This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Nonexistence of Time-periodic Solutions of the Dirac Equation in Kerr-Newman-(A)dS Spacetime

Mengzhang Fan Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, PR China and School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China [email protected] Yaohua Wang School of Mathematics and Statistics, Henan University, Kaifeng 475004, PR China [email protected]  and  Xiao Zhang Guangxi Center for Mathematical Research, Guangxi University, Nanning, Guangxi 530004, PR China Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, PR China and School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China [email protected], [email protected]
Abstract.

In this paper, we study the nonexistence of nontrivial time-periodic solutions of the Dirac equation in Kerr-Newman-(A)dS spacetime. In the non-extreme Kerr-Newman-dS spacetime, we prove that there is no nontrivial LpL^{p} integrable Dirac particle for arbitrary (λ,p)×[2,+)(\lambda,p)\in\mathbb{R}\times[2,+\infty). In the extreme Kerr-Newman-dS and extreme Kerr-Newman-AdS spacetime, we show the equation relations between the energy eigenvalue ω\omega, the horizon radius, the angular momentum, the electric charge and the cosmological constant if there exists nontrivial LpL^{p} integrable time-periodic solution of the Dirac equation, and further give the necessary conditions for the existence of nontrivial solutions.

1. Introduction

General relativity is a theory of space, time, and gravity proposed by Einstein in 1915. In general relativity, spacetime is a 4-dimensional manifold MM equipped with a Lorentzian metric gg. The metric gg is determined by the stress-energy tensor TT by the following Einstein field equation [27, 30]

Gμν+Λgμν=8πGc4Tμν,G_{\mu\nu}+\Lambda g_{\mu\nu}=\frac{8\pi G}{c^{4}}T_{\mu\nu}, (1.1)

where the constant Λ\Lambda is the cosmological constant, GμνG_{\mu\nu} is the Einstein tensor with respect to the metric gg

Gμν=Rμν12Rgμν.G_{\mu\nu}=R_{\mu\nu}-\frac{1}{2}Rg_{\mu\nu}. (1.2)

With the development of the times and the progress of science and technology, general relativity has passed almost all experimental tests (such as the deflection angle of light, the precession of Mercury, the gravitational redshift [20], etc.). It is of great significance for the study of the structure and evolution of celestial bodies and the universe, and it is also the core theory of modern mathematical physics and other related fields. It is no exaggeration to say that one of the most exciting predictions of Einstein’s theory of gravity is the existence of black holes, whose gravitational fields are so strong that no physical entity or signal can pull away from them or escape. In 2019, the first photograph of a black hole was taken, and Einstein’s general relativity was once again confirmed. In addition, deep connections have been found between black hole theory and seemingly distant fields, such as thermodynamics, information theory, and quantum theory.

Quantum mechanics and general relativity are the two fundamental pillars of modern physics. In 1926, the Austrian physicist Schrödinger proposed the following famous Schrödinger equation in quantum mechanics [13]

ddtψ=iH(ψ).\frac{d}{dt}\psi=-\frac{i}{\hbar}H(\psi). (1.3)

However, the Schrödinger equation (1.3) is not relativistically invariant, i.e. it is incompatible with Einstein’s theory of relativity. In 1928, Dirac, a British theoretical physicist, proposed an equation that satisfies the invariance of relativity, that is, the Dirac equation [9]. Dirac constructed a first order differential operator 𝒟\mathscr{D}, which is called the Dirac operator

𝒟:=eαα,\mathscr{D}:=e^{\alpha}\partial_{\alpha}, (1.4)

where eαe^{\alpha} are the following 4×44\times 4 matrices

e0=(0σ0σ00),ei=(0σiσi0),e^{0}=\begin{pmatrix}0&-\sigma^{0}\\ -\sigma^{0}&0\end{pmatrix},\quad e^{i}=\begin{pmatrix}0&\sigma^{i}\\ -\sigma^{i}&0\\ \end{pmatrix}, (1.5)

and σα\sigma^{\alpha} are the following 2×22\times 2 Pauli matrices

σ0=(1001),σ1=(1001),σ2=(0110),σ3=(0ii0).\begin{split}\sigma^{0}=\begin{pmatrix}1&0\\ 0&1\\ \end{pmatrix},&\qquad\sigma^{1}=\begin{pmatrix}-1&0\\ 0&1\\ \end{pmatrix},\\ \sigma^{2}=\begin{pmatrix}0&1\\ 1&0\\ \end{pmatrix},&\qquad\sigma^{3}=\begin{pmatrix}0&i\\ -i&0\\ \end{pmatrix}.\end{split} (1.6)

It is worth mentioning that the matrices eαe^{\alpha}, α=0,1,2,3\alpha=0,1,2,3 satisfiy the following Clifford relations:

(e0)2=(1000010000100001),(e1)2=(e2)2=(e3)2=(1000010000100001),eαeβ=eβeα(αβ).\begin{split}(e^{0})^{2}=\begin{pmatrix}1&0&0&0\\ 0&1&0&0\\ 0&0&1&0\\ 0&0&0&1\\ \end{pmatrix},\;(e^{1})^{2}&=(e^{2})^{2}=(e^{3})^{2}=-\begin{pmatrix}1&0&0&0\\ 0&1&0&0\\ 0&0&1&0\\ 0&0&0&1\\ \end{pmatrix},\\ e^{\alpha}e^{\beta}&=-e^{\beta}e^{\alpha}\,(\alpha\neq\beta).\end{split} (1.7)

By simple calculation, one can know that the square of the Dirac operator 𝒟\mathscr{D} is the wave operator \square, i.e.

𝒟2=:=t2Δ.\mathscr{D}^{2}=\square:=\partial_{t}^{2}-\Delta. (1.8)

Unlike the Schrödinger equation, the Dirac operator 𝒟\mathscr{D} act not on wave functions but on 4-dimensional vector-valued functions (spinors) Ψ\Psi. For arbitrary λ\lambda\in\hbox{\bb R}, the Dirac equation is defined as follows

(𝒟+iλ)Ψ=0.\big{(}\mathscr{D}+i\lambda\big{)}\Psi=0. (1.9)

It is not difficult to verify that the equation (1.9) is Lorentz invariant, i.e. it is compatible with special relativity. The Dirac equation describes the dynamics of particles with half-integer spin in curved spacetime, and the development of quantum field theory began.

In recent years, many scholars have studied the Dirac equation on curved spacetime, especially the separation of variables, which has been an obstacle to progress in many desired directions. In 1976, Chandrasekhar [7, 8] proved for the first time that under the Kerr spacetime background metric

ds2=ΔU(dtasin2θdφ)2+UΔdr2+Udθ2+sin2θU(adt(r2+a2)dφ)2,ds^{2}=-\frac{\Delta}{U}(dt-a\sin^{2}\theta d\varphi)^{2}+\frac{U}{\Delta}dr^{2}+Ud\theta^{2}+\frac{\sin^{2}\theta}{U}\left(a\,dt-(r^{2}+a^{2})d\varphi\right)^{2}, (1.10)

the Dirac equation (1.9) can be separated into radial equations and angular equations, where

U=r2+a2cos2θ,Δ=r22mr+a2.U=r^{2}+a^{2}\cos^{2}\theta,\;\Delta=r^{2}-2mr+a^{2}. (1.11)

Subsequently, Page [23] extends the conclusion of separating variables of the Dirac equation to charged, rotating black hole spacetime, namely Kerr-Newman spacetime.

Regarding the nonexistence of nontrivial time-periodic solutions of the Dirac equation (1.9), Finster et al. [10] first considers the problem under the non-extreme and extreme Reissner-Nordström spacetime with black holes

ds2=(12ρr+Q2r2)dt2+(12ρr+Q2r2)1dr2+r2(dθ2+sin2θdφ2).ds^{2}=-\Big{(}1-\frac{2\rho}{r}+\frac{Q^{2}}{r^{2}}\Big{)}dt^{2}+\Big{(}1-\frac{2\rho}{r}+\frac{Q^{2}}{r^{2}}\Big{)}^{-1}dr^{2}+r^{2}\big{(}d\theta^{2}+\sin^{2}\theta d\varphi^{2}\big{)}. (1.12)

For the non-extreme spacetime, they define reasonable conditions to match the spinors inside and outside the black hole, and prove by reduction to absurdity that if a nontrivial solution exists, the normalization conditions are not satisfied; For the extreme spacetime, they obtained the contradiction mainly by analyzing the asymptotic behavior of the solution of the radial equation near the black hole r=ρr=\rho.

After that, when the spherical symmetry of the original Reissner-Nordström spacetime is altered by changes in the metric and electromagnetic field, Finster el al. [11] consider the nonexistence of solutions of the Dirac equation (1.9) in the non-extreme Kerr-Newman spacetime (axisymmetric) with black holes

ds2=ΔU(dtasin2θdφ)2+U(dr2Δ+dθ2)+sin2θU(adt(r2+a2)dφ)2,ds^{2}=-\frac{\Delta}{U}\big{(}dt-a\sin^{2}\theta d\varphi\big{)}^{2}+U\Big{(}\frac{dr^{2}}{\Delta}+d\theta^{2}\Big{)}+\frac{\sin^{2}\theta}{U}\big{(}a\,dt-(r^{2}+a^{2})d\varphi\big{)}^{2}, (1.13)

where

U=r2+a2cos2θ,Δ=r22mr+a2+Q2U=r^{2}+a^{2}\cos^{2}\theta,\;\Delta=r^{2}-2mr+a^{2}+Q^{2} (1.14)

and the parameters satisfy m2>a2+Q2m^{2}>a^{2}+Q^{2}. By choosing the appropriate coordinate transformation, they give reasonable conditions to match the spinors inside and outside the black hole, and prove that the existence of nontrivial solutions is contradictory to the normalized conditions. Furthermore, they consider the nonexistence problem in the most general stationary axisymmetric metric

ds2=T2[(Ldu+Mdv)2(Ndu+Pdv)2dw2W(w)dx2X(x)]ds^{2}=T^{-2}\left[(L\,du+M\,dv)^{2}-(N\,du+P\,dv)^{2}-\frac{dw^{2}}{W(w)}-\frac{dx^{2}}{X(x)}\right] (1.15)

in which the Dirac equation can also be separated into radial and angular equations by Chandrasekhar’s procedure, where the conformal factor T1T^{-1} and the coefficients of the metric LL, MM, NN, PP are functions of xx and ww only. Moreover, the following constraints are required [17]

x(LLPMN)=0,x(MLPMN)=0,w(NLPMN)=0,w(PLPMN)=0.\begin{split}\partial_{x}\left(\frac{L}{LP-MN}\right)&=0,\\ \partial_{x}\left(\frac{M}{LP-MN}\right)&=0,\\ \partial_{w}\left(\frac{N}{LP-MN}\right)&=0,\\ \partial_{w}\left(\frac{P}{LP-MN}\right)&=0.\end{split} (1.16)

For the non-zero (negative) cosmological constant case, Wang and Zhang [29] consider the nonexistence of LpL^{p} integrable solutions of the Dirac equation (1.9) in the non-extreme Kerr-Newman-AdS spacetime with black holes

ds2=Δ(r)U(dtasin2θEdφ)2+UΔ(r)dr2+UΔ(θ)dθ2+Δ(θ)sin2θU(adt(r2+a2)Edφ)2,\begin{split}ds^{2}=&-\frac{\Delta_{-}(r)}{U}\Big{(}dt-\frac{a\sin^{2}\theta}{E_{-}}d\varphi\Big{)}^{2}+\frac{U}{\Delta_{-}(r)}dr^{2}+\frac{U}{\Delta_{-}({\theta})}d\theta^{2}\\ &+\frac{\Delta_{-}({\theta})\sin^{2}\theta}{U}\Bigg{(}a\,dt-\frac{(r^{2}+a^{2})}{E_{-}}d\varphi\Bigg{)}^{2},\end{split} (1.17)

where

U=r2+a2cos2θ,Δ(θ)=1κ2a2cos2θ,U=r^{2}+a^{2}\cos^{2}\theta,\;\Delta_{-}({\theta})=1-\kappa^{2}a^{2}\cos^{2}\theta, (1.18)

3κ2<0-3\kappa^{2}<0 is the cosmological constant and the polynomial

Δ(r)=(r2+a2)(1+κ2r2)2mr+Q2+P2\Delta_{-}(r)=(r^{2}+a^{2})(1+\kappa^{2}r^{2})-2mr+Q^{2}+P^{2} (1.19)

of rr has two unequal positive real roots. After separating the variables, they prove that there is no LpL^{p} integrable (on a slice of the spacetime where tt is equal to the constant and rr is large enough) nontrivial time-periodic solution of the Dirac equation by analyzing the asymptotic behavior of the coefficients of the radial equation for sufficiently large rr, this method recovers the same result of Belgiorno and Cacciatori [4] in the case of p=2p=2 by using the indirect method–spectral method. Moreover, they also study the nonexistence of LpL^{p} integrable nontrivial time-periodic solutions of Dirac equation in general stationary axisymmetric spacetime with negative cosmological constant. Similarly, for the positive cosmological constant case, Belgiorno and Cacciatori [3] convert the nonexistence problem of nontrivial L2L^{2} integrable (on the slice of spacetime between the event horizon and the cosmological horizon where t=constt=\text{const}) time-periodic solution of the Dirac equation in the Kerr-Newman-dS spacetime with black holes

ds2=Δ+(r)U(dtasin2θE+dφ)2+UΔ+(r)dr2+UΔ+(θ)dθ2+Δ+(θ)sin2θU(adt(r2+a2)E+dφ)2\begin{split}ds^{2}=&-\frac{\Delta_{+}(r)}{U}\Big{(}dt-\frac{a\sin^{2}\theta}{E_{+}}d\varphi\Big{)}^{2}+\frac{U}{\Delta_{+}(r)}dr^{2}+\frac{U}{\Delta_{+}({\theta})}d\theta^{2}\\ &+\frac{\Delta_{+}(\theta)\sin^{2}\theta}{U}\Bigg{(}a\,dt-\frac{(r^{2}+a^{2})}{E_{+}}d\varphi\Bigg{)}^{2}\end{split} (1.20)

to the nonexistence problem of quantum bound states of Dirac Hamiltonian and then give the proof by using spectral methods, where

Δ+(θ)=1+κ2a2cos2θ,\Delta_{+}({\theta})=1+\kappa^{2}a^{2}\cos^{2}\theta, (1.21)

3κ2>03\kappa^{2}>0 is the cosmological constant and the polynomial

Δ+(r)=(r2+a2)(1κ2r2)2mr+Q2+P2\Delta_{+}(r)=(r^{2}+a^{2})(1-\kappa^{2}r^{2})-2mr+Q^{2}+P^{2} (1.22)

of rr has 4 unequal real roots (3 positive and 1 negative).

For the existence of nontrivial normalizable time-periodic solutions of the Dirac equation (1.9), Schmid [24] gave the proof under the extreme Kerr spacetime background metric where the mass of the black hole and angular momentum satisfy certain values.

Based on this research background, in this paper, we mainly study the nonexistence of nontrivial LpL^{p} integrable time-periodic solutions of the Dirac equation in the non-extreme Kerr-Newman-dS spacetime, and also the necessary conditions for the existence of nontrivial LpL^{p} integrable time-periodic solutions of the Dirac equation in the extreme Kerr-Newman-(A)dS spacetime. This means that with further perturbation of the spacetime background metric, that is, from the zero cosmological constant to the nonzero cosmological constant, the conclusion that the nontrivial time-periodic solution of the Dirac equation does not exist still holds, so that the Dirac particles satisfying the agreed conditions will either disappear into the black hole or escape to infinity.

The paper is organized as follows. In Section 2, we give the definition of spin structures on 4-dimensional orientable spacetime manifold MM and define the spinor bundle ΣM\Sigma M on MM by the complex spin representation. Then we show the local expression of the spinorial connection on the spinor bundle ΣM\Sigma M and give the definition of Dirac operator. We also introduce the existence and uniqueness theorem for solutions of ordinary differential equations. In Section 3, we separate the Dirac equation in Kerr-Newman-dS spacetime into radial equations and angular equations by the method of Chandrasekhar [7, 8]. After that, by analyzing the asymptotic behaviour of the solution of the radial equation near the black hole, we show that there is no nontrivial LpL^{p} integrable time-periodic solutions of the Dirac equation in the non-extreme Kerr-Newman-dS spacetime. In Section 4 and Section 5, by changing of variables of the radial equations and analyzing the corresponding solutions near the horizon, we show that if there exist nontrivial LpL^{p} integrable time-periodic solutions of the Dirac equation in the extreme Kerr-Newman-dS spacetime and the extreme Kerr-Newman-AdS spacetime, then the energy eigenvalue ω\omega must have certain equation relations with the horizon radius, the angular momentum, the electric charge and the cosmological constant. By this, we further give the necessary conditions for the existence of nontrivial solutions. In Section 6, we summarize the full paper and raise some questions to be further studied.

2. Preliminaries

2.1. Spin geometry on Lorentzian manifold

In this subsection, we mainly introduce the spin structure and spinor vector bundle on Lorentzian manifold. Moreover, we calculate the spinorial Levi-Civita connection on spinor bundle and give the definition of Dirac operator. For basic facts about spin geometry, we refer to [19], [16]. For basic facts about the Dirac operator on Lorentzian manifold, we refer to [31], [12].

2.1.1. Spin structure

Let VV be a real n-dimensional linear vector space, gVg_{V} is a non-degenerate symmetric bilinear form on VV, i.e.

gV:V×Vg_{V}:V\times V\longrightarrow\hbox{\bb R} (2.1)

satisfying

(1) for any v1,v2Vv_{1},v_{2}\in V, there holds gV(v1,v2)=gV(v2,v1)g_{V}(v_{1},v_{2})=g_{V}(v_{2},v_{1}) (For the sake of notation, sometimes we denote <v1,v2>gV(v1,v2)\big{<}v_{1},v_{2}\big{>}\triangleq g_{V}(v_{1},v_{2});

(2) if for all wVw\in V, we have gV(v,w)=0g_{V}(v,w)=0, then v=0v=0.

Since gV(v,v)g_{V}(v,v) might be negative, the norm of vv, i.e. |v||v| is defined as

|v|:=|gV(v,v)|1/2.|v|:=|g_{V}(v,v)|^{1/2}. (2.2)

A vector vv is called a unit vector if |v|=1|v|=1, i.e. gV(v,v)=±1g_{V}(v,v)=\pm 1. We call a set of unit vectors orthogonal to each other orthonormal. It is easy to see that for any symmetric non-degenerate bilinear form on the nontrivial vector space VV, there exists an orthonormal bases e1,,ene_{1},\dots,e_{n} satisfying

gV(ei,ej)=δijϵi,g_{V}(e_{i},e_{j})=\delta_{ij}\epsilon_{i}, (2.3)

where ϵi=±1\epsilon_{i}=\pm 1, i=1,,ni=1,\dots,n. Besides, any orthonormal bases in VV satisfying (2.3) have the same sign {ϵi}\{\epsilon_{i}\} (by different order), the proof can be found in [22]. We arrange the symbol ϵi\epsilon_{i} according to the principle of minus sign before (ϵ1,,ϵn)(\epsilon_{1},\dots,\epsilon_{n}), and we say that the number of negative indicators in this permutation is the indicator of the binary (V,gV)(V,g_{V}).

Definition 2.1.

For n2n\geq 2, the binary (V,gV)(V,g_{V}) is called a Lorentzian vector space if the indicator is 11.

A vector vv in the Lorentzian vector space VV is spacelike, if gV(v,v)>0g_{V}(v,v)>0 or v=0v=0; a vector vv is lightlike if gV(v,v)=0g_{V}(v,v)=0 and v0v\neq 0; a vector vv is timelike, if gV(v,v)<0g_{V}(v,v)<0.

Let gg be a smooth tensor field of type (0,2) on a n-dimensional smooth manifold MM such that for every pMp\in M, the binary (TpM,gp)(T_{p}M,g_{p}) is non-degenerate. If each binary (TpM,gp)(T_{p}M,g_{p}) is a Lorentzian vector space, then we say that (M,g)(M,g) is a Lorentzian manifold. Naturally, the binary (TpM,gp)(T_{p}^{*}M,g_{p}) is also a Lorentzian vector space for any pMp\in M, where TpMT_{p}^{*}M is the cotangent space at pp.

In this paper, we mainly consider 4-dimensional Lorentzian manifold, thus we make the following definition:

Definition 2.2.

A spacetime is a connected and time orientable (i.e. there exists smooth timelike vector field) 4-dimensional Lorentzian manifold.

Next, we introduce the spin structure on spacetime. For this purpose, we need the following algebra preparations.

Let (V,gV)(V,g_{V}) be a 4-dimensional Lorentzian vector space (in order to ensure the unity of symbols of the spinorial connection and the Dirac operator, we consider on the cotangent bundle). Let

𝒥(V):=i=0iV\mathcal{J}(V):=\sum_{i=0}^{\infty}\bigotimes\nolimits^{i}V (2.4)

be the tensor algebra of VV, g(V)\mathcal{I}_{g}(V) be the ideal in 𝒥(V)\mathcal{J}(V) generated by {vv+gV(v,v)1|vV}\big{\{}v\otimes v+g_{V}(v,v)1\,\big{|}v\in V\big{\}}. Then the Clifford algebra with respect to the Lorentzian vector spac (V,gV)(V,g_{V}) is defined as

C(V,gV):=𝒥(V)/g(V).\text{C}\ell(V,g_{V}):=\mathcal{J}(V)/\mathcal{I}_{g}(V). (2.5)

By definition, it is no hard to see that there is a nature embedding from VV to C(V,gV)\text{C}\ell(V,g_{V}), i.e.

V=1V𝒥(V)𝜋C(V,gV),V=\bigotimes\nolimits^{1}V\hookrightarrow\mathcal{J}(V)\xrightarrow[]{\pi}\text{C}\ell(V,g_{V}), (2.6)

where π\pi is the canonical projection.

Remark 2.1.

As vector spaces, the Clifford algebra C(V,gV)\text{C}\ell(V,g_{V}) is isomorphic to the exterior algebra ΛV=k=0ΛkV\Lambda^{*}V=\bigoplus_{k=0}^{\infty}\Lambda^{k}V of VV. Hence, C(V,gV)\text{C}\ell(V,g_{V}) is a finite dimensional vector space [19].

The Clifford algebra C(V,gV)\text{C}\ell(V,g_{V}) can be generated by the vector space VV and the unit 11, and the elements satisfy the following Clifford multiplication rule, i.e.

vw+wv=2gV(v,w)v\cdot w+w\cdot v=-2g_{V}(v,w) (2.7)

for arbitrary v,wVv,w\in V. Therefore, if {e0,e1,e2,e3}\{e^{0},e^{1},e^{2},e^{3}\} is an orthonormal bases of (V,gV)(V,g_{V}) satisfying

<e0,e0>=1,<e1,e1>=1,<e2,e2>=1,<e3,e3>=1,\big{<}e^{0},e^{0}\big{>}=-1,\big{<}e^{1},e^{1}\big{>}=1,\big{<}e^{2},e^{2}\big{>}=1,\big{<}e^{3},e^{3}\big{>}=1, (2.8)

then the correspondinng Clifford multiplication is

e0e0=1,e1e1=1,e2e2=1,e3e3=1,eαeβ=eβeα(αβ).e^{0}\cdot e^{0}=1,e^{1}\cdot e^{1}=-1,e^{2}\cdot e^{2}=-1,e^{3}\cdot e^{3}=-1,e^{\alpha}\cdot e^{\beta}=-e^{\beta}\cdot e^{\alpha}\,(\alpha\neq\beta). (2.9)

The following example shows a matrix representation of C(V,gV)\text{C}\ell(V,g_{V}).

Example 1.
e0(0010000110000100),e1(0010000110000100),e2(0001001001001000),e3(000i00i00i00i000).\begin{split}e^{0}\longmapsto\begin{pmatrix}0&0&-1&0\\ 0&0&0&-1\\ -1&0&0&0\\ 0&-1&0&0\\ \end{pmatrix},&\qquad e^{1}\longmapsto\begin{pmatrix}0&0&-1&0\\ 0&0&0&1\\ 1&0&0&0\\ 0&-1&0&0\\ \end{pmatrix},\\ e^{2}\longmapsto\begin{pmatrix}0&0&0&1\\ 0&0&1&0\\ 0&-1&0&0\\ -1&0&0&0\\ \end{pmatrix},&\qquad e^{3}\longmapsto\begin{pmatrix}0&0&0&i\\ 0&0&-i&0\\ 0&-i&0&0\\ i&0&0&0\\ \end{pmatrix}.\end{split} (2.10)

It is easy to verify that the above matrix multiplications satisfy the Clifford multiplication rule (2.9).

Next we consider the complex Clifford algebra and the corresponding representation.

Definition 2.3.
(V,gV):=C(V,gV).\mathbb{C}\ell(V,g_{V}):=\text{C}\ell(V,g_{V})\otimes_{\hbox{\bb R}}\mathbb{C}. (2.11)

By the universal property of Clifford algebra (c.f. Proposition 1.1 in [19]), the following isomorphism holds

(V,gV)=C(V,gV)C(4,gV)4.\mathbb{C}\ell(V,g_{V})=\text{C}\ell(V,g_{V})\otimes_{\hbox{\bb R}}\mathbb{C}\cong\text{C}\ell(\mathbb{C}^{4},g_{V}\otimes\mathbb{C})\triangleq\mathbb{C}\ell_{4}. (2.12)
Definition 2.4.

Let the \mathbb{C}-algebra homomorphism

ρ:4Hom(W,W)\rho:\mathbb{C}\ell_{4}\longrightarrow\text{Hom}_{\mathbb{C}}(W,W) (2.13)

be a complex representation of 4\mathbb{C}\ell_{4}, where WW is a finite dimensional complex vector space. We say that such a representation is reducible if and only if the vector space WW can be decomposed into the following nontrivial direct sum (over \mathbb{C})

W=W1W2W=W_{1}\oplus W_{2} (2.14)

such that for any u4u\in\mathbb{C}\ell_{4}, there holds

ρ(u)(Wi)Wi,i=1,2.\rho(u)(W_{i})\subseteq W_{i},\,i=1,2. (2.15)

We say that such a complex representation is irreducible if it is not reducible.

According to Theorem 5.7 of Chapter 1 in [19], since nn is even, the complex Clifford algebra n\mathbb{C}\ell_{n} has a unique (up to equivalence) irreduciable complex representation. Hence, we know that the irreduciable complex representation (2.80) is unique. The following proposition gives a concrete characterization of the unique irreducible complex representation of (V,gV)\mathbb{C}\ell(V,g_{V}).

Proposition 2.1.

The complex representation

ρ:Span{e0,e1,e2,e3}End(4)\rho:Span\big{\{}e^{0},e^{1},e^{2},e^{3}\big{\}}\otimes_{\hbox{\bb R}}\mathbb{C}\longrightarrow\text{End}(\mathbb{C}^{4}) (2.16)

is irreduciable, where eαe^{\alpha} (α=0,1,2,3\alpha=0,1,2,3) are the matrices in (2.10), and for any complex 4-dimensional vector ψ\psi, there holds

ρ(eα)ψ:=eαψ.\rho(e^{\alpha})\psi:=e^{\alpha}\psi. (2.17)
Proof.

In order to show that ρ\rho is irreduciable, we only need to prove that ρ\rho is surjective [14]. Since

Span{e0,e1,e2,e3}(V,gV)ΛV,Span\big{\{}e^{0},e^{1},e^{2},e^{3}\big{\}}\otimes_{\hbox{\bb R}}\mathbb{C}\cong\mathbb{C}\ell(V,g_{V})\cong\Lambda^{*}V, (2.18)

Therefore

dim(Span{e0,e1,e2,e3})=dim(ΛV)=24=dim(End(4)).\begin{split}\text{dim}\Big{(}Span\big{\{}e^{0},e^{1},e^{2},e^{3}\big{\}}\otimes_{\hbox{\bb R}}\mathbb{C}\Big{)}&=\text{dim}\Big{(}\Lambda^{*}V\Big{)}\\ &=2^{4}\\ &=\text{dim}\Big{(}\text{End}(\mathbb{C}^{4})\Big{)}.\end{split} (2.19)

Hence, in order to prove that ρ\rho is surjective, it is only necessary to show that ρ\rho is injective, i.e. ρ(v)=0\rho(v)=\textbf{0} implies that v=0v=0. In fact, choose a base of Span{e0,e1,e2,e3}Span\big{\{}e^{0},e^{1},e^{2},e^{3}\big{\}}\otimes_{\hbox{\bb R}}\mathbb{C}

{1,eα1eα2eαk},\big{\{}1,\,e^{\alpha_{1}}e^{\alpha_{2}}\dots e^{\alpha_{k}}\big{\}}, (2.20)

where {α1,,αk}{1,,4}\{\alpha_{1},\dots,\alpha_{k}\}\subset\{1,\dots,4\} and α1<α2<<αk\alpha_{1}<\alpha_{2}<\cdots<\alpha_{k}, then we have

a0+aα1,,αkeα1eα2eαk=0.a_{0}+a_{\alpha_{1},\dots,\alpha_{k}}e^{\alpha_{1}}e^{\alpha_{2}}\dots e^{\alpha_{k}}=\textbf{0}. (2.21)

Substituting (2.10) into the above formula (2.21), by simple calculations, we haveit follows that

a0=aα1,,αk=0.a_{0}=a_{\alpha_{1},\dots,\alpha_{k}}=0. (2.22)

This completes the proof of the proposition.

Q.E.D.

Definition 2.5.

The Clifford multipulation is defined as the following map

𝔪V:(V,gV)×44(e,ψ)ρ(e)ψ.\begin{split}\mathfrak{m}_{V}:\mathbb{C}\ell(V,g_{V})\times\mathbb{C}^{4}&\longrightarrow\mathbb{C}^{4}\\ (e,\psi)&\longmapsto\rho(e)\psi.\end{split} (2.23)

Let 4()\mathscr{M}_{4}(\hbox{\bb R}) be the space consisting of 4×44\times 4 real matrices. The Lorentzian group O(1,3)O(1,3) is defined as

O(1,3):={A4()|AT(1000010000100001)A=(1000010000100001)}.O(1,3):=\left\{A\in\mathscr{M}_{4}(\hbox{\bb R})\Bigg{|}A^{T}\begin{pmatrix}-1&0&0&0\\ 0&1&0&0\\ 0&0&1&0\\ 0&0&0&1\\ \end{pmatrix}A=\begin{pmatrix}-1&0&0&0\\ 0&1&0&0\\ 0&0&1&0\\ 0&0&0&1\\ \end{pmatrix}\right\}. (2.24)

So the Lorentzian group O(1,3)O(1,3) is a matrix Lie group consisting of all norm preserving linear transformation in Minkowski spacetime 4\hbox{\bb R}^{4}. In particular, we denote

SO(1,3):={AO(1,3)|detA=1}.SO(1,3):=\left\{A\in O(1,3)\Big{|}\,\text{det}A=1\right\}. (2.25)

Since SO(1,3)SO(1,3) has two connected components [15], let SO0(1,3)SO_{0}(1,3) be the component containing the identity and 𝔰𝔬(1,3)\mathfrak{s}\mathfrak{o}(1,3) be the corresponding Lie algebra. According to the closed subgroup Theorem [15], we can deduce that

𝔰𝔬(1,3)={X4():exptXSO0(1,3),t}.\mathfrak{s}\mathfrak{o}(1,3)=\left\{X\in\mathscr{M}_{4}(\hbox{\bb R}):\,\exp\,tX\in SO_{0}(1,3),\,\forall t\in\hbox{\bb R}\right\}. (2.26)

Therefore, for any X𝔰𝔬(1,3)X\in\mathfrak{s}\mathfrak{o}(1,3), we have

(exptXT)(1000010000100001)(exptX)=(1000010000100001).\big{(}\exp\,tX^{T}\big{)}\begin{pmatrix}-1&0&0&0\\ 0&1&0&0\\ 0&0&1&0\\ 0&0&0&1\\ \end{pmatrix}\big{(}\exp\,tX\big{)}=\begin{pmatrix}-1&0&0&0\\ 0&1&0&0\\ 0&0&1&0\\ 0&0&0&1\\ \end{pmatrix}. (2.27)

Taking the derivative of tt on both sides of (2.27) and considering the value at t=0t=0, it follows that

(1000010000100001)X+XT(1000010000100001)=0.\begin{pmatrix}-1&0&0&0\\ 0&1&0&0\\ 0&0&1&0\\ 0&0&0&1\\ \end{pmatrix}X+X^{T}\begin{pmatrix}-1&0&0&0\\ 0&1&0&0\\ 0&0&1&0\\ 0&0&0&1\\ \end{pmatrix}=0. (2.28)

By simple calculations, XX has the following form

(0x12x13x14x120x23x24x13x230x34x14x24x340).\begin{pmatrix}0&x_{12}&x_{13}&x_{14}\\ x_{12}&0&x_{23}&x_{24}\\ x_{13}&-x_{23}&0&x_{34}\\ x_{14}&-x_{24}&-x_{34}&0\\ \end{pmatrix}. (2.29)

Thus, the Lie algebra 𝔰𝔬(1,3)\mathfrak{s}\mathfrak{o}(1,3) has the following 66 basis matrices:

(0100100000000000),(0010000010000000),(0001000000001000),(0000001001000000),(0000000100000100),(0000000000010010).\begin{split}&\begin{pmatrix}0&1&0&0\\ 1&0&0&0\\ 0&0&0&0\\ 0&0&0&0\\ \end{pmatrix},\quad\begin{pmatrix}0&0&1&0\\ 0&0&0&0\\ 1&0&0&0\\ 0&0&0&0\\ \end{pmatrix},\quad\begin{pmatrix}0&0&0&1\\ 0&0&0&0\\ 0&0&0&0\\ 1&0&0&0\\ \end{pmatrix},\\ &\begin{pmatrix}0&0&0&0\\ 0&0&1&0\\ 0&-1&0&0\\ 0&0&0&0\\ \end{pmatrix},\quad\begin{pmatrix}0&0&0&0\\ 0&0&0&1\\ 0&0&0&0\\ 0&-1&0&0\\ \end{pmatrix},\quad\begin{pmatrix}0&0&0&0\\ 0&0&0&0\\ 0&0&0&1\\ 0&0&-1&0\\ \end{pmatrix}.\end{split}

Next, we define the group Pin(1,3)Pin(1,3) and Spin(1,3)Spin(1,3) by the Clifford algebra C(V,gV){C}\ell(V,g_{V}) in order to construct the 2-fold covering space of SO0(1,3)SO_{0}(1,3). Let the multiplicative unit group of the Clifford algebra C(V,gV){C}\ell(V,g_{V}) be

C×(V,gV):={vC(V,gV):v1satisfyingv1v=vv1=1}.{C}\ell^{\times}(V,g_{V}):=\left\{v\in{C}\ell(V,g_{V}):\exists\,v^{-1}\;\text{satisfying}\;v^{-1}\cdot v=v\cdot v^{-1}=1\right\}. (2.30)

Since for all vectors vv in VV satisfying gV(v,v)0g_{V}(v,v)\neq 0, there holds

vvgV(v,v)=1,v\cdot\frac{v}{-g_{V}(v,v)}=1, (2.31)

such vectors are contained in C×(V,gV){C}\ell^{\times}(V,g_{V}) and we let P(V,gV)P(V,g_{V}) be the subgroup generated by these vectors. Moreover, C×(V,gV){C}\ell^{\times}(V,g_{V}) is a 242^{4}-dimensional Lie group inheriting the topology of C(V,gV){C}\ell(V,g_{V}) (as vector space), and the corresponding Lie algebra 𝔠𝔩×(V,gV)\mathfrak{cl}^{\times}(V,g_{V}) is isomorphic to C(V,gV){C}\ell(V,g_{V}).

Definition 2.6.

The group Pin(1,3)Pin(1,3) is generated by the elements in P(V,gV)P(V,g_{V}) satisfying gV(v,v)=±1g_{V}(v,v)=\pm 1 (vVv\in V). The group Spin(1,3)Spin(1,3) is defined as

Spin(1,3):=Pin(1,3)C0(V,gV),Spin(1,3):=Pin(1,3)\cap{C}\ell^{0}(V,g_{V}), (2.32)

where C0(V,gV):={vC(V,gV):φ(v)=v}C\ell^{0}(V,g_{V}):=\left\{v\in C\ell(V,g_{V}):\varphi(v)=v\right\} and φ\varphi is the following endomorphism

φ:C(V,gV)C(V,gV)vv(vV).\begin{split}\varphi:C\ell(V,g_{V})&\longrightarrow C\ell(V,g_{V})\\ v&\longmapsto-v\quad(v\in V).\end{split} (2.33)
Remark 2.2.

According to Definition 2.6, we can see that

Spin(1,3)={v1vkPin(1,3):k0(mod 2)}.Spin(1,3)=\left\{v_{1}\cdots v_{k}\in Pin(1,3):k\equiv 0(mod\,2)\right\}. (2.34)

Moreover, Spin(1,3)Spin(1,3) is a simple connected Lie group and the following isomorphism holds

Spin(1,3)SL(2,):={AHom(2,2)|detA=1}.Spin(1,3)\cong SL(2,\mathbb{C}):=\left\{A\in\text{Hom}_{\mathbb{C}}\left(\mathbb{C}^{2},\mathbb{C}^{2}\right)\Big{|}\,\det A=1\right\}. (2.35)
Definition 2.7.

The complex irreduciable representation ρ\rho in Proposition 2.1 restricting on Spin(1,3)Spin(1,3), i.e.

ρ:Spin(1,3)End(4)\rho:Spin(1,3)\longrightarrow\text{End}(\mathbb{C}^{4}) (2.36)

is called the complex spinor representation. In this case, we call 4\mathbb{C}^{4} the spinor space.

The following theorem gives the 2-fold covering space of SO0(1,3)SO_{0}(1,3), for the proof, we refer to Theorem 2.10 of Chapter 1 in [19].

Theorem 2.1.

The following short exact sequence holds

02Spin(1,3)Ad~SO0(1,3)1,0\rightarrow\mathbb{Z}_{2}\rightarrow Spin(1,3)\xrightarrow[]{\widetilde{Ad}}SO_{0}(1,3)\rightarrow 1, (2.37)

where Ad~v\widetilde{Ad}_{v} is defined as

Ad~v(w):=w2gV(v,w)gV(v,v)v\widetilde{Ad}_{v}(w):=w-2\frac{g_{V}(v,w)}{g_{V}(v,v)}v (2.38)

for all vv, wVw\in V satisfying gV(v,v)0g_{V}(v,v)\neq 0.

For the purpose of giving the local formula of the spinorial Levi-Civita connection on the spinor bundle, we calculate the concrete expression of the tangent map Ad~:𝔰𝔭𝔦𝔫(1,3)𝔰𝔬(1,3)\widetilde{Ad}_{*}:\mathfrak{spin(1,3)}\xrightarrow[]{\cong}\mathfrak{so}(1,3). The proposition is as follows:

Proposition 2.2.
Ad~(e0e1)=2(0100100000000000),Ad~(e0e2)=2(0010000010000000),\widetilde{Ad}_{*}(e^{0}\cdot e^{1})=-2\begin{pmatrix}0&1&0&0\\ 1&0&0&0\\ 0&0&0&0\\ 0&0&0&0\\ \end{pmatrix},\quad\widetilde{Ad}_{*}(e^{0}\cdot e^{2})=-2\begin{pmatrix}0&0&1&0\\ 0&0&0&0\\ 1&0&0&0\\ 0&0&0&0\\ \end{pmatrix}, (2.39)
Ad~(e0e3)=2(0001000000001000),Ad~(e1e3)=2(0000000100000100),\qquad\;\widetilde{Ad}_{*}(e^{0}\cdot e^{3})=-2\begin{pmatrix}0&0&0&1\\ 0&0&0&0\\ 0&0&0&0\\ 1&0&0&0\\ \end{pmatrix},\quad\widetilde{Ad}_{*}(e^{1}\cdot e^{3})=2\begin{pmatrix}0&0&0&0\\ 0&0&0&-1\\ 0&0&0&0\\ 0&1&0&0\\ \end{pmatrix}, (2.40)
Ad~(e1e2)=2(0000001001000000),Ad~(e2e3)=2(0000000000010010).\widetilde{Ad}_{*}(e^{1}\cdot e^{2})=2\begin{pmatrix}0&0&0&0\\ 0&0&-1&0\\ 0&1&0&0\\ 0&0&0&0\\ \end{pmatrix},\quad\widetilde{Ad}_{*}(e^{2}\cdot e^{3})=2\begin{pmatrix}0&0&0&0\\ 0&0&0&0\\ 0&0&0&-1\\ 0&0&1&0\\ \end{pmatrix}. (2.41)
Proof.

Due to the particularity of the vector e0e^{0} in the Lorentzian vector space, we only need to calculate Ad~(e0e1)\widetilde{Ad}_{*}(e^{0}\cdot e^{1}) and Ad~(e1e3)\widetilde{Ad}_{*}(e^{1}\cdot e^{3}), and the remaining terms can be obtained by completely similar discussions.

(i) Ad~(e0e1)\widetilde{Ad}_{*}(e^{0}\cdot e^{1}):

For x(,+)x\in(-\infty,+\infty), the hyperbolic sine functions and the hyperbolic cosine functions are defined as follows

sinhx=exex2,coshx=ex+ex2.\sinh{x}=\frac{e^{x}-e^{-x}}{2},\cosh{x}=\frac{e^{x}+e^{-x}}{2}. (2.42)

Notice that

gV((coshx)e0+(sinhx)e1,(coshx)e0+(sinhx)e1)=coshx2+sinhx2=1,\begin{split}g_{V}&\Big{(}(\cosh{x})e^{0}+(\sinh{x})e^{1},(\cosh{x})e^{0}+(\sinh{x})e^{1}\Big{)}\\ &=-\cosh{x}^{2}+\sinh{x}^{2}\\ &=-1,\end{split} (2.43)

hence

γ1:(,+)Spin(1,3)xe0((coshx)e0+(sinhx)e1)\begin{split}\gamma_{1}:(-\infty,+\infty)&\longrightarrow Spin(1,3)\\ x&\longmapsto e^{0}\cdot\left((\cosh{x})e^{0}+(\sinh{x})e^{1}\right)\end{split} (2.44)

is an one parameter subgroup of the group Spin(1,3)Spin(1,3), and its tangent vector at the identity, i.e. at x=0x=0 is

ddx|x=0(coshx+sinhxe0e1)=(sinhx+coshxe0e1)|x=0=e0e1.\begin{split}&\frac{d}{dx}\Big{|}_{x=0}\left(\cosh{x}+\sinh{x}e^{0}\cdot e^{1}\right)\\ &=\left(\sinh{x}+\cosh{x}e^{0}\cdot e^{1}\right)\Big{|}_{x=0}\\ &=e^{0}\cdot e^{1}.\end{split} (2.45)

Now for any wVw\in V, w=wαeαw=w_{\alpha}e^{\alpha}, by equation (2.38) we have

Ad~coshxe0+sinhxe1w=w+2(w0coshx+w1sinhx)(coshxsinhx00)=(w0+(2w0coshx+2w1sinhx)coshxw1+(2w0coshx+2w1sinhx)sinhxw2w3).\begin{split}\widetilde{Ad}_{\cosh{x}e^{0}+\sinh{x}e^{1}}w&=w+2\left(-w_{0}\cosh{x}+w_{1}\sinh{x}\right)\begin{pmatrix}\cosh{x}\\ \sinh{x}\\ 0\\ 0\end{pmatrix}\\ &=\begin{pmatrix}w_{0}+\left(-2w_{0}\cosh{x}+2w_{1}\sinh{x}\right)\cosh{x}\\ w_{1}+\left(-2w_{0}\cosh{x}+2w_{1}\sinh{x}\right)\sinh{x}\\ w_{2}\\ w_{3}\end{pmatrix}.\end{split} (2.46)

Therefore,

Ad~γ1(x)w=Ad~e0(coshxe0+sinhxe1)w=Ad~e0(w0+(2w0coshx+2w1sinhx)coshxw1+(2w0coshx+2w1sinhx)sinhxw2w3)=(w0+(2w0coshx+2w1sinhx)coshxw1+(2w0coshx+2w1sinhx)sinhxw2w3)2(w0+(2w0coshx+2w1sinhx)coshx))(1000)=(w0+(2w0coshx2w1sinhx)coshxw1+(2w0coshx+2w1sinhx)sinhxw2w3),\begin{split}\widetilde{Ad}_{\gamma_{1}(x)}w&=\widetilde{Ad}_{e^{0}\cdot\left(\cosh{x}e^{0}+\sinh{x}e^{1}\right)}w\\ &=\widetilde{Ad}_{e^{0}}\begin{pmatrix}w_{0}+\left(-2w_{0}\cosh{x}+2w_{1}\sinh{x}\right)\cosh{x}\\ w_{1}+\left(-2w_{0}\cosh{x}+2w_{1}\sinh{x}\right)\sinh{x}\\ w_{2}\\ w_{3}\end{pmatrix}\\ &=\begin{pmatrix}w_{0}+\left(-2w_{0}\cosh{x}+2w_{1}\sinh{x}\right)\cosh{x}\\ w_{1}+\left(-2w_{0}\cosh{x}+2w_{1}\sinh{x}\right)\sinh{x}\\ w_{2}\\ w_{3}\end{pmatrix}\\ &\qquad\qquad-2\left(w_{0}+(-2w_{0}\cosh{x}+2w_{1}\sinh{x})\cosh{x})\right)\begin{pmatrix}1\\ 0\\ 0\\ 0\\ \end{pmatrix}\\ &=\begin{pmatrix}-w_{0}+(2w_{0}\cosh{x}-2w_{1}\sinh{x})\cosh{x}\\ w_{1}+(-2w_{0}\cosh{x}+2w_{1}\sinh{x})\sinh{x}\\ w_{2}\\ w_{3}\\ \end{pmatrix},\end{split} (2.47)

i.e.

Ad~γ1(x)w=(1+2(coshx)22sinhxcoshx002sinhxcoshx1+2(sinhx)20000100001)(w0w1w2w3).\widetilde{Ad}_{\gamma_{1}(x)}w=\begin{pmatrix}-1+2\left(\cosh{x}\right)^{2}&-2\sinh{x}\cosh{x}&0&0\\ -2\sinh{x}\cosh{x}&1+2\left(\sinh{x}\right)^{2}&0&0\\ 0&0&1&0\\ 0&0&0&1\\ \end{pmatrix}\begin{pmatrix}w_{0}\\ w_{1}\\ w_{2}\\ w_{3}\\ \end{pmatrix}. (2.48)

Thus,

Ad~(e0e1)=ddx|x=0(1+2(coshx)22sinhxcoshx002sinhxcoshx1+2(sinhx)20000100001)=2(0100100000000000).\begin{split}\widetilde{Ad}_{*}(e^{0}\cdot e^{1})&=\frac{d}{dx}\Big{|}_{x=0}\begin{pmatrix}-1+2\left(\cosh{x}\right)^{2}&-2\sinh{x}\cosh{x}&0&0\\ -2\sinh{x}\cosh{x}&1+2\left(\sinh{x}\right)^{2}&0&0\\ 0&0&1&0\\ 0&0&0&1\\ \end{pmatrix}\\ &=-2\begin{pmatrix}0&1&0&0\\ 1&0&0&0\\ 0&0&0&0\\ 0&0&0&0\\ \end{pmatrix}.\end{split} (2.49)

(ii) Ad~(e1e3)\widetilde{Ad}_{*}(e^{1}\cdot e^{3}):

For θ\theta\in\hbox{\bb R}, notice that

gV(cos(θ)e1+sin(θ)e3,cos(θ)e1+sin(θ)e3)=cos2θ+sin2θ=1,\begin{split}g_{V}\big{(}-\cos(\theta)e^{1}+\sin(\theta)e^{3},-\cos(\theta)e^{1}+\sin(\theta)e^{3}\big{)}\\ =\cos^{2}\theta+\sin^{2}\theta=1,\end{split} (2.50)

thus

γ2:(,+)Spin(1,3)θe1(cos(θ)e1+sin(θ)e3)\begin{split}\gamma_{2}:(-\infty,+\infty)&\longrightarrow Spin(1,3)\\ \theta&\longmapsto e^{1}\cdot\big{(}-\cos(\theta)e^{1}+\sin(\theta)e^{3}\big{)}\end{split} (2.51)

is an one parameter subgroup of the group Spin(1,3)Spin(1,3), and its tangent vector at the identity 11, i.e. at θ=0\theta=0 is

ddθ|θ=0(cosθ+sin(θ)e1e3)=e1e3.\frac{d}{d\theta}\Big{|}_{\theta=0}\Big{(}\cos\theta+\sin(\theta)e^{1}\cdot e^{3}\Big{)}=e^{1}\cdot e^{3}. (2.52)

For any wVw\in V, w=wαeαw=w_{\alpha}e^{\alpha}, by equation (2.38) we can deduce that the following holds

Ad~cos(θ)e1+sin(θ)e3w=w2(cos(θ)w1+sin(θ)w3)(0cosθ0sinθ)=(w0w1+2cosθ(cos(θ)w1+sin(θ)w3)w2w32sinθ(cos(θ)w1+sin(θ)w3)).\begin{split}\widetilde{Ad}_{-\cos(\theta)e^{1}+\sin(\theta)e^{3}}w&=w-2(-\cos(\theta)w_{1}+\sin(\theta)w_{3})\begin{pmatrix}0\\ -\cos\theta\\ 0\\ \sin\theta\\ \end{pmatrix}\\ &=\begin{pmatrix}w_{0}\\ w_{1}+2\cos\theta\left(-\cos(\theta)w_{1}+\sin(\theta)w_{3}\right)\\ w_{2}\\ w_{3}-2\sin\theta\left(-\cos(\theta)w_{1}+\sin(\theta)w_{3}\right)\end{pmatrix}.\end{split} (2.53)

Therefore,

Ad~γ2(θ)w=Ad~e1(cos(θ)e1+sin(θ)e3)w=Ad~e1(w0w1+2cosθ(cos(θ)w1+sin(θ)w3)w2w32sinθ(cos(θ)w1+sin(θ)w3))=(w0w1+2cosθ(cos(θ)w1+sin(θ)w3)w2w32sinθ(cos(θ)w1+sin(θ)w3))2(w12cos2(θ)w1+2w3sinθcosθ)(0100)=(100001+2cos2θ0sin2θ00100sin2θ012sin2θ)(w0w1w2w3).\begin{split}\widetilde{Ad}_{\gamma_{2}(\theta)}w&=\widetilde{Ad}_{e^{1}\cdot\big{(}-\cos(\theta)e^{1}+\sin(\theta)e^{3}\big{)}}w\\ &=\widetilde{Ad}_{e^{1}}\begin{pmatrix}w_{0}\\ w_{1}+2\cos\theta\left(-\cos(\theta)w_{1}+\sin(\theta)w_{3}\right)\\ w_{2}\\ w_{3}-2\sin\theta\left(-\cos(\theta)w_{1}+\sin(\theta)w_{3}\right)\end{pmatrix}\\ &=\begin{pmatrix}w_{0}\\ w_{1}+2\cos\theta\left(-\cos(\theta)w_{1}+\sin(\theta)w_{3}\right)\\ w_{2}\\ w_{3}-2\sin\theta\left(-\cos(\theta)w_{1}+\sin(\theta)w_{3}\right)\end{pmatrix}\\ &\qquad\qquad-2\big{(}w_{1}-2\cos^{2}(\theta)w_{1}+2w_{3}\sin\theta\cos\theta\big{)}\begin{pmatrix}0\\ 1\\ 0\\ 0\\ \end{pmatrix}\\ &=\begin{pmatrix}1&0&0&0\\ 0&-1+2\cos^{2}\theta&0&-\sin 2\theta\\ 0&0&1&0\\ 0&\sin 2\theta&0&1-2\sin^{2}\theta\\ \end{pmatrix}\begin{pmatrix}w_{0}\\ w_{1}\\ w_{2}\\ w_{3}\\ \end{pmatrix}.\end{split} (2.54)

Hence we have

Ad~(e1e3)=ddθ|θ=0(100001+2cos2θ0sin(2θ)001002sinθcosθ012sin2θ)=2(0000000100000100),\begin{split}\widetilde{Ad}_{*}(e^{1}\cdot e^{3})&=\frac{d}{d\theta}\Big{|}_{\theta=0}\begin{pmatrix}1&0&0&0\\ 0&-1+2\cos^{2}\theta&0&-\sin(2\theta)\\ 0&0&1&0\\ 0&2\sin\theta\cos\theta&0&1-2\sin^{2}\theta\\ \end{pmatrix}\\ &=2\begin{pmatrix}0&0&0&0\\ 0&0&0&-1\\ 0&0&0&0\\ 0&1&0&0\\ \end{pmatrix},\end{split} (2.55)

which completes the proof of the proposition.

Q.E.D.

Next, before defining the spin structure, we briefly introduce some basic facts of principal fibre bundle. We refer the reader to the references [18, 26].

Let EE, FF and MM be smooth manifolds, given a smooth projection

π:EM\pi:E\longrightarrow M (2.56)

and an open covering {Uα}\{U_{\alpha}\} of MM, a local trivializationl means that for any open set UαU_{\alpha}, there exists diffeomorphism ϕUα\phi_{U_{\alpha}} such that the following diagram commutes

π1(Uα)\textstyle{\pi^{-1}(U_{\alpha})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ϕUα\scriptstyle{\phi_{U_{\alpha}}}π\scriptstyle{\pi}Uα×F\textstyle{U_{\alpha}\times F\ignorespaces\ignorespaces\ignorespaces\ignorespaces}η\scriptstyle{\eta}Uα\textstyle{U_{\alpha}}
(2.57)

where η\eta is the projection to the first component. If the above conditions hold, we say that (2.56) is a fibre bundle with fibre FF, EE is the total space, MM is the base space, and π1(x)\pi^{-1}(x) is the fibre at xx.

Let GG be a Lie group with identity ee, GG acts smoothly right on MM if there exists a smooth map

R:M×GMR:M\times G\longrightarrow M (2.58)

satisfying

(1) R(x,e)=xR(x,e)=x;

(2) R(R(x,h1),h2)=R(x,h1h2)R\left(R(x,h_{1}),h_{2}\right)=R(x,h_{1}h_{2}).

For any xMx\in M, the stabilizer is defined as

Stab(x):={hG|R(x,h)=x}.{\text{Stab(x)}}:=\{h\in G|R(x,h)=x\}. (2.59)

The right action RR is called free, if the stabilizer is trivial for any point.

A fibre bundle π:PM\pi:P\longrightarrow M with fibre GG (a Lie group) is called a principal GG-fibre bundle, if GG acts smoothly right on PP and for any α\alpha, the local trivialization ϕUα\phi_{U_{\alpha}} is GG-invariant. That is, for any (p,h)π1(U)×G(p,h)\in\pi^{-1}(U)\times G, the following holds

ϕUα(R(p,h))=(ϕUα(p))h,\phi_{U_{\alpha}}\big{(}R(p,h)\big{)}=\big{(}\phi_{U_{\alpha}}(p)\big{)}h, (2.60)

where

(ϕUα(p))h=(π(p),hp)h:=(π(p),hph).\big{(}\phi_{U_{\alpha}}(p)\big{)}h=\big{(}\pi(p),h_{p}\big{)}h:=\big{(}\pi(p),h_{p}h\big{)}. (2.61)

Let {Uα,ϕα}\{U_{\alpha},\phi_{\alpha}\} be a local trivialization of the principal GG-fibre bundle π:PM\pi:P\rightarrow M. If UαβUαUβU_{\alpha\beta}\triangleq U_{\alpha}\cap U_{\beta}\neq\emptyset, then there are two different local trivialization on UαβU_{\alpha\beta}, i.e.

Uαβ×G\textstyle{U_{\alpha\beta}\times G}π1(Uαβ)\textstyle{\pi^{-1}(U_{\alpha\beta})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ϕβ\scriptstyle{\phi_{\beta}}ϕβ\scriptstyle{\phi_{\beta}}Uαβ×G.\textstyle{U_{\alpha\beta}\times G.} (2.62)

Hence

ϕαϕβ1:Uαβ×GUαβ×G\phi_{\alpha}\circ\phi_{\beta}^{-1}:U_{\alpha\beta}\times G\longrightarrow U_{\alpha\beta}\times G (2.63)

is a smooth, fibre preserving, GG-invariant right action, i.e. there exists a map

gαβ:UαβGg_{\alpha\beta}:U_{\alpha\beta}\longrightarrow G (2.64)

satisfying

ϕαϕβ1(x,g)=(x,gαβ(x)g).\phi_{\alpha}\circ\phi_{\beta}^{-1}(x,g)=\big{(}x,g_{\alpha\beta}(x)g\big{)}. (2.65)

We call the functions gαβg_{\alpha\beta} in (2.64) the transition functions. Obviously, for open sets UαUβUγU_{\alpha}\cap U_{\beta}\cap U_{\gamma}\neq\emptyset, the transition functions satisfy the following

gαβgβγ=gαγ.g_{\alpha\beta}\circ g_{\beta\gamma}=g_{\alpha\gamma}. (2.66)
Example 2.

Let MM be an oriented spacetime manifold. The frame bundle of the cotangent bundle TMT^{*}M of MM is defined as

SOM(1,3):=xMFr(TxM),\text{SO}_{M}^{*}(1,3):=\bigsqcup_{x\in M}\text{Fr}(T_{x}^{*}M), (2.67)

where Fr(TxM)\text{Fr}(T_{x}^{*}M) consists of all orthonormal bases in the cotangent space TxMT_{x}^{*}M at xx that are compatible with the given orientation and the given time orientation. Define

π:SOM(1,3)MFr(TxM)x.\begin{split}\pi:\text{SO}_{M}^{*}(1,3)&\longrightarrow M\\ \text{Fr}(T_{x}^{*}M)&\longmapsto x.\end{split} (2.68)

It is no hard to see that the frame bundle π:SOM(1,3)M\pi:\text{SO}_{M}^{*}(1,3)\longrightarrow M is a smooth principal SO0(1,3)SO_{0}(1,3)-fibre bundle.

Given principal G1G_{1}-fibre bundle π1:P1M1\pi_{1}:P_{1}\rightarrow M_{1} and principal G2G_{2}-fibre bundle π2:P2M2\pi_{2}:P_{2}\rightarrow M_{2}, a map f:P1P2f:P_{1}\rightarrow P_{2} is called a bundle map if and only if there exist group homomorphism fG:G1G2f_{G}:G_{1}\rightarrow G_{2} and a map fB:M1M2f_{B}:M_{1}\rightarrow M_{2} such that

f(pg)=f(p)fG(g)f(pg)=f(p)f_{G}(g) (2.69)

and the following diagram commutes

P1\textstyle{P_{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}π1\scriptstyle{\pi_{1}}P2\textstyle{P_{2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}π2\scriptstyle{\pi_{2}}M1\textstyle{M_{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}fB\scriptstyle{f_{B}}M2.\textstyle{M_{2}.} (2.70)

With the above preparations, we can now give the definition of spin structure on spacetime manifold.

Definition 2.8.

Let MM be a orientable spacetime manifold. A spin structure on MM is a binary (SpinM,η)(\text{Spin}M,\eta) satisfying

(1) SpinM\text{Spin}M is a principal Spin(1,3)Spin(1,3)-fibre bundle;

(2) η:SpinMSOM(1,3)\eta:\text{Spin}M\rightarrow\text{SO}_{M}^{*}(1,3) is a 2-fold covering map and the following diagram commutes

SpinM\textstyle{\text{Spin}M\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}η\scriptstyle{\eta}π\scriptstyle{\pi}M\textstyle{M}SOM(1,3)\textstyle{\text{SO}_{M}^{*}(1,3)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}π\scriptstyle{\pi}
(2.71)

(3) For arbitrary (p,g)SpinM(p,g)\in\text{Spin}M, there holds

η(pg)=η(p)Ad~(g).\eta(pg)=\eta(p)\widetilde{Ad}(g). (2.72)

There exists a spin structure on an orientable spacetime manifold MM if and only if the transition functions on the frame bundle SOM(1,3)\text{SO}_{M}^{*}(1,3) can be lifted to Spin(1,3)Spin(1,3), i.e. there exists a map g~αβ\widetilde{g}_{\alpha\beta} such that the following diagram commutes

Spin(1,3)\textstyle{Spin(1,3)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ad~\scriptstyle{\widetilde{Ad}}Uαβ\textstyle{U_{\alpha\beta}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}gαβ\scriptstyle{g_{\alpha\beta}}g~αβ\scriptstyle{\widetilde{g}_{\alpha\beta}}SO0(1,3)\textstyle{SO_{0}(1,3)} (2.73)

and g~αβ\widetilde{g}_{\alpha\beta} satisfies (2.66). This condition is equivalent to that the second Stiefel-Whitney class w2(M)H2(M;2)w_{2}(M)\in H^{2}(M;\mathbb{Z}_{2}) vanishes. Moreover, if w2(M)=0w_{2}(M)=0, then there is a one-to-one correspondence between the number of spin structures on MM and the elements in H1(M;2)H^{1}(M;\mathbb{Z}_{2}) [5, 19]. For more facts about spin structures on manifolds, we refer the reader to [19]. In particular, we recall the following facts:

Lemma 2.1.

(1) Any orientable manifold with dimension less than or equal to 3 is spin;

(2) The Cartesian product of two spin manifolds is also a spin manifold.

2.1.2. Dirac operator

First of all, we introduce the connection on principal fibre bundle and the induced covariant derivatives on the associated vector bundle, we refer the reader to [16] for details. Let π:PM\pi:P\rightarrow M be a principal GG-fibre bundle, 𝔤\mathfrak{g} is the Lie algebra of GG. For any uPu\in P, let GuG_{u} be the subspace of TuPT_{u}P which consisting of the tangent vectors that are tangent to the fibre at uu. We say that Γ\Gamma is a connection on PP, if for every uPu\in P, there is a subspace QuQ_{u} (depends smoothly on uu) of TuPT_{u}P satisfying

(1) TuP=GuQuT_{u}P=G_{u}\oplus Q_{u};

(2) Qug=(Rg)QuQ_{ug}=(R_{g})_{*}Q_{u} for every gGg\in G.

QuQ_{u} is called the horizontal distribution and GuG_{u} is the vertical distribution. A tangent vector XTuPX\in T_{u}P is said to be horizontal or vertical if and only if it belongs to the subspace QuQ_{u} or GuG_{u}. In particular, the corresponding components of the vector XX with respect to the direct sum GuQuG_{u}\oplus Q_{u} are called the vertical and horizontal components of XX, respectively.

For any vector A𝔤A\in\mathfrak{g}, AA induces a vector field on PP, i.e. for any uPu\in P,

Au:=ddt|t=0(uexptA).{A^{*}}_{u}:=\frac{d}{dt}\Big{|}_{t=0}(u\cdot\exp tA). (2.74)

We say that AA^{*} is the fundamental vector field generated by AA. According to the definition, it is easy to see that the map

𝔤GuAAu\begin{split}\mathfrak{g}&\longrightarrow G_{u}\\ A&\longmapsto{A^{*}}_{u}\end{split} (2.75)

is a linear isomorphism. Given a connection Γ\Gamma on PP, we define the 𝔤\mathfrak{g}-valued 1-form ω\omega on PP as follows: for any XTuPX\in T_{u}P, ω(X)\omega(X) is defined as the unique A𝔤A\in\mathfrak{g} such that Au{A^{*}}_{u} is equal to the vertical component of XX. We call

ω:TP𝔤\omega:TP\longrightarrow\mathfrak{g} (2.76)

the connection 1-form on the principal fibre bundle corresponding to Γ\Gamma. Thus, XX is horizontal if and only if ω(X)=0\omega(X)=0. By definition, it is no hard to see that

ω(Au)=A.\omega({A^{*}}_{u})=A. (2.77)

Moreover, for any gGg\in G, the following holds [26]

(Rg)ω=ad(g1)ω,(R_{g})^{*}\omega=\text{ad}(g^{-1})\omega, (2.78)

where ad is the adjoint representation of GG. On the contrary, for any CC^{\infty} 𝔤\mathfrak{g}-valued 1-form ω\omega on PP satisfying (2.77) and (2.78), there always exists a unique connection Γ\Gamma on PP such that the connection 1-form corresponding to Γ\Gamma is exactly ω\omega. In fact, the corresponding horizontal distribution can be defined as follows

Qu:={XTuP|ω(X)=0}.Q_{u}:=\left\{X\in T_{u}P\Big{|}\,\omega(X)=0\right\}. (2.79)

After we define the connection on the principal fibre bundle, we then discuss how the connection 1-form on the principal fibre bundle induces a covariant derivative on the associated vector bundle. We first consider the following representation on the group GG

ρ:GEnd(Σn),\rho:G\longrightarrow\text{End}(\Sigma_{n}), (2.80)

where Σn\Sigma_{n} is a n-dimensional vecotr space. And for any vector vv in Σn\Sigma_{n}, we denote by gvρ(g)vgv\triangleq\rho(g)v. The group GG naturally induces the following action on the space P×ΣP\times\Sigma

(p,v)(pg,g1v).(p,v)\longmapsto(pg,g^{-1}v). (2.81)

The associated vector bundle E:=P×ρΣnE:=P\times_{\rho}\Sigma_{n} of the principal GG-fibre bundle π:PM\pi:P\rightarrow M under the representation (2.80) is defined as the following quotient space

E:=P×ρΣn=(P×Σn)/,E:=P\times_{\rho}\Sigma_{n}=\big{(}P\times\Sigma_{n}\big{)}\big{/}\sim, (2.82)

where the equivalence relation is

(p,v)(pg,g1v).(p,v)\sim(pg,g^{-1}v). (2.83)

It is no hard to see that

E:=P×ρΣn\textstyle{E\ignorespaces\ignorespaces\ignorespaces\ignorespaces:=P\times_{\rho}\Sigma_{n}}π\scriptstyle{\pi^{\prime}}M\textstyle{M} (2.84)

is a vector bundle, where π([p,v]):=π(p)\pi^{\prime}([p,v]):=\pi(p). Each fibre of EE is isomorphic to the vector space Σn\Sigma_{n}, and the transition functions are

UαβGL(Σn)xρφαβ(x),\begin{split}U_{\alpha\beta}&\longrightarrow GL(\Sigma_{n})\\ x&\longmapsto\rho\circ\varphi_{\alpha\beta}(x),\end{split} (2.85)

where φαβ\varphi_{\alpha\beta} is the transition function of the principal GG-fibre bundle π:PM\pi:P\rightarrow M.

Example 3.

For the cotangent bundle TMT^{*}M of orientable spacetime MM, the following isomorphism between vector bundles holds

TMSOM(1,3)×ρ04,T^{*}M\simeq\text{SO}_{M}^{*}(1,3)\times_{\rho_{0}}\hbox{\bb R}^{4}, (2.86)

where ρ0:SO0(1,3)End(4)\rho_{0}:SO_{0}(1,3)\rightarrow\text{End}(\hbox{\bb R}^{4}) is the usual matrix representation.

If there exists a spin struction on a spacetime manifold, the spinor vector bundle is defined as the associated vector bundle of the principal fibre bundle SpinM\text{Spin}M with respect to the complex spin representation (2.36), i.e.

ΣM:=SpinM×ρ4.\Sigma M:=\text{Spin}M\times_{\rho}\mathbb{C}^{4}. (2.87)

A section ΨΓ(ΣM)\Psi\in\Gamma(\Sigma M) is called the spinor. Moreover, according to the definition of the associated vector bundle, Ψ\Psi can be expressed as

Ψ|U=[s~,ψ]\Psi\big{|}_{U}=[\widetilde{s},\psi] (2.88)

on any open set UU of MM, where s~ΓU(SpinM)\widetilde{s}\in\Gamma_{U}(\text{Spin}M) and ψ:U4\psi:U\rightarrow\mathbb{C}^{4} is a smooth vector-valued function.

On the spinor vector bundle, the Clifford multiplication can be defined as follows:

Definition 2.9.
𝔪:TMΣMΣMXΨ=[s,e][s~,ψ][s~,eψ]XΨ,\begin{split}\mathfrak{m}:T^{*}M\otimes\Sigma M&\longrightarrow\Sigma M\\ X^{*}\otimes\Psi=[s,e]\otimes[\widetilde{s},\psi]&\longmapsto[\widetilde{s},e\cdot\psi]\triangleq X^{*}\cdot\Psi,\end{split} (2.89)

where eψe\cdot\psi is exactly the Clifford multiplication defined in (2.23).

Remark 2.3.

It is not difficult to verify that the (2.89) does not depend on the choice of the equivalence classes.

Next we consider the covariant derivative on vector bundle. Let Γ(E)\Gamma(E) be a section of EE. The covariant derivative of the vector bundle EE is defined as the following map

:Γ(E)Γ(E)Γ(TM)\nabla:\Gamma(E)\longrightarrow\Gamma(E)\otimes\Gamma(T^{*}M) (2.90)

which satisfies:

(1) For any ψΓ(E)\psi\in\Gamma(E), X,YTpMX,Y\in T_{p}M

X+Yψ=Xψ+Yψ.\nabla_{X+Y}\psi=\nabla_{X}\psi+\nabla_{Y}\psi. (2.91)

For any smooth vector field ZZ and smooth function ff on MM

fZψ=fZψ,X(fψ)=X(f)ψ+fXψ.\begin{split}\nabla_{fZ}\psi&=f\nabla_{Z}\psi,\\ \nabla_{X}(f\psi)&=X(f)\psi+f\nabla_{X}\psi.\end{split} (2.92)

(2) For ψ1\psi_{1}, ψ2Γ(E)\psi_{2}\in\Gamma(E)

X(ψ1+ψ2)=Xψ1+Xψ2.\nabla_{X}(\psi_{1}+\psi_{2})=\nabla_{X}\psi_{1}+\nabla_{X}\psi_{2}. (2.93)

According to property (1), \nabla is also a map from Γ(TM)Γ(E)\Gamma(TM)\otimes\Gamma(E) to Γ(E)\Gamma(E), let

Xψ:=ψ(X).\nabla_{X}\psi:=\nabla\psi(X). (2.94)

Let ω\omega be a connection 1-form on the principal GG-fibre bundle π:PM\pi:P\rightarrow M, and E:=P×ρΣnE:=P\times_{\rho}\Sigma_{n} is the associated vector bundle. For a local section Ψ=[s,σ]\Psi=[s,\sigma] on EE and a smooth vector fieldXX, the covariant derivative is defined as

XΨ:=[s,X(σ)+ρ(ωs)(X)σ)].\nabla_{X}\Psi:=\big{[}s,X(\sigma)+\rho_{*}\big{(}\omega\circ s_{*})(X)\sigma\big{)}\big{]}. (2.95)

It is no hard to see that XΨ\nabla_{X}\Psi is well-defined (i.e. does not depend on the choice of equivalence classes) and satisfies the property (2.91), (2.92) and (2.93). Conversely, taking the cotangent bundle TMT^{*}M of the spacetime manifold MM as an example, there exists a Levi-Civita connection \nabla under the Lorentz metric gg. For any open set UMU\subset M, let {eα}α=03\{e^{\alpha}\}_{\alpha=0}^{3} be an orthonormal basis on TUT^{*}U which is compatible with the orientation and the time orientation, for any smooth vector field XX, we have

Xeα=ωβα(X)eβ,\nabla_{X}e^{\alpha}={\omega^{*}}^{\alpha}_{\beta}(X)e^{\beta}, (2.96)

then the connection 1-form ω\omega on the frame bundle SOM(1,3)\text{SO}_{M}^{*}(1,3) satisfies

ω(sX)=(0ω01(X)ω02(X)ω03(X)ω10(X)0ω12(X)ω13(X)ω20(X)ω21(X)0ω23(X)ω30(X)ω31(X)ω32(X)0)=(0<Xe0,e1><Xe0,e2><Xe0,e3><Xe0,e1>0<Xe2,e1><Xe3,e1><Xe0,e2><Xe1,e2>0<Xe3,e2><Xe0,e3><Xe1,e3><Xe2,e3>0)𝔰𝔬(1,3),\begin{split}\omega(s_{*}X)&=\begin{pmatrix}0&{\omega^{*}}_{0}^{1}(X)&{\omega^{*}}_{0}^{2}(X)&{\omega^{*}}_{0}^{3}(X)\\ {\omega^{*}}_{1}^{0}(X)&0&{\omega^{*}}_{1}^{2}(X)&{\omega^{*}}_{1}^{3}(X)\\ {\omega^{*}}_{2}^{0}(X)&{\omega^{*}}_{2}^{1}(X)&0&{\omega^{*}}_{2}^{3}(X)\\ {\omega^{*}}_{3}^{0}(X)&{\omega^{*}}_{3}^{1}(X)&{\omega^{*}}_{3}^{2}(X)&0\end{pmatrix}\\ &=\begin{pmatrix}0&\big{<}\nabla_{X}e^{0},e^{1}\big{>}&\big{<}\nabla_{X}e^{0},e^{2}\big{>}&\big{<}\nabla_{X}e^{0},e^{3}\big{>}\\ \big{<}\nabla_{X}e^{0},e^{1}\big{>}&0&\big{<}\nabla_{X}e^{2},e^{1}\big{>}&\big{<}\nabla_{X}e^{3},e^{1}\big{>}\\ \big{<}\nabla_{X}e^{0},e^{2}\big{>}&\big{<}\nabla_{X}e^{1},e^{2}\big{>}&0&\big{<}\nabla_{X}e^{3},e^{2}\big{>}\\ \big{<}\nabla_{X}e^{0},e^{3}\big{>}&\big{<}\nabla_{X}e^{1},e^{3}\big{>}&\big{<}\nabla_{X}e^{2},e^{3}\big{>}&0\\ \end{pmatrix}\in\mathfrak{so}(1,3),\end{split} (2.97)

where

s:USOM(1,3)x(e0,e1,e2,e3)|x\begin{split}s:U&\longrightarrow\text{SO}_{M}^{*}(1,3)\\ x&\longmapsto(e^{0},e^{1},e^{2},e^{3})\big{|}_{x}\end{split} (2.98)

is a section of the frame bundle. In order to calculate the spinorial Levi-Civita connection on the spinor bundle, we rewrite the above formula (2.97) as a linear combination of the 6 basis matrices of the Lie algebra 𝔰𝔬(1,3)\mathfrak{so}(1,3), i.e.

ω(sX)=<Xe0,e1>(0100100000000000)+<Xe0,e2>(0010000010000000)+<Xe0,e3>(0001000000001000)+<Xe2,e1>(0000001001000000)+<Xe3,e1>(0000000100000100)+<Xe3,e2>(0000000000010010).\begin{split}\omega(s_{*}X)&=\big{<}\nabla_{X}e^{0},e^{1}\big{>}\begin{pmatrix}0&1&0&0\\ 1&0&0&0\\ 0&0&0&0\\ 0&0&0&0\\ \end{pmatrix}+\big{<}\nabla_{X}e^{0},e^{2}\big{>}\begin{pmatrix}0&0&1&0\\ 0&0&0&0\\ 1&0&0&0\\ 0&0&0&0\\ \end{pmatrix}\\ &+\big{<}\nabla_{X}e^{0},e^{3}\big{>}\begin{pmatrix}0&0&0&1\\ 0&0&0&0\\ 0&0&0&0\\ 1&0&0&0\\ \end{pmatrix}+\big{<}\nabla_{X}e^{2},e^{1}\big{>}\begin{pmatrix}0&0&0&0\\ 0&0&1&0\\ 0&-1&0&0\\ 0&0&0&0\\ \end{pmatrix}\\ &+\big{<}\nabla_{X}e^{3},e^{1}\big{>}\begin{pmatrix}0&0&0&0\\ 0&0&0&1\\ 0&0&0&0\\ 0&-1&0&0\\ \end{pmatrix}+\big{<}\nabla_{X}e^{3},e^{2}\big{>}\begin{pmatrix}0&0&0&0\\ 0&0&0&0\\ 0&0&0&1\\ 0&0&-1&0\\ \end{pmatrix}.\end{split} (2.99)

With the above preparations, we now define the connection on the spinor vector bundle. Let UMU\subset M be a simple connected open set, then any local section ss of the frame bundle SOM(1,3)\text{SO}_{M}^{*}(1,3) can be lifted to a local section s~\widetilde{s} of the principal fibre bundle SpinM\text{Spin}M, i.e. the following diagram commutes

SpinM\textstyle{\text{Spin}M\ignorespaces\ignorespaces\ignorespaces\ignorespaces}η\scriptstyle{\eta}U\textstyle{U\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}s\scriptstyle{s}s~\scriptstyle{\widetilde{s}}SOM(1,3)\textstyle{\text{SO}_{M}^{*}(1,3)} (2.100)

In order to define the connection on ΣM\Sigma M, we only need to define a connection 1-form ω~\widetilde{\omega} on the principal fibre bundle SpinM\text{Spin}M. To do this, we define ω~\widetilde{\omega} to be the only 1-form such the diagram

T(SpinM)\textstyle{T(\text{Spin}M)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}η\scriptstyle{\eta_{*}}ω~\scriptstyle{\widetilde{\omega}}𝔰𝔭𝔦𝔫(1,3)\textstyle{\mathfrak{spin}(1,3)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ad~\scriptstyle{\widetilde{Ad}_{*}}TUTM\textstyle{TU\subset TM\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}s~\scriptstyle{\widetilde{s}_{*}}s\scriptstyle{s_{*}}T(SOM(1,3))\textstyle{T(\text{SO}_{M}^{*}(1,3))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ω\scriptstyle{\omega}𝔰𝔬(1,3)\textstyle{\mathfrak{so}(1,3)} (2.101)

commutes, where ωs\omega\circ s_{*} is exactly (2.99). Therefore, for any XTUX\in TU, let Ψα=[s~,σα]ΓU(ΣM)\Psi_{\alpha}=[\widetilde{s},\sigma_{\alpha}]\in\Gamma_{U}(\Sigma M) be a local section ({σα}α=03\{\sigma_{\alpha}\}_{\alpha=0}^{3} is an orthonormal basis of 4\mathbb{C}^{4}), by the definition of the covariant derivative on the associated vector bundle (2.95) and Proposition 2.2, we can deduce that

XΨα=[s~,ρ(ω~s~(X))σα]=[s~,ρ(Ad~1(ωs(X)))σα]=12<Xe0,e1>e0e1Ψα12<Xe0,e2>e0e2Ψα12<Xe0,e3>e0e3Ψα+12<Xe1,e2>e1e2Ψα+12<Xe1,e3>e1e3Ψα+12<Xe2,e3>e2e3Ψα=12[ω01(X)e0e1+ω02(X)e0e2+ω03(X)e0e3+ω12(X)e1e2+ω13(X)e1e3+ω23(X)e2e3]Ψα.\begin{split}\nabla_{X}\Psi_{\alpha}&=\big{[}\widetilde{s},\rho_{*}(\widetilde{\omega}\circ\widetilde{s}_{*}(X))\sigma_{\alpha}\big{]}\\ &=\big{[}\widetilde{s},\rho_{*}\big{(}\widetilde{Ad}_{*}^{-1}(\omega\circ s_{*}(X))\big{)}\sigma_{\alpha}\big{]}\\ &=-\frac{1}{2}\big{<}\nabla_{X}e^{0},e^{1}\big{>}e^{0}\cdot e^{1}\cdot\Psi_{\alpha}-\frac{1}{2}\big{<}\nabla_{X}e^{0},e^{2}\big{>}e^{0}\cdot e^{2}\cdot\Psi_{\alpha}\\ &\quad-\frac{1}{2}\big{<}\nabla_{X}e^{0},e^{3}\big{>}e^{0}\cdot e^{3}\cdot\Psi_{\alpha}+\frac{1}{2}\big{<}\nabla_{X}e^{1},e^{2}\big{>}e^{1}\cdot e^{2}\cdot\Psi_{\alpha}\\ &\quad+\frac{1}{2}\big{<}\nabla_{X}e^{1},e^{3}\big{>}e^{1}\cdot e^{3}\cdot\Psi_{\alpha}+\frac{1}{2}\big{<}\nabla_{X}e^{2},e^{3}\big{>}e^{2}\cdot e^{3}\cdot\Psi_{\alpha}\\ &=-\frac{1}{2}\Big{[}\omega_{01}(X)e^{0}\cdot e^{1}+\omega_{02}(X)e^{0}\cdot e^{2}+\omega_{03}(X)e^{0}\cdot e^{3}\\ &\quad+\omega_{12}(X)e^{1}\cdot e^{2}+\omega_{13}(X)e^{1}\cdot e^{3}+\omega_{23}(X)e^{2}\cdot e^{3}\Big{]}\cdot\Psi_{\alpha}.\end{split} (2.102)

Now we give the definition of the Dirac operator on the spinor vector bundle ΣM\Sigma M:

Definition 2.10.

Let \nabla be the connection on ΣM\Sigma M given by (2.102), the Dirac operator 𝒟\mathscr{D} is defined as

𝒟:=𝔪:Γ(ΣM)Γ(ΣM)ΨeααΨ.\begin{split}\mathscr{D}:=\mathfrak{m}\circ\nabla:\Gamma(\Sigma M)&\longrightarrow\Gamma(\Sigma M)\\ \Psi&\longmapsto e^{\alpha}\cdot\nabla_{{\alpha}}\Psi.\end{split} (2.103)
Remark 2.4.

Since the signature of the metric in Lorentzian manifold is different from the Riemannian case, the Dirac operator 𝒟\mathscr{D} is not elliptic.

In the 4-dimensional Minkowski spacetime, the Dirac operator is

𝒟=e0t+i=13eixi.\mathscr{D}=e^{0}\cdot\partial_{t}+\sum_{i=1}^{3}e^{i}\cdot\partial_{x_{i}}. (2.104)

Its square is as follows

𝒟2=(e0t+i=13eixi)2=e0e0t2+e0t(i=13eixi)+(i=13eixi)(e0t)+(i=13eixi)2=t2+i=13(e0ei+eie0)xit+(i=13eixi)2=t2+(i=13eixi)2=t2i=13xi2=.\begin{split}\mathscr{D}^{2}&=\Big{(}e^{0}\cdot\partial_{t}+\sum_{i=1}^{3}e^{i}\cdot\partial_{x_{i}}\Big{)}^{2}\\ &=e^{0}\cdot e^{0}\cdot\partial^{2}_{t}+e^{0}\cdot\partial_{t}\Big{(}\sum_{i=1}^{3}e^{i}\cdot\partial_{x_{i}}\Big{)}+\Big{(}\sum_{i=1}^{3}e^{i}\cdot\partial_{x_{i}}\Big{)}(e^{0}\cdot\partial_{t})+\Big{(}\sum_{i=1}^{3}e^{i}\cdot\partial_{x_{i}}\Big{)}^{2}\\ &=\partial^{2}_{t}+\sum_{i=1}^{3}(e^{0}\cdot e^{i}+e^{i}\cdot e^{0})\partial_{x_{i}}\partial_{t}+\Big{(}\sum_{i=1}^{3}e^{i}\cdot\partial_{x_{i}}\Big{)}^{2}\\ &=\partial^{2}_{t}+\Big{(}\sum_{i=1}^{3}e^{i}\cdot\partial_{x_{i}}\Big{)}^{2}\\ &=\partial^{2}_{t}-\sum_{i=1}^{3}\partial^{2}_{x_{i}}\\ &=\square.\end{split} (2.105)

Thus, the Dirac operator 𝒟\mathscr{D} is now the square root of the wave operator \square.

2.2. Existence and uniqueness

In this paper, the separation method proposed by Chandrasekhar [7, 8] is used to prove the nonexistence of the nontrivial time-periodic solution of the Dirac equation, that is, the original Dirac equation is separated into two first order ordinary differential equations. In this subsection, we introduce the existence and uniqueness theorem of the solution of a system of first-order ordinary differential equations, the proof of which can be found in, for example, [25], [28].

Let DD be an open domain in the Euclidean space n+1\hbox{\bb R}^{n+1}, the points on it are denoted as (t,y)(t,\textbf{y}), where yn\textbf{y}\in\hbox{\bb R}^{n}.

Definition 2.11.

A vector-valued function f=f(t,y)\textbf{f}=\textbf{f}(t,\textbf{y}) satisfies the local Lipschitz condition on DD with respect to the variable y, if for any (t0,y0)D(t_{0},\textbf{y}_{0})\in D, there exists an open neighborhood UU of (t0,y0)(t_{0},\textbf{y}_{0}) such that for any (t,y1)(t,\textbf{y}_{1}), (t,y2)UD(t,\textbf{y}_{2})\in U\cap D, there exists a positive constant LUL_{U} such that the following inequality holds

|f(t,y1)f(t,y2)|LU|y1y2|.|\textbf{f}(t,\textbf{y}_{1})-\textbf{f}(t,\textbf{y}_{2})|\leq L_{U}|\textbf{y}_{1}-\textbf{y}_{2}|. (2-104)
Remark 2.5.

In general, the Lipschitz constant LUL_{U} in (2-104) can vary depending on the choice of UU.

The existence and uniqueness theorem of the solution is as follows:

Theorem 2.2.

Let f(t,y)\textbf{f}(t,\textbf{y}) be a continuous function on the domain DD which satisfies the local Lipschitz condition with respect to the variable y. Then for any fixed (t0,y0)D(t_{0},\textbf{y}_{0})\in D, the following initial value problem of first order ordinary differential equation has a unique solution

dydt=f(t,y),y(t0)=y0.\frac{d\textbf{y}}{dt}=\textbf{f}(t,\textbf{y}),\quad\textbf{y}(t_{0})=\textbf{y}_{0}. (2.106)

Moreover, the solution can be extended to the left and right up to the boundary of the domain DD.

Remark 2.6.

If the vecter-valued function f(t,y)\textbf{f}(t,\textbf{y}) has continuous partial derivative with respect to the variable y in domain DD, i.e.

fyC(D),\frac{\partial\textbf{f}}{\partial\textbf{y}}\in C(D), (2.107)

then f satisfies the local Lipschitz condition in Definition 2.11.

3. Non-extreme Kerr-Newman-dS spacetime

In this section, we manily consider the nonexistence of time-periodic solutions of the following Dirac equation

(𝒟+ieαA(eα)+iλ)Ψ=0\big{(}\mathscr{D}+ie^{\alpha}A(e_{\alpha})+i\lambda\big{)}\Psi=0 (3.1)

in the non-extreme Kerr-Newman-dS spacetime, where λ\lambda\in\mathbb{R}, AA is the electromagnetic vector potential.

The Kerr-Newman-dS spacetime is an exact solution of the Einstein-Maxwell equation, which describes a charged rotating black hole with positive cosmological constant. Kerr-Newman-dS spacetime is the following manifold

MKNdS=t×r+×S2,M_{KNdS}=\hbox{\bb R}_{t}\times\hbox{\bb R}^{+}_{r}\times S^{2}, (3.2)

equipped with a Lorentzian metric (in the Boyer-Lindquist coordinate)

gKNdS=(12mrQ2P2Uκ2(r2+a2sin2θ))dt2+V+UE+2sin2θdφ2+UΔ+(r)dr2+UΔ+(θ)dθ2asin2θE+(2mrQ2P2U+κ2(r2+a2))(dtdφ+dφdt),\begin{split}g_{KNdS}=&-\Big{(}1-\frac{2mr-Q^{2}-P^{2}}{U}-\kappa^{2}(r^{2}+a^{2}\sin^{2}\theta)\Big{)}dt^{2}\\ &+\frac{V_{+}}{U{E_{+}}^{2}}\sin^{2}\theta d\varphi^{2}+\frac{U}{\Delta_{+}(r)}dr^{2}+\frac{U}{\Delta_{+}(\theta)}d\theta^{2}\\ &-\frac{a\sin^{2}\theta}{E_{+}}\Big{(}\frac{2mr-Q^{2}-P^{2}}{U}+\kappa^{2}(r^{2}+a^{2})\Big{)}\big{(}dt\,d\varphi+d\varphi\,dt\big{)},\end{split} (3.3)

where the constants κ>0\kappa>0, m>0m>0, and

U=r2+a2cos2θ,E+=1+κ2a2,Δ+(r)=(r2+a2)(1κ2r2)2mr+Q2+P2,Δ+(θ)=1+κ2a2cos2θ,V+=(2mrQ2P2)a2sin2θ+U(r2+a2)(1+κ2a2).\begin{split}U&=r^{2}+a^{2}\cos^{2}\theta,\\ E_{+}&=1+\kappa^{2}a^{2},\\ \Delta_{+}(r)&=(r^{2}+a^{2})(1-\kappa^{2}r^{2})-2mr+Q^{2}+P^{2},\\ \Delta_{+}(\theta)&=1+\kappa^{2}a^{2}\cos^{2}\theta,\\ V_{+}&=(2mr-Q^{2}-P^{2})a^{2}\sin^{2}\theta+U(r^{2}+a^{2})(1+\kappa^{2}a^{2}).\end{split} (3.4)

Moreover, the electromagnetic field is F=dAF=dA, and AA is the following electromagnetic 1-form

A=QrU(dtasin2θE+dφ)PcosθU(adtr2+a2E+dφ).A=-\frac{Qr}{U}\Big{(}dt-\frac{a\sin^{2}\theta}{E_{+}}d\varphi\Big{)}-\frac{P\cos\theta}{U}\Big{(}a\,dt-\frac{r^{2}+a^{2}}{E_{+}}d\varphi\Big{)}. (3.5)

Let

m±154((1κ2a2)±(1κ2a2)212κ2(a2+Q2+P2))12×(2(1κ2a2)2(1κ2a2)212κ2(a2+Q2+P2)).\begin{split}m^{\pm}\triangleq\frac{1}{\sqrt{54}}&\Bigg{(}(1-\kappa^{2}a^{2})\pm\sqrt{\big{(}1-\kappa^{2}a^{2}\big{)}^{2}-12\kappa^{2}(a^{2}+Q^{2}+P^{2})}\Bigg{)}^{\frac{1}{2}}\\ &\times\Bigg{(}2(1-\kappa^{2}a^{2})^{2}\mp\sqrt{\big{(}1-\kappa^{2}a^{2}\big{)}^{2}-12\kappa^{2}(a^{2}+Q^{2}+P^{2})}\Bigg{)}.\end{split} (3.6)

According to the discussions in [3], if the parameters κ\kappa, aa, and mm satisfy the following constraints, i.e.

κ2a2743,m<m<m+,\kappa^{2}a^{2}\leq 7-4\sqrt{3},\;m^{-}<m<m^{+}, (3.7)

then the polynomial Δ+(r)\Delta_{+}(r) of order 4 with respect to rr has exactly 4 different real roots, 3 positive 0<rc<r<r+0<r_{c}<r_{-}<r_{+} and 1 negative rn=(rc+r+r+)r_{n}=-(r_{c}+r_{-}+r_{+}). At this time, we call (MKNdS,gKNdS)\big{(}M_{KNdS},g_{KNdS}\big{)} the non-extreme Kerr-Newman-dS spacetime. The hypersurfaces corresponding to the 3 roots {r=rc}\{r=r_{c}\}, {r=r}\{r=r_{-}\} and {r=r+}\{r=r_{+}\} are called the Cauchy horizon, the event horizon and the cosmological horizon, respectively. In particular, if m=mm=m^{-} then rc=rr_{c}=r_{-}, i.e. the Cauchy horizon coincides with the event horizon, at this point we call (MKNdS,gKNdS)\big{(}M_{KNdS},g_{KNdS}\big{)} the extreme Kerr-Newman-dS spacetime. In this section, we only consider the non-extreme case.

Remark 3.1.

r=rcr=r_{c} and r=r±r=r_{\pm} are just the coordinate singularities of the metric gKNdSg_{KNdS}, and the corresponding hypersurfaces are regular lightlike hypersurfaces [1].

For convenience, we rerepresent the Kerr-Newman-dS metric in the following form

gKNdS=Δ+(r)U(dtasin2θE+dφ)2+UΔ+(r)dr2+UΔ+(θ)dθ2+Δ+(θ)sin2θU(adtr2+a2E+dφ)2.\begin{split}g_{KNdS}=&-\frac{\Delta_{+}(r)}{U}\Big{(}dt-\frac{a\sin^{2}\theta}{E_{+}}d\varphi\Big{)}^{2}+\frac{U}{\Delta_{+}(r)}dr^{2}+\frac{U}{\Delta_{+}(\theta)}d\theta^{2}\\ &\qquad\qquad\qquad+\frac{\Delta_{+}(\theta)\sin^{2}\theta}{U}\Big{(}a\,dt-\frac{r^{2}+a^{2}}{E_{+}}d\varphi\Big{)}^{2}.\end{split} (3.8)

We require that the solution Ψ\Psi of the Dirac equation (3.1) is of the form

Ψ=S+1Φ,\Psi={S_{+}}^{-1}\Phi, (3.9)

where

Φ=ei(ωt+(k+12)φ)(X(r)Y(θ)X+(r)Y+(θ)X+(r)Y(θ)X(r)Y+(θ)),\Phi=e^{-i\left(\omega t+(k+\frac{1}{2})\varphi\right)}\begin{pmatrix}X_{-}(r)Y_{-}(\theta)\\ X_{+}(r)Y_{+}(\theta)\\ X_{+}(r)Y_{-}(\theta)\\ X_{-}(r)Y_{+}(\theta)\\ \end{pmatrix}, (3.10)

kk\in\mathbb{Z} and S+S_{+} is the following diagonal matrix

S+=|Δ+(r)|14((r+iacosθ)120000(r+iacosθ)120000(riacosθ)120000(riacosθ)12).S_{+}=\left|\Delta_{+}(r)\right|^{\frac{1}{4}}\begin{pmatrix}(r+ia\cos\theta)^{\frac{1}{2}}&0&0&0\\ 0&(r+ia\cos\theta)^{\frac{1}{2}}&0&0\\ 0&0&(r-ia\cos\theta)^{\frac{1}{2}}&0\\ 0&0&0&(r-ia\cos\theta)^{\frac{1}{2}}\\ \end{pmatrix}. (3.11)

We can see that S+S_{+} vanishes on the event horizon {r=r}\{r=r_{-}\}. By the definition in [10, 11], a wave function Ψ\Psi is called time-periodic with period TT, if there exists a real number Ω\Omega such that

Ψ(t+T,r,θ,φ)=eiΩTΨ(t,r,θ,φ).\Psi(t+T,r,\theta,\varphi)=e^{-i\Omega T}\Psi(t,r,\theta,\varphi). (3.12)

Hence the Ψ\Psi in (3.9) satisfies the above definition.

3.1. Spinorial联络

In this subsection, we calculate the spinorial connection on the spinor bundle ΣM\Sigma M in Kerr-Newman-dS spacetime when Δ+(r)>0\Delta_{+}(r)>0.

Denote the frame of the Kerr-Newman-dS metric

e0=r2+a2UΔ+(r)(t+aE+r2+a2φ),e1=Δ+(r)Ur,e2=Δ+(θ)Uθ,e3=1UΔ+(θ)(asinθt+E+sinθφ),\begin{split}e_{0}&=\frac{r^{2}+a^{2}}{\sqrt{U\Delta_{+}(r)}}\left(\partial_{t}+\frac{aE_{+}}{r^{2}+a^{2}}\partial_{\varphi}\right),\\ e_{1}&=\sqrt{\frac{\Delta_{+}(r)}{U}}\partial_{r},\\ e_{2}&=\sqrt{\frac{\Delta_{+}(\theta)}{U}}\partial_{\theta},\\ e_{3}&=\frac{-1}{\sqrt{U\Delta_{+}(\theta)}}\left(a\sin\theta\partial_{t}+\frac{E_{+}}{\sin\theta}\partial_{\varphi}\right),\end{split} (3.13)

and the corresponding 1-form

e0=Δ+(r)U(dtasin2θE+dφ),e1=UΔ+(r)dr,e2=UΔ+(θ)dθ,e3=Δ+(θ)Usinθ(adtr2+a2E+dφ)\begin{split}e^{0}&=\sqrt{\frac{\Delta_{+}(r)}{U}}\left(dt-\frac{a\sin^{2}\theta}{E_{+}}d\varphi\right),\\ e^{1}&=\sqrt{\frac{U}{\Delta_{+}(r)}}dr,\\ e^{2}&=\sqrt{\frac{U}{\Delta_{+}(\theta)}}d\theta,\\ e^{3}&=\sqrt{\frac{\Delta_{+}(\theta)}{U}}\sin\theta\left(a\,dt-\frac{r^{2}+a^{2}}{E_{+}}d\varphi\right)\end{split} (3.14)

which satisfy

eα(eβ)=δβα.e^{\alpha}\left(e_{\beta}\right)=\delta^{\alpha}_{\beta}. (3.15)

Therefore, the metric gKNdSg_{KNdS} can be expressed as

gKNdS=e0e0+e1e1+e2e2+e3e3.g_{KNdS}=-e^{0}\otimes e^{0}+e^{1}\otimes e^{1}+e^{2}\otimes e^{2}+e^{3}\otimes e^{3}. (3.16)

By Cartan’s structure equations [21]

de0=ω10e1ω20e2ω30e3,de1=ω01e0ω21e2ω31e3,de2=ω02e0ω12e1ω32e3,de3=ω03e0ω13e1ω23e2,\begin{split}de^{0}&=-\omega_{1}^{0}\wedge e^{1}-\omega_{2}^{0}\wedge e^{2}-\omega_{3}^{0}\wedge e^{3},\\ de^{1}&=-\omega_{0}^{1}\wedge e^{0}-\omega_{2}^{1}\wedge e^{2}-\omega_{3}^{1}\wedge e^{3},\\ de^{2}&=-\omega_{0}^{2}\wedge e^{0}-\omega_{1}^{2}\wedge e^{1}-\omega_{3}^{2}\wedge e^{3},\\ de^{3}&=-\omega_{0}^{3}\wedge e^{0}-\omega_{1}^{3}\wedge e^{1}-\omega_{2}^{3}\wedge e^{2},\\ \end{split} (3.17)

the connection 1-forms are as follows:

ω10=C100e012C103e3,ω20=C200e0+12C230e3,ω30=12C103e112C230e2,ω21=C121e1C122e2,ω31=12C103e0C133e3,ω32=12C230e0C233e3,\begin{split}\omega_{1}^{0}&=C^{0}_{10}e^{0}-\frac{1}{2}C^{3}_{10}e^{3},\quad\omega_{2}^{0}=C_{20}^{0}e^{0}+\frac{1}{2}C^{0}_{23}e^{3},\\ \omega_{3}^{0}&=-\frac{1}{2}C^{3}_{10}e^{1}-\frac{1}{2}C^{0}_{23}e^{2},\quad\omega_{2}^{1}=-C^{1}_{12}e^{1}-C^{2}_{12}e^{2},\\ \omega_{3}^{1}&=-\frac{1}{2}C^{3}_{10}e^{0}-C^{3}_{13}e^{3},\quad\omega_{3}^{2}=\frac{1}{2}C^{0}_{23}e^{0}-C^{3}_{23}e^{3},\end{split} (3.18)

and

ω10=ω01,ω20=ω02,ω30=ω03,ω21=ω12,ω31=ω13,ω32=ω23,\begin{split}\omega_{1}^{0}=-\omega_{01},&\quad\omega_{2}^{0}=-\omega_{02},\\ \omega_{3}^{0}=-\omega_{03},&\quad\omega_{2}^{1}=\omega_{12},\\ \omega_{3}^{1}=\omega_{13},&\quad\omega_{3}^{2}=\omega_{23},\end{split} (3.19)

where

C100=rΔ+(r)U,C200=Δ+(θ)θ1U,C121=Δ+(θ)UθU,C122=Δ+(r)UrU,C103=2arΔ+(θ)U32sinθ,C230=2aΔ+(r)U32cosθ,C133=Δ+(r)r1U,C233=1sinθθ(Δ+(θ)Usinθ).\begin{split}C_{10}^{0}&=\partial_{r}\sqrt{\frac{\Delta_{+}(r)}{U}},\quad C^{0}_{20}=-\sqrt{\Delta_{+}(\theta)}\partial_{\theta}\frac{1}{\sqrt{U}},\\ C_{12}^{1}&=-\frac{\sqrt{\Delta_{+}(\theta)}}{U}\partial_{\theta}\sqrt{U},\quad C^{2}_{12}=\frac{\sqrt{\Delta_{+}(r)}}{U}\partial_{r}\sqrt{U},\\ C_{10}^{3}&=-2ar\sqrt{\Delta_{+}(\theta)}U^{-\frac{3}{2}}\sin\theta,\quad C^{0}_{23}=2a\sqrt{\Delta_{+}(r)}U^{-\frac{3}{2}}\cos\theta,\\ C_{13}^{3}&=-\sqrt{\Delta_{+}(r)}\partial_{r}\frac{1}{\sqrt{U}},\quad C^{3}_{23}=\frac{1}{\sin\theta}\partial_{\theta}\left(\sqrt{\frac{\Delta_{+}(\theta)}{U}}\sin\theta\right).\end{split} (3.20)

According to (2.102), when Δ+(r)>0\Delta_{+}(r)>0, the spinorial connections take the following form:

e0Ψ=e0(Ψ)12ω01(e0)e0e1Ψ12ω02(e0)e0e2Ψ12ω13(e0)e1e3Ψ12ω23(e0)e2e3Ψ,e1Ψ=e1(Ψ)12ω03(e1)e0e3Ψ12ω12(e1)e1e2Ψ,e2Ψ=e2(Ψ)12ω03(e2)e0e3Ψ12ω12(e2)e1e2Ψ,e3Ψ=e3(Ψ)12ω01(e3)e0e1Ψ12ω02(e3)e0e2Ψ12ω13(e3)e1e3Ψ12ω23(e3)e2e3Ψ.\begin{split}\nabla_{e_{0}}\Psi&=e_{0}\left(\Psi\right)-\frac{1}{2}\omega_{01}(e_{0})e^{0}\cdot e^{1}\cdot\Psi-\frac{1}{2}\omega_{02}(e_{0})e^{0}\cdot e^{2}\cdot\Psi\\ &\quad\qquad\;\;\,-\frac{1}{2}\omega_{13}(e_{0})e^{1}\cdot e^{3}\cdot\Psi-\frac{1}{2}\omega_{23}(e_{0})e^{2}\cdot e^{3}\cdot\Psi,\\ \nabla_{e_{1}}\Psi&=e_{1}\left(\Psi\right)-\frac{1}{2}\omega_{03}(e_{1})e^{0}\cdot e^{3}\cdot\Psi-\frac{1}{2}\omega_{12}(e_{1})e^{1}\cdot e^{2}\cdot\Psi,\\ \nabla_{e_{2}}\Psi&=e_{2}\left(\Psi\right)-\frac{1}{2}\omega_{03}(e_{2})e^{0}\cdot e^{3}\cdot\Psi-\frac{1}{2}\omega_{12}(e_{2})e^{1}\cdot e^{2}\cdot\Psi,\\ \nabla_{e_{3}}\Psi&=e_{3}\left(\Psi\right)-\frac{1}{2}\omega_{01}(e_{3})e^{0}\cdot e^{1}\cdot\Psi-\frac{1}{2}\omega_{02}(e_{3})e^{0}\cdot e^{2}\cdot\Psi\\ &\quad\qquad\;\;\,-\frac{1}{2}\omega_{13}(e_{3})e^{1}\cdot e^{3}\cdot\Psi-\frac{1}{2}\omega_{23}(e_{3})e^{2}\cdot e^{3}\cdot\Psi.\end{split} (3.21)

We fix the following Clifford representation:

e0(0010000110000100),e1(0010000110000100),e2(0001001001001000),e3(000i00i00i00i000).\begin{split}e^{0}\longmapsto\begin{pmatrix}0&0&-1&0\\ 0&0&0&-1\\ -1&0&0&0\\ 0&-1&0&0\\ \end{pmatrix},&\qquad e^{1}\longmapsto\begin{pmatrix}0&0&-1&0\\ 0&0&0&1\\ 1&0&0&0\\ 0&-1&0&0\\ \end{pmatrix},\\ e^{2}\longmapsto\begin{pmatrix}0&0&0&1\\ 0&0&1&0\\ 0&-1&0&0\\ -1&0&0&0\\ \end{pmatrix},&\qquad e^{3}\longmapsto\begin{pmatrix}0&0&0&i\\ 0&0&-i&0\\ 0&-i&0&0\\ i&0&0&0\\ \end{pmatrix}.\end{split} (3.22)

then for α=0,1,2,3\alpha=0,1,2,3, we have

eαΨ=eα(Ψ)+EαΨ,\nabla_{e_{\alpha}}\Psi=e_{\alpha}\left(\Psi\right)+E_{\alpha}\cdot\Psi, (3.23)

where

E0=12(C100+i2C230C200i2C10300C200i2C103C100i2C2300000C100+i2C230C200i2C10300C200i2C103C100i2C230),E_{0}=-\frac{1}{2}\begin{pmatrix}C^{0}_{10}+\frac{i}{2}C^{0}_{23}&-C^{0}_{20}-\frac{i}{2}C^{3}_{10}&0&0\\ -C^{0}_{20}-\frac{i}{2}C^{3}_{10}&-C^{0}_{10}-\frac{i}{2}C^{0}_{23}&0&0\\ 0&0&-C^{0}_{10}+\frac{i}{2}C^{0}_{23}&C^{0}_{20}-\frac{i}{2}C^{3}_{10}\\ 0&0&C^{0}_{20}-\frac{i}{2}C^{3}_{10}&C^{0}_{10}-\frac{i}{2}C^{0}_{23}\\ \end{pmatrix}, (3.24)
E1=12(0C121+i2C10300C121i2C103000000C121i2C10300C121+i2C1030),E_{1}=-\frac{1}{2}\begin{pmatrix}0&-C^{1}_{12}+\frac{i}{2}C^{3}_{10}&0&0\\ C^{1}_{12}-\frac{i}{2}C^{3}_{10}&0&0&0\\ 0&0&0&-C^{1}_{12}-\frac{i}{2}C^{3}_{10}\\ 0&0&C^{1}_{12}+\frac{i}{2}C^{3}_{10}&0\\ \end{pmatrix}, (3.25)
E2=12(0C122+i2C23000C122i2C230000000C122i2C23000C122+i2C2300),E_{2}=-\frac{1}{2}\begin{pmatrix}0&-C^{2}_{12}+\frac{i}{2}C^{0}_{23}&0&0\\ C^{2}_{12}-\frac{i}{2}C^{0}_{23}&0&0&0\\ 0&0&0&-C^{2}_{12}-\frac{i}{2}C^{0}_{23}\\ 0&0&C^{2}_{12}+\frac{i}{2}C^{0}_{23}&0\\ \end{pmatrix}, (3.26)
E3=12(12C103iC23312C230iC1330012C230iC13312C103+iC233000012C103iC23312C230iC1330012C230iC13312C103+iC233).E_{3}=-\frac{1}{2}\begin{pmatrix}-\frac{1}{2}C^{3}_{10}-iC^{3}_{23}&-\frac{1}{2}C^{0}_{23}-iC^{3}_{13}&0&0\\ -\frac{1}{2}C^{0}_{23}-iC^{3}_{13}&\frac{1}{2}C^{3}_{10}+iC^{3}_{23}&0&0\\ 0&0&\frac{1}{2}C^{3}_{10}-iC^{3}_{23}&\frac{1}{2}C^{0}_{23}-iC^{3}_{13}\\ 0&0&\frac{1}{2}C^{0}_{23}-iC^{3}_{13}&-\frac{1}{2}C^{3}_{10}+iC^{3}_{23}\\ \end{pmatrix}. (3.27)

3.2. Nonexistence

With the above preparations, we now separate the variables for the Dirac equation (3.1) when Δ+(r)>0\Delta_{+}(r)>0. Let

S0((r+iacosθ)120000(r+iacosθ)120000(riacosθ)120000(riacosθ)12),S_{0}\triangleq\begin{pmatrix}(r+ia\cos\theta)^{-\frac{1}{2}}&0&0&0\\ 0&(r+ia\cos\theta)^{-\frac{1}{2}}&0&0\\ 0&0&(r-ia\cos\theta)^{-\frac{1}{2}}&0\\ 0&0&0&(r-ia\cos\theta)^{-\frac{1}{2}}\\ \end{pmatrix}, (3.28)
ϕ(X(r)Y(θ)X+(r)Y+(θ)X+(r)Y(θ)X(r)Y+(θ)),\phi\triangleq\begin{pmatrix}X_{-}(r)Y_{-}(\theta)\\ X_{+}(r)Y_{+}(\theta)\\ X_{+}(r)Y_{-}(\theta)\\ X_{-}(r)Y_{+}(\theta)\end{pmatrix}, (3.29)
E~012(00C100+i2C230C200i2C10300C20i2C103C100i2C230C100+i2C230C200i2C10300C200i2C103C100i2C23000),\widetilde{E}_{0}\triangleq-\frac{1}{2}\begin{pmatrix}0&0&-C_{10}^{0}+\frac{i}{2}C_{23}^{0}&C_{20}^{0}-\frac{i}{2}C_{10}^{3}\\ 0&0&C_{20}-\frac{i}{2}C_{10}^{3}&C_{10}^{0}-\frac{i}{2}C_{23}^{0}\\ C_{10}^{0}+\frac{i}{2}C_{23}^{0}&-C_{20}^{0}-\frac{i}{2}C_{10}^{3}&0&0\\ -C_{20}^{0}-\frac{i}{2}C_{10}^{3}&-C_{10}^{0}-\frac{i}{2}C_{23}^{0}&0&0\end{pmatrix}, (3.30)
E~112(000C121+i2C10300C121+i2C10300C121+i2C10300C121+i2C103000),\widetilde{E}_{1}\triangleq-\frac{1}{2}\begin{pmatrix}0&0&0&C_{12}^{1}+\frac{i}{2}C_{10}^{3}\\ 0&0&C_{12}^{1}+\frac{i}{2}C_{10}^{3}&0\\ 0&-C_{12}^{1}+\frac{i}{2}C_{10}^{3}&0&0\\ -C_{12}^{1}+\frac{i}{2}C_{10}^{3}&0&0&0\\ \end{pmatrix}, (3.31)
E~212(00C122+i2C2300000C122i2C230C122+i2C2300000C122i2C23000),\widetilde{E}_{2}\triangleq-\frac{1}{2}\begin{pmatrix}0&0&C_{12}^{2}+\frac{i}{2}C_{23}^{0}&0\\ 0&0&0&-C_{12}^{2}-\frac{i}{2}C_{23}^{0}\\ -C_{12}^{2}+\frac{i}{2}C_{23}^{0}&0&0&0\\ 0&C_{12}^{2}-\frac{i}{2}C_{23}^{0}&0&0\end{pmatrix}, (3.32)
E~312(00i2C230+C133i2C103C23300i2C103C233i2C230C133i2C230C133i2C103+C23300i2C103+C233i2C230+C13300).\widetilde{E}_{3}\triangleq-\frac{1}{2}\begin{pmatrix}0&0&\frac{i}{2}C_{23}^{0}+C_{13}^{3}&-\frac{i}{2}C_{10}^{3}-C_{23}^{3}\\ 0&0&-\frac{i}{2}C_{10}^{3}-C_{23}^{3}&-\frac{i}{2}C_{23}^{0}-C_{13}^{3}\\ \frac{i}{2}C_{23}^{0}-C_{13}^{3}&-\frac{i}{2}C_{10}^{3}+C_{23}^{3}&0&0\\ -\frac{i}{2}C_{10}^{3}+C_{23}^{3}&-\frac{i}{2}C_{23}^{0}+C_{13}^{3}&0&0\\ \end{pmatrix}. (3.33)

Then the Dirac equation (3.1) is equivalent to the following equation

ϕ=iλS0ϕ,\mathscr{L}\phi=-i\lambda S_{0}\phi, (3.34)

where the operator \mathscr{L} is defined as

:=e0r2+a2uΔ+(r)(iω+aE+r2+a2(k+12)i)S0+e1Δ+(r)U(14Δ+(r)1r(Δ+(r))S0+S0r+rS0)+e2Δ+(θ)U(θS0+S0θ)+e31UΔ+(θ)(iaωsinθS0+E+sinθ(k+12)iS0)+(E~0+j=13E~j)S0e0QriUΔ+(r)S0e3iUΔ+(θ)PcotθS0.\begin{split}\mathscr{L}&:=-e^{0}\cdot\frac{r^{2}+a^{2}}{\sqrt{u\Delta_{+}(r)}}\left(i\omega+\frac{aE_{+}}{r^{2}+a^{2}}(k+\frac{1}{2})i\right)S_{0}\\ &\quad+e^{1}\cdot\sqrt{\frac{\Delta_{+}(r)}{U}}\left(-\frac{1}{4}\Delta_{+}(r)^{-1}\partial_{r}\big{(}\Delta_{+}(r)\big{)}S_{0}+S_{0}\partial_{r}+\partial_{r}{S_{0}}\right)\\ &\quad+e^{2}\cdot\sqrt{\frac{\Delta_{+}(\theta)}{U}}\left(\partial_{\theta}S_{0}+S_{0}\partial_{\theta}\right)\\ &\quad+e^{3}\cdot\frac{1}{\sqrt{U\Delta_{+}(\theta)}}\left(ia\omega\sin\theta S_{0}+\frac{E_{+}}{\sin\theta}(k+\frac{1}{2})iS_{0}\right)\\ &\quad+\left(-\widetilde{E}_{0}+\sum_{j=1}^{3}\widetilde{E}_{j}\right)S_{0}-e^{0}\cdot\frac{Qri}{\sqrt{U\Delta_{+}(r)}}S_{0}-e^{3}\cdot\frac{i}{\sqrt{U\Delta_{+}(\theta)}}P\cot\theta S_{0}.\end{split} (3.35)

Substituting (3.22) and E~α\widetilde{E}_{\alpha} into (3.34), we can deduce that ϕ\phi satisfies the following equation

(iλ(r+iacosθ)120D13L140iλ(r+iacosθ)12L23D24D31L32iλ(riacosθ)120L41D420iλ(riacosθ)12)ϕ=0,\begin{split}&\begin{pmatrix}i\lambda(r+ia\cos\theta)^{-\frac{1}{2}}&0&D_{13}&L_{14}\\ 0&i\lambda(r+ia\cos\theta)^{-\frac{1}{2}}&L_{23}&D_{24}\\ D_{31}&L_{32}&i\lambda(r-ia\cos\theta)^{-\frac{1}{2}}&0\\ L_{41}&D_{42}&0&i\lambda(r-ia\cos\theta)^{-\frac{1}{2}}\\ \end{pmatrix}\phi\\ &=0,\end{split} (3.36)

where

D13=Δ+(r)U(riacosθ)12[r+iΔ+(r)(ω(r2+a2)+(k+12)E+a+Qr)],D24=Δ+(r)U(riacosθ)12[r+iΔ+(r)(ω(r2+a2)+(k+12)E+a+Qr)],D31=Δ+(r)U(r+iacosθ)12[r+iΔ+(r)(ω(r2+a2)+(k+12)E+a+Qr)],D42=Δ+(r)U(r+iacosθ)12[r+iΔ+(r)(ω(r2+a2)+(k+12)E+a+Qr)],L14=Δ+(θ)U(riacosθ)12[θ1Δ+(θ)(aωsinθ+E+sinθ(k+12)Pcotθ)+12(cotθκ2a2sinθcosθΔ+(θ))],L23=Δ+(θ)U(riacosθ)12[θ+1Δ+(θ)(aωsinθ+E+sinθ(k+12)Pcotθ)+12(cotθκ2a2sinθcosθΔ+(θ))],L32=Δ+(θ)U(r+iacosθ)12[θ+1Δ+(θ)(aωsinθ+E+sinθ(k+12)Pcotθ)12(cotθκ2a2sinθcosθΔ+(θ))],L41=Δ+(θ)U(r+iacosθ)12[θ1Δ+(θ)(aωsinθ+E+sinθ(k+12)Pcotθ)12(cotθκ2a2sinθcosθΔ+(θ))].\begin{split}D_{13}&=\sqrt{\frac{\Delta_{+}(r)}{U}}(r-ia\cos\theta)^{-\frac{1}{2}}\left[-\partial_{r}+\frac{i}{\Delta_{+}(r)}\left(\omega(r^{2}+a^{2})+(k+\frac{1}{2})E_{+}a+Qr\right)\right],\\ D_{24}&=\sqrt{\frac{\Delta_{+}(r)}{U}}(r-ia\cos\theta)^{-\frac{1}{2}}\left[\partial_{r}+\frac{i}{\Delta_{+}(r)}\left(\omega(r^{2}+a^{2})+(k+\frac{1}{2})E_{+}a+Qr\right)\right],\\ D_{31}&=\sqrt{\frac{\Delta_{+}(r)}{U}}(r+ia\cos\theta)^{-\frac{1}{2}}\left[\partial_{r}+\frac{i}{\Delta_{+}(r)}\left(\omega(r^{2}+a^{2})+(k+\frac{1}{2})E_{+}a+Qr\right)\right],\\ D_{42}&=\sqrt{\frac{\Delta_{+}(r)}{U}}(r+ia\cos\theta)^{-\frac{1}{2}}\left[-\partial_{r}+\frac{i}{\Delta_{+}(r)}\left(\omega(r^{2}+a^{2})+(k+\frac{1}{2})E_{+}a+Qr\right)\right],\\ L_{14}&=\sqrt{\frac{\Delta_{+}(\theta)}{U}}(r-ia\cos\theta)^{-\frac{1}{2}}\Bigg{[}\partial_{\theta}-\frac{1}{\Delta_{+}(\theta)}\left(a\omega\sin\theta+\frac{E_{+}}{\sin\theta}(k+\frac{1}{2})-P\cot\theta\right)\\ &\qquad\qquad\qquad\qquad\qquad\qquad\qquad+\frac{1}{2}\left(\cot\theta-\frac{\kappa^{2}a^{2}\sin\theta\cos\theta}{\Delta_{+}(\theta)}\right)\Bigg{]},\\ L_{23}&=\sqrt{\frac{\Delta_{+}(\theta)}{U}}(r-ia\cos\theta)^{-\frac{1}{2}}\Bigg{[}\partial_{\theta}+\frac{1}{\Delta_{+}(\theta)}\left(a\omega\sin\theta+\frac{E_{+}}{\sin\theta}(k+\frac{1}{2})-P\cot\theta\right)\\ &\qquad\qquad\qquad\qquad\qquad\qquad\qquad+\frac{1}{2}\left(\cot\theta-\frac{\kappa^{2}a^{2}\sin\theta\cos\theta}{\Delta_{+}(\theta)}\right)\Bigg{]},\\ L_{32}&=\sqrt{\frac{\Delta_{+}(\theta)}{U}}(r+ia\cos\theta)^{-\frac{1}{2}}\Bigg{[}-\partial_{\theta}+\frac{1}{\Delta_{+}(\theta)}\left(a\omega\sin\theta+\frac{E_{+}}{\sin\theta}(k+\frac{1}{2})-P\cot\theta\right)\\ &\qquad\qquad\qquad\qquad\qquad\qquad\qquad-\frac{1}{2}\left(\cot\theta-\frac{\kappa^{2}a^{2}\sin\theta\cos\theta}{\Delta_{+}(\theta)}\right)\Bigg{]},\\ L_{41}&=\sqrt{\frac{\Delta_{+}(\theta)}{U}}(r+ia\cos\theta)^{-\frac{1}{2}}\Bigg{[}-\partial_{\theta}-\frac{1}{\Delta_{+}(\theta)}\left(a\omega\sin\theta+\frac{E_{+}}{\sin\theta}(k+\frac{1}{2})-P\cot\theta\right)\\ &\qquad\qquad\qquad\qquad\qquad\qquad\qquad-\frac{1}{2}\left(\cot\theta-\frac{\kappa^{2}a^{2}\sin\theta\cos\theta}{\Delta_{+}(\theta)}\right)\Bigg{]}.\end{split} (3.37)

Let

Dr±=riΔ+(r)(ω(r2+a2)+Qr+(k+12)E+a),D_{r\pm}=\partial_{r}\mp\frac{i}{\Delta_{+}(r)}\left(\omega(r^{2}+a^{2})+Qr+\big{(}k+\frac{1}{2}\big{)}E_{+}a\right), (3.38)
Lθ±=θ1Δ+(θ)(ωasinθ+(k+12)E+sinθPcotθ)+12(cotθκ2a2sinθcosθΔ+(θ)).\begin{split}L_{\theta\pm}=\partial_{\theta}\mp\frac{1}{\Delta_{+}(\theta)}\Bigg{(}\omega a\sin\theta&+\frac{(k+\frac{1}{2})E_{+}}{\sin\theta}-P\cot\theta\Bigg{)}\\ &+\frac{1}{2}\left(\cot\theta-\frac{\kappa^{2}a^{2}\sin\theta\cos\theta}{\Delta_{+}(\theta)}\right).\end{split} (3.39)

Then by equation (3.36) we know that ϕ\phi satisfies

(iλ(riacosθ)0Δ+(r)Dr+Δ+(θ)Lθ+0iλ(riacosθ)Δ+(θ)LθΔ+(r)DrΔ+(r)DrΔ+(θ)Lθ+iλ(r+iacosθ)0Δ+(θ)LθΔ+(r)Dr+0iλ(r+iacosθ))ϕ=0.\begin{pmatrix}i\lambda(r-ia\cos\theta)&0&-\sqrt{\Delta_{+}(r)}D_{r+}&\sqrt{\Delta_{+}(\theta)}L_{\theta+}\\ 0&i\lambda(r-ia\cos\theta)&\sqrt{\Delta_{+}(\theta)}L_{\theta-}&\sqrt{\Delta_{+}(r)}D_{r-}\\ \sqrt{\Delta_{+}(r)}D_{r-}&-\sqrt{\Delta_{+}(\theta)}L_{\theta+}&i\lambda(r+ia\cos\theta)&0\\ -\sqrt{\Delta_{+}(\theta)}L_{\theta-}&-\sqrt{\Delta_{+}(r)}D_{r+}&0&i\lambda(r+ia\cos\theta)\end{pmatrix}\phi=0. (3.40)

By moving the angular term θ\theta from the above equation to the right hand side, we can separate the Dirac equation (3.1) for Δ+(r)>0\Delta_{+}(r)>0 into the following equation:

Dϕ=Lϕ,D\phi=L\phi, (3.41)

where the matrix operators DD and LL are

D=(iλr0Δ+(r)Dr+00iλr0Δ+(r)DrΔ+(r)Dr0iλr00Δ+(r)Dr+0iλr),D=\begin{pmatrix}-i\lambda r&0&\sqrt{\Delta_{+}(r)}D_{r+}&0\\ 0&i\lambda r&0&\sqrt{\Delta_{+}(r)}D_{r-}\\ \sqrt{\Delta_{+}(r)}D_{r-}&0&i\lambda r&0\\ 0&\sqrt{\Delta_{+}(r)}D_{r+}&0&-i\lambda r\end{pmatrix}, (3.42)

and

L=(aλcosθ00Δ+(θ)Lθ+0aλcosθΔ+(θ)Lθ00Δ+(θ)Lθ+aλcosθ0Δ+(θ)Lθ00aλcosθ),L=\begin{pmatrix}a\lambda\cos\theta&0&0&\sqrt{\Delta_{+}(\theta)}L_{\theta+}\\ 0&-a\lambda\cos\theta&-\sqrt{\Delta_{+}(\theta)}L_{\theta-}&0\\ 0&\sqrt{\Delta_{+}(\theta)}L_{\theta+}&a\lambda\cos\theta&0\\ -\sqrt{\Delta_{+}(\theta)}L_{\theta-}&0&0&-a\lambda\cos\theta\end{pmatrix}, (3.43)

respectively.

Next, we discuss how to obtain the radial equations from (3.41).

Since we are considering the nontrivial solution, there exists θ0(0,π)\theta_{0}\in(0,\pi), such that Y+(θ0)Y_{+}(\theta_{0}) or Y(θ0)Y_{-}(\theta_{0}) is non-zero. Without loss of generality, we assume that Y(θ0)0Y_{-}(\theta_{0})\neq 0. According to (3.41), we have

iλrX+Δ+(r)Dr+X+=(aλcosθ0Y(θ0)+Δ+(θ0)(Lθ+Y+)|θ0)Y(θ0)X,Δ+(r)DrX+iλrX+=(aλcosθ0Y(θ0)+Δ+(θ0)(Lθ+Y+)|θ0)Y(θ0)X+.\begin{split}-i\lambda rX_{-}+\sqrt{\Delta_{+}(r)}D_{r+}X_{+}&=\frac{\left(a\lambda\cos\theta_{0}Y_{-}(\theta_{0})+\sqrt{\Delta_{+}(\theta_{0})}\Big{(}L_{\theta_{+}}Y_{+}\Big{)}\Big{|}_{\theta_{0}}\right)}{Y_{-}(\theta_{0})}X_{-},\\ \sqrt{\Delta_{+}(r)}D_{r-}X_{-}+i\lambda rX_{+}&=\frac{\left(a\lambda\cos\theta_{0}Y_{-}(\theta_{0})+\sqrt{\Delta_{+}(\theta_{0})}\Big{(}L_{\theta_{+}}Y_{+}\Big{)}\Big{|}_{\theta_{0}}\right)}{Y_{-}(\theta_{0})}X_{+}.\end{split} (3.44)

Let

ϵ+(aλcosθ0Y(θ0)+Δ+(θ0)(Lθ+Y+)|θ0)Y(θ0).\epsilon_{+}\triangleq\frac{\left(a\lambda\cos\theta_{0}Y_{-}(\theta_{0})+\sqrt{\Delta_{+}(\theta_{0})}\Big{(}L_{\theta_{+}}Y_{+}\Big{)}\Big{|}_{\theta_{0}}\right)}{Y_{-}(\theta_{0})}\in\mathbb{C}. (3.45)

Hence, substituting (3.44) into (3.41), it follows that

Dϕ=Lϕ=ϵ+ϕ.D\phi=L\phi=\epsilon_{+}\phi. (3.46)

The following lemma states that the constant ϵ+\epsilon_{+} in (3.45) is actually a real number.

Lemma 3.1.

ϵ+\epsilon_{+}\in\hbox{\bb R}.

Proof.

Since we are considering the nontrivial solution, then there exists r0>0r_{0}>0 such that X(r0)X_{-}(r_{0}) or X+(r0)X_{+}(r_{0}) is non-zero. Without loss of generality, we assume that X(r0)0X_{-}(r_{0})\neq 0.

Since Lϕ=ϵ+ϕL\phi=\epsilon_{+}\phi, then

aλcosθX(r)Y(θ)+Δ+(θ)Lθ+Y+(θ)X(r)=ϵ+X(r)Y(θ),Δ+(θ)LθY(θ)X(r)aλcosθX(r)Y+=ϵ+X(r)Y+(θ).\begin{split}a\lambda\cos\theta X_{-}(r)Y_{-}(\theta)+\sqrt{\Delta_{+}(\theta)}L_{\theta+}Y_{+}(\theta)X_{-}(r)&=\epsilon_{+}X_{-}(r)Y_{-}(\theta),\\ -\sqrt{\Delta_{+}(\theta)}L_{\theta-}Y_{-}(\theta)X_{-}(r)-a\lambda\cos\theta X_{-}(r)Y_{+}&=\epsilon_{+}X_{-}(r)Y_{+}(\theta).\end{split} (3.47)

By taking r=r0r=r_{0} on both sides of the above equation, it follows that

(aλcosθΔ+(θ)Lθ+Δ+(θ)Lθaλcosθ)(YY+)=ϵ+(YY+).\begin{pmatrix}a\lambda\cos\theta&\sqrt{\Delta_{+}(\theta)}L_{\theta+}\\ -\sqrt{\Delta_{+}(\theta)}L_{\theta-}&-a\lambda\cos\theta\end{pmatrix}\begin{pmatrix}Y_{-}\\ Y_{+}\end{pmatrix}=\epsilon_{+}\begin{pmatrix}Y_{-}\\ Y_{+}\end{pmatrix}. (3.48)

Let

:=(aλcosθΔ+(θ)Lθ+Δ+(θ)Lθaλcosθ),Y=(YY+),\mathcal{L}:=\begin{pmatrix}a\lambda\cos\theta&\sqrt{\Delta_{+}(\theta)}L_{\theta+}\\ -\sqrt{\Delta_{+}(\theta)}L_{\theta-}&-a\lambda\cos\theta\end{pmatrix},\quad Y=\begin{pmatrix}Y_{-}\\ Y_{+}\end{pmatrix}, (3.49)

then the equation (3.48) becomes

Y=ϵ+Y.\mathcal{L}Y=\epsilon_{+}Y. (3.50)

Since Ψ=S+1Φ\Psi=S_{+}^{-1}\Phi, i.e. in the Boyer-Lindquist coordinate we have

Ψ=(Ψ1Ψ2Ψ3Ψ4)=ei(ωt+(k+12)φ)S+1(X(r)Y(θ)X+(r)Y+(θ)X+(r)Y(θ)X(r)Y+(θ))=ei(ωt+(k+12)φ)Δ+(r)14((r+iacosθ)12X(r)Y(θ)(r+iacosθ)12X+(r)Y+(θ)(riacosθ)12X+(r)Y(θ)(riacosθ)12X(r)Y+(θ)).\begin{split}\Psi=\begin{pmatrix}\Psi_{1}\\ \Psi_{2}\\ \Psi_{3}\\ \Psi_{4}\end{pmatrix}&=e^{-i\left(\omega t+(k+\frac{1}{2})\varphi\right)}S_{+}^{-1}\begin{pmatrix}X_{-}(r)Y_{-}(\theta)\\ X_{+}(r)Y_{+}(\theta)\\ X_{+}(r)Y_{-}(\theta)\\ X_{-}(r)Y_{+}(\theta)\end{pmatrix}\\ &=e^{-i\left(\omega t+(k+\frac{1}{2})\varphi\right)}\Delta_{+}(r)^{-\frac{1}{4}}\begin{pmatrix}(r+ia\cos\theta)^{-\frac{1}{2}}X_{-}(r)Y_{-}(\theta)\\ (r+ia\cos\theta)^{-\frac{1}{2}}X_{+}(r)Y_{+}(\theta)\\ (r-ia\cos\theta)^{-\frac{1}{2}}X_{+}(r)Y_{-}(\theta)\\ (r-ia\cos\theta)^{-\frac{1}{2}}X_{-}(r)Y_{+}(\theta)\end{pmatrix}.\end{split} (3.51)

Fixing t0t_{0}\in\hbox{\bb R}, since X(r0)0X_{-}(r_{0})\neq 0, then it follows that

Y(θ)=eiωt0X(r0)Δ+(r0)14(r+iacosθ)12Ψ1(t0,r0,θ,φ),Y+(θ)=eiωt0X(r0)Δ+(r0)14(riacosθ)12Ψ4(t0,r0,θ,φ),\begin{split}Y_{-}(\theta)&=\frac{e^{i\omega t_{0}}}{X_{-}(r_{0})}\Delta_{+}(r_{0})^{\frac{1}{4}}(r+ia\cos\theta)^{\frac{1}{2}}\Psi_{1}(t_{0},r_{0},\theta,\varphi),\\ Y_{+}(\theta)&=\frac{e^{i\omega t_{0}}}{X_{-}(r_{0})}\Delta_{+}(r_{0})^{\frac{1}{4}}(r-ia\cos\theta)^{\frac{1}{2}}\Psi_{4}(t_{0},r_{0},\theta,\varphi),\end{split} (3.52)

i.e. Y+Y_{+}, YY_{-}, θY+\partial_{\theta}Y_{+} and θY\partial_{\theta}Y_{-} are uniformly continuous on the closed interval [0,π][0,\pi].

For the n-dimensional complex vector space n\mathbb{C}^{n}, let ,\left<\cdot,\cdot\right> denotes the Hermitian inner product on n\mathbb{C}^{n}, i.e. for any x,ynx,y\in{\mathbb{C}}^{n} we have

x,y:=i=1nxiyi¯.\left<x,y\right>:=\sum_{i=1}^{n}x_{i}\bar{y_{i}}. (3.53)

Hence it follows that

S2Y,YY,YdS2=S2Y¯[aλcosθY+Δ+(θ)(θ1Δ+(θ)(ωasinθ+(k+12)E+sinθPcotθ)+12(cotθκ2a2sinθcosθΔ+(θ)))Y+]dS2S2Y+¯[aλcosθY++Δ+(θ)(θ+1Δ+(θ)(ωasinθ+(k+12)E+sinθPcotθ)+12(cotθκ2a2sinθcosθΔ+(θ)))Y]dS2S2Y[aλcosθY¯+Δ+(θ)(θ1Δ+(θ)(ωasinθ+(k+12)E+sinθPcotθ)+12(cotθκ2a2sinθcosθΔ+(θ)))Y+¯]dS2+S2Y+[aλcosθY+¯+Δ+(θ)(θ+1Δ+(θ)(ωasinθ+(k+12)E+sinθPcotθ)+12(cotθκ2a2sinθcosθΔ+(θ)))Y¯]dS2,\begin{split}&\int_{S^{2}}\left<\mathcal{L}Y,Y\right>-\left<Y,\mathcal{L}Y\right>dS^{2}\\ &=\int_{S^{2}}\overline{Y_{-}}\Bigg{[}a\lambda\cos\theta Y_{-}+\sqrt{\Delta_{+}(\theta)}\Bigg{(}\partial_{\theta}-\frac{1}{\Delta_{+}(\theta)}\left(\omega a\sin\theta+\frac{(k+\frac{1}{2})E_{+}}{\sin\theta}-P\cot\theta\right)\\ &\qquad+\frac{1}{2}\left(\cot\theta-\frac{\kappa^{2}a^{2}\sin\theta\cos\theta}{\Delta_{+}(\theta)}\right)\Bigg{)}Y_{+}\Bigg{]}dS^{2}\\ &\qquad-\int_{S^{2}}\overline{Y_{+}}\Bigg{[}a\lambda\cos\theta Y_{+}+\sqrt{\Delta_{+}(\theta)}\Bigg{(}\partial_{\theta}+\frac{1}{\Delta_{+}(\theta)}\left(\omega a\sin\theta+\frac{(k+\frac{1}{2})E_{+}}{\sin\theta}-P\cot\theta\right)\\ &\qquad+\frac{1}{2}\left(\cot\theta-\frac{\kappa^{2}a^{2}\sin\theta\cos\theta}{\Delta_{+}(\theta)}\right)\Bigg{)}Y_{-}\Bigg{]}dS^{2}\\ &\qquad-\int_{S^{2}}{Y_{-}}\Bigg{[}a\lambda\cos\theta\overline{Y_{-}}+\sqrt{\Delta_{+}(\theta)}\Bigg{(}\partial_{\theta}-\frac{1}{\Delta_{+}(\theta)}\left(\omega a\sin\theta+\frac{(k+\frac{1}{2})E_{+}}{\sin\theta}-P\cot\theta\right)\\ &\qquad+\frac{1}{2}\left(\cot\theta-\frac{\kappa^{2}a^{2}\sin\theta\cos\theta}{\Delta_{+}(\theta)}\right)\Bigg{)}\overline{Y_{+}}\Bigg{]}dS^{2}\\ &\qquad+\int_{S^{2}}{Y_{+}}\Bigg{[}a\lambda\cos\theta\overline{Y_{+}}+\sqrt{\Delta_{+}(\theta)}\Bigg{(}\partial_{\theta}+\frac{1}{\Delta_{+}(\theta)}\left(\omega a\sin\theta+\frac{(k+\frac{1}{2})E_{+}}{\sin\theta}-P\cot\theta\right)\\ &\qquad+\frac{1}{2}\left(\cot\theta-\frac{\kappa^{2}a^{2}\sin\theta\cos\theta}{\Delta_{+}(\theta)}\right)\Bigg{)}\overline{Y_{-}}\Bigg{]}dS^{2},\end{split} (3.54)

i.e.

S2Y,YY,YdS2=S2Δ+(θ)(θ(Y+Y¯)+(cotθκ2a2sinθcosθΔ+(θ))Y+Y¯)𝑑S2S2Δ+(θ)(θ(YY+¯)+(cotθκ2a2sinθcosθΔ+(θ))YY+¯)𝑑S2.\begin{split}&\int_{S^{2}}\left<\mathcal{L}Y,Y\right>-\left<Y,\mathcal{L}Y\right>dS^{2}\\ &=\int_{S^{2}}\sqrt{\Delta_{+}(\theta)}\left(\partial_{\theta}\big{(}Y_{+}\overline{Y_{-}}\big{)}+\Big{(}\cot\theta-\frac{\kappa^{2}a^{2}\sin\theta\cos\theta}{\Delta_{+}(\theta)}\Big{)}Y_{+}\overline{Y_{-}}\right)dS^{2}\\ &-\int_{S^{2}}\sqrt{\Delta_{+}(\theta)}\left(\partial_{\theta}\big{(}Y_{-}\overline{Y_{+}}\big{)}+\Big{(}\cot\theta-\frac{\kappa^{2}a^{2}\sin\theta\cos\theta}{\Delta_{+}(\theta)}\Big{)}Y_{-}\overline{Y_{+}}\right)dS^{2}.\end{split} (3.55)

Next we show that the first integral after the equal sign of (3.55) is zero, and the second integral is also equal to zero by a quite similar discussion. In fact, let ff be the function and VV be the vector field defined as follows

fΔ+(θ),VY+Y¯θ,f\triangleq\sqrt{\Delta_{+}(\theta)},\quad V\triangleq Y_{+}\overline{Y_{-}}\partial_{\theta}, (3.56)

then we have

div(fV)=fV+fdivV=(θf)Y+Y¯+f(1sinθθ(Y+Y¯sinθ))=(θf+cosθsinθf)Y+Y¯+fθ(Y+Y¯)=(κ2a2sinθcosθΔ+(θ)+cotθΔ+(θ))Y+Y¯+Δ+(θ)θ(Y+Y¯),\begin{split}\text{div}\left(fV\right)&=\nabla f\cdot V+f\text{div}V\\ &=(\partial_{\theta}f)Y_{+}\overline{Y_{-}}+f\left(\frac{1}{\sin\theta}\partial_{\theta}(Y_{+}\overline{Y_{-}}\sin\theta)\right)\\ &=\left(\partial_{\theta}f+\frac{\cos\theta}{\sin\theta}f\right)Y_{+}\overline{Y_{-}}+f\partial_{\theta}\left(Y_{+}\overline{Y_{-}}\right)\\ &=\left(-{\frac{\kappa^{2}a^{2}\sin\theta\cos\theta}{\sqrt{\Delta_{+}}(\theta)}}+\cot\theta\sqrt{\Delta_{+}(\theta)}\right)Y_{+}\overline{Y_{-}}+\sqrt{\Delta_{+}(\theta)}\partial_{\theta}\left(Y_{+}\overline{Y_{-}}\right),\end{split} (3.57)

i.e.

div(fV)=Δ+(θ)(θ(Y+Y¯)+(cotθκ2a2sinθcosθΔ+(θ))Y+Y¯).\text{div}\left(fV\right)=\sqrt{\Delta_{+}(\theta)}\left(\partial_{\theta}\big{(}Y_{+}\overline{Y_{-}}\big{)}+\Big{(}\cot\theta-\frac{\kappa^{2}a^{2}\sin\theta\cos\theta}{\Delta_{+}(\theta)}\Big{)}Y_{+}\overline{Y_{-}}\right). (3.58)

Therefore, by the divergence Theorem, it follows that

S2Δ+(θ)(θ(Y+Y¯)+(cotθκ2a2sinθcosθΔ+(θ))Y+Y¯)𝑑S2=S2div(fV)𝑑S2=0.\begin{split}&\quad\int_{S^{2}}\sqrt{\Delta_{+}(\theta)}\left(\partial_{\theta}\big{(}Y_{+}\overline{Y_{-}}\big{)}+\Big{(}\cot\theta-\frac{\kappa^{2}a^{2}\sin\theta\cos\theta}{\Delta_{+}(\theta)}\Big{)}Y_{+}\overline{Y_{-}}\right)dS^{2}\\ &=\int_{S^{2}}\text{div}\left(fV\right)dS^{2}\\ &=0.\end{split} (3.59)

Similarly,

S2Δ+(θ)(θ(YY+¯)+(cotθκ2a2sinθcosθΔ+(θ))YY+¯)𝑑S2=S2div(fYY+¯θ)𝑑S2=0.\begin{split}&\quad\int_{S^{2}}\sqrt{\Delta_{+}(\theta)}\left(\partial_{\theta}\big{(}Y_{-}\overline{Y_{+}}\big{)}+\Big{(}\cot\theta-\frac{\kappa^{2}a^{2}\sin\theta\cos\theta}{\Delta_{+}(\theta)}\Big{)}Y_{-}\overline{Y_{+}}\right)dS^{2}\\ &=\int_{S^{2}}\text{div}\left(fY_{-}\overline{Y_{+}}\partial_{\theta}\right)dS^{2}\\ &=0.\end{split} (3.60)

Thus, according to (3.55) we have

S2Y,Y𝑑S2=S2Y,Y𝑑S2,\int_{S^{2}}\left<\mathcal{L}Y,Y\right>dS^{2}=\int_{S^{2}}\left<Y,\mathcal{L}Y\right>dS^{2}, (3.61)

i.e.

ϵ+S2|Y|2𝑑S2=ϵ+¯S2|Y|2𝑑S2.\epsilon_{+}\int_{S^{2}}\left|Y\right|^{2}dS^{2}=\overline{\epsilon_{+}}\int_{S^{2}}\left|Y\right|^{2}dS^{2}. (3.62)

Since the solution is nontrivial, we have

ϵ+=ϵ+¯,\epsilon_{+}=\overline{\epsilon_{+}}, (3.63)

i.e. ϵ+\epsilon_{+}\in\hbox{\bb R}.

Q.E.D.

By (3.46), it follows immediately that the radial equations when Δ+(r)>0\Delta_{+}(r)>0 are

dX+driΔ+(r)(ω(r2+a2)+Qr+(k+12)E+a)X+iλr+ϵ+Δ+(r)X=0,dXdr+iΔ+(r)(ω(r2+a2)+Qr+(k+12)E+a)X+iλrϵ+Δ+(r)X+=0.\begin{split}&\frac{dX_{+}}{dr}-\frac{i}{\Delta_{+}(r)}\left(\omega(r^{2}+a^{2})+Qr+\big{(}k+\frac{1}{2}\big{)}E_{+}a\right)X_{+}-\frac{i\lambda r+\epsilon_{+}}{\sqrt{\Delta_{+}(r)}}X_{-}=0,\\ &\frac{dX_{-}}{dr}+\frac{i}{\Delta_{+}(r)}\left(\omega(r^{2}+a^{2})+Qr+\big{(}k+\frac{1}{2}\big{)}E_{+}a\right)X_{-}+\frac{i\lambda r-\epsilon_{+}}{\sqrt{\Delta_{+}(r)}}X_{+}=0.\end{split} (3.64)

According to the radial equation (3.64), we have the following Lemma:

Lemma 3.2.

If Δ+(r)>0\Delta_{+}(r)>0, then

ddr(|X+|2|X|2)=0.\frac{d}{dr}\left(\left|X_{+}\right|^{2}-\left|X_{-}\right|^{2}\right)=0. (3.65)
Proof.

For a complex number zz, let (z)\mathscr{Re}(z) be the real part of zz. If Δ+(r)>0\Delta_{+}(r)>0, then

12ddr(|X+|2|X|2)=(dX+drX+¯dXdrX¯)=((iΔ+(r)(ω(r2+a2)+Qr+(k+12)E+a)X++iλr+ϵ+Δ+(r)X)X+¯)((iΔ+(r)(ω(r2+a2)+Qr+(k+12)E+a)X+iλr+ϵ+Δ+(r)X+)X¯)=(iΔ+(r)(ω(r2+a2)+Qr+(k+12)E+a)(X+X+¯+XX¯))+(iλrΔ+(r)(XX+¯+X+X¯))+(ϵ+Δ+(r)(XX+¯X+X¯))=0.\begin{split}&\frac{1}{2}\frac{d}{dr}\left(\left|X_{+}\right|^{2}-\left|X_{-}\right|^{2}\right)=\mathscr{Re}\left(\frac{dX_{+}}{dr}\overline{X_{+}}-\frac{dX_{-}}{dr}\overline{X_{-}}\right)\\ &=\mathscr{Re}\left(\Big{(}\frac{i}{\Delta_{+}(r)}\big{(}\omega(r^{2}+a^{2})+Qr+(k+\frac{1}{2})E_{+}a\big{)}X_{+}+\frac{i\lambda r+\epsilon_{+}}{\sqrt{\Delta_{+}(r)}}X_{-}\Big{)}\overline{X_{+}}\right)\\ &\quad-\mathscr{Re}\left(\Big{(}\frac{-i}{\Delta_{+}(r)}\big{(}\omega(r^{2}+a^{2})+Qr+(k+\frac{1}{2})E_{+}a\big{)}X_{-}+\frac{-i\lambda r+\epsilon_{+}}{\sqrt{\Delta_{+}(r)}}X_{+}\Big{)}\overline{X_{-}}\right)\\ &=\mathscr{Re}\left(\frac{i}{\Delta_{+}(r)}\Big{(}\omega(r^{2}+a^{2})+Qr+(k+\frac{1}{2})E_{+}a\Big{)}\big{(}X_{+}\overline{X_{+}}+X_{-}\overline{X_{-}}\big{)}\right)\\ &\quad+\mathscr{Re}\left(\frac{i\lambda r}{\sqrt{\Delta_{+}(r)}}\big{(}X_{-}\overline{X_{+}}+X_{+}\overline{X_{-}}\big{)}\right)\\ &\quad+\mathscr{Re}\left(\frac{\epsilon_{+}}{\sqrt{\Delta_{+}(r)}}\big{(}X_{-}\overline{X_{+}}-X_{+}\overline{X_{-}}\big{)}\right)\\ &=0.\end{split} (3.66)

Therefore,

ddr(|X+|2|X|2)=0.\frac{d}{dr}\left(\left|X_{+}\right|^{2}-\left|X_{-}\right|^{2}\right)=0. (3.67)

Q.E.D.

Let r1(r,r+)r_{1}\in(r_{-},r_{+}) be some fixed positive constant and M(r1,r+)M_{(r_{1},r_{+})} be the time slice of non-extreme Kerr-Newman-dS spacetime satisfying {t=constant}\left\{t=\text{constant}\right\} and r1<r<r+r_{1}<r<r_{+}. Moreover, by the similar assumptions as in [11] and [29], we assume that X+=0X_{+}=0 or X=0X_{-}=0 on the horizons can match the solution inside and outside the horizons.

The following nonexistence theorem is the main result of this section:

Theorem 3.1.

Let Ψ\Psi be the solution of the Dirac equation

(𝒟+ieαA(eα)+iλ)Ψ=0\big{(}\mathscr{D}+ie^{\alpha}A(e_{\alpha})+i\lambda\big{)}\Psi=0 (3.68)

in the exterior region r<r<r+r_{-}<r<r_{+} of the non-extreme Kerr-Newman-dS spacetime, and it is of the form

Ψ=S+1Φ,\Psi={S_{+}}^{-1}\Phi, (3.69)

where

Φ=ei(ωt+(k+12)φ)(X(r)Y(θ)X+(r)Y+(θ)X+(r)Y(θ)X(r)Y+(θ)),\Phi=e^{-i\left(\omega t+(k+\frac{1}{2})\varphi\right)}\begin{pmatrix}X_{-}(r)Y_{-}(\theta)\\ X_{+}(r)Y_{+}(\theta)\\ X_{+}(r)Y_{-}(\theta)\\ X_{-}(r)Y_{+}(\theta)\\ \end{pmatrix}, (3.70)

kk\in\mathbb{Z}, and S+S_{+} is the following diagonal matrix

S+=Δ+(r)14((r+iacosθ)120000(r+iacosθ)120000(riacosθ)120000(riacosθ)12).S_{+}=\Delta_{+}(r)^{\frac{1}{4}}\begin{pmatrix}(r+ia\cos\theta)^{\frac{1}{2}}&0&0&0\\ 0&(r+ia\cos\theta)^{\frac{1}{2}}&0&0\\ 0&0&(r-ia\cos\theta)^{\frac{1}{2}}&0\\ 0&0&0&(r-ia\cos\theta)^{\frac{1}{2}}\\ \end{pmatrix}. (3.71)

Then for arbitrary (λ,p)×[2,+)(\lambda,p)\in\hbox{\bb R}\times\big{[}2,+\infty\big{)}, if

ΨLp(M(r1,r+)),\Psi\in L^{p}\left(M_{(r_{1},r_{+})}\right), (3.72)

then Ψ0\Psi\equiv 0.

Proof.

Since Δ+(r)>0\Delta_{+}(r)>0 on r<r<r+r_{-}<r<r_{+}, by the radial equation (3.64) we have

rΦ=EΦ,\partial_{r}\Phi=E\cdot\Phi, (3.73)

where

E=(iα10iβ1+γ100iα10iβ1+γ1iβ1+γ10iα100iβ1+γ10iα1)E=\begin{pmatrix}-i\alpha_{1}&0&-i\beta_{1}+\gamma_{1}&0\\ 0&i\alpha_{1}&0&i\beta_{1}+\gamma_{1}\\ i\beta_{1}+\gamma_{1}&0&i\alpha_{1}&0\\ 0&-i\beta_{1}+\gamma_{1}&0&-i\alpha_{1}\end{pmatrix} (3.74)

and

α1=1Δ+(r)(ω(r2+a2)+Qr+(k+12)E+a),β1=λrΔ+(r),γ1=ϵ+Δ+(r).\begin{split}\alpha_{1}&=\frac{1}{\Delta_{+}(r)}\left(\omega(r^{2}+a^{2})+Qr+(k+\frac{1}{2})E_{+}a\right),\\ \beta_{1}&=\frac{\lambda r}{\sqrt{\Delta_{+}(r)}},\\ \gamma_{1}&=\frac{\epsilon_{+}}{\sqrt{\Delta_{+}(r)}}.\end{split} (3.75)

Thus, we have

r(|Φ|2)=r(ΦTΦ¯)=2ΦT(00iβ1+γ10000iβ1+γ1iβ1+γ10000iβ1+γ100)Φ¯2ΦTAΦ¯.\begin{split}\partial_{r}\left(|\Phi|^{2}\right)&=\partial_{r}\left(\Phi^{T}\cdot\overline{\Phi}\right)\\ &=2\Phi^{T}\begin{pmatrix}0&0&i\beta_{1}+\gamma_{1}&0\\ 0&0&0&-i\beta_{1}+\gamma_{1}\\ -i\beta_{1}+\gamma_{1}&0&0&0\\ 0&i\beta_{1}+\gamma_{1}&0&0\end{pmatrix}\overline{\Phi}\triangleq 2\Phi^{T}A\overline{\Phi}.\end{split} (3.76)

Notice that

A¯TA=(β12+γ120000β12+γ120000β12+γ120000β12+γ12),\overline{A}^{T}A=\begin{pmatrix}\beta_{1}^{2}+\gamma_{1}^{2}&0&0&0\\ 0&\beta_{1}^{2}+\gamma_{1}^{2}&0&0\\ 0&0&\beta_{1}^{2}+\gamma_{1}^{2}&0\\ 0&0&0&\beta_{1}^{2}+\gamma_{1}^{2}\end{pmatrix}, (3.77)

Hence, according to the Cauchy-Schwarz inequality and the compatibility of the matrix norm, the following estimates can be obtained

|r(|Φ|2)|=2|Φ,A¯Φ|2|Φ||AΦ¯|2A2|Φ|22β12+γ12|Φ|2.\left|\partial_{r}\left(|\Phi|^{2}\right)\right|=2\left|\left<\Phi,\overline{A}\Phi\right>\right|\leq 2|\Phi|\cdot|A\overline{\Phi}|\leq 2||A||_{2}\cdot|\Phi|^{2}\leq 2\sqrt{\beta_{1}^{2}+\gamma_{1}^{2}}|\Phi|^{2}. (3.78)

Next, we claim that there exists a constant C>0C>0 and r1(r,r+)r_{1}\in(r_{-},r_{+}) such that for any r(r,r1]r\in(r_{-},r_{1}], the following inequality holds

β12+γ12C(rr)12.\sqrt{\beta_{1}^{2}+\gamma_{1}^{2}}\leq C(r-r_{-})^{-\frac{1}{2}}. (3.79)

In fact, taking r1=r+r+2r_{1}=\frac{r_{-}+r_{+}}{2}, it follows that

(rr)12β12+γ12=(rr)12λ2r2+ϵ+2Δ+(r)=λ2r2+ϵ+2κ2(r+r)(rrc)(r+r++r+rc)λ2r+2+ϵ+2κ2(r+r2)(rrc)r+C.\begin{split}(r-r_{-})^{\frac{1}{2}}\sqrt{\beta_{1}^{2}+\gamma_{1}^{2}}&=(r-r_{-})^{\frac{1}{2}}\sqrt{\frac{\lambda^{2}r^{2}+\epsilon_{+}^{2}}{\Delta_{+}(r)}}\\ &=\sqrt{\frac{\lambda^{2}r^{2}+\epsilon_{+}^{2}}{\kappa^{2}(r_{+}-r)(r-r_{c})(r+r_{+}+r_{-}+r_{c})}}\\ &\leq\sqrt{\frac{\lambda^{2}r_{+}^{2}+\epsilon_{+}^{2}}{\kappa^{2}(\frac{r_{+}-r_{-}}{2})(r_{-}-r_{c})r_{+}}}\triangleq C.\end{split} (3.80)

Combining with (3.78), for any r<rr1r_{-}<r\leq r_{1}, we have

|r(|Φ|2)|C(rr)12|Φ|2.\left|\partial_{r}\left(|\Phi|^{2}\right)\right|\leq C(r-r_{-})^{-\frac{1}{2}}|\Phi|^{2}. (3.81)

Therefore, by the Gronwall Lemma [2], for any r<s<rr1r_{-}<s<r\leq r_{1}, we can deduce that

|Φ(r)||Φ(s)|exp(Csr(r¯r)12𝑑r¯).|\Phi(r)|\leq|\Phi(s)|\exp\left(C\int_{s}^{r}(\overline{r}-r_{-})^{-\frac{1}{2}}d\overline{r}\right). (3.82)

If |Φ|2|\Phi|^{2} has a zero on r(r,r+)r\in(r_{-},r_{+}), then by the existence and uniqueness theorem for solutions of ordinary differential equations, i.e. Theorem 2.2, we have Φ0\Phi\equiv 0. Hence we can assume that |Φ|2>0|\Phi|^{2}>0 for r(r,r+)r\in(r_{-},r_{+}). Therefore, deviding by |Φ|2|\Phi|^{2} on both sides of (3.81) and integrate, it follows that

sr(r¯r)12𝑑r¯log(|Φ|2)|srsr(r¯r)12𝑑r¯-\int_{s}^{r}(\overline{r}-r_{-})^{-\frac{1}{2}}d\overline{r}\leq\log(|\Phi|^{2})\Big{|}_{s}^{r}\leq\int_{s}^{r}(\overline{r}-r_{-})^{-\frac{1}{2}}d\overline{r} (3.83)

for any r<s<rr1r_{-}<s<r\leq r_{1}. Therefore, there exists a constant C1>0C_{1}>0 such that for arbitrary r<s<rr1r_{-}<s<r\leq r_{1},

|log(|Φ(r)|2)log(|Φ(s)|2)|C1|rs|,\left|\log(|\Phi(r)|^{2})-\log(|\Phi(s)|^{2})\right|\leq C_{1}|r-s|, (3.84)

i.e. log(|Φ(r)|)\log(|\Phi(r)|) is uniformly continuous on (r,r1)(r_{-},r_{1}), which implies that |Φ(r)||\Phi(r)| is uniformly continuous on (r,r1)(r_{-},r_{1}). Hence we have |Φ|<|\Phi|<\infty at r=rr=r_{-}. Moreover, according to (3.82), if |Φ|=0|\Phi|=0 at r=rr=r_{-}, then |Φ||\Phi| is identically equal to zero on the interval (r,r1](r_{-},r_{1}]. On the other hand, by Lemma 3.2, there exists a constant C0C_{0} such that

|X+|2=|X|2+C0|X_{+}|^{2}=|X_{-}|^{2}+C_{0} (3.85)

on r<r<r+r_{-}<r<r_{+}. Substituting the expression (3.9) of Ψ1\Psi_{1}, now we have

|Ψ1|2=Ψ1Ψ1¯=1UΔ+(r)12(|Y|2+|Y+|2)(C0+2|X|2).|\Psi_{1}|^{2}=\Psi_{1}\cdot\overline{\Psi_{1}}=\frac{1}{\sqrt{U}}\Delta_{+}(r)^{-\frac{1}{2}}\big{(}|Y_{-}|^{2}+|Y_{+}|^{2}\big{)}\big{(}C_{0}+2|X_{-}|^{2}\big{)}. (3.86)

If C00C_{0}\neq 0, without loss of generality, we can assume that C0>0C_{0}>0. Hnece we have

1UΔ+(r)12(|Y+|2+|Y|2)Lp2(M(r1,r+)),\frac{1}{\sqrt{U}}\Delta_{+}(r)^{-\frac{1}{2}}\left(|Y_{+}|^{2}+|Y_{-}|^{2}\right)\in L^{\frac{p}{2}}\left(M_{(r_{1},r_{+})}\right), (3.87)

i.e.

M(r1,r+)(1UΔ+(r)12)p2|Y|pUV+sin2θE+2Δ+(r)Δ+(θ)𝑑r𝑑θ𝑑φ<,\int_{M_{(r_{1},r_{+})}}\left(\frac{1}{\sqrt{U}}\Delta_{+}(r)^{-\frac{1}{2}}\right)^{\frac{p}{2}}|Y|^{p}\sqrt{\frac{UV_{+}\sin^{2}\theta}{E_{+}^{2}\Delta_{+}(r)\Delta_{+}(\theta)}}dr\,d\theta\,d\varphi<\infty, (3.88)

where

V+=(2mrQ2P2)a2sin2θ+U(r2+a2)(1+κ2a2).V_{+}=(2mr-Q^{2}-P^{2})a^{2}\sin^{2}\theta+U(r^{2}+a^{2})(1+\kappa^{2}a^{2}). (3.89)

By the following relationships between roots and coefficients

m=12κ2(r++r)(r++rc)(rc+r),a2=1κ2(rc2+r2+r+2+rcr+rcr++rr+),Q2+P2=κ2rcr+r(rc+r++r)a2,\begin{split}m&=\frac{1}{2}\kappa^{2}(r_{+}+r_{-})(r_{+}+r_{c})(r_{c}+r_{-}),\\ a^{2}&=\frac{1}{\kappa^{2}}-(r_{c}^{2}+r_{-}^{2}+r_{+}^{2}+r_{c}r_{-}+r_{c}r_{+}+r_{-}r_{+}),\\ Q^{2}+P^{2}&=\kappa^{2}r_{c}r_{+}r_{-}(r_{c}+r_{+}+r_{-})-a^{2},\end{split} (3.90)

it follows that

2mr(Q2+P2)=κ2r(r++r)(r++rc)(rc+r)κ2rcr+r(rc+r++r)+a2=κ2(r(r++r)(r++rc)(rc+r)rcr+r(rc+r++r))+a2>κ2(rr+2rc+rr2r++rrc2r+rrc2r+rr+2rcrcr2r+)=κ2((rr)r+2rc+(rrc)r2r++(rr)rc2r+)>0\begin{split}2mr-(Q^{2}+P^{2})&=\kappa^{2}r(r_{+}+r_{-})(r_{+}+r_{c})(r_{c}+r_{-})\\ &\qquad-\kappa^{2}r_{c}r_{+}r_{-}(r_{c}+r_{+}+r_{-})+a^{2}\\ &=\kappa^{2}\left(r(r_{+}+r_{-})(r_{+}+r_{c})(r_{c}+r_{-})-r_{c}r_{+}r_{-}(r_{c}+r_{+}+r_{-})\right)+a^{2}\\ &>\kappa^{2}\left(rr_{+}^{2}r_{c}+rr_{-}^{2}r_{+}+rr_{c}^{2}r_{+}-r_{-}r_{c}^{2}r_{+}-r_{-}r_{+}^{2}r_{c}-r_{c}r_{-}^{2}r_{+}\right)\\ &=\kappa^{2}\left((r-r_{-})r_{+}^{2}r_{c}+(r-r_{c})r_{-}^{2}r_{+}+(r-r_{-})r_{c}^{2}r_{+}\right)\\ &>0\end{split} (3.91)

on r<r1<r<r+r_{-}<r_{1}<r<r_{+}. Thus, for r(r1,r+)r\in(r_{1},r_{+}), we have

V+U(r2+a2)(1+κ2a2)=(r2+a2cos2θ)(r2+a2)(1+κ2a2)r4=r2.\begin{split}\sqrt{V_{+}}&\geq\sqrt{U(r^{2}+a^{2})(1+\kappa^{2}a^{2})}\\ &=\sqrt{(r^{2}+a^{2}\cos^{2}\theta)(r^{2}+a^{2})(1+\kappa^{2}a^{2})}\\ &\geq\sqrt{r^{4}}=r^{2}.\end{split} (3.92)

Since there exists a constant C2>0C_{2}>0 such that |Y|2=|Y+|2+|Y|2>C2|Y|^{2}=|Y_{+}|^{2}+|Y_{-}|^{2}>C_{2} on [π4,π2]\left[\frac{\pi}{4},\frac{\pi}{2}\right] (otherwise Ψ0\Psi\equiv 0), by (3.88), it follows that

r1r+π4π202π(1UΔ+(r)12)p2r3sin2θΔ+(r)Δ+(θ)𝑑r𝑑θ𝑑φ<,\int_{r_{1}}^{r_{+}}\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}\int_{0}^{2\pi}\left(\frac{1}{\sqrt{U}}\Delta_{+}(r)^{-\frac{1}{2}}\right)^{\frac{p}{2}}r^{3}\sqrt{\frac{\sin^{2}\theta}{\Delta_{+}(r)\Delta_{+}(\theta)}}dr\,d\theta\,d\varphi<\infty, (3.93)

i.e.

r1r+π4π202πr3Up4(Δ+(r))12p4sin2θΔ+(θ)𝑑r𝑑θ𝑑φ<.\int_{r_{1}}^{r_{+}}\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}\int_{0}^{2\pi}r^{3}U^{-\frac{p}{4}}\Big{(}\Delta_{+}(r)\Big{)}^{-\frac{1}{2}-\frac{p}{4}}\sqrt{\frac{\sin^{2}\theta}{\Delta_{+}(\theta)}}dr\,d\theta\,d\varphi<\infty. (3.94)

Notice that

r3Up4=r3(r2+a2cos2θ)p4r3(r+2+a2)p4>0r^{3}U^{-\frac{p}{4}}=\frac{r^{3}}{(r^{2}+a^{2}\cos^{2}\theta)^{\frac{p}{4}}}\geq\frac{r_{-}^{3}}{(r_{+}^{2}+a^{2})^{\frac{p}{4}}}>0 (3.95)

on r(r1,r+)r\in(r_{1},r_{+}). Therefore, combining with (3.94) we have

r1r+1(r+r)p4+12𝑑r<.\int_{r_{1}}^{r_{+}}\frac{1}{(r_{+}-r)^{\frac{p}{4}+\frac{1}{2}}}dr<\infty. (3.96)

However, since p2p\geq 2, i.e. p4+121\frac{p}{4}+\frac{1}{2}\geq 1, it is a contraction! Therefore, we have C0=0C_{0}=0. Hence

|X+|=|X||X_{+}|=|X_{-}| (3.97)

on r(r,r+)r\in(r_{-},r_{+}). Since the limit of |Φ||\Phi| exists at r=rr=r_{-} and

|Φ|2=2(|Y+|2+|Y|2)|X+|2,|\Phi|^{2}=2\left(|Y_{+}|^{2}+|Y_{-}|^{2}\right)\cdot|X_{+}|^{2}, (3.98)

we can deduce that the limits of |X+||X_{+}| and |X||X_{-}| also exist at r=rr=r_{-}. Therefore, according to the matching conditions at r=rr=r_{-}, it follows that

|X+|=|X|=|limr<rrX|=0.|X_{+}|=|X_{-}|=\left|\lim_{r_{-}<r\rightarrow r_{-}}X_{-}\right|=0. (3.99)

Hence, |Φ||\Phi| vanishes at r=rr=r_{-}. Then by (3.82), we have Φ0\Phi\equiv 0 on r[r,r+)r\in[r_{-},r_{+}) which implies that

Ψ0.\Psi\equiv 0. (3.100)

Q.E.D.

4. Extreme Kerr-Newman-dS spacetime

In this section, we consider the necessary conditions for the existence of nontrivial LpL^{p} integrable time-periodic solutions of the Dirac equation

(𝒟+ieαA(eα)+iλ)Ψ=0\big{(}\mathscr{D}+ie^{\alpha}A(e_{\alpha})+i\lambda\big{)}\Psi=0 (4.1)

in the extreme Kerr-Newman-dS spacetime. More specifically, we give the equation relationship between ω\omega, the radius of the event horizon, the angular momentum, the charge, and the cosmological constant, which generalize the conclusion obtained by [24] in the extreme Kerr-Newman spacetime (zero cosmological constant).

Definition 4.1.

The Kerr-Newman-dS spacetime is called extreme, if the polynomial of order 4 in rr

Δ+(r)=(r2+a2)(1κ2r2)2mr+Q2+P2\Delta_{+}(r)=(r^{2}+a^{2})(1-\kappa^{2}r^{2})-2mr+Q^{2}+P^{2} (4.2)

has exactly 4 real roots, i.e. a double positive root r=rr=r_{-}, a simple positive root r=r+>rr=r_{+}>r_{-} and a negative root rn=(2r+r+)r_{n}=-(2r_{-}+r_{+}). Moreover, mm satisfies the following equality

m=154((1κ2a2)(1κ2a2)212κ2(a2+Q2+P2))12×(2(1κ2a2)2+(1κ2a2)212κ2(a2+Q2+P2)).\begin{split}m=\frac{1}{\sqrt{54}}&\Bigg{(}(1-\kappa^{2}a^{2})-\sqrt{\big{(}1-\kappa^{2}a^{2}\big{)}^{2}-12\kappa^{2}(a^{2}+Q^{2}+P^{2})}\Bigg{)}^{\frac{1}{2}}\\ &\times\Bigg{(}2(1-\kappa^{2}a^{2})^{2}+\sqrt{\big{(}1-\kappa^{2}a^{2}\big{)}^{2}-12\kappa^{2}(a^{2}+Q^{2}+P^{2})}\Bigg{)}.\end{split} (4.3)

In the extreme circumstances, since r=rr=r_{-} is a double root of Δ+(r)\Delta_{+}(r), Δ+(r)12\Delta_{+}(r)^{-\frac{1}{2}} is not integrable near r=rr=r_{-}. Thus, the method in Chapter 3 when dealing with the non-extreme case is not applicable at this time. In this section, we mainly refer to the method of [24] when dealing with the extreme Kerr-Newman spacetime (zero cosmological constant) and the necessary conditions for the existence of nontrivial LpL^{p} integrable time-periodic solutions of the Dirac equation (4.1) in the extreme Kerr-Newman-dS spacetime are given (considered in the exterior region r<r<r+r_{-}<r<r_{+} of the spacetime).

When Δ+(r)>0\Delta_{+}(r)>0, the radial equations are as follows

dX+driΔ+(r)(ω(r2+a2)+Qr+(k+12)E+a)X+iλr+ϵ+Δ+(r)X=0,dXdr+iΔ+(r)(ω(r2+a2)+Qr+(k+12)E+a)X+iλrϵ+Δ+(r)X+=0,\begin{split}&\frac{dX_{+}}{dr}-\frac{i}{\Delta_{+}(r)}\left(\omega(r^{2}+a^{2})+Qr+\big{(}k+\frac{1}{2}\big{)}E_{+}a\right)X_{+}-\frac{i\lambda r+\epsilon_{+}}{\sqrt{\Delta_{+}(r)}}X_{-}=0,\\ &\frac{dX_{-}}{dr}+\frac{i}{\Delta_{+}(r)}\left(\omega(r^{2}+a^{2})+Qr+\big{(}k+\frac{1}{2}\big{)}E_{+}a\right)X_{-}+\frac{i\lambda r-\epsilon_{+}}{\sqrt{\Delta_{+}(r)}}X_{+}=0,\end{split} (4.4)

where ϵ+\epsilon_{+}\in\hbox{\bb R}. Let

X(r)=(X+(r)X(r)),X(r)=\begin{pmatrix}X_{+}(r)\\ X_{-}(r)\end{pmatrix}, (4.5)

then the equations (4.4) are

ddrX=(iα1iβ1+γ1iβ1+γ1iα1)X,\frac{d}{dr}X=\begin{pmatrix}i\alpha_{1}&i\beta_{1}+\gamma_{1}\\ -i\beta_{1}+\gamma_{1}&-i\alpha_{1}\end{pmatrix}X, (4.6)

where

α1=ω(r2+a2)+Qr+(k+12)E+aΔ+(r),β1=λrΔ+(r),γ1=ϵ+Δ+(r).\begin{split}\alpha_{1}&=\frac{\omega(r^{2}+a^{2})+Qr+\big{(}k+\frac{1}{2}\big{)}E_{+}a}{\Delta_{+}(r)},\\ \beta_{1}&=\frac{\lambda r}{\sqrt{\Delta_{+}(r)}},\\ \gamma_{1}&=\frac{\epsilon_{+}}{\sqrt{\Delta_{+}(r)}}.\end{split} (4.7)

Next, we derive the necessary condition for ω\omega in (4.7) if the nontrivial time-periodic solution

ΨLp(M(r,r+))\Psi\in L^{p}\left(M_{(r_{-},r_{+})}\right) (4.8)

exists.

Since rr_{-} is a double root of Δ+(r)\Delta_{+}(r), we have

Δ+(r)=(rr)2κ2(r+r)(r+r++2r).\Delta_{+}(r)=(r-r_{-})^{2}\kappa^{2}(r_{+}-r)(r+r_{+}+2r_{-}). (4.9)

Let

B(r)κ2(r+r)(r+r++2r),τω(r2+a2)+(k+12)E+a+reQ,μ2rω+Q.\begin{split}B(r)&\triangleq\kappa^{2}(r_{+}-r)(r+r_{+}+2r_{-}),\\ \tau&\triangleq\omega(r_{-}^{2}+a^{2})+\left(k+\frac{1}{2}\right)E_{+}a+r_{e}Q,\\ \mu&\triangleq 2r_{-}\omega+Q.\end{split} (4.10)

Therefore,

ω((x+r)2+a2)+Q(x+r)+(k+12)E+a=ωx2+τ+2ωrx+Qx=τ+μx+ωx2.\begin{split}\omega\left((x+r_{-})^{2}+a^{2}\right)+Q(x+r_{-})+\big{(}k+\frac{1}{2}\big{)}E_{+}a&=\omega x^{2}+\tau+2\omega r_{-}x+Qx\\ &=\tau+\mu x+\omega x^{2}.\end{split} (4.11)

We consider in the exterior region, i.e. r(r,r+)r\in(r_{-},r_{+}). For convenience, we define a new variable x:=rrx:=r-r_{-} and the function

F(x):=X(x+r),x(0,r+r).F(x):=X(x+r_{-}),\;x\in\left(0,r_{+}-r_{-}\right). (4.12)

According to (4.6) and (4.11), we have

xF1(x)=rX1|x+r=iα1(x+r)X1(x+r)+(iβ1(x+r)+γ1(x+r))X2(x+r)=i(τ+μx+ωx2)x2B(x+r)F1(x)+(iλ(x+r)x2B(x+r)+ϵ+x2B(x+r))F2(x),\begin{split}\partial_{x}F_{1}(x)&=\partial_{r}X_{1}\Big{|}_{x+r_{-}}\\ &=i\alpha_{1}(x+r_{-})X_{1}(x+r_{-})+\left(i\beta_{1}(x+r_{-})+\gamma_{1}(x+r_{-})\right)X_{2}(x+r_{-})\\ &=i\frac{(\tau+\mu x+\omega x^{2})}{x^{2}B(x+r_{-})}F_{1}(x)+\left(\frac{i\lambda(x+r_{-})}{\sqrt{x^{2}B(x+r_{-})}}+\frac{\epsilon_{+}}{\sqrt{x^{2}B(x+r_{-})}}\right)F_{2}(x),\end{split} (4.13)

i.e.

xF1(x)=(iτx2B(x+r)+iμxB(x+r)+iωB(x+r))F1(x)+(ϵ++iλrxB(x+r)+iλB(x+r))F2(x).\begin{split}\partial_{x}F_{1}(x)&=\left(\frac{i\tau}{x^{2}B(x+r_{-})}+\frac{i\mu}{xB(x+r_{-})}+\frac{i\omega}{B(x+r_{-})}\right)F_{1}(x)\\ &\qquad+\left(\frac{\epsilon_{+}+i\lambda r_{-}}{x\sqrt{B(x+r_{-})}}+\frac{i\lambda}{\sqrt{B(x+r_{-})}}\right)F_{2}(x).\end{split} (4.14)

Similarly,

xF2(x)=rX2|x+r=(iβ1(x+r)+γ1(x+r))X1(x+r)iα1(x+r)X2(x+r)=(iλ(x+r)x2B(x+r)+ϵ+x2B(x+r))F1(x)i(τ+μx+ωx2)x2B(x+r)F2(x)=(ϵ+iλrxB(x+r)iλB(x+r))F1(x)+(iτx2B(x+r)+iμxB(x+r)+iωB(x+r))F2(x).\begin{split}\partial_{x}F_{2}(x)&=\partial_{r}X_{2}\Big{|}_{x+r_{-}}\\ &=\left(-i\beta_{1}(x+r_{-})+\gamma_{1}(x+r_{-})\right)X_{1}(x+r_{-})-i\alpha_{1}(x+r_{-})X_{2}(x+r_{-})\\ &=\left(\frac{-i\lambda(x+r_{-})}{\sqrt{x^{2}B(x+r_{-})}}+\frac{\epsilon_{+}}{\sqrt{x^{2}B(x+r_{-})}}\right)F_{1}(x)-i\frac{(\tau+\mu x+\omega x^{2})}{x^{2}B(x+r_{-})}F_{2}(x)\\ &=\left(\frac{\epsilon_{+}-i\lambda r_{-}}{x\sqrt{B(x+r_{-})}}-\frac{i\lambda}{\sqrt{B(x+r_{-})}}\right)F_{1}(x)\\ &\qquad+\left(\frac{-i\tau}{x^{2}B(x+r_{-})}+\frac{-i\mu}{xB(x+r_{-})}+\frac{-i\omega}{B(x+r_{-})}\right)F_{2}(x).\end{split} (4.15)

In the matrix form, we have that F(x)F(x), x(0,r+r)x\in\left(0,r_{+}-r_{-}\right) satisfying the following equation

xF=(iτx2B(x+r)+iμxB(x+r)+iωB(x+r)ϵ++iλrxB(x+r)+iλB(x+r)ϵ+iλrxB(x+r)iλB(x+r)iτx2B(x+r)+iμxB(x+r)+iωB(x+r))F.\partial_{x}F=\begin{pmatrix}\frac{i\tau}{x^{2}B(x+r_{-})}+\frac{i\mu}{xB(x+r_{-})}+\frac{i\omega}{B(x+r_{-})}&\frac{\epsilon_{+}+i\lambda r_{-}}{x\sqrt{B(x+r_{-})}}+\frac{i\lambda}{\sqrt{B(x+r_{-})}}\\ \frac{\epsilon_{+}-i\lambda r_{-}}{x\sqrt{B(x+r_{-})}}-\frac{i\lambda}{\sqrt{B(x+r_{-})}}&\frac{-i\tau}{x^{2}B(x+r_{-})}+\frac{-i\mu}{xB(x+r_{-})}+\frac{-i\omega}{B(x+r_{-})}\end{pmatrix}F. (4.16)

Now we define the function

W(x):=TF(x),x(0,r+r),W(x):=T\cdot F(x),\;x\in\left(0,r_{+}-r_{-}\right), (4.17)

where TT is the unitary matrix

T=(1212i2i2).T=\begin{pmatrix}\frac{-1}{\sqrt{2}}&\frac{-1}{\sqrt{2}}\\ \frac{-i}{\sqrt{2}}&\frac{i}{\sqrt{2}}\end{pmatrix}. (4.18)

According to the properties of the unitary matrix, for any x(0,r+r)x\in\left(0,r_{+}-r_{-}\right), we have

|W(x)|=|F(x)|.\left|W(x)\right|=\left|F(x)\right|. (4.19)

Moreover, by (4.16), we can deduce that

xW1(x)=12(xF1(x)+xF2(x))=12[(iτx2B+iμxB+iωB)F1(x)+(ϵ++iλrxB+iλB)F2(x)+(ϵ+iλrxBiλB)F1(x)(iτx2B+iμxB+iωB)F2(x)].\begin{split}\partial_{x}W_{1}(x)&=-\frac{1}{\sqrt{2}}\left(\partial_{x}F_{1}(x)+\partial_{x}F_{2}(x)\right)\\ &=-\frac{1}{\sqrt{2}}\Bigg{[}\left(\frac{i\tau}{x^{2}B}+\frac{i\mu}{xB}+\frac{i\omega}{B}\right)F_{1}(x)+\left(\frac{\epsilon_{+}+i\lambda r_{-}}{x\sqrt{B}}+\frac{i\lambda}{\sqrt{B}}\right)F_{2}(x)\\ &\qquad+\left(\frac{\epsilon_{+}-i\lambda r_{-}}{x\sqrt{B}}-\frac{i\lambda}{\sqrt{B}}\right)F_{1}(x)-\left(\frac{i\tau}{x^{2}B}+\frac{i\mu}{xB}+\frac{i\omega}{B}\right)F_{2}(x)\Bigg{]}.\end{split} (4.20)

Hence, by the definition of W(x)W(x) we have

xW1(x)=ϵ+xB12(F1(x)+F2(x))i2(τx2B+μxB+ωB)(F1(x)F2(x))i2(λrxB+λB)(F2(x)F1(x))=ϵ+xBW1(x)+(τx2B+μxB+ωBλrxBλB)W2(x).\begin{split}\partial_{x}W_{1}(x)&=\frac{\epsilon_{+}}{x\sqrt{B}}\cdot\frac{-1}{\sqrt{2}}\left(F_{1}(x)+F_{2}(x)\right)-\frac{i}{\sqrt{2}}\left(\frac{\tau}{x^{2}B}+\frac{\mu}{xB}+\frac{\omega}{B}\right)\left(F_{1}(x)-F_{2}(x)\right)\\ &\qquad-\frac{i}{\sqrt{2}}\left(\frac{\lambda r_{-}}{x\sqrt{B}}+\frac{\lambda}{\sqrt{B}}\right)\left(F_{2}(x)-F_{1}(x)\right)\\ &=\frac{\epsilon_{+}}{x\sqrt{B}}W_{1}(x)+\left(\frac{\tau}{x^{2}B}+\frac{\mu}{xB}+\frac{\omega}{B}-\frac{\lambda r_{-}}{x\sqrt{B}}-\frac{\lambda}{\sqrt{B}}\right)W_{2}(x).\end{split} (4.21)

Similarly,

xW2(x)=i2(xF1(x)xF2(x))=i2[(iτx2B+iμxB+iωB)F1(x)+(ϵ++iλrxB+iλB)F2(x)(ϵ+iλrxBiλB)F1(x)+(iτx2B+iμxB+iωB)F2(x)]=i2ϵ+xB(F1(x)F2(x))+12(τx2B+μxB+ωB)(F1(x)+F2(x))+12(λrxB+λB)(F1(x)+F2(x))=(τx2B+μxB+ωBλrxBλB)W1(x)+ϵ+xBW2(x).\begin{split}\partial_{x}W_{2}(x)&=\frac{-i}{\sqrt{2}}\left(\partial_{x}F_{1}(x)-\partial_{x}F_{2}(x)\right)\\ &=\frac{-i}{\sqrt{2}}\Bigg{[}\left(\frac{i\tau}{x^{2}B}+\frac{i\mu}{xB}+\frac{i\omega}{B}\right)F_{1}(x)+\left(\frac{\epsilon_{+}+i\lambda r_{-}}{x\sqrt{B}}+\frac{i\lambda}{\sqrt{B}}\right)F_{2}(x)\\ &\qquad-\left(\frac{\epsilon_{+}-i\lambda r_{-}}{x\sqrt{B}}-\frac{i\lambda}{\sqrt{B}}\right)F_{1}(x)+\left(\frac{i\tau}{x^{2}B}+\frac{i\mu}{xB}+\frac{i\omega}{B}\right)F_{2}(x)\Bigg{]}\\ &=\frac{-i}{\sqrt{2}}\cdot\frac{-\epsilon_{+}}{x\sqrt{B}}\left(F_{1}(x)-F_{2}(x)\right)+\frac{1}{\sqrt{2}}\left(\frac{\tau}{x^{2}B}+\frac{\mu}{xB}+\frac{\omega}{B}\right)\left(F_{1}(x)+F_{2}(x)\right)\\ &\qquad+\frac{1}{\sqrt{2}}\left(\frac{\lambda r_{-}}{x\sqrt{B}}+\frac{\lambda}{\sqrt{B}}\right)\left(F_{1}(x)+F_{2}(x)\right)\\ &=\left(\frac{-\tau}{x^{2}B}+\frac{-\mu}{xB}+\frac{-\omega}{B}-\frac{\lambda r_{-}}{x\sqrt{B}}-\frac{\lambda}{\sqrt{B}}\right)W_{1}(x)+\frac{-\epsilon_{+}}{x\sqrt{B}}W_{2}(x).\end{split} (4.22)

Therefore, the following equation

xW(x)=(ϵ+xBτx2B+μxB+ωBλrxBλBτx2BμxBωBλrxBλBϵ+xB)W(x)\partial_{x}W(x)=\begin{pmatrix}\frac{\epsilon_{+}}{x\sqrt{B}}&\frac{\tau}{x^{2}B}+\frac{\mu}{xB}+\frac{\omega}{B}-\frac{\lambda r_{-}}{x\sqrt{B}}-\frac{\lambda}{\sqrt{B}}\\ -\frac{\tau}{x^{2}B}-\frac{\mu}{xB}-\frac{\omega}{B}-\frac{\lambda r_{-}}{x\sqrt{B}}-\frac{\lambda}{\sqrt{B}}&\frac{-\epsilon_{+}}{x\sqrt{B}}\end{pmatrix}W(x) (4.23)

holds for x(0,r+r)x\in\left(0,r_{+}-r_{-}\right), where BB(x+r)B\triangleq B(x+r_{-}).

For x(0,r+r2]x\in\big{(}0,\frac{r_{+}-r_{-}}{2}\big{]}, we define a new variable z:=1xz:=\frac{1}{x}, z[2r+r,+)z\in\big{[}\frac{2}{r_{+}-r_{-}},+\infty\big{)}. Define the function

V(z):=W(1z),z[2r+r,+).V(z):=W\left(\frac{1}{z}\right),\;z\in\big{[}\frac{2}{r_{+}-r_{-}},+\infty\big{)}. (4.24)

Thus,

zV(z)=1z2W|1z.\partial_{z}V(z)=-\frac{1}{z^{2}}W^{\prime}\Big{|}_{\frac{1}{z}}. (4.25)

Substituting (4.23), we have

zV(z)=1z2(E~11(z)E~12(z)E~21(z)E~22(z))W(1z),\partial_{z}V(z)=-\frac{1}{z^{2}}\begin{pmatrix}\widetilde{E}_{11}(z)&\widetilde{E}_{12}(z)\\ \widetilde{E}_{21}(z)&\widetilde{E}_{22}(z)\end{pmatrix}W\left(\frac{1}{z}\right), (4.26)

where

E~11(z)=ϵ+zB(1z+r),E~12(z)=τz2B(1z+r)+μzB(1z+r)+ωB(1z+r)λrzB(1z+r)λB(1z+r),E~21(z)=τz2B(1z+r)μzB(1z+r)ωB(1z+r)λrzB(1z+r)λB(1z+r),E~22(z)=ϵ+zB(1z+r).\begin{split}\widetilde{E}_{11}(z)&=\frac{\epsilon_{+}z}{\sqrt{B\left(\frac{1}{z}+r_{-}\right)}},\\ \widetilde{E}_{12}(z)&=\frac{\tau z^{2}}{B\left(\frac{1}{z}+r_{-}\right)}+\frac{\mu z}{B\left(\frac{1}{z}+r_{-}\right)}+\frac{\omega}{B\left(\frac{1}{z}+r_{-}\right)}-\frac{\lambda r_{-}z}{\sqrt{B\left(\frac{1}{z}+r_{-}\right)}}\\ &\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad-\frac{\lambda}{\sqrt{B\left(\frac{1}{z}+r_{-}\right)}},\\ \widetilde{E}_{21}(z)&=-\frac{\tau z^{2}}{B\left(\frac{1}{z}+r_{-}\right)}-\frac{\mu z}{B\left(\frac{1}{z}+r_{-}\right)}-\frac{\omega}{B\left(\frac{1}{z}+r_{-}\right)}-\frac{\lambda r_{-}z}{\sqrt{B\left(\frac{1}{z}+r_{-}\right)}}\\ &\qquad\quad\quad\qquad\qquad\qquad\;\;\qquad\qquad\qquad\qquad-\frac{\lambda}{\sqrt{B\left(\frac{1}{z}+r_{-}\right)}},\\ \widetilde{E}_{22}(z)&=-\frac{\epsilon_{+}z}{\sqrt{B\left(\frac{1}{z}+r_{-}\right)}}.\end{split} (4.27)

Sorting (4.26) , V(z)V(z) should satisfy the following equation

zV(z)=(E11(z)E12(z)E21(z)E22(z))V(z),z[2r+r,+),\partial_{z}V(z)=\begin{pmatrix}E_{11}(z)&E_{12}(z)\\ E_{21}(z)&E_{22}(z)\end{pmatrix}V(z),\;z\in\big{[}\frac{2}{r_{+}-r_{-}},+\infty\big{)}, (4.28)

where

E11(z)=ϵ+zB(1z+r),E12(z)=τB(1z+r)μzB(1z+r)ωz2B(1z+r)+λrzB(1z+r)+λz2B(1z+r),E21(z)=τB(1z+r)+μzB(1z+r)+ωz2B(1z+r)+λrzB(1z+r)+λz2B(1z+r),E22(z)=ϵ+zB(1z+r).\begin{split}E_{11}(z)&=\frac{-\epsilon_{+}}{z\sqrt{B\left(\frac{1}{z}+r_{-}\right)}},\\ E_{12}(z)&=-\frac{\tau}{B\left(\frac{1}{z}+r_{-}\right)}-\frac{\mu}{zB\left(\frac{1}{z}+r_{-}\right)}-\frac{\omega}{z^{2}B\left(\frac{1}{z}+r_{-}\right)}+\frac{\lambda r_{-}}{z\sqrt{B\left(\frac{1}{z}+r_{-}\right)}}\\ &\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad+\frac{\lambda}{z^{2}\sqrt{B\left(\frac{1}{z}+r_{-}\right)}},\\ E_{21}(z)&=\frac{\tau}{B\left(\frac{1}{z}+r_{-}\right)}+\frac{\mu}{zB\left(\frac{1}{z}+r_{-}\right)}+\frac{\omega}{z^{2}B\left(\frac{1}{z}+r_{-}\right)}+\frac{\lambda r_{-}}{z\sqrt{B\left(\frac{1}{z}+r_{-}\right)}}\\ &\qquad\quad\;\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad+\frac{\lambda}{z^{2}\sqrt{B\left(\frac{1}{z}+r_{-}\right)}},\\ E_{22}(z)&=\frac{\epsilon_{+}}{z\sqrt{B\left(\frac{1}{z}+r_{-}\right)}}.\end{split} (4.29)

Before proving the main theorem in this section, we need the following lemma in [24]:

Lemma 4.1.

Let a>0a>0 be a fixed constant. Let Y(z)Y(z) be the nontrivial solution of the following ordinary differential equation

ddzY(z)=(C+R(z))Y(z),z[a,+),\frac{d}{dz}Y(z)=\big{(}C+R(z)\big{)}Y(z),\;z\in[a,+\infty), (4.30)

where CC and R(z)R(z) are 2×22\times 2 matrices satisfying

(i) detC>0\det C>0;

(ii) tr(C+R(z))0\text{tr}\big{(}C+R(z)\big{)}\equiv 0;

(iii) R(z)0R(z)\rightarrow 0 when z+z\rightarrow+\infty and R(z)R^{\prime}(z) is integrable on [a,+)[a,+\infty).

Then there exists constant δ>0\delta>0, such that

|Y(z)|δ|Y(z)|\geq\delta (4.31)

on [a,+)[a,+\infty).

Let M(r,r+)M_{(r_{-},r_{+})} be the time slice in the extreme Kerr-Newman-dS spacetime satisfying {t=constant}\left\{t=\text{constant}\right\} and r<r<r+r_{-}<r<r_{+}. With the above preparations, we can prove the following theorem:

Theorem 4.1.

Let Ψ\Psi be a nontrivial solution on the exterior region r<r<r+r_{-}<r<r_{+} in the extreme Kerr-Newman-dS spacetime of the Dirac equation

(𝒟+ieαA(eα)+iλ)Ψ=0\big{(}\mathscr{D}+ie^{\alpha}A(e_{\alpha})+i\lambda\big{)}\Psi=0 (4.32)

which is of the form

Ψ=S+1Φ,\Psi={S_{+}}^{-1}\Phi, (4.33)

where

Φ=ei(ωt+(k+12)φ)(X(r)Y(θ)X+(r)Y+(θ)X+(r)Y(θ)X(r)Y+(θ)),\Phi=e^{-i\left(\omega t+(k+\frac{1}{2})\varphi\right)}\begin{pmatrix}X_{-}(r)Y_{-}(\theta)\\ X_{+}(r)Y_{+}(\theta)\\ X_{+}(r)Y_{-}(\theta)\\ X_{-}(r)Y_{+}(\theta)\\ \end{pmatrix}, (4.34)

kk\in\mathbb{Z} and S+S_{+} is the following diagonal matrix

S+=Δ+(r)14((r+iacosθ)120000(r+iacosθ)120000(riacosθ)120000(riacosθ)12).S_{+}=\Delta_{+}(r)^{\frac{1}{4}}\begin{pmatrix}(r+ia\cos\theta)^{\frac{1}{2}}&0&0&0\\ 0&(r+ia\cos\theta)^{\frac{1}{2}}&0&0\\ 0&0&(r-ia\cos\theta)^{\frac{1}{2}}&0\\ 0&0&0&(r-ia\cos\theta)^{\frac{1}{2}}\\ \end{pmatrix}. (4.35)

If there exists some p[1,+)p\in[1,+\infty) such that

ΨLp(M(r,r+)),\Psi\in L^{p}\left(M_{(r_{-},r_{+})}\right), (4.36)

then ω\omega satisfies the following equality

ω(r2+a2)+(k+12)E+a+rQ=0.\omega\left(r_{-}^{2}+a^{2}\right)+\left(k+\frac{1}{2}\right)E_{+}a+r_{-}Q=0. (4.37)
Proof.

We adopt the method of proof by contradiction. Assume that

τ=ω(r2+a2)+(k+12)E+a+rQ0.\tau=\omega\left(r_{-}^{2}+a^{2}\right)+\left(k+\frac{1}{2}\right)E_{+}a+r_{-}Q\neq 0. (4.38)

We rewrite the equation (4.28) as follows

zV(z)=(C+R(z))V(z),z[2r+r,+),\partial_{z}V(z)=\big{(}C+R(z)\big{)}V(z),\;z\in\big{[}\frac{2}{r_{+}-r_{-}},+\infty\big{)}, (4.39)

where

C=(0τB(r)τB(r)0)C=\begin{pmatrix}0&-\frac{\tau}{B(r_{-})}\\ \frac{\tau}{B(r_{-})}&0\end{pmatrix} (4.40)

is a constant matrix and the 4 componets of the 2×22\times 2 square matrix R(z)R(z) are

R11(z)=ϵ+zB(1z+r),R12(z)=(τB(r)τB(1z+r))μzB(1z+r)ωz2B(1z+r)+λrzB(1z+r)+λz2B(1z+r),R21(z)=(τB(1z+r)τB(r))+μzB(1z+r)+ωz2B(1z+r)+λrzB(1z+r)+λz2B(1z+r),R22(z)=ϵ+zB(1z+r).\begin{split}R_{11}(z)&=\frac{-\epsilon_{+}}{z\sqrt{B\left(\frac{1}{z}+r_{-}\right)}},\\ R_{12}(z)&=\left(\frac{\tau}{B(r_{-})}-\frac{\tau}{B\left(\frac{1}{z}+r_{-}\right)}\right)-\frac{\mu}{zB\left(\frac{1}{z}+r_{-}\right)}-\frac{\omega}{z^{2}B\left(\frac{1}{z}+r_{-}\right)}\\ &\qquad\qquad+\frac{\lambda r_{-}}{z\sqrt{B\left(\frac{1}{z}+r_{-}\right)}}+\frac{\lambda}{z^{2}\sqrt{B\left(\frac{1}{z}+r_{-}\right)}},\\ R_{21}(z)&=\left(\frac{\tau}{B\left(\frac{1}{z}+r_{-}\right)}-\frac{\tau}{B(r_{-})}\right)+\frac{\mu}{zB\left(\frac{1}{z}+r_{-}\right)}+\frac{\omega}{z^{2}B\left(\frac{1}{z}+r_{-}\right)}\\ &\qquad\qquad+\frac{\lambda r_{-}}{z\sqrt{B\left(\frac{1}{z}+r_{-}\right)}}+\frac{\lambda}{z^{2}\sqrt{B\left(\frac{1}{z}+r_{-}\right)}},\\ R_{22}(z)&=\frac{\epsilon_{+}}{z\sqrt{B\left(\frac{1}{z}+r_{-}\right)}}.\end{split} (4.41)

Since τ0\tau\neq 0, thus

detC=0τ2B(r)2>0.\det C=0-\frac{-\tau^{2}}{B(r_{-})^{2}}>0. (4.42)

By the formula (4.41) of Rij(z)R_{ij}(z), it is no hard to see that the following holds

(i) Rij(z)R^{\prime}_{ij}(z) is integrable on [2r+r,+)\big{[}\frac{2}{r_{+}-r_{-}},+\infty\big{)};

(ii)

Rij(z)0, 1i,j2R_{ij}(z)\longrightarrow 0,\;1\leq i,j\leq 2 (4.43)

as z+z\rightarrow+\infty;

(iii) tr(C+R)=0\text{tr}\,(C+R)=0.

Since Ψ\Psi is nontrivial, hence V0V\neq 0 (otherwise we can derive X=0X=0 and thus Ψ=0\Psi=0). Therefore, by Lemma 4.1 (or c.f. Lemma 3.1 in [24]) we know that there exists a constant δ>0\delta>0 such that for all z[2r+r,+)z\in\big{[}\frac{2}{r_{+}-r_{-}},+\infty\big{)}, we have

|V(z)|δ>0,|V(z)|\geq\delta>0, (4.44)

i.e. for all x(0,r+r2]x\in\big{(}0,\frac{r_{+}-r_{-}}{2}\big{]},

|W(x)|δ>0.|W(x)|\geq\delta>0. (4.45)

Since

|W(x)|=|F(x)|,|W(x)|=|F(x)|, (4.46)

which means that for any r(r,r+r+r2]r\in\big{(}r_{-},r_{-}+\frac{r_{+}-r_{-}}{2}\big{]}, we have

|X(r)|δ>0.|X(r)|\geq\delta>0. (4.47)

The integrability condition

ΨLp(M(r,r+))\Psi\in L^{p}\left(M_{(r_{-},r_{+})}\right) (4.48)

means that

M(r,r+)(1UΔ+(r)12)p2|Y|p|X|pUV+sin2θE+2Δ+(r)Δ+(θ)drdθdφ<.\int_{M_{(r_{-},r_{+})}}\left(\frac{1}{\sqrt{U}}\Delta_{+}(r)^{-\frac{1}{2}}\right)^{\frac{p}{2}}|Y|^{p}|X|^{p}\sqrt{\frac{UV_{+}\sin^{2}\theta}{E_{+}^{2}\Delta_{+}(r)\Delta_{+}(\theta)}}dr\,d\theta\,d\varphi<\infty. (4.49)

Combining (5.50) with the fact that there exists constant C1>0C_{1}>0 such that |Y|2=|Y+|2+|Y|2>C1|Y|^{2}=|Y_{+}|^{2}+|Y_{-}|^{2}>C_{1} on [π4,π2]\left[\frac{\pi}{4},\frac{\pi}{2}\right] (otherwise Ψ0\Psi\equiv 0), we can deduce that there exists constant C2>0C_{2}>0 such that

M(r,r+)|Ψ|pdV>C2rr+r+r21(rr)p21rrdr=+,\int_{M_{(r_{-},r_{+})}}|\Psi|^{p}dV>C_{2}\int_{r_{-}}^{r_{-}+\frac{r_{+}-r_{-}}{2}}\frac{1}{(r-r_{-})^{\frac{p}{2}}}\cdot\frac{1}{r-r_{-}}dr=+\infty, (4.50)

which is a contraction! Therefore,

τ=ω(r2+a2)+(k+12)E+a+rQ=0.\tau=\omega\left(r_{-}^{2}+a^{2}\right)+\left(k+\frac{1}{2}\right)E_{+}a+r_{-}Q=0. (4.51)

Q.E.D.

Remark 4.1.

ω\omega is called the energy eigenvalue of the Dirac equation (4.1).

Next, we use the equality (4.37) derived above to further study the necessary conditions for the existence of nontrivial LpL^{p} integrable time-periodic solutions of the Dirac equation (4.1) in the extreme Kerr-Newman-dS spacetime. To do this, we quote the following lemma in [10]:

Lemma 4.2.

For x>0x>0, let Y(x)Y(x) be a nontrivial solution of the following equation

ddxY(x)=[a(x)(0110)+b(x)(1001)+c(x)(0110)]Y(x)\frac{d}{dx}Y(x)=\left[a(x)\begin{pmatrix}0&-1\\ 1&0\end{pmatrix}+b(x)\begin{pmatrix}1&0\\ 0&-1\end{pmatrix}+c(x)\begin{pmatrix}0&1\\ 1&0\end{pmatrix}\right]Y(x) (4.52)

where a(x)a(x), b(x)b(x) and c(x)c(x) are smooth real functions and a0a\neq 0. If near the origin,

b(x)2+c(x)2<a(x)2b(x)^{2}+c(x)^{2}<a(x)^{2} (4.53)

and the functions b(x)a(x)\frac{b(x)}{a(x)} and c(x)a(x)\frac{c(x)}{a(x)} are monotone, then there exists constant δ>0\delta>0 such that

|Y(x)|δ|Y(x)|\geq\delta (4.54)

near the origin.

Let σ1\sigma_{1}, σ2\sigma_{2}, σ3\sigma_{3} be the following constants

σ1:=B(r)>0,σ2:=B(r),σ3:=ωa2+(k+12)E+ar+ωr,\begin{split}\sigma_{1}&:=B(r_{-})>0,\\ \sigma_{2}&:=B^{\prime}(r_{-}),\\ \sigma_{3}&:=\frac{\omega a^{2}+\left(k+\frac{1}{2}\right)E_{+}a}{-r_{-}}+\omega r_{-},\end{split} (4.55)

where

B(r)=κ2(r+r)(r+r++2r).B(r)=\kappa^{2}(r_{+}-r)(r+r_{+}+2r_{-}). (4.56)
Corollary 4.1.

Let Ψ\Psi be a nontrivial time-periodic solution of the Dirac equation (4.1) in the extreme Kerr-Newman-dS spacetime which is of the form (4.33). If there exists p[1,+)p\in[1,+\infty) such that

ΨLp(M(r,r+)),\Psi\in L^{p}\left(M_{(r_{-},r_{+})}\right), (4.57)

then at least one of the following three conditions holds:

(i) (ϵ+2+λ2r2)σ1σ320\left(\epsilon_{+}^{2}+\lambda^{2}r_{-}^{2}\right)\sigma_{1}-\sigma_{3}^{2}\geq 0;

(ii) σ2σ32ωσ1=0\sigma_{2}\sigma_{3}-2\omega\sigma_{1}=0;

(iii) rσ2σ3+2σ1σ3=0r_{-}\sigma_{2}\sigma_{3}+2\sigma_{1}\sigma_{3}=0.

Moreover, if ϵ+=0\epsilon_{+}=0, then at least one of the conditions (i) and (iii) holds; if λ=0\lambda=0, then at least one of the conditions (i) and (ii) holds. In particular, if λ=ϵ+=0\lambda=\epsilon_{+}=0, then Q=2ωrQ=-2\omega r_{-}.

Proof.

For r(r,r+)r\in(r_{-},r_{+}), the radial function X(r)X(r) satisfies the following equation

ddrX=(iα1iβ1+γ1iβ1+γ1iα1)X,\frac{d}{dr}X=\begin{pmatrix}i\alpha_{1}&i\beta_{1}+\gamma_{1}\\ -i\beta_{1}+\gamma_{1}&-i\alpha_{1}\end{pmatrix}X, (4.58)

where

α1=(ω(r2+a2)+Qr+(k+12)E+a)Δ+(r),β1=λrΔ+(r),γ1=ϵ+Δ+(r).\begin{split}\alpha_{1}&=\frac{\left(\omega(r^{2}+a^{2})+Qr+\big{(}k+\frac{1}{2}\big{)}E_{+}a\right)}{\Delta_{+}(r)},\\ \beta_{1}&=\frac{\lambda r}{\sqrt{\Delta_{+}(r)}},\\ \gamma_{1}&=\frac{\epsilon_{+}}{\sqrt{\Delta_{+}(r)}}.\end{split} (4.59)

Define the function

H(r):=22(11ii)X(r),H(r):=\frac{\sqrt{2}}{2}\begin{pmatrix}-1&-1\\ -i&i\end{pmatrix}X(r), (4.60)

then for any r(r,r+)r\in(r_{-},r_{+}), we have

|H(r)|=|X(r)|\left|H(r)\right|=\left|X(r)\right| (4.61)

and

rH1(r)=22(rX1(r)+rX2(r))=22(iα1X1+(iβ1+γ1)X2+(iβ1+γ1)X1iα1X2)=γ1H1(r)+(α1β1)H2(r),\begin{split}\partial_{r}H_{1}(r)&=-\frac{\sqrt{2}}{2}\left(\partial_{r}X_{1}(r)+\partial_{r}X_{2}(r)\right)\\ &=-\frac{\sqrt{2}}{2}\left(i\alpha_{1}X_{1}+(i\beta_{1}+\gamma_{1})X_{2}+(-i\beta_{1}+\gamma_{1})X_{1}-i\alpha_{1}X_{2}\right)\\ &=\gamma_{1}H_{1}(r)+(\alpha_{1}-\beta_{1})H_{2}(r),\end{split} (4.62)
rH2(r)=22(irX1(r)+irX2(r))=22(α1X1+β1X2iγ1X2+β1X1+iγ1X1+α1X2)=γ1H2(r)+(α1β1)H1(r),\begin{split}\partial_{r}H_{2}(r)&=\frac{\sqrt{2}}{2}\left(-i\partial_{r}X_{1}(r)+i\partial_{r}X_{2}(r)\right)\\ &=\frac{\sqrt{2}}{2}\left(\alpha_{1}X_{1}+\beta_{1}X_{2}-i\gamma_{1}X_{2}+\beta_{1}X_{1}+i\gamma_{1}X_{1}+\alpha_{1}X_{2}\right)\\ &=-\gamma_{1}H_{2}(r)+(-\alpha_{1}-\beta_{1})H_{1}(r),\end{split} (4.63)

i.e.

rH(r)=[α1(0110)+γ1(1001)β1(0110)]H(r).\partial_{r}H(r)=\Bigg{[}-\alpha_{1}\begin{pmatrix}0&-1\\ 1&0\end{pmatrix}+\gamma_{1}\begin{pmatrix}1&0\\ 0&-1\end{pmatrix}-\beta_{1}\begin{pmatrix}0&1\\ 1&0\end{pmatrix}\Bigg{]}H(r). (4.64)

Next, we adopt the method of proof by contradiction. Suppose the conclusion is not true when λϵ+0\lambda\epsilon_{+}\neq 0, that is, the conditions (i), (ii) and (iii) are not valid. First, by (4.37) we know that

(ϵ+2+λ2r2)σ1σ32<0\left(\epsilon_{+}^{2}+\lambda^{2}r_{-}^{2}\right)\sigma_{1}-\sigma_{3}^{2}<0 (4.65)

i.e.,

ϵ+2+λ2r2<(ωr+ωa2+(k+12)E+ar)2B(r),\epsilon_{+}^{2}+\lambda^{2}r_{-}^{2}<\frac{\left(\omega r_{-}+\frac{\omega a^{2}+\left(k+\frac{1}{2}\right)E_{+}a}{-r_{-}}\right)^{2}}{B(r_{-})}, (4.66)

which means that there exists ϵ>0\epsilon>0 (small enough) such that for r(r,r+ϵ)r\in(r_{-},r_{-}+\epsilon)

ϵ+2+λ2r2<(ωr+ωa2+(k+12)E+ar)2B(r)=(rr)2(ωr+ωa2+(k+12)E+ar)2(rr)2B(r)=(ω(r2+a2)+Qr+(k+12)E+a)2Δ+(r).\begin{split}\epsilon_{+}^{2}+\lambda^{2}r^{2}<\frac{\left(\omega r+\frac{\omega a^{2}+\left(k+\frac{1}{2}\right)E_{+}a}{-r_{-}}\right)^{2}}{B(r)}&=\frac{(r-r_{-})^{2}\left(\omega r+\frac{\omega a^{2}+\left(k+\frac{1}{2}\right)E_{+}a}{-r_{-}}\right)^{2}}{(r-r_{-})^{2}B(r)}\\ &=\frac{\left(\omega(r^{2}+a^{2})+Qr+\big{(}k+\frac{1}{2}\big{)}E_{+}a\right)^{2}}{\Delta_{+}(r)}.\end{split} (4.67)

Thus we have

(γ1)2+(β1)2<(α1)2(\gamma_{1})^{2}+(\beta_{1})^{2}<(\alpha_{1})^{2} (4.68)

for r(r,r+ϵ)r\in(r_{-},r_{-}+\epsilon).

When condition (ii) is not satisfied, we have

(ωr+ωa2+(k+12)E+ar)σ22σ1σ1ω0,\left(\omega r_{-}+\frac{\omega a^{2}+\left(k+\frac{1}{2}\right)E_{+}a}{-r_{-}}\right)\cdot\frac{\sigma_{2}}{2\sqrt{\sigma_{1}}}-\sqrt{\sigma_{1}}\omega\neq 0, (4.69)

i.e.,

(ωr+ωa2+(k+12)E+ar)(B(r))|r=rB(r)ω0.\left(\omega r_{-}+\frac{\omega a^{2}+\left(k+\frac{1}{2}\right)E_{+}a}{-r_{-}}\right)\cdot\left(\sqrt{B(r)}\right)^{\prime}\Big{|}_{r=r_{-}}-\sqrt{B(r_{-})}\omega\neq 0. (4.70)

Therefore, by continuity we can deduce that

B(r)ωr+ωa2+(k+12)E+ar=(rr)B(r)(rr)(ωr+ωa2+(k+12)E+ar)=Δ+(r)ω(r2+a2)+Qr+(k+12)E+a\begin{split}\frac{\sqrt{B(r)}}{\omega r+\frac{\omega a^{2}+\left(k+\frac{1}{2}\right)E_{+}a}{-r_{-}}}&=\frac{(r-r_{-})\sqrt{B(r)}}{(r-r_{-})\left(\omega r+\frac{\omega a^{2}+\left(k+\frac{1}{2}\right)E_{+}a}{-r_{-}}\right)}\\ &=\frac{\sqrt{\Delta_{+}(r)}}{\omega(r^{2}+a^{2})+Qr+\big{(}k+\frac{1}{2}\big{)}E_{+}a}\end{split} (4.71)

is monotone for r(r,r+ϵ)r\in(r_{-},r_{-}+\epsilon), i.e. γ1α1\frac{\gamma_{1}}{-\alpha_{1}} is monotone for r(r,r+ϵ)r\in(r_{-},r_{-}+\epsilon). Similarly, we have β1α1\frac{-\beta_{1}}{-\alpha_{1}} is also monotone for r(r,r+ϵ)r\in(r_{-},r_{-}+\epsilon). Therefore, by Lemma 4.2 (or c.f. Lemma 5.1 in [10]), there exists constant δ>0\delta>0, such that for r(r,r+ϵ)r\in(r_{-},r_{-}+\epsilon),

|X(r)|=|H(r)|δ>0.\left|X(r)\right|=\left|H(r)\right|\geq\delta>0. (4.72)

Hence, the integrability condition

ΨLp(M(r,r+))\Psi\in L^{p}\left(M_{(r_{-},r_{+})}\right) (4.73)

implies that there exists constant C>0C>0 such that

M(r,r+)|Ψ|pdV>Crr+ϵ1(rr)p21rrdr=+,\int_{M_{(r_{-},r_{+})}}|\Psi|^{p}dV>C\int_{r_{-}}^{r_{-}+\epsilon}\frac{1}{(r-r_{-})^{\frac{p}{2}}}\cdot\frac{1}{r-r_{-}}dr=+\infty, (4.74)

which is a contraction!

If λϵ+=0\lambda\epsilon_{+}=0, by repeating the above discussions we can still deduce that such contradiction exists, hence completing the proof of the corollary.

Q.E.D.

5. Extreme Kerr-Newman-AdS spacetime

In this section, we consider the necessary conditions for the existence of nontrivial LpL^{p} integrable time-periodic solutions of the Dirac equation

(𝒟+ieαA(eα)+iλ)Ψ=0\big{(}\mathscr{D}+ie^{\alpha}A(e_{\alpha})+i\lambda\big{)}\Psi=0 (5.1)

in the extreme Kerr-Newman-AdS spacetime. More specifically, we give the equality between ω\omega, the radius of the event horizon, the angular momentum, the charge, and the cosmological constant, which generalize the conclusion obtained by [24] in the extreme Kerr-Newman spacetime, i.e. from zero cosmological constant to negative cosmological constant.

The Kerr-Newman-AdS spacetime is an exact solution of the Einstein-Maxwell equation, which describes a charged rotating black hole with a negative cosmological constant. Although it contradicts the recent cosmological observations that our real universe should have a positive cosmological constant, the negative cosmological constant case and the results in this section may have some physical implications for the strongly coupled superconductor theory based on the AdS-CFT correspondence, see [6]. The Kerr-Newman-AdS spacetime is the following manifold

MKNdS=t×+r×S2,M_{KNdS}=\hbox{\bb R}_{t}\times\hbox{\bb R}^{+}_{r}\times S^{2}, (5.2)

equipped with the Lorentzian metric (in Boyer-Lindquist coordinate)

gKNAdS=(12mrQ2P2U+κ2(r2+a2sin2θ))dt2+VUE2sin2θdφ2+UΔ(r)dr2+UΔ(θ)dθ2asin2θE(2mrQ2P2Uκ2(r2+a2))(dtdφ+dφdt)=Δ(r)U(dtasin2θEdφ)2+UΔ(r)dr2+UΔ(θ)dθ2+Δ(θ)sin2θU(adtr2+a2Edφ)2,\begin{split}g_{KNAdS}=&-\Big{(}1-\frac{2mr-Q^{2}-P^{2}}{U}+\kappa^{2}(r^{2}+a^{2}\sin^{2}\theta)\Big{)}dt^{2}\\ &+\frac{V_{-}}{U{E_{-}}^{2}}\sin^{2}\theta d\varphi^{2}+\frac{U}{\Delta_{-}(r)}dr^{2}+\frac{U}{\Delta_{-}(\theta)}d\theta^{2}\\ &-\frac{a\sin^{2}\theta}{E_{-}}\Big{(}\frac{2mr-Q^{2}-P^{2}}{U}-\kappa^{2}(r^{2}+a^{2})\Big{)}\big{(}dt\,d\varphi+d\varphi\,dt\big{)}\\ =&-\frac{\Delta_{-}(r)}{U}\Big{(}dt-\frac{a\sin^{2}\theta}{E_{-}}d\varphi\Big{)}^{2}+\frac{U}{\Delta_{-}(r)}dr^{2}+\frac{U}{\Delta_{-}(\theta)}d\theta^{2}\\ &\qquad\qquad\qquad+\frac{\Delta_{-}(\theta)\sin^{2}\theta}{U}\Big{(}a\,dt-\frac{r^{2}+a^{2}}{E_{-}}d\varphi\Big{)}^{2},\end{split} (5.3)

where the constants κ>0\kappa>0, m>0m>0, and

U=r2+a2cos2θ,E=1κ2a2>0,Δ(r)=(r2+a2)(1+κ2r2)2mr+Q2+P2,Δ(θ)=1κ2a2cos2θ,V=(2mrQ2P2)a2sin2θ+U(r2+a2)(1κ2a2).\begin{split}U&=r^{2}+a^{2}\cos^{2}\theta,\\ E_{-}&=1-\kappa^{2}a^{2}>0,\\ \Delta_{-}(r)&=(r^{2}+a^{2})(1+\kappa^{2}r^{2})-2mr+Q^{2}+P^{2},\\ \Delta_{-}(\theta)&=1-\kappa^{2}a^{2}\cos^{2}\theta,\\ V_{-}&=(2mr-Q^{2}-P^{2})a^{2}\sin^{2}\theta+U(r^{2}+a^{2})(1-\kappa^{2}a^{2}).\end{split} (5.4)

Moreover, the electromagnetic field is F=dAF=dA, where AA is the following 1-form

A=QrU(dtasin2θEdφ)PcosθU(adtr2+a2Edφ).A=-\frac{Qr}{U}\Big{(}dt-\frac{a\sin^{2}\theta}{E_{-}}d\varphi\Big{)}-\frac{P\cos\theta}{U}\Big{(}a\,dt-\frac{r^{2}+a^{2}}{E_{-}}d\varphi\Big{)}. (5.5)
Definition 5.1.

The Kerr-Newman-AdS spacetime is called extreme, if the polynomial of order 4 with respect to rr

Δ(r)=(r2+a2)(1+κ2r2)2mr+Q2+P2\Delta_{-}(r)=(r^{2}+a^{2})(1+\kappa^{2}r^{2})-2mr+Q^{2}+P^{2} (5.6)

has a double real root r=re>0r=r_{e}>0 and 2 imaginary roots. Moreover, mm satisfies the following

m=154((1+a2κ2)2+12κ2(a2+Q2+P2)+2a2κ2+2)×((1+a2κ2)2+12κ2(a2+Q2+P2)a2κ21)12.\begin{split}m=\frac{1}{\sqrt{54}}&\left(\sqrt{\big{(}1+a^{2}\kappa^{2}\big{)}^{2}+12\kappa^{2}(a^{2}+Q^{2}+P^{2})}+2a^{2}\kappa^{2}+2\right)\\ &\times\left(\sqrt{\big{(}1+a^{2}\kappa^{2}\big{)}^{2}+12\kappa^{2}(a^{2}+Q^{2}+P^{2})}-a^{2}\kappa^{2}-1\right)^{\frac{1}{2}}.\end{split} (5.7)

If the solution Ψ\Psi of the Dirac equation (5.1) is of the form

Ψ=S1Φ,\Psi={S_{-}}^{-1}\Phi, (5.8)

where

Φ=ei(ωt+(k+12)φ)(X(r)Y(θ)X+(r)Y+(θ)X+(r)Y(θ)X(r)Y+(θ)),\Phi=e^{-i\left(\omega t+(k+\frac{1}{2})\varphi\right)}\begin{pmatrix}X_{-}(r)Y_{-}(\theta)\\ X_{+}(r)Y_{+}(\theta)\\ X_{+}(r)Y_{-}(\theta)\\ X_{-}(r)Y_{+}(\theta)\\ \end{pmatrix}, (5.9)

kk\in\mathbb{Z}, and SS_{-} is the following diagonal matrix

S=Δ(r)14((r+iacosθ)120000(r+iacosθ)120000(riacosθ)120000(riacosθ)12),S_{-}=\Delta_{-}(r)^{\frac{1}{4}}\begin{pmatrix}(r+ia\cos\theta)^{\frac{1}{2}}&0&0&0\\ 0&(r+ia\cos\theta)^{\frac{1}{2}}&0&0\\ 0&0&(r-ia\cos\theta)^{\frac{1}{2}}&0\\ 0&0&0&(r-ia\cos\theta)^{\frac{1}{2}}\\ \end{pmatrix}, (5.10)

then by the method of separating variables, the radial equations in the extreme Kerr-Newman-AdS spacetime when Δ(r)>0\Delta_{-}(r)>0 are as follows (c.f. [29]):

dX+driΔ(r)(ω(r2+a2)+Qr+(k+12)Ea)X+iλr+η+Δ(r)X=0,dXdr+iΔ(r)(ω(r2+a2)+Qr+(k+12)Ea)X+iλrη+Δ(r)X+=0,\begin{split}&\frac{dX_{+}}{dr}-\frac{i}{\Delta_{-}(r)}\left(\omega(r^{2}+a^{2})+Qr+\big{(}k+\frac{1}{2}\big{)}E_{-}a\right)X_{+}-\frac{i\lambda r+\eta_{+}}{\sqrt{\Delta_{-}(r)}}X_{-}=0,\\ &\frac{dX_{-}}{dr}+\frac{i}{\Delta_{-}(r)}\left(\omega(r^{2}+a^{2})+Qr+\big{(}k+\frac{1}{2}\big{)}E_{-}a\right)X_{-}+\frac{i\lambda r-\eta_{+}}{\sqrt{\Delta_{-}(r)}}X_{+}=0,\end{split} (5.11)

where η+\eta_{+}\in\hbox{\bb R}. Moreover,

ddr(|X+|2|X|2)=0.\frac{d}{dr}\left(\left|X_{+}\right|^{2}-\left|X_{-}\right|^{2}\right)=0. (5.12)

Since Δ(r)\Delta_{-}(r) has a positive double root r=rer=r_{e}, there exists a quadratic irreducible polynomial B(r)>0B_{-}(r)>0, satisfying

Δ(r)=(rre)2B(r).\Delta_{-}(r)=(r-r_{e})^{2}B_{-}(r). (5.13)

Let

τω(re2+a2)+(k+12)Ea+reQ,μ2reω+Q,\begin{split}\tau_{-}&\triangleq\omega(r_{e}^{2}+a^{2})+\left(k+\frac{1}{2}\right)E_{-}a+r_{e}Q,\\ \mu_{-}&\triangleq 2r_{e}\omega+Q,\end{split} (5.14)

then we have

ω((x+re)2+a2)+Q(x+re)+(k+12)Ea=ωx2+τ+2ωrex+Qx=τ+μx+ωx2.\begin{split}\omega\left((x+r_{e})^{2}+a^{2}\right)+Q(x+r_{e})+\big{(}k+\frac{1}{2}\big{)}E_{-}a&=\omega x^{2}+\tau_{-}+2\omega r_{e}x+Qx\\ &=\tau_{-}+\mu_{-}x+\omega x^{2}.\end{split} (5.15)

We consider the exterior region outside the event horizon, i.e. r(re,+)r\in(r_{e},+\infty). For convenience, we define the variable x:=rrex:=r-r_{e} and the function

F(x):=X(x+re),x(0,+).F_{-}(x):=X(x+r_{e}),\;x\in(0,+\infty). (5.16)

Let

α2=(ω(r2+a2)+Qr+(k+12)Ea)Δ(r),β2=λrΔ(r),γ2=η+Δ(r),\begin{split}\alpha_{2}&=\frac{\left(\omega(r^{2}+a^{2})+Qr+\big{(}k+\frac{1}{2}\big{)}E_{-}a\right)}{\Delta_{-}(r)},\\ \beta_{2}&=\frac{\lambda r}{\sqrt{\Delta_{-}(r)}},\\ \gamma_{2}&=\frac{\eta_{+}}{\sqrt{\Delta_{-}(r)}},\end{split} (5.17)

then according to (5.11) and (5.15), it follows that

xF1(x)=rX1|x+re=iα2(x+re)X1(x+re)+(iβ2(x+re)+γ2(x+re))X2(x+re)=i(τ+μx+ωx2)x2B(x+re)F1(x)+(iλ(x+re)x2B(x+re)+η+x2B(x+re))F2(x),\begin{split}\partial_{x}{F_{-}}_{1}(x)&=\partial_{r}X_{1}\Big{|}_{x+r_{e}}\\ &=i\alpha_{2}(x+r_{e})X_{1}(x+r_{e})+\left(i\beta_{2}(x+r_{e})+\gamma_{2}(x+r_{e})\right)X_{2}(x+r_{e})\\ &=i\frac{(\tau_{-}+\mu_{-}x+\omega x^{2})}{x^{2}B_{-}(x+r_{e})}F_{1}(x)+\left(\frac{i\lambda(x+r_{e})}{\sqrt{x^{2}B_{-}(x+r_{e})}}+\frac{\eta_{+}}{\sqrt{x^{2}B_{-}(x+r_{e})}}\right)F_{2}(x),\end{split} (5.18)

i.e.

xF1(x)=(iτx2B(x+re)+iμxB(x+re)+iωB(x+re))F1(x)+(η++iλrexB(x+re)+iλB(x+re))F2(x).\begin{split}\partial_{x}{F_{-}}_{1}(x)&=\left(\frac{i\tau_{-}}{x^{2}B_{-}(x+r_{e})}+\frac{i\mu_{-}}{xB_{-}(x+r_{e})}+\frac{i\omega}{B_{-}(x+r_{e})}\right){F_{-}}_{1}(x)\\ &\qquad+\left(\frac{\eta_{+}+i\lambda r_{e}}{x\sqrt{B_{-}(x+r_{e})}}+\frac{i\lambda}{\sqrt{B_{-}(x+r_{e})}}\right){F_{-}}_{2}(x).\end{split} (5.19)

In a similar way,

xF2(x)=rX2|x+re=(iβ2(x+re)+γ2(x+re))X1(x+re)iα2(x+re)X2(x+re)=(iλ(x+re)x2B(x+re)+η+x2B(x+re))F1(x)i(τ+μx+ωx2)x2B(x+re)F2(x)=(η+iλrexB(x+re)iλB(x+re))F1(x)+(iτx2B(x+re)+iμxB(x+re)+iωB(x+re))F2(x).\begin{split}\partial_{x}{F_{-}}_{2}(x)&=\partial_{r}X_{2}\Big{|}_{x+r_{e}}\\ &=\left(-i\beta_{2}(x+r_{e})+\gamma_{2}(x+r_{e})\right)X_{1}(x+r_{e})-i\alpha_{2}(x+r_{e})X_{2}(x+r_{e})\\ &=\left(\frac{-i\lambda(x+r_{e})}{\sqrt{x^{2}B_{-}(x+r_{e})}}+\frac{\eta_{+}}{\sqrt{x^{2}B_{-}(x+r_{e})}}\right){F_{-}}_{1}(x)-i\frac{(\tau_{-}+\mu_{-}x+\omega x^{2})}{x^{2}B_{-}(x+r_{e})}{F_{-}}_{2}(x)\\ &=\left(\frac{\eta_{+}-i\lambda r_{e}}{x\sqrt{B_{-}(x+r_{e})}}-\frac{i\lambda}{\sqrt{B_{-}(x+r_{e})}}\right){F_{-}}_{1}(x)\\ &\qquad+\left(\frac{-i\tau_{-}}{x^{2}B_{-}(x+r_{e})}+\frac{-i\mu_{-}}{xB_{-}(x+r_{e})}+\frac{-i\omega}{B_{-}(x+r_{e})}\right){F_{-}}_{2}(x).\end{split} (5.20)

After rewriting it in the matrix form, for x(0,+)x\in(0,+\infty), F(x)F_{-}(x) satisfies the following equation

xF=(iτx2B(x+re)+iμxB(x+re)+iωB(x+re)η++iλrexB(x+re)+iλB(x+re)η+iλrexB(x+re)iλB(x+re)iτx2B(x+re)+iμxB(x+re)+iωB(x+re))F.\partial_{x}F_{-}=\begin{pmatrix}\frac{i\tau_{-}}{x^{2}B_{-}(x+r_{e})}+\frac{i\mu_{-}}{xB_{-}(x+r_{e})}+\frac{i\omega}{B_{-}(x+r_{e})}&\frac{\eta_{+}+i\lambda r_{e}}{x\sqrt{B_{-}(x+r_{e})}}+\frac{i\lambda}{\sqrt{B_{-}(x+r_{e})}}\\ \frac{\eta_{+}-i\lambda r_{e}}{x\sqrt{B_{-}(x+r_{e})}}-\frac{i\lambda}{\sqrt{B_{-}(x+r_{e})}}&\frac{-i\tau_{-}}{x^{2}B_{-}(x+r_{e})}+\frac{-i\mu_{-}}{xB_{-}(x+r_{e})}+\frac{-i\omega}{B_{-}(x+r_{e})}\end{pmatrix}F_{-}. (5.21)

Now we define the function W(x)W_{-}(x) as

W(x):=TF(x),x(0,+),W_{-}(x):=T\cdot F_{-}(x),\;x\in(0,+\infty), (5.22)

where TT is the unitary matrix

T=(1212i2i2),T=\begin{pmatrix}\frac{-1}{\sqrt{2}}&\frac{-1}{\sqrt{2}}\\ \frac{-i}{\sqrt{2}}&\frac{i}{\sqrt{2}}\end{pmatrix}, (5.23)

then for any x(0,+)x\in(0,+\infty) we have

|W(x)|=|F(x)|.\left|W_{-}(x)\right|=\left|F_{-}(x)\right|. (5.24)

Since FF_{-} satisfies the equation (5.21), it follows that

xW1(x)=12(xF1+xF2)=12[(iτx2B+iμxB+iωB)F1+(η++iλrexB+iλB)F2+(η+iλrexBiλB)F1(iτx2B+iμxB+iωB)F2].\begin{split}\partial_{x}{W_{-}}_{1}(x)&=-\frac{1}{\sqrt{2}}\left(\partial_{x}{F_{-}}_{1}+\partial_{x}{F_{-}}_{2}\right)\\ &=-\frac{1}{\sqrt{2}}\Bigg{[}\left(\frac{i\tau_{-}}{x^{2}B_{-}}+\frac{i\mu_{-}}{xB_{-}}+\frac{i\omega}{B_{-}}\right){F_{-}}_{1}+\left(\frac{\eta_{+}+i\lambda r_{e}}{x\sqrt{B_{-}}}+\frac{i\lambda}{\sqrt{B_{-}}}\right){F_{-}}_{2}\\ &\qquad+\left(\frac{\eta_{+}-i\lambda r_{e}}{x\sqrt{B_{-}}}-\frac{i\lambda}{\sqrt{B_{-}}}\right){F_{-}}_{1}-\left(\frac{i\tau_{-}}{x^{2}B_{-}}+\frac{i\mu_{-}}{xB_{-}}+\frac{i\omega}{B_{-}}\right){F_{-}}_{2}\Bigg{]}.\end{split} (5.25)

Therefore, substituting (5.22), we obtain that

xW1(x)=η+xB12(F1+F2)i2(τx2B+μxB+ωB)(F1F2)i2(λrexB+λB)(F2F1)=η+xBW1(x)+(τx2B+μxB+ωBλrexBλB)W2(x).\begin{split}\partial_{x}{W_{-}}_{1}(x)&=\frac{\eta_{+}}{x\sqrt{B_{-}}}\cdot\frac{-1}{\sqrt{2}}\left({F_{-}}_{1}+{F_{-}}_{2}\right)-\frac{i}{\sqrt{2}}\left(\frac{\tau_{-}}{x^{2}B_{-}}+\frac{\mu_{-}}{xB_{-}}+\frac{\omega}{B_{-}}\right)\left({F_{-}}_{1}-{F_{-}}_{2}\right)\\ &\qquad-\frac{i}{\sqrt{2}}\left(\frac{\lambda r_{e}}{x\sqrt{B_{-}}}+\frac{\lambda}{\sqrt{B_{-}}}\right)\left({F_{-}}_{2}-{F_{-}}_{1}\right)\\ &=\frac{\eta_{+}}{x\sqrt{B_{-}}}{W_{-}}_{1}(x)+\left(\frac{\tau_{-}}{x^{2}B_{-}}+\frac{\mu_{-}}{xB_{-}}+\frac{\omega}{B_{-}}-\frac{\lambda r_{e}}{x\sqrt{B_{-}}}-\frac{\lambda}{\sqrt{B_{-}}}\right){W_{-}}_{2}(x).\end{split} (5.26)

Similarly,

xW2(x)=i2(xF1xF2)=i2[(iτx2B+iμxB+iωB)F1+(η++iλrexB+iλB)F2(η+iλrexBiλB)F1+(iτx2B+iμxB+iωB)F2]=i2η+xB(F1F2)+12(τx2B+μxB+ωB)(F1+F2)+12(λrexB+λB)(F1+F2)=(τx2B+μxB+ωBλrexBλB)W1(x)+η+xBW2(x).\begin{split}\partial_{x}{W_{-}}_{2}(x)&=\frac{-i}{\sqrt{2}}\left(\partial_{x}{F_{-}}_{1}-\partial_{x}{F_{-}}_{2}\right)\\ &=\frac{-i}{\sqrt{2}}\Bigg{[}\left(\frac{i\tau_{-}}{x^{2}B_{-}}+\frac{i\mu_{-}}{xB_{-}}+\frac{i\omega}{B_{-}}\right){F_{-}}_{1}+\left(\frac{\eta_{+}+i\lambda r_{e}}{x\sqrt{B_{-}}}+\frac{i\lambda}{\sqrt{B_{-}}}\right){F_{-}}_{2}\\ &\qquad-\left(\frac{\eta_{+}-i\lambda r_{e}}{x\sqrt{B_{-}}}-\frac{i\lambda}{\sqrt{B_{-}}}\right){F_{-}}_{1}+\left(\frac{i\tau_{-}}{x^{2}B_{-}}+\frac{i\mu_{-}}{xB_{-}}+\frac{i\omega}{B_{-}}\right){F_{-}}_{2}\Bigg{]}\\ &=\frac{-i}{\sqrt{2}}\cdot\frac{-\eta_{+}}{x\sqrt{B_{-}}}\left({F_{-}}_{1}-{F_{-}}_{2}\right)+\frac{1}{\sqrt{2}}\left(\frac{\tau_{-}}{x^{2}B_{-}}+\frac{\mu_{-}}{xB_{-}}+\frac{\omega}{B_{-}}\right)\left({F_{-}}_{1}+{F_{-}}_{2}\right)\\ &\qquad+\frac{1}{\sqrt{2}}\left(\frac{\lambda r_{e}}{x\sqrt{B_{-}}}+\frac{\lambda}{\sqrt{B_{-}}}\right)\left({F_{-}}_{1}+{F_{-}}_{2}\right)\\ &=\left(\frac{-\tau_{-}}{x^{2}B_{-}}+\frac{-\mu_{-}}{xB_{-}}+\frac{-\omega}{B_{-}}-\frac{\lambda r_{e}}{x\sqrt{B_{-}}}-\frac{\lambda}{\sqrt{B_{-}}}\right){W_{-}}_{1}(x)+\frac{-\eta_{+}}{x\sqrt{B_{-}}}{W_{-}}_{2}(x).\end{split} (5.27)

Thus, W(x)W_{-}(x) satisfies the following equation

xW(x)=(η+xBτx2B+μxB+ωBλre+λxxBτx2BμxBωBλre+λxxBη+xB)W(x),\partial_{x}W_{-}(x)=\begin{pmatrix}\frac{\eta_{+}}{x\sqrt{B_{-}}}&\frac{\tau_{-}}{x^{2}B_{-}}+\frac{\mu_{-}}{xB_{-}}+\frac{\omega}{B_{-}}-\frac{\lambda r_{e}+\lambda x}{x\sqrt{B_{-}}}\\ -\frac{\tau_{-}}{x^{2}B_{-}}-\frac{\mu_{-}}{xB_{-}}-\frac{\omega}{B_{-}}-\frac{\lambda r_{e}+\lambda x}{x\sqrt{B_{-}}}&\frac{-\eta_{+}}{x\sqrt{B_{-}}}\end{pmatrix}W_{-}(x), (5.28)

where BB(x+re)B_{-}\triangleq B_{-}(x+r_{e}).

For x(0,1]x\in(0,1], we take a new variable substitution z:=1xz:=\frac{1}{x}, z[1,+)z\in[1,+\infty). Define the function

V(z):=W(1z),z[1,+).V_{-}(z):=W_{-}\left(\frac{1}{z}\right),\;z\in[1,+\infty). (5.29)

Thus,

zV(z)=1z2W|1z.\partial_{z}V_{-}(z)=-\frac{1}{z^{2}}W^{\prime}_{-}\Big{|}_{\frac{1}{z}}. (5.30)

Substituting (5.28), we have

zV(z)=1z2(E~11(z)E~12(z)E~21(z)E~22(z))W(1z),\partial_{z}V_{-}(z)=-\frac{1}{z^{2}}\begin{pmatrix}\widetilde{E_{-}}_{11}(z)&\widetilde{E_{-}}_{12}(z)\\ \widetilde{E_{-}}_{21}(z)&\widetilde{E_{-}}_{22}(z)\end{pmatrix}W_{-}\left(\frac{1}{z}\right), (5.31)

where

E~11(z)=η+zB(1z+re),E~12(z)=τz2B(1z+re)+μzB(1z+re)+ωB(1z+re)λrezB(1z+re)λB(1z+re),E~21(z)=τz2B(1z+re)μzB(1z+re)ωB(1z+re)λrezB(1z+re)λB(1z+re),E~22(z)=η+zB(1z+re).\begin{split}\widetilde{E_{-}}_{11}(z)&=\frac{\eta_{+}z}{\sqrt{B_{-}\left(\frac{1}{z}+r_{e}\right)}},\\ \widetilde{E_{-}}_{12}(z)&=\frac{\tau_{-}z^{2}}{B_{-}\left(\frac{1}{z}+r_{e}\right)}+\frac{\mu_{-}z}{B_{-}\left(\frac{1}{z}+r_{e}\right)}+\frac{\omega}{B_{-}\left(\frac{1}{z}+r_{e}\right)}-\frac{\lambda r_{e}z}{\sqrt{B_{-}\left(\frac{1}{z}+r_{e}\right)}}\\ &\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad-\frac{\lambda}{\sqrt{B_{-}\left(\frac{1}{z}+r_{e}\right)}},\\ \widetilde{E_{-}}_{21}(z)&=-\frac{\tau_{-}z^{2}}{B_{-}\left(\frac{1}{z}+r_{e}\right)}-\frac{\mu_{-}z}{B_{-}\left(\frac{1}{z}+r_{e}\right)}-\frac{\omega}{B_{-}\left(\frac{1}{z}+r_{e}\right)}-\frac{\lambda r_{e}z}{\sqrt{B_{-}\left(\frac{1}{z}+r_{e}\right)}}\\ &\qquad\quad\quad\qquad\qquad\qquad\;\;\qquad\qquad\qquad\qquad-\frac{\lambda}{\sqrt{B_{-}\left(\frac{1}{z}+r_{e}\right)}},\\ \widetilde{E_{-}}_{22}(z)&=-\frac{\eta_{+}z}{\sqrt{B_{-}\left(\frac{1}{z}+r_{e}\right)}}.\end{split} (5.32)

By sorting (5.31), the function V(z)V_{-}(z) shall satisfy the following equation

zV(z)=(E11(z)E12(z)E21(z)E22(z))V(z),z[1,+),\partial_{z}V_{-}(z)=\begin{pmatrix}{E_{-}}_{11}(z)&{E_{-}}_{12}(z)\\ {E_{-}}_{21}(z)&{E_{-}}_{22}(z)\end{pmatrix}V_{-}(z),\;z\in[1,+\infty), (5.33)

where

E11(z)=η+zB(1z+re),E12(z)=τB(1z+re)μzB(1z+re)ωz2B(1z+re)+λrezB(1z+re)+λz2B(1z+re),E21(z)=τB(1z+re)+μzB(1z+re)+ωz2B(1z+re)+λrezB(1z+re)+λz2B(1z+re),E22(z)=η+zB(1z+re).\begin{split}{E_{-}}_{11}(z)&=\frac{-\eta_{+}}{z\sqrt{B_{-}\left(\frac{1}{z}+r_{e}\right)}},\\ {E_{-}}_{12}(z)&=-\frac{\tau_{-}}{B_{-}\left(\frac{1}{z}+r_{e}\right)}-\frac{\mu_{-}}{zB_{-}\left(\frac{1}{z}+r_{e}\right)}-\frac{\omega}{z^{2}B_{-}\left(\frac{1}{z}+r_{e}\right)}+\frac{\lambda r_{e}}{z\sqrt{B_{-}\left(\frac{1}{z}+r_{e}\right)}}\\ &\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad+\frac{\lambda}{z^{2}\sqrt{B_{-}\left(\frac{1}{z}+r_{e}\right)}},\\ {E_{-}}_{21}(z)&=\frac{\tau_{-}}{B_{-}\left(\frac{1}{z}+r_{e}\right)}+\frac{\mu_{-}}{zB_{-}\left(\frac{1}{z}+r_{e}\right)}+\frac{\omega}{z^{2}B_{-}\left(\frac{1}{z}+r_{e}\right)}+\frac{\lambda r_{e}}{z\sqrt{B_{-}\left(\frac{1}{z}+r_{e}\right)}}\\ &\qquad\quad\;\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad+\frac{\lambda}{z^{2}\sqrt{B_{-}\left(\frac{1}{z}+r_{e}\right)}},\\ {E_{-}}_{22}(z)&=\frac{\eta_{+}}{z\sqrt{B_{-}\left(\frac{1}{z}+r_{e}\right)}}.\end{split} (5.34)

Let M(re,+)M_{(r_{e},+\infty)} be the time slice in the extreme Kerr-Newman-AdS spacetime satisfying {t=constant}\left\{t=\text{constant}\right\} and r>rer>r_{e}. With the above preparations, we can now prove the following necessary condition for ω\omega:

Theorem 5.1.

Let Ψ\Psi be the nontrivial solution of the Dirac equation

(𝒟+ieαA(eα)+iλ)Ψ=0\big{(}\mathscr{D}+ie^{\alpha}A(e_{\alpha})+i\lambda\big{)}\Psi=0 (5.35)

on the exterior region r>rer>r_{e} in the extreme Kerr-Newman-AdS spacetime and it is of the form

Ψ=S1Φ,\Psi={S_{-}}^{-1}\Phi, (5.36)

where

Φ=ei(ωt+(k+12)φ)(X(r)Y(θ)X+(r)Y+(θ)X+(r)Y(θ)X(r)Y+(θ)),\Phi=e^{-i\left(\omega t+(k+\frac{1}{2})\varphi\right)}\begin{pmatrix}X_{-}(r)Y_{-}(\theta)\\ X_{+}(r)Y_{+}(\theta)\\ X_{+}(r)Y_{-}(\theta)\\ X_{-}(r)Y_{+}(\theta)\\ \end{pmatrix}, (5.37)

kk\in\mathbb{Z} and SS_{-} is the following diagonal matrix

S=Δ(r)14((r+iacosθ)120000(r+iacosθ)120000(riacosθ)120000(riacosθ)12).S_{-}=\Delta_{-}(r)^{\frac{1}{4}}\begin{pmatrix}(r+ia\cos\theta)^{\frac{1}{2}}&0&0&0\\ 0&(r+ia\cos\theta)^{\frac{1}{2}}&0&0\\ 0&0&(r-ia\cos\theta)^{\frac{1}{2}}&0\\ 0&0&0&(r-ia\cos\theta)^{\frac{1}{2}}\\ \end{pmatrix}. (5.38)

If there exists p[1,+)p\in[1,+\infty) such that

ΨLp(M(re,+)),\Psi\in L^{p}\left(M_{(r_{e},+\infty)}\right), (5.39)

then ω\omega satisfies the following equality

ω(re2+a2)+(k+12)Ea+reQ=0.\omega\left(r_{e}^{2}+a^{2}\right)+\left(k+\frac{1}{2}\right)E_{-}a+r_{e}Q=0. (5.40)
Proof.

Assume that

τ=ω(re2+a2)+(k+12)Ea+reQ0.\tau_{-}=\omega\left(r_{e}^{2}+a^{2}\right)+\left(k+\frac{1}{2}\right)E_{-}a+r_{e}Q\neq 0. (5.41)

We rewrite the equation (5.33) as follows

zV(z)=(C+R(z))V(z),z[1,+),\partial_{z}V_{-}(z)=\big{(}C_{-}+R_{-}(z)\big{)}V_{-}(z),\;z\in[1,+\infty), (5.42)

where

C=(0τB(re)τB(re)0)C_{-}=\begin{pmatrix}0&-\frac{\tau}{B_{-}(r_{e})}\\ \frac{\tau}{B_{-}(r_{e})}&0\end{pmatrix} (5.43)

is a constant matrix and the 4 components of the 2×22\times 2 matrix R(z)R_{-}(z) are

R11(z)=η+zB(1z+re),R12(z)=(τB(re)τB(1z+re))μzB(1z+re)ωz2B(1z+re)+λrezB(1z+re)+λz2B(1z+re),R21(z)=(τB(1z+re)τB(re))+μzB(1z+re)+ωz2B(1z+re)+λrezB(1z+re)+λz2B(1z+re),R22(z)=η+zB(1z+re).\begin{split}{R_{-}}_{11}(z)&=\frac{-\eta_{+}}{z\sqrt{B_{-}\left(\frac{1}{z}+r_{e}\right)}},\\ {R_{-}}_{12}(z)&=\left(\frac{\tau_{-}}{B_{-}(r_{e})}-\frac{\tau_{-}}{B_{-}\left(\frac{1}{z}+r_{e}\right)}\right)-\frac{\mu_{-}}{zB_{-}\left(\frac{1}{z}+r_{e}\right)}-\frac{\omega}{z^{2}B_{-}\left(\frac{1}{z}+r_{e}\right)}\\ &\qquad\qquad+\frac{\lambda r_{e}}{z\sqrt{B_{-}\left(\frac{1}{z}+r_{e}\right)}}+\frac{\lambda}{z^{2}\sqrt{B_{-}\left(\frac{1}{z}+r_{e}\right)}},\\ {R_{-}}_{21}(z)&=\left(\frac{\tau_{-}}{B_{-}\left(\frac{1}{z}+r_{e}\right)}-\frac{\tau_{-}}{B_{-}(r_{e})}\right)+\frac{\mu_{-}}{zB_{-}\left(\frac{1}{z}+r_{e}\right)}+\frac{\omega}{z^{2}B_{-}\left(\frac{1}{z}+r_{e}\right)}\\ &\qquad\qquad+\frac{\lambda r_{e}}{z\sqrt{B_{-}\left(\frac{1}{z}+r_{e}\right)}}+\frac{\lambda}{z^{2}\sqrt{B_{-}\left(\frac{1}{z}+r_{e}\right)}},\\ {R_{-}}_{22}(z)&=\frac{\eta_{+}}{z\sqrt{B_{-}\left(\frac{1}{z}+r_{e}\right)}}.\end{split} (5.44)

Since τ0\tau_{-}\neq 0, we have

detC=0τ2B(re)2>0.\det C_{-}=0-\frac{-\tau_{-}^{2}}{B_{-}(r_{e})^{2}}>0. (5.45)

Moreover, according to the expressions (5.44) of Rij(z){R_{-}}_{ij}(z), it is no hard to see that:

(i) Rij(z){R^{\prime}_{-}}_{ij}(z) is integrable on [1,+)[1,+\infty)上是可积的;

(ii)

Rij(z)0, 1i,j2{R_{-}}_{ij}(z)\longrightarrow 0,\;1\leq i,j\leq 2 (5.46)

as z+z\rightarrow+\infty.

(iii) tr(C+R)=0\text{tr}\,(C_{-}+R_{-})=0.

Since Ψ\Psi is nontrivial, we have V0V_{-}\neq 0 (otherwise X=0X=0 and Ψ=0\Psi=0). Therefore, by Lemma 4.1 (or c.f. Lemma 3.1 in [24]), there exists a constant δ>0\delta_{-}>0 such that for all z[1,+)z\in[1,+\infty),

|V(z)|δ>0,|V_{-}(z)|\geq\delta_{-}>0, (5.47)

i.e. for any x(0,1]x\in(0,1] we have

|W(x)|δ>0.|W_{-}(x)|\geq\delta_{-}>0. (5.48)

Since

|W(x)|=|F(x)|,|W_{-}(x)|=|F_{-}(x)|, (5.49)

we have

|X(r)|δ>0|X(r)|\geq\delta_{-}>0 (5.50)

for r(re,re+1]r\in(r_{e},r_{e}+1].

On the other hand, the integrability condition

ΨLp(M(re,+))\Psi\in L^{p}\left(M_{(r_{e},+\infty)}\right) (5.51)

implies that

M(re,+)(1UΔ(r)12)p2|Y|p|X|pUVsin2θE2Δ(r)Δ(θ)drdθdφ<.\int_{M_{(r_{e},+\infty)}}\left(\frac{1}{\sqrt{U}}\Delta_{-}(r)^{-\frac{1}{2}}\right)^{\frac{p}{2}}|Y|^{p}|X|^{p}\sqrt{\frac{UV_{-}\sin^{2}\theta}{E_{-}^{2}\Delta_{-}(r)\Delta_{-}(\theta)}}dr\,d\theta\,d\varphi<\infty. (5.52)

Moreover, since there exists a constant C>0C>0 such that |Y|2=|Y+|2+|Y|2>C|Y|^{2}=|Y_{+}|^{2}+|Y_{-}|^{2}>C on [π4,π2][\frac{\pi}{4},\frac{\pi}{2}] (otherwise Ψ0\Psi\equiv 0), we have

re+π4π202π(1UΔ(r)12)p2|X|pUVsin2θE2Δ(r)Δ(θ)drdθdφ<.\int_{r_{e}}^{+\infty}\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}\int_{0}^{2\pi}\left(\frac{1}{\sqrt{U}}\Delta_{-}(r)^{-\frac{1}{2}}\right)^{\frac{p}{2}}|X|^{p}\sqrt{\frac{UV_{-}\sin^{2}\theta}{E_{-}^{2}\Delta_{-}(r)\Delta_{-}(\theta)}}dr\,d\theta\,d\varphi<\infty. (5.53)

Combining with (5.50), we can infer that there exists a constant C1>0C_{1}>0 such that

M(re,+)|Ψ|pdV>C1rere+11(rre)p21rredr=+,\int_{M_{(r_{e},+\infty)}}|\Psi|^{p}dV>C_{1}\int_{r_{e}}^{r_{e}+1}\frac{1}{(r-r_{e})^{\frac{p}{2}}}\cdot\frac{1}{r-r_{e}}dr=+\infty, (5.54)

which is a contraction! Hence we have

τ=ω(re2+a2)+(k+12)Ea+reQ=0.\tau_{-}=\omega\left(r_{e}^{2}+a^{2}\right)+\left(k+\frac{1}{2}\right)E_{-}a+r_{e}Q=0. (5.55)

Q.E.D.

By the similar proceduce as in the proof of Corollary 4.1 in Section 4, combining with the equality (5.40) obtained in Theorem 5.1, we can further obtain the necessary conditions for the existence of nontrivial LpL^{p} integrable time-periodic solutions of the Dirac equation (5.1) in the extreme Kerr-Newman-AdS spacetime.

Let ζ1\zeta_{1}, ζ2\zeta_{2} and ζ3\zeta_{3} be the following constants

ζ1:=B(re)>0,ζ2:=B(re),ζ3:=ωa2+(k+12)Eare+ωre,\begin{split}\zeta_{1}&:=B_{-}(r_{e})>0,\\ \zeta_{2}&:=B^{\prime}_{-}(r_{e}),\\ \zeta_{3}&:=\frac{\omega a^{2}+\left(k+\frac{1}{2}\right)E_{-}a}{-r_{e}}+\omega r_{e},\end{split} (5.56)

where

(rre)2B(r)=Δ(r).(r-r_{e})^{2}B_{-}(r)=\Delta_{-}(r). (5.57)
Corollary 5.1.

Let Ψ\Psi be a nontrivial time-periodic solution of the Dirac equation (5.1) taking (5.36). If there exists p[1,+)p\in[1,+\infty) such that

ΨLp(M(re,+)),\Psi\in L^{p}\left(M_{(r_{e},+\infty)}\right), (5.58)

then at least one of the following three conditions holds:

(i) (η+2+λ2re2)ζ1ζ320\left(\eta_{+}^{2}+\lambda^{2}r_{e}^{2}\right)\zeta_{1}-\zeta_{3}^{2}\geq 0;

(ii) ζ2ζ32ωζ1=0\zeta_{2}\zeta_{3}-2\omega\zeta_{1}=0;

(iii) reζ2ζ3+2ζ1ζ3=0r_{e}\zeta_{2}\zeta_{3}+2\zeta_{1}\zeta_{3}=0.

Moreover, if η+=0\eta_{+}=0, then at least one of the conditions (i) and (iii) holds; if λ=0\lambda=0, then at least one of the conditions (i) and (ii) holds. In particular, if λ=η+=0\lambda=\eta_{+}=0, then Q=2ωreQ=-2\omega r_{e}.

6. Conclusion and future work

In this paper, we study the nonexistence of nontrivial time-periodic solutions of the Dirac equation in Kerr-Newman-(A)dS spacetime. For non-extreme Kerr-Newman-dS spacetime, we prove that there is no LpL^{p} integrable Dirac particle for arbitrary (λ,p)×[2,+)(\lambda,p)\in\hbox{\bb R}\times[2,+\infty). For the extreme Kerr-Newman-dS and extreme Kerr-Newman-AdS spacetime, we prove that if the Dirac equation has a nontrivial LpL^{p} integrable time-periodic solution, then the energy eigenvalue ω\omega and the parameters of the spacetime should satisfy the following equations

ω(r2+a2)+(k+12)E+a+Qr=0,ω(re2+a2)+(k+12)Ea+Qre=0,\begin{split}\omega(r_{-}^{2}+a^{2})+\left(k+\frac{1}{2}\right)E_{+}a+Qr_{-}&=0,\\ \omega(r_{e}^{2}+a^{2})+\left(k+\frac{1}{2}\right)E_{-}a+Qr_{e}&=0,\end{split} (6.1)

respectively. Furthermore, by (6.1), we further show the necessary conditions for the existence of nontrivial LpL^{p} integrable time-periodic solutions of the Dirac equation. Combining with the existing works, we list the following problems to be further studied:

(1): If there exists nontrivial LpL^{p} integrable time-periodic solution of the Dirac equation in the exterior region of the non-extreme Kerr-Newman-dS spacetime for 1<p<21<p<2 ?

(2): If there exists nontrivial normalizable time-periodic Dirac particle with mass less than or equal to κ2\frac{\kappa}{2} ?


References

  • [1] S Akcay and R A. Matzner. The Kerr-de Sitter universe. Classical and Quantum Gravity, 28:085012, 2011.
  • [2] H Bahouri, J-Y Chemin, and R Danchin. Fourier analysis and nonlinear partial differential equations. Springer Berlin, Heidelberg, 2011.
  • [3] F Belgiorno and S L. Cacciatori. The absence of normalizable time-periodic solutions for the Dirac equation in the Kerr-Newman-dS black hole background. Journal of Physics A: Mathematical and Theoretical, 42(13):135207, 2009.
  • [4] F Belgiorno and S L. Cacciatori. The Dirac equation in Kerr-Newman-AdS black hole background. Journal of Mathematical Physics, 51:033517, 2010.
  • [5] K Bichteler. Global existence of spin structures for gravitational fields. Journal of Mathematical Physics, 9:813–815, 1968.
  • [6] R G Cai, L Li, L F Li, and R Q Yang. Introduction to holographic superconductor models. Science China Physics, Mechanics & Astronomy, 58:1–46, 2015.
  • [7] S Chandrasekhar. The solution of Dirac’s equation in Kerr geometry. Proceedings of Royal Society of London Series A-Mathematical and Physics Sciences, 349:571–575, 1976.
  • [8] S Chandrasekhar. The Mathematical theory of black hole: Revised reprint of the 1983 original. The Clarendon Press, Oxford University Press, New York, 1992.
  • [9] E de Faria and W de Melo. Mathematical aspects of quantum field theory. Cambridge University Press, 2010.
  • [10] F Finster, J Smoller, and S T. Yau. Non-existence of time-periodic solutions of the Dirac equation in a Reissner-Nordström black hole background. Journal of Mathematical Physics, 41(4):2173–2194, 2000.
  • [11] F Finster, J Smoller, and S T. Yau. Non-existence of time-periodic solutions of the Dirac equation in an axisymmetric black hole geometry. Communications on Pure and Applied Mathematics, 53:902–929, 2000.
  • [12] T Frankel. The geometry of physics: An introduction. Cambridge University Press, 2012.
  • [13] B C. Hall. Quantum theory for mathematicians. Springer New York, 2013.
  • [14] S Hassani. Mathematical physics: A Modern introduction to its foundations. Springer Cham, 2013.
  • [15] S Helgason. Differential geometry and symmetric spaces. Academic Press, New York, 1962.
  • [16] O Hijazi. Spectral properties of the Dirac operator and geometrical structures. World Scientific, Colombia, 2001.
  • [17] N Kamran and R. G. McLenaghan. Separation of variables and symmetry operators for the neutrino and Dirac equations in the space-times admitting a two-parameter abelian orthogonally transitive isometry group and a pair of shearfree geodesic null congruences. Journal of Mathematical Physics, 25(4):1019–1027, 1984.
  • [18] S Kobayashi and K Nomizu. Foundations of differential geometry, Volume 1. Interscience, New York, 1963.
  • [19] H B. Lawson and M-L. Michlsohn. Spin geometry. Princeton University Press, Princeton, NJ, 1989.
  • [20] C.B. Liang and B. Zhou. Differential geometry and general relativity, Volume 1. Springer Singapore, 2023.
  • [21] J Natário. An introduction to mathematical relativity. Springer Cham, 2021.
  • [22] B O’Neill. The geometry of Kerr black holes. A K Peters, Ltd, Wellesley, MA, 1995.
  • [23] D Page. Dirac equation around a charged, rotating black hole. Physical Review D, 14(6):1509–1510, 1976.
  • [24] H Schmid. Bound state solutions of the Dirac equation in the extreme Kerr geometry. Mathematische Nachrichten, 274-275:117–129, 2004.
  • [25] G Teschl. Ordinary differential equations and dynamic systems. American Mathematical Society, Rhode Island, 2012.
  • [26] W Tu. Differential geometry: Connections, curvature, and characteristic class. Springer Cham, 2017.
  • [27] R M. Wald. General relativity. The University of Chicago Press, Chicago, 1984.
  • [28] W Walter. Ordinary differential equations. Springer New York, New York, 1998.
  • [29] Y H. Wang and X Zhang. Nonexistence of time-periodic solutions of the Dirac equation in non-extreme Kerr-Newman-AdS spacetime. Science China Mathematics, 61(1):73–82, 2018.
  • [30] S Weinberg. Gravitation and cosmology: Principles and applications of the general theory of relativity. Wiley, New York, 1972.
  • [31] X Zhang. A new quasi-local mass and positivity. Acta Mathematica Sinica, English Series, 24:881–890, 2008.