This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Nonequilibrium kinetic freeze-out properties in relativistic heavy ion collisions from energies employed at the RHIC beam energy scan to those available at the LHC

Jia Chen Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China Key Laboratory of Particle Physics and Particle Irradiation of Ministry of Education, Shandong University, Qingdao, Shandong, 266237, China    Jian Deng Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China Key Laboratory of Particle Physics and Particle Irradiation of Ministry of Education, Shandong University, Qingdao, Shandong, 266237, China    Zebo Tang State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui, 230026, China    Zhangbu Xu Brookhaven National Laboratory, Upton, New York, 11973, USA    Li Yi [email protected] Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China Key Laboratory of Particle Physics and Particle Irradiation of Ministry of Education, Shandong University, Qingdao, Shandong, 266237, China
Abstract

In this paper, we investigate the kinetic freeze-out properties in relativistic heavy ion collisions at different collision energies. We present a study of standard Boltzmann-Gibbs Blast-Wave (BGBW) fits and Tsallis Blast-Wave (TBW) fits performed on the transverse momentum spectra of identified hadrons produced in Au + Au collisions at collision energies of sNN=\sqrt{s_{\rm{NN}}}= 7.7 - 200 GeV at the Relativistic Heavy Ion Collider (RHIC), and in Pb + Pb collisions at collision energies of sNN=\sqrt{s_{\rm{NN}}}= 2.76 and 5.02 TeV at the Large Hadron Collider (LHC). The behavior of strange and multi-strange particles is also investigated. We found that the TBW model describes data better than the BGBW one overall, and the contrast is more prominent as the collision energy increases as the degree of non-equilibrium of the produced system is found to increase. From TBW fits, the kinetic freeze-out temperature at the same centrality shows a weak dependence of collision energy between 7.7 and 39 GeV, while it decreases as collision energy continues to increase up to 5.02 TeV. The radial flow is found to be consistent with zero in peripheral collisions at RHIC energies but sizable at LHC energies and central collisions at all RHIC energies. We also observed that the strange hadrons, with higher temperature and similar radial flow, approach equilibrium more quickly from peripheral to central collisions than light hadrons. The dependence of temperature and flow velocity on non-equilibrium parameter (q1q-1) is characterized by two second-order polynomials. Both aa and dξd\xi from the polynomials fit, related to the influence of the system bulk viscosity, increase toward lower RHIC energies.

pacs:
25.75.-q, 25.75.Dw, 24.85.+p

I Introduction

Relativistic heavy ion collisions can create extreme hot and dense matter and reach a phase transition to Quark-Gluon Plasma (QGP). As QGP expands rapidly, its temperature drops and the system starts to enter the hadronic phase. Eventually the system reaches kinetic freeze-out when all particle interactions cease. The particle spectra are thus frozen, which carry information about system dynamics at that freeze-out and even earlier. Therefore, the study of differential transverse momentum (pTp_{T}) distributions of hadron particles is a useful tool to look into the evolution of the system, especially to extract system properties at its freeze-out phase space. The Boltzmann-Gibbs Blast-Wave (BGBW) model Schnedermann:1993ws ; Schnedermann:1994gc has been widely used to describe the produced system at kinetic freeze-out with its systemwise parameters characterizing the system radial flow velocity and temperature.

The BGBW model assumes that the produced system has reached local thermal equilibrium so that a Boltzmann distribution with a radial flow profile can be used to describe the particle spectra Schnedermann:1993ws . However, the equilibrium distribution can only describe the very limited low pTp_{T} spectra and is sensitive to the choice of a specific pTp_{T} range. Tsallis statistics was introduced later in the literature to describe the particle production for an extended pTp_{T} range in high energy collisions De:2007zza ; Wilk:2008ue ; Alberico:1999nh ; Osada:2008sw ; Biro:2003vz ; Bhattacharyya:2015hya . One advantage of those Tsallis statistical analyses compared to the Boltzmann-Gibbs statistical one is that a new parameter is introduced in the model to describe the degree of non-equilibrium in the system, which is especially important for pp+pp collisions Jiang:2013gxa and peripheral A+A collisions Tang:2008ud . It has been shown STAR:2004bgh ; Wilk:1999dr ; Wong:2015mba ; Urmossy:2011xk that hard processes dominate the particle production for pTp_{T} >\textgreater 1.5 GeV/cc and the relativistic hard scattering for pp+pp collisions leads to a transverse momentum distribution that resembles the Tsallis distribution. As pointed out in Ref. Wong:2015mba , the transverse momentum spectra of jets or the following hadron spectra from hard scattering satisfy a power law distribution, and the power index is closely related to the new degree of non-equilibrium parameter in Tsallis statistics. Ref. Wong:2015mba ; ALICE:2012aqc ; Urmossy:2014gpa ; Urmossy:2015kva ; Rybczynski:2014ura have depicted a synthesizing evolution from primary p+pp+p and peripheral A+A to central A+A collisions with the non-extensive statistical mechanical Tsallis distribution. A possible microcanonical generalization of the Tsallis distribution has been proposed Urmossy:2011xk which gives a good fit to data on fragmentation functions measured in e+ee^{+}e^{-} collisions for 0.01 \leqslant xx \leqslant 1.

In relativistic heavy-ion collisions, the system evolution is usually characterized by two stages of freeze-outs: the chemical freeze-out when further interactions (if any at all) do not alter the particle composition and the kinetic freeze-out when the momentum distribution of particles ceases to change. One could assume that the chemical and kinetic freeze-outs happen simultaneously at the hadronic and QGP phase boundary. At that moment, the system is at chemical and kinetic equilibrium with sudden freeze-out Broniowski:2001we . The short-lived resonances would decay and alter the kinetic spectra of the stable particles observed by experiments Mazeliauskas:2019ifr . However, direct measurements of resonance suppression in the experiments at RHIC STAR:2004bgh ; AggarwalPRC.84.034909 ; AbelevPRL.97.132301 and LHC AcharyaPRC.99.024905 are not compatible with such a scenario. At the other extreme, one could assume that the chemical and kinetic freeze-outs occur at very different times. The resonances created at chemical freeze-out would decay quickly but the system continues to evolve with elastic collisions among hadrons (e.g., π+πρ\pi^{+}\pi^{-}\leftrightarrow\rho) and is at local thermal equilibrium until kinetic freeze-out (BGBW) Retiere:2003kf . In this implementation, the stable hadrons are at kinetic equilibrium (with flow) and its kinematic distribution is indistinguishable from the resonance decay because they are at kinetic equilibrium (local detail balance) Abelev:2008ab . The non-equilibrium TBW is in-between these two extremes. TBW attempts to take non-equilibrium fluctuation and possible resonance decay (or the kinetic detail balance) in a consistent macroscopic approach. It is also possible to treat such a two-stage freeze-out in a microscopic model taking into account the resonance yields at the kinetic freeze-out and not from the resonance yields at the chemical freeze-out Motornenko:2019jha .

The collision energy dependence of radial flow velocity and kinetic freeze-out temperature in high energy heavy ion collisions has been an interesting subject in the community and been extensively studied for all available collision energies. In the energy range of the Heavy Ion Synchrotron to Super Proton Synchrotron, multiple studies agreed on an increasing trend for those two variables with an increase of the collision energy Adamczyk:2017iwn ; Andronic:2014zha ; Zhang:2016tbf . From RHIC to the LHC energy range, however, the interpretation of the experimental results is model dependent to date. For radial flow velocity, most studies found an increasing trend of flow velocity with increasing collision energy Andronic:2014zha ; Abelev:2012wca ; Lao:2016gxv ; Lao:2017skd ; Zhang:2014jug ; Zhang:2016tbf ; Adamczyk:2017iwn but the quantitative value and whether there is sizable flow in pp+pp and peripheral A+A collisions are model dependent. For kinetic freeze-out temperature, some studies claimed an increasing trend of kinetic freeze-out temperature with increasing collision energy Lao:2016gxv ; Lao:2017skd while others stated a decreasing trend Das:2014qca ; Zhang:2016tbf ; Adamczyk:2017iwn ; Luo:2015doi ; Chatterjee:2015fua , and some concluded little dependence on collision energy Andronic:2014zha ; Abelev:2012wca .

In this paper, to extract kinetic freeze-out temperature and radial flow velocity, we use the blast-wave model with Tsallis statistics Tang:2008ud ; Shao:2009mu ; Tang:2011xq and compare to the Boltzmann-Gibbs statistics one Schnedermann:1993ws ; Abelev:2008ab ; Abelev:2009bw to simultaneously fit all the transverse momentum spectra of hadrons produced at mid-(pseudo)rapidity in sNN=\sqrt{s_{\rm{NN}}}= 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV Au + Au collisions at RHIC Adamczyk:2017iwn ; Adam:2019koz ; Adam:2019dkq ; Adare:2012uk ; Abelev:2008ab ; Abelev:2007ra ; Aggarwal:2010ig ; Abelev:2008aa ; Abelev:2006jr ; Adams:2003xp ; Adare:2013esx ; Adams:2006ke ; Abelev:2007rw and in sNN=\sqrt{s_{\rm{NN}}}= 2.76 TeV Abelev:2013vea ; Abelev:2013xaa ; ABELEV:2013zaa and 5.02 TeV Acharya:2019yoi Pb + Pb collisions at the LHC. Such a systematic study on collision energy and centrality dependence of radial flow velocity, kinetic freeze-out temperature, and the degree of non-equilibrium from RHIC to the LHC energy range may shed light on the underlying physics in these collisions. Strange and multi-strange particles, with smaller hadronic interaction cross-sections, are believed to decouple from the system earlier than hadrons with only light valence quarks Shao:2009mu ; Adams:2005dq ; vanHecke:1998yu ; Adams:2003fy ; Petrovici:2009pd . The kinetic freeze-out behaviors of strange and multi-strange particles are therefore also investigated separately.

This paper is organized as follows. In Section II, we describe the analysis method used in this paper. Results and discussions are given in Section III. The conclusion is summarized in the last section.

II Analysis method

II.1 Blast-Wave model

BGBW is a phenomenological model for hadron spectra based on flowing local thermal sources with global variables of temperature TT and transverse flow profile β\beta Schnedermann:1993ws ; Schnedermann:1994gc . TT is the temperature of the local thermal sources which particles radiate from. While the longitudinal expansion is assumed to be boost invariant, the transverse radial flow velocity of the thermal source is parametrized as β(r)=βS(rR)n\beta(r)=\beta_{S}(\frac{r}{R})^{n} at radius 0rR0\leqslant r\leqslant R with surface velocity βS\beta_{S} and exponent nn. The average radial flow velocity then can be written as β=βS2/(2+n)\langle\beta\rangle=\beta_{S}\cdot 2/(2+n) Ristea:2013ara . For an emitting source with Boltzmann-Gibbs distribution, the produced particle spectrum is therefore written in the form of

d2N2πpTdpTdy|y=0=A0Rr𝑑rmTI0(pTsinh(ρ)T)K1(mTcosh(ρ)T),\begin{split}\frac{d^{2}N}{2\pi p_{T}dp_{T}dy}|_{y=0}=&A\int^{R}_{0}rdrm_{T}I_{0}(\frac{p_{T}\sinh(\rho)}{T})\\ &\cdot K_{1}(\frac{m_{T}\cosh(\rho)}{T}),\end{split} (1)

where AA is a normalization factor. mT=pT2+m2m_{T}=\sqrt{p^{2}_{T}+m^{2}} is the transverse mass of a particle. I0I_{0} and K1K_{1} are the modified Bessel functions. ρ=tanh1β\rho=\tanh^{-1}\beta. TT is the kinetic freeze-out temperature. In order to compare with TBW results, we take n=1n=1 for the BGBW model in this paper. With common freeze-out temperature TT and average radial flow velocity β\langle\beta\rangle, the shape of the spectrum for each particle species is determined by its mass in BGBW.

II.2 Tsallis Blast-Wave model

TBW Tang:2008ud ; Shao:2009mu ; Tang:2011xq ; Ristea:2013ara is modified from the standard BGBW model when a Tsallis statistics replaces the conventional Boltzmann-Gibbs statistics for the particle emission distribution. The invariant differential particle yield in TBW is then written in the form of

d2N2πmTdmTdy|y=0=Ayb+ybeyb2ys2mTcosh(ys)𝑑ys×0Rrdrππ[1+q1TET]1/(q1)dϕ,\begin{split}\frac{d^{2}N}{2\pi m_{T}dm_{T}dy}|_{y=0}&=A\int^{+y_{b}}_{-y_{b}}e^{\sqrt{y^{2}_{b}-y^{2}_{s}}}m_{T}\cosh(y_{s})dy_{s}\\ &\times\int^{R}_{0}rdr\int^{\pi}_{-\pi}[1+\frac{q-1}{T}E_{T}]^{-1/(q-1)}d\phi,\end{split} (2)

where

ET=mTcosh(ys)cosh(ρ)pTsinh(ρ)cos(ϕ).\begin{split}E_{T}&=m_{T}\cosh(y_{s})\cosh(\rho)-p_{T}\sinh(\rho)\cos(\phi).\end{split} (3)

ysy_{s} is the source rapidity. yby_{b} is the beam rapidity. ϕ\phi is the particle emission angle in the rest frame of the thermal source. qq is the parameter characterizing the degree of non-equilibrium of the produced system, which is the new parameter introduced in TBW compared to the BGBW model. Although the applicability of such a model to high energy nuclear collisions is still under investigation, possible physics implications are available in the literature. The initial energy density in heavy ion collision has multiple hot spots caused by Color-Glass Condensate formation in a nucleon or individual nucleon-nucleon collisions. Those hot spots are dissipated into the system, producing more particles, generating collective flow, and resulting in a temperature fluctuation at the initial state Wilk:2008ue ; Wilk:2009nn . The initial state fluctuation is not guaranteed to be completely washed out by the medium, in QGP or hadron gas phases. The survived fluctuation will leave imprints in spectra at low and intermediate pTp_{T} range. Such features in spectra will lead to qq values larger than 1 in the TBW model Ristea:2013ara . When q=1q=1, Eq. (2) recovers its familiar Boltzmann-Gibbs form.

In this paper, we also use a Tsallis blast-wave model with four fit parameters with different qq for mesons and baryons separately, referred to as TBW4. TBW4 was first proposed in reference Tang:2008ud for a better description of meson and baryon spectra at pp+pp collisions while the TBW fits with one single qq for all particles gave a very poor χ2/nDoF\chi^{2}/nDoF. TBW without further description in this paper refers to the default one with three fit parameters that is the one using the same qq for both mesons and baryons.

III Results and discussions

III.1 Transverse momentum spectra

This section compares three blast-wave model fits of the transverse momentum spectra. Table 1 lists the particle spectra data used in this paper. Those particle spectra form two species groups for the fit procedure: one with all available hadrons, and another with charged pion, kaon, proton, and antiproton only. The first group aims to identify the common freeze-out properties for all particles. The latter is chosen to be consistent with previous publications Adamczyk:2017iwn for an apple-to-apple comparison. The reported experimental systematic and statistical uncertainties are combined as a quadratic sum for the fitting procedures. For all fit procedures, the average flow velocity β\langle\beta\rangle is limited to the range of 0β2/30\leqslant\langle\beta\rangle\leqslant 2/3 Abelev:2008ab for a better convergence in fitting and to avoid nonphysical results (negative value or faster than the speed of light) Tang:2008ud . Furthermore, spectra fit range is limited to pTp_{T}\leqslant 3 GeV/cc in order to have a comparable pTp_{T} range for all energies and to focus on the bulk properties. For the sake of concision, this section only shows the fits to spectra for all particles in most central and most peripheral centrality classes at four collision energies as examples in Figures 1, 2, 3 and 4. Figure 1 (Figure 2) shows blast-wave fits to identified particle transverse momentum spectra in most central (most peripheral) collisions, with corresponding deviations of those fits to experimental data divided by data uncertainties shown in Figure 3 (Figure 4). The fit results of kinetic freeze-out parameters for both species groups at various centrality classes and collision energies are discussed in the next section. Those extracted fit parameters and χ2/nDoF\chi^{2}/nDoF of TBW models are also summarized in Tables 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 and 13.

Table 1: Spectra data references
system\rm system sNN(GeV)\rm\sqrt{s_{NN}}\;(\rm{GeV}) particle\rm particle collaboration\rm collaboration 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒\rm{\it reference}
Au+Au\rm Au+Au 7.7,11.5,19.6,277.7,11.5,19.6,27 π±,K±,p,p¯\pi^{\pm},\,K^{\pm},\,p,\,\bar{p} STAR{\rm STAR}  Adamczyk:2017iwn
Ks0,Λ,Λ¯,Ξ+,ΞK^{0}_{s},\,\Lambda,\,\bar{\Lambda},\,\Xi^{+},\,\Xi^{-} STAR{\rm STAR}  Adam:2019koz
Au+Au\rm Au+Au 14.514.5 π±,K±,p,p¯\pi^{\pm},\,K^{\pm},\,p,\,\bar{p} STAR{\rm STAR}  Adam:2019dkq
Au+Au\rm Au+Au 3939 π±,K±,p,p¯\pi^{\pm},\,K^{\pm},\,p,\,\bar{p} STAR{\rm STAR}  Adamczyk:2017iwn
Ks0,Λ,Λ¯,Ξ+,ΞK^{0}_{s},\,\Lambda,\,\bar{\Lambda},\,\Xi^{+},\,\Xi^{-} STAR{\rm STAR}  Adam:2019koz
π0\pi^{0} PHENIX{\rm PHENIX}  Adare:2012uk
Au+Au\rm Au+Au 62.462.4 π±,K±,p,p¯\pi^{\pm},\,K^{\pm},\,p,\,\bar{p} STAR{\rm STAR}  Abelev:2008ab
π±,p,p¯\pi^{\pm},\,p,\,\bar{p} STAR{\rm STAR}  Abelev:2007ra
Ks0,Λ,Λ¯,Ξ+,Ξ,Ω+,ΩK^{0}_{s},\,\Lambda,\,\bar{\Lambda},\,\Xi^{+},\,\Xi^{-},\,\Omega^{+},\,\Omega^{-} STAR{\rm STAR}  Aggarwal:2010ig
ϕ\phi STAR{\rm STAR}  Abelev:2008aa
π0\pi^{0} PHENIX{\rm PHENIX}  Adare:2012uk
Au+Au\rm Au+Au 200200 π±,p,p¯\pi^{\pm},\,p,\,\bar{p} STAR{\rm STAR}  Abelev:2006jr
K±K^{\pm} STAR{\rm STAR}  Adams:2003xp
K±K^{\pm} PHENIX{\rm PHENIX}  Adare:2013esx
Λ,Λ¯,Ξ+,Ξ,Ω\Lambda,\,\bar{\Lambda},\,\Xi^{+},\,\Xi^{-},\,\Omega STAR{\rm STAR}  Adams:2006ke
ϕ\phi STAR{\rm STAR}  Abelev:2007rw
Pb+Pb\rm Pb+Pb 27602760 π±,K±,p,p¯\pi^{\pm},\,K^{\pm},\,p,\,\bar{p} ALICE{\rm ALICE}  Abelev:2013vea
Ks0,ΛK^{0}_{s},\,\Lambda ALICE{\rm ALICE}  Abelev:2013xaa
Ξ+,Ξ,Ω+,Ω\Xi^{+},\,\Xi^{-},\,\Omega^{+},\,\Omega^{-} ALICE{\rm ALICE}  ABELEV:2013zaa
Pb+Pb\rm Pb+Pb 50205020 π±,K±,p,p¯\pi^{\pm},\,K^{\pm},\,p,\,\bar{p} ALICE{\rm ALICE}  Acharya:2019yoi
Refer to caption
Figure 1: Blast-wave model fits to hadron spectra in most central Pb + Pb and Au + Au collisions at sNN=\sqrt{s_{\rm{NN}}}= 2.76 TeV, 200 GeV, 62.4 GeV, and 7.7 GeV from top to bottom panels. The different symbols represent experimental data of different particle species. Uncertainties on experimental data represent quadratic sums of statistical and systematic uncertainties. The solid curves represent fit results for BGBW (left column), TBW (middle column), and TBW4 (right column).
Refer to caption
Figure 2: Same as Fig. 1, but for most peripheral collisions.
Refer to caption
Figure 3: The deviations of BGBW (left column), TBW (middle column), and TBW4 (right column) model fits to hadron spectra divided by data uncertainties in most central Pb + Pb and Au + Au collisions at sNN=\sqrt{s_{\rm{NN}}}= 2.76 TeV, 200 GeV, 62.4 GeV, and 7.7 GeV from top to bottom panels. The different symbols are used to distinguish particle species. The dashed lines represent where the difference between model and experiment data is three times the error of data.
Refer to caption
Figure 4: Same as Fig. 3, but for most peripheral collisions.

BGBW and TBW models are compared in the left and middle panels of Figures 1, 2, 3 and 4. From top to bottom panels of each figure, the spectra (Figures 1 and 2) or difference between model and experiment data divided by the error of data (Figures 3 and 4) in Pb + Pb or Au+Au collisions at sNN=\sqrt{s_{\rm{NN}}}= 2.76 TeV, 200 GeV, 62.4 GeV and 7.7 GeV are presented. At LHC and top RHIC energies, the deviation of the BGBW model from experimental data is larger in peripheral than in central collisions. As beam energy decreases, the deviation of BGBW model fit from data decreases. We note that there are fewer experimental data at pT>2p_{T}>2 GeV/cc for energies below 39 GeV. Overall, TBW has better fits and has smaller χ2/nDoF\chi^{2}/nDoF than BGBW. TBW agrees with most data points within three-σ\sigma standard deviation from experimental data. TBW yields a smaller qq toward lower beam energy, which indicates that the system is closer to equilibrium state toward lower energy. For all LHC and RHIC energies, TBW fits in peripheral collisions have larger qq values than those in central collisions at the same collision energy. In short, the TBW model performs much better than BGBW and the non-equilibrium seems to be necessary for peripheral collisions at high energies. As the BGBW model assumes thermal equilibrium and the TBW model uses non-equilibrium statistics, the above observations suggest that the collision system deviates more from thermal equilibrium at higher energy, especially in peripheral collisions.

The comparison of TBW (with a single qq) and TBW4 (with separate qq for meson and baryon) is shown in the middle and right panels of Figs. 1, 2, 3 and 4. TBW4 has even smaller χ2/nDoF\chi^{2}/nDoF than TBW for all LHC and RHIC energies, while the improvement is larger in peripheral than central collisions. For TBW4, the non-equilibrium parameter qq of baryons is found to be smaller than that of mesons, as baryons have steeper spectra than mesons. Baryons used in the fitting include mostly strange (Λ\Lambda) and multi-strange (Ξ\Xi and Ω\Omega) particle species and strangeness has smaller qq value and higher freeze-out temperature. More details on different freeze-out will be discussed later in Section III.2.

III.2 Kinetic freeze-out parameters

Refer to caption
Figure 5: Variation of TT with β\langle\beta\rangle for different energies and centralities from BGBW (left panel), TBW (middle panel), and TBW4 (right panel) fits to pTp_{T} spectra of only positive and negative pions, kaons, and protons. Symbols with the same style represent different centrality classes at the same colliding energy. For a given energy, from left to right, the centrality moves from peripheral to central collision.
Refer to caption
Figure 6: Same as Fig. 5, but for all hadrons including strange and multi-strange particles.

The extracted results for temperature TT and average radial flow velocity β\langle\beta\rangle from BGBW, TBW, and TBW4 are compared in Figures 5 and 6. The beam energy, centrality, and particle species dependences of TT, β\langle\beta\rangle, and qq from the TBW model are investigated in Figures 7 and 8.

Refer to caption
Figure 7: Collision energy dependence of the extracted kinetic freeze-out parameters for heavy ion collisions of different centralities in TBW fit of pTp_{T} spectra for only positive and negative pions, kaons, and protons (left column), and all particles (right column). The kinetic freeze-out temperature TT, average transverse radial flow velocity β\langle\beta\rangle, and non-equilibrium parameter q1q-1 are shown in the top, middle and bottom panels, respectively. The results for all particles in most central Pb+Pb collisions at sNN=\sqrt{s_{\rm{NN}}}= 17.3 GeV are from Ref. Shao:2009mu .
Refer to caption
Figure 8: Same as Fig. 7, but for strangeness only (left column), and non-strange particles (right column). The results in most central Pb+Pb collisions at sNN=\sqrt{s_{\rm{NN}}}= 17.3 GeV are from Ref. Shao:2009mu .

The dependence of TT on β\langle\beta\rangle of BGBW, TBW, and TBW4 is shown in Figure 5 for charged pions, kaons, and protons, and in Figure 6 for all available hadrons including strange and multi-strange particles. Symbols with same color represent A+A collisions at same beam energy for different centrality classes. In general, fit parameters in Figure 6 for all particles have smaller fit uncertainties than those in Figure 5 for charged pions, kaons, and protons only, as more particles are used to study their common freeze-out properties. Other than that, these two species groups give similar results for TT dependence on β\langle\beta\rangle. BGBW results shown on the left panel display an anti-correlation between TT and β\langle\beta\rangle. At the same collision energy, TT decreases and β\langle\beta\rangle increases as the system moves from peripheral to central collisions. As collision energy increases, the anti-correlation curve moves toward high β\langle\beta\rangle. Such anti-correlation behavior was also reported in Ref. Adamczyk:2017iwn . TBW results in the middle panel, however, are different from BGBW ones. TT from TBW has much weaker dependence on centrality than the BGBW one. For example, at the LHC energies, the increase of TT from most central to most peripheral collisions is around 40% in BGBW. In contrast, the variation of TT is only about 5% in TBW. Similar behavior of weak centrality dependence for temperature was also reported in Ref. Mazeliauskas:2019ifr , when further resonance decay after sudden equilibrium freeze-out is considered in BGBW. The resonance decay is one of the microscopic non-equilibrium sources in the macroscopic TBW approach. The common observation from these two studies supports the expectation that the strong centrality dependence of freeze-out temperature in the BGBW model is rooted in its incapability to describe the non-equilibrium system. The parameter β\langle\beta\rangle in most central collisions from TBW is between 0.4 and 0.5 for RHIC energies and around 0.6 at the LHC, similar with those in BGBW. In peripheral collisions β\langle\beta\rangle is lower in TBW than that in BGBW, while it even reaches zero value for the most peripheral collisions at RHIC energies. It seems that from the TBW model’s viewpoint hadron scatterings (or QGP droplets if any) are not sufficient to produce a large collective radial flow or to maintain a thermal equilibrium in peripheral collisions at RHIC. The BGBW model, while lacking a knob for non-equilibrium degree, has to boost its radial flow parameter in a struggle to fit the high yields of the spectra at intermediate pTp_{T} in the peripheral collisions. In Figures 5 and 6, TT and β\langle\beta\rangle from TBW4 on the right panels are similar to those from TBW with one single qq in the middle panels and different from those from BGBW on the left panels. There is a weaker centrality dependence for TT and lower β\langle\beta\rangle values at peripheral collisions for both TBW models than BGBW. We observed that at the LHC energies, TT and β\langle\beta\rangle from TBW4 tend to have a positive correlation rather than anti-correlation as in BGBW fits or a lack of correlation as in default TBW. The fit parameter values are slightly different for the two TBW models as discussed below. In Figure 5, for charged pions, kaons, and protons, TT from TBW4 is lower than the one in default TBW at sNN\sqrt{s_{\rm{NN}}} above 62.4 GeV. For lower beam energies, within the uncertainties, TT values from these two models appear to be consistent. For the cases including all hadrons and shown in Figure 6, the results are in general with smaller uncertainties of all the fit parameters, and TT from the TBW4 are lower than the default TBW for all the energies. The main observation from the comparison of BGBW and two TBW models is that TT in TBW models has weaker centrality dependence and β\langle\beta\rangle at peripheral collisions is lower than those in BGBW.

Figure 7 shows the energy and centrality dependence of kinetic freeze-out parameters TT, β\langle\beta\rangle, and (q1)(q-1) from the TBW model for charged pions, kaons, and protons in the left column and for all particles in the right column. The kinetic freeze-out temperature TT in panel (a) and (b) of Figure 7 shows weak collision energy dependence at sNN\sqrt{s_{\rm{NN}}} of 7.7 - 39 GeV, while it drops from sNN=\sqrt{s_{\rm{NN}}}= 62.4 GeV to 5.02 TeV in panel (a) and 2.76 TeV in panel (b). At 7.7 - 39 GeV, at any given collision energy, TT only decreases marginally from peripheral to central collisions. At 62.4 GeV to 5.02 TeV, the centrality dependence of TT is even smaller. In contrast, as discussed in the previous section, in BGBW, TT decreases notably from peripheral to central collisions. In most of the peripheral collisions, BGBW deviates significantly from data with larger χ2/nDoF\chi^{2}/nDoF. Meanwhile, the non-equilibrium parameter qq in TBW for peripheral collisions also increases with increasing collision energy as shown in the bottom two panels of Figure 7. The strong centrality dependence of TT in BGBW may be synthetic to the model’s incapacity to incorporate the large non-equilibrium effect of the system in the peripheral collisions. The average transverse radial flow velocity β\langle\beta\rangle shown in panel (c) and (d) of Figure 7, for most central collisions, is between 0.4 and 0.5 at RHIC energies, and around 0.6 at the LHC energies. β\langle\beta\rangle decreases from central to peripheral collisions. In most peripheral collisions, β\langle\beta\rangle drops to zero at RHIC energies and is less than 0.3 at the LHC energies. For the most peripheral collisions at RHIC, the system in general fails to generate a rapid radial expansion. The non-equilibrium parameter (q1q-1) in panel (e) and (f) of Figure 7 is small in central Au+Au collisions, suggesting that the produced particles are approaching thermal equilibrium. In peripheral collisions, (q1q-1) increases from less than 0.04 at 7.7 GeV to more than 0.1 at 5.02 TeV, indicating an increasing deviation from Boltzmann statistics as collision energy increases. The centrality dependence of the (q1q-1) parameter suggests an evolution from an almost thermalized system in the central collisions towards a highly off-equilibrium system in the peripheral collisions. Such large (q1q-1) is also found in the study of pp+pp collision Jiang:2013gxa . This may be because the energy density fluctuations at initial state due to Color-Glass Condensate formation or individual hard scattering (minijets) inside a nucleus-nucleus collision increase as collision energy increases. Such fluctuations are not completely washed out by subsequent QGP evolution or hadronic interactions and leave footprints in final state particle spectra at the pTp_{T} range in our paper Tang:2008ud .

In general, the group of charged pion, kaon, and proton and the group of all particles as shown in Figure 7 produce similar kinetic freeze-out parameters in TBW fits. Small difference can be identified with slightly higher TT and lower qq for the group with all particles than that with only the π/K/p\pi/K/p. Such difference may come from the influence of particle species as the group of all particles contains more strange particles. The direct comparison of non-strange and strangeness in Figure 8 confirms that the strange hadrons have higher temperature (TT) and a smaller non-equilibrium degree (qq) than those of non-strange hadrons, while their radial flow values (β\langle\beta\rangle) are similar. A higher temperature indicates an earlier decoupling of strange hadrons from the system. The smaller qq in the strangeness group than the non-strangeness group and a similar β\langle\beta\rangle between those two groups suggest that the system is closer to an equilibrium state when the strangeness hadrons decouple from the system and further hadronic interactions do not increase the system’s radial flow velocity. A possible conclusion is that the hadronic phase does not increase radial flow of light hadrons significantly at RHIC and LHC energies, and instead drives the system toward non-equilibrium: the system in central collisions has approached thermal equilibrium at the partonic phase, and the later hadronic scattering drives the system off equilibrium and does not increase the radial flow of copiously produced light hadrons Shao:2009mu . Another interesting observation is that in Figure 8 (b) for non-strange particles the kinetic freeze-out temperature of the central collisions decreases from RHIC to LHC energies in the TBW model, while in Figure 8 (a) strangeness does not show this behavior. A possible explanation is that the system at the LHC has higher flow velocity and larger volume than that at RHIC and maybe needs more time for all particles to kinetic freeze-out (“cool”) in the expansion during the hadronic phase.

It has been argued within the framework of non-equilibrium statistics that the dependence of temperature and flow velocity on the non-equilibrium factor (q1q-1) is related to the shear and bulk ξ\xi viscosity in linear or quadratic proportion Wilk:1999dr ; Wilk:2008ue . This hypothesis is examined by quadratic fits of β=β0a(q1)2\langle\beta\rangle=\langle\beta\rangle_{0}-a(q-1)^{2} and T=T0+b(q1)dξ(q1)2T=T_{0}+b(q-1)-d\xi(q-1)^{2} (where ξ\xi is the bulk viscosity) to the inclusive hadron group as shown in Figures 9 and 10. Data at 7.7 GeV are close to equilibrium and do not provide a significant variation of the parameters, and are not included in this examination. From 11.5 to 2.76 TeV collision energy, there displays a clear evolution of β\langle\beta\rangle vs (q1)(q-1) and TT vs (q1)(q-1) relationships on collision energy. A summary of parameters β0\langle\beta\rangle_{0}, aa, T0T_{0}, bb, and dξd\xi dependence on collision energy is depicted in Figures 11 and 12. As energy increases, β0\langle\beta\rangle_{0} increases and the coefficient of the squared term aa decreases. A similar feature is observed for the TT vs (q1)(q-1). With only three available centrality classes, the fitting procedure at 62.4 GeV is found to be not constrained. The relationship of TT vs (q1)(q-1) was previously inspected in Ref. Tang:2008ud for 200 GeV where only a squared term (with a constant) is used. Our paper shows that both linear and quadratic terms are needed to describe the TT vs (q1)(q-1) relationship for lower collision energies. The linear term parameter bb and quadratic term related to viscosity parameter dξd\xi show a trend of decrease with collision energy. It is interesting to note that it has been argued that the bulk viscosity increases dramatically toward the phase transition Kharzeev:2007wb ; Karsch:2007jc , coinciding with the feature we observed of dξd\xi shown in Figure 12.

Refer to caption
Figure 9: Extracted average radial flow velocity β\langle\beta\rangle as a function of non-equilibrium degree (q1)(q-1) obtained in TBW fits of pTp_{T} spectra of all particles. Each block is a one-σ\sigma contour from the error matrix of the TBW fit for a given centrality of Au + Au (Pb + Pb) collisions. The curves represent quadratics fits in the form of β=β0a(q1)2\langle\beta\rangle=\langle\beta\rangle_{0}-a(q-1)^{2}.
Refer to caption
Figure 10: Extracted kinetic freeze-out temperature TT as a function of non-equilibrium degree (q1)(q-1) obtained in TBW fits of pTp_{T} spectra of all particles. Each block is a one-σ\sigma contour from the error matrix of the TBW fit for a given centrality of Au + Au (Pb + Pb) collisions. The curves represent quadratics fits in the form of T=T0+b(q1)dξ(q1)2T=T_{0}+b(q-1)-d\xi(q-1)^{2}.
Table 2: The fitting parameters of β=β0a(q1)2\langle\beta\rangle=\langle\beta\rangle_{0}-a(q-1)^{2} in Fig. 9 and T=T0+b(q1)dξ(q1)2T=T_{0}+b(q-1)-d\xi(q-1)^{2} in Fig. 10.
system\rm system sNN(GeV)\rm\sqrt{s_{NN}}\;(\rm{GeV}) β0\langle\beta\rangle_{0}\; aa T0(GeV)T_{0}\;(\rm{GeV}) bb dξd\xi
Au+Au\rm Au+Au 11.511.5 0.397±0.0020.397\pm 0.002 635±88635\pm 88 0.1240±0.00090.1240\pm 0.0009 1.5±0.21.5\pm 0.2 40±940\pm 9
Au+Au\rm Au+Au 19.619.6 0.411±0.0020.411\pm 0.002 347±27347\pm 27 0.1278±0.00080.1278\pm 0.0008 1.1±0.21.1\pm 0.2 25±525\pm 5
Au+Au\rm Au+Au 2727 0.423±0.0020.423\pm 0.002 286±20286\pm 20 0.1277±0.00080.1277\pm 0.0008 1.4±0.21.4\pm 0.2 27±427\pm 4
Au+Au\rm Au+Au 3939 0.448±0.0020.448\pm 0.002 202±14202\pm 14 0.122±0.0020.122\pm 0.002 1.1±0.21.1\pm 0.2 15±415\pm 4
Au+Au\rm Au+Au 62.462.4 0.44±0.010.44\pm 0.01 110±28110\pm 28 0.138±0.0040.138\pm 0.004 (0.1±0.4)-(0.1\pm 0.4) (3±7)-(3\pm 7)
Au+Au\rm Au+Au 200200 0.51±0.020.51\pm 0.02 57±657\pm 6 0.11±0.020.11\pm 0.02 0.5±0.70.5\pm 0.7 5±55\pm 5
Pb+Pb\rm Pb+Pb 27602760 0.594±0.0050.594\pm 0.005 25±125\pm 1 0.096±0.0050.096\pm 0.005 0.2±0.20.2\pm 0.2 2±12\pm 1
Refer to caption
Refer to caption
Figure 11: Collision energy dependence of parameters β0\langle\beta\rangle_{0} and aa in β=β0a(q1)2\langle\beta\rangle=\langle\beta\rangle_{0}-a(q-1)^{2}. Curves are to guide the eye.
Refer to caption
Refer to caption
Refer to caption
Figure 12: Collision energy dependence of parameters T0T_{0}, bb and dξd\xi in T=T0+b(q1)dξ(q1)2T=T_{0}+b(q-1)-d\xi(q-1)^{2}. Curves are to guide the eye.

In a short summary, BGBW and TBW have been used to explore the beam energy dependence of kinetic freeze-out properties of the system created in relativistic heavy ion collisions. The BGBW model is designed to describe the system in local thermal equilibrium. However, as collision energy increases, the produced system in peripheral collisions deviates far from equilibrium state, and can not be described well with a BGBW fit. An additional parameter qq is introduced in the TBW model to characterize the degree of non-equilibrium. The divergence between BGBW and TBW escalates with an increasing qq value as collision energy increases, especially in peripheral collisions. For 7.7 - 39 GeV collision energies, the increase of temperature in the TBW model from central to peripheral collisions is much less than that in BGBW. For 62.4 GeV to 5.02 TeV, the temperature in the TBW model stays almost constant from central to peripheral collisions. Meanwhile, the radial flow value in central collisions is around 0.4-0.5cc at RHIC energies, and becomes larger at the LHC energies.

IV Conclusion

In this paper, we have used the blast-wave model with Boltzmann-Gibbs statistics and with Tsallis statistics to fit the transverse momentum spectra of hadrons produced at mid-(pseudo)rapidity in Au + Au collisions at sNN=\sqrt{s_{\rm{NN}}}= 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV at RHIC and in Pb+Pb collisions at sNN=\sqrt{s_{\rm{NN}}}= 2.76 TeV and 5.02 TeV at LHC to extract kinetic freeze-out temperature and transverse flow velocity and to study their collision centrality and energy dependence. The hadrons containing strangeness at those collision energies were also examined to study their impact on the freeze-out properties. For centrality dependence, the results show that the average transverse radial flow velocity decreases and the degree of non-equilibrium qq increases from central to peripheral collisions in the TBW model. The kinetic freeze-out temperature shows weak dependence on centrality in the TBW model, while in the BGBW model there is a clear increase from central to peripheral in A + A collisions. This finding suggests that a change in non-equilibrium degree of the system in TBW is reflected as a change in freeze-out temperature in the language of transitional BGBW. One should take caution when interpreting temperature behavior in BGBW for beam energy scan results. For energy dependence in TBW fits, the average transverse radial flow velocity and the degree of non-equilibrium qq both increase with the increase of the collision energy, which suggests a stronger expansion with larger deviation from thermal equilibrium at higher energy. The kinetic freeze-out temperature at the same centrality shows a weak collision energy dependence for 7.7 to 39 GeV, while it decreases from 62.4 GeV to 5.02 TeV with an increase of non-equilibrium degree. A dependence of temperature and radial flow on non-equilibrium is observed and may be related to the bulk viscosity. Finally, we find that strange hadrons have a higher kinetic freeze-out temperature than that for light hadrons. The strange hadrons approach equilibrium more quickly from peripheral to central A + A collisions than non-strange hadrons.

Acknowledgements.
We appreciate valuable discussions with Zhenyu Chen, Xiaofeng Luo, Nihar Ranjan Sahoo, Qinghua Xu, Chi Yang and Qian Yang. This work was partly supported by the National Natural Science Foundation of China under Grants No. 11890710, No.11890713, and No.11720101001. This work was also supported in part by the Office of Science of the U.S. Department of Energy.

References

  • (1) E. Schnedermann, J. Sollfrank and U. W. Heinz, Phys. Rev. C 48, 2462 (1993)
  • (2) E. Schnedermann and U. W. Heinz, Phys. Rev. C 50, 1675 (1994)
  • (3) F. Retiere and M. A. Lisa, Phys. Rev. C 70, 044907 (2004)
  • (4) B. De, S. Bhattacharyya, G. Sau and S. K. Biswas, Int. J. Mod. Phys. E 16, 1687 (2007).
  • (5) G. Wilk and Z. Wlodarczyk, Eur. Phys. J. A 40, 299 (2009)
  • (6) W. M. Alberico, A. Lavagno and P. Quarati, Eur. Phys. J. C 12, 499 (2000)
  • (7) T. Osada and G. Wilk, Phys. Rev. C 77, 044903 (2008) Erratum: [Phys. Rev. C 78, 069903(E) (2008)]
  • (8) T. S. Biro and B. Muller, Phys. Lett. B 578, 78 (2004)
  • (9) T. Bhattacharyya, J. Cleymans, A. Khuntia, P. Pareek and R. Sahoo, Eur. Phys. J. A 52, 30 (2016)
  • (10) K. Jiang, Y. Zhu, W. Liu, H. Chen, C. Li, L. Ruan, Z. Tang and Z. Xu, Phys. Rev. C 91, 024910 (2015)
  • (11) Z. Tang, Y. Xu, L. Ruan, G. van Buren, F. Wang and Z. Xu, Phys. Rev. C 79, 051901(R) (2009)
  • (12) J. Adams et al. [STAR Collaboration], Phys. Rev. C 71, 064902 (2005)
  • (13) G. Wilk and Z. Wlodarczyk, Phys. Rev. Lett.  84, 2770 (2000)
  • (14) C. Y. Wong, G. Wilk, L. J. L. Cirto and C. Tsallis, Phys. Rev. D 91, 114027 (2015)
  • (15) B. Abelev et al. [ALICE Collaboration], Phys. Lett. B 720, 52-62 (2013)
  • (16) K. Urmossy, T. S. Biró, G. G. Barnaföldi and Z. Xu, [arXiv:1405.3963 [hep-ph]].
  • (17) K. Urmossy, G. G. Barnaföldi, S. Harangozó, T. S. Biró and Z. Xu, J. Phys. Conf. Ser. 805, 012010 (2017)
  • (18) M. Rybczyński, G. Wilk and Z. Włodarczyk, EPJ Web Conf. 90, 01002 (2015)
  • (19) K. Urmossy, G. G. Barnafoldi and T. S. Biro, Phys. Lett. B 701, 111-116 (2011)
  • (20) W. Broniowski and W. Florkowski, Phys. Rev. Lett. 87, 272302 (2001)
  • (21) A. Mazeliauskas and V. Vislavicius, Phys. Rev. C 101, 014910 (2020)
  • (22) M. M. Aggarwal et al. [STAR Collaboration], Phys. Rev. C. 84, 034909 (2011)
  • (23) B. I. Abelev et al. [STAR Collaboration], Phys. Rev. Lett. 97, 132301 (2006)
  • (24) S. Acharyaet al. [ALICE Collaboration], Phys. Rev. C. 99, 024905 (2019)
  • (25) B. I. Abelev et al. [STAR Collaboration], Phys. Rev. C 79, 034909 (2009)
  • (26) A. Motornenko, V. Vovchenko, C. Greiner and H. Stoecker, Phys. Rev. C 102, 024909 (2020)
  • (27) A. Andronic, Int. J. Mod. Phys. A 29, 1430047 (2014)
  • (28) S. Zhang, Y. G. Ma, J. H. Chen and C. Zhong, Adv. High Energy Phys.  2016, 9414239 (2016)
  • (29) L. Adamczyk et al. [STAR Collaboration], Phys. Rev. C 96, 044904 (2017)
  • (30) B. Abelev et al. [ALICE Collaboration], Phys. Rev. Lett.  109, 252301 (2012)
  • (31) H. L. Lao, F. H. Liu and R. A. Lacey, Eur. Phys. J. A 53, 44 (2017) Erratum: [Eur. Phys. J. A 53, 143 (2017)]
  • (32) H. L. Lao, F. H. Liu, B. C. Li and M. Y. Duan, Nucl. Sci. Tech.  29, 82 (2018)
  • (33) S. Zhang, Y. G. Ma, J. H. Chen and C. Zhong, Adv. High Energy Phys.  2015, 460590 (2015)
  • (34) S. Das [STAR Collaboration], EPJ Web Conf.  90, 08007 (2015)
  • (35) X. Luo, Nucl. Phys. A 956, 75 (2016)
  • (36) S. Chatterjee, S. Das, L. Kumar, D. Mishra, B. Mohanty, R. Sahoo and N. Sharma, Adv. High Energy Phys.  2015, 349013 (2015).
  • (37) M. Shao, L. Yi, Z. Tang, H. Chen, C. Li and Z. Xu, J. Phys. G 37, 085104 (2010)
  • (38) Z. Tang et al., Chin. Phys. Lett.  30, 031201 (2013)
  • (39) B. I. Abelev et al. [STAR Collaboration], Phys. Rev. C 81, 024911 (2010)
  • (40) J. Adam et al. [STAR Collaboration], Phys. Rev. C  101, 024905 (2020)
  • (41) B. I. Abelev et al. [STAR Collaboration], Phys. Lett. B 655, 104 (2007)
  • (42) J. Adams et al. [STAR Collaboration], Phys. Rev. Lett.  92, 112301 (2004)
  • (43) B. I. Abelev et al. [STAR Collaboration], Phys. Rev. Lett.  97, 152301 (2006)
  • (44) J. Adam et al. [STAR Collaboration], Phys. Rev. C 102, 034909 (2020)
  • (45) M. M. Aggarwal et al. [STAR Collaboration], Phys. Rev. C 83, 024901 (2011)
  • (46) B. I. Abelev et al. [STAR Collaboration], Phys. Rev. C 79, 064903 (2009)
  • (47) A. Adare et al. [PHENIX Collaboration], Phys. Rev. Lett.  109, 152301 (2012)
  • (48) A. Adare et al. [PHENIX Collaboration], Phys. Rev. C 88, 024906 (2013)
  • (49) J. Adams et al. [STAR Collaboration], Phys. Rev. Lett.  98, 062301 (2007)
  • (50) B. I. Abelev et al. [STAR Collaboration], Phys. Rev. Lett. 99, 112301 (2007)
  • (51) B. Abelev et al. [ALICE Collaboration], Phys. Rev. C 88, 044910 (2013)
  • (52) B. B. Abelev et al. [ALICE Collaboration], Phys. Rev. Lett.  111, 222301 (2013)
  • (53) B. B. Abelev et al. [ALICE Collaboration], Phys. Lett. B 728, 216 (2014) Erratum: [Phys. Lett. B 734, 409 (2014)]
  • (54) S. Acharya et al. [ALICE Collaboration], Phys. Rev. C 101, 044907 (2020)
  • (55) J. Adams et al. [STAR Collaboration], Nucl. Phys. A 757, 102 (2005)
  • (56) H. van Hecke, H. Sorge and N. Xu, Phys. Rev. Lett.  81, 5764 (1998)
  • (57) J. Adams et al. [STAR Collaboration], Phys. Rev. Lett.  92, 182301 (2004)
  • (58) M. Petrovici and A. Pop, Rom. J. Phys.  57, 419 (2012)
  • (59) O. Ristea, A. Jipa, C. Ristea, T. Esanu, M. Calin, A. Barzu, A. Scurtu and I. Abu-Quoad, J. Phys. Conf. Ser.  420, 012041 (2013).
  • (60) G. Wilk and Z. Wlodarczyk, Phys. Rev. C 79, 054903 (2009)
  • (61) D. Kharzeev and K. Tuchin, JHEP 09, 093 (2008)
  • (62) F. Karsch, D. Kharzeev and K. Tuchin, Phys. Lett. B 663, 217-221 (2008)

Appendix A

Table 3: Extracted kinetic freeze-out parameters and χ2/nDoF\chi^{2}/nDoF from TBW fits to identified particle transverse spectra in heavy ion collisions of different centralities at sNN=\sqrt{s_{\rm{NN}}}= 7.7 and 11.5 GeV. Results for charged pions, kaons, and protons have labels ‘(π,K,p)(\pi,K,p)’ behind their collision energy. All available hadrons including strange and multi-strange particles are labeled as ‘(all)’. We also fit the spectra separately for strangeness with label ‘(strange)’ and non-strange particles with label ‘(non-strange)’.
system\rm system sNN(GeV)\rm\sqrt{s_{NN}}\;(\rm{GeV}) centrality β\langle\beta\rangle\; T(MeV)T\;(\rm{MeV}) qq χ2/nDoF\chi^{2}/nDoF
Au+Au\rm Au+Au 7.7(π,K,p)7.7\;(\pi,K,p) 05%0-5\% 0.436±0.0050.436\pm 0.005 110±2110\pm 2 1.0000+0.0021.000^{+0.002}_{-0} 113/133113/133
510%5-10\% 0.428±0.0060.428\pm 0.006 110±2110\pm 2 1.0000+0.0031.000^{+0.003}_{-0} 106/134106/134
1020%10-20\% 0.39±0.010.39\pm 0.01 117±3117\pm 3 1.006±0.0051.006\pm 0.005 86/13886/138
2030%20-30\% 0.36±0.010.36\pm 0.01 117±3117\pm 3 1.009±0.0051.009\pm 0.005 129/136129/136
3040%30-40\% 0.34±0.010.34\pm 0.01 119±3119\pm 3 1.008±0.0051.008\pm 0.005 124/135124/135
4050%40-50\% 0.26±0.030.26\pm 0.03 117±3117\pm 3 1.024±0.0061.024\pm 0.006 110/125110/125
5060%50-60\% 0.21±0.040.21\pm 0.04 117±3117\pm 3 1.026±0.0071.026\pm 0.007 132/122132/122
6070%60-70\% 00+0.070^{+0.07}_{-0} 120±3120\pm 3 1.034±0.0031.034\pm 0.003 95/11795/117
7080%70-80\% 00+0.060^{+0.06}_{-0} 126±3126\pm 3 1.021±0.0031.021\pm 0.003 88/9788/97
080%0-80\% 0.36±0.020.36\pm 0.02 111±3111\pm 3 1.019±0.0081.019\pm 0.008 48/9048/90
Au+Au\rm Au+Au 7.7(nonstrange)7.7\;(\rm non-strange) 05%0-5\% 0.445±0.0060.445\pm 0.006 108±2108\pm 2 1.0000+0.0031.000^{+0.003}_{-0} 34/8934/89
510%5-10\% 0.438±0.0060.438\pm 0.006 109±2109\pm 2 1.0000+0.0051.000^{+0.005}_{-0} 45/8845/88
1020%10-20\% 0.39±0.010.39\pm 0.01 116±3116\pm 3 1.0050+0.0061.005^{+0.006}_{-0} 37/9237/92
2030%20-30\% 0.38±0.010.38\pm 0.01 115±3115\pm 3 1.007±0.0061.007\pm 0.006 31/9031/90
3040%30-40\% 0.35±0.020.35\pm 0.02 117±3117\pm 3 1.009±0.0061.009\pm 0.006 36/9036/90
4060%40-60\% 00+0.060^{+0.06}_{-0} 113±3113\pm 3 1.049±0.0021.049\pm 0.002 52/8052/80
6080%60-80\% 00+0.070^{+0.07}_{-0} 120±3120\pm 3 1.032±0.0031.032\pm 0.003 31/6231/62
Au+Au\rm Au+Au 7.7(strange)7.7\;(\rm strange) 05%0-5\% 0.361±0.010.361\pm 0.01 133±4133\pm 4 1.00010.0001+0.00021.0001^{+0.0002}_{-0.0001} 178/80178/80
510%5-10\% 0.358±0.010.358\pm 0.01 132±4132\pm 4 1.00010.0001+0.00021.0001^{+0.0002}_{-0.0001} 156/82156/82
1020%10-20\% 0.356±0.0090.356\pm 0.009 131±3131\pm 3 1.00010.0001+0.00021.0001^{+0.0002}_{-0.0001} 160/82160/82
2030%20-30\% 0.351±0.0090.351\pm 0.009 128±3128\pm 3 1.00010.0001+0.00041.0001^{+0.0004}_{-0.0001} 160/82160/82
3040%30-40\% 0.33±0.010.33\pm 0.01 130±3130\pm 3 1.0000+0.0011.000^{+0.001}_{-0} 139/81139/81
4060%40-60\% 0.28±0.020.28\pm 0.02 133±3133\pm 3 1.0020.002+0.0031.002^{+0.003}_{-0.002} 174/75174/75
6080%60-80\% 00+0.060^{+0.06}_{-0} 134±3134\pm 3 1.022±0.0021.022\pm 0.002 119/64119/64
Au+Au\rm Au+Au 7.7(all)7.7\;(\rm all) 05%0-5\% 0.407±0.0050.407\pm 0.005 118±2118\pm 2 1.0001±0.00011.0001\pm 0.0001 274/172274/172
510%5-10\% 0.402±0.0050.402\pm 0.005 118±2118\pm 2 1.00010.0001+0.00021.0001^{+0.0002}_{-0.0001} 251/173251/173
1020%10-20\% 0.378±0.0050.378\pm 0.005 124±2124\pm 2 1.00010.0001+0.00021.0001^{+0.0002}_{-0.0001} 218/177218/177
2030%20-30\% 0.365±0.0050.365\pm 0.005 124±2124\pm 2 1.00010.0001+0.00031.0001^{+0.0003}_{-0.0001} 216/175216/175
3040%30-40\% 0.349±0.0060.349\pm 0.006 125±2125\pm 2 1.00010.0001+0.00071.0001^{+0.0007}_{-0.0001} 189/174189/174
4060%40-60\% 0.31±0.010.31\pm 0.01 127±2127\pm 2 1.002±0.0021.002\pm 0.002 229/158229/158
6080%60-80\% 0.20±0.030.20\pm 0.03 126±2126\pm 2 1.012±0.0051.012\pm 0.005 158/129158/129
Au+Au\rm Au+Au 11.5(π,K,p)11.5\;(\pi,K,p) 05%0-5\% 0.423±0.0050.423\pm 0.005 117±2117\pm 2 1.0000+0.0021.000^{+0.002}_{-0} 104/142104/142
510%5-10\% 0.416±0.0060.416\pm 0.006 119±2119\pm 2 1.0000+0.0021.000^{+0.002}_{-0} 79/14579/145
1020%10-20\% 0.399±0.0060.399\pm 0.006 122±2122\pm 2 1.0000+0.0101.000^{+0.010}_{-0} 92/14592/145
2030%20-30\% 0.35±0.010.35\pm 0.01 124±3124\pm 3 1.012±0.0051.012\pm 0.005 90/14590/145
3040%30-40\% 0.33±0.020.33\pm 0.02 122±3122\pm 3 1.017±0.0051.017\pm 0.005 109/144109/144
4050%40-50\% 00+0.080^{+0.08}_{-0} 126±3126\pm 3 1.046±0.0021.046\pm 0.002 114/140114/140
5060%50-60\% 00+0.080^{+0.08}_{-0} 124±3124\pm 3 1.044±0.0021.044\pm 0.002 96/13896/138
6070%60-70\% 00+0.060^{+0.06}_{-0} 128±3128\pm 3 1.034±0.0021.034\pm 0.002 108/124108/124
7080%70-80\% 00+0.050^{+0.05}_{-0} 125±3125\pm 3 1.032±0.0031.032\pm 0.003 117/120117/120
080%0-80\% 0.37±0.010.37\pm 0.01 114±3114\pm 3 1.019±0.0061.019\pm 0.006 33/11833/118
Table 4: Same as Table 3, but for sNN=\sqrt{s_{\rm{NN}}}= 11.5 GeV (continued), 14.5 GeV, 17.3 GeV, and 19.6 GeV. The results at sNN=\sqrt{s_{\rm{NN}}}= 17.3 GeV are from Ref. Shao:2009mu .
system\rm system sNN(GeV)\rm\sqrt{s_{NN}}\;(\rm{GeV}) centrality β\langle\beta\rangle\; T(MeV)T\;(\rm{MeV}) qq χ2/nDoF\chi^{2}/nDoF
Au+Au\rm Au+Au 11.5(nonstrange)11.5\;(\rm non-strange) 05%0-5\% 0.423±0.0050.423\pm 0.005 118±2118\pm 2 1.000+0.011.00^{+0.01}_{-0} 63/9663/96
510%5-10\% 0.42±0.010.42\pm 0.01 119±3119\pm 3 1.000+0.031.00^{+0.03}_{-0} 49/9749/97
1020%10-20\% 0.39±0.010.39\pm 0.01 121±3121\pm 3 1.0040.004+0.0071.004^{+0.007}_{-0.004} 68/9768/97
2030%20-30\% 0.33±0.020.33\pm 0.02 119±3119\pm 3 1.025±0.0071.025\pm 0.007 56/9756/97
3040%30-40\% 0.29±0.020.29\pm 0.02 120±3120\pm 3 1.026±0.0061.026\pm 0.006 56/9756/97
4060%40-60\% 00+0.080^{+0.08}_{-0} 123±3123\pm 3 1.047±0.0021.047\pm 0.002 61/9261/92
6080%60-80\% 00+0.060^{+0.06}_{-0} 126±3126\pm 3 1.034±0.0021.034\pm 0.002 65/8265/82
080%0-80\% 0.37±0.020.37\pm 0.02 113±3113\pm 3 1.021±0.0081.021\pm 0.008 21/8221/82
Au+Au\rm Au+Au 11.5(strange)11.5\;(\rm strange) 05%0-5\% 0.387±0.0070.387\pm 0.007 131±3131\pm 3 1.00010.0001+0.00021.0001^{+0.0002}_{-0.0001} 148/84148/84
510%5-10\% 0.373±0.0080.373\pm 0.008 135±3135\pm 3 1.00010.0001+0.00041.0001^{+0.0004}_{-0.0001} 154/86154/86
1020%10-20\% 0.376±0.0070.376\pm 0.007 132±2132\pm 2 1.00010.0001+0.00051.0001^{+0.0005}_{-0.0001} 134/86134/86
2030%20-30\% 0.352±0.0070.352\pm 0.007 138±3138\pm 3 1.0000+0.0011.000^{+0.001}_{-0} 107/86107/86
3040%30-40\% 0.313±0.0090.313\pm 0.009 147±3147\pm 3 1.0000+0.0071.000^{+0.007}_{-0} 92/8592/85
4060%40-60\% 0.22±0.020.22\pm 0.02 146±3146\pm 3 1.012±0.0031.012\pm 0.003 126/84126/84
6080%60-80\% 00+0.070^{+0.07}_{-0} 145±3145\pm 3 1.023±0.0021.023\pm 0.002 132/73132/73
Au+Au\rm Au+Au 11.5(all)11.5\;(\rm all) 05%0-5\% 0.409±0.0040.409\pm 0.004 122±1122\pm 1 1.00010.0001+0.00021.0001^{+0.0002}_{-0.0001} 228/183228/183
510%5-10\% 0.402±0.0040.402\pm 0.004 124±2124\pm 2 1.00010.0001+0.00031.0001^{+0.0003}_{-0.0001} 227/186227/186
1020%10-20\% 0.392±0.0040.392\pm 0.004 126±1126\pm 1 1.00010.0001+0.00061.0001^{+0.0006}_{-0.0001} 214/186214/186
2030%20-30\% 0.368±0.0070.368\pm 0.007 131±2131\pm 2 1.0000+0.0051.000^{+0.005}_{-0} 185/186185/186
3040%30-40\% 0.340±0.0090.340\pm 0.009 133±2133\pm 2 1.003±0.0021.003\pm 0.002 205/185205/185
4060%40-60\% 0.24±0.010.24\pm 0.01 136±2136\pm 2 1.015±0.0021.015\pm 0.002 228/179228/179
6080%60-80\% 00+0.060^{+0.06}_{-0} 134±2134\pm 2 1.029±0.0011.029\pm 0.001 240/158240/158
Au+Au\rm Au+Au 14.5(π,K,p)14.5\;(\pi,K,p) 05%0-5\% 0.42±0.010.42\pm 0.01 118±3118\pm 3 1.0060.006+0.0071.006^{+0.007}_{-0.006} 56/14956/149
510%5-10\% 0.40±0.010.40\pm 0.01 119±3119\pm 3 1.011±0.0071.011\pm 0.007 58/14958/149
1020%10-20\% 0.38±0.020.38\pm 0.02 117±3117\pm 3 1.016±0.0061.016\pm 0.006 53/14953/149
2030%20-30\% 0.36±0.020.36\pm 0.02 118±3118\pm 3 1.021±0.0061.021\pm 0.006 33/14933/149
3040%30-40\% 0.31±0.020.31\pm 0.02 123±3123\pm 3 1.024±0.0061.024\pm 0.006 57/14957/149
4050%40-50\% 0.15±0.060.15\pm 0.06 115±3115\pm 3 1.052±0.0071.052\pm 0.007 83/14383/143
5060%50-60\% 0.15±0.060.15\pm 0.06 119±3119\pm 3 1.045±0.0081.045\pm 0.008 110/139110/139
6070%60-70\% 0.15±0.070.15\pm 0.07 119±3119\pm 3 1.039±0.0081.039\pm 0.008 79/13179/131
7080%70-80\% 00+0.060^{+0.06}_{-0} 126±3126\pm 3 1.033±0.0031.033\pm 0.003 93/12793/127
Pb+Pb\rm Pb+Pb 17.317.3  (non-strange) Shao:2009mu 05%0-5\% 0.442±0.0050.442\pm 0.005 109±1109\pm 1 1.015±0.0011.015\pm 0.001 102/86102/86
Pb+Pb\rm Pb+Pb 17.317.3  (strange) Shao:2009mu 05%0-5\% 0.420±0.0070.420\pm 0.007 119±4119\pm 4 1.009±0.0041.009\pm 0.004 137/70137/70
Pb+Pb\rm Pb+Pb 17.317.3  (all) Shao:2009mu 05%0-5\% 0.426±0.0040.426\pm 0.004 113±1113\pm 1 1.015±0.0011.015\pm 0.001 267/159267/159
Au+Au\rm Au+Au 19.6(π,K,p)19.6\;(\pi,K,p) 05%0-5\% 0.428±0.0090.428\pm 0.009 112±3112\pm 3 1.013±0.0051.013\pm 0.005 52/14652/146
510%5-10\% 0.41±0.010.41\pm 0.01 114±3114\pm 3 1.016±0.0051.016\pm 0.005 155/142155/142
1020%10-20\% 0.40±0.010.40\pm 0.01 117±3117\pm 3 1.015±0.0051.015\pm 0.005 73/14273/142
2030%20-30\% 0.34±0.020.34\pm 0.02 119±3119\pm 3 1.028±0.0051.028\pm 0.005 71/14271/142
3040%30-40\% 0.27±0.020.27\pm 0.02 124±3124\pm 3 1.033±0.0061.033\pm 0.006 84/14384/143
4050%40-50\% 0.20±0.040.20\pm 0.04 123±3123\pm 3 1.041±0.0061.041\pm 0.006 88/14188/141
5060%50-60\% 00+0.050^{+0.05}_{-0} 127±2127\pm 2 1.047±0.0021.047\pm 0.002 128/141128/141
6070%60-70\% 00+0.040^{+0.04}_{-0} 128±3128\pm 3 1.042±0.0021.042\pm 0.002 192/135192/135
7080%70-80\% 00+0.040^{+0.04}_{-0} 131±3131\pm 3 1.033±0.0021.033\pm 0.002 234/130234/130
080%0-80\% 0.35±0.010.35\pm 0.01 111±3111\pm 3 1.036±0.0061.036\pm 0.006 33/12733/127
Au+Au\rm Au+Au 19.6(nonstrange)19.6\;(\rm non-strange) 05%0-5\% 0.43±0.010.43\pm 0.01 111±3111\pm 3 1.015±0.0071.015\pm 0.007 40/9640/96
510%5-10\% 0.40±0.010.40\pm 0.01 112±3112\pm 3 1.022±0.0071.022\pm 0.007 53/9253/92
1020%10-20\% 0.38±0.020.38\pm 0.02 112±3112\pm 3 1.027±0.0071.027\pm 0.007 36/9236/92
2030%20-30\% 0.32±0.020.32\pm 0.02 117±3117\pm 3 1.034±0.0071.034\pm 0.007 53/9253/92
3040%30-40\% 00+0.070^{+0.07}_{-0} 116±3116\pm 3 1.065±0.0021.065\pm 0.002 68/9368/93
4060%40-60\% 00+0.060^{+0.06}_{-0} 120±3120\pm 3 1.057±0.0021.057\pm 0.002 48/9348/93
6080%60-80\% 00+0.040^{+0.04}_{-0} 129±3129\pm 3 1.040±0.0021.040\pm 0.002 125/88125/88
080%0-80\% 0.34±0.020.34\pm 0.02 110±3110\pm 3 1.038±0.0071.038\pm 0.007 24/8624/86
Au+Au\rm Au+Au 19.6(strange)19.6\;(\rm strange) 05%0-5\% 0.404±0.0040.404\pm 0.004 134±2134\pm 2 1.0001±0.00011.0001\pm 0.0001 201/88201/88
510%5-10\% 0.397±0.0040.397\pm 0.004 136±2136\pm 2 1.00010.0001+0.00031.0001^{+0.0003}_{-0.0001} 181/88181/88
1020%10-20\% 0.388±0.0040.388\pm 0.004 138±2138\pm 2 1.00010.0001+0.00041.0001^{+0.0004}_{-0.0001} 188/88188/88
2030%20-30\% 0.359±0.0070.359\pm 0.007 145±2145\pm 2 1.002±0.0021.002\pm 0.002 182/88182/88
3040%30-40\% 0.319±0.0090.319\pm 0.009 144±2144\pm 2 1.009±0.0021.009\pm 0.002 224/88224/88
4060%40-60\% 0.19±0.020.19\pm 0.02 146±2146\pm 2 1.025±0.0031.025\pm 0.003 271/86271/86
6080%60-80\% 00+0.030^{+0.03}_{-0} 141±2141\pm 2 1.034±0.0011.034\pm 0.001 265/79265/79
Table 5: Same as Table 3, but for sNN=\sqrt{s_{\rm{NN}}}= 19.6 GeV (continued), 27 GeV and 39 GeV.
system\rm system sNN(GeV)\rm\sqrt{s_{NN}}\;(\rm{GeV}) centrality β\langle\beta\rangle\; T(MeV)T\;(\rm{MeV}) qq χ2/nDoF\chi^{2}/nDoF
Au+Au\rm Au+Au 19.6(all)19.6\;(\rm all) 05%0-5\% 0.421±0.0030.421\pm 0.003 126±1126\pm 1 1.00010.0001+0.00021.0001^{+0.0002}_{-0.0001} 293/187293/187
510%5-10\% 0.414±0.0030.414\pm 0.003 128±1128\pm 1 1.00010.0001+0.00051.0001^{+0.0005}_{-0.0001} 282/183282/183
1020%10-20\% 0.404±0.0030.404\pm 0.003 131±1131\pm 1 1.0000+0.0011.000^{+0.001}_{-0} 278/183278/183
2030%20-30\% 0.369±0.0060.369\pm 0.006 135±1135\pm 1 1.005±0.0021.005\pm 0.002 312/183312/183
3040%30-40\% 0.324±0.0080.324\pm 0.008 136±1136\pm 1 1.013±0.0021.013\pm 0.002 343/184343/184
4060%40-60\% 0.22±0.020.22\pm 0.02 138±1138\pm 1 1.027±0.0021.027\pm 0.002 374/182374/182
6080%60-80\% 00+0.030^{+0.03}_{-0} 134±2134\pm 2 1.037±0.0011.037\pm 0.001 411/170411/170
Au+Au\rm Au+Au 27(π,K,p)27\;(\pi,K,p) 05%0-5\% 0.451±0.0090.451\pm 0.009 114±3114\pm 3 1.0040.004+0.0061.004^{+0.006}_{-0.004} 86/13986/139
510%5-10\% 0.43±0.010.43\pm 0.01 112±3112\pm 3 1.016±0.0061.016\pm 0.006 66/14066/140
1020%10-20\% 0.40±0.010.40\pm 0.01 116±3116\pm 3 1.019±0.0051.019\pm 0.005 61/14061/140
2030%20-30\% 0.36±0.010.36\pm 0.01 116±3116\pm 3 1.031±0.0051.031\pm 0.005 54/14054/140
3040%30-40\% 0.30±0.020.30\pm 0.02 120±3120\pm 3 1.038±0.0051.038\pm 0.005 57/14057/140
4050%40-50\% 0.14±0.060.14\pm 0.06 120±3120\pm 3 1.058±0.0061.058\pm 0.006 48/14048/140
5060%50-60\% 00+0.050^{+0.05}_{-0} 126±3126\pm 3 1.055±0.0021.055\pm 0.002 102/140102/140
6070%60-70\% 00+0.040^{+0.04}_{-0} 130±3130\pm 3 1.047±0.0021.047\pm 0.002 162/140162/140
7080%70-80\% 00+0.030^{+0.03}_{-0} 133±3133\pm 3 1.039±0.0021.039\pm 0.002 267/138267/138
080%0-80\% 0.38±0.010.38\pm 0.01 115±3115\pm 3 1.027±0.0051.027\pm 0.005 49/13749/137
Au+Au\rm Au+Au 27(nonstrange)27\;(\rm non-strange) 05%0-5\% 0.43±0.010.43\pm 0.01 109±3109\pm 3 1.021±0.0081.021\pm 0.008 38/9038/90
510%5-10\% 0.41±0.010.41\pm 0.01 108±3108\pm 3 1.027±0.0071.027\pm 0.007 39/9039/90
1020%10-20\% 0.39±0.020.39\pm 0.02 112±3112\pm 3 1.029±0.0071.029\pm 0.007 32/9032/90
2030%20-30\% 0.34±0.020.34\pm 0.02 113±3113\pm 3 1.039±0.0071.039\pm 0.007 29/9029/90
3040%30-40\% 0.26±0.030.26\pm 0.03 116±3116\pm 3 1.050±0.0071.050\pm 0.007 31/9031/90
4060%40-60\% 00+0.040^{+0.04}_{-0} 120±3120\pm 3 1.061±0.0031.061\pm 0.003 38/9038/90
6080%60-80\% 00+0.030^{+0.03}_{-0} 131±3131\pm 3 1.044±0.0031.044\pm 0.003 125/88125/88
080%0-80\% 0.36±0.020.36\pm 0.02 110±3110\pm 3 1.039±0.0071.039\pm 0.007 22/8822/88
Au+Au\rm Au+Au 27(strange)27\;(\rm strange) 05%0-5\% 0.419±0.0040.419\pm 0.004 132±2132\pm 2 1.00010.0001+0.00021.0001^{+0.0002}_{-0.0001} 263/87263/87
510%5-10\% 0.408±0.0040.408\pm 0.004 136±2136\pm 2 1.00010.0001+0.00021.0001^{+0.0002}_{-0.0001} 199/88199/88
1020%10-20\% 0.396±0.0040.396\pm 0.004 141±2141\pm 2 1.00010.0001+0.00041.0001^{+0.0004}_{-0.0001} 189/88189/88
2030%20-30\% 0.368±0.0060.368\pm 0.006 148±2148\pm 2 1.002±0.0021.002\pm 0.002 177/88177/88
3040%30-40\% 0.31±0.010.31\pm 0.01 153±2153\pm 2 1.011±0.0021.011\pm 0.002 154/88154/88
4060%40-60\% 0.19±0.030.19\pm 0.03 155±2155\pm 2 1.027±0.0031.027\pm 0.003 201/88201/88
6080%60-80\% 00+0.030^{+0.03}_{-0} 145±2145\pm 2 1.038±0.0011.038\pm 0.001 253/88253/88
Au+Au\rm Au+Au 27(all)27\;(\rm all) 05%0-5\% 0.434±0.0030.434\pm 0.003 125±1125\pm 1 1.00010.0001+0.00021.0001^{+0.0002}_{-0.0001} 350/180350/180
510%5-10\% 0.426±0.0030.426\pm 0.003 128±1128\pm 1 1.00010.0001+0.00031.0001^{+0.0003}_{-0.0001} 302/181302/181
1020%10-20\% 0.414±0.0030.414\pm 0.003 132±1132\pm 1 1.00010.0001+0.00091.0001^{+0.0009}_{-0.0001} 290/181290/181
2030%20-30\% 0.379±0.0050.379\pm 0.005 137±1137\pm 1 1.006±0.0021.006\pm 0.002 316/181316/181
3040%30-40\% 0.328±0.0080.328\pm 0.008 141±1141\pm 1 1.014±0.0021.014\pm 0.002 302/181302/181
4060%40-60\% 0.22±0.020.22\pm 0.02 143±1143\pm 1 1.029±0.0031.029\pm 0.003 348/181348/181
6080%60-80\% 00+0.030^{+0.03}_{-0} 137±1137\pm 1 1.042±0.0011.042\pm 0.001 422/179422/179
Au+Au\rm Au+Au 39(π,K,p)39\;(\pi,K,p) 05%0-5\% 0.463±0.0090.463\pm 0.009 116±3116\pm 3 1.0040.004+0.0071.004^{+0.007}_{-0.004} 57/14057/140
510%5-10\% 0.44±0.010.44\pm 0.01 120±3120\pm 3 1.010±0.0061.010\pm 0.006 61/14061/140
1020%10-20\% 0.41±0.010.41\pm 0.01 114±3114\pm 3 1.026±0.0061.026\pm 0.006 48/14048/140
2030%20-30\% 0.36±0.010.36\pm 0.01 116±3116\pm 3 1.036±0.0061.036\pm 0.006 63/14063/140
3040%30-40\% 0.30±0.020.30\pm 0.02 120±3120\pm 3 1.045±0.0061.045\pm 0.006 53/14053/140
4050%40-50\% 0.18±0.040.18\pm 0.04 118±3118\pm 3 1.062±0.0061.062\pm 0.006 55/14055/140
5060%50-60\% 00+0.050^{+0.05}_{-0} 123±3123\pm 3 1.063±0.0021.063\pm 0.002 94/14094/140
6070%60-70\% 00+0.040^{+0.04}_{-0} 131±3131\pm 3 1.054±0.0021.054\pm 0.002 226/140226/140
7080%70-80\% 00+0.030^{+0.03}_{-0} 137±3137\pm 3 1.045±0.0021.045\pm 0.002 341/140341/140
080%0-80\% 0.38±0.010.38\pm 0.01 117±3117\pm 3 1.030±0.0061.030\pm 0.006 46/14046/140
Table 6: Same as Table 3, but for sNN=\sqrt{s_{\rm{NN}}}= 39 GeV (continued), 62.4 GeV and 200 GeV.
system\rm system sNN(GeV)\rm\sqrt{s_{NN}}\;(\rm{GeV}) centrality β\langle\beta\rangle\; T(MeV)T\;(\rm{MeV}) qq χ2/nDoF\chi^{2}/nDoF
Au+Au\rm Au+Au 39(nonstrange)39\;(\rm non-strange) 05%0-5\%111Lack of measurements of π0\pi^{0} at this centrality class Adare:2012uk . 0.45±0.010.45\pm 0.01 111±4111\pm 4 1.017±0.0091.017\pm 0.009 39/9039/90
510%5-10\%111Lack of measurements of π0\pi^{0} at this centrality class Adare:2012uk . 0.43±0.010.43\pm 0.01 116±4116\pm 4 1.019±0.0091.019\pm 0.009 45/9045/90
1020%10-20\% 0.39±0.010.39\pm 0.01 111±3111\pm 3 1.036±0.0051.036\pm 0.005 40/10040/100
2030%20-30\%111Lack of measurements of π0\pi^{0} at this centrality class Adare:2012uk . 0.35±0.020.35\pm 0.02 114±4114\pm 4 1.042±0.0081.042\pm 0.008 50/9050/90
3040%30-40\%111Lack of measurements of π0\pi^{0} at this centrality class Adare:2012uk . 00+0.080^{+0.08}_{-0} 112±3112\pm 3 1.079±0.0031.079\pm 0.003 49/9049/90
4060%40-60\% 00+0.060^{+0.06}_{-0} 120±3120\pm 3 1.067±0.0051.067\pm 0.005 43/10043/100
6080%60-80\%111Lack of measurements of π0\pi^{0} at this centrality class Adare:2012uk . 00+0.030^{+0.03}_{-0} 137±3137\pm 3 1.045±0.0031.045\pm 0.003 158/90158/90
080%0-80\%111Lack of measurements of π0\pi^{0} at this centrality class Adare:2012uk . 0.37±0.020.37\pm 0.02 114±3114\pm 3 1.039±0.0081.039\pm 0.008 35/9035/90
Au+Au\rm Au+Au 39(strange)39\;(\rm strange) 05%0-5\% 0.430±0.0070.430\pm 0.007 134±3134\pm 3 1.0000+0.0031.000^{+0.003}_{-0} 65/8865/88
510%5-10\% 0.42±0.010.42\pm 0.01 134±3134\pm 3 1.0010.001+0.0031.001^{+0.003}_{-0.001} 73/8873/88
1020%10-20\% 0.39±0.010.39\pm 0.01 143±3143\pm 3 1.005±0.0031.005\pm 0.003 85/8885/88
2030%20-30\% 0.36±0.010.36\pm 0.01 148±3148\pm 3 1.009±0.0031.009\pm 0.003 110/88110/88
3040%30-40\% 0.30±0.020.30\pm 0.02 153±3153\pm 3 1.019±0.0031.019\pm 0.003 93/8893/88
4060%40-60\% 00+0.060^{+0.06}_{-0} 154±2154\pm 2 1.045±0.0011.045\pm 0.001 166/88166/88
6080%60-80\% 00+0.030^{+0.03}_{-0} 149±2149\pm 2 1.043±0.0021.043\pm 0.002 221/88221/88
Au+Au\rm Au+Au 39(all)39\;(\rm all) 05%0-5\%111Lack of measurements of π0\pi^{0} at this centrality class Adare:2012uk . 0.454±0.0040.454\pm 0.004 123±2123\pm 2 1.0000+0.0021.000^{+0.002}_{-0} 131/181131/181
510%5-10\%111Lack of measurements of π0\pi^{0} at this centrality class Adare:2012uk . 0.438±0.0070.438\pm 0.007 126±2126\pm 2 1.003±0.0031.003\pm 0.003 133/181133/181
1020%10-20\% 0.408±0.0070.408\pm 0.007 129±2129\pm 2 1.012±0.0031.012\pm 0.003 190/191190/191
2030%20-30\%111Lack of measurements of π0\pi^{0} at this centrality class Adare:2012uk . 0.382±0.0080.382\pm 0.008 134±2134\pm 2 1.013±0.0021.013\pm 0.002 234/181234/181
3040%30-40\%111Lack of measurements of π0\pi^{0} at this centrality class Adare:2012uk . 0.32±0.010.32\pm 0.01 138±2138\pm 2 1.023±0.0021.023\pm 0.002 214/181214/181
4060%40-60\% 0.14±0.040.14\pm 0.04 141±2141\pm 2 1.046±0.0041.046\pm 0.004 309/191309/191
6080%60-80\%111Lack of measurements of π0\pi^{0} at this centrality class Adare:2012uk . 00+0.020^{+0.02}_{-0} 138±2138\pm 2 1.048±0.0011.048\pm 0.001 464/181464/181
Au+Au\rm Au+Au 62.4(π,K,p)62.4\;(\pi,K,p) 010%0-10\% 0.47±0.010.47\pm 0.01 124±3124\pm 3 1.0020.002+0.0061.002^{+0.006}_{-0.002} 104/65104/65
1020%10-20\% 0.44±0.010.44\pm 0.01 124±3124\pm 3 1.015±0.0061.015\pm 0.006 96/6596/65
2040%20-40\% 0.39±0.020.39\pm 0.02 125±4125\pm 4 1.028±0.0051.028\pm 0.005 85/6585/65
4080%40-80\% 0.18±0.050.18\pm 0.05 128±4128\pm 4 1.059±0.0061.059\pm 0.006 91/6591/65
Au+Au\rm Au+Au 62.4(nonstrange)62.4\;(\rm non-strange) 020%0-20\% 0.43±0.010.43\pm 0.01 121±3121\pm 3 1.022±0.0051.022\pm 0.005 93/5793/57
2040%20-40\% 0.36±0.020.36\pm 0.02 121±3121\pm 3 1.039±0.0041.039\pm 0.004 69/5769/57
4080%40-80\%111Lack of measurements of π0\pi^{0} at this centrality class Adare:2012uk . 00+0.140^{+0.14}_{-0} 124±4124\pm 4 1.068±0.0071.068\pm 0.007 73/4773/47
Au+Au\rm Au+Au 62.4(strange)62.4\;(\rm strange) 020%0-20\% 0.34±0.020.34\pm 0.02 190±10190\pm 10 1.0000+0.0011.000^{+0.001}_{-0} 50/7350/73
2040%20-40\% 0.35±0.020.35\pm 0.02 182±8182\pm 8 1.0000+0.0031.000^{+0.003}_{-0} 43/7343/73
4080%40-80\% 0.23±0.070.23\pm 0.07 169±7169\pm 7 1.03±0.011.03\pm 0.01 70/6770/67
Au+Au\rm Au+Au 62.4(all)62.4\;(\rm all) 020%0-20\% 0.443±0.0090.443\pm 0.009 137±3137\pm 3 1.0010.001+0.0061.001^{+0.006}_{-0.001} 215/133215/133
2040%20-40\% 0.38±0.010.38\pm 0.01 136±3136\pm 3 1.021±0.0041.021\pm 0.004 181/133181/133
4080%40-80\%111Lack of measurements of π0\pi^{0} at this centrality class Adare:2012uk . 0.20±0.040.20\pm 0.04 139±3139\pm 3 1.048±0.0061.048\pm 0.006 185/117185/117
Au+Au\rm Au+Au 200(π,K,p)200\;(\pi,K,p) 010%0-10\%222The measurements of π±\pi^{\pm}, pp and p¯\bar{p} for centrality 0-12% Abelev:2006jr are used as 0-10%. 0.45±0.010.45\pm 0.01 111±3111\pm 3 1.039±0.0041.039\pm 0.004 105/79105/79
1020%10-20\% 0.44±0.010.44\pm 0.01 113±3113\pm 3 1.039±0.0051.039\pm 0.005 98/7998/79
2040%20-40\% 0.36±0.020.36\pm 0.02 115±3115\pm 3 1.057±0.0041.057\pm 0.004 112/81112/81
4060%40-60\% 0.22±0.040.22\pm 0.04 117±3117\pm 3 1.075±0.0041.075\pm 0.004 87/8187/81
6080%60-80\% 00+0.040^{+0.04}_{-0} 111±3111\pm 3 1.088±0.0021.088\pm 0.002 79/8179/81
Au+Au\rm Au+Au 200(nonstrange)200\;(\rm non-strange) 010%0-10\%222The measurements of π±\pi^{\pm}, pp and p¯\bar{p} for centrality 0-12% Abelev:2006jr are used as 0-10%. 0.43±0.010.43\pm 0.01 110±3110\pm 3 1.044±0.0041.044\pm 0.004 73/6173/61
1020%10-20\% 0.42±0.010.42\pm 0.01 112±3112\pm 3 1.047±0.0051.047\pm 0.005 67/5967/59
2040%20-40\% 0.33±0.020.33\pm 0.02 114±3114\pm 3 1.064±0.0041.064\pm 0.004 75/6175/61
4060%40-60\% 0.16±0.050.16\pm 0.05 115±3115\pm 3 1.081±0.0041.081\pm 0.004 68/6168/61
6080%60-80\% 00+0.040^{+0.04}_{-0} 110±3110\pm 3 1.088±0.0021.088\pm 0.002 74/6174/61
Au+Au\rm Au+Au 200(strange)200\;(\rm strange) 010%0-10\%333The measurements of Λ\Lambda, Λ¯\bar{\Lambda}, Ξ+\Xi^{+}, Ξ\Xi^{-} and Ω\Omega for centrality 0-5% Adams:2006ke are used as 0-10%. 0.43±0.010.43\pm 0.01 133±4133\pm 4 1.027±0.0051.027\pm 0.005 92/11192/111
1020%10-20\%444Lack of measurements of Ω\Omega at this centrality class Adams:2006ke . 0.43±0.010.43\pm 0.01 131±4131\pm 4 1.028±0.0051.028\pm 0.005 112/111112/111
2040%20-40\% 0.39±0.010.39\pm 0.01 131±3131\pm 3 1.037±0.0051.037\pm 0.005 171/113171/113
4060%40-60\% 0.22±0.030.22\pm 0.03 110±3110\pm 3 1.081±0.0041.081\pm 0.004 165/113165/113
6080%60-80\%555Lack of measurements of Ω\Omega Adams:2006ke and intermediate pTp_{T} K±K^{\pm} Adare:2013esx at this centrality class. 0.31±0.040.31\pm 0.04 110±10110\pm 10 1.059±0.0071.059\pm 0.007 54/5954/59
Table 7: Same as Table 3, but for sNN=\sqrt{s_{\rm{NN}}}= 200 GeV (continued), 2760 GeV and 5020 GeV. Previous studies of 200 GeV from Refs. Tang:2008ud ; Shao:2009mu are also listed. The difference between our results at 200 GeV from previous ones is due to the fact that more data points at 2 pT\leqslant p_{T}\leqslant 3 GeV/cc are available now and are thus used in fitting, mainly K±K^{\pm} data from PHENIX Adare:2013esx which provide better constraint on qq, while data for K±K^{\pm} used in Ref. Tang:2008ud are only at pTp_{T}\leqslant 0.8 GeV/cc and data for K±K^{\pm} used in Ref.Shao:2009mu are only at pTp_{T}\leqslant 2 GeV/cc.
system\rm system sNN(GeV)\rm\sqrt{s_{NN}}\;(\rm{GeV}) centrality β\langle\beta\rangle\; T(MeV)T\;(\rm{MeV}) qq χ2/nDoF\chi^{2}/nDoF
Au+Au\rm Au+Au 200(all)200\;(\rm all) 010%0-10\%111The measurements of π±\pi^{\pm}, pp and p¯\bar{p} for centrality 0-12% Abelev:2006jr are used as 0-10%. Λ\Lambda, Λ¯\bar{\Lambda}, Ξ+\Xi^{+}, Ξ\Xi^{-} and Ω\Omega for centrality 0-5% Adams:2006ke are used as 0-10%. 0.435±0.0070.435\pm 0.007 118±2118\pm 2 1.036±0.0031.036\pm 0.003 186/175186/175
1020%10-20\%222Lack of measurements of Ω\Omega at this centrality class Adams:2006ke . 0.436±0.0070.436\pm 0.007 118±2118\pm 2 1.036±0.0031.036\pm 0.003 198/173198/173
2040%20-40\% 0.378±0.0090.378\pm 0.009 120±2120\pm 2 1.049±0.0031.049\pm 0.003 278/177278/177
4060%40-60\% 0.23±0.020.23\pm 0.02 112±2112\pm 2 1.078±0.0031.078\pm 0.003 237/177237/177
6080%60-80\%333Lack of measurements of Ω\Omega Adams:2006ke and intermediate pTp_{T} K±K^{\pm} Adare:2013esx at this centrality class. 00+0.040^{+0.04}_{-0} 113±3113\pm 3 1.086±0.0021.086\pm 0.002 139/123139/123
Au+Au\rm Au+Au 200200  (all) Tang:2008ud 010%0-10\% 0.470±0.0090.470\pm 0.009 122±2122\pm 2 1.018±0.0051.018\pm 0.005 130/125130/125
1020%10-20\% 0.475±0.0080.475\pm 0.008 122±2122\pm 2 1.015±0.0051.015\pm 0.005 119/127119/127
2040%20-40\% 0.441±0.0090.441\pm 0.009 124±2124\pm 2 1.024±0.0041.024\pm 0.004 159/127159/127
4060%40-60\% 0.282±0.0170.282\pm 0.017 119±2119\pm 2 1.066±0.0031.066\pm 0.003 165/135165/135
6080%60-80\% 00+0.050^{+0.05}_{-0} 114±3114\pm 3 1.086±0.0021.086\pm 0.002 138/123138/123
Au+Au\rm Au+Au 200200  (all) Shao:2009mu 010%0-10\% 0.472±0.0090.472\pm 0.009 122±3122\pm 3 1.017±0.0061.017\pm 0.006 140/155140/155
Pb+Pb\rm Pb+Pb 2760(π,K,p)2760\;(\pi,K,p) 05%0-5\% 0.591±0.0030.591\pm 0.003 91±291\pm 2 1.024±0.0051.024\pm 0.005 247/213247/213
510%5-10\% 0.587±0.0030.587\pm 0.003 91±291\pm 2 1.029±0.0051.029\pm 0.005 247/213247/213
1020%10-20\% 0.580±0.0030.580\pm 0.003 92±292\pm 2 1.035±0.0051.035\pm 0.005 230/213230/213
2030%20-30\% 0.563±0.0040.563\pm 0.004 92±292\pm 2 1.046±0.0051.046\pm 0.005 207/213207/213
3040%30-40\% 0.535±0.0050.535\pm 0.005 92±292\pm 2 1.061±0.0041.061\pm 0.004 201/213201/213
4050%40-50\% 0.493±0.0050.493\pm 0.005 90±290\pm 2 1.078±0.0031.078\pm 0.003 185/213185/213
5060%50-60\% 0.437±0.0070.437\pm 0.007 90±290\pm 2 1.091±0.0031.091\pm 0.003 196/213196/213
6070%60-70\% 0.35±0.010.35\pm 0.01 91±291\pm 2 1.104±0.0021.104\pm 0.002 244/213244/213
7080%70-80\% 0.23±0.020.23\pm 0.02 91±291\pm 2 1.116±0.0021.116\pm 0.002 299/213299/213
8090%80-90\% 00+0.010^{+0.01}_{-0} 90±290\pm 2 1.122±0.0011.122\pm 0.001 344/213344/213
Pb+Pb\rm Pb+Pb 2760(nonstrange)2760\;(\rm non-strange) 010%0-10\% 0.587±0.0030.587\pm 0.003 88±288\pm 2 1.034±0.0051.034\pm 0.005 209/143209/143
1020%10-20\% 0.576±0.0040.576\pm 0.004 89±289\pm 2 1.042±0.0051.042\pm 0.005 201/143201/143
2040%20-40\% 0.548±0.0050.548\pm 0.005 91±291\pm 2 1.057±0.0051.057\pm 0.005 189/143189/143
4060%40-60\% 0.463±0.0070.463\pm 0.007 90±290\pm 2 1.086±0.0031.086\pm 0.003 168/143168/143
6080%60-80\% 0.28±0.010.28\pm 0.01 91±291\pm 2 1.112±0.0031.112\pm 0.003 198/143198/143
8090%80-90\% 00+0.010^{+0.01}_{-0} 90±290\pm 2 1.120±0.0011.120\pm 0.001 225/143225/143
Pb+Pb\rm Pb+Pb 2760(strange)2760\;(\rm strange) 010%0-10\% 0.561±0.0030.561\pm 0.003 133±3133\pm 3 1.0000+0.0011.000^{+0.001}_{-0} 125/139125/139
1020%10-20\% 0.550±0.0030.550\pm 0.003 143±3143\pm 3 1.0000+0.0021.000^{+0.002}_{-0} 74/13974/139
2040%20-40\% 0.519±0.0080.519\pm 0.008 157±5157\pm 5 1.0060.006+0.0081.006^{+0.008}_{-0.006} 61/13961/139
4060%40-60\% 0.43±0.010.43\pm 0.01 148±5148\pm 5 1.047±0.0061.047\pm 0.006 53/13953/139
6080%60-80\% 0.25±0.030.25\pm 0.03 139±5139\pm 5 1.088±0.0051.088\pm 0.005 72/13772/137
Pb+Pb\rm Pb+Pb 2760(all)2760\;(\rm all) 010%0-10\% 0.578±0.0030.578\pm 0.003 99±299\pm 2 1.024±0.0041.024\pm 0.004 517/285517/285
1020%10-20\% 0.566±0.0030.566\pm 0.003 100±2100\pm 2 1.033±0.0041.033\pm 0.004 467/285467/285
2040%20-40\% 0.534±0.0040.534\pm 0.004 101±2101\pm 2 1.050±0.0041.050\pm 0.004 470/285470/285
4060%40-60\% 0.457±0.0050.457\pm 0.005 99±299\pm 2 1.078±0.0031.078\pm 0.003 373/285373/285
6080%60-80\% 0.31±0.010.31\pm 0.01 96±296\pm 2 1.106±0.0021.106\pm 0.002 396/283396/283
Pb+Pb\rm Pb+Pb 5020(π,K,p)5020\;(\pi,K,p) 05%0-5\% 0.605±0.0020.605\pm 0.002 93±293\pm 2 1.021±0.0051.021\pm 0.005 316/90316/90
510%5-10\% 0.602±0.0030.602\pm 0.003 91±291\pm 2 1.030±0.0051.030\pm 0.005 303/90303/90
1020%10-20\% 0.596±0.0030.596\pm 0.003 93±293\pm 2 1.031±0.0051.031\pm 0.005 317/90317/90
2030%20-30\% 0.581±0.0030.581\pm 0.003 94±294\pm 2 1.042±0.0041.042\pm 0.004 268/90268/90
3040%30-40\% 0.557±0.0030.557\pm 0.003 93±293\pm 2 1.058±0.0041.058\pm 0.004 217/90217/90
4050%40-50\% 0.517±0.0040.517\pm 0.004 92±292\pm 2 1.076±0.0031.076\pm 0.003 189/90189/90
5060%50-60\% 0.459±0.0050.459\pm 0.005 92±292\pm 2 1.092±0.0031.092\pm 0.003 192/90192/90
6070%60-70\% 0.383±0.0090.383\pm 0.009 89±289\pm 2 1.109±0.0031.109\pm 0.003 177/90177/90
7080%70-80\% 0.26±0.020.26\pm 0.02 88±288\pm 2 1.123±0.0031.123\pm 0.003 189/90189/90
8090%80-90\% 00+0.010^{+0.01}_{-0} 88±288\pm 2 1.131±0.0031.131\pm 0.003 174/90174/90
Table 8: Extracted kinetic freeze-out parameters and χ2/nDoF\chi^{2}/nDoF from TBW4 fit to identified particle transverse spectra in heavy ion collisions of different centralities at sNN=\sqrt{s_{\rm{NN}}}= 7.7, 11.5, 14.5, and 19.6 GeV. Results for charged pions, kaons, and protons have labels ‘(π,K,p)(\pi,K,p)’ behind their collision energy. All available hadrons including strange and multi-strange particles are labeled as ‘(all)’.
system\rm system sNN(GeV)\rm\sqrt{s_{NN}}\;(\rm{GeV}) centrality β\langle\beta\rangle\; T(MeV)T\;(\rm{MeV}) qMq_{M} qBq_{B} χ2/nDoF\chi^{2}/nDoF
Au+Au\rm Au+Au 7.7(π,K,p)7.7\;(\pi,K,p) 05%0-5\% 0.431±0.0080.431\pm 0.008 111±2111\pm 2 1.0000+0.0021.000^{+0.002}_{-0} 1.003±0.0031.003\pm 0.003 112/132112/132
510%5-10\% 0.418±0.0090.418\pm 0.009 113±3113\pm 3 1.0000+0.0031.000^{+0.003}_{-0} 1.005±0.0031.005\pm 0.003 103/133103/133
1020%10-20\% 0.39±0.010.39\pm 0.01 117±4117\pm 4 1.006±0.0051.006\pm 0.005 1.006±0.0061.006\pm 0.006 86/13786/137
2030%20-30\% 0.34±0.020.34\pm 0.02 123±4123\pm 4 1.008±0.0051.008\pm 0.005 1.015±0.0061.015\pm 0.006 120/135120/135
3040%30-40\% 0.32±0.020.32\pm 0.02 125±4125\pm 4 1.006±0.0051.006\pm 0.005 1.013±0.0061.013\pm 0.006 118/134118/134
4050%40-50\% 0.26±0.030.26\pm 0.03 116±4116\pm 4 1.024±0.0061.024\pm 0.006 1.023±0.0061.023\pm 0.006 110/124110/124
5060%50-60\% 0.17±0.080.17\pm 0.08 121±4121\pm 4 1.03±0.011.03\pm 0.01 1.03±0.011.03\pm 0.01 130/121130/121
6070%60-70\% 00+0.0950^{+0.095}_{-0} 121±4121\pm 4 1.033±0.0041.033\pm 0.004 1.034±0.0031.034\pm 0.003 95/11695/116
7080%70-80\% 00+0.0950^{+0.095}_{-0} 116±4116\pm 4 1.032±0.0051.032\pm 0.005 1.025±0.0031.025\pm 0.003 80/9680/96
080%0-80\% 0.37±0.020.37\pm 0.02 105±5105\pm 5 1.026±0.0091.026\pm 0.009 1.020±0.0081.020\pm 0.008 46/8946/89
Au+Au\rm Au+Au 7.7(all)7.7\;(\rm all) 05%0-5\% 0.426±0.0050.426\pm 0.005 105±2105\pm 2 1.010±0.0021.010\pm 0.002 1.0001±0.00021.0001\pm 0.0002 234/171234/171
510%5-10\% 0.421±0.0050.421\pm 0.005 106±2106\pm 2 1.009±0.0021.009\pm 0.002 1.0001±0.00021.0001\pm 0.0002 218/172218/172
1020%10-20\% 0.399±0.0050.399\pm 0.005 112±2112\pm 2 1.008±0.0011.008\pm 0.001 1.0001±0.00021.0001\pm 0.0002 186/176186/176
2030%20-30\% 0.377±0.0060.377\pm 0.006 117±3117\pm 3 1.004±0.0011.004\pm 0.001 1.00010.0001+0.00031.0001^{+0.0003}_{-0.0001} 207/174207/174
3040%30-40\% 0.362±0.0070.362\pm 0.007 118±3118\pm 3 1.004±0.0011.004\pm 0.001 1.0000+0.0011.000^{+0.001}_{-0} 180/173180/173
4060%40-60\% 0.32±0.010.32\pm 0.01 117±3117\pm 3 1.009±0.0031.009\pm 0.003 1.003±0.0021.003\pm 0.002 210/157210/157
6080%60-80\% 0.24±0.020.24\pm 0.02 112±3112\pm 3 1.022±0.0041.022\pm 0.004 1.011±0.0041.011\pm 0.004 122/128122/128
Au+Au\rm Au+Au 11.5(π,K,p)11.5\;(\pi,K,p) 05%0-5\% 0.429±0.0060.429\pm 0.006 112±3112\pm 3 1.005±0.0021.005\pm 0.002 1.0000+0.0011.000^{+0.001}_{-0} 100/141100/141
510%5-10\% 0.417±0.0060.417\pm 0.006 117±3117\pm 3 1.0010.001+0.0021.001^{+0.002}_{-0.001} 1.0000+0.0021.000^{+0.002}_{-0} 79/14479/144
1020%10-20\% 0.404±0.0060.404\pm 0.006 118±3118\pm 3 1.004±0.0021.004\pm 0.002 1.0000+0.0031.000^{+0.003}_{-0} 88/14488/144
2030%20-30\% 0.36±0.020.36\pm 0.02 121±3121\pm 3 1.012±0.0051.012\pm 0.005 1.009±0.0061.009\pm 0.006 88/14488/144
3040%30-40\% 0.37±0.010.37\pm 0.01 112±3112\pm 3 1.019±0.0051.019\pm 0.005 1.008±0.0051.008\pm 0.005 90/14390/143
4050%40-50\% 0.24±0.030.24\pm 0.03 121±3121\pm 3 1.031±0.0051.031\pm 0.005 1.025±0.0061.025\pm 0.006 104/139104/139
5060%50-60\% 0.24±0.030.24\pm 0.03 116±3116\pm 3 1.032±0.0051.032\pm 0.005 1.023±0.0051.023\pm 0.005 79/13779/137
6070%60-70\% 00+0.140^{+0.14}_{-0} 118±3118\pm 3 1.044±0.0031.044\pm 0.003 1.037±0.0021.037\pm 0.002 86/12386/123
7080%70-80\% 00+0.080^{+0.08}_{-0} 116±3116\pm 3 1.041±0.0031.041\pm 0.003 1.034±0.0031.034\pm 0.003 101/119101/119
080%0-80\% 0.38±0.010.38\pm 0.01 109±4109\pm 4 1.022±0.0061.022\pm 0.006 1.017±0.0061.017\pm 0.006 30/11730/117
Au+Au\rm Au+Au 11.5(all)11.5\;(\rm all) 05%0-5\% 0.433±0.0040.433\pm 0.004 107±2107\pm 2 1.010±0.0011.010\pm 0.001 1.00010.0001+0.00021.0001^{+0.0002}_{-0.0001} 169/182169/182
510%5-10\% 0.427±0.0040.427\pm 0.004 108±2108\pm 2 1.011±0.0011.011\pm 0.001 1.00010.0001+0.00031.0001^{+0.0003}_{-0.0001} 163/185163/185
1020%10-20\% 0.418±0.0040.418\pm 0.004 110±2110\pm 2 1.010±0.0011.010\pm 0.001 1.00010.0001+0.00091.0001^{+0.0009}_{-0.0001} 152/185152/185
2030%20-30\% 0.394±0.0070.394\pm 0.007 116±2116\pm 2 1.010±0.0021.010\pm 0.002 1.0010.001+0.0021.001^{+0.002}_{-0.001} 133/185133/185
3040%30-40\% 0.376±0.0070.376\pm 0.007 113±2113\pm 2 1.015±0.0021.015\pm 0.002 1.004±0.0021.004\pm 0.002 124/184124/184
4060%40-60\% 0.30±0.010.30\pm 0.01 118±3118\pm 3 1.022±0.0021.022\pm 0.002 1.013±0.0021.013\pm 0.002 154/178154/178
6080%60-80\% 0.25±0.020.25\pm 0.02 113±3113\pm 3 1.028±0.0031.028\pm 0.003 1.014±0.0031.014\pm 0.003 131/157131/157
Au+Au\rm Au+Au 14.5(π,K,p)14.5\;(\pi,K,p) 05%0-5\% 0.43±0.020.43\pm 0.02 116±4116\pm 4 1.0050.005+0.0071.005^{+0.007}_{-0.005} 1.0020.002+0.0081.002^{+0.008}_{-0.002} 55/14855/148
510%5-10\% 0.41±0.020.41\pm 0.02 117±4117\pm 4 1.010±0.0071.010\pm 0.007 1.008±0.0081.008\pm 0.008 57/14857/148
1020%10-20\% 0.39±0.020.39\pm 0.02 116±4116\pm 4 1.016±0.0061.016\pm 0.006 1.015±0.0071.015\pm 0.007 53/14853/148
2030%20-30\% 0.39±0.020.39\pm 0.02 114±4114\pm 4 1.020±0.0061.020\pm 0.006 1.015±0.0071.015\pm 0.007 30/14830/148
3040%30-40\% 0.32±0.030.32\pm 0.03 122±4122\pm 4 1.023±0.0061.023\pm 0.006 1.022±0.0071.022\pm 0.007 57/14857/148
4050%40-50\% 0.1±0.10.1\pm 0.1 116±4116\pm 4 1.054±0.0091.054\pm 0.009 1.055±0.0111.055\pm 0.011 83/14283/142
5060%50-60\% 0.27±0.030.27\pm 0.03 111±4111\pm 4 1.037±0.0061.037\pm 0.006 1.028±0.0071.028\pm 0.007 99/13899/138
6070%60-70\% 0.18±0.070.18\pm 0.07 118±4118\pm 4 1.036±0.0081.036\pm 0.008 1.03±0.011.03\pm 0.01 79/13079/130
7080%70-80\% 0.26±0.030.26\pm 0.03 111±4111\pm 4 1.026±0.0061.026\pm 0.006 1.012±0.0071.012\pm 0.007 68/12668/126
Au+Au\rm Au+Au 19.6(π,K,p)19.6\;(\pi,K,p) 05%0-5\% 0.44±0.010.44\pm 0.01 110±3110\pm 3 1.013±0.0051.013\pm 0.005 1.010±0.0061.010\pm 0.006 51/14551/145
510%5-10\% 0.42±0.010.42\pm 0.01 110±3110\pm 3 1.016±0.0051.016\pm 0.005 1.010±0.0061.010\pm 0.006 70/14170/141
1020%10-20\% 0.40±0.010.40\pm 0.01 116±3116\pm 3 1.015±0.0051.015\pm 0.005 1.015±0.0061.015\pm 0.006 73/14173/141
2030%20-30\% 0.36±0.020.36\pm 0.02 114±3114\pm 3 1.028±0.0051.028\pm 0.005 1.022±0.0051.022\pm 0.005 65/14165/141
3040%30-40\% 0.30±0.020.30\pm 0.02 120±3120\pm 3 1.031±0.0051.031\pm 0.005 1.027±0.0061.027\pm 0.006 81/14281/142
4050%40-50\% 0.15±0.090.15\pm 0.09 125±3125\pm 3 1.045±0.0091.045\pm 0.009 1.05±0.011.05\pm 0.01 87/14087/140
5060%50-60\% 00+0.080^{+0.08}_{-0} 120±3120\pm 3 1.053±0.0021.053\pm 0.002 1.047±0.0021.047\pm 0.002 106/140106/140
6070%60-70\% 00+0.050^{+0.05}_{-0} 115±3115\pm 3 1.055±0.0031.055\pm 0.003 1.044±0.0021.044\pm 0.002 135/134135/134
7080%70-80\% 00+0.050^{+0.05}_{-0} 113±3113\pm 3 1.053±0.0031.053\pm 0.003 1.039±0.0021.039\pm 0.002 125/129125/129
080%0-80\% 0.36±0.020.36\pm 0.02 108±4108\pm 4 1.036±0.0061.036\pm 0.006 1.032±0.0061.032\pm 0.006 31/12631/126
Au+Au\rm Au+Au 19.6(all)19.6\;(\rm all) 05%0-5\% 0.453±0.0030.453\pm 0.003 105±2105\pm 2 1.013±0.0011.013\pm 0.001 1.00010.0001+0.00021.0001^{+0.0002}_{-0.0001} 162/186162/186
510%5-10\% 0.446±0.0040.446\pm 0.004 107±2107\pm 2 1.013±0.0021.013\pm 0.002 1.0000+0.0021.000^{+0.002}_{-0} 158/182158/182
1020%10-20\% 0.431±0.0040.431\pm 0.004 110±2110\pm 2 1.015±0.0021.015\pm 0.002 1.003±0.0021.003\pm 0.002 165/182165/182
2030%20-30\% 0.406±0.0050.406\pm 0.005 109±2109\pm 2 1.022±0.0021.022\pm 0.002 1.009±0.0011.009\pm 0.001 146/182146/182
3040%30-40\% 0.370±0.0060.370\pm 0.006 110±2110\pm 2 1.027±0.0021.027\pm 0.002 1.015±0.0021.015\pm 0.002 198/183198/183
4060%40-60\% 0.305±0.0090.305\pm 0.009 113±2113\pm 2 1.035±0.0021.035\pm 0.002 1.023±0.0021.023\pm 0.002 230/181230/181
6080%60-80\% 0.17±0.030.17\pm 0.03 113±2113\pm 2 1.048±0.0031.048\pm 0.003 1.034±0.0031.034\pm 0.003 197/169197/169
Table 9: Same as Table 8, but for sNN=\sqrt{s_{\rm{NN}}}= 27, 39, 62.4, and 200 GeV.
system\rm system sNN(GeV)\rm\sqrt{s_{NN}}\;(\rm{GeV}) centrality β\langle\beta\rangle\; T(MeV)T\;(\rm{MeV}) qMq_{M} qBq_{B} χ2/nDoF\chi^{2}/nDoF
Au+Au\rm Au+Au 27(π,K,p)27\;(\pi,K,p) 05%0-5\% 0.45±0.010.45\pm 0.01 114±3114\pm 3 1.0040.004+0.0061.004^{+0.006}_{-0.004} 1.004±0.0071.004\pm 0.007 86/13886/138
510%5-10\% 0.43±0.010.43\pm 0.01 111±3111\pm 3 1.016±0.0061.016\pm 0.006 1.013±0.0061.013\pm 0.006 65/13965/139
1020%10-20\% 0.41±0.010.41\pm 0.01 114±3114\pm 3 1.019±0.0051.019\pm 0.005 1.017±0.0061.017\pm 0.006 61/13961/139
2030%20-30\% 0.38±0.020.38\pm 0.02 112±3112\pm 3 1.031±0.0051.031\pm 0.005 1.026±0.0061.026\pm 0.006 50/13950/139
3040%30-40\% 0.34±0.020.34\pm 0.02 112±3112\pm 3 1.037±0.0051.037\pm 0.005 1.028±0.0051.028\pm 0.005 45/13945/139
4050%40-50\% 0.25±0.030.25\pm 0.03 114±3114\pm 3 1.051±0.0051.051\pm 0.005 1.043±0.0061.043\pm 0.006 36/13936/139
5060%50-60\% 0.19±0.050.19\pm 0.05 114±3114\pm 3 1.055±0.0061.055\pm 0.006 1.044±0.0071.044\pm 0.007 47/13947/139
6070%60-70\% 00+0.060^{+0.06}_{-0} 114±3114\pm 3 1.063±0.0021.063\pm 0.002 1.049±0.0021.049\pm 0.002 57/13957/139
7080%70-80\% 00+0.050^{+0.05}_{-0} 113±3113\pm 3 1.060±0.0021.060\pm 0.002 1.042±0.0021.042\pm 0.002 83/13783/137
080%0-80\% 0.39±0.010.39\pm 0.01 113±3113\pm 3 1.026±0.0051.026\pm 0.005 1.024±0.0061.024\pm 0.006 48/13648/136
Au+Au\rm Au+Au 27(all)27\;(\rm all) 05%0-5\% 0.464±0.0030.464\pm 0.003 104±2104\pm 2 1.014±0.0011.014\pm 0.001 1.00010.0001+0.00031.0001^{+0.0003}_{-0.0001} 211/179211/179
510%5-10\% 0.458±0.0030.458\pm 0.003 105±2105\pm 2 1.014±0.0011.014\pm 0.001 1.0000+0.0021.000^{+0.002}_{-0} 158/180158/180
1020%10-20\% 0.443±0.0040.443\pm 0.004 108±2108\pm 2 1.017±0.0021.017\pm 0.002 1.004±0.0021.004\pm 0.002 139/180139/180
2030%20-30\% 0.418±0.0040.418\pm 0.004 109±2109\pm 2 1.024±0.0021.024\pm 0.002 1.010±0.0011.010\pm 0.001 127/180127/180
3040%30-40\% 0.385±0.0060.385\pm 0.006 110±2110\pm 2 1.030±0.0021.030\pm 0.002 1.016±0.0011.016\pm 0.001 101/180101/180
4060%40-60\% 0.329±0.0080.329\pm 0.008 110±2110\pm 2 1.040±0.0021.040\pm 0.002 1.024±0.0021.024\pm 0.002 100/180100/180
6080%60-80\% 0.16±0.030.16\pm 0.03 115±2115\pm 2 1.055±0.0021.055\pm 0.002 1.040±0.0031.040\pm 0.003 124/178124/178
Au+Au\rm Au+Au 39(π,K,p)39\;(\pi,K,p) 05%0-5\% 0.47±0.010.47\pm 0.01 115±3115\pm 3 1.0040.004+0.0071.004^{+0.007}_{-0.004} 1.0030.003+0.0081.003^{+0.008}_{-0.003} 58/13958/139
510%5-10\% 0.45±0.010.45\pm 0.01 117±4117\pm 4 1.009±0.0061.009\pm 0.006 1.0050.005+0.0071.005^{+0.007}_{-0.005} 58/13958/139
1020%10-20\% 0.42±0.010.42\pm 0.01 110±3110\pm 3 1.026±0.0061.026\pm 0.006 1.020±0.0061.020\pm 0.006 43/13943/139
2030%20-30\% 0.39±0.010.39\pm 0.01 109±3109\pm 3 1.036±0.0051.036\pm 0.005 1.027±0.0061.027\pm 0.006 52/13952/139
3040%30-40\% 0.36±0.020.36\pm 0.02 110±3110\pm 3 1.043±0.0051.043\pm 0.005 1.032±0.0061.032\pm 0.006 33/13933/139
4050%40-50\% 0.27±0.030.27\pm 0.03 111±3111\pm 3 1.056±0.0051.056\pm 0.005 1.048±0.0061.048\pm 0.006 43/13943/139
5060%50-60\% 0.16±0.060.16\pm 0.06 112±3112\pm 3 1.066±0.0061.066\pm 0.006 1.055±0.0071.055\pm 0.007 55/13955/139
6070%60-70\% 0.20±0.040.20\pm 0.04 106±3106\pm 3 1.067±0.0051.067\pm 0.005 1.045±0.0061.045\pm 0.006 41/13941/139
7080%70-80\% 00+0.10^{+0.1}_{-0} 108±3108\pm 3 1.074±0.0031.074\pm 0.003 1.051±0.0021.051\pm 0.002 59/13959/139
080%0-80\% 0.40±0.010.40\pm 0.01 111±3111\pm 3 1.030±0.0051.030\pm 0.005 1.023±0.0061.023\pm 0.006 40/13940/139
Au+Au\rm Au+Au 39(all)39\;(\rm all) 05%0-5\%111Lack of measurements of π0\pi^{0} at this centrality class Adare:2012uk . 0.470±0.0040.470\pm 0.004 109±2109\pm 2 1.011±0.0021.011\pm 0.002 1.0000+0.0011.000^{+0.001}_{-0} 90/18090/180
510%5-10\%111Lack of measurements of π0\pi^{0} at this centrality class Adare:2012uk . 0.458±0.0060.458\pm 0.006 111±3111\pm 3 1.014±0.0031.014\pm 0.003 1.0020.002+0.0031.002^{+0.003}_{-0.002} 86/18086/180
1020%10-20\% 0.447±0.0060.447\pm 0.006 107±2107\pm 2 1.023±0.0021.023\pm 0.002 1.008±0.0021.008\pm 0.002 83/19083/190
2030%20-30\%111Lack of measurements of π0\pi^{0} at this centrality class Adare:2012uk . 0.427±0.0060.427\pm 0.006 107±2107\pm 2 1.029±0.0031.029\pm 0.003 1.012±0.0021.012\pm 0.002 88/18088/180
3040%30-40\%111Lack of measurements of π0\pi^{0} at this centrality class Adare:2012uk . 0.389±0.0070.389\pm 0.007 109±2109\pm 2 1.036±0.0021.036\pm 0.002 1.020±0.0021.020\pm 0.002 58/18058/180
4060%40-60\% 0.33±0.010.33\pm 0.01 109±2109\pm 2 1.046±0.0021.046\pm 0.002 1.029±0.0021.029\pm 0.002 90/19090/190
6080%60-80\%111Lack of measurements of π0\pi^{0} at this centrality class Adare:2012uk . 0.21±0.020.21\pm 0.02 110±2110\pm 2 1.060±0.0021.060\pm 0.002 1.039±0.0031.039\pm 0.003 75/18075/180
Au+Au\rm Au+Au 62.4(π,K,p)62.4\;(\pi,K,p) 010%0-10\% 0.522±0.0050.522\pm 0.005 85±485\pm 4 1.035±0.0041.035\pm 0.004 1.0000+0.0021.000^{+0.002}_{-0} 26/6426/64
1020%10-20\% 0.512±0.0090.512\pm 0.009 89±589\pm 5 1.035±0.0061.035\pm 0.006 1.0020.002+0.0051.002^{+0.005}_{-0.002} 34/6434/64
2040%20-40\% 0.48±0.010.48\pm 0.01 88±588\pm 5 1.047±0.0051.047\pm 0.005 1.016±0.0051.016\pm 0.005 19/6419/64
4080%40-80\% 0.40±0.020.40\pm 0.02 91±591\pm 5 1.061±0.0041.061\pm 0.004 1.033±0.0041.033\pm 0.004 31/6431/64
Au+Au\rm Au+Au 62.4(all)62.4\;(\rm all) 020%0-20\% 0.487±0.0050.487\pm 0.005 104±3104\pm 3 1.024±0.0021.024\pm 0.002 1.0000+0.0011.000^{+0.001}_{-0} 113/132113/132
2040%20-40\% 0.451±0.0090.451\pm 0.009 106±4106\pm 4 1.034±0.0041.034\pm 0.004 1.011±0.0041.011\pm 0.004 84/13284/132
4080%40-80\%111Lack of measurements of π0\pi^{0} at this centrality class Adare:2012uk . 0.38±0.010.38\pm 0.01 101±4101\pm 4 1.056±0.0041.056\pm 0.004 1.030±0.0041.030\pm 0.004 64/11664/116
Au+Au\rm Au+Au 200(π,K,p)200\;(\pi,K,p) 010%0-10\%222The measurements of π±\pi^{\pm}, pp and p¯\bar{p} for centrality 0-12% Abelev:2006jr are used as 0-10%. 0.544±0.0080.544\pm 0.008 79±479\pm 4 1.045±0.0041.045\pm 0.004 1.006±0.0051.006\pm 0.005 24/7824/78
1020%10-20\% 0.534±0.0090.534\pm 0.009 80±480\pm 4 1.050±0.0041.050\pm 0.004 1.012±0.0051.012\pm 0.005 24/7824/78
2040%20-40\% 0.51±0.010.51\pm 0.01 78±478\pm 4 1.063±0.0041.063\pm 0.004 1.025±0.0051.025\pm 0.005 24/8024/80
4060%40-60\% 0.44±0.020.44\pm 0.02 83±483\pm 4 1.074±0.0031.074\pm 0.003 1.043±0.0051.043\pm 0.005 33/8033/80
6080%60-80\% 0.31±0.040.31\pm 0.04 88±588\pm 5 1.088±0.0031.088\pm 0.003 1.062±0.0051.062\pm 0.005 21/8021/80
Au+Au\rm Au+Au 200(all)200\;(\rm all) 010%0-10\%333The measurements of π±\pi^{\pm}, pp and p¯\bar{p} for centrality 0-12% Abelev:2006jr are used as 0-10%. Λ\Lambda, Λ¯\bar{\Lambda}, Ξ+\Xi^{+}, Ξ\Xi^{-} and Ω\Omega for centrality 0-5% Adams:2006ke are used as 0-10%. 0.458±0.0060.458\pm 0.006 104±3104\pm 3 1.044±0.0031.044\pm 0.003 1.032±0.0031.032\pm 0.003 140/174140/174
1020%10-20\%444Lack of measurements of Ω\Omega at this centrality class Adams:2006ke . 0.458±0.0060.458\pm 0.006 101±3101\pm 3 1.048±0.0031.048\pm 0.003 1.033±0.0031.033\pm 0.003 119/172119/172
2040%20-40\% 0.425±0.0070.425\pm 0.007 95±295\pm 2 1.063±0.0031.063\pm 0.003 1.044±0.0031.044\pm 0.003 136/176136/176
4060%40-60\% 0.30±0.010.30\pm 0.01 96±396\pm 3 1.083±0.0021.083\pm 0.002 1.070±0.0031.070\pm 0.003 173/176173/176
6080%60-80\%555Lack of measurements of Ω\Omega Adams:2006ke and intermediate pTp_{T} K±K^{\pm} Adare:2013esx at this centrality class. 0.28±0.020.28\pm 0.02 92±392\pm 3 1.088±0.0031.088\pm 0.003 1.068±0.0041.068\pm 0.004 56/12256/122
Table 10: Same as Table 8, but for sNN=\sqrt{s_{\rm{NN}}}= 2.76 and 5.02 TeV.
system\rm system sNN(TeV)\rm\sqrt{s_{NN}}\;(\mathrm{TeV}) centrality β\langle\beta\rangle\; T(MeV)T\;(\rm{MeV}) qMq_{M} qBq_{B} χ2/nDoF\chi^{2}/nDoF
Pb+Pb\rm Pb+Pb 2.76(π,K,p)2.76\;(\pi,K,p) 05%0-5\% 0.590±0.0040.590\pm 0.004 92±292\pm 2 1.024±0.0051.024\pm 0.005 1.026±0.0061.026\pm 0.006 246/212246/212
510%5-10\% 0.588±0.0040.588\pm 0.004 91±291\pm 2 1.030±0.0051.030\pm 0.005 1.028±0.0061.028\pm 0.006 247/212247/212
1020%10-20\% 0.584±0.0040.584\pm 0.004 90±290\pm 2 1.035±0.0051.035\pm 0.005 1.029±0.0061.029\pm 0.006 225/212225/212
2030%20-30\% 0.574±0.0050.574\pm 0.005 88±288\pm 2 1.046±0.0051.046\pm 0.005 1.034±0.0061.034\pm 0.006 191/212191/212
3040%30-40\% 0.557±0.0050.557\pm 0.005 84±284\pm 2 1.061±0.0041.061\pm 0.004 1.044±0.0051.044\pm 0.005 162/212162/212
4050%40-50\% 0.525±0.0060.525\pm 0.006 80±280\pm 2 1.079±0.0031.079\pm 0.003 1.060±0.0041.060\pm 0.004 127/212127/212
5060%50-60\% 0.485±0.0070.485\pm 0.007 78±278\pm 2 1.094±0.0031.094\pm 0.003 1.073±0.0041.073\pm 0.004 117/212117/212
6070%60-70\% 0.441±0.0080.441\pm 0.008 74±274\pm 2 1.107±0.0021.107\pm 0.002 1.082±0.0031.082\pm 0.003 105/212105/212
7080%70-80\% 0.40±0.010.40\pm 0.01 71±271\pm 2 1.117±0.0021.117\pm 0.002 1.088±0.0031.088\pm 0.003 94/21294/212
8090%80-90\% 0.33±0.020.33\pm 0.02 69±269\pm 2 1.124±0.0021.124\pm 0.002 1.093±0.0031.093\pm 0.003 85/21285/212
Pb+Pb\rm Pb+Pb 2.76(all)2.76\;(\rm all) 010%0-10\% 0.577±0.0030.577\pm 0.003 100±2100\pm 2 1.025±0.0041.025\pm 0.004 1.025±0.0051.025\pm 0.005 513/284513/284
1020%10-20\% 0.570±0.0040.570\pm 0.004 98±298\pm 2 1.034±0.0041.034\pm 0.004 1.028±0.0051.028\pm 0.005 462/284462/284
2040%20-40\% 0.549±0.0040.549\pm 0.004 94±294\pm 2 1.051±0.0041.051\pm 0.004 1.039±0.0041.039\pm 0.004 439/284439/284
4060%40-60\% 0.498±0.0050.498\pm 0.005 86±286\pm 2 1.081±0.0031.081\pm 0.003 1.062±0.0031.062\pm 0.003 273/284273/284
6080%60-80\% 0.421±0.0080.421\pm 0.008 77±277\pm 2 1.108±0.0021.108\pm 0.002 1.082±0.0031.082\pm 0.003 162/282162/282
Pb+Pb\rm Pb+Pb 5.02(π,K,p)5.02\;(\pi,K,p) 05%0-5\% 0.596±0.0030.596\pm 0.003 99±299\pm 2 1.021±0.0051.021\pm 0.005 1.041±0.0061.041\pm 0.006 274/89274/89
510%5-10\% 0.596±0.0030.596\pm 0.003 95±295\pm 2 1.028±0.0051.028\pm 0.005 1.040±0.0051.040\pm 0.005 286/89286/89
1020%10-20\% 0.591±0.0030.591\pm 0.003 96±296\pm 2 1.031±0.0051.031\pm 0.005 1.040±0.0051.040\pm 0.005 306/89306/89
2030%20-30\% 0.580±0.0040.580\pm 0.004 95±295\pm 2 1.042±0.0041.042\pm 0.004 1.044±0.0051.044\pm 0.005 267/89267/89
3040%30-40\% 0.565±0.0040.565\pm 0.004 91±291\pm 2 1.058±0.0041.058\pm 0.004 1.050±0.0041.050\pm 0.004 207/89207/89
4050%40-50\% 0.535±0.0050.535\pm 0.005 86±286\pm 2 1.077±0.0031.077\pm 0.003 1.064±0.0041.064\pm 0.004 156/89156/89
5060%50-60\% 0.492±0.0060.492\pm 0.006 83±283\pm 2 1.094±0.0031.094\pm 0.003 1.078±0.0031.078\pm 0.003 128/89128/89
6070%60-70\% 0.447±0.0080.447\pm 0.008 75±275\pm 2 1.112±0.0031.112\pm 0.003 1.089±0.0031.089\pm 0.003 69/8969/89
7080%70-80\% 0.38±0.010.38\pm 0.01 73±273\pm 2 1.124±0.0021.124\pm 0.002 1.099±0.0031.099\pm 0.003 54/8954/89
8090%80-90\% 0.32±0.020.32\pm 0.02 72±272\pm 2 1.130±0.0021.130\pm 0.002 1.104±0.0031.104\pm 0.003 51/8951/89
Table 11: Extracted kinetic freeze-out parameters and χ2/nDoF\chi^{2}/nDoF from BGBW fits to identified particle transverse spectra in heavy ion collisions of different centralities at sNN=\sqrt{s_{\rm{NN}}}= 7.7, 11.5, 14.5, and 19.6 GeV. Results for charged pions, kaons, and protons have labels ‘(π,K,p)(\pi,K,p)’ behind their collision energy. All available hadrons including strange and multi-strange particles are labeled as ‘(all)’.
system\rm system sNN(GeV)\rm\sqrt{s_{NN}}\;(\rm{GeV}) centrality β\langle\beta\rangle\; T(MeV)T\;(\rm{MeV}) χ2/nDoF\chi^{2}/nDoF
Au+Au\rm Au+Au 7.7(π,K,p)7.7\;(\pi,K,p) 05%0-5\% 0.437±0.0050.437\pm 0.005 110±2110\pm 2 114/134114/134
510%5-10\% 0.428±0.0060.428\pm 0.006 110±2110\pm 2 107/135107/135
1020%10-20\% 0.395±0.0070.395\pm 0.007 119±2119\pm 2 87/13987/139
2030%20-30\% 0.378±0.0070.378\pm 0.007 120±2120\pm 2 132/137132/137
3040%30-40\% 0.357±0.0080.357\pm 0.008 122±2122\pm 2 127/136127/136
4050%40-50\% 0.328±0.0090.328\pm 0.009 124±2124\pm 2 127/126127/126
5060%50-60\% 0.30±0.010.30\pm 0.01 123±2123\pm 2 149/123149/123
6070%60-70\% 0.26±0.010.26\pm 0.01 126±2126\pm 2 107/118107/118
7080%70-80\% 0.19±0.020.19\pm 0.02 131±2131\pm 2 93/9893/98
080%0-80\% 0.401±0.0080.401\pm 0.008 116±2116\pm 2 53/9153/91
Au+Au\rm Au+Au 7.7(all)7.7\;(\rm all) 05%0-5\% 0.407±0.0050.407\pm 0.005 118±2118\pm 2 274/173274/173
510%5-10\% 0.403±0.0050.403\pm 0.005 118±2118\pm 2 251/174251/174
1020%10-20\% 0.378±0.0050.378\pm 0.005 124±2124\pm 2 218/178218/178
2030%20-30\% 0.365±0.0050.365\pm 0.005 124±2124\pm 2 217/176217/176
3040%30-40\% 0.349±0.0060.349\pm 0.006 125±2125\pm 2 190/175190/175
4060%40-60\% 0.312±0.0060.312\pm 0.006 127±2127\pm 2 230/159230/159
6080%60-80\% 0.259±0.0090.259\pm 0.009 127±2127\pm 2 165/130165/130
Au+Au\rm Au+Au 11.5(π,K,p)11.5\;(\pi,K,p) 05%0-5\% 0.423±0.0050.423\pm 0.005 118±2118\pm 2 105/143105/143
510%5-10\% 0.416±0.0050.416\pm 0.005 119±2119\pm 2 80/14680/146
1020%10-20\% 0.398±0.0060.398\pm 0.006 122±2122\pm 2 92/14692/146
2030%20-30\% 0.375±0.0070.375\pm 0.007 128±2128\pm 2 95/14695/146
3040%30-40\% 0.361±0.0070.361\pm 0.007 129±2129\pm 2 121/145121/145
4050%40-50\% 0.302±0.0090.302\pm 0.009 138±2138\pm 2 153/141153/141
5060%50-60\% 0.291±0.0090.291\pm 0.009 136±2136\pm 2 139/139139/139
6070%60-70\% 0.25±0.010.25\pm 0.01 137±2137\pm 2 130/125130/125
7080%70-80\% 0.23±0.010.23\pm 0.01 136±2136\pm 2 145/121145/121
080%0-80\% 0.403±0.0070.403\pm 0.007 120±2120\pm 2 40/11940/119
Au+Au\rm Au+Au 11.5(all)11.5\;(\rm all) 05%0-5\% 0.410±0.0040.410\pm 0.004 122±1122\pm 1 228/184228/184
510%5-10\% 0.402±0.0040.402\pm 0.004 124±2124\pm 2 228/187228/187
1020%10-20\% 0.392±0.0040.392\pm 0.004 126±1126\pm 1 215/187215/187
2030%20-30\% 0.369±0.0050.369\pm 0.005 131±2131\pm 2 186/187186/187
3040%30-40\% 0.350±0.0050.350\pm 0.005 133±2133\pm 2 207/186207/186
4060%40-60\% 0.307±0.0060.307\pm 0.006 138±2138\pm 2 276/180276/180
6080%60-80\% 0.259±0.0080.259\pm 0.008 137±2137\pm 2 276/159276/159
Au+Au\rm Au+Au 14.5(π,K,p)14.5\;(\pi,K,p) 05%0-5\% 0.427±0.0060.427\pm 0.006 120±2120\pm 2 58/15058/150
510%5-10\% 0.416±0.0070.416\pm 0.007 123±2123\pm 2 61/15061/150
1020%10-20\% 0.415±0.0070.415\pm 0.007 123±2123\pm 2 59/15059/150
2030%20-30\% 0.403±0.0070.403\pm 0.007 125±2125\pm 2 44/15044/150
3040%30-40\% 0.373±0.0080.373\pm 0.008 130±2130\pm 2 71/15071/150
4050%40-50\% 0.344±0.0090.344\pm 0.009 133±3133\pm 3 139/144139/144
5060%50-60\% 0.32±0.010.32\pm 0.01 134±3134\pm 3 149/140149/140
6070%60-70\% 0.31±0.010.31\pm 0.01 130±3130\pm 3 108/132108/132
7080%70-80\% 0.26±0.010.26\pm 0.01 133±3133\pm 3 107/128107/128
Au+Au\rm Au+Au 19.6(π,K,p)19.6\;(\pi,K,p) 05%0-5\% 0.446±0.0050.446\pm 0.005 117±2117\pm 2 57/14757/147
510%5-10\% 0.433±0.0050.433\pm 0.005 120±2120\pm 2 82/14382/143
1020%10-20\% 0.421±0.0060.421\pm 0.006 122±2122\pm 2 82/14382/143
2030%20-30\% 0.393±0.0060.393\pm 0.006 129±2129\pm 2 99/14399/143
3040%30-40\% 0.357±0.0070.357\pm 0.007 135±2135\pm 2 120/144120/144
4050%40-50\% 0.338±0.0080.338\pm 0.008 136±2136\pm 2 143/142143/142
5060%50-60\% 0.289±0.0080.289\pm 0.008 144±2144\pm 2 214/142214/142
6070%60-70\% 0.257±0.0090.257\pm 0.009 145±2145\pm 2 279/136279/136
7080%70-80\% 0.22±0.010.22\pm 0.01 146±2146\pm 2 277/131277/131
080%0-80\% 0.409±0.0060.409\pm 0.006 124±2124\pm 2 65/12865/128
Au+Au\rm Au+Au 19.6(all)19.6\;(\rm all) 05%0-5\% 0.421±0.0030.421\pm 0.003 126±1126\pm 1 293/188293/188
510%5-10\% 0.414±0.0030.414\pm 0.003 128±1128\pm 1 283/184283/184
1020%10-20\% 0.404±0.0030.404\pm 0.003 131±1131\pm 1 279/184279/184
2030%20-30\% 0.382±0.0030.382\pm 0.003 137±1137\pm 1 322/184322/184
3040%30-40\% 0.363±0.0040.363\pm 0.004 138±1138\pm 1 394/185394/185
4060%40-60\% 0.330±0.0040.330\pm 0.004 142±1142\pm 1 550/183550/183
6080%60-80\% 0.269±0.0060.269\pm 0.006 146±2146\pm 2 644/171644/171
Table 12: Same as Table 11, but for sNN=\sqrt{s_{\rm{NN}}}= 27, 39, 62.4, and 200 GeV.
system\rm system sNN(GeV)\rm\sqrt{s_{NN}}\;(\rm{GeV}) centrality β\langle\beta\rangle\; T(MeV)T\;(\rm{MeV}) χ2/nDoF\chi^{2}/nDoF
Au+Au\rm Au+Au 27(π,K,p)27\;(\pi,K,p) 05%0-5\% 0.456±0.0050.456\pm 0.005 116±2116\pm 2 87/14087/140
510%5-10\% 0.448±0.0050.448\pm 0.005 118±2118\pm 2 73/14173/141
1020%10-20\% 0.434±0.0050.434\pm 0.005 122±2122\pm 2 73/14173/141
2030%20-30\% 0.415±0.0060.415\pm 0.006 127±2127\pm 2 86/14186/141
3040%30-40\% 0.387±0.0070.387\pm 0.007 133±2133\pm 2 105/141105/141
4050%40-50\% 0.354±0.0070.354\pm 0.007 139±2139\pm 2 145/141145/141
5060%50-60\% 0.314±0.0080.314\pm 0.008 146±2146\pm 2 201/141201/141
6070%60-70\% 0.274±0.0090.274\pm 0.009 150±2150\pm 2 283/141283/141
7080%70-80\% 0.23±0.010.23\pm 0.01 153±2153\pm 2 366/139366/139
080%0-80\% 0.422±0.0060.422\pm 0.006 125±2125\pm 2 73/13873/138
Au+Au\rm Au+Au 27(all)27\;(\rm all) 05%0-5\% 0.434±0.0030.434\pm 0.003 125±1125\pm 1 351/181351/181
510%5-10\% 0.426±0.0030.426\pm 0.003 128±1128\pm 1 302/182302/182
1020%10-20\% 0.414±0.0030.414\pm 0.003 132±1132\pm 1 291/182291/182
2030%20-30\% 0.394±0.0030.394\pm 0.003 139±1139\pm 1 329/182329/182
3040%30-40\% 0.372±0.0040.372\pm 0.004 143±1143\pm 1 365/182365/182
4060%40-60\% 0.337±0.0040.337\pm 0.004 149±1149\pm 1 546/182546/182
6080%60-80\% 0.283±0.0050.283\pm 0.005 152±2152\pm 2 812/180812/180
Au+Au\rm Au+Au 39(π,K,p)39\;(\pi,K,p) 05%0-5\% 0.468±0.0050.468\pm 0.005 117±2117\pm 2 58/14158/141
510%5-10\% 0.449±0.0050.449\pm 0.005 123±2123\pm 2 63/14163/141
1020%10-20\% 0.446±0.0050.446\pm 0.005 124±2124\pm 2 65/14165/141
2030%20-30\% 0.425±0.0060.425\pm 0.006 129±2129\pm 2 98/14198/141
3040%30-40\% 0.395±0.0070.395\pm 0.007 137±2137\pm 2 111/141111/141
4050%40-50\% 0.372±0.0070.372\pm 0.007 140±2140\pm 2 162/141162/141
5060%50-60\% 0.330±0.0080.330\pm 0.008 147±2147\pm 2 235/141235/141
6070%60-70\% 0.292±0.0090.292\pm 0.009 155±2155\pm 2 339/141339/141
7080%70-80\% 0.254±0.0090.254\pm 0.009 159±2159\pm 2 434/141434/141
080%0-80\% 0.430±0.0060.430\pm 0.006 128±2128\pm 2 70/14170/141
Au+Au\rm Au+Au 39(all)39\;(\rm all) 05%0-5\%111Lack of measurements of π0\pi^{0} at this centrality class Adare:2012uk . 0.454±0.0040.454\pm 0.004 123±2123\pm 2 132/182132/182
510%5-10\%111Lack of measurements of π0\pi^{0} at this centrality class Adare:2012uk . 0.442±0.0040.442\pm 0.004 127±2127\pm 2 134/182134/182
1020%10-20\% 0.431±0.0040.431\pm 0.004 132±2132\pm 2 211/192211/192
2030%20-30\%111Lack of measurements of π0\pi^{0} at this centrality class Adare:2012uk . 0.413±0.0040.413\pm 0.004 137±2137\pm 2 264/182264/182
3040%30-40\%111Lack of measurements of π0\pi^{0} at this centrality class Adare:2012uk . 0.392±0.0040.392\pm 0.004 143±2143\pm 2 312/182312/182
4060%40-60\% 0.355±0.0050.355\pm 0.005 151±2151\pm 2 632/192632/192
6080%60-80\%111Lack of measurements of π0\pi^{0} at this centrality class Adare:2012uk . 0.296±0.0060.296\pm 0.006 159±2159\pm 2 879/182879/182
Au+Au\rm Au+Au 62.4(π,K,p)62.4\;(\pi,K,p) 010%0-10\% 0.474±0.0060.474\pm 0.006 125±3125\pm 3 105/66105/66
1020%10-20\% 0.462±0.0070.462\pm 0.007 129±3129\pm 3 102/66102/66
2040%20-40\% 0.444±0.0080.444\pm 0.008 135±3135\pm 3 109/66109/66
4080%40-80\% 0.39±0.010.39\pm 0.01 148±4148\pm 4 193/66193/66
Au+Au\rm Au+Au 62.4(all)62.4\;(\rm all) 020%0-20\% 0.445±0.0050.445\pm 0.005 138±2138\pm 2 216/134216/134
2040%20-40\% 0.422±0.0060.422\pm 0.006 145±3145\pm 3 205/134205/134
4080%40-80\%111Lack of measurements of π0\pi^{0} at this centrality class Adare:2012uk . 0.376±0.0080.376\pm 0.008 155±3155\pm 3 270/118270/118
Au+Au\rm Au+Au 200(π,K,p)200\;(\pi,K,p) 010%0-10\%222The measurements of π±\pi^{\pm}, pp and p¯\bar{p} for centrality 0-12% Abelev:2006jr are used as 0-10%. 0.506±0.0050.506\pm 0.005 125±2125\pm 2 175/80175/80
1020%10-20\% 0.503±0.0060.503\pm 0.006 125±2125\pm 2 153/80153/80
2040%20-40\% 0.483±0.0060.483\pm 0.006 134±3134\pm 3 281/82281/82
4060%40-60\% 0.456±0.0080.456\pm 0.008 141±3141\pm 3 387/82387/82
6080%60-80\% 0.43±0.010.43\pm 0.01 147±4147\pm 4 549/82549/82
Au+Au\rm Au+Au 200(all)200\;(\rm all) 010%0-10\%333The measurements of π±\pi^{\pm}, pp and p¯\bar{p} for centrality 0-12% Abelev:2006jr are used as 0-10%. Λ\Lambda, Λ¯\bar{\Lambda}, Ξ+\Xi^{+}, Ξ\Xi^{-} and Ω\Omega for centrality 0-5% Adams:2006ke are used as 0-10%. 0.484±0.0040.484\pm 0.004 134±2134\pm 2 300/176300/176
1020%10-20\%444Lack of measurements of Ω\Omega at this centrality class Adams:2006ke . 0.488±0.0040.488\pm 0.004 132±2132\pm 2 297/174297/174
2040%20-40\% 0.467±0.0040.467\pm 0.004 140±2140\pm 2 519/178519/178
4060%40-60\% 0.439±0.0050.439\pm 0.005 144±2144\pm 2 931/178931/178
6080%60-80\%555Lack of measurements of Ω\Omega Adams:2006ke and intermediate pTp_{T} K±K^{\pm} Adare:2013esx at this centrality class. 0.422±0.0070.422\pm 0.007 149±3149\pm 3 621/124621/124
Table 13: Same as Table 11, but for sNN=\sqrt{s_{\rm{NN}}}= 2.76, and 5.02 TeV.
system\rm system sNN(TeV)\rm\sqrt{s_{NN}}\;(\rm{TeV}) centrality β\langle\beta\rangle\; T(MeV)T\;(\rm{MeV}) χ2/nDoF\chi^{2}/nDoF
Pb+Pb\rm Pb+Pb 2.76(π,K,p)2.76\;(\pi,K,p) 05%0-5\% 0.602±0.0010.602\pm 0.001 99±199\pm 1 265/214265/214
510%5-10\% 0.600±0.0010.600\pm 0.001 101±1101\pm 1 274/214274/214
1020%10-20\% 0.597±0.0020.597\pm 0.002 104±1104\pm 1 266/214266/214
2030%20-30\% 0.590±0.0020.590\pm 0.002 108±1108\pm 1 272/214272/214
3040%30-40\% 0.580±0.0020.580\pm 0.002 114±1114\pm 1 334/214334/214
4050%40-50\% 0.566±0.0020.566\pm 0.002 120±1120\pm 1 472/214472/214
5060%50-60\% 0.549±0.0030.549\pm 0.003 127±2127\pm 2 700/214700/214
6070%60-70\% 0.526±0.0030.526\pm 0.003 135±2135\pm 2 1039/2141039/214
7080%70-80\% 0.505±0.0040.505\pm 0.004 142±2142\pm 2 1371/2141371/214
8090%80-90\% 0.484±0.0050.484\pm 0.005 143±2143\pm 2 1661/2141661/214
Pb+Pb\rm Pb+Pb 2.76(all)2.76\;(\rm all) 010%0-10\% 0.589±0.0010.589\pm 0.001 108±1108\pm 1 541/286541/286
1020%10-20\% 0.584±0.0010.584\pm 0.001 113±1113\pm 1 519/286519/286
2040%20-40\% 0.569±0.0020.569\pm 0.002 122±1122\pm 1 601/286601/286
4060%40-60\% 0.542±0.0020.542\pm 0.002 134±1134\pm 1 816/286816/286
6080%60-80\% 0.507±0.0030.507\pm 0.003 146±2146\pm 2 1496/2841496/284
Pb+Pb\rm Pb+Pb 5.02(π,K,p)5.02\;(\pi,K,p) 05%0-5\% 0.613±0.0010.613\pm 0.001 99±199\pm 1 334/91334/91
510%5-10\% 0.613±0.0010.613\pm 0.001 100±1100\pm 1 338/91338/91
1020%10-20\% 0.609±0.0010.609\pm 0.001 103±1103\pm 1 356/91356/91
2030%20-30\% 0.602±0.0010.602\pm 0.001 108±1108\pm 1 336/91336/91
3040%30-40\% 0.593±0.0010.593\pm 0.001 114±1114\pm 1 377/91377/91
4050%40-50\% 0.579±0.0020.579\pm 0.002 121±1121\pm 1 519/91519/91
5060%50-60\% 0.559±0.0020.559\pm 0.002 131±1131\pm 1 830/91830/91
6070%60-70\% 0.545±0.0030.545\pm 0.003 132±2132\pm 2 903/91903/91
7080%70-80\% 0.521±0.0040.521\pm 0.004 140±2140\pm 2 1215/911215/91
8090%80-90\% 0.502±0.0050.502\pm 0.005 140±2140\pm 2 1324/911324/91