 ((3.17) with A=eβgx3(ρ¯1ρ¯2)A=\|e^{\beta^{\prime}gx_{3}}(\bar{\rho}_{1}-\bar{\rho}_{2})\|_{\infty} and B=βgB=\beta^{\prime}g for β<β¯\beta^{\prime}<\bar{\beta}), we derive that

xΦ1xΦ2L(Ω){1+2βg}eβgx3(ρ¯1ρ¯2)L(Ω).\begin{split}\|\nabla_{x}\Phi_{1}-\nabla_{x}\Phi_{2}\|_{L^{\infty}(\Omega)}\leq\mathfrak{C}\left\{1+\frac{2}{\beta^{\prime}g}\right\}\underbrace{\|e^{\beta^{\prime}gx_{3}}(\bar{\rho}_{1}-\bar{\rho}_{2})\|_{L^{\infty}(\Omega)}}.\end{split} (5.72)

Using (2.43), we bound the underbraced term above by

eβgx3(ρ¯1ρ¯2)L(Ω)π3/2(β)3/2eβ(|v|2+gx3)(h¯1(x,v)h¯2(x,v))L(Ω).\begin{split}\|e^{\beta^{\prime}gx_{3}}(\bar{\rho}_{1}-\bar{\rho}_{2})\|_{L^{\infty}(\Omega)}\leq\frac{\pi^{3/2}}{(\beta^{\prime})^{3/2}}\|e^{\beta^{\prime}\big{(}|v|^{2}+gx_{3}\big{)}}(\bar{h}_{1}(x,v)-\bar{h}_{2}(x,v))\|_{L^{\infty}(\Omega)}.\end{split} (5.73)

Now combining above bounds together with (5.69) and (5.71), we conclude that

|h1(x,v)h2(x,v)|\displaystyle|h_{1}(x,v)-h_{2}(x,v)|
π3/2gβ¯1/2(β)3/2{1+2βg}wβ¯vh2eβ¯2(|v|2+gx3)eβ(|v|2+gx3)(h¯1(x,v)h¯2(x,v))L(Ω×3).\displaystyle\lesssim\underbrace{\frac{\mathfrak{C}\pi^{3/2}}{g\bar{\beta}^{1/2}(\beta^{\prime})^{3/2}}\left\{1+\frac{2}{\beta^{\prime}g}\right\}\|w_{\bar{\beta}}\nabla_{v}h_{2}\|_{\infty}}e^{-\frac{\bar{\beta}}{2}\big{(}|v|^{2}+gx_{3}\big{)}}\|e^{\beta^{\prime}\big{(}|v|^{2}+gx_{3}\big{)}}(\bar{h}_{1}(x,v)-\bar{h}_{2}(x,v))\|_{L^{\infty}(\Omega\times\mathbb{R}^{3})}.

With a choice of β=β¯/2\beta^{\prime}=\bar{\beta}/2 and (5.65), we bound the underbraced term for a sufficiently small ε0>0\varepsilon_{0}>0 to get (5.66).∎

Finally, we prove the existence of a unique solution by passing a limit of the sequences in Theorem 5.9 and using the stability in Lemma 5.10.

Proof of Theorem 2.8.

Let us first check that, if (5.44) and (2.40) hold then for ε1ε0\varepsilon_{1}\ll\varepsilon_{0} we have that

23/2π3/2gβ¯2{1+4β¯g}w+1β~/2(x,v)|vh+1(x,v)|ε02.\frac{2^{3/2}\pi^{3/2}\mathfrak{C}}{g\bar{\beta}^{2}}\left\{1+\frac{4}{\bar{\beta}g}\right\}w^{\ell+1}_{{\tilde{\beta}}/{2}}(x,v)|\nabla_{v}h^{\ell+1}(x,v)|\leq\frac{\varepsilon_{0}}{2}.

Note that this bound guarantees (5.65) in Lemma 5.10. Therefore now we can apply Lemma 5.10 to the sequences of Theorem 5.9 with β¯=β~/2\bar{\beta}=\tilde{\beta}/2: eβ~4(|v|2+gx3)[h+1(x,v)h(x,v)]L12eβ~4(|v|2+gx3)h1(x,v)L.\|e^{\frac{\tilde{\beta}}{4}\big{(}|v|^{2}+gx_{3}\big{)}}[h^{\ell+1}(x,v)-h^{\ell}(x,v)]\|_{L^{\infty}}\leq\frac{1}{2^{\ell}}\|e^{\frac{\tilde{\beta}}{4}\big{(}|v|^{2}+gx_{3}\big{)}}h^{1}(x,v)\|_{L^{\infty}}. Then hh^{\ell} is Cauchy: for all ,m\ell,m\in\mathbb{N},

eβ~4(|v|2+gx3)[h(x,v)hm(x,v)]L(Ω×3)22min{,m}eβ~4(|v|2+gx3)h1(x,v)L(Ω×3).\Big{\|}e^{\frac{\tilde{\beta}}{4}\big{(}|v|^{2}+gx_{3}\big{)}}[h^{\ell}(x,v)-h^{m}(x,v)]\Big{\|}_{L^{\infty}(\Omega\times\mathbb{R}^{3})}\leq\frac{2}{2^{\min\{\ell,m\}}}\Big{\|}e^{\frac{\tilde{\beta}}{4}\big{(}|v|^{2}+gx_{3}\big{)}}h^{1}(x,v)\Big{\|}_{L^{\infty}(\Omega\times\mathbb{R}^{3})}. (5.74)

With this strong convergence together with uniform-upper-bounds of Theorem 5.9, it is standard to prove the convergence of the sequences and prove that their limiting function (h,ρ,Φ)(h,\rho,\Phi) is a strong solution to (2.1)-(2.4). Moreover, every upper bound of Theorem 5.9 is valid for the limiting function. Finally Lemma 5.10 implies the uniqueness of solution.∎

6. Dynamic Solutions

In this section, we construct a global-in-time strong solution to the dynamic problem (2.5)-(2.9), and study their properties such as regularity and uniqueness.

6.1. Construction of Sequences

We construct a solution to the dynamic problem (2.5)-(2.9) via the following sequences: starting with f00f^{0}\equiv 0, we set (ϱ0,Ψ0)=(0,0)(\varrho^{0},\Psi^{0})=(0,0); and then f1f^{1} solves

tf1+vxf1x(Φ+gx3)vf1=0,f1|γ=0,f1|t=0=f0.\partial_{t}f^{1}+v\cdot\nabla_{x}f^{1}-\nabla_{x}(\Phi+gx_{3})\cdot\nabla_{v}f^{1}=0,\ \ f^{1}|_{\gamma_{-}}=0,\ \ f^{1}|_{t=0}=f_{0}. (6.1)

Since Φ+gx3C1(Ω¯)C2(Ω)\Phi+gx_{3}\in C^{1}(\bar{\Omega})\cap C^{2}(\Omega), the characteristics to (2.13) equals the steady characteristics (X,V)(X,V) of (2.12) and hence f1f^{1} is defined as in (2.19) along the characteristics.

Suppose that ΨC1(Ω¯)C2(Ω)\Psi^{\ell}\in C^{1}(\bar{\Omega})\cap C^{2}(\Omega) satisfies

ΔΨ=ϱ:=η3fdv,Ψ|Ω=0.\displaystyle\Delta\Psi^{\ell}=\varrho^{\ell}:=\eta\int_{\mathbb{R}^{3}}f^{\ell}\mathrm{d}v,\ \ \ \Psi^{\ell}|_{\partial\Omega}=0.\vspace{-10pt} (6.2)

Note that ϕF=Ψ+Φ.\phi_{F^{\ell}}=\Psi^{\ell}+\Phi.

The corresponding characteristics is

𝒵+1(s;t,x,v)=(𝒳+1(s;t,x,v),𝒱+1(s;t,x,v)),\mathcal{Z}^{\ell+1}(s;t,x,v)=(\mathcal{X}^{\ell+1}(s;t,x,v),\mathcal{V}^{\ell+1}(s;t,x,v)), (6.3)

solving

d𝒳+1ds=𝒱+1,d𝒱+1ds=xΨxΦg𝐞3,𝒳+1|s=t=x,𝒱+1|s=t=v.\begin{split}\frac{d\mathcal{X}^{\ell+1}}{ds}=\mathcal{V}^{\ell+1},&\ \ \ \frac{d\mathcal{V}^{\ell+1}}{ds}=-\nabla_{x}\Psi^{\ell}-\nabla_{x}\Phi-g\mathbf{e}_{3},\\ \mathcal{X}^{\ell+1}|_{s=t}=x,&\ \ \ \mathcal{V}^{\ell+1}|_{s=t}=v.\end{split} (6.4)

We define t𝐁+1(t,x,v),t𝐅+1(t,x,v),x𝐁+1(t,x,v),t_{\mathbf{B}}^{\ell+1}(t,x,v),t_{\mathbf{F}}^{\ell+1}(t,x,v),x_{\mathbf{B}}^{\ell+1}(t,x,v), and v𝐁+1(t,x,v)v_{\mathbf{B}}^{\ell+1}(t,x,v) as in Definition 2.1 but for the characteristics 𝒵+1=(𝒳+1,𝒱+1)\mathcal{Z}^{\ell+1}=(\mathcal{X}^{\ell+1},\mathcal{V}^{\ell+1}) in (6.3).

Then we successively construct solutions in the sense of Definition 2.2 along the characteristics as in (2.19) to the problem

tf+1+vxf+1x(Ψ+Φ+gx3)vf+1\displaystyle\partial_{t}f^{\ell+1}+v\cdot\nabla_{x}f^{\ell+1}-\nabla_{x}(\Psi^{\ell}+\Phi+gx_{3})\cdot\nabla_{v}f^{\ell+1} =xΨvh,\displaystyle=\nabla_{x}\Psi^{\ell}\cdot\nabla_{v}h, (6.5)
f+1|γ\displaystyle f^{\ell+1}|_{\gamma_{-}} =0,\displaystyle=0, (6.6)
f+1|t=0\displaystyle f^{\ell+1}|_{t=0} =f0:=F0h.\displaystyle=f_{0}:=F_{0}-h. (6.7)

From (2.11), (2.10), and (4.4), we have

b(t,x):=3vf(t,x,v)dvin+×Ω,\displaystyle b^{\ell}(t,x):=\int_{\mathbb{R}^{3}}vf^{\ell}(t,x,v)\mathrm{d}v\ \ \text{in}\ \mathbb{R}_{+}\times\Omega, (6.8)
tϱ+xb=0in+×Ω.\displaystyle\partial_{t}\varrho^{\ell}+\nabla_{x}\cdot b^{\ell}=0\ \ \text{in}\ \mathbb{R}_{+}\times\Omega. (6.9)
Remark 6.1.

The continuity equation (6.9) should hold in a weak sense against smooth test function with compact support. As what we have done for the steady solution construction, we will prove that the sequence (f+1,ϱ,Ψ)(f^{\ell+1},\varrho^{\ell},\Psi^{\ell}) belongs to some regularity space. Then, in Lemma 6.7 and Remark 6.8, we will derive that the continuity equation (6.9) holds in a strong sense so that the following identity is valid:

tΨ(t,x)=ηΔ01tϱ(t,x)=ηΔ01(xb)(t,x)in+×Ω.\partial_{t}\Psi^{\ell}(t,x)=\eta\Delta_{0}^{-1}\partial_{t}\varrho^{\ell}(t,x)=-\eta\Delta_{0}^{-1}(\nabla_{x}\cdot b^{\ell})(t,x)\ \ \text{in}\ \mathbb{R}_{+}\times\Omega. (6.10)

Applying Lemma 2.5, we have the following result:

Lemma 6.2.

Assume a bootstrap assumptions Ψ(t,)C1(Ω¯)C2(Ω)\Psi^{\ell}(t,\cdot)\in C^{1}(\bar{\Omega})\cap C^{2}(\Omega) and

sup0τtxϕF(τ)L(Ω)=sup0τtxΨ(τ)+xΦL(Ω)g2.\sup_{0\leq\tau\leq t}\|\nabla_{x}\phi_{F^{\ell}}(\tau)\|_{L^{\infty}(\Omega)}=\sup_{0\leq\tau\leq t}\|\nabla_{x}\Psi^{\ell}(\tau)+\nabla_{x}\Phi\|_{L^{\infty}(\Omega)}\leq\frac{g}{2}. (6.11)

Then we have that for all 0st0\leq s\leq t

t𝐁+1(s,x,v)2gmin{|v3|2+gx3v3,|v𝐁,3+1(s,x,v)|2gx3+v𝐁,3+1(s,x,v)},t𝐁+1(s,x,v)+t𝐅+1(s,x,v)4g|v3|2+gx3.\begin{split}&t_{\mathbf{B}}^{\ell+1}(s,x,v)\leq\frac{2}{g}\min\Big{\{}\sqrt{|v_{3}|^{2}+gx_{3}}-v_{3},\sqrt{|v_{\mathbf{B},3}^{\ell+1}(s,x,v)|^{2}-gx_{3}}+v_{\mathbf{B},3}^{\ell+1}(s,x,v)\Big{\}},\\ &t_{\mathbf{B}}^{\ell+1}(s,x,v)+{t}_{\mathbf{F}}^{\ell+1}(s,x,v)\leq\frac{4}{g}\sqrt{|v_{3}|^{2}+gx_{3}}.\end{split} (6.12)

Define a dynamic weight for the sequence (cf. 𝔴β\mathfrak{w}_{\beta} in (2.21))

𝔴+1β(s,x,v)=wβ(|v|2+2Φ(x)+2Ψ(s,x)+2gx3)=eβ(|v|2+2Φ(x)+2Ψ(s,x)+2gx3).\mathfrak{w}^{\ell+1}_{\beta}(s,x,v)=w_{\beta}(|v|^{2}+2\Phi(x)+2\Psi^{\ell}(s,x)+2gx_{3})=e^{\beta\big{(}|v|^{2}+2\Phi(x)+2\Psi^{\ell}(s,x)+2gx_{3}\big{)}}. (6.13)

As (2.23), we have

dds(|𝒱+1(s;t,z)|2+2ϕF(𝒳+1(s;t,z))+2g𝒳+13(s;t,z))=2tΨ(s,𝒳+1(s;t,z)).\begin{split}&\frac{d}{ds}\big{(}|\mathcal{V}^{\ell+1}(s;t,z)|^{2}+2\phi_{F^{\ell}}(\mathcal{X}^{\ell+1}(s;t,z))+2g\mathcal{X}^{\ell+1}_{3}(s;t,z)\big{)}=2\partial_{t}\Psi^{\ell}(s,\mathcal{X}^{\ell+1}(s;t,z)).\end{split} (6.14)
Lemma 6.3.

Suppose the assumption (6.11) holds. Then, for s,s[max{0,tt𝐁+1(t,x,v)},t]s,s^{\prime}\in[\max\{0,t-t_{\mathbf{B}}^{\ell+1}(t,x,v)\},t] and β>0\beta>0,

𝔴+1β(s,𝒵+1(s;t,x,v))𝔴+1β(s,𝒵+1(s;t,x,v))e8βgtΨLt,x|v3|2+gx3,1𝔴+1β(s,𝒵+1(s;t,x,v))e64βgtΨLt,x2eβ2|v|2eβ2gx3,\begin{split}\frac{\mathfrak{w}^{\ell+1}_{\beta}(s^{\prime},\mathcal{Z}^{\ell+1}(s^{\prime};t,x,v))}{\mathfrak{w}^{\ell+1}_{\beta}(s,\mathcal{Z}^{\ell+1}(s;t,x,v))}&\leq e^{\frac{8\beta}{g}\|\partial_{t}\Psi^{\ell}\|_{L^{\infty}_{t,x}}\sqrt{|v_{3}|^{2}+gx_{3}}},\\ \frac{1}{\mathfrak{w}^{\ell+1}_{\beta}(s,\mathcal{Z}^{\ell+1}(s;t,x,v))}&\leq e^{\frac{64\beta}{g}\|\partial_{t}\Psi^{\ell}\|_{L^{\infty}_{t,x}}^{2}}e^{-\frac{\beta}{2}|v|^{2}}e^{-\frac{\beta}{2}gx_{3}},\end{split} (6.15)

and

1wβ(𝒵+1(s;t,x,v))e162β2g2tΨLt,x2eβ4|v|2eβg4x3.\frac{1}{w_{\beta}(\mathcal{Z}^{\ell+1}(s;t,x,v))}\leq e^{\frac{16^{2}\beta}{2g^{2}}\|\partial_{t}\Psi^{\ell}\|_{L^{\infty}_{t,x}}^{2}}e^{-\frac{\beta}{4}|v|^{2}}e^{-\frac{\beta g}{4}x_{3}}. (6.16)

Here, we have used the notation Lt,xL^{\infty}_{t,x} defined in (2.59).

Proof.

Using (6.14), we derive that

dds𝔴β+1(s,𝒵+1(s;t,z))=2βtΨ(s,𝒵+1(s;t,z))𝔴β+1(s,𝒵+1(s;t,z)).\begin{split}\frac{d}{ds}\mathfrak{w}_{\beta}^{\ell+1}(s,\mathcal{Z}^{\ell+1}(s;t,z))=2\beta\partial_{t}\Psi^{\ell}(s,\mathcal{Z}^{\ell+1}(s;t,z))\mathfrak{w}_{\beta}^{\ell+1}(s,\mathcal{Z}^{\ell+1}(s;t,z)).\end{split} (6.17)

Hence, if max{0,tt𝐁+1(t,x,v)}s,st\max\{0,t-t_{\mathbf{B}}^{\ell+1}(t,x,v)\}\leq s,s^{\prime}\leq t then

𝔴β+1(s,𝒵+1(s;t,z))=𝔴β+1(s,𝒵+1(s;t,z),)e2βsstΨ(τ,𝒳+1(τ;t,z))dτ¯.\begin{split}\mathfrak{w}_{\beta}^{\ell+1}(s,\mathcal{Z}^{\ell+1}(s;t,z))=\mathfrak{w}_{\beta}^{\ell+1}(s^{\prime},\mathcal{Z}^{\ell+1}(s^{\prime};t,z),)e^{2\beta\underline{\int^{s}_{s^{\prime}}\partial_{t}\Psi^{\ell}(\tau,\mathcal{X}^{\ell+1}(\tau;t,z))\mathrm{d}\tau}}.\end{split} (6.18)

Now we estimate the underlined term in the exponent of (6.18): Using (2.10), (2.27), we bound it above by

|ss|tΨL([s,s]×Ω¯)|t𝐁(t,x,v)+t𝐅(t,x,v)|tΨLt,xtΨLt,x4g|v3|2+gx3.\begin{split}|s-s^{\prime}|\|\partial_{t}\Psi^{\ell}\|_{L^{\infty}([s^{\prime},s]\times\bar{\Omega})}\leq|t_{\mathbf{B}}(t,x,v)+t_{\mathbf{F}}(t,x,v)|\|\partial_{t}\Psi^{\ell}\|_{L^{\infty}_{t,x}}\leq\|\partial_{t}\Psi^{\ell}\|_{L^{\infty}_{t,x}}\frac{4}{g}\sqrt{|v_{3}|^{2}+gx_{3}}.\end{split} (6.19)

Finally, we conclude (6.15) by evaluating (6.18) at s=ts^{\prime}=t and using (6.19):

𝔴β+1(s,𝒳+1(s;t,x,v),𝒱+1(s;t,x,v))𝔴β+1(t,x,v)e8βgtΨLt,x|v3|2+gx3eβ|v|28βgtΨLt,x|v|eβgx38βgtΨLt,xgx3e64βgtΨLt,x2eβ2|v|2eβ2gx3.\begin{split}&\mathfrak{w}_{\beta}^{\ell+1}(s,\mathcal{X}^{\ell+1}(s;t,x,v),\mathcal{V}^{\ell+1}(s;t,x,v))\geq\mathfrak{w}_{\beta}^{\ell+1}(t,x,v)e^{-8\frac{\beta}{g}\|\partial_{t}\Psi^{\ell}\|_{L^{\infty}_{t,x}}\sqrt{|v_{3}|^{2}+gx_{3}}}\\ &\geq e^{\beta|v|^{2}-8\frac{\beta}{g}\|\partial_{t}\Psi^{\ell}\|_{L^{\infty}_{t,x}}|v|}e^{\beta gx_{3}-8\frac{\beta}{g}\|\partial_{t}\Psi^{\ell}\|_{L^{\infty}_{t,x}}\sqrt{gx_{3}}}\geq e^{-\frac{64\beta}{g}\|\partial_{t}\Psi^{\ell}\|_{L^{\infty}_{t,x}}^{2}}e^{\frac{\beta}{2}|v|^{2}}e^{\frac{\beta}{2}gx_{3}}.\end{split}

Now we prove (6.16). Using (2.13) and (6.14), we compute that

ddswβ(𝒵+1(s;t,x,v))=βwβ(𝒵+1(s;t,x,v))dds(|𝒱+1(s)|2+2Φ(𝒳+1(s))+2g𝒳+13(s))=2βwβ(𝒵+1(s;t,x,v))(𝒱+1(s;t,x,v)xΨ(s,𝒳+1(s;t,x,v)))=2βwβ(𝒵+1(s;t,x,v))(tΨ(s,𝒳+1(s;t,x,v))ddsΨ(s,𝒳+1(s;t,x,v))),\begin{split}&\frac{d}{ds}w_{\beta}(\mathcal{Z}^{\ell+1}(s;t,x,v))=\beta w_{\beta}(\mathcal{Z}^{\ell+1}(s;t,x,v))\frac{d}{ds}\Big{(}|\mathcal{V}^{\ell+1}(s)|^{2}+2\Phi(\mathcal{X}^{\ell+1}(s))+2g\mathcal{X}^{\ell+1}_{3}(s)\Big{)}\\ &=-2\beta w_{\beta}(\mathcal{Z}^{\ell+1}(s;t,x,v))\big{(}\mathcal{V}^{\ell+1}(s;t,x,v)\cdot\nabla_{x}\Psi(s,\mathcal{X}^{\ell+1}(s;t,x,v))\big{)}\\ &=2\beta w_{\beta}(\mathcal{Z}^{\ell+1}(s;t,x,v))\big{(}\partial_{t}\Psi^{\ell}(s,\mathcal{X}^{\ell+1}(s;t,x,v))-\frac{d}{ds}\Psi^{\ell}(s,\mathcal{X}^{\ell+1}(s;t,x,v))\big{)},\end{split} (6.20)

where we have also used

ddsΨ(x,𝒳+1(s;t,x,v))=tΨ(s,𝒳+1(s;t,x,v))+𝒱+1(s;t,x,v)xΨ(s,𝒳+1(s;t,x,v)).\frac{d}{ds}\Psi^{\ell}(x,\mathcal{X}^{\ell+1}(s;t,x,v))=\partial_{t}\Psi^{\ell}(s,\mathcal{X}^{\ell+1}(s;t,x,v))+\mathcal{V}^{\ell+1}(s;t,x,v)\cdot\nabla_{x}\Psi^{\ell}(s,\mathcal{X}^{\ell+1}(s;t,x,v)). (6.21)

This implies

wβ(𝒵+1(s;t,x,v))=wβ(𝒵+1(s;t,x,v))e2βsstΨ(τ,𝒳+1(τ;t,x,v))dτ2βssddsΨ(τ,𝒳+1(τ;t,x,v))dτ¯.w_{\beta}(\mathcal{Z}^{\ell+1}(s;t,x,v))=w_{\beta}(\mathcal{Z}^{\ell+1}(s^{\prime};t,x,v))e^{2\beta\int^{s}_{s^{\prime}}\partial_{t}\Psi^{\ell}(\tau,\mathcal{X}^{\ell+1}(\tau;t,x,v))\mathrm{d}\tau-2\beta\underline{\int^{s}_{s^{\prime}}\frac{d}{ds}\Psi^{\ell}(\tau,\mathcal{X}^{\ell+1}(\tau;t,x,v))\mathrm{d}\tau}}. (6.22)

Using the Dirichlet boundary condition (2.9), we estimate the underlined term in the exponent:

|Ψ(s,𝒳+1(s;t,x,v))Ψ(s,𝒳+1(s;t,x,v))|2x3ΨLt,xmaxs𝒳3+1(s;t,x,v)2x3ΨLt,x(x3+|v3|4g|v3|2+gx3)10gx3ΨLx,v(|v3|2+gx3).\begin{split}&\big{|}\Psi^{\ell}(s,\mathcal{X}^{\ell+1}(s;t,x,v))-\Psi^{\ell}(s^{\prime},\mathcal{X}^{\ell+1}(s^{\prime};t,x,v))\big{|}\leq 2\|\partial_{x_{3}}\Psi^{\ell}\|_{L^{\infty}_{t,x}}\max_{s}\mathcal{X}_{3}^{\ell+1}(s;t,x,v)\\ &\leq 2\|\partial_{x_{3}}\Psi^{\ell}\|_{L^{\infty}_{t,x}}\Big{(}x_{3}+|v_{3}|\frac{4}{g}\sqrt{|v_{3}|^{2}+gx_{3}}\Big{)}\leq\frac{10}{g}\|\partial_{x_{3}}\Psi^{\ell}\|_{L^{\infty}_{x,v}}\big{(}|v_{3}|^{2}+gx_{3}\big{)}.\end{split} (6.23)

Therefore, we conclude (6.16) from (6.22), (6.23), and (6.19):

wβ(𝒵+1(s;t,x,v))eβ2|v|2eβg2x3×eβ2|v|2e20βgx3ΨLx,v|v|2e8βgtΨLx,v|v|×eβg2x3e20βgx3ΨLx,vgx3e8βgtΨLx,vgx3eβ2|v|2eβg2x3×e162β2g2tΨLx,v2eβ4(|v|16gtΨLx,v)2eβ4(gx316gtΨLx,v)2e162β2g2tΨLx,v2eβ2|v|2eβg2x3.\begin{split}&w_{\beta}(\mathcal{Z}^{\ell+1}(s;t,x,v))\\ &\geq e^{\frac{\beta}{2}|v|^{2}}e^{\frac{\beta g}{2}x_{3}}\times e^{\frac{\beta}{2}|v|^{2}}e^{-20\frac{\beta}{g}\|\partial_{x_{3}}\Psi^{\ell}\|_{L^{\infty}_{x,v}}|v|^{2}}e^{-\frac{8\beta}{g}\|\partial_{t}\Psi^{\ell}\|_{L^{\infty}_{x,v}}|v|}\\ &\ \ \times e^{\frac{\beta g}{2}x_{3}}e^{-20\frac{\beta}{g}\|\partial_{x_{3}}\Psi^{\ell}\|_{L^{\infty}_{x,v}}gx_{3}}e^{-\frac{8\beta}{g}\|\partial_{t}\Psi^{\ell}\|_{L^{\infty}_{x,v}}\sqrt{gx_{3}}}\\ &\geq e^{\frac{\beta}{2}|v|^{2}}e^{\frac{\beta g}{2}x_{3}}\times e^{-\frac{16^{2}\beta}{2g^{2}}\|\partial_{t}\Psi^{\ell}\|_{L^{\infty}_{x,v}}^{2}}e^{\frac{\beta}{4}\big{(}|v|-\frac{16}{g}\|\partial_{t}\Psi^{\ell}\|_{L^{\infty}_{x,v}}\big{)}^{2}}e^{\frac{\beta}{4}\big{(}\sqrt{gx_{3}}-\frac{16}{g}\|\partial_{t}\Psi^{\ell}\|_{L^{\infty}_{x,v}}\big{)}^{2}}\\ &\geq e^{-\frac{16^{2}\beta}{2g^{2}}\|\partial_{t}\Psi^{\ell}\|_{L^{\infty}_{x,v}}^{2}}e^{\frac{\beta}{2}|v|^{2}}e^{\frac{\beta g}{2}x_{3}}.\end{split}

Lemma 6.4.

For an arbitrary \ell\in\mathbb{N}, we suppose the bootstrap assumption (6.11) holds for ΨC1(Ω¯)C2(Ω)\Psi^{\ell}\in C^{1}(\bar{\Omega})\cap C^{2}(\Omega). Then (f+1,ϱ)(f^{\ell+1},\varrho^{\ell}) solving (6.5)-(6.7) and (6.2) in the sense of Definition 2.2 satisfies that, for all (s,x,v)[0,t]×Ω¯×3(s,x,v)\in[0,t]\times\bar{\Omega}\times\mathbb{R}^{3},

eβ2|v|2eβ2gx3|f+1(s,x,v)|+β3/2eβ2gx3|ϱ+1(s,x)|e64βgsupτ[0,s]tΨ(τ)L(Ω)2{𝔴β,0F0L(Ω×3)+eβ|v|2GL(γ)}.\begin{split}&e^{\frac{\beta}{2}|v|^{2}}e^{\frac{\beta}{2}gx_{3}}|f^{\ell+1}(s,x,v)|+\beta^{-3/2}e^{\frac{\beta}{2}gx_{3}}|\varrho^{\ell+1}(s,x)|\\ &\lesssim e^{\frac{64\beta}{g}\sup_{\tau\in[0,s]}\|\partial_{t}\Psi^{\ell}(\tau)\|_{L^{\infty}(\Omega)}^{2}}\big{\{}\|\mathfrak{w}_{\beta,0}F_{0}\|_{L^{\infty}(\Omega\times\mathbb{R}^{3})}+\|e^{\beta|v|^{2}}G\|_{L^{\infty}(\gamma_{-})}\big{\}}.\end{split} (6.24)
Proof.

We express f+1(t,x,v)f^{\ell+1}(t,x,v) as

|f+1(t,x,v)|=|F+1(t,x,v)h(x,v)||F+1(t,x,v)|+eβ|v|2eβgx3wβh,\begin{split}|f^{\ell+1}(t,x,v)|=|F^{\ell+1}(t,x,v)-h(x,v)|\leq|F^{\ell+1}(t,x,v)|+e^{-\beta|v|^{2}}e^{-\beta gx_{3}}\|w_{\beta}h\|_{\infty},\end{split} (6.25)

where we have used (6.11). Since we already have bounded wβh\|w_{\beta}h\|_{\infty} in (2.42), it suffices to estimate |F+1(t,x,v)||F^{\ell+1}(t,x,v)|.

Along the characteristics (6.4), for s[max{0,tt+1𝐁(t,x,v)},tt+1𝐅(t,x,v)]s\in[\max\{0,t-t^{\ell+1}_{\mathbf{B}}(t,x,v)\},t-t^{\ell+1}_{\mathbf{F}}(t,x,v)],

ddsF+1(s,𝒵+1(s;t,x,v))=0.\begin{split}\frac{d}{ds}F^{\ell+1}(s,\mathcal{Z}^{\ell+1}(s;t,x,v))=0.\end{split}

Using the boundary condition (1.4) and the initial datum, we derive that

F+1(t,x,v)=𝟏t𝐁+1(t,x,v)tF0(𝒵+1(0;t,x,v))+𝟏t>t𝐁+1(t,x,v)G(𝒵(tt𝐁+1(t,x,v);t,x,v)).\displaystyle F^{\ell+1}(t,x,v)=\mathbf{1}_{t_{\mathbf{B}}^{\ell+1}(t,x,v)\geq t}F_{0}(\mathcal{Z}^{\ell+1}(0;t,x,v))+\mathbf{1}_{t>t_{\mathbf{B}}^{\ell+1}(t,x,v)}G(\mathcal{Z}^{\ell}(t-t_{\mathbf{B}}^{\ell+1}(t,x,v);t,x,v)). (6.26)

Using Lemma 6.3 and (6.15), we derive that |F+1(t,x,v)|I1+I2,|F^{\ell+1}(t,x,v)|\leq I_{1}+I_{2}, where

I1\displaystyle I_{1} 𝔴β,0F0Lx,v𝔴+1β(0,𝒵+1(0;t,z))e64βgtΨLt,x2eβ2|v|2eβ2gx3𝔴β,0F0Lx,v,\displaystyle\leq\frac{\|\mathfrak{w}_{{\beta},0}F_{0}\|_{L^{\infty}_{x,v}}}{\mathfrak{w}^{\ell+1}_{\beta}(0,\mathcal{Z}^{\ell+1}(0;t,z))}\leq e^{\frac{64\beta}{g}\|\partial_{t}\Psi^{\ell}\|_{L^{\infty}_{t,x}}^{2}}e^{-\frac{\beta}{2}|v|^{2}}e^{-\frac{\beta}{2}gx_{3}}\|\mathfrak{w}_{{\beta},0}F_{0}\|_{L^{\infty}_{x,v}}, (6.27)
I2\displaystyle I_{2} wβGL(γ)𝔴+1β(tt𝐁+1,𝒵+1(tt𝐁+1;t,z))e64βgtΨLt,x2eβ2|v|2eβ2gx3wβGL(γ).\displaystyle\leq\frac{\|w_{\beta}G\|_{L^{\infty}(\gamma_{-})}}{\mathfrak{w}^{\ell+1}_{\beta}(t-t_{\mathbf{B}}^{\ell+1},\mathcal{Z}^{\ell+1}(t-t_{\mathbf{B}}^{\ell+1};t,z))}\leq e^{\frac{64\beta}{g}\|\partial_{t}\Psi^{\ell}\|_{L^{\infty}_{t,x}}^{2}}e^{-\frac{\beta}{2}|v|^{2}}e^{-\frac{\beta}{2}gx_{3}}\|w_{\beta}G\|_{L^{\infty}(\gamma_{-})}. (6.28)

Here we have used the following facts from (2.25) and (2.24):

𝔴+1β(0,x,v)=𝔴β,0(x,v)in\displaystyle\mathfrak{w}^{\ell+1}_{\beta}(0,x,v)=\mathfrak{w}_{\beta,0}(x,v)\ \ \text{in} (x,v)Ω¯×3,\displaystyle\ (x,v)\in\bar{\Omega}\times\mathbb{R}^{3}, (6.29)
𝔴+1β(t,x,v)=eβ|v|2=wβ(x,v)on\displaystyle\mathfrak{w}^{\ell+1}_{\beta}(t,x,v)=e^{\beta|v|^{2}}=w_{\beta}(x,v)\ \ \text{on} (x,v)Ω×3.\displaystyle\ (x,v)\in\partial\Omega\times\mathbb{R}^{3}. (6.30)

Using this bound of (6.27)\eqref{est:Fell1}_{*}, together with (6.27) and (6.28), we derive a bound of F+1(t,x,v)F^{\ell+1}(t,x,v). Then combining with (6.25), we can conclude this lemma. ∎

6.2. Regularity Estimate

In this section we study the higher regularity of F+1(t,x,v)=h(x,v)+f+1(t,x,v)F^{\ell+1}(t,x,v)=h(x,v)+f^{\ell+1}(t,x,v) that we have constructed in the previous step. Note that

F+1(t,x,v)=𝟏tt𝐁(t,x,v)F0(𝒳+1(0;t,x,v),𝒱+1(0;t,x,v))+𝟏t>t𝐁+1(t,x,v)G(x𝐁+1(t,x,v),v𝐁+1(t,x,v)).\begin{split}F^{\ell+1}(t,x,v)&=\mathbf{1}_{t\leq t_{\mathbf{B}}(t,x,v)}F_{0}(\mathcal{X}^{\ell+1}(0;t,x,v),\mathcal{V}^{\ell+1}(0;t,x,v))\\ &+\mathbf{1}_{t>t_{\mathbf{B}}^{\ell+1}(t,x,v)}G(x_{\mathbf{B}}^{\ell+1}(t,x,v),v_{\mathbf{B}}^{\ell+1}(t,x,v)).\end{split} (6.31)

Assume a compatibility condition (2.50). Due to this compatibility condition (2.50), weak derivatives of F+1(t,x,v)F^{\ell+1}(t,x,v) in (6.31) are

xiF+1(t,x,v)=𝟏tt𝐁(t,x,v){xi𝒳+1(0)xF0(𝒵+1(0))+xi𝒱+1(0)vF0(𝒵+1(0))}+𝟏t>t𝐁+1(t,x,v){xix𝐁+1xG+xiv𝐁+1vG},\begin{split}\partial_{x_{i}}F^{\ell+1}(t,x,v)&=\mathbf{1}_{t\leq t_{\mathbf{B}}(t,x,v)}\{\partial_{x_{i}}\mathcal{X}^{\ell+1}(0)\cdot\nabla_{x}F_{0}(\mathcal{Z}^{\ell+1}(0))+\partial_{x_{i}}\mathcal{V}^{\ell+1}(0)\cdot\nabla_{v}F_{0}(\mathcal{Z}^{\ell+1}(0))\}\\ &+\mathbf{1}_{t>t_{\mathbf{B}}^{\ell+1}(t,x,v)}\{\partial_{x_{i}}x_{\mathbf{B}}^{\ell+1}\cdot\nabla_{x_{\parallel}}G+\partial_{x_{i}}v_{\mathbf{B}}^{\ell+1}\cdot\nabla_{v}G\},\end{split} (6.32)
viF+1(t,x,v)=𝟏tt𝐁(t,x,v){vi𝒳+1(0)xF0(𝒵+1(0))+vi𝒱+1(0)vF0(𝒵+1(0))}+𝟏t>t𝐁+1(t,x,v){vix𝐁+1xG+viv𝐁+1vG},\begin{split}\partial_{v_{i}}F^{\ell+1}(t,x,v)&=\mathbf{1}_{t\leq t_{\mathbf{B}}(t,x,v)}\{\partial_{v_{i}}\mathcal{X}^{\ell+1}(0)\cdot\nabla_{x}F_{0}(\mathcal{Z}^{\ell+1}(0))+\partial_{v_{i}}\mathcal{V}^{\ell+1}(0)\cdot\nabla_{v}F_{0}(\mathcal{Z}^{\ell+1}(0))\}\\ &+\mathbf{1}_{t>t_{\mathbf{B}}^{\ell+1}(t,x,v)}\{\partial_{v_{i}}x_{\mathbf{B}}^{\ell+1}\cdot\nabla_{x_{\parallel}}G+\partial_{v_{i}}v_{\mathbf{B}}^{\ell+1}\cdot\nabla_{v}G\},\end{split} (6.33)

where 𝒵+1(0)=𝒵+1(0;t,x,v)\mathcal{Z}^{\ell+1}(0)=\mathcal{Z}^{\ell+1}(0;t,x,v) and (𝒳+1(0),𝒱+1(0))=(𝒳+1(0;t,x,v),𝒱+1(0;t,x,v))(\mathcal{X}^{\ell+1}(0),\mathcal{V}^{\ell+1}(0))=(\mathcal{X}^{\ell+1}(0;t,x,v),\mathcal{V}^{\ell+1}(0;t,x,v)); and every GG is evaluated at (tt𝐁+1(t,x,v),x𝐁+1(t,x,v),v𝐁+1(t,x,v))(t-t_{\mathbf{B}}^{\ell+1}(t,x,v),x_{\mathbf{B}}^{\ell+1}(t,x,v),v_{\mathbf{B}}^{\ell+1}(t,x,v)).

Following the same proof of Lemma 5.4, we can derive the following estimate ([7, 10]):

|x𝒳+1(s;t,x,v)|\displaystyle|\nabla_{x}\mathcal{X}^{\ell+1}(s;t,x,v)| min{e|ts|22x2ϕF,e(1+x2ϕF)|ts|},\displaystyle\leq\min\big{\{}e^{\frac{|t-s|^{2}}{2}\|\nabla_{x}^{2}\phi_{F^{\ell}}\|_{\infty}},e^{(1+\|\nabla_{x}^{2}\phi_{F^{\ell}}\|_{\infty})|t-s|}\big{\}}, (6.34)
|x𝒱+1(s;t,x,v)|\displaystyle|\nabla_{x}\mathcal{V}^{\ell+1}(s;t,x,v)| min{|ts|x2ϕFe|ts|22x2ϕF,e(1+x2ϕF)|ts|},\displaystyle\leq\min\big{\{}|t-s|\|\nabla_{x}^{2}\phi_{F^{\ell}}\|_{\infty}e^{\frac{|t-s|^{2}}{2}\|\nabla_{x}^{2}\phi_{F^{\ell}}\|_{\infty}},e^{(1+\|\nabla_{x}^{2}\phi_{F^{\ell}}\|_{\infty})|t-s|}\big{\}}, (6.35)
|v𝒳+1(s;t,x,v)|\displaystyle|\nabla_{v}\mathcal{X}^{\ell+1}(s;t,x,v)| min{|ts|e|ts|22x2ϕF,e(1+x2ϕF)|ts|},\displaystyle\leq\min\big{\{}|t-s|e^{\frac{|t-s|^{2}}{2}\|\nabla_{x}^{2}\phi_{F^{\ell}}\|_{\infty}},e^{(1+\|\nabla_{x}^{2}\phi_{F^{\ell}}\|_{\infty})|t-s|}\big{\}}, (6.36)
|v𝒱+1(s;t,x,v)|\displaystyle|\nabla_{v}\mathcal{V}^{\ell+1}(s;t,x,v)| min{e|ts|22x2ϕF,e(1+x2ϕF)|ts|}.\displaystyle\leq\min\big{\{}e^{\frac{|t-s|^{2}}{2}\|\nabla_{x}^{2}\phi_{F^{\ell}}\|_{\infty}},e^{(1+\|\nabla_{x}^{2}\phi_{F^{\ell}}\|_{\infty})|t-s|}\big{\}}. (6.37)

Here, we have used the notation Lt,xL^{\infty}_{t,x} defined in (2.59).

We also follow the same proof of Lemma 5.6 to get ([7, 10])

|xix𝐁+1(t,x,v)||v𝐁+1(t,x,v)||v+1𝐁,3(t,x,v)|δi3+(1+|v𝐁+1(t,x,v)||v𝐁,3+1(t,x,v)||t𝐁+1|22x2ϕF)min{e|t𝐁+1|22x2ϕF,e(1+x2ϕF)t𝐁},\begin{split}&|\partial_{x_{i}}x_{\mathbf{B}}^{\ell+1}(t,x,v)|\leq\frac{|v_{\mathbf{B}}^{\ell+1}(t,x,v)|}{|v^{\ell+1}_{\mathbf{B},3}(t,x,v)|}\delta_{i3}\\ &+\Big{(}1+\frac{|v_{\mathbf{B}}^{\ell+1}(t,x,v)|}{|v_{\mathbf{B},3}^{\ell+1}(t,x,v)|}\frac{|t_{\mathbf{B}}^{\ell+1}|^{2}}{2}\|\nabla_{x}^{2}\phi_{F^{\ell}}\|_{\infty}\Big{)}\min\big{\{}e^{\frac{|t_{\mathbf{B}}^{\ell+1}|^{2}}{2}\|\nabla_{x}^{2}\phi_{F^{\ell}}\|_{\infty}},e^{(1+\|\nabla_{x}^{2}\phi_{F^{\ell}}\|_{\infty})t_{\mathbf{B}}}\big{\}},\end{split} (6.38)
|vix𝐁+1(t,x,v)||v𝐁+1(t,x,v)||t𝐁+1(t,x,v)||v𝐁,3+1(t,x,v)|δi3+(1+|v𝐁+1(t,x,v)||v𝐁,3+1(t,x,v)||t𝐁+1|22x2ϕF)min{t𝐁+1e|t𝐁+1|22x2ϕF,e(1+x2ϕF)t𝐁},\begin{split}&|\partial_{v_{i}}x_{\mathbf{B}}^{\ell+1}(t,x,v)|\leq\frac{|v_{\mathbf{B}}^{\ell+1}(t,x,v)||t_{\mathbf{B}}^{\ell+1}(t,x,v)|}{|v_{\mathbf{B},3}^{\ell+1}(t,x,v)|}\delta_{i3}\\ &+\Big{(}1+\frac{|v_{\mathbf{B}}^{\ell+1}(t,x,v)|}{|v_{\mathbf{B},3}^{\ell+1}(t,x,v)|}\frac{|t_{\mathbf{B}}^{\ell+1}|^{2}}{2}\|\nabla_{x}^{2}\phi_{F^{\ell}}\|_{\infty}\Big{)}\min\big{\{}t_{\mathbf{B}}^{\ell+1}e^{\frac{|t_{\mathbf{B}}^{\ell+1}|^{2}}{2}\|\nabla_{x}^{2}\phi_{F^{\ell}}\|_{\infty}},e^{(1+\|\nabla_{x}^{2}\phi_{F^{\ell}}\|_{\infty})t_{\mathbf{B}}}\big{\}},\end{split} (6.39)
|xiv𝐁,j+1(t,x,v)|δi3|xjϕF(tt𝐁+1(t,x,v),x𝐁+1(t,x,v))||v𝐁,3+1(t,x,v)|+(1+|t𝐁+1|xϕF|v𝐁,3+1(t,x,v)|)|t𝐁+1|x2ϕFmin{e|t𝐁+1|22x2ϕF,e(1+x2ϕF)t𝐁},\begin{split}&|\partial_{x_{i}}v_{\mathbf{B},j}^{\ell+1}(t,x,v)|\leq\delta_{i3}\frac{|\partial_{x_{j}}\phi_{F^{\ell}}(t-t_{\mathbf{B}}^{\ell+1}(t,x,v),x_{\mathbf{B}}^{\ell+1}(t,x,v))|}{|v_{\mathbf{B},3}^{\ell+1}(t,x,v)|}\\ &\ \ +\Big{(}1+\frac{|t_{\mathbf{B}}^{\ell+1}|\|\nabla_{x}\phi_{F^{\ell}}\|_{\infty}}{|v_{\mathbf{B},3}^{\ell+1}(t,x,v)|}\Big{)}|t_{\mathbf{B}}^{\ell+1}|\|\nabla_{x}^{2}\phi_{F^{\ell}}\|_{\infty}\min\big{\{}e^{\frac{|t_{\mathbf{B}}^{\ell+1}|^{2}}{2}\|\nabla_{x}^{2}\phi_{F^{\ell}}\|_{\infty}},e^{(1+\|\nabla_{x}^{2}\phi_{F^{\ell}}\|_{\infty})t_{\mathbf{B}}}\big{\}},\end{split} (6.40)
|viv𝐁,j+1(t,x,v)|δi3|t𝐁+1(t,x,v)||xjϕF(tt𝐁+1(t,x,v),x𝐁+1(t,x,v))||v𝐁,3+1(t,x,v)|+δij+(1+|t𝐁+1|xϕF|v𝐁,3+1(t,x,v)|)|t𝐁+1|x2ϕFmin{t𝐁+1e|t𝐁+1|22x2ϕF,e(1+x2ϕF)t𝐁},\begin{split}&|\partial_{v_{i}}v_{\mathbf{B},j}^{\ell+1}(t,x,v)|\leq\delta_{i3}\frac{|t_{\mathbf{B}}^{\ell+1}(t,x,v)||\partial_{x_{j}}\phi_{F^{\ell}}(t-t_{\mathbf{B}}^{\ell+1}(t,x,v),x_{\mathbf{B}}^{\ell+1}(t,x,v))|}{|v_{\mathbf{B},3}^{\ell+1}(t,x,v)|}+\delta_{ij}\\ &+\Big{(}1+\frac{|t_{\mathbf{B}}^{\ell+1}|\|\nabla_{x}\phi_{F^{\ell}}\|_{\infty}}{|v_{\mathbf{B},3}^{\ell+1}(t,x,v)|}\Big{)}|t_{\mathbf{B}}^{\ell+1}|\|\nabla_{x}^{2}\phi_{F^{\ell}}\|_{\infty}\min\big{\{}t_{\mathbf{B}}^{\ell+1}e^{\frac{|t_{\mathbf{B}}^{\ell+1}|^{2}}{2}\|\nabla_{x}^{2}\phi_{F^{\ell}}\|_{\infty}},e^{(1+\|\nabla_{x}^{2}\phi_{F^{\ell}}\|_{\infty})t_{\mathbf{B}}}\big{\}},\end{split} (6.41)

where we have abbreviated t𝐁+1=t𝐁+1(t,x,v)t_{\mathbf{B}}^{\ell+1}=t_{\mathbf{B}}^{\ell+1}(t,x,v), x2ϕF=supτ[tt𝐁+1(t,x,v),t]x2ϕF(τ)L(Ω×3)\|\nabla_{x}^{2}\phi_{F^{\ell}}\|_{\infty}=\sup_{\tau\in[t-t_{\mathbf{B}}^{\ell+1}(t,x,v),t]}\|\nabla_{x}^{2}\phi_{F^{\ell}}(\tau)\|_{L^{\infty}(\Omega\times\mathbb{R}^{3})} and xϕF=supτ[tt𝐁+1(t,x,v),t]xϕF(τ)L(Ω×3)\|\nabla_{x}\phi_{F^{\ell}}\|_{\infty}=\sup_{\tau\in[t-t_{\mathbf{B}}^{\ell+1}(t,x,v),t]}\|\nabla_{x}\phi_{F^{\ell}}(\tau)\|_{L^{\infty}(\Omega\times\mathbb{R}^{3})}.

Again we utilize a kinetic distance for the dynamic problem (1.1). We define a dynamic kinetic distance ([17, 6])

α+1F(t,x,v)=|v3|2+|x3|2+2x3ϕF(t,x,0)x3+2gx3,\alpha^{\ell+1}_{F^{\ell}}(t,x,v)=\sqrt{|v_{3}|^{2}+|x_{3}|^{2}+2\partial_{x_{3}}\phi_{F^{\ell}}(t,x_{\parallel},0)x_{3}+2gx_{3}}, (6.42)

In particular, α+1F(t,x,v)=|v3|\alpha^{\ell+1}_{F^{\ell}}(t,x,v)=|v_{3}| when xΩx\in\partial\Omega (i.e. x3=0x_{3}=0) due (1.5).

Lemma 6.5.

Assume (6.11) holds for ΨC1(Ω¯)C2(Ω)\Psi^{\ell}\in C^{1}(\bar{\Omega})\cap C^{2}(\Omega). Suppose the Dirichlet boundary condition (1.5) holds for ϕF\phi_{F^{\ell}}. Recall the characteristics 𝒵+1(s;t,x,v)=(𝒳+1(s;t,x,v),𝒱+1(s;t,x,v))\mathcal{Z}^{\ell+1}(s;t,x,v)=(\mathcal{X}^{\ell+1}(s;t,x,v),\mathcal{V}^{\ell+1}(s;t,x,v)) solving (2.13). For all (x,v)Ω×3(x,v)\in\Omega\times\mathbb{R}^{3} and s[tt𝐁+1(t,x,v),t]s\in[t-t_{\mathbf{B}}^{\ell+1}(t,x,v),t],

α+1F(s,𝒳+1(s;t,x,v),𝒱+1(s;t,x,v))α+1F(t,x,v)esupτ[s,t](1+x32ϕF(τ)L(Ω)+1gtx3ϕF(τ)L(Ω))|ts|×e1gsupτ[s,t]xx3ϕF(τ)L(Ω)ts|𝒱+1(s;t,x,v)|ds,α+1F(s,𝒳+1(s;t,x,v),𝒱+1(s;t,x,v))α+1F(t,x,v)esupτ[s,t](1+x32ϕF(τ)L(Ω)+1gtx3ϕF(τ)L(Ω))|ts|×e1gsupτ[s,t]xx3ϕF(τ)L(Ω)ts|𝒱+1(s;t,x,v)|ds.\begin{split}&\alpha^{\ell+1}_{F^{\ell}}(s,\mathcal{X}^{\ell+1}(s;t,x,v),\mathcal{V}^{\ell+1}(s;t,x,v))\\ &\leq\alpha^{\ell+1}_{F^{\ell}}(t,x,v)e^{\sup_{\tau\in[s,t]}\big{(}1+\|\partial_{x_{3}}^{2}\phi_{F^{\ell}}(\tau)\|_{L^{\infty}({\Omega})}+\frac{1}{g}\|\partial_{t}\partial_{x_{3}}\phi_{F^{\ell}}(\tau)\|_{L^{\infty}(\partial\Omega)}\big{)}|t-s|}\\ &\ \ \times e^{\frac{1}{g}\sup_{\tau\in[s,t]}\|\nabla_{x_{\parallel}}\partial_{x_{3}}\phi_{F^{\ell}}(\tau)\|_{L^{\infty}(\partial\Omega)}\int^{t}_{s}|\mathcal{V}^{\ell+1}_{\parallel}(s^{\prime};t,x,v)|\mathrm{d}s^{\prime}},\\ &\alpha^{\ell+1}_{F^{\ell}}(s,\mathcal{X}^{\ell+1}(s;t,x,v),\mathcal{V}^{\ell+1}(s;t,x,v))\\ &\geq\alpha^{\ell+1}_{F^{\ell}}(t,x,v)e^{-\sup_{\tau\in[s,t]}\big{(}1+\|\partial_{x_{3}}^{2}\phi_{F^{\ell}}(\tau)\|_{L^{\infty}({\Omega})}+\frac{1}{g}\|\partial_{t}\partial_{x_{3}}\phi_{F^{\ell}}(\tau)\|_{L^{\infty}(\partial\Omega)}\big{)}|t-s|}\\ &\ \ \times e^{-\frac{1}{g}\sup_{\tau\in[s,t]}\|\nabla_{x_{\parallel}}\partial_{x_{3}}\phi_{F^{\ell}}(\tau)\|_{L^{\infty}(\partial\Omega)}\int^{t}_{s}|\mathcal{V}^{\ell+1}_{\parallel}(s^{\prime};t,x,v)|\mathrm{d}s^{\prime}}.\end{split} (6.43)

In particular, the last inequality implies that

|v𝐁,3+1(t,x,v)|αF+1(t,x,v)esupτ[tt𝐁,t](1+x32ϕF(τ)L(Ω)+1gtx3ϕF(τ)L(Ω))t𝐁\displaystyle|v_{\mathbf{B},3}^{\ell+1}(t,x,v)|\geq\alpha_{F^{\ell}}^{\ell+1}(t,x,v)e^{-\sup_{\tau\in[t-t_{\mathbf{B}},t]}\big{(}1+\|\partial_{x_{3}}^{2}\phi_{F^{\ell}}(\tau)\|_{L^{\infty}({\Omega})}+\frac{1}{g}\|\partial_{t}\partial_{x_{3}}\phi_{F^{\ell}}(\tau)\|_{L^{\infty}(\partial\Omega)}\big{)}t_{\mathbf{B}}}
×e1gsupτ[tt𝐁+1,t]xx3ϕF(τ)L(Ω)ttt𝐁|𝒱+1(s;t,x,v)|ds\displaystyle\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \times e^{-\frac{1}{g}\sup_{\tau\in[t-t_{\mathbf{B}}^{\ell+1},t]}\|\nabla_{x_{\parallel}}\partial_{x_{3}}\phi_{F^{\ell}}(\tau)\|_{L^{\infty}(\partial\Omega)}\int^{t}_{t-t_{\mathbf{B}}}|\mathcal{V}^{\ell+1}_{\parallel}(s^{\prime};t,x,v)|\mathrm{d}s^{\prime}} (6.44)
αF+1(t,x,v)e4g|v𝐁,3+1(t,x,v)|supτ[tt𝐁+1,t](1+x32ϕF(τ)L(Ω)+1gtx3ϕF(τ)L(Ω))\displaystyle\geq\alpha_{F^{\ell}}^{\ell+1}(t,x,v)e^{-\frac{4}{g}|v_{\mathbf{B},3}^{\ell+1}(t,x,v)|\sup_{\tau\in[t-t_{\mathbf{B}}^{\ell+1},t]}\big{(}1+\|\partial_{x_{3}}^{2}\phi_{F^{\ell}}(\tau)\|_{L^{\infty}({\Omega})}+\frac{1}{g}\|\partial_{t}\partial_{x_{3}}\phi_{F^{\ell}}(\tau)\|_{L^{\infty}(\partial\Omega)}\big{)}}
×e4g2|v𝐁+1(t,x,v)|2supτ[tt𝐁+1,t]xx3ϕF(τ)L(Ω)(1+2gxϕF(τ)L(Ω)).\displaystyle\ \ \times e^{-\frac{4}{g^{2}}|v_{\mathbf{B}}^{\ell+1}(t,x,v)|^{2}\sup_{\tau\in[t-t_{\mathbf{B}}^{\ell+1},t]}\|\nabla_{x_{\parallel}}\partial_{x_{3}}\phi_{F^{\ell}}(\tau)\|_{L^{\infty}(\partial\Omega)}\big{(}1+\frac{2}{g}\|\nabla_{x}\phi_{F^{\ell}}(\tau)\|_{L^{\infty}(\Omega)}\big{)}}. (6.45)

Here, we abbreviate t𝐁+1=t𝐁+1(t,x,v)t_{\mathbf{B}}^{\ell+1}=t_{\mathbf{B}}^{\ell+1}(t,x,v).

Proof.

Note that

[t+vxx(ϕF(t,x)+gx3)v]|v3|2+|x3|2+2x3ϕF(t,x,0)x3+2gx3=tx3ϕF(t,x,0)x3(x3ϕF(t,x)3ϕF(t,x,0))v3+v3x3+vx3ϕF(t,x,0)x3α+1F(t,x,v)(1+33ϕF(t)L(Ω))|v3||x3|+(tx3ϕF(t)L(Ω)+|v|3ϕF(t)L(Ω))|x3|α+1F(t,x,v),\begin{split}&[\partial_{t}+v\cdot\nabla_{x}-\nabla_{x}(\phi_{F^{\ell}}(t,x)+gx_{3})\cdot\nabla_{v}]\sqrt{{|v_{3}|^{2}}+{|x_{3}|^{2}}+2\partial_{x_{3}}\phi_{F^{\ell}}(t,x_{\parallel},0)x_{3}+2gx_{3}}\\ &=\frac{\partial_{t}\partial_{x_{3}}\phi_{F^{\ell}}(t,x_{\parallel},0)x_{3}-\big{(}\partial_{x_{3}}\phi_{F^{\ell}}(t,x)-\partial_{3}\phi_{F^{\ell}}(t,x_{\parallel},0)\big{)}v_{3}+v_{3}x_{3}+v_{\parallel}\cdot\nabla_{x_{\parallel}}\partial_{3}\phi_{F^{\ell}}(t,x_{\parallel},0)x_{3}}{\alpha^{\ell+1}_{F^{\ell}}(t,x,v)}\\ &\leq\frac{\big{(}1+\|\partial_{3}\partial_{3}\phi_{F^{\ell}}(t)\|_{L^{\infty}(\Omega)}\big{)}|v_{3}||x_{3}|+\big{(}\|\partial_{t}\partial_{x_{3}}\phi_{F^{\ell}}(t)\|_{L^{\infty}(\partial\Omega)}+|v_{\parallel}|\|\nabla_{\parallel}\partial_{3}\phi_{F^{\ell}}(t)\|_{L^{\infty}(\partial\Omega)}\big{)}|x_{3}|}{\alpha^{\ell+1}_{F^{\ell}}(t,x,v)},\end{split}

where we use 3ϕF(t,x,x3)+3ϕF(t,x,0)=0x333ϕF(t,x,y3)dy3-\partial_{3}\phi_{F^{\ell}}(t,x_{\parallel},x_{3})+\partial_{3}\phi_{F^{\ell}}(t,x_{\parallel},0)=\int^{0}_{x_{3}}\partial_{3}\partial_{3}\phi_{F^{\ell}}(t,x_{\parallel},y_{3})\mathrm{d}y_{3}. Then

|[t+vxx(ϕF+gx3)v]αF+1(t,x,v)|(1+x3x3ϕF(t)L(Ω)+1gtx3ϕF(t)L(Ω)+1g|v|x3ϕF(t)L(Ω))αF+1(t,x,v).\begin{split}&\big{|}[\partial_{t}+v\cdot\nabla_{x}-\nabla_{x}(\phi_{F^{\ell}}+gx_{3})\cdot\nabla_{v}]\alpha_{F^{\ell}}^{\ell+1}(t,x,v)\big{|}\\ &\leq\Big{(}1+\|\partial_{x_{3}}\partial_{x_{3}}\phi_{F^{\ell}}(t)\|_{L^{\infty}(\Omega)}+\frac{1}{g}\|\partial_{t}\partial_{x_{3}}\phi_{F^{\ell}}(t)\|_{L^{\infty}(\partial\Omega)}+\frac{1}{g}|v_{\parallel}|\|\nabla_{\parallel}\partial_{x_{3}}\phi_{F^{\ell}}(t)\|_{L^{\infty}(\partial\Omega)}\Big{)}\alpha_{F^{\ell}}^{\ell+1}(t,x,v).\end{split}

By the Gronwall’s inequality, we conclude both inequalities of (6.43). Then (6.44) is a direct result of the second estimate in (6.43). For (6.45), we use (2.27). ∎

Lemma 6.6.

Assume that (6.11) holds for ΨC1(Ω¯)C2(Ω)\Psi^{\ell}\in C^{1}(\bar{\Omega})\cap C^{2}(\Omega), and the compatibility condition (2.50) holds. Let (h,Φ)(h,\Phi) and (f+1,Ψ)(f^{\ell+1},\Psi^{\ell}) be the solutions constructed in Theorem 2.8 and (6.2)-(6.7) respectively. Recall that ϕF=Φ+Ψ\phi_{F^{\ell}}=\Phi+\Psi^{\ell}. Suppose that

β~1/2g1/2tϕFL([0,t]×Ω)+1g2β~1/2tx3ϕFL([0,t]×Ω)+1gβ~1/2x2ϕFL([0,t]×Ω)1.\begin{split}\frac{\tilde{\beta}^{1/2}}{g^{1/2}}\|\partial_{t}\phi_{F^{\ell}}\|_{L^{\infty}([0,t]\times\Omega)}+\frac{1}{g^{2}\tilde{\beta}^{1/2}}\|\partial_{t}\partial_{x_{3}}\phi_{F^{\ell}}\|_{L^{\infty}([0,t]\times\partial\Omega)}+\frac{1}{g\tilde{\beta}^{1/2}}\|\nabla_{x}^{2}\phi_{F^{\ell}}\|_{L^{\infty}([0,t]\times\Omega)}\lesssim 1.\end{split} (6.46)

Then, for F+1=h+f+1F^{\ell+1}=h+f^{\ell+1} and ϕF=Φ+Ψ\phi_{F^{\ell}}=\Phi+\Psi^{\ell}, we have that, for all s[0,t]s\in[0,t],

eβ~4(|v|2+gx3)|vF+1(s,x,v)|𝔴β~,0x,vF0L(Ω×3)+(1+1gβ~1/2)eβ~|v|2x,vGL(γ),\begin{split}e^{\frac{\tilde{\beta}}{4}(|v|^{2}+gx_{3})}|\nabla_{v}F^{\ell+1}(s,x,v)|\lesssim\|\mathfrak{w}_{\tilde{\beta},0}\nabla_{x,v}F_{0}\|_{L^{\infty}(\Omega\times\mathbb{R}^{3})}+\Big{(}1+\frac{1}{g\tilde{\beta}^{1/2}}\Big{)}\|e^{\tilde{\beta}|v|^{2}}\nabla_{x_{\parallel},v}G\|_{L^{\infty}(\gamma_{-})},\end{split} (6.47)
eβ~4(|v|2+gx3)|xiF+1(s,x,v)|𝔴β~,0x,vF0L(Ω×3)+[(1+1gβ~1/2)+(1+1β~1/2)δi3α+1F(s,x,v)]eβ~|v|2x,vGL(γ).\begin{split}&e^{\frac{\tilde{\beta}}{4}(|v|^{2}+gx_{3})}|\partial_{x_{i}}F^{\ell+1}(s,x,v)|\lesssim\|\mathfrak{w}_{\tilde{\beta},0}\nabla_{x,v}F_{0}\|_{L^{\infty}(\Omega\times\mathbb{R}^{3})}\\ &\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +\left[\left(1+\frac{1}{g\tilde{\beta}^{1/2}}\right)+\left(1+\frac{1}{\tilde{\beta}^{1/2}}\right)\frac{\delta_{i3}}{\alpha^{\ell+1}_{F^{\ell}}(s,x,v)}\right]\|e^{\tilde{\beta}|v|^{2}}\nabla_{x_{\parallel},v}G\|_{L^{\infty}(\gamma_{-})}.\end{split} (6.48)

Moreover, for all (s,x)[0,t]×Ω¯(s,x)\in[0,t]\times\bar{\Omega},

eβ~g4x3|xiϱ+1(s,x)|1β~3/2[𝔴β~,0x,vF0L(Ω×3)+(1+1gβ~1/2)eβ~|v|2x,vGL(γ)]+δi3β~(1+1β~1/2)(1+1β~1/2+𝟏|x3|1|ln(|x3|2+gx3)|)eβ~|v|2x,vGL(γ).\begin{split}&e^{\frac{\tilde{\beta}g}{4}x_{3}}|\partial_{x_{i}}\varrho^{\ell+1}(s,x)|\lesssim\frac{1}{\tilde{\beta}^{3/2}}\left[\|\mathfrak{w}_{\tilde{\beta},0}\nabla_{x,v}F_{0}\|_{L^{\infty}(\Omega\times\mathbb{R}^{3})}+\Big{(}1+\frac{1}{g\tilde{\beta}^{1/2}}\Big{)}\|e^{\tilde{\beta}|v|^{2}}\nabla_{x_{\parallel},v}G\|_{L^{\infty}({\gamma_{-}})}\right]\\ &\ \ \ \ \ \ \ \ \ \ \ \ \ \ +\frac{\delta_{i3}}{\tilde{\beta}}\left(1+\frac{1}{\tilde{\beta}^{1/2}}\right)\Big{(}1+\frac{1}{\tilde{\beta}^{1/2}}+\mathbf{1}_{|x_{3}|\leq 1}|\ln(|x_{3}|^{2}+gx_{3})|\Big{)}\|e^{\tilde{\beta}|v|^{2}}\nabla_{x_{\parallel},v}G\|_{L^{\infty}({\gamma_{-}})}.\end{split} (6.49)

For 0<δ<10<\delta<1 and for all s[0,t]s\in[0,t]

[ϱ+1(s)]C0,δδ1β~3/2𝔴β~,0x,vF0L(Ω×3)+1β~(1+1β~1/2+1gβ~)eβ~|v|2x,vGL(γ).[\varrho^{\ell+1}(s)]_{C^{0,\delta}}\lesssim_{\delta}\frac{1}{\tilde{\beta}^{3/2}}\|\mathfrak{w}_{\tilde{\beta},0}\nabla_{x,v}F_{0}\|_{L^{\infty}(\Omega\times\mathbb{R}^{3})}+\frac{1}{\tilde{\beta}}\left(1+\frac{1}{\tilde{\beta}^{1/2}}+\frac{1}{g\tilde{\beta}}\right)\|e^{\tilde{\beta}|v|^{2}}\nabla_{x_{\parallel},v}G\|_{L^{\infty}(\gamma_{-})}. (6.50)

Furthermore, for all s[0,t]s\in[0,t], we have that ϕF+1(s)C1(Ω¯)C2(Ω)\phi_{F^{\ell+1}}(s)\in C^{1}(\bar{\Omega})\cap C^{2}(\Omega) and

xϕF+1(s)L(Ω)1β3/2(1+1βg){𝔴β,0F0L(Ω×3)+eβ|v|2GL(γ)},\|\nabla_{x}\phi_{F^{\ell+1}}(s)\|_{L^{\infty}(\Omega)}\leq\frac{1}{\beta^{3/2}}\Big{(}1+\frac{1}{\beta g}\Big{)}\big{\{}\|\mathfrak{w}_{\beta,0}F_{0}\|_{L^{\infty}(\Omega\times\mathbb{R}^{3})}+\|e^{\beta|v|^{2}}G\|_{L^{\infty}(\gamma_{-})}\big{\}}, (6.51)
x2ϕF+1(s)L(Ω)1β3/2{𝔴β,0F0L(Ω×3)+eβ|v|2GL(γ)}×{1gβ+log(e+1β~3/2𝔴β~,0x,vF0L(Ω×3)+1β~(1+1β~1/2+1gβ~)eβ~|v|2x,vGL(γ))}.\begin{split}&\|\nabla_{x}^{2}\phi_{F^{\ell+1}}(s)\|_{L^{\infty}(\Omega)}\leq\frac{\mathfrak{C}_{1}}{\beta^{3/2}}\big{\{}\|\mathfrak{w}_{\beta,0}F_{0}\|_{L^{\infty}(\Omega\times\mathbb{R}^{3})}+\|e^{\beta|v|^{2}}G\|_{L^{\infty}(\gamma_{-})}\big{\}}\\ &\times\bigg{\{}\frac{1}{g\beta}+\log\bigg{(}e+\frac{1}{\tilde{\beta}^{3/2}}\|\mathfrak{w}_{\tilde{\beta},0}\nabla_{x,v}F_{0}\|_{L^{\infty}(\Omega\times\mathbb{R}^{3})}+\frac{1}{\tilde{\beta}}\Big{(}1+\frac{1}{\tilde{\beta}^{1/2}}+\frac{1}{g\tilde{\beta}}\Big{)}\|e^{\tilde{\beta}|v|^{2}}\nabla_{x_{\parallel},v}G\|_{L^{\infty}(\gamma_{-})}\bigg{)}\bigg{\}}.\end{split} (6.52)
Proof.

We bound (6.32) and (6.33) following the argument of the proof of Lemma 5.7. Recall 𝔴+1β~\mathfrak{w}^{\ell+1}_{\tilde{\beta}} defined in (6.13). From (6.33),

|vF+1(t,z)|\displaystyle|\nabla_{v}F^{\ell+1}(t,z)| 𝟏tt𝐁+1(t,z)|v𝒳+1(0;t,z)|+|v𝒱+1(0;t,z)|𝔴+1β~(0,𝒵+1(0;t,z))𝔴+1β~,0x,vF0L(Ω×3)\displaystyle\leq\mathbf{1}_{t\leq t_{\mathbf{B}}^{\ell+1}(t,z)}\frac{|\nabla_{v}\mathcal{X}^{\ell+1}(0;t,z)|+|\nabla_{v}\mathcal{V}^{\ell+1}(0;t,z)|}{\mathfrak{w}^{\ell+1}_{\tilde{\beta}}(0,\mathcal{Z}^{\ell+1}(0;t,z))}\|\mathfrak{w}^{\ell+1}_{\tilde{\beta},0}\nabla_{x,v}F_{0}\|_{L^{\infty}(\Omega\times\mathbb{R}^{3})} (6.53)
+𝟏t>t𝐁+1(t,z)|vx𝐁+1(t,z)|+|vv𝐁+1(t,z)|eβ~|v𝐁+1(t,z)|2eβ~|v|2x,vGL(γ).\displaystyle+\mathbf{1}_{t>t_{\mathbf{B}}^{\ell+1}(t,z)}\frac{|\nabla_{v}x_{\mathbf{B}}^{\ell+1}(t,z)|+|\nabla_{v}v_{\mathbf{B}}^{\ell+1}(t,z)|}{e^{\tilde{\beta}|v_{\mathbf{B}}^{\ell+1}(t,z)|^{2}}}\|e^{\tilde{\beta}|v|^{2}}\nabla_{x_{\parallel},v}G\|_{L^{\infty}(\gamma_{-})}. (6.54)

Using (6.36)-(6.37) and (6.15), we bound

(6.53)e64β~gtΨLt,x2eβ~2|v|2eβ~2gx3𝟏tt𝐁+1(t,x,v)e(1+x2ϕFLt,x)t𝔴β~,0x,vF0L(Ω×3)e64β~gtΨLt,x2e32g2β~(1+x2ϕFLt,x)2eβ~4|v|2eβ~4gx3𝔴β~,0x,vF0L(Ω×3),\begin{split}\eqref{est1:F_v1}&\lesssim e^{\frac{64\tilde{\beta}}{g}\|\partial_{t}\Psi^{\ell}\|_{L^{\infty}_{t,x}}^{2}}e^{-\frac{\tilde{\beta}}{2}|v|^{2}}e^{-\frac{\tilde{\beta}}{2}gx_{3}}\mathbf{1}_{t\leq t_{\mathbf{B}}^{\ell+1}(t,x,v)}e^{(1+\|\nabla_{x}^{2}\phi_{F^{\ell}}\|_{L^{\infty}_{t,x}})t}\|\mathfrak{w}_{\tilde{\beta},0}\nabla_{x,v}F_{0}\|_{L^{\infty}(\Omega\times\mathbb{R}^{3})}\\ &\lesssim e^{\frac{64\tilde{\beta}}{g}\|\partial_{t}\Psi^{\ell}\|_{L^{\infty}_{t,x}}^{2}}e^{\frac{32}{g^{2}\tilde{\beta}}(1+\|\nabla_{x}^{2}\phi_{F^{\ell}}\|_{L^{\infty}_{t,x}})^{2}}e^{-\frac{\tilde{\beta}}{4}|v|^{2}}e^{-\frac{\tilde{\beta}}{4}gx_{3}}\|\mathfrak{w}_{\tilde{\beta},0}\nabla_{x,v}F_{0}\|_{L^{\infty}(\Omega\times\mathbb{R}^{3})},\end{split} (6.55)

where we use the abbreviation Lt,xL^{\infty}_{t,x} of (2.59). In (6.55), we have used (6.12) at the second line: e(1+x2ϕFLt,x)t𝐁+1(t,x,v)e4g(1+x2ϕFLt,x)(|v3|+gx3)e^{(1+\|\nabla_{x}^{2}\phi_{F^{\ell}}\|_{L^{\infty}_{t,x}})t_{\mathbf{B}}^{\ell+1}(t,x,v)}\leq e^{\frac{4}{g}(1+\|\nabla_{x}^{2}\phi_{F^{\ell}}\|_{L^{\infty}_{t,x}})(|v_{3}|+\sqrt{gx_{3}})}; and used the completing-square trick to get the last line of (6.55).

Now we consider (6.54). We follow the same argument in (5.52) and (5.54): Using (6.39), (6.41), and (6.12), we derive that

|vix𝐁+1(t,x,v)|eβ~|v𝐁+1(t,x,v)|2\displaystyle\frac{|\partial_{v_{i}}x_{\mathbf{B}}^{\ell+1}(t,x,v)|}{e^{\tilde{\beta}|v_{\mathbf{B}}^{\ell+1}(t,x,v)|^{2}}} 16gβ~1/2(1+8g2β~x2ϕFLt,x)eβ~2|v|2eβ~g2x3,\displaystyle\leq\frac{16}{g{\tilde{\beta}}^{1/2}}\Big{(}1+\frac{8}{g^{2}\tilde{\beta}}\|\nabla_{x}^{2}\phi_{F^{\ell}}\|_{L^{\infty}_{t,x}}\Big{)}e^{-\frac{\tilde{\beta}}{2}|v|^{2}}e^{-\frac{\tilde{\beta}g}{2}x_{3}}, (6.56)
|viv𝐁+1(t,x,v)|eβ~|v𝐁+1(t,x,v)|2\displaystyle\frac{|\partial_{v_{i}}v_{\mathbf{B}}^{\ell+1}(t,x,v)|}{e^{\tilde{\beta}|v_{\mathbf{B}}^{\ell+1}(t,x,v)|^{2}}} (1+4gxϕFLt,x)(1+32g2β~x2ϕFLt,x)eβ~2|v|2eβ~g2x3.\displaystyle\leq\Big{(}1+\frac{4}{g}\|\nabla_{x}\phi_{F^{\ell}}\|_{L^{\infty}_{t,x}}\Big{)}\Big{(}1+\frac{32}{g^{2}\tilde{\beta}}\|\nabla_{x}^{2}\phi_{F^{\ell}}\|_{L^{\infty}_{t,x}}\Big{)}e^{-\frac{\tilde{\beta}}{2}|v|^{2}}e^{-\frac{\tilde{\beta}g}{2}x_{3}}. (6.57)

Finally applying (6.56), (6.57), (6.55) to (6.53)-(6.54) we conclude (6.47) under the condition of (6.46).

Next, to get (6.48), we bound (6.32). We can bound the first line of (6.32), following the argument of (6.55) and using (6.34)-(6.35):

𝟏tt𝐁+1(t,x,v)|x𝒳+1(0;t,x,v)|+|x𝒱+1(0;t,x,v)|𝔴β~(0,𝒵+1(0;t,x,v))𝔴β~,0x,vF0L(Ω×3)e64β~gtΨLt,x2e32g2β~(1+x2ϕFLt,x)2eβ~4|v|2eβ~4gx3𝔴β~,0x,vF0L(Ω×3).\begin{split}&\mathbf{1}_{t\leq t_{\mathbf{B}}^{\ell+1}(t,x,v)}\frac{|\nabla_{x}\mathcal{X}^{\ell+1}(0;t,x,v)|+|\nabla_{x}\mathcal{V}^{\ell+1}(0;t,x,v)|}{\mathfrak{w}_{\tilde{\beta}}(0,\mathcal{Z}^{\ell+1}(0;t,x,v))}\|\mathfrak{w}_{\tilde{\beta},0}\nabla_{x,v}F_{0}\|_{L^{\infty}(\Omega\times\mathbb{R}^{3})}\\ &\lesssim e^{\frac{64\tilde{\beta}}{g}\|\partial_{t}\Psi^{\ell}\|_{L^{\infty}_{t,x}}^{2}}e^{\frac{32}{g^{2}\tilde{\beta}}(1+\|\nabla_{x}^{2}\phi_{F^{\ell}}\|_{L^{\infty}_{t,x}})^{2}}e^{-\frac{\tilde{\beta}}{4}|v|^{2}}e^{-\frac{\tilde{\beta}}{4}gx_{3}}\|\mathfrak{w}_{\tilde{\beta},0}\nabla_{x,v}F_{0}\|_{L^{\infty}(\Omega\times\mathbb{R}^{3})}.\end{split} (6.58)

Now we consider the second line of (6.32). We follow the same argument of (5.56) and (5.57). Using (6.46), (6.45), and the completing-square trick, we have that

|xix𝐁+1(t,x,v)|eβ~|v𝐁+1(t,x,v)|2|v𝐁+1||v𝐁,3+1|eβ~|v𝐁+1|2δi3+(1+8x2ϕFLt,xg2|v𝐁+1||v𝐁,3+1|)eβ~|v𝐁+1|2×min{e8g2x2ϕFLt,x|v𝐁,3+1|2,e4g(1+x2ϕFLt,x)|v𝐁,3+1|}(e25g2β~supτ[tt𝐁+1,t](1+x32ϕF(τ)L(Ω)+1gtx3ϕF(τ)L(Ω))2δi3β~1/21α+1F(t,x,v)+32gβ~1/2)×eβ~2|v|2eβ~g2x3,\begin{split}&\frac{|\partial_{x_{i}}x_{\mathbf{B}}^{\ell+1}(t,x,v)|}{e^{\tilde{\beta}|v_{\mathbf{B}}^{\ell+1}(t,x,v)|^{2}}}\leq\frac{|v_{\mathbf{B}}^{\ell+1}|}{|v_{\mathbf{B},3}^{\ell+1}|}e^{-\tilde{\beta}|v_{\mathbf{B}}^{\ell+1}|^{2}}\delta_{i3}+\Big{(}1+\frac{8\|\nabla_{x}^{2}\phi_{F^{\ell}}\|_{L^{\infty}_{t,x}}}{g^{2}}|v_{\mathbf{B}}^{\ell+1}||v_{\mathbf{B},3}^{\ell+1}|\Big{)}e^{-\tilde{\beta}|v_{\mathbf{B}}^{\ell+1}|^{2}}\\ &\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \times\min\Big{\{}e^{\frac{8}{g^{2}}\|\nabla_{x}^{2}\phi_{F^{\ell}}\|_{L^{\infty}_{t,x}}|v_{\mathbf{B},3}^{\ell+1}|^{2}},e^{\frac{4}{g}(1+\|\nabla_{x}^{2}\phi_{F^{\ell}}\|_{L^{\infty}_{t,x}})|v_{\mathbf{B},3}^{\ell+1}|}\Big{\}}\\ &\leq\left(e^{\frac{2^{5}}{g^{2}\tilde{\beta}}\sup_{\tau\in[t-t_{\mathbf{B}}^{\ell+1},t]}\big{(}1+\|\partial_{x_{3}}^{2}\phi_{F^{\ell}}(\tau)\|_{L^{\infty}({\Omega})}+\frac{1}{g}\|\partial_{t}\partial_{x_{3}}\phi_{F^{\ell}}(\tau)\|_{L^{\infty}(\partial\Omega)}\big{)}^{2}}\frac{\delta_{i3}}{\tilde{\beta}^{1/2}}\frac{1}{\alpha^{\ell+1}_{F^{\ell}}(t,x,v)}+\frac{32}{g{\tilde{\beta}}^{1/2}}\right)\\ &\ \ \times e^{-\frac{\tilde{\beta}}{2}|v|^{2}}e^{-\frac{\tilde{\beta}g}{2}x_{3}},\end{split} (6.59)

where we have abbreviated v𝐁+1=v𝐁+1(t,x,v)v_{\mathbf{B}}^{\ell+1}=v_{\mathbf{B}}^{\ell+1}(t,x,v) and used (2.59).

Similarly, we derive that

eβ~2|v|2eβ~g2x3|xiv𝐁+1(t,x,v)|eβ~|v𝐁+1(t,x,v)|2(e25g2β~supτ[tt𝐁+1,t](1+x32ϕF(τ)L(Ω)+1gtx3ϕF(τ)L(Ω))2xϕ+1Lt,xα+1F(t,x,v)δi3+3).\begin{split}&e^{\frac{\tilde{\beta}}{2}|v|^{2}}e^{\frac{\tilde{\beta}g}{2}x_{3}}\frac{|\partial_{x_{i}}v_{\mathbf{B}}^{\ell+1}(t,x,v)|}{e^{\tilde{\beta}|v_{\mathbf{B}}^{\ell+1}(t,x,v)|^{2}}}\\ &\leq\left(e^{\frac{2^{5}}{g^{2}\tilde{\beta}}\sup_{\tau\in[t-t_{\mathbf{B}}^{\ell+1},t]}\big{(}1+\|\partial_{x_{3}}^{2}\phi_{F^{\ell}}(\tau)\|_{L^{\infty}({\Omega})}+\frac{1}{g}\|\partial_{t}\partial_{x_{3}}\phi_{F^{\ell}}(\tau)\|_{L^{\infty}(\partial\Omega)}\big{)}^{2}}\frac{\|\nabla_{x}\phi^{\ell+1}\|_{L^{\infty}_{t,x}}}{\alpha^{\ell+1}_{F^{\ell}}(t,x,v)}\delta_{i3}+3\right).\end{split} (6.60)

Finally we conclude (6.48) using (LABEL:est1:F_x1), (6.59), and (6.60), under the condition of (6.46).

We prove (6.49)-(LABEL:est:phi_C2_dyn) following the proof of (5.46)-(LABEL:est:phi_C2).∎

Lemma 6.7.

Suppose gβ~41g\frac{\tilde{\beta}}{4}\geq 1. Suppose (2.48) and (6.48) hold. Then (6.10) holds and xb+1(t,)L(Ω)\nabla_{x}\cdot b^{\ell+1}(t,\cdot)\in L^{\infty}(\Omega) and x3tϕF+1(t,)C0,δ(Ω)\partial_{x_{3}}\partial_{t}\phi_{F^{\ell+1}}(t,\cdot)\in C^{0,\delta}(\Omega) for some δ>0\delta>0.

Moreover, for all (s,x)[0,t]×Ω¯(s,x)\in[0,t]\times\bar{\Omega},

eβ~4gx3|xb+1(s,x)|+β~3/2ex3|x3tϕF+1(s,x)|+β~3/2|tϕF+1(s,x)|\displaystyle e^{\frac{\tilde{\beta}}{4}gx_{3}}|\nabla_{x}\cdot b^{\ell+1}(s,x)|+\tilde{\beta}^{3/2}e^{x_{3}}|\partial_{x_{3}}\partial_{t}\phi_{F^{\ell+1}}(s,x)|+\tilde{\beta}^{3/2}|\partial_{t}\phi_{F^{\ell+1}}(s,x)|
(1β~2𝔴β~,0x,vF0L(Ω×3)+1β~3/2(1+1β~1/2+1gβ~)eβ~|v|2x,vGL(γ)).\displaystyle\lesssim\bigg{(}\frac{1}{\tilde{\beta}^{2}}\|\mathfrak{w}_{\tilde{\beta},0}\nabla_{x,v}F_{0}\|_{L^{\infty}(\Omega\times\mathbb{R}^{3})}+\frac{1}{\tilde{\beta}^{3/2}}\Big{(}1+\frac{1}{\tilde{\beta}^{1/2}}+\frac{1}{g{\tilde{\beta}}}\Big{)}\|e^{\tilde{\beta}|v|^{2}}\nabla_{x_{\parallel},v}G\|_{L^{\infty}(\gamma_{-})}\bigg{)}. (6.61)
Remark 6.8.

Since xb+1\nabla_{x}\cdot b^{\ell+1} is bounded, a weak solution ϱ+1\varrho^{\ell+1} to (6.9) should satisfy ϱ+1(t,x)=η3f0(x,v)dvt0xb+1(s,x)ds\varrho^{\ell+1}(t,x)=\eta\int_{\mathbb{R}^{3}}f_{0}(x,v)\mathrm{d}v-\int^{t}_{0}\nabla_{x}\cdot b^{\ell+1}(s,x)\mathrm{d}s. Therefore ϱ+1(,x)\varrho^{\ell+1}(\cdot,x) is absolutely continuous in time. From (6.2), ΔΨ+1(,x)\Delta\Psi^{\ell+1}(\cdot,x) is also absolutely continuous in time and hence (6.10) holds almost everywhere.

Proof of Lemma 6.7.

Note that

|xb+1(t,x)|3|vxF+1(t,x,v)|dv+3|vxh(x,v)|dv.\begin{split}|\nabla_{x}\cdot b^{\ell+1}(t,x)|&\leq\int_{\mathbb{R}^{3}}|v\cdot\nabla_{x}F^{\ell+1}(t,x,v)|\mathrm{d}v+\int_{\mathbb{R}^{3}}|v\cdot\nabla_{x}h(x,v)|\mathrm{d}v.\end{split} (6.62)

Using (2.48) and (5.58), we bound

3|vxh(x,v)|dveβ~|v|2x,vGL(γ)3eβ~2|v|2eβ~g2x3(|v|+|v3|α(x,v))dveβ~|v|2x,vGL(γ)eβ~g2x3(|v|+1)eβ~2|v|2dv3eβ~|v|2x,vGL(γ)1β~3/2(1+1β~1/2)eβ~g2x3,\begin{split}\int_{\mathbb{R}^{3}}|v\cdot\nabla_{x}h(x,v)|\mathrm{d}v&\leq\|e^{\tilde{\beta}|v|^{2}}\nabla_{x_{\parallel},v}G\|_{L^{\infty}(\gamma_{-})}\int_{\mathbb{R}^{3}}e^{-\frac{\tilde{\beta}}{2}|v|^{2}}e^{-\frac{\tilde{\beta}g}{2}x_{3}}\Big{(}|v|+\frac{|v_{3}|}{\alpha(x,v)}\Big{)}\mathrm{d}v\\ &\lesssim\|e^{\tilde{\beta}|v|^{2}}\nabla_{x_{\parallel},v}G\|_{L^{\infty}(\gamma_{-})}e^{-\frac{\tilde{\beta}g}{2}x_{3}}\int_{\mathbb{R}}(|v|+1)e^{-\frac{\tilde{\beta}}{2}|v|^{2}}\mathrm{d}v_{3}\\ &\lesssim\|e^{\tilde{\beta}|v|^{2}}\nabla_{x_{\parallel},v}G\|_{L^{\infty}(\gamma_{-})}\frac{1}{\tilde{\beta}^{3/2}}\Big{(}1+\frac{1}{\tilde{\beta}^{1/2}}\Big{)}e^{-\frac{\tilde{\beta}g}{2}x_{3}},\end{split} (6.63)

where we have used that |v3|α(x,v)|v_{3}|\leq\alpha(x,v).

Similarly, using (5.58) and (6.48), we bound

3|vxF+1(t,x,v)|dv(1β~2𝔴β~,0x,vF0L(Ω×3)+1β~3/2(1+1β~1/2+1gβ~)eβ~|v|2x,vGL(γ))eβ~4gx3.\begin{split}&\int_{\mathbb{R}^{3}}|v\cdot\nabla_{x}F^{\ell+1}(t,x,v)|\mathrm{d}v\\ &\lesssim\bigg{(}\frac{1}{\tilde{\beta}^{2}}\|\mathfrak{w}_{\tilde{\beta},0}\nabla_{x,v}F_{0}\|_{L^{\infty}(\Omega\times\mathbb{R}^{3})}+\frac{1}{\tilde{\beta}^{3/2}}\Big{(}1+\frac{1}{\tilde{\beta}^{1/2}}+\frac{1}{g{\tilde{\beta}}}\Big{)}\|e^{\tilde{\beta}|v|^{2}}\nabla_{x_{\parallel},v}G\|_{L^{\infty}(\gamma_{-})}\bigg{)}e^{-\frac{\tilde{\beta}}{4}gx_{3}}.\end{split} (6.64)

In summary, we can conclude a xb+1\nabla_{x}\cdot b^{\ell+1}-bound of (6.61) from (6.62)-(LABEL:est:D.b3).

From (6.10) and Lemma 3.1, we have

x3tϕF+1(t,x)=x3tΨ+1(t,x)=ηΩb+1(y)x3G(x,y)dy.\begin{split}\partial_{x_{3}}\partial_{t}\phi_{F^{\ell+1}}(t,x)&=\partial_{x_{3}}\partial_{t}\Psi^{\ell+1}(t,x)=\eta\int_{\Omega}\nabla\cdot b^{\ell+1}(y)\partial_{x_{3}}G(x,y)\mathrm{d}y.\end{split} (6.65)

Now applying Lemma 3.3 and using (3.17) and the xb+1\nabla_{x}\cdot b^{\ell+1}-bound of (6.61), we prove the bound of |x3tϕF+1||\partial_{x_{3}}\partial_{t}\phi_{F^{\ell+1}}| in (6.61). Next, using the Dirichlet boundary condition tϕF+1|Ω=0\partial_{t}\phi_{F^{\ell+1}}|_{\partial\Omega}=0 and the bound of |x3tϕF+1||\partial_{x_{3}}\partial_{t}\phi_{F^{\ell+1}}| in (6.61), we conclude the bound of |tϕF+1||\partial_{t}\phi_{F^{\ell+1}}|. ∎

Theorem 6.9.

Assume β>β~>max{1,4g}\beta>\tilde{\beta}>\max\{1,\frac{4}{g}\}. Suppose ε>0\varepsilon>0 is sufficiently small such that (2.51), (2.52), and (2.53) hold. Then we can construct Ψ,f+1,ϱ,𝒳+1,𝒱+1\Psi^{\ell},f^{\ell+1},\varrho^{\ell},\mathcal{X}^{\ell+1},\mathcal{V}^{\ell+1} solve (6.2)-(6.7) for all =0,1,2,\ell=0,1,2,\cdots. Moreover, they satisfy (6.11) and (6.46). Therefore all the results in Lemma 6.4, Lemma 6.6, and Lemma 6.7 hold.

Proof.

The proof is a consequence of Lemma 6.4, Lemma 6.6, and Lemma 6.7. We ought to check the conditions (6.11) and (6.46) to iterate our construction of sequences in (6.1)-(6.7). If (2.51) holds then using (6.51) we can verify the condition (6.11). Moreover if (2.52) holds then using (LABEL:est:phi_C2_dyn)and (6.61) we can verify the condition (6.46). ∎

6.3. Stability of the Sequence

The following lemma is useful to prove that i) the sequence in Theorem 6.9 is Cauchy; and ii) the solution (as a limit of the sequence) is unique.

Lemma 6.10.

Suppose F¯i(t,x,v)\bar{F}_{i}(t,x,v) is defined in +×Ω¯×3\mathbb{R}_{+}\times\bar{\Omega}\times\mathbb{R}^{3} and satisfies 3F¯i(t,x,v)dvC0,δ(Ω)\int_{\mathbb{R}^{3}}\bar{F}_{i}(t,x,v)\mathrm{d}v\in C^{0,\delta}(\Omega) for some δ>0\delta>0 and any t+t\in\mathbb{R}_{+}. Suppose ϕF¯i(t,)C1(Ω¯)C2(Ω)\phi_{\bar{F}_{i}}(t,\cdot)\in C^{1}(\bar{\Omega})\cap C^{2}(\Omega) for any t+t\in\mathbb{R}_{+} and solves

ΔϕF¯i=η3F¯idv,ϕF¯i|Ω=0.\Delta\phi_{\bar{F}_{i}}=\eta\int_{\mathbb{R}^{3}}\bar{F}_{i}\mathrm{d}v,\ \ \phi_{\bar{F}_{i}}|_{\partial\Omega}=0.

Now we consider Fi(t,x,v)F_{i}(t,x,v) solving that, in the sense of Definition 2.2,

tFi+vxFix(ϕF¯i+gx3)vFi=0,Fi|t=0=F0,Fi|γ=G.\partial_{t}F_{i}+v\cdot\nabla_{x}F_{i}-\nabla_{x}(\phi_{\bar{F}_{i}}+gx_{3})\cdot\nabla_{v}F_{i}=0,\ \ F_{i}|_{t=0}=F_{0},\ \ F_{i}|_{\gamma_{-}}=G. (6.66)

Suppose the following condition hold for g,β¯>0g,\bar{\beta}>0

|ϕF¯1(t,x)|g2x3,\displaystyle|\phi_{\bar{F}_{1}}(t,x)|\leq\frac{g}{2}x_{3}, (6.67)
eβ~4(|v|2+gx3)vF2L<.\displaystyle\|e^{\frac{\tilde{\beta}}{4}(|v|^{2}+gx_{3})}\nabla_{v}F_{2}\|_{L^{\infty}}<\infty. (6.68)

Then there exists C=eβ~4(|v|2+gx3)vF2L{1+16β~g}(8π)3/2(β~)3/2exp(8g(β~8+(C)2β~g)tϕF¯1Lt,x2)>0C=\|e^{\frac{\tilde{\beta}}{4}(|v|^{2}+gx_{3})}\nabla_{v}F_{2}\|_{L^{\infty}}\left\{1+\frac{16}{\tilde{\beta}g}\right\}\frac{\mathfrak{C}(8\pi)^{3/2}}{(\tilde{\beta})^{3/2}}\exp{\left(\frac{8}{g}(\frac{\tilde{\beta}}{8}+(C^{\prime})^{2}\frac{\tilde{\beta}}{g})\|\partial_{t}\phi_{\bar{F}_{1}}\|_{L^{\infty}_{t,x}}^{2}\right)}>0 such that for all t+t\in\mathbb{R}_{+}, we have

eβ~8(|v|2+gx3)(F1(t)F2(t))L(Ω¯×3)Ct0eβ~8(|v|2+gx3)(F¯1(s)F¯2(s))L(Ω¯×3)ds.\|e^{\frac{\tilde{\beta}}{8}(|v|^{2}+gx_{3})}(F_{1}(t)-F_{2}(t))\|_{L^{\infty}(\bar{\Omega}\times\mathbb{R}^{3})}\leq C\int^{t}_{0}\|e^{\frac{\tilde{\beta}}{8}(|v|^{2}+gx_{3})}(\bar{F}_{1}(s)-\bar{F}_{2}(s))\|_{L^{\infty}(\bar{\Omega}\times\mathbb{R}^{3})}\mathrm{d}s. (6.69)
Proof.

Set β¯=β~8\bar{\beta}=\frac{\tilde{\beta}}{8} and 𝔴β¯,1(t,x,v)=eβ¯(|v|2+2ϕF¯1(t,x)+2gx3)\mathfrak{w}_{\bar{\beta},1}(t,x,v)=e^{\bar{\beta}\left(|v|^{2}+2\phi_{\bar{F}_{1}}(t,x)+2gx_{3}\right)}. Note that the difference of solutions solves

[t+vxx(ϕF¯1+gx3)v](𝔴β¯,1(F1F2))=2β¯tϕF¯1𝔴β¯,1(F1F2)+x(ϕF¯1ϕF¯2)𝔴β¯,1vF2,𝔴β¯,1(F1F2)|t=0=0,𝔴β¯,1(F1F2)|γ=0.\begin{split}&\big{[}\partial_{t}+v\cdot\nabla_{x}-\nabla_{x}(\phi_{\bar{F}_{1}}+gx_{3})\cdot\nabla_{v}\big{]}(\mathfrak{w}_{\bar{\beta},1}(F_{1}-F_{2}))\\ &=2\bar{\beta}\partial_{t}\phi_{\bar{F}_{1}}\mathfrak{w}_{\bar{\beta},1}(F_{1}-F_{2})+\nabla_{x}(\phi_{\bar{F}_{1}}-\phi_{\bar{F}_{2}})\cdot\mathfrak{w}_{\bar{\beta},1}\nabla_{v}F_{2},\\ &\ \ \ \ \ \ \ \ \ \ \ \ \mathfrak{w}_{\bar{\beta},1}(F_{1}-F_{2})|_{t=0}=0,\ \ \mathfrak{w}_{\bar{\beta},1}(F_{1}-F_{2})|_{\gamma_{-}}=0.\end{split} (6.70)

From (6.67), we have that 𝔴β¯,1(s,y,u)eβ¯(|u|2+gy3)\mathfrak{w}_{\bar{\beta},1}(s,y,u)\geq e^{\bar{\beta}\left(|u|^{2}+gy_{3}\right)} and eβ~4(|u|2+gy3)eβ~4(|u|2+2ϕF¯1(s,y)+2gy3)=𝔴β~/4,1(s,y,u)e^{\frac{\tilde{\beta}}{4}(|u|^{2}+gy_{3})}\geq e^{\frac{\tilde{\beta}}{4}(|u|^{2}+2\phi_{\bar{F}_{1}}(s,y)+2gy_{3})}=\mathfrak{w}_{\tilde{\beta}/4,1}(s,y,u), and therefore

𝔴β¯,1|vF2|(s,y,u)𝔴β¯,1𝔴β~/4,1|eβ~4(|u|2+gy3)vF2(s,y,u)|=eβ~4(|u|2+gy3)|vF2(s,y,u)|𝔴β~/8,1(s,y,u).\begin{split}\mathfrak{w}_{\bar{\beta},1}|\nabla_{v}F_{2}|(s,y,u)\leq\frac{\mathfrak{w}_{\bar{\beta},1}}{\mathfrak{w}_{\tilde{\beta}/4,1}}|e^{\frac{\tilde{\beta}}{4}(|u|^{2}+gy_{3})}\nabla_{v}F_{2}(s,y,u)|=\frac{e^{\frac{\tilde{\beta}}{4}(|u|^{2}+gy_{3})}|\nabla_{v}F_{2}(s,y,u)|}{\mathfrak{w}_{{\tilde{\beta}}/{8},1}(s,y,u)}.\end{split}

Along the characteristics 𝒵1=(𝒳1,𝒱1)\mathcal{Z}_{1}=(\mathcal{X}_{1},\mathcal{V}_{1}) associated with a field x(ϕF¯1+gx3)-\nabla_{x}(\phi_{\bar{F}_{1}}+gx_{3}), we have a form

𝔴β¯,1(F1F2)(t,z)=tmax{0,tt𝐁,1(t,z)}ets2β¯tϕF¯1(τ,𝒵1(τ;t,z))dτ𝔴β~/8,1(s,𝒵1(s;t,z))x(ϕF¯1ϕF¯2)(s,𝒵1(s;t,z))[eβ~4(|𝒱1(s;t,z)|2+g𝒳1(s;t,z))vF2(s,𝒵1(s;t,z))]ds.\begin{split}\mathfrak{w}_{\bar{\beta},1}(F_{1}-F_{2})(t,z)=\int^{t}_{\max\{0,t-t_{\mathbf{B},1}(t,z)\}}&\frac{e^{\int^{t}_{s}2\bar{\beta}\partial_{t}\phi_{\bar{F}_{1}}(\tau,\mathcal{Z}_{1}(\tau;t,z))\mathrm{d}\tau}}{\mathfrak{w}_{\tilde{\beta}/8,1}(s,\mathcal{Z}_{1}(s;t,z))}\nabla_{x}(\phi_{\bar{F}_{1}}-\phi_{\bar{F}_{2}})(s,\mathcal{Z}_{1}(s;t,z))\\ &\cdot[e^{\frac{\tilde{\beta}}{4}\left(|\mathcal{V}_{1}(s;t,z)|^{2}+g\mathcal{X}_{1}(s;t,z)\right)}\nabla_{v}F_{2}(s,\mathcal{Z}_{1}(s;t,z))]\mathrm{d}s.\end{split} (6.71)

Here, from (6.68) we know that the second line of (6.71) is bounded.

We bound the first line of integrand in (6.71) term by term. Using Lemma 2.5 and (2.27), we derive that, for s[tt𝐁,1(t,z),t]s\in[t-t_{\mathbf{B},1}(t,z),t]

ts2β¯tϕF¯1(τ,𝒳1(τ;t,x,v),𝒱1(τ;t,x,v))dτCβ¯1/2g1/2|v3|2+gx3β~1/2g1/2tϕF¯1Lt,x.\begin{split}\int^{t}_{s}2\bar{\beta}\partial_{t}\phi_{\bar{F}_{1}}(\tau,\mathcal{X}_{1}(\tau;t,x,v),\mathcal{V}_{1}(\tau;t,x,v))\mathrm{d}\tau\leq C^{\prime}\frac{\bar{\beta}^{1/2}}{g^{1/2}}\sqrt{|v_{3}|^{2}+gx_{3}}\frac{\tilde{\beta}^{1/2}}{g^{1/2}}\|\partial_{t}\phi_{\bar{F}_{1}}\|_{L^{\infty}_{t,x}}.\end{split} (6.72)

Then following a proof of Lemma 5.10 ((5.72) and (5.73), in particular), we derive that

x(ϕF¯1ϕF¯2)(s)L(Ω¯){1+2β¯g}π3/2(β¯)3/2eβ¯(|v|2+gx3)(F¯1F¯2)(s)L(Ω×3).\|\nabla_{x}(\phi_{\bar{F}_{1}}-\phi_{\bar{F}_{2}})(s)\|_{L^{\infty}(\bar{\Omega})}\leq\left\{1+\frac{2}{\bar{\beta}g}\right\}\frac{\mathfrak{C}\pi^{3/2}}{(\bar{\beta})^{3/2}}\|e^{{\bar{\beta}}\big{(}|v|^{2}+gx_{3}\big{)}}(\bar{F}_{1}-\bar{F}_{2})(s)\|_{L^{\infty}(\Omega\times\mathbb{R}^{3})}. (6.73)

Finally, using (4.8) with β¯/8\bar{\beta}/8 instead of β\beta, we derive that

1𝔴β¯8,1(s,𝒵(s;t,x,v))e8β¯β~(β~1/2g1/2tϕF¯1Lt,x)2eβ¯32|v|2eβ¯32gx3.\frac{1}{\mathfrak{w}_{\frac{\bar{\beta}}{8},1}(s,\mathcal{Z}(s;t,x,v))}\leq e^{\frac{8\bar{\beta}}{\tilde{\beta}}\Big{(}\frac{\tilde{\beta}^{1/2}}{g^{1/2}}\|\partial_{t}\phi_{\bar{F}_{1}}\|_{L^{\infty}_{t,x}}\Big{)}^{2}}e^{-\frac{\bar{\beta}}{32}|v|^{2}}e^{-\frac{\bar{\beta}}{32}gx_{3}}. (6.74)

Then applying (6.73)-(6.74) to (6.71) we conclude (6.69) as

eβ¯(|v|2+gx3)(F1F2)(t)L(Ω×3)/t0eβ¯(|v|2+gx3)(F¯1F¯2)(s)L(Ω×3)dseβ~4(|v|2+gx3)vF2L{1+2β¯g}π3/2(β¯)3/2×e8g(β¯+(C)2β~g)tϕF¯1Lt,x2eβ¯32(|v|2+gx316Cβ~1/2gβ¯1/2tϕF¯1Lt,x)2.\begin{split}&\|e^{\bar{\beta}(|v|^{2}+gx_{3})}(F_{1}-F_{2})(t)\|_{L^{\infty}(\Omega\times\mathbb{R}^{3})}\bigg{/}\int^{t}_{0}\|e^{\bar{\beta}\big{(}|v|^{2}+gx_{3}\big{)}}(\bar{F}_{1}-\bar{F}_{2})(s)\|_{L^{\infty}(\Omega\times\mathbb{R}^{3})}\mathrm{d}s\\ &\leq\|e^{\frac{\tilde{\beta}}{4}(|v|^{2}+gx_{3})}\nabla_{v}F_{2}\|_{L^{\infty}}\left\{1+\frac{2}{\bar{\beta}g}\right\}\frac{\mathfrak{C}\pi^{3/2}}{(\bar{\beta})^{3/2}}\\ &\ \ \ \times e^{\frac{8}{g}(\bar{\beta}+(C^{\prime})^{2}\frac{\tilde{\beta}}{g})\|\partial_{t}\phi_{\bar{F}_{1}}\|_{L^{\infty}_{t,x}}^{2}}e^{-\frac{\bar{\beta}}{32}\left(\sqrt{|v|^{2}+gx_{3}}-16\frac{C^{\prime}\tilde{\beta}^{1/2}}{g\bar{\beta}^{1/2}}\|\partial_{t}\phi_{\bar{F}_{1}}\|_{L^{\infty}_{t,x}}\right)^{2}}.\end{split}

Proof of Theorem 2.10.

Using Theorem 6.9 and Lemma 6.10, it is standard to deduce that, for m\ell\geq m,

eβ~8(|v|2+gx3)(F(t)Fm(t))L(Ω¯×3)(Ct)mm!eβ~8(|v|2+gx3)fm(t)L(Ω¯×3)(Ct)mm!eCββ~{𝔴β,0F0L(Ω×3)+eβ|v|2GL(γ)},\begin{split}&\|e^{\frac{\tilde{\beta}}{8}(|v|^{2}+gx_{3})}(F^{\ell}(t)-F^{m}(t))\|_{L^{\infty}(\bar{\Omega}\times\mathbb{R}^{3})}\\ &\leq\frac{(Ct)^{m}}{m!}\|e^{\frac{\tilde{\beta}}{8}(|v|^{2}+gx_{3})}f^{\ell-m}(t)\|_{L^{\infty}(\bar{\Omega}\times\mathbb{R}^{3})}\\ &\leq\frac{(Ct)^{m}}{m!}e^{\frac{C\beta}{\tilde{\beta}}}\big{\{}\|\mathfrak{w}_{\beta,0}F_{0}\|_{L^{\infty}(\Omega\times\mathbb{R}^{3})}+\|e^{\beta|v|^{2}}G\|_{L^{\infty}(\gamma_{-})}\big{\}},\end{split}

where we have used (6.24) at the last step above. With this strong convergence together with uniform-upper-bounds of Theorem 6.9, it is standard to prove the convergence of the sequences and prove that their limiting function (F,ϕF)(F,\phi_{F}) is a strong solution to (1.1)-(1.5). Moreover, every upper bound of Theorem 6.9 is valid for the limiting function. A proof of uniqueness is straightforward from Lemma 6.10. We omit the proof. ∎

Acknowledgment. The author thanks Professor Hyung-Ju Hwang for her interest to this work. The author thanks Dr. Jiaxin Jin and Dr. Jongchon Kim for discussions helpful to write Section 3. He also thanks Professor Antoine Cerfon for his insightful comments in the author’s talk on the occasion of a kinetic theory workshop at Madison in October 2019. He thanks Dr. Trinh Nguyen for his presentation about recent development of Landau damping on the occasion of kinetic theory working seminars in Madison. The author also thanks Professor Seung Yeal Ha, Donghyun Lee, and In-Jee Jeong, for their kind hospitality during his stay at the Postech and Seoul National University in 2021-2022 where/when the author has conducted this project partly. This project is partly supported by NSF-DMS 1900923/2047681 (CAREER), the Simons fellowship in Mathematics, and the Brain Pool fellowship funded by the Korean Ministry of Science and ICT.

References

  • [1] H. Ammari, B. Fitzpatrick, H. Kang, M. Ruiz, S. Yu, and H. Zhang. Mathematical Computational Methods in Photonics and Phonoics, volume 235 of Mathematical Surveys and Monographs. American Mathematical Society, 2018.
  • [2] J. Bedrossian. Nonlinear echoes and Landau damping with insufficient regularity. Tunis. J. Math, 3(1):121–205, 2021.
  • [3] J. Bedrossian, N. Masmoudi, and C. Mouhot. Landau damping: paraproducts and Gevrey regularity. Ann. PDE., 2(1), 2016.
  • [4] E. Caglioti and C. Maffei. Time asymptotics for solutions of Vlasov–Poisson equation in a circle. J. Stat. Phys., 92:301–323, 1998.
  • [5] Y. Cao and C. Kim. Glassey-Strauss representation of Vlasov-Maxwell systems in a half space. Kinet. Relat. Models, 15(3):385–401, 2021.
  • [6] Y. Cao and C. Kim. Lipschitz continuous solutions of the Vlasov-Maxwell systems with a conductor boundary condition. arXiv.2203.01615
  • [7] Y. Cao, C. Kim, and D. Lee. Global strong solutions of the Vlasov-Poisson-Boltzmann system in bounded domains. Arch. Ration. Mech. Anal., 233(3):1027–1130, 2019.
  • [8] C. Cercignani, R. Illner, and M. Pulvirenti. The Mathematical Theory of Dilute Gases, volume 106 of Applied Mathematical Sciences. Springer-Verlag, New York, 1994.
  • [9] H. Chen and C. Kim. Regularity of Stationary Boltzmann Equation in Convex Domains. Arch. Ration. Mech. Anal., 244(1):1099–1222, 2022.
  • [10] H. Chen, C. Kim, and Q. Li. Local well-posedness of vlasov–poisson–boltzmann equation with generalized diffuse boundary condition. J Stat Phys, 179:535–631, 2020.
  • [11] R. J. DiPerna and P.-L. Lions. Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math., 98(3):511–547, 1989.
  • [12] E. Esenturk and H. Hwang. Linear stability of the Vlasov-Poisson system with boundary conditions. Nonlinear Analysis, 139:75–105, 2016.
  • [13] E. Esenturk, H. Hwang, and W. Strauss. Stationary solutions of the Vlasov–Poisson system with diffusive boundary conditions. J. Nonlinear Sci., 25:315–342, 2015.
  • [14] R. T. Glassey. The Cauchy problem in kinetic theory. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996.
  • [15] C. Greengard and P.-A. Raviart. A boundary-value problem for the stationary Vlasov-Poisson equations: The plane diode. Comm. Pure Appl. Math., 139:473–507, 1990.
  • [16] E. Grenier, T. T. Nguyen, and I. Rodnianski. Landau damping for analytic and gevrey data. arXiv:2004.05979.
  • [17] Y. Guo. Regularity of the Vlasov equations in a half space. Indiana Math. J., 43:255–320, 1994.
  • [18] Y. Guo. Singular solutions of the 1-D Vlasov–Maxwell system on a half line. Arch. Ration. Mech. Anal., 131:241–304, 1995.
  • [19] Y. Guo and C. Grotta Ragazzo. On steady states in a collisionless plasma. Comm. Pure Appl. Math., 49:1145–1174, 1996.
  • [20] Y. Guo and Z. Lin. The Existence of Stable BGK Waves. Commun. Math. Phys., 352:1121–1152, 2017.
  • [21] Y. Guo and W. Strauss. Instability of periodic BGK equilibria. Comm. Pure Appl. Math., XLVIII:861–894, 1995.
  • [22] H. J. Hwang and J. J. L. Velázquez. On the existence of exponentially decreasing solu- tions of the nonlinear Landau damping problem. Indiana Univ. Math. J., 58:6:2623–2660, 2009.
  • [23] J. Jin and C. Kim. Damping of kinetic transport equation with diffuse boundary condition. arXiv:2011.11582
  • [24] J. Jin and C. Kim. Exponential Mixing of Vlasov equations under the effect of Gravity and Boundary. arXiv:2207.08313.
  • [25] J. Jin and C. Kim. Boundary effect under 2D Newtonian gravity potential in the phase space. arXiv:2310.07947
  • [26] J. Jin and C. Kim. Asymptotic Stability of 3D relativistic Collisionless plasma states in a constant magnetic field with a boundary. arXiv:2310.09865
  • [27] C. Kim. Formation and Propagation of Discontinuity for Boltzmann Equation in Non-Convex Domains. Commun. Math. Phys., 308:641–701, 2011.
  • [28] L. Landau. On the vibration of the electronic plasma. J. Phys. USSR, 5(1):25–34, 1946.
  • [29] Z. Lin. Nonlinear instability of periodic waves for Vlasov-Poisson system. Comm. Pure Appl. Math., 58:505–528, 2005.
  • [30] Z. Lin and C. Zeng. Small BGK waves and nonlinear Landau damping. Commun. Math. Phys., 306:291–331, 2011.
  • [31] C. Mouhot and C. Villani. On Landau damping. Acta Math., 207(1):29–201, 2011.
  • [32] G. Rein. Existence of stationary, collisionless plasmas in bounded domains. Math. Methods Appl. Sci., 15:365–374, 1992.
  • [33] G. Rein. Collisionless kinetic equations from astrophysics–the Vlasov-Poisson system. Handbook of differential equations: Evolutionary equations. Vol. Ⅲ, pages 383–476, 2007.
  • [34] E. M. Stein and G. Weiss. Introduction to Fourier Analysis on Euclidean Spaces (1st edition). Princeton University Press, 1971.
  • [35] S. Ukai. Solutions of the Boltzmann Equation Studies in Mathematics and Its Applications, Elsevier, Volume 18, pages 37–96, 1986.