This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

NONDIVERGENCE ON HOMOGENEOUS SPACES AND RIGID TOTALLY GEODESICS

Han Zhang  and  Runlin Zhang
Abstract.

Let G/ΓG/\Gamma be the quotient of a semisimple Lie group by an arithmetic lattice. We show that for reductive subgroups HH of GG that is large enough, the orbits of HH on G/ΓG/\Gamma intersect nontrivially with a fixed compact set. As a consequence, we deduce finiteness result for totally geodesic submanifolds of arithmetic quotients of symmetric spaces that do not admit nontrivial deformation and with bounded volume. Our work generalizes previous work of Tomanov–Weiss and Oh on this topic.

1. Introduction

1.1. Main results

Let 𝐆\bm{\mathrm{G}} be a semisimple linear algebraic group defined over \mathbb{Q} and Γ𝐆()\Gamma\leq\bm{\mathrm{G}}(\mathbb{Q}) an arithmetic lattice. Let 𝐇\bm{\mathrm{H}} be a subalgebraic group of 𝐆\bm{\mathrm{G}}_{\mathbb{R}} (over \mathbb{R}). Let the Roman letter G\mathrm{G} (resp. H\mathrm{H}) denote the identity connected component of 𝐆()\bm{\mathrm{G}}(\mathbb{R}) (resp. 𝐇()\bm{\mathrm{H}}(\mathbb{R})) in the analytic topology. Without loss of generality assume Γ\Gamma is contained in G\mathrm{G}.

Definition 1.1.

Let AA be a subgroup of G\mathrm{G}, the action of AA on G/Γ\mathrm{G}/\Gamma is said to be uniformly non-divergent if there exists a compact set CG/ΓC\subset\mathrm{G}/\Gamma such that for all xG/Γx\in\mathrm{G}/\Gamma, there exists gAg\in A such that gxCg\cdot x\in C, or equivalently, G/Γ=AC\mathrm{G}/\Gamma=A\cdot C.

We are interested in conditions on 𝐇\bm{\mathrm{H}} that would guarantee the action of H\mathrm{H} on G/Γ\mathrm{G}/\Gamma is uniformly non-divergent.

On the one hand, by [DM91], if 𝐇\bm{\mathrm{H}} is semisimple and has no compact factor, then the action of H\mathrm{H} on G/Γ\mathrm{G}/\Gamma is uniformly non-divergent if the centralizer of 𝐇\bm{\mathrm{H}} in 𝐆\bm{\mathrm{G}} is finite (see [EMV09, Lemma 3.2]). On the other hand, if 𝐇\bm{\mathrm{H}} contains a maximal \mathbb{R}-split torus, then this is also true and is due to [TW03, Theorem 1.3] extending the idea of Margulis (see [TW03, Appendix]).

In the present article we find a common generalization of both theorems.

Theorem 1.2.

Assume that 𝐇\bm{\mathrm{H}} is connected, reductive, \mathbb{R}-split and the centralizer of 𝐇\bm{\mathrm{H}} in 𝐆\bm{\mathrm{G}} is \mathbb{R}-anisotropic modulo the center of 𝐇\bm{\mathrm{H}}, then the action of H\mathrm{H} on G/Γ\mathrm{G}/\Gamma is uniformly non-divergent.

Recall that for an \mathbb{R}-linear algebraic group 𝐅\bm{\mathrm{F}}, it is \mathbb{R}-anisotropic iff its real point 𝐅()\bm{\mathrm{F}}(\mathbb{R}) is compact. We shall write 𝐙𝐆𝐇\bm{\mathrm{Z}}_{\bm{\mathrm{G}}}\bm{\mathrm{H}} for the centralizer of 𝐇\bm{\mathrm{H}} in 𝐆\bm{\mathrm{G}} and 𝐙(𝐇)\bm{\mathrm{Z}}(\bm{\mathrm{H}}) for the center of 𝐇\bm{\mathrm{H}}.

1.2. Generalizations

In this subsection we discuss some further generalization of our main theorems.

Combining with [SW00, Corollary 1.3], we have

Theorem 1.3.

Let 𝐅\bm{\mathrm{F}} be a connected \mathbb{R}-subgroup of 𝐆\bm{\mathrm{G}}. Assume that the epimorphic closure of 𝐅\bm{\mathrm{F}} in 𝐆\bm{\mathrm{G}} contains a subgroup 𝐇\bm{\mathrm{H}} satisfying the condition in Theorem 1.2. Then the action of F\mathrm{F} on G/Γ\mathrm{G}/\Gamma is uniformly non-divergent.

By using [RS18, Theorem 1.1], we have a uniform version of our main theorem.

Theorem 1.4.

Consider \mathcal{H}, the set of all connected reductive \mathbb{R}-subgroups of 𝐆\bm{\mathrm{G}} that are \mathbb{R}-split and whose centralizer in 𝐆\bm{\mathrm{G}} is \mathbb{R}-anisotropic modulo its center, then we can find a compact set CG/ΓC\subset\mathrm{G}/\Gamma such that for all xG/Γx\in\mathrm{G}/\Gamma, for all 𝐇\bm{\mathrm{H}}\in\mathcal{H}, there exists hHh\in\mathrm{H} such that hxChx\in C.

1.2.1. Example

Let 𝐆=SL4()\bm{\mathrm{G}}=\operatorname{SL}_{4}(\mathbb{R}), Γ=SL4()\Gamma=\operatorname{SL}_{4}(\mathbb{Z}) and

𝐒:={[t3t1t1t1]},𝐌:=[1𝐌0]\bm{\mathrm{S}}:=\left\{\left[\begin{array}[]{cccc}t^{3}&&&\\ &t^{-1}&&\\ &&t^{-1}&\\ &&&t^{-1}\end{array}\right]\right\},\quad\bm{\mathrm{M}}:=\left[\begin{array}[]{cc}1&\\ &\bm{\mathrm{M}}_{0}\end{array}\right]

where 𝐌0\bm{\mathrm{M}}_{0} is SO(2,1)SL3\operatorname{SO}(2,1)\subset\operatorname{SL}_{3}. Let 𝐇:=𝐒𝐇\bm{\mathrm{H}}:=\bm{\mathrm{S}}\cdot\bm{\mathrm{H}}. Then it is not hard to check that our theorem applies and hence the action of H\mathrm{H} on SL4()/SL4()\operatorname{SL}_{4}(\mathbb{R})/\operatorname{SL}_{4}(\mathbb{Z}) is uniformly non-divergent. To get a better result, consider

𝐁:=[1𝐁0]\bm{\mathrm{B}}:=\left[\begin{array}[]{cc}1&\\ &\bm{\mathrm{B}}_{0}\end{array}\right]

where 𝐁0\bm{\mathrm{B}}_{0} is a Borel subgroup of SO(2,1)\operatorname{SO}(2,1). Let 𝐅:=𝐒𝐁\bm{\mathrm{F}}:=\bm{\mathrm{S}}\cdot\bm{\mathrm{B}}, then the epimorphic closure of 𝐅\bm{\mathrm{F}} in SL4\operatorname{SL}_{4} is 𝐇\bm{\mathrm{H}} (because 𝐁0\bm{\mathrm{B}}_{0} is a parabolic subgroup of SO(2,1)\operatorname{SO}(2,1), see [Gro97] for details). Hence the action of F\mathrm{F} on SL4()/SL4()\operatorname{SL}_{4}(\mathbb{R})/\operatorname{SL}_{4}(\mathbb{Z}) is also uniformly non-divergent. Using Lie algebras, it is not hard to show that no proper connected Lie subgroup of F\mathrm{F} has this property.

1.3. Geometric consequences

Let XX be an arithmetic quotient of a symmetric space of noncompact type. Let 𝒯𝒢N\mathcal{T}\mathcal{G}^{N} be the space of embedded totally geodesic finite-volume submanifolds in XX of dimension NN. Equip 𝒯𝒢N\mathcal{T}\mathcal{G}^{N} with the Chabauty topology. Let 𝒯𝒢N,rigid\mathcal{T}\mathcal{G}^{N,\operatorname{rigid}} be those that do not admit nontrivial deformation in XX. More precisely, Y𝒯𝒢N,rigidY\in\mathcal{T}\mathcal{G}^{N,\operatorname{rigid}} iff {Y}\{Y\} is open in 𝒯𝒢N\mathcal{T}\mathcal{G}^{N}. We have the following finiteness result generalizing [Oh04, Theorem 1.1].

Theorem 1.5.

For every natural number NN and positive number T>0T>0, the set

𝒯𝒢TN,rigid:={Y𝒯𝒢N,rigid|Vol(Y)T}\mathcal{T}\mathcal{G}^{N,\operatorname{rigid}}_{\leq T}:=\left\{Y\in\mathcal{T}\mathcal{G}^{N,\operatorname{rigid}}\;\middle|\;\operatorname{Vol}(Y)\leq T\right\}

is finite.

1.4. Organizations

In section 2 we prove Theorem 1.2 in the special case of unimodular lattices. The general case is treated in section 3. Theorem 1.4 and 1.3 are proved in section 4. In the last section 5 we prove Theorem 1.5 and in Proposition 5.2 we give a characterization of rigid totally geodesic submanifolds in terms of Lie algebras.

2. Non-divergence in the space of unimodular lattices

In this section we provide a proof of Theorem 1.2 in the special case when 𝐆=SLN\bm{\mathrm{G}}=\operatorname{SL}_{N} and Γ\Gamma is commensurable with SLN()\operatorname{SL}_{N}(\mathbb{Z}). Compared to the general case to be treated in section 3, the proof here is more elementary (though still relies on the non-divergence criterion of Dani–Margulis) and does not rely on [DGUL19]. Yet it still illustrates some key ideas also appearing in the general case.

Without loss of generality assume Γ=SLN()\Gamma=\operatorname{SL}_{N}(\mathbb{Z}) and identify SLN()/SLN()\operatorname{SL}_{N}(\mathbb{R})/\operatorname{SL}_{N}(\mathbb{Z}) as the space of unimodular lattices of N\mathbb{R}^{N}. Fix a reductive subgroup 𝐇\bm{\mathrm{H}} of SLN\operatorname{SL}_{N} over \mathbb{R} such that 𝐙SLN𝐇/𝐙(𝐇)\bm{\mathrm{Z}}_{\operatorname{SL}_{N}}\bm{\mathrm{H}}/\bm{\mathrm{Z}}(\bm{\mathrm{H}}) is \mathbb{R}-anisotropic. Write 𝐇=𝐒𝐌\bm{\mathrm{H}}=\bm{\mathrm{S}}\cdot\bm{\mathrm{M}} as an almost direct product of an \mathbb{R}-split torus and an \mathbb{R}-split semisimple group 𝐌\bm{\mathrm{M}}.

Let N=i𝒜0Vi\mathbb{R}^{N}=\bigoplus_{i\in\mathcal{A}_{0}}V_{i} be a decomposition of N\mathbb{R}^{N} into \mathbb{R}-irreducible representations of H\mathrm{H}.

Lemma 2.1.

For distinct i1,i2𝒜0{i_{1},i_{2}\in\mathcal{A}_{0}}, Vi1V_{i_{1}} and Vi2V_{i_{2}} are not isomorphic as representations of H\mathrm{H}.

Proof.

Assume otherwise that ψ:Vi2Vi1\psi:V_{i_{2}}\to V_{i_{1}} gives an H\mathrm{H}-equivariant isomorphism. Consider for ss\in\mathbb{R}

[1sψ01]\left[\begin{array}[]{cc}1&s\psi\\ 0&1\end{array}\right]

as operators on Vi1Vi2V_{i_{1}}\oplus V_{i_{2}}. And write vsv_{s} for the image of its embedding in SL(V)\operatorname{SL}(V) by asking that it acts as identity on ViV_{i}’s for ii1,i2i\neq i_{1},i_{2}. Then {vs}s\{v_{s}\}_{s\in\mathbb{R}} is a noncompact subgroup of G\mathrm{G} centralizing H\mathrm{H}, and hence has to be contained in H\mathrm{H}. But it does not preserve Vi2V_{i_{2}}, which is a contradiction. ∎

In light of this lemma, S\mathrm{S} can be described more concretely. On the one hand, every sSs\in\mathrm{S} acts as a positive scalar sis_{i} when restricted to each ViV_{i}. On the other hand, if sGs\in\mathrm{G} acts as a positive scalar when restricted to each ViV_{i}, then sSs\in\mathrm{S} because it centralizes H\mathrm{H}, is \mathbb{R}-diagonalizable and also is connected to the identity via some one-parameter flow.

Let \left\lVert\cdot\right\rVert be the standard Euclidean metric on N\mathbb{R}^{N} and by abuse of notation also the induced metrics iN\wedge^{i}\mathbb{R}^{N} for all ii’s. For a lattice ΛN\Lambda\leq\mathbb{R}^{N}, an \mathbb{R}-linear subspace (will be abbreviated as an \mathbb{R}-subspace) WW of N\mathbb{R}^{N} is said to be Λ\Lambda-rational iff ΛWW\Lambda\cap W\leq W is a lattice, in which case we let ΛW:=ΛWW\Lambda_{W}:=\Lambda\cap W\leq W and let ΛW\left\lVert\Lambda_{W}\right\rVert denote the volume of W/ΛWW/\Lambda_{W}. If v1,,vkv_{1},...,v_{k} is a set of \mathbb{Z}-basis of ΛW\Lambda_{W} then ΛW=v1vk\left\lVert\Lambda_{W}\right\rVert=\left\lVert v_{1}\wedge...\wedge v_{k}\right\rVert. A subspace WW is said to be (M,Λ)(\mathrm{M},\Lambda)-eligible iff WW is both M\mathrm{M}-stable and Λ\Lambda-rational.

Let δM:M\SLN()/SLN()(0,)\delta_{\mathrm{M}}:\mathrm{M}\backslash\operatorname{SL}_{N}(\mathbb{R})/\operatorname{SL}_{N}(\mathbb{Z})\to(0,\infty) be defined by

δM([Λ]):=inf{ΛW1dimW|W is (M,Λ)-eligible}.\delta_{\mathrm{M}}([\Lambda]):=\inf\left\{\left\lVert\Lambda_{W}\right\rVert^{\frac{1}{\dim W}}\>\middle|\>W\text{ is }(\mathrm{M},\Lambda)\text{-eligible}\right\}.

When 𝐌=𝐇\bm{\mathrm{M}}=\bm{\mathrm{H}}, δM([Λ])\delta_{\mathrm{M}}([\Lambda]) is always equal to 11. When M={e}\mathrm{M}=\{e\} is the trivial group, write δ:=δM\delta:=\delta_{\mathrm{M}}. By Mahler’s criterion, to prove Theorem 1.2, it suffices to show that there exists η>0\eta>0 such that for every ΛSLN()/SLN()\Lambda\in\operatorname{SL}_{N}(\mathbb{R})/\operatorname{SL}_{N}(\mathbb{Z}), there exists some hHh\in\mathrm{H} such that δ(hΛ)>η\delta(h\Lambda)>\eta. This would in turn follow from the following proposition by [DGU20, Theorem 4.6] which is based on the work of [DM91] (see also [Kle10, Corollary 3.3, Theorem 3.4]).

Proposition 2.2.

There exist 0<η0<10<\eta_{0}<1 and C>1C>1 such that for all [Λ]M\SLN()/SLN()[\Lambda]\in\mathrm{M}\backslash\operatorname{SL}_{N}(\mathbb{R})/\operatorname{SL}_{N}(\mathbb{Z}) with δM([Λ])<η0\delta_{\mathrm{M}}([\Lambda])<\eta_{0}, there exists sSs\in S such that δM([sΛ])CδM([Λ])\delta_{\mathrm{M}}([s\Lambda])\geq C\delta_{\mathrm{M}}([\Lambda]). As a result, there exists sSs\in S such that δM([sΛ])η0\delta_{\mathrm{M}}([s\Lambda])\geq\eta_{0}.

The proof of this proposition will be based on the two lemmas below.

Lemma 2.3.

There exist, and we fix, C1,C2>1C_{1},C_{2}>1 and a finite subset S\mathcal{F}\subset S such that for every proper \mathbb{R}-subspace WW of N\mathbb{R}^{N} that is M\mathrm{M}-stable, there exists ss\in\mathcal{F} such that

  1. (1)

    sv>1C1v\left\lVert sv\right\rVert>\frac{1}{C_{1}}\left\lVert v\right\rVert for all pure wedges vv in N\mathbb{R}^{N};

  2. (2)

    sv>C2v\left\lVert sv\right\rVert>C_{2}\left\lVert v\right\rVert for all pure wedges vv with v\mathcal{L}_{v} contained in WW.

By a pure wedge vv, we mean some non-zero vector of the form v=v1viv=v_{1}\wedge...\wedge v_{i} in iN\wedge^{i}\mathbb{R}^{N} for some ii. For such a pure wedge, write v\mathcal{L}_{v} for the \mathbb{R}-subspace of N\mathbb{R}^{N} spanned by v1,,viv_{1},...,v_{i}.

Proof.

The first part comes for free as long as \mathcal{F} is a finite set. We shall focus on the second part. It suffices to show that for each M\mathrm{M}-stable subspace WW, there exists sWSs_{W}\in S such that

sww>w,wW\left\lVert s_{w}\cdot w\right\rVert>\left\lVert w\right\rVert,\quad\forall w\in W

Then the same thing would be true replacing ww by any pure wedge ww with w\mathcal{L}_{w} contained in WW. A continuity argument applied to the unit vectors would then finish the proof.

Recall the decomposition of N=i𝒜0Vi\mathbb{R}^{N}=\bigoplus_{i\in\mathcal{A}_{0}}V_{i} into irreducible representations with respect to H\mathrm{H}. Also, for each ii, every sSs\in\mathrm{S} acts as siidVis_{i}\text{id}_{V_{i}}, for some si>0s_{i}>0, when restricted to ViV_{i} .

For each I𝒜0I\subset\mathcal{A}_{0}, define πI:NVI:=iIVi\pi_{I}:\mathbb{R}^{N}\to V_{I}:=\bigoplus_{i\in I}V_{i} to be the corresponding H\mathrm{H}-equivariant projection. We claim that for any M\mathrm{M}-stable WW, there exists II such that πI|W\pi_{I}|_{W} is bijective.

Fix W and we define I={i1,,ik}I=\{i_{1},...,i_{k}\} inductively. Firstly we pick i1𝒜0i_{1}\in\mathcal{A}_{0} such that πi1|W0\pi_{i_{1}}|_{W}\neq 0 and let W1:=ker(πi1|W)W_{1}:=\ker(\pi_{i_{1}}|_{W}). Secondly we pick i2𝒜0i_{2}\in\mathcal{A}_{0} such that πi2|W10\pi_{i_{2}}|_{W_{1}}\neq 0 and let W2:=ker(πi2|W1)W_{2}:=\ker(\pi_{i_{2}}|_{W_{1}}). Continue this until πi|Wk=0\pi_{i}|_{W_{k}}=0 for all i𝒜0i\in\mathcal{A}_{0}, in which case Wk={0}W_{k}=\{0\}. So for jkj\leq k we have the exact sequence

0{0}Wj0{W_{j_{0}}}Wj1{W_{j-1}}πj0(Wj1){\pi_{j_{0}}(W_{j-1})}0.{0.}

Now πI|W\pi_{I}|_{W} is injective. Indeed if wWw\in W is such that πI(w)=0\pi_{I}(w)=0, then wiWi={0}w\in\cap_{i}W_{i}=\{0\}.

The map πI|W\pi_{I}|_{W} is also surjective. Write W0:=WW_{0}:=W. For each i=1,,ki=1,...,k,

πi|Wi10πi|Wi1 is surjective on Vi\pi_{i}|_{W_{i-1}}\neq 0\implies\pi_{i}|_{W_{i-1}}\text{ is surjective on }V_{i}

as ViV_{i} is actually an irreducible representation with respect to M\mathrm{M} (though ViV_{i} may be isomorphic to Vj0V_{j_{0}} as M\mathrm{M}-representations). As Wi1W_{i-1} is defined to vanish under πi1\pi_{i-1} (for i>1i>1), an induction argument shows that π{i1,,il}|W\pi_{\{i_{1},...,i_{l}\}}|_{W} is surjective for l=1,,kl=1,...,k.

Once πI|W:WVI\pi_{I}|_{W}:W\to V_{I} is bijective, we see that WW is the graph of some linear map ϕW:VIVIc\phi_{W}:V_{I}\to V_{I^{c}}. That is to say, for any wWw\in W, there exists a unique vVIv\in V_{I} such that w=v+ϕW(v)w=v+\phi_{W}(v). Find CW>0C_{W}>0 such that

v+ϕW(v)CWv,vVI.\displaystyle\left\lVert v+\phi_{W}(v)\right\rVert\leq C_{W}\left\lVert v\right\rVert,\quad\forall v\in V_{I}.
1CWvv+v,vVI,vVIc.\displaystyle\frac{1}{C_{W}}\left\lVert v\right\rVert\leq\left\lVert v+v^{\prime}\right\rVert,\quad\forall v\in V_{I},\;v^{\prime}\in V_{I^{c}}.

Then we take sWSs_{W}\in S such that sw|VI=λidVIs_{w}|_{V_{I}}=\lambda\operatorname{id}_{V_{I}} for some λ>CW2\lambda>C_{W}^{2}. Thus

sww1CWλv>CWvv+ϕW(v)=w.\left\lVert s_{w}\cdot w\right\rVert\geq\frac{1}{C_{W}}\left\lVert\lambda v\right\rVert>C_{W}\left\lVert v\right\rVert\geq\left\lVert v+\phi_{W}(v)\right\rVert=\left\lVert w\right\rVert.

Now the proof is complete. ∎

Lemma 2.4.

For every [Λ]M\SLN()/SLN()[\Lambda]\in\mathrm{M}\backslash\operatorname{SL}_{N}(\mathbb{R})/\operatorname{SL}_{N}(\mathbb{Z}) with δM([Λ])<η0:=1(C1C2)N\delta_{\mathrm{M}}([\Lambda])<\eta_{0}:=\frac{1}{(C_{1}C_{2})^{N}}, there exists a proper (M,Λ)(\mathrm{M},\Lambda)-eligible subspace WNW_{\infty}\leq\mathbb{R}^{N} such that for any (M,Λ)(\mathrm{M},\Lambda)-eligible subspace WW not contained in WW_{\infty} we have

ΛW+ΛW(C1C2)ΛW.\left\lVert\Lambda_{W}+\Lambda_{W_{\infty}}\right\rVert\geq(C_{1}C_{2})\left\lVert\Lambda_{W_{\infty}}\right\rVert.
Proof.

Take such a Λ\Lambda as in the statement. Find an (M,Λ)(\mathrm{M},\Lambda)-eligible \mathbb{R}-subspace W1W_{1} such that ΛW1<η0\left\lVert\Lambda_{W_{1}}\right\rVert<\eta_{0}. If W1W_{1} satisfies the conclusion above, then we take W=W1W_{\infty}=W_{1}. Otherwise there exists W1NW_{1}^{\prime}\leq\mathbb{R}^{N}, (M,Λ)(\mathrm{M},\Lambda)-eligible, such that

ΛW1+ΛW1<(C1C2)ΛW1.\left\lVert\Lambda_{W^{\prime}_{1}}+\Lambda_{W_{1}}\right\rVert<(C_{1}C_{2})\left\lVert\Lambda_{W_{1}}\right\rVert.

Let W2:=W1+W1W_{2}:=W_{1}^{\prime}+W_{1}, then W2W_{2} is still (M,Λ)(\mathrm{M},\Lambda)-eligible. If W2W_{2} satisfies the conclusion, we stop. Otherwise we define W2W^{\prime}_{2} and W3W_{3} similarly as above. As the dimension is finite, this process has to stop at some index ll not exceeding NN. We let W:=WlW_{\infty}:=W_{l} and it only remains to show that WW_{\infty} is a proper subspace. Indeed ΛWi+ΛWiΛWi+1\Lambda_{W_{i}}+\Lambda_{W_{i}^{\prime}}\leq\Lambda_{W_{i+1}}, so

ΛWlΛWl1+ΛWl1(C1C2)ΛWl1(C1C2)lW1<1.\left\lVert\Lambda_{W_{l}}\right\rVert\leq\left\lVert\Lambda_{W^{\prime}_{l-1}}+\Lambda_{W_{l-1}}\right\rVert\leq(C_{1}C_{2})\left\lVert\Lambda_{W_{l-1}}\right\rVert\leq...\leq(C_{1}C_{2})^{l}\left\lVert W_{1}\right\rVert<1.

As NΛ=Λ=1\left\lVert{\mathbb{R}^{N}}\right\rVert_{\Lambda}=\left\lVert\Lambda\right\rVert=1, WNW_{\infty}\neq\mathbb{R}^{N}. ∎

Now finally we come to the

Proof of Proposition 2.2 with C:=C2C:=C_{2}.

Recall η0=1/(C1C2)N\eta_{0}=1/(C_{1}C_{2})^{N}. We take [Λ]M\SLN()/SLN()[\Lambda]\in\mathrm{M}\backslash\operatorname{SL}_{N}(\mathbb{R})/\operatorname{SL}_{N}(\mathbb{Z}) such that δM([Λ])<η0\delta_{\mathrm{M}}([\Lambda])<\eta_{0}. By Lemma 2.4, pick a proper (M,Λ)(\mathrm{M},\Lambda)-eligible subspace WNW_{\infty}\leq\mathbb{R}^{N} such that for any (M,Λ)(\mathrm{M},\Lambda)-eligible subspace WW not contained in WW_{\infty} we have

ΛW+ΛW(C1C2)ΛW.\left\lVert\Lambda_{W}+\Lambda_{W_{\infty}}\right\rVert\geq(C_{1}C_{2})\left\lVert\Lambda_{W_{\infty}}\right\rVert.

Then by applying Lemma 2.3 to WW_{\infty}, we get some sSs\in S such that

  1. (1)

    sv>1C1v\left\lVert sv\right\rVert>\frac{1}{C_{1}}\left\lVert v\right\rVert for all pure wedges vv in N\mathbb{R}^{N};

  2. (2)

    sv>C2v\left\lVert sv\right\rVert>C_{2}\left\lVert v\right\rVert for all pure wedges vv with v\mathcal{L}_{v} contained in WW_{\infty}.

Now we prove our assertion with this sSs\in S. It suffices to show that for every (M,sΛ)(\mathrm{M},s\Lambda)-eligible WW^{\prime}, we have ΛWC2ΛW′′\left\lVert\Lambda_{W^{\prime}}\right\rVert\geq C_{2}\left\lVert\Lambda_{W^{\prime\prime}}\right\rVert for some (M,Λ)(\mathrm{M},\Lambda)-eligible W′′W^{\prime\prime}.

First let W:=s1WW:=s^{-1}W^{\prime}, then WW is (M,Λ)(\mathrm{M},\Lambda)-eligible and sΛW=(sΛ)Ws\cdot\Lambda_{W}=(s\Lambda)_{W^{\prime}}. There are two cases to consider.

Case I, WWW\subset W_{\infty}. Then

(sΛ)W=sΛWC2ΛW.\left\lVert(s\Lambda)_{W^{\prime}}\right\rVert=\left\lVert s\Lambda_{W}\right\rVert\geq C_{2}\left\lVert\Lambda_{W}\right\rVert.

So setting W′′:=WW^{\prime\prime}:=W concludes the proof.

Case II, WWW\nsubseteq W_{\infty}. Let W′′:=WWW^{\prime\prime}:=W\cap W_{\infty}. Then W′′W^{\prime\prime} is (M,Λ)(\mathrm{M},\Lambda)-eligible and ΛW′′=ΛWΛW\Lambda_{W^{\prime\prime}}=\Lambda_{W}\cap\Lambda_{W_{\infty}}. We have

ΛW′′(C1C2)ΛWΛWΛWΛW+ΛWΛWΛW\displaystyle\left\lVert\Lambda_{W^{\prime\prime}}\right\rVert(C_{1}C_{2})\left\lVert\Lambda_{W_{\infty}}\right\rVert\leq\left\lVert\Lambda_{W}\cap\Lambda_{W_{\infty}}\right\rVert\cdot\left\lVert\Lambda_{W}+\Lambda_{W_{\infty}}\right\rVert\leq\left\lVert\Lambda_{W}\right\rVert\cdot\left\lVert\Lambda_{W_{\infty}}\right\rVert
ΛW(C1C2)ΛW′′.\displaystyle\implies\left\lVert\Lambda_{W}\right\rVert\geq(C_{1}C_{2})\left\lVert\Lambda_{W^{\prime\prime}}\right\rVert.

So

(sΛ)W1C1ΛWC2ΛW′′\left\lVert(s\Lambda)_{W^{\prime}}\right\rVert\geq\frac{1}{C_{1}}\left\lVert\Lambda_{W}\right\rVert\geq C_{2}\left\lVert\Lambda_{W^{\prime\prime}}\right\rVert

and we are done.

3. Non-divergence in the general case

In this section we prove Theorem 1.2 in general.

So let 𝐆\bm{\mathrm{G}} be a \mathbb{Q}-semisimple group of dimension NN and ΓG\Gamma\leq\mathrm{G} be an arithmetic lattice. Let 𝐇𝐆\bm{\mathrm{H}}\leq\bm{\mathrm{G}} be a connected reductive subgroup defined over \mathbb{R} without compact factors. Write 𝐇=𝐒𝐌\bm{\mathrm{H}}=\bm{\mathrm{S}}\cdot\bm{\mathrm{M}} as an almost direct product of some \mathbb{R}-split torus 𝐒\bm{\mathrm{S}} and some connected \mathbb{R}-split semisimple group 𝐌\bm{\mathrm{M}}. We assume that 𝐒𝐙𝐆𝐌\bm{\mathrm{S}}\leq\bm{\mathrm{Z}}_{\bm{\mathrm{G}}}\bm{\mathrm{M}} is a maximal \mathbb{R}-split torus.

Fix a maximal compact subgroup K\mathrm{K} of G\mathrm{G} and an Ad(K)\operatorname{Ad}(\mathrm{K})-invariant metric on 𝒢\mathscr{G}, defined as the Lie algebra of G\mathrm{G}. Only in this subsection we follow the convention of [TW03] to use script letters for Lie algebras. We fix an integral structure 𝒢\mathscr{G}_{\mathbb{Z}} on 𝒢\mathscr{G} that is contained in the Lie algebra of 𝐆\bm{\mathrm{G}} and is preserved by Ad(Γ)\operatorname{Ad}(\Gamma). For each gGg\in\mathrm{G}, write 𝒢g:=Ad(g)𝒢\mathscr{G}_{g}:=\operatorname{Ad}(g)\cdot\mathscr{G}_{\mathbb{Z}}. For η>0\eta>0, let 𝒩η:={v𝒢|v<η}\mathcal{N}_{\eta}:=\{v\in\mathscr{G}\,|\,\left\lVert v\right\rVert<\eta\}. For a discrete subgroup Λ\Lambda of 𝒢\mathscr{G}, we let Λ\left\lVert\Lambda\right\rVert be the covolume of Λ\Lambda in Λ\Lambda_{\mathbb{R}}, the \mathbb{R}-span of Λ\Lambda.

For each η>0\eta>0, let XηX_{\eta} be a compact subset of G/Γ\mathrm{G}/\Gamma defined by

Xη={[g]G/Γ|𝒢g𝒩η={0}}.X_{\eta}=\left\{[g]\in\mathrm{G}/\Gamma\>|\>\mathscr{G}_{g}\cap\mathcal{N}_{\eta}=\{0\}\right\}.

As the map [g]𝒢g[g]\mapsto\mathscr{G}_{g} is a proper map from G/Γ\mathrm{G}/\Gamma to the space of lattices in 𝒢\mathscr{G} with some fixed volume, the union of interiors of {Xη}η>0\{X_{\eta}\}_{\eta>0} covers G/Γ\mathrm{G}/\Gamma by Mahler’s criterion.

To take into consideration of M\mathrm{M}, we define

XηM={[g]G/Γ|M[g]Xη}.X^{\mathrm{M}}_{\eta}=\left\{[g]\in\mathrm{G}/\Gamma\>|\>\mathrm{M}[g]\cap X_{\eta}\neq\emptyset\right\}.

We need to introduce some terminologies from reduction theory. For more detailed expositions one may consult [Bor19] (see also [BS73, BJ06, DGU20, Zha20]).

There exists a finite collection of \mathbb{Q}-parabolic subgroups {𝐏i}i𝒜1\{\bm{\mathrm{P}}_{i}\}_{i\in\mathcal{A}_{1}} of 𝐆\bm{\mathrm{G}} such that any \mathbb{Q}-parabolic subgroup 𝐏\bm{\mathrm{P}} of 𝐆\bm{\mathrm{G}} is conjugate to one of 𝐏i\bm{\mathrm{P}}_{i} by Γ\Gamma. Let 𝐔i\bm{\mathrm{U}}_{i} be the unipotent radical of 𝐏i\bm{\mathrm{P}}_{i}, then 𝐏i/𝐔i\bm{\mathrm{P}}_{i}/\bm{\mathrm{U}}_{i} is a \mathbb{Q}-reductive group. Let 𝐒i\bm{\mathrm{S}}^{\prime}_{i} denote the \mathbb{Q}-split part of its center. The lift of 𝐒i\bm{\mathrm{S}}^{\prime}_{i} to 𝐏i\bm{\mathrm{P}}_{i} is not unique, but we fix one 𝐒i\bm{\mathrm{S}}_{i} that is defined over \mathbb{Q}. On the other hand we take another lift Ai\mathrm{A}_{i} of Si\mathrm{S}^{\prime}_{i} that is invariant under the Cartan involution on G\mathrm{G} associated with K\mathrm{K}. We let Δi\Delta_{i} be the simple roots for (Ai,𝐏i)(\mathrm{A}_{i},\bm{\mathrm{P}}_{i}). As Ai\mathrm{A}_{i} is conjugate to Si\mathrm{S}_{i} in a unique way, we are safe to think of Δi\Delta_{i} also as simple roots for (𝐒i,𝐏i)(\bm{\mathrm{S}}_{i},\bm{\mathrm{P}}_{i}), in which case consists of \mathbb{Q}-characters. For a \mathbb{Q}-parabolic subgroup 𝐏\bm{\mathrm{P}}, let 𝐏{}^{\circ}\!\bm{\mathrm{P}} be the subgroup of 𝐏\bm{\mathrm{P}} defined by the common kernel of all \mathbb{Q}-characters of 𝐏\bm{\mathrm{P}}. And let P{}^{\circ}\!\mathrm{P} be the identity connected component, in the analytic topology, of 𝐏(){}^{\circ}\!\bm{\mathrm{P}}(\mathbb{R}). Associated with (K,𝐏i)(\mathrm{K},\bm{\mathrm{P}}_{i}), we write g=kgiagipgig=k^{i}_{g}a^{i}_{g}p^{i}_{g} for the horospherical coordinates of gGg\in\mathrm{G} (see for instance [Zha20, Section 2.3], one should take inverse of everything happening in the reference and combine the M\mathrm{M}, U\mathrm{U} term together to get pgPp_{g}\in{}^{\circ}\!\mathrm{P}). Note kgiKk^{i}_{g}\in\mathrm{K}, agiAia^{i}_{g}\in\mathrm{A}_{i} and pgiPp^{i}_{g}\in{}^{\circ}\!\mathrm{P}.

Now we define generalized Siegel sets taking into considerations of M\mathrm{M}. When M={e}\mathrm{M}=\{e\}, this specializes to the usual Siegel set. For each index i𝒜1i\in\mathcal{A}_{1}, a bounded set BPB\subset{}^{\circ}\!\mathrm{P} and θ,ε>0\theta,\varepsilon>0, define

Σi,B,θM:={gG|g1MgPi;α(agi)<θ,αΔi;mM,pgig1mgBΓP}.\Sigma^{\mathrm{M}}_{i,B,\theta}:=\left\{g\in\mathrm{G}\;\middle\lvert\;\parbox{142.26378pt}{ \raggedright$g^{-1}\mathrm{M}g\subset\mathrm{P}_{i};\,\alpha(a^{i}_{g})<\theta,\,\forall\alpha\in\Delta_{i};\,\exists m\in\mathrm{M},\,p^{i}_{g}g^{-1}mg\in B\Gamma_{{}^{\circ}\!\mathrm{P}}$ \@add@raggedright}\right\}.

and

Σi,B,θ,εM:={gΣi,B,θM|α(agi)<ε,αΔi}.\Sigma^{\mathrm{M}}_{i,B,\theta,\varepsilon}:=\left\{g\in\Sigma^{\mathrm{M}}_{i,B,\theta}\>\middle\lvert\>\alpha(a^{i}_{g})<\varepsilon,\>\exists\alpha\in\Delta_{i}\right\}.

We need the following proposition, which is a corollary to the main result of [DGUL19].

Proposition 3.1.

For each 0<θ<10<\theta<1, there exist BGB\subset\mathrm{G} bounded and η>0\eta^{\prime}>0 such that

  1. (1)

    for every gGg\in\mathrm{G},

    gXηMgiΣi,BPi,θMΓ;g\notin X^{\mathrm{M}}_{\eta^{\prime}}\implies g\in\bigcup_{i}\Sigma^{\mathrm{M}}_{i,B\cap{}^{\circ}\!\mathrm{P}_{i},\theta}\Gamma;
  2. (2)

    fix such a set of θ=θ0\theta=\theta_{0}, B=B0B=B_{0} and η=η0\eta^{\prime}=\eta_{0}, then there exists a function ε0:(0,η0)(0,)\varepsilon_{0}:(0,\eta_{0})\to(0,\infty) with limη0ε0(η)=0\lim_{\eta\to 0}\varepsilon_{0}(\eta)=0 such that for every gGg\in\mathrm{G},

    gXηMgiΣi,BPi,θ,ε0(η)MΓ.g\notin X^{\mathrm{M}}_{\eta}\implies g\in\bigcup_{i}\Sigma^{\mathrm{M}}_{i,B\cap{}^{\circ}\!\mathrm{P}_{i},\theta,\varepsilon_{0}(\eta)}\Gamma.
Proof of (1).

For each positive integer nn, we let Bn:=X1nB_{n}:=X_{\frac{1}{n}} and ηn:=1n\eta_{n}:=\frac{1}{n}. If (1) were not true, then there exists θ0(0,1)\theta_{0}\in(0,1) and a sequence of gnXηnMg_{n}\notin X^{\mathrm{M}}_{\eta_{n}}, yet gniΣi,BnPi,θ0MΓg_{n}\notin\bigcup_{i}\Sigma^{\mathrm{M}}_{i,B_{n}\cap{}^{\circ}\!\mathrm{P}_{i},\theta_{0}}\Gamma. By definition of XηnMX^{\mathrm{M}}_{\eta_{n}}, (M[gn])(\mathrm{M}[g_{n}]) diverges topologically in G/Γ\mathrm{G}/\Gamma.

By [DGUL19, Section 5.3] (where they proved the hypothesis of [DGUL19, Theorem 4.2] is met) and after passing to a subsequence, there exists i0𝒜1i_{0}\in\mathcal{A}_{1} and γnΓ\gamma_{n}\in\Gamma such that Mn:=γn1g1MgγnM_{n}:=\gamma_{n}^{-1}g^{-1}\mathrm{M}g\gamma_{n} is contained in Pi0{}^{\circ}\!\mathrm{P}_{i_{0}} and if we write

gnγn=knanpn,g_{n}\gamma_{n}=k_{n}a_{n}p_{n},

the horospherical coordinate of gnγng_{n}\gamma_{n} with respect to 𝐏i0\bm{\mathrm{P}}_{i_{0}} and K\mathrm{K}, then

  1. (1)

    dn:=maxαΔi0α(an)0d_{n}:=\max_{\alpha\in\Delta_{i_{0}}}\alpha(a_{n})\to 0;

  2. (2)

    (pnMn)(p_{n}M_{n}) is non-divergent in Pi0/Pi0Γ{}^{\circ}\!\mathrm{P}_{i_{0}}/{}^{\circ}\!\mathrm{P}_{i_{0}}\cap\Gamma. That is to say, there exist a sequence (mn)(m_{n}) in M\mathrm{M}, a bounded sequence (bn)(b_{n}) in Pi0{}^{\circ}\!\mathrm{P}_{i_{0}} and (λn)(\lambda_{n}) in Pi0Γ{}^{\circ}\!\mathrm{P}_{i_{0}}\cap\Gamma such that

    pnγn1gn1mngnγn=bnλn.p_{n}\gamma_{n}^{-1}g_{n}^{-1}m_{n}g_{n}\gamma_{n}=b_{n}\lambda_{n}.

Now we let B:={bn}B:=\{b_{n}\}, which is a bounded set. Then we have

gnγnΣi0,B,dnM,sognΣi0,B,dnMΓ.g_{n}\gamma_{n}\in\Sigma^{\mathrm{M}}_{i_{0},B,d_{n}},\quad\text{so}\quad g_{n}\in\Sigma^{\mathrm{M}}_{i_{0},B,d_{n}}\Gamma.

When nn is large enough such that BB is contained in BnPi0B_{n}\cap{}^{\circ}\!\mathrm{P}_{i_{0}} and dn<θ0d_{n}<\theta_{0}, we have a contradiction. ∎

Proof of (2).

By (1) for each gGg\in\mathrm{G} with [g]Xη0M[g]\notin X^{\mathrm{M}}_{\eta_{0}}, choose ig𝒜1i_{g}\in\mathcal{A}_{1} such that gΣig,B0,θ0MΓg\in\Sigma^{\mathrm{M}}_{i_{g},B_{0},\theta_{0}}\Gamma. The choice of igi_{g} may not be unique, but we just fix one.

Define for gGg\in\mathrm{G} with [g]Xη0M[g]\notin X^{\mathrm{M}}_{\eta_{0}},

ε0(g):=inf{ε>0|gΣig,B0,θ0,εΓ}.\varepsilon_{0}(g):=\inf\left\{\varepsilon>0\>\middle|\>g\in\Sigma_{i_{g},B_{0},\theta_{0},\varepsilon}\Gamma\right\}.

From the definition we see that 0<ε0(g)θ00<\varepsilon_{0}(g)\leq\theta_{0} and gΣig,B0,θ0,2ε0(g)Γg\in\Sigma_{i_{g},B_{0},\theta_{0},2\varepsilon_{0}(g)}\Gamma. So (2) amounts to saying that (there exists some choice of igi_{g} such that)

limη0sup[g]XηMε0(g)=0.\lim_{\eta\to 0}\sup_{[g]\notin X^{\mathrm{M}}_{\eta}}\varepsilon_{0}(g)=0.

Hence if (2) is not true, then there exists ε0>0\varepsilon_{0}>0 and a sequence gnXηnMg_{n}\notin X^{\mathrm{M}}_{\eta_{n}} such that ε0(gn)ε0\varepsilon_{0}(g_{n})\geq\varepsilon_{0} for all positive integers nn. By passing to a subsequence we may assume that igni_{g_{n}} are identically equal to some i0𝒜1i_{0}\in\mathcal{A}_{1} for all nn. So there exists γnΓ\gamma_{n}\in\Gamma such that if gnγn=knanpng_{n}\gamma_{n}=k_{n}a_{n}p_{n} is the horospherical coordinate of gnγng_{n}\gamma_{n} with respect to 𝐏i0\bm{\mathrm{P}}_{i_{0}} then (knan)(k_{n}a_{n}) is bounded by the assumption that ε0(gn)ε0\varepsilon_{0}(g_{n})\geq\varepsilon_{0}. Also pnγn1gn1MgnγnB0Γp_{n}\gamma_{n}^{-1}g_{n}^{-1}\mathrm{M}g_{n}\gamma_{n}\cap B_{0}\Gamma\neq\emptyset. So there exist a bounded set BG/ΓB\subset\mathrm{G}/\Gamma such that M[gn]B\mathrm{M}[g_{n}]\cap B\neq\emptyset for all nn. This contradicts against gnXηnMg_{n}\notin X^{\mathrm{M}}_{\eta_{n}} for some ηn0\eta_{n}\to 0. ∎

From now on we fix a choice of θ0,η0(0,1)\theta_{0},\eta_{0}\in(0,1), B0B_{0} bounded in G\mathrm{G} and ε0:(0,η0)(0,)\varepsilon_{0}:(0,\eta_{0})\to(0,\infty) satisfying the above proposition. We choose θ0>0\theta_{0}>0 small enough such that

  • α(ag)<1\alpha(a_{g})<1 for all giΣi,B0Pi,θ0Mg\in\bigcup_{i}\Sigma^{\mathrm{M}}_{i,B_{0}\cap{}^{\circ}\!\mathrm{P}_{i},\theta_{0}} and all αΦi\alpha\in\Phi_{i}^{-}

where Φi\Phi_{i}^{-} denotes all nontrivial characters of Ai\mathrm{A}_{i} that appears in the Lie algebra of Pi\mathrm{P}_{i}. Elements of Φi\Phi_{i}^{-} are positive linear combinations of those from Δi\Delta_{i}, thus such a choice of θ0\theta_{0} exists. By choosing a smaller η0\eta_{0}, we assume that 0<ε0(η)<10<\varepsilon_{0}(\eta)<1 for all 0<η<η00<\eta<\eta_{0}.

Define a function δM:M\G/Γ(0,)\delta_{\mathrm{M}}:\mathrm{M}\backslash\mathrm{G}/\Gamma\to(0,\infty) by

δM([g]):=inf{𝒢g1dim|𝒢 is 𝒢g-rational and M-stable}.\delta_{\mathrm{M}}([g]):=\inf\left\{\left\lVert\mathcal{L}\cap\mathscr{G}_{g}\right\rVert^{\frac{1}{\dim\mathcal{L}}}\,\middle|\,\mathcal{L}\leq\mathscr{G}\text{ is }\mathscr{G}_{g}\text{-rational and }\mathrm{M}\text{-stable}\right\}.

For each i𝒜1i\in\mathcal{A}_{1}, fix (the unique) ωiUi\omega_{i}\in\mathrm{U}_{i} such that ωiAiωi1=Si\omega_{i}\mathrm{A}_{i}\omega_{i}^{-1}=\mathrm{S}_{i} and decompose 𝒢\mathscr{G} according to the Adjoint action of Ai\mathrm{A}_{i}, Si\mathrm{S}_{i}:

𝒢=αΦi(Si)𝒢αSi,𝒢=αΦi(Ai)𝒢αAi.\mathscr{G}=\bigoplus_{\alpha\in\Phi_{i}(\mathrm{S}_{i})}\mathscr{G}^{\mathrm{S}_{i}}_{\alpha},\quad\mathscr{G}=\bigoplus_{\alpha\in\Phi_{i}(\mathrm{A}_{i})}\mathscr{G}^{\mathrm{A}_{i}}_{\alpha}.

We identify Φi(Si)\Phi_{i}(\mathrm{S}_{i}) with Φi(Ai)\Phi_{i}(\mathrm{A}_{i}) via Ad(wi)\operatorname{Ad}(w_{i}) and will simply refer to them as Φi\Phi_{i}. By definition non-zero weights appearing in the Lie algebra of Pi\mathrm{P}_{i}, or equivalently in 𝒰i\mathscr{U}_{i}, the Lie algebra of Ui\mathrm{U}_{i}, have been called negative, and write Φi\Phi_{i}^{*} for the negative, zero or positive weights for =,0,+*=-,0,+ respectively. Also Φi0:=ΦiΦi0\Phi_{i}^{0-}:=\Phi_{i}^{-}\sqcup\Phi_{i}^{0} and Φi0+:=Φi+Φi0\Phi_{i}^{0+}:=\Phi_{i}^{+}\sqcup\Phi_{i}^{0}. For each αΦi\alpha\in\Phi_{i}, let παSi\pi^{\mathrm{S}_{i}}_{\alpha} and παAi\pi^{\mathrm{A}_{i}}_{\alpha} denote the corresponding projections to the weight space. Note Ad(wi)(𝒢αAi)=𝒢αSi\operatorname{Ad}(w_{i})(\mathscr{G}^{\mathrm{A}_{i}}_{\alpha})=\mathscr{G}^{\mathrm{S}_{i}}_{\alpha}, so we have

Ad(wi)παAi=παSiAd(wi).\operatorname{Ad}(w_{i})\circ\pi^{\mathrm{A}_{i}}_{\alpha}=\pi^{\mathrm{S}_{i}}_{\alpha}\circ\operatorname{Ad}(w_{i}).

Also for each i𝒜1i\in\mathcal{A}_{1}, define π0+Ai:𝒢αΦi0+(Si)𝒢αSi\pi^{\mathrm{A}_{i}}_{0+}:\mathscr{G}\to\bigoplus_{\alpha\in\Phi^{0+}_{i}(\mathrm{S}_{i})}\mathscr{G}^{\mathrm{S}_{i}}_{\alpha} to be the natural projection and similarly define πAi\pi^{\mathrm{A}_{i}}_{-}, π0+Si\pi^{\mathrm{S}_{i}}_{0+} and πSi\pi^{\mathrm{S}_{i}}_{-}. They are related in the same manner as above.

Note that π0+Ai\pi^{\mathrm{A}_{i}}_{0+} is also the orthogonal projection onto 𝒰i\mathscr{U}_{i}^{\perp}, which is denoted by π𝒰i\pi_{\mathscr{U}_{i}^{\perp}}. Actually, the usefulness of Ai\mathrm{A}_{i} comes from the fact it is invariant under the Cartan involution and hence παAi\pi_{\alpha}^{\mathrm{A}_{i}}’s are all orthogonal projections whereas the rationality of Si\mathrm{S}_{i}’s makes παSi\pi_{\alpha}^{\mathrm{S}_{i}}’s defined over \mathbb{Q}.

To be prepared for the upcoming corollary, we define some constants. For each i𝒜1i\in\mathcal{A}_{1} and bB0Pib\in B_{0}\cap\mathrm{P}_{i}, let hbiZG(Ai)h^{i}_{b}\in Z_{\mathrm{G}}(\mathrm{A}_{i}) and ubiUiu^{i}_{b}\in\mathrm{U}_{i} such that b=hbiubib=h^{i}_{b}u^{i}_{b}. Then the set of all possible {hbi}\{h^{i}_{b}\} as ii and bb vary is also bounded. Define

C3:=max{1,𝒰i𝒢|i𝒜1}\displaystyle C_{3}:=\max\left\{1,\left\lVert\mathscr{U}_{i}\cap{\mathscr{G}_{\mathbb{Z}}}\right\rVert\;\middle|\;i\in\mathcal{A}_{1}\right\}
C4:=sup{1,Ad(ωi)1,Ad(ωi),Ad(ωihbiωi1)1|i𝒜1,bB0}.\displaystyle C_{4}:=\sup\left\{1,\,\left\lVert\operatorname{Ad}(\omega_{i})^{-1}\right\rVert,\,\left\lVert\operatorname{Ad}(\omega_{i})\right\rVert,\,\left\lVert\operatorname{Ad}(\omega_{i}h^{i}_{b}\omega_{i}^{-1})^{-1}\right\rVert\;\middle|\;i\in\mathcal{A}_{1},\,b\in B_{0}\right\}.

where Ad(g)\left\lVert\operatorname{Ad}(g)\right\rVert denotes the operator norm of Ad(g)\operatorname{Ad}(g).

We also choose C5>1C_{5}>1 such that for each i𝒜1i\in\mathcal{A}_{1},

  • 1.

    for every v𝒢v\in\mathscr{G}_{\mathbb{Z}} and αΦi\alpha\in\Phi_{i}, either παSi(v)=0\left\lVert\pi^{\mathrm{S}_{i}}_{\alpha}(v)\right\rVert=0 or παSi(v)1/C5\left\lVert\pi^{\mathrm{S}_{i}}_{\alpha}(v)\right\rVert\geq 1/C_{5};

  • 2.

    for every v𝒢v\in\mathscr{G} and αΦi\alpha\in\Phi_{i}, v1/C5παSi(v)\left\lVert v\right\rVert\geq 1/C_{5}\left\lVert\pi^{\mathrm{S}_{i}}_{\alpha}(v)\right\rVert;

  • 3.

    for every v𝒢v\in\mathscr{G} and αΦi0+\alpha\in\Phi_{i}^{0+}, π0+Si(v)1/C5παSi(v)\left\lVert\pi^{\mathrm{S}_{i}}_{0+}(v)\right\rVert\geq{1}/{C_{5}}\left\lVert\pi^{\mathrm{S}_{i}}_{\alpha}(v)\right\rVert .

As a result of Proposition 3.1 we obtain the following:

Corollary 3.2.

There exist η1>0\eta_{1}>0 and a function ε1:(0,η1)(0,)\varepsilon_{1}:(0,\eta_{1})\to(0,\infty) with limη0ε1(η)=0\lim_{\eta\to 0}\varepsilon_{1}(\eta)=0 such that for all 0<η<η10<\eta<\eta_{1} and gGg\in\mathrm{G} such that [g]XηM[g]\notin X^{\mathrm{M}}_{\eta}, there exists mMm\in\mathrm{M} and an \mathbb{R}-parabolic subgroup 𝐏\bm{\mathrm{P}} of 𝐆\bm{\mathrm{G}} containing 𝐌\bm{\mathrm{M}} such that g1𝐏gg^{-1}\bm{\mathrm{P}}g is defined over \mathbb{Q} and if we let 𝒰\mathscr{U} be the Lie algebra of U\mathrm{U}, which is the real points of the unipotent radical of 𝐏\bm{\mathrm{P}}, then

  1. (1)

    𝒰𝒢g1dim𝒰<ε1(η)\left\lVert\mathscr{U}\cap\mathscr{G}_{g}\right\rVert^{\frac{1}{\dim\mathscr{U}}}<\varepsilon_{1}(\eta);

  2. (2)

    for all v𝒢mg𝒰v\in\mathscr{G}_{mg}\setminus\mathscr{U}, the orthogonal projection of vv to the orthogonal complement of 𝒰\mathscr{U} satisfies π𝒰(v)(1C4C5)2\left\lVert\pi_{\mathscr{U}^{\perp}}(v)\right\rVert\geq\left(\frac{1}{C_{4}C_{5}}\right)^{2};

  3. (3)

    for any 𝒢g\mathscr{G}_{g}-rational, M\mathrm{M}-stable subspace \mathcal{L} that is not contained in 𝒰\mathscr{U}, we have 𝒢g1dim2C8δM([g])\left\lVert\mathcal{L}\cap\mathscr{G}_{g}\right\rVert^{\frac{1}{\dim\mathcal{L}}}\geq 2C_{8}\delta_{\mathrm{M}}([g]) with C8>1C_{8}>1 as in Lemma 3.3 below.

As the reader will see, C8C_{8} could be replaced by any positive constant except that one needs to modify η1\eta_{1} accordingly.

Proof.

Take η(0,η0)\eta\in(0,\eta_{0}) and gXηMg\notin X^{\mathrm{M}}_{\eta}. By Proposition 3.1, find i=igi=i_{g} such that

gΣi,B0Pi,θ0,ε0(η)MΓ.g\in\Sigma^{\mathrm{M}}_{i,B_{0}\cap\mathrm{P}_{i},\theta_{0},\varepsilon_{0}(\eta)}\Gamma.

By unwrapping the definition, there exists γgΓ\gamma_{g}\in\Gamma such that γg1g1Mgγg\gamma_{g}^{-1}g^{-1}\mathrm{M}g\gamma_{g} is contained in Pi{}^{\circ}\!\mathrm{P}_{i} (as 𝐌\bm{\mathrm{M}} is semisimple and M\mathrm{M} is connected, any conjugate of M\mathrm{M} being contained in 𝐏i\bm{\mathrm{P}}_{i} automatically implies being contained in Pi{}^{\circ}\!\mathrm{P}_{i}) and if gγg=kgagpgg\gamma_{g}=k_{g}a_{g}p_{g} is the horospherical coordinate of gγgg\gamma_{g} with respect to Pi\mathrm{P}_{i} then

  1. (1)

    α(ag)<θ0,αΔi\alpha(a_{g})<\theta_{0},\,\forall\alpha\in\Delta_{i};

  2. (2)

    αg(ag)<ε0(η),αgΔi\alpha_{g}(a_{g})<\varepsilon_{0}(\eta),\exists\alpha_{g}\in\Delta_{i};

  3. (3)

    pgγg1g1mggγg=bgλgp_{g}\gamma_{g}^{-1}g^{-1}m_{g}g\gamma_{g}=b_{g}\lambda_{g} for some mgMm_{g}\in\mathrm{M}, bgB0Pib_{g}\in B_{0}\cap{}^{\circ}\!\mathrm{P}_{i} and λgPiΓ\lambda_{g}\in{}^{\circ}\!\mathrm{P}_{i}\cap\Gamma.

Recall that we have chosen θ0\theta_{0} such that α(ag)<1\alpha(a_{g})<1 for all αΦi\alpha\in\Phi_{i}^{-}. Hence α(ag)1\alpha(a_{g})\geq 1 for all αΦi+0\alpha\in\Phi_{i}^{+0}.

Now take m:=mgm:=m_{g}, 0<η1<η00<\eta_{1}<\eta_{0}, which will be determined later at Equation 1 in the proof of (3). Let 𝐏:=gγg𝐏iγg1g1\bm{\mathrm{P}}:=g\gamma_{g}\bm{\mathrm{P}}_{i}\gamma_{g}^{-1}g^{-1}. Then 𝐏\bm{\mathrm{P}} contains 𝐌\bm{\mathrm{M}} and g1𝐏g=γg𝐏iγg1g^{-1}\bm{\mathrm{P}}g=\gamma_{g}\bm{\mathrm{P}}_{i}\gamma_{g}^{-1} is defined over \mathbb{Q}. Also let 𝐔\bm{\mathrm{U}} be the unipotent radical 𝐏\bm{\mathrm{P}}. Define ε1(η):=ε0(η)1/NC31/N\varepsilon_{1}(\eta):=\varepsilon_{0}(\eta)^{1/N}C_{3}^{1/N}. It remains to prove the three claims.

Proof of (1)

Recall that NN denotes the dimension of 𝐆\bm{\mathrm{G}}.

𝒰𝒢g\displaystyle\left\lVert\mathscr{U}\cap\mathscr{G}_{g}\right\rVert =(gγg𝒰i)(gγg𝒢)\displaystyle=\left\lVert(g\gamma_{g}\cdot\mathscr{U}_{i})\cap(g\gamma_{g}\cdot\mathscr{G}_{\mathbb{Z}})\right\rVert
=(gγg)(𝒰i𝒢)\displaystyle=\left\lVert(g\gamma_{g})\cdot(\mathscr{U}_{i}\cap\mathscr{G}_{\mathbb{Z}})\right\rVert
=(kgagpg)(𝒰i𝒢).\displaystyle=\left\lVert(k_{g}a_{g}p_{g})\cdot(\mathscr{U}_{i}\cap\mathscr{G}_{\mathbb{Z}})\right\rVert.

First note that pgp_{g} preserves 𝒰i\mathscr{U}_{i} and preserves the (co)volume. On the other hand aga_{g} also preserves 𝒰i\mathscr{U}_{i} but α(ag)<1\alpha(a_{g})<1 for all α\alpha appearing in 𝒰i\mathscr{U}_{i} and for α=αg\alpha=\alpha_{g}, which appears in 𝒰i\mathscr{U}_{i}, α(ag)<ε0(η)\alpha(a_{g})<\varepsilon_{0}(\eta). So |det(Ad(ag)|𝒰i)|<ε0(η)|\det(\operatorname{Ad}(a_{g})|_{\mathscr{U}_{i}})|<\varepsilon_{0}(\eta). Hence

𝒰𝒢gε0(η)𝒰i𝒢ε0(η)C3.\displaystyle\left\lVert\mathscr{U}\cap\mathscr{G}_{g}\right\rVert\leq\varepsilon_{0}(\eta)\left\lVert\mathscr{U}_{i}\cap\mathscr{G}_{\mathbb{Z}}\right\rVert\leq\varepsilon_{0}(\eta)C_{3}.
\displaystyle\implies 𝒰𝒢g1dim𝒰(ε0(η)C3)1/N=ε1(η).\displaystyle\left\lVert\mathscr{U}\cap\mathscr{G}_{g}\right\rVert^{\frac{1}{\dim\mathscr{U}}}\leq\left(\varepsilon_{0}(\eta)C_{3}\right)^{1/N}=\varepsilon_{1}(\eta).

This proves (1). Note this also shows that δM([g])ε1(η)\delta_{\mathrm{M}}([g])\leq\varepsilon_{1}(\eta).

Proof of (2)

Take v𝒢mg𝒰v\in\mathscr{G}_{mg}\setminus\mathscr{U}. As 𝒢mg=mg𝒢=mgγgλg1𝒢\mathscr{G}_{mg}=mg\cdot\mathscr{G}_{\mathbb{Z}}=mg\gamma_{g}\lambda_{g}^{-1}\cdot\mathscr{G}_{\mathbb{Z}} and 𝒰=mgγgλg1𝒰i\mathscr{U}=mg\gamma_{g}\lambda_{g}^{-1}\cdot\mathscr{U}_{i}, we can find vg𝒢𝒰iv_{g}\in\mathscr{G}_{\mathbb{Z}}\setminus\mathscr{U}_{i} such that

v=mgγgλg1vg.v=mg\gamma_{g}\lambda_{g}^{-1}\cdot v_{g}.

Hence

v\displaystyle v =(gγg)(γg1g1mgγg)λg1vg\displaystyle=(g\gamma_{g})\cdot(\gamma_{g}^{-1}g^{-1}mg\gamma_{g})\cdot\lambda^{-1}_{g}\cdot v_{g}
=(kgag)(pgγg1g1mgγg)λg1vg\displaystyle=(k_{g}a_{g})\cdot(p_{g}\gamma_{g}^{-1}g^{-1}mg\gamma_{g})\cdot\lambda^{-1}_{g}\cdot v_{g}
=kgagbgvg.\displaystyle=k_{g}a_{g}b_{g}\cdot v_{g}.

Note that 𝒰=gγg𝒰i=kgagpg𝒰i=kg𝒰i\mathscr{U}=g\gamma_{g}\cdot\mathscr{U}_{i}=k_{g}a_{g}p_{g}\cdot\mathscr{U}_{i}=k_{g}\cdot\mathscr{U}_{i} and Ad(kg)\operatorname{Ad}(k_{g}) acts by isometry, we have

Ad(kg)π𝒰i=π𝒰Ad(kg).\operatorname{Ad}(k_{g})\circ\pi_{\mathscr{U}_{i}^{\perp}}=\pi_{\mathscr{U}^{\perp}}\circ\operatorname{Ad}(k_{g}).

Also recall that π𝒰i=π0+Ai\pi_{\mathscr{U}_{i}^{\perp}}=\pi^{\mathrm{A}_{i}}_{0+} and

Ad(wi)π0+Ai=π0+SiAd(wi).\operatorname{Ad}(w_{i})\circ\pi^{\mathrm{A}_{i}}_{0+}=\pi^{\mathrm{S}_{i}}_{0+}\circ\operatorname{Ad}(w_{i}).

Now if we write sg=wiagwi1Sis_{g}=w_{i}a_{g}w_{i}^{-1}\in\mathrm{S}_{i} and bg=hgiugib_{g}=h^{i}_{g}u^{i}_{g} for some hgiZG(Ai)h^{i}_{g}\in Z_{\mathrm{G}}(\mathrm{A}_{i}) and ugiUiu^{i}_{g}\in\mathrm{U}_{i}, then

π𝒰(v)\displaystyle\left\lVert\pi_{\mathscr{U}^{\perp}}(v)\right\rVert =π𝒰(kgagbgvg)=kgπ𝒰i(agbgvg)=π0+Ai(agbgvg)\displaystyle=\left\lVert\pi_{\mathscr{U}^{\perp}}(k_{g}a_{g}b_{g}\cdot v_{g})\right\rVert=\left\lVert k_{g}\cdot\pi_{\mathscr{U}_{i}^{\perp}}(a_{g}b_{g}\cdot v_{g})\right\rVert=\left\lVert\pi^{\mathrm{A}_{i}}_{0+}(a_{g}b_{g}\cdot v_{g})\right\rVert
=wi1π0+Si((wiagwi1)(wibg)vg)\displaystyle=\left\lVert w_{i}^{-1}\cdot\pi^{\mathrm{S}_{i}}_{0+}((w_{i}a_{g}w_{i}^{-1})(w_{i}b_{g})\cdot v_{g})\right\rVert
1C4π0+Si((sg)(wihgiwi1)(wiugi)vg)\displaystyle\geq\frac{1}{C_{4}}\left\lVert\pi^{\mathrm{S}_{i}}_{0+}((s_{g})(w_{i}h^{i}_{g}w_{i}^{-1})(w_{i}u^{i}_{g})\cdot v_{g})\right\rVert

Let αgΦi0+\alpha_{g}\in\Phi^{0+}_{i} be a maximal element (our convention about the partial order is that αβ\alpha-\beta is contained in positive combinations of Δi\Delta_{i} iff αβ\alpha\leq\beta) such that παgSi(vg)0\pi^{\mathrm{S}_{i}}_{\alpha_{g}}(v_{g})\neq 0. Then for any uUiu\in\mathrm{U}_{i}, παgSi(uvg)=παgSi(vg)\pi^{\mathrm{S}_{i}}_{\alpha_{g}}(u\cdot v_{g})=\pi^{\mathrm{S}_{i}}_{\alpha_{g}}(v_{g}). Also the reader is reminded that παgSi(vg)1/C5\left\lVert\pi^{\mathrm{S}_{i}}_{\alpha_{g}}(v_{g})\right\rVert\geq 1/C_{5} and C4C_{4} bounds the operator norm of some elements. Recall that αg(sg)>1\alpha_{g}(s_{g})>1 as we have chosen θ0\theta_{0} small enough.

We may continue the above inequalities as

π𝒰(v)\displaystyle\left\lVert\pi_{\mathscr{U}^{\perp}}(v)\right\rVert 1C4C5παgSi((sg)(wihgiwi1)(wiugi)vg)\displaystyle\geq\frac{1}{C_{4}C_{5}}\left\lVert\pi^{\mathrm{S}_{i}}_{\alpha_{g}}((s_{g})(w_{i}h^{i}_{g}w_{i}^{-1})(w_{i}u^{i}_{g})\cdot v_{g})\right\rVert
1C4C5(wihgiwi1)παgSi(wiugivg)\displaystyle\geq\frac{1}{C_{4}C_{5}}\left\lVert(w_{i}h^{i}_{g}w_{i}^{-1})\cdot\pi^{\mathrm{S}_{i}}_{\alpha_{g}}(w_{i}u^{i}_{g}\cdot v_{g})\right\rVert
1C4C5C4παgSi(vg)(1C4C5)2.\displaystyle\geq\frac{1}{C_{4}C_{5}C_{4}}\left\lVert\pi^{\mathrm{S}_{i}}_{\alpha_{g}}(v_{g})\right\rVert\geq\left(\frac{1}{C_{4}C_{5}}\right)^{2}.

Proof of (3)

We are going to use both (1) and (2) here. As \mathcal{L} is M\mathrm{M}-stable, \mathcal{L} is also 𝒢mg\mathscr{G}_{mg}-rational and 𝒢g=𝒢mg\left\lVert\mathcal{L}\cap{\mathscr{G}_{g}}\right\rVert=\left\lVert\mathcal{L}\cap\mathscr{G}_{mg}\right\rVert. This is the only place we need \mathcal{L} to be M\mathrm{M}-stable.

As 𝒰\mathscr{U} is also 𝒢mg\mathscr{G}_{mg}-rational, we have that π𝒰(𝒢mg)\pi_{\mathscr{U}^{\perp}}(\mathcal{L}\cap\mathscr{G}_{mg}) is a lattice in 𝒰\mathscr{U}^{\perp} (we are not claiming that π𝒰\pi_{\mathscr{U}^{\perp}} is 𝒢mg\mathscr{G}_{mg}-rational, but π𝒰\pi_{\mathscr{U}^{\perp}} is a lift of the map of quotient by 𝒰\mathscr{U}, which is 𝒢mg\mathscr{G}_{mg}-rational) and

𝒢mg=𝒰𝒢mgπ𝒰(𝒢mg).\left\lVert\mathcal{L}\cap\mathscr{G}_{mg}\right\rVert=\left\lVert\mathcal{L}\cap\mathscr{U}\cap\mathscr{G}_{mg}\right\rVert\cdot\left\lVert\pi_{\mathscr{U}^{\perp}}(\mathcal{L}\cap\mathscr{G}_{mg})\right\rVert.

By (2), π𝒰(𝒢mg)\pi_{\mathscr{U}^{\perp}}(\mathcal{L}\cap\mathscr{G}_{mg}) has its shortest non-zero vector with length at least 1/(C4C5)21/(C_{4}C_{5})^{2}. Therefore it has a fundamental domain containing a cube of size 1/2N(C4C5)21/2N(C_{4}C_{5})^{2}. Hence

π𝒰(𝒢mg)(12NC42C52)N.\left\lVert\pi_{\mathscr{U}^{\perp}}(\mathcal{L}\cap\mathscr{G}_{mg})\right\rVert\geq\left(\frac{1}{2NC_{4}^{2}C_{5}^{2}}\right)^{N}.

For simplicity we let

C6:=(2NC42C52)N,\displaystyle C_{6}:={(2NC_{4}^{2}C_{5}^{2})}^{N},
C71:=min{|1x1y||xy,x,y{1,,N}}.\displaystyle C_{7}^{-1}:=\min\left\{\left|\frac{1}{x}-\frac{1}{y}\right|\>\middle|\>x\neq y,\,x,y\in\{1,...,N\}\right\}.

And we choose η1\eta_{1} small enough such that for any 0<η<η10<\eta<\eta_{1},

2NC8NC6Nε1(η)<1,\displaystyle 2^{N}C_{8}^{N}C_{6}^{N}\varepsilon_{1}(\eta)<1, (1)
C61(2NC8NC6Nε1(η))C712C8.\displaystyle C_{6}^{-1}\left(2^{N}C_{8}^{N}C_{6}^{N}\varepsilon_{1}(\eta)\right)^{-C_{7}^{-1}}\geq 2C_{8}.

where C8C_{8} is as in Lemma 3.3.

Now there are two cases depending on how large 𝒰𝒢mg\left\lVert\mathcal{L}\cap\mathscr{U}\cap\mathscr{G}_{mg}\right\rVert is.

Case I, 𝒰𝒢mg1/dim(𝒰)(2C8C6)NδM[g]\left\lVert\mathcal{L}\cap\mathscr{U}\cap\mathscr{G}_{mg}\right\rVert^{1/\dim(\mathcal{L}\cap\mathscr{U})}\leq(2C_{8}C_{6})^{N}\delta_{\mathrm{M}}[g].

Note by our assumption dim>dim(𝒰)\dim\mathcal{L}>\dim(\mathcal{L}\cap\mathscr{U}) and hence (dim)1(dim𝒰)1<0(\dim\mathcal{L})^{-1}-(\dim\mathcal{L}\cap\mathscr{U})^{-1}<0. Also, δM([g])ε1(η)\delta_{\mathrm{M}}([g])\leq\varepsilon_{1}(\eta) by part (1).

𝒢mg1dim\displaystyle\left\lVert\mathcal{L}\cap{\mathscr{G}_{mg}}\right\rVert^{\frac{1}{\dim\mathcal{L}}} C61/dim𝒰𝒢mg1dim1dim𝒰𝒰𝒢mg1dim𝒰\displaystyle\geq C_{6}^{-1/\dim\mathcal{L}}\cdot\left\lVert\mathcal{L}\cap\mathscr{U}\cap{\mathscr{G}_{mg}}\right\rVert^{\frac{1}{\dim\mathcal{L}}-\frac{1}{\dim\mathcal{L}\cap\mathscr{U}}}\cdot\left\lVert\mathcal{L}\cap\mathscr{U}\cap{\mathscr{G}_{mg}}\right\rVert^{\frac{1}{\dim\mathcal{L}\cap\mathscr{U}}}
C61(2NC8NC6Nε1(η))dim(𝒰)(1dim1dim𝒰)δM([g])\displaystyle\geq C_{6}^{-1}\cdot\left(2^{N}C_{8}^{N}C_{6}^{N}\varepsilon_{1}(\eta)\right)^{\dim(\mathcal{L}\cap\mathscr{U})\cdot({\frac{1}{\dim\mathcal{L}}-\frac{1}{\dim\mathcal{L}\cap\mathscr{U}}})}\cdot\delta_{\mathrm{M}}([g])

By assumption 0<2NC8NC6Nε1(η)<10<2^{N}C_{8}^{N}C_{6}^{N}\varepsilon_{1}(\eta)<1 and dim(𝒰)(1dim1dim𝒰)C71<0{\dim(\mathcal{L}\cap\mathscr{U})\cdot({\frac{1}{\dim\mathcal{L}}-\frac{1}{\dim\mathcal{L}\cap\mathscr{U}}})}\leq-C_{7}^{-1}<0, hence we may continue:

𝒢mg1dim\displaystyle\left\lVert\mathcal{L}\cap\mathscr{G}_{mg}\right\rVert^{\frac{1}{\dim\mathcal{L}}} C61(2NC8NC6Nε1(η))C71δM([g])2C8δM([g]),\displaystyle\geq C_{6}^{-1}\cdot\left(2^{N}C_{8}^{N}C_{6}^{N}\varepsilon_{1}(\eta)\right)^{-C_{7}^{-1}}\cdot\delta_{\mathrm{M}}([g])\geq 2C_{8}\delta_{\mathrm{M}}([g]),

which completes the case I.

Case II, 𝒰𝒢mg1/dim(𝒰)(2C8C6)NδM[g]\left\lVert\mathcal{L}\cap\mathscr{U}\cap\mathscr{G}_{mg}\right\rVert^{1/\dim(\mathcal{L}\cap\mathscr{U})}\geq(2C_{8}C_{6})^{N}\delta_{\mathrm{M}}[g].

This case is more direct.

𝒢mg1dim\displaystyle\left\lVert\mathcal{L}\cap\mathscr{G}_{mg}\right\rVert^{\frac{1}{\dim\mathcal{L}}} C61/dim(2NC8NC6NδM([g]))dim(𝒰)dim\displaystyle\geq C_{6}^{-1/\dim\mathcal{L}}\left(2^{N}C_{8}^{N}C_{6}^{N}\delta_{\mathrm{M}}([g])\right)^{\frac{\dim(\mathcal{L}\cap\mathscr{U})}{\dim\mathcal{L}}}
C612C8C6δM([g])=2C8δM([g]).\displaystyle\geq C_{6}^{-1}2C_{8}C_{6}\delta_{\mathrm{M}}([g])=2C_{8}\delta_{\mathrm{M}}([g]).

Now the proof of the corollary is complete. ∎

Lemma 3.3.

There exist two constants C8,C9>1C_{8},C_{9}>1 and a finite set S\mathcal{F}\subset S such that for any \mathbb{R}-parabolic subgroup 𝐏\bm{\mathrm{P}} of 𝐆\bm{\mathrm{G}} containing M\mathrm{M}, there exists ss\in\mathcal{F} such that

  1. (1)

    sv>1C8v\displaystyle\left\lVert sv\right\rVert>\frac{1}{C_{8}}\left\lVert v\right\rVert for all pure wedges vv in 𝒢\mathscr{G};

  2. (2)

    sv>C9v\left\lVert sv\right\rVert>C_{9}\left\lVert v\right\rVert for all pure wedges vv with v𝒰\mathcal{L}_{v}\subset\mathscr{U}.

Proof.

The proof is similar to that of Lemma 2.3 where the key is to produce a bijective projection onto some ‘coordinate plane’ VIV_{I}. Here we will produce a bijective projection to some ‘coordinate horospherical Lie subalgebra’.

Let 𝒫M\mathcal{P}_{M} be the collection of \mathbb{R}-parabolic subgroups of 𝐆\bm{\mathrm{G}} containing 𝐌\bm{\mathrm{M}}. For each 𝐚tX(𝐒)\bm{\mathrm{a}}_{t}\in X_{*}(\bm{\mathrm{S}}), we let

𝐏𝐚t:={g𝐆|limt0𝐚tg𝐚t1 exists }.\bm{\mathrm{P}}_{\bm{\mathrm{a}}_{t}}:=\left\{g\in\bm{\mathrm{G}}\>\middle|\>\lim_{t\to 0}\bm{\mathrm{a}}_{t}g\bm{\mathrm{a}}_{t}^{-1}\text{ exists }\right\}.

This way we get a finite collection of elements in 𝒫M\mathcal{P}_{M}. Label this set as {𝐏i}i\{\bm{\mathrm{P}}_{i}\}_{i\in\mathcal{B}} for some finite set \mathcal{B}. As 𝐒𝐙𝐆𝐌\bm{\mathrm{S}}\leq\bm{\mathrm{Z}}_{\bm{\mathrm{G}}}\bm{\mathrm{M}} is a maximal \mathbb{R}-split torus, for any other 𝐏𝒫M\bm{\mathrm{P}}\in\mathcal{P}_{M}, there exists hZG(M)h\in Z_{\mathrm{G}}(\mathrm{M}) such that 𝐏=h𝐏ih1\bm{\mathrm{P}}=h\bm{\mathrm{P}}_{i}h^{-1} for some ii\in\mathcal{B}. Hence 𝒫M\mathcal{P}_{M} is a finite union of compact homogeneous spaces of ZG(M)Z_{\mathrm{G}}(\mathrm{M}). Indeed, the stabilizer of each 𝐏i\bm{\mathrm{P}}_{i} in 𝐙𝐆(𝐌)\bm{\mathrm{Z}}_{\bm{\mathrm{G}}}(\bm{\mathrm{M}}) is a parabolic subgroup of 𝐙𝐆(𝐌)\bm{\mathrm{Z}}_{\bm{\mathrm{G}}}(\bm{\mathrm{M}}).

Now fix 𝐏𝒫M\bm{\mathrm{P}}\in\mathcal{P}_{M} and hZG(M)h\in Z_{\mathrm{G}}(\mathrm{M}) with 𝐏=h𝐏ih1\bm{\mathrm{P}}=h\bm{\mathrm{P}}_{i}h^{-1}. By Bruhat decomposition (see [Bor91, 21.15]), there exists wNZG(M)Sw\in N_{Z_{\mathrm{G}}(\mathrm{M})}\mathrm{S}, uUu\in\mathrm{U} and pPip\in\mathrm{P}_{i} such that h=uwph=uwp where 𝐔\bm{\mathrm{U}} is a maximal \mathbb{R}-unipotent subgroup contained in 𝐏i\bm{\mathrm{P}}_{i} that is normalized by 𝐒\bm{\mathrm{S}}. Then 𝐏=h𝐏i=uwp𝐏i=u𝐏j0\bm{\mathrm{P}}=h\cdot\bm{\mathrm{P}}_{i}=uwp\cdot\bm{\mathrm{P}}_{i}=u\cdot\bm{\mathrm{P}}_{j_{0}} for some j0j_{0}\in\mathcal{B}, where \cdot denotes the conjugation by a group element.

We claim that the S\mathrm{S}-equivariant projection πj0:𝒢𝒰j0\pi_{j_{0}}:\mathscr{G}\to\mathscr{U}_{j_{0}}, when restricted to 𝒰\mathscr{U}, is bijective (but usually 𝒰\mathscr{U} is not S\mathrm{S}-stable).

Decompose 𝒢=αΦ𝒢αS\mathscr{G}=\bigoplus_{\alpha\in\Phi}\mathscr{G}^{\mathrm{S}}_{\alpha} with respect the Ad(S)\operatorname{Ad}(\mathrm{S})-action. And let παS\pi^{\mathrm{S}}_{\alpha} be the associated projection onto 𝒢αS\mathscr{G}_{\alpha}^{\mathrm{S}}. Fix a minimal \mathbb{R}-parabolic 𝐏min\bm{\mathrm{P}}_{min} with 𝐒𝐔𝐏min𝐏i\bm{\mathrm{S}}\cdot\bm{\mathrm{U}}\leq\bm{\mathrm{P}}_{min}\leq\bm{\mathrm{P}}_{i}. A partial order i\leq_{i} is defined on Φ\Phi by demanding that αiβ\alpha\leq_{i}\beta iff βα\beta-\alpha is a weight that appears in 𝒫min\mathscr{P}_{min}, the Lie algebra of Pmin\mathrm{P}_{min}.

Now take v𝒰v\in\mathscr{U}, so v=uwv=u\cdot w for some w𝒰j0w\in\mathscr{U}_{j_{0}}. Take α0Φ\alpha_{0}\in\Phi to be a minimum element such that πα0S(w)0\pi^{\mathrm{S}}_{\alpha_{0}}(w)\neq 0. Then

πα0S(uw)=πα0S(uπα0S(w))=πα0S(w)0.\pi^{\mathrm{S}}_{\alpha_{0}}(u\cdot w)=\pi^{\mathrm{S}}_{\alpha_{0}}(u\cdot\pi^{\mathrm{S}}_{\alpha_{0}}(w))=\pi^{\mathrm{S}}_{\alpha_{0}}(w)\neq 0.

As 𝒰j0\mathscr{U}_{j_{0}} is defined by a cocharacter of 𝐒\bm{\mathrm{S}} and projects to 𝒢α0S\mathscr{G}^{\mathrm{S}}_{\alpha_{0}} nontrivially, 𝒰j0\mathscr{U}_{j_{0}} necessarily contains 𝒢α0S\mathscr{G}^{\mathrm{S}}_{\alpha_{0}}. Thus πj0(v)=πj0(uw)0\pi_{j_{0}}(v)=\pi_{j_{0}}(u\cdot w)\neq 0. This proves that πj0|𝒰:𝒰𝒰j0\pi_{j_{0}}|_{\mathscr{U}}:\mathscr{U}\to\mathscr{U}_{j_{0}} is injective. And hence it is bijective because 𝒰\mathscr{U} and 𝒰j0\mathscr{U}_{j_{0}} have the same dimension.

The rest of the proof follows the same lines as in Lemma 2.3 and is omitted. ∎

Proposition 3.4.

There exists η2>0\eta_{2}>0 and C10>1C_{10}>1 such that for all [g]Xη2M[g]\notin X^{\mathrm{M}}_{\eta_{2}}, there exists sSs\in\mathrm{S} such that δM([sg])>C10δM([g])\delta_{\mathrm{M}}([sg])>C_{10}\delta_{\mathrm{M}}([g]). Consequently, there exists sSs\in\mathrm{S} such that [sg]Xη2M[sg]\in X^{\mathrm{M}}_{\eta_{2}}.

Theorem 1.2 would follow from this proposition by [DGU20, Theorem 4.6] just as in last section.

Proof.

We prove the proposition with η2:=η1\eta_{2}:=\eta_{1} and C10:=min{C91/N,2}C_{10}:=\min\{C_{9}^{1/N},2\}.

Take any [g]Xη2M[g]\notin X^{\mathrm{M}}_{\eta_{2}}.

Find 𝐏\bm{\mathrm{P}} an \mathbb{R}-parabolic subgroup of 𝐆\bm{\mathrm{G}} according to Corollary 3.2. Then choose sSs\in\mathrm{S} with Lemma 3.3 being applied to 𝐏\bm{\mathrm{P}}. It suffices to prove that δM([sg])C10δM([g])\delta_{\mathrm{M}}([sg])\geq C_{10}\delta_{\mathrm{M}}([g]).

Take an \mathbb{R}-subspace \mathcal{L}^{\prime} of 𝒢\mathscr{G} that is 𝒢sg\mathscr{G}_{sg}-rational and M\mathrm{M}-stable. Then :=s1\mathcal{L}:=s^{-1}\mathcal{L}^{\prime} is 𝒢g\mathscr{G}_{g}-rational and M\mathrm{M}-stable. Also, 𝒢sg=s(𝒢g)\mathcal{L}^{\prime}\cap\mathscr{G}_{sg}=s\cdot(\mathcal{L}\cap\mathscr{G}_{g}). There are two cases.

If 𝒰\mathcal{L}\subset\mathscr{U}, then

𝒢sg1dimC91dim𝒢g1dimC91dimδM([g])C91NδM([g]).\left\lVert\mathcal{L}^{\prime}\cap\mathscr{G}_{sg}\right\rVert^{\frac{1}{\dim\mathcal{L}^{\prime}}}\geq C_{9}^{\frac{1}{\dim\mathcal{L}^{\prime}}}\left\lVert\mathcal{L}\cap\mathscr{G}_{g}\right\rVert^{\frac{1}{\dim\mathcal{L}}}\geq C_{9}^{\frac{1}{\dim\mathcal{L}^{\prime}}}\delta_{\mathrm{M}}([g])\geq C_{9}^{\frac{1}{N}}\delta_{\mathrm{M}}([g]).

If 𝒰\mathcal{L}\nsubseteq\mathscr{U}, then

𝒢sg1dimC81dim𝒢g1dimC81dim2C8δM([g])2δM([g]).\left\lVert\mathcal{L}^{\prime}\cap\mathscr{G}_{sg}\right\rVert^{\frac{1}{\dim\mathcal{L}^{\prime}}}\geq C_{8}^{-\frac{1}{\dim\mathcal{L}^{\prime}}}\left\lVert\mathcal{L}\cap\mathscr{G}_{g}\right\rVert^{\frac{1}{\dim\mathcal{L}}}\geq C_{8}^{-\frac{1}{\dim\mathcal{L}^{\prime}}}2C_{8}\delta_{\mathrm{M}}([g])\geq 2\delta_{\mathrm{M}}([g]).

Hence our proof is complete.

4. Proof of Theorem 1.3 and 1.4

Proof of Theorem 1.3.

Indeed, by [SW00, Corollary 1.3], for every xG/Γx\in\mathrm{G}/\Gamma, Fx¯\overline{\mathrm{F}x} is H\mathrm{H}-invariant, thus has to intersect some bounded set independent of xx nontrivially. ∎

Proof of Theorem 1.4.

First we claim that up to G\mathrm{G}-conjugacy, there are only finitely many elements from \mathcal{H}. For every dimension, up to isomorphism, there are only finitely many real semisimple algebras (see [Kna02]). And for each of them, the Lie subalgebras of 𝐆\bm{\mathrm{G}} that are isomorphic to this one form a finite orbit under G\mathrm{G} by [EMV09, Lemma A.1] (see also [Ric67]). Now we enumerate the corresponding real algebraic subgroups as {𝐌1,,𝐌s}\{\bm{\mathrm{M}}_{1},...,\bm{\mathrm{M}}_{s}\}. Also fix a maximal \mathbb{R}-split torus 𝐒i\bm{\mathrm{S}}_{i} of 𝐙𝐆𝐌i\bm{\mathrm{Z}}_{\bm{\mathrm{G}}}\bm{\mathrm{M}}_{i}. By shortening the list, we assume that each 𝐇i:=𝐌i𝐒i\bm{\mathrm{H}}_{i}:=\bm{\mathrm{M}}_{i}\cdot\bm{\mathrm{S}}_{i} belongs to \mathcal{H}. We now argue that each 𝐇\bm{\mathrm{H}}\in\mathcal{H} is isomorphic to one of 𝐇i\bm{\mathrm{H}}_{i}. Indeed, write 𝐇\bm{\mathrm{H}} as an almost direct product 𝐌𝐒\bm{\mathrm{M}}\cdot\bm{\mathrm{S}}. Then there exists gGg\in\mathrm{G} such that g𝐌g1=𝐌ig\bm{\mathrm{M}}g^{-1}=\bm{\mathrm{M}}_{i} for some ii. Then g𝐒g1g\bm{\mathrm{S}}g^{-1} is a maximal \mathbb{R}-split torus of 𝐙𝐆𝐌i\bm{\mathrm{Z}}_{\bm{\mathrm{G}}}\bm{\mathrm{M}}_{i}, thus there is some h𝐙GMih\in\bm{\mathrm{Z}}_{\mathrm{G}}\mathrm{M}_{i} such that hg𝐒g1h1=𝐒ihg\bm{\mathrm{S}}g^{-1}h^{-1}=\bm{\mathrm{S}}_{i} (see [Spr98, 15.2.6]). Thus hg𝐇g1h1=𝐇ihg\bm{\mathrm{H}}g^{-1}h^{-1}=\bm{\mathrm{H}}_{i}.

As this is a finite list, we find a compact set CC of G/Γ\mathrm{G}/\Gamma such that for every ii with 𝐇i\bm{\mathrm{H}}_{i}\in\mathcal{H} and every xG/Γx\in\mathrm{G}/\Gamma, there exists hHih\in\mathrm{H}_{i} with hxChx\in C. For each ii, find a compact subgroup KiK_{i} such that ZGHi=KiSiZ_{\mathrm{G}}\mathrm{H}_{i}=K_{i}\cdot\mathrm{S}_{i}. Let CC^{\prime} be a larger compact subset containing KiCK_{i}\cdot C for all ii’s. We fix some embedding of 𝐆SLN\bm{\mathrm{G}}\to\operatorname{SL}_{N} that induces a proper map G/ΓSLN()/SLN()\mathrm{G}/\Gamma\to\operatorname{SL}_{N}(\mathbb{R})/\operatorname{SL}_{N}(\mathbb{Z}). For each ii, fix a nonempty bounded open set Ωi\Omega_{i} in Hi\mathrm{H}_{i}.

Thus by [RS18, Theorem 1.1], for each ii, there exists a closed subset YiY_{i} of G\mathrm{G} such that

  • 1.

    G=YiKiSi\mathrm{G}=Y_{i}\cdot K_{i}\cdot\mathrm{S}_{i};

  • 2.

    there exists some c>0c>0 such that

    supωΩiyωvcvi,yY,vN.\sup_{\omega\in\Omega_{i}}\left\lVert y\omega\cdot v\right\rVert\geq c\left\lVert v\right\rVert\quad\forall i,\,y\in Y,\,v\in\mathbb{R}^{N}.

Through the work of [EMS97] (or [KM98]), this implies that there exists a compact set C′′G/ΓC^{\prime\prime}\subset\mathrm{G}/\Gamma such that for every xCx\in C^{\prime} and every yYiy\in Y_{i},

yΩixC′′.y\Omega_{i}\cdot x\cap C^{\prime\prime}\neq\emptyset.

By further using G=YiKiSi\mathrm{G}=Y_{i}\cdot K_{i}\cdot\mathrm{S}_{i} and KiCCK_{i}\cdot C\subset C^{\prime}, we have that for every xCx\in C and every gGg\in\mathrm{G},

gHixC′′.g\mathrm{H}_{i}\cdot x\cap C^{\prime\prime}\neq\emptyset.

Now take x0G/Γx_{0}\in\mathrm{G}/\Gamma and 𝐇\bm{\mathrm{H}}\in\mathcal{H}, we wish to show Hx0C′′\mathrm{H}\cdot x_{0}\cap C^{\prime\prime}\neq\emptyset. First find gHGg_{H}\in\mathrm{G} such that 𝐇=gH𝐇igH1\bm{\mathrm{H}}=g_{H}\bm{\mathrm{H}}_{i}g_{H}^{-1} for some ii. Then by Theorem 1.2,

Hx0=gHHigH1x0=gH𝐇ix0x0C,\mathrm{H}\cdot x_{0}=g_{H}\mathrm{H}_{i}g_{H}^{-1}\cdot x_{0}=g_{H}\bm{\mathrm{H}}_{i}\cdot x_{0}^{\prime}\quad\exists\,x_{0}^{\prime}\in C,

which intersect with C′′C^{\prime\prime} nontrivially. Hence we are done.

5. Geometric consequences

Main results in this section is a proof of Theorem 1.5 and a characterization of rigid totally geodesic submanifolds in Proposition 5.2. For backgrounds on symmetric spaces, our main references here are [Hel01] and [KM18].

5.1. Arithmetic quotients of symmetric spaces of noncompact type

Let X~\widetilde{X} be a connected global Riemannian symmetric space of noncompact type. Thus the identity connected component of isometry group of X~\widetilde{X} is a connected semisimple Lie group GG and X~\widetilde{X} is identified with the space of maximal compact subgroups of GG. By fixing a maximal compact subgroup K0K_{0} of GG , XX is identified with K0\GK_{0}\backslash G. We are going to assume G=G:=𝐆()G=\mathrm{G}:=\bm{\mathrm{G}}(\mathbb{R})^{\circ} for a connected \mathbb{Q}-algebraic group 𝐆\bm{\mathrm{G}} and take ΓG𝐆()\Gamma\leq\mathrm{G}\cap\bm{\mathrm{G}}(\mathbb{Q}) to be an arithmetic lattice. Call a locally symmetric space XX of the form X=X~/Γ=K0\G/ΓX=\widetilde{X}/\Gamma=K_{0}\backslash\mathrm{G}/\Gamma arithmetic. We assume Γ\Gamma to be neat so that XX is a Riemannian manifold.

For a maximal compact subgroup KK of G\mathrm{G}, there exists a unique algebraic Cartan involution ιK\iota_{K} over \mathbb{R} associated with KK. If 𝐊\bm{\mathrm{K}} is the fixed point of ιK\iota_{K} in 𝐆\bm{\mathrm{G}}_{\mathbb{R}}, then K=K:=𝐊()K=\mathrm{K}:=\bm{\mathrm{K}}(\mathbb{R})^{\circ}. By abuse of notation we also use ιK\iota_{K} to denote its induced action on the Lie algebra. Thus the Lie algebra 𝔨\mathfrak{k} of KK is identified with those fixed by ιK\iota_{K}. Let 𝔭K\mathfrak{p}_{\mathrm{K}} be the (1)(-1)-eigenspace of ιK\iota_{K} in 𝔤\mathfrak{g}, the Lie algebra of G\mathrm{G}. Then

𝔤=𝔨𝔭K.\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{p}_{\mathrm{K}}.

For simplicity we write ι0:=ιK0\iota_{0}:=\iota_{\mathrm{K}_{0}} and 𝔭0:=𝔭K0\mathfrak{p}_{0}:=\mathfrak{p}_{\mathrm{K}_{0}}.

Let

B(v,w):=Tr(ad(v)ad(ι0w))B(v,w):=-\operatorname{Tr}(\operatorname{ad}(v)\operatorname{ad}(\iota_{0}w))

be the positive definite bilinear form on 𝔤\mathfrak{g}, identified with the tangent space of G\mathrm{G} at idid, associated with K0\mathrm{K}_{0}. By right translation, we get a right G\mathrm{G}-invariant Riemannian metric on G\mathrm{G}. This metric is also left K0\mathrm{K}_{0}-invariant. This metric thus induces metrics on G/Γ\mathrm{G}/\Gamma, K0\G/Γ\mathrm{K}_{0}\backslash\mathrm{G}/\Gamma and their closed submanifolds. All the “Vol\operatorname{Vol}” appearing below will be referred to measures induced from this metric. Up to scalars (to be more precise, for each irreducible factor there is a positive scalar), the original Riemannian metric on XX coincides this one.

5.2. Totally geodesic submanifolds

A totally geodesic submanifold Y~\widetilde{Y} of X~\widetilde{X} is again a symmetric space. By [Hel01, Theorem 7.2], there exists a triple system 𝔰0𝔭0\mathfrak{s}_{0}\subset\mathfrak{p}_{0}, i.e. [x,[y,z]]𝔰0[x,[y,z]]\in\mathfrak{s}_{0} if x,y,z𝔰0x,y,z\in\mathfrak{s}_{0} and gGg\in\mathrm{G}, such that Y~=K0\K0exp(𝔰0)g\widetilde{Y}=\mathrm{K}_{0}\backslash\mathrm{K}_{0}\exp(\mathfrak{s}_{0})g. Then 𝔥Y:=𝔰0+[𝔰0,𝔰0]\mathfrak{h}_{Y}:=\mathfrak{s}_{0}+[\mathfrak{s}_{0},\mathfrak{s}_{0}] is a ι0\iota_{0}-stable Lie subalgebra. By writing H0H_{0} for the corresponding Lie subgroup, we have Y~=K0\K0H0g\widetilde{Y}=\mathrm{K}_{0}\backslash\mathrm{K}_{0}H_{0}g. The choice of 𝔰0\mathfrak{s}_{0} is not unique but it is understood when we write Y~=K0\K0H0g\widetilde{Y}=\mathrm{K}_{0}\backslash\mathrm{K}_{0}H_{0}g.

Now let YXY\subset X be an embedded totally geodesic submanifold, by choosing a lift of some point of yYy\in Y, we have a unique totally geodesic submanifold Y~\widetilde{Y} of X~\widetilde{X} who projects to YY as a local isometry. Thus Y=K0\K0H0gΓ/ΓY=\mathrm{K}_{0}\backslash\mathrm{K}_{0}H_{0}g\Gamma/\Gamma. It is not hard to verify that H0gΓ/ΓH_{0}g\Gamma/\Gamma is also closed in G/Γ\mathrm{G}/\Gamma.

We are going to be interested in finite-volume embedded totally geodesic submanifold YY of XX. Using the notation as in the last paragraph, one can verify from the definition that for such a YY,

Vol(H0gΓ/Γ)=Vol(Y)Vol(K0H0).\operatorname{Vol}(H_{0}g\Gamma/\Gamma)=\operatorname{Vol}(Y)\cdot\operatorname{Vol}(\mathrm{K}_{0}\cap H_{0}). (2)

5.3. Rigid totally geodesic submanifolds

Definition 5.1.

Fix a natural number NN, let

𝒯𝒢N:={YX|

Y is a embedded totally geodesic submanifold of X, <Vol(Y), =dimYN

}
\mathcal{T}\mathcal{G}^{N}:=\left\{Y\subset X\;\middle|\;\parbox{199.16928pt}{ \raggedright$Y$ {is a embedded totally geodesic submanifold of }$X$, $\operatorname{Vol}(Y)<\infty$, $\dim Y=N$ \@add@raggedright}\right\}

be equipped with the Chabauty topology (see [BP92, E.1]). We say that Y𝒯𝒢NY\in\mathcal{T}\mathcal{G}^{N} is rigid if {Y}\{Y\} is open in 𝒯𝒢N\mathcal{T}\mathcal{G}^{N}. The collection of such YY’s are denoted as 𝒯𝒢N,rigid\mathcal{T}\mathcal{G}^{N,\operatorname{rigid}}.

Take Y:=K0\K0H0gΓ/Γ𝒯𝒢NY:=\mathrm{K}_{0}\backslash\mathrm{K}_{0}H_{0}g\Gamma/\Gamma\in\mathcal{T}\mathcal{G}^{N}. We can write 𝔷𝔤(𝔥Y)=𝔨Y𝔷(𝔥Y)\mathfrak{z}_{\mathfrak{g}}(\mathfrak{h}_{Y})=\mathfrak{k}_{Y}\oplus\mathfrak{z}(\mathfrak{h}_{Y}) for some ι0\iota_{0}-stable subalgebra 𝔨Y\mathfrak{k}_{Y} centralizing 𝔷(𝔥Y)\mathfrak{z}(\mathfrak{h}_{Y}) where 𝔷𝔤(𝔥Y)\mathfrak{z}_{\mathfrak{g}}(\mathfrak{h}_{Y}) is the centralizer of 𝔥Y\mathfrak{h}_{Y} in 𝔤\mathfrak{g} and 𝔷(𝔥Y)\mathfrak{z}(\mathfrak{h}_{Y}) is the center of 𝔥Y\mathfrak{h}_{Y}. If YY is rigid, then 𝔨Y\mathfrak{k}_{Y} is contained in 𝔨0\mathfrak{k}_{0} for otherwise there exists v0𝔨Y𝔭0v_{\neq 0}\in\mathfrak{k}_{Y}\cap\mathfrak{p}_{0} and

Yt:=K0\K0exp(vt)H0gΓ/ΓYas t0Y_{t}:=\mathrm{K}_{0}\backslash\mathrm{K}_{0}\exp(vt)H_{0}g\Gamma/\Gamma\to Y\quad\text{as }t\to 0

in 𝒯𝒢N\mathcal{T}\mathcal{G}^{N} and YtYY_{t}\neq Y for t0t\neq 0. The converse is also true.

Proposition 5.2.

Notations as above. Then Y𝒯𝒢NY\in\mathcal{T}\mathcal{G}^{N} is rigid iff 𝔨Y\mathfrak{k}_{Y} is contained in 𝔨0\mathfrak{k}_{0}. In this case 𝔥Y\mathfrak{h}_{Y} is algebraic.

The second claim follows from the following lemma. The proof of the rest of the claim is delayed to the next section. Recall that a Lie subalgebra of the Lie algebra of a linear algebraic group over \mathbb{R} is said to be algebraic iff its the Lie algebra of some algebraic subgroup over \mathbb{R} (see [Bor91, Chapter II.7]).

Lemma 5.3.

Let 𝔥\mathfrak{h} be a ι0\iota_{0}-stable Lie subalgebra of 𝔤\mathfrak{g} with no compact factors. Assume that all noncompact factors of 𝔷𝔤𝔥\mathfrak{z}_{\mathfrak{g}}\mathfrak{h} are contained in 𝔥\mathfrak{h}, then

  • 1.

    𝔥\mathfrak{h} is algebraic;

  • 2.

    identity coset is the unique xK0\Gx\in\mathrm{K}_{0}\backslash\mathrm{G} such that xHx\mathrm{H} is totally geodesic;

  • 3.

    there exists a finite list (only depends on G\mathrm{G}, K0\mathrm{K}_{0}) {𝔥1,𝔥k}\{\mathfrak{h}_{1},...\mathfrak{h}_{k}\} satisfying the same condition as 𝔥\mathfrak{h} does such that 𝔥\mathfrak{h} is conjugate to one of them via K0\mathrm{K}_{0}.

Proof.

Write 𝔥=𝔞𝔪\mathfrak{h}=\mathfrak{a}\oplus\mathfrak{m} for some abelian subalgebra 𝔞\mathfrak{a} in 𝔭0\mathfrak{p}_{0} and semisimple Lie subalgebra 𝔪\mathfrak{m}. Moreover 𝔞\mathfrak{a} commutes with 𝔪\mathfrak{m}. By [Bor91, II.7.9], 𝔪\mathfrak{m} is algebraic. As 𝔷𝔤𝔥\mathfrak{z}_{\mathfrak{g}}\mathfrak{h} is algebraic and 𝔞\mathfrak{a} is characterized as the (1-1)-eigenspace of ι0\iota_{0}, which is algebraic, in 𝔷𝔤𝔥\mathfrak{z}_{\mathfrak{g}}\mathfrak{h}, we have 𝔞\mathfrak{a} is algebraic. Hence 𝔥\mathfrak{h} is algebraic.

Item 2. and 3. have been proved in [KM18, Section 2] under the additional assumption that 𝔥\mathfrak{h} is semisimple. But the same proof presented there also works without this assumption. ∎

Item 2. and 3., together with Equa. 2 imply the following

Lemma 5.4.

There exists a constant C11>1C_{11}>1 such that

C111Vol(Y)Vol(H0gΓ/Γ)C11Vol(Y)C_{11}^{-1}\operatorname{Vol}(Y)\leq\operatorname{Vol}(H_{0}g\Gamma/\Gamma)\leq C_{11}\operatorname{Vol}(Y)

for all YY in 𝒯𝒢N,rigid\mathcal{T}\mathcal{G}^{N,\operatorname{rigid}}.

5.4. Proof of Proposition 5.2

It remains to show that, assuming 𝔨Y\mathfrak{k}_{Y} is contained in 𝔨0\mathfrak{k}_{0}, for a sequence of Yi=K0\K0HYigiΓ/ΓY_{i}=\mathrm{K}_{0}\backslash\mathrm{K}_{0}H_{Y_{i}}g_{i}\Gamma/\Gamma converging to Y=K0\K0H0g0Γ/ΓY=\mathrm{K}_{0}\backslash\mathrm{K}_{0}\mathrm{H}_{0}g_{0}\Gamma/\Gamma, then Yi=YY_{i}=Y for ii sufficiently large. Replacing Γ\Gamma by g0Γg01g_{0}\Gamma g_{0}^{-1}, assume g0=idg_{0}=id. Also write 𝔥0=(𝔨𝔥0𝔥0)𝔰0\mathfrak{h}_{0}=(\mathfrak{k}_{\mathfrak{h}_{0}}\cap\mathfrak{h}_{0})\oplus\mathfrak{s}_{0} where 𝔰0\mathfrak{s}_{0} is a triple system associated with YY. Also write H0=A0M0\mathrm{H}_{0}=\mathrm{A}_{0}\cdot\mathrm{M}_{0} (at the level of Lie algebra, 𝔥0=𝔞0𝔪0\mathfrak{h}_{0}=\mathfrak{a}_{0}\oplus\mathfrak{m}_{0}) as an almost product between its center and the semisimple part.

For an element gGg\in\mathrm{G}, let [g]ΓK0{}_{\mathrm{K}_{0}}[g]_{\Gamma} (resp. [g]Γ[g]_{\Gamma}, [g]K0{}_{\mathrm{K}_{0}}[g]) denote its image in K0\G/Γ\mathrm{K}_{0}\backslash\mathrm{G}/\Gamma (resp. G/Γ\mathrm{G}/\Gamma, K0\G\mathrm{K}_{0}\backslash\mathrm{G}).

From definition,

kihYigiγi=εik_{i}h_{Y_{i}}g_{i}\gamma_{i}=\varepsilon_{i}

for some sequences of kiK0k_{i}\in\mathrm{K}_{0}, hYiHYih_{Y_{i}}\in H_{Y_{i}}, γiΓ\gamma_{i}\in\Gamma and εiG\varepsilon_{i}\in\mathrm{G} with εiid\varepsilon_{i}\to id. Thus

Yi=K0\K0HiεiΓ/Γ,with Hi:=kiHYiki1.Y_{i}=\mathrm{K}_{0}\backslash\mathrm{K}_{0}H_{i}\varepsilon_{i}\Gamma/\Gamma,\quad\text{with }H_{i}:=k_{i}H_{Y_{i}}k_{i}^{-1}.

Let 𝔰i:=Ad(ki)𝔰Yi\mathfrak{s}_{i}:=\operatorname{Ad}(k_{i})\cdot\mathfrak{s}_{Y_{i}} (recall 𝔰Yi𝔭0\mathfrak{s}_{Y_{i}}\subset\mathfrak{p}_{0} is the triple system associated with YiY_{i}). For δ>0\delta>0, let B𝔭0,δB_{\mathfrak{p}_{0},\delta} be the open ball of radius δ\delta in 𝔭0\mathfrak{p}_{0}. We choose δ>0\delta>0 small enough such that

B𝔭0,δK0\G/Γ:v[exp(v)]ΓK0B_{\mathfrak{p}_{0},\delta}\to\mathrm{K}_{0}\backslash\mathrm{G}/\Gamma:\;\;v\mapsto{}_{\mathrm{K}_{0}}[\exp(v)]_{\Gamma}

is a homeomorphism onto its image. By passing to a subsequence assume 𝔰i\mathfrak{s}_{i} converges to 𝔰\mathfrak{s}_{\infty}. Then 𝔰\mathfrak{s}_{\infty} is still a triple system and hence 𝔥:=𝔰[𝔰,𝔰]\mathfrak{h}_{\infty}:=\mathfrak{s}_{\infty}\oplus[\mathfrak{s}_{\infty},\mathfrak{s}_{\infty}] is a ι0\iota_{0}-stable Lie subalgebra. Also [exp(𝔰iB𝔭0,δ)]ΓK0{}_{\mathrm{K}_{0}}[\exp(\mathfrak{s}_{i}\cap B_{\mathfrak{p}_{0},\delta})]_{\Gamma} converges to [exp(𝔰B𝔭0,δ)]ΓK0{}_{\mathrm{K}_{0}}[\exp(\mathfrak{s}_{\infty}\cap B_{\mathfrak{p}_{0},\delta})]_{\Gamma}, which must be contained in 𝔰0\mathfrak{s}_{0} by assumption. Since they share the same dimension we conclude that 𝔥=𝔥0\mathfrak{h}_{\infty}=\mathfrak{h}_{0}. Thus 𝔥i\mathfrak{h}_{i}’s are all algebraic by Lemma 5.3.

We would like to understand the limiting behavior of

Y~i:=HiεiΓ/Γ\widetilde{Y}_{i}:=\mathrm{H}_{i}\varepsilon_{i}\Gamma/\Gamma

in G/Γ\mathrm{G}/\Gamma. So far we know that

  • 1.

    limY~i\lim\widetilde{Y}_{i} is a closed H0\mathrm{H}_{0}-invariant set;

  • 2.

    limY~iY~:=H0Γ/Γ\lim\widetilde{Y}_{i}\supset\widetilde{Y}:=\mathrm{H}_{0}\Gamma/\Gamma;

  • 3.

    limY~iK0H0Γ/Γ\lim\widetilde{Y}_{i}\subset\mathrm{K}_{0}\mathrm{H}_{0}\Gamma/\Gamma.

Assume [k1g1]ΓlimY~i[k_{1}g_{1}]_{\Gamma}\in\lim\widetilde{Y}_{i} for some k1K0k_{1}\in\mathrm{K}_{0} and g1H0g_{1}\in\mathrm{H}_{0}. Then by item 1. above, limY~iH0k1g1Γ/Γ\lim\widetilde{Y}_{i}\supset\mathrm{H}_{0}k_{1}g_{1}\Gamma/\Gamma and in particular

K0\K0H0Γ/Γ=limK0\K0HiεiΓ/ΓK0\K0H0k1g1Γ/Γ.\displaystyle\mathrm{K}_{0}\backslash\mathrm{K}_{0}\mathrm{H}_{0}\Gamma/\Gamma=\lim\mathrm{K}_{0}\backslash\mathrm{K}_{0}\mathrm{H}_{i}\varepsilon_{i}\Gamma/\Gamma\supset\mathrm{K}_{0}\backslash\mathrm{K}_{0}\mathrm{H}_{0}k_{1}g_{1}\Gamma/\Gamma.
\displaystyle\implies K0\K0H0g1Γ/ΓK0\K0(k11H0k1)g1Γ/Γ.\displaystyle\mathrm{K}_{0}\backslash\mathrm{K}_{0}\mathrm{H}_{0}g_{1}\Gamma/\Gamma\supset\mathrm{K}_{0}\backslash\mathrm{K}_{0}(k_{1}^{-1}\mathrm{H}_{0}k_{1})g_{1}\Gamma/\Gamma.

Thus 𝔰0\mathfrak{s}_{0} contains Ad(k11)𝔰0\operatorname{Ad}(k_{1}^{-1})\cdot\mathfrak{s}_{0}. And since they have the same dimensions, 𝔰0=Ad(k11)𝔰0\mathfrak{s}_{0}=\operatorname{Ad}(k_{1}^{-1})\cdot\mathfrak{s}_{0}, which implies that k1NG(H0)k_{1}\in N_{\mathrm{G}}(\mathrm{H}_{0}), the normalizer of H0\mathrm{H}_{0} in G\mathrm{G}. Therefore item 3. above is upgraded to

  • 4.

    limY~i(K0NG(H0))H0Γ/ΓNG(H0)Γ/Γ\lim\widetilde{Y}_{i}\subset(\mathrm{K}_{0}\cap N_{\mathrm{G}}(\mathrm{H}_{0}))\mathrm{H}_{0}\Gamma/\Gamma\subset N_{\mathrm{G}}(\mathrm{H}_{0})\Gamma/\Gamma.

Let Hi:=εi1Hiεi\mathrm{H}_{i}^{\prime}:=\varepsilon_{i}^{-1}\mathrm{H}_{i}\varepsilon_{i} and 𝔥i:=Ad(εi1)𝔥i\mathfrak{h}^{\prime}_{i}:=\operatorname{Ad}(\varepsilon_{i}^{-1})\mathfrak{h}_{i}. Decompose 𝔥i=𝔞i𝔪i\mathfrak{h}^{\prime}_{i}=\mathfrak{a}^{\prime}_{i}\oplus\mathfrak{m}^{\prime}_{i} into an abelian ideal 𝔞Yi\mathfrak{a}_{Y_{i}} and a semisimple ideal 𝔪Yi\mathfrak{m}_{Y_{i}}. Both 𝔞i\mathfrak{a}^{\prime}_{i} and 𝔪i\mathfrak{m}^{\prime}_{i} are ι0\iota_{0}-stable. Write Ai\mathrm{A}^{\prime}_{i} and Mi\mathrm{M}^{\prime}_{i} for the associated Lie subgroups. By Borel density lemma (use the version in [Dan80, Corollary 4.2]), 𝐇i\bm{\mathrm{H}}_{i}^{\prime} is defined over \mathbb{Q}. Thus 𝐌i\bm{\mathrm{M}}^{\prime}_{i} and 𝐀i\bm{\mathrm{A}}^{\prime}_{i} are also defined over \mathbb{Q}. As YiY_{i} has finite volume, it follows that MiΓ/Γ\mathrm{M}^{\prime}_{i}\Gamma/\Gamma and AiΓ/Γ\mathrm{A}^{\prime}_{i}\Gamma/\Gamma have finite volume.

By [MS95, Theorem 1.1], there exists a connected \mathbb{R}-split subgroup 𝐅\bm{\mathrm{F}} of 𝐆\bm{\mathrm{G}} such that [F]Γ[\mathrm{F}]_{\Gamma} has finite volume, [Mi]Γ[\mathrm{M}_{i}^{\prime}]_{\Gamma} converges to [F]Γ[\mathrm{F}]_{\Gamma} and moreover, there exists δiG\delta_{i}\in\mathrm{G} converging to idid such that [δiMi]Γ[\delta_{i}\mathrm{M}_{i}]_{\Gamma} is contained in [F]Γ[\mathrm{F}]_{\Gamma} for ii large enough. From the latter, it can be shown that Mi\mathrm{M}^{\prime}_{i} is contained in F\mathrm{F} for ii large enough. On the other hand, the limit of [Mi]Γ[\mathrm{M}^{\prime}_{i}]_{\Gamma} is contained in [NG(H0)]Γ[N_{\mathrm{G}}(\mathrm{H}_{0})]_{\Gamma}, thus F\mathrm{F} is contained in NG(H0)N_{\mathrm{G}}(\mathrm{H}_{0}). As F\mathrm{F} is connected and the Lie algebra of NG(H0)N_{\mathrm{G}}(\mathrm{H}_{0}) is the same as that of ZG(H0)H0Z_{\mathrm{G}}(\mathrm{H}_{0})^{\circ}\mathrm{H}_{0}. We conclude that F\mathrm{F} is contained in ZG(H0)H0Z_{\mathrm{G}}(\mathrm{H}_{0})^{\circ}\mathrm{H}_{0}. But F\mathrm{F} is semisimple and contains Mi\mathrm{M}^{\prime}_{i}, thus we must have M0\mathrm{M}_{0}, the semisimple part of H0\mathrm{H}_{0}, is exactly equal to F\mathrm{F}. Hence Mi=F=M0\mathrm{M}_{i}^{\prime}=\mathrm{F}=\mathrm{M}_{0}.

Thus we have seen that (write Y~i:=εi1Y~i\widetilde{Y}_{i}^{\prime}:=\varepsilon_{i}^{-1}\widetilde{Y}_{i})

  • 5.

    Y~i=AiM0Γ/ΓZG(M0)M0Γ/Γ\widetilde{Y}^{\prime}_{i}=\mathrm{A}^{\prime}_{i}\mathrm{M}_{0}\Gamma/\Gamma\subset Z_{\mathrm{G}}(\mathrm{M}_{0})^{\circ}\mathrm{M}_{0}\Gamma/\Gamma for ii large enough.

So to find the limit of Y~i\widetilde{Y}^{\prime}_{i}, it suffices to consider

lim[AiM0]ΓZ inside ZG(M0)M0/Γ(ZG(M0)M0).\lim[\mathrm{A}^{\prime}_{i}\mathrm{M}_{0}]_{\Gamma_{Z}}\text{ inside }Z_{\mathrm{G}}(\mathrm{M}_{0})^{\circ}\mathrm{M}_{0}/\Gamma\cap(Z_{\mathrm{G}}(\mathrm{M}_{0})^{\circ}\mathrm{M}_{0}).

Now we have all the ingredients to conclude the proof. Some definitions and notations are introduced to ease the argument.

Let L:=ZG(M0)M0\mathrm{L}:=Z_{\mathrm{G}}(\mathrm{M}_{0})^{\circ}\mathrm{M}_{0} and ΓL:=ΓL\Gamma_{\mathrm{L}}:=\Gamma\cap\mathrm{L}. Let π:LL/M0\pi:\mathrm{L}\to\mathrm{L}/\mathrm{M}_{0} be the natural quotient map and it induces π:L/ΓLπ(L)/π(ΓL)\pi^{\prime}:\mathrm{L}/\Gamma_{\mathrm{L}}\to\pi(\mathrm{L})/\pi(\Gamma_{\mathrm{L}}). Note that π(ΓL)\pi(\Gamma_{\mathrm{L}}) is still a lattice in π(L)\pi(\mathrm{L}). Let KZ:=K0ZG(H0)=(K0ZG(H0))\mathrm{K}_{\mathrm{Z}}:=\mathrm{K}_{0}\cap Z_{\mathrm{G}}(\rm\mathrm{H}_{0})^{\circ}=(\mathrm{K}_{0}\cap Z_{\mathrm{G}}(\rm\mathrm{H}_{0}))^{\circ}. For an element (or a subset) xx of π(L)\pi(\mathrm{L}), as before, we let [x]π(ΓL)π(KZ){}_{\pi(\mathrm{K}_{\mathrm{Z}})}[x]_{\pi(\Gamma_{\mathrm{L}})} be its image in π(KZ)\π(L)/π(ΓL)\pi(\mathrm{K}_{\mathrm{Z}})\backslash\pi(\mathrm{L})/\pi(\Gamma_{\mathrm{L}}). Other similar notations are also defined . Note that since A0\mathrm{A}_{0} commutes with KZ\mathrm{K}_{\mathrm{Z}}, π(A0)\pi(\mathrm{A}_{0}) acts from the left on π(KZ)\π(L)/π(ΓL)\pi(\mathrm{K}_{\mathrm{Z}})\backslash\pi(\mathrm{L})/\pi(\Gamma_{\mathrm{L}}).

Let {x1,,xc}NG(H0)K0\{x_{1},...,x_{c}\}\subset N_{\mathrm{G}}(\mathrm{H}_{0})\cap\mathrm{K}_{0} be a set of representatives for the quotient NG(H0)K0/(NG(H0)K0)N_{\mathrm{G}}(\mathrm{H}_{0})\cap\mathrm{K}_{0}/(N_{\mathrm{G}}(\mathrm{H}_{0})\cap\mathrm{K}_{0})^{\circ}. In light of item 4. and 5. above, only those xsx_{s}’s contained in LΓ\mathrm{L}\Gamma are interesting to us. By rearranging the order, we find 1c0c1\leq c_{0}\leq c such that for each 1sc01\leq s\leq c_{0}, there exists lxsLl_{x_{s}}\in\mathrm{L}, γxsΓ\gamma_{x_{s}}\in\Gamma such that

xs=lxsγxs.x_{s}=l_{x_{s}}\gamma_{x_{s}}.

Now we start the argument. Item 4. above implies that

limY~i=limAiM0Γ/Γ\displaystyle\lim\widetilde{Y}_{i}^{\prime}=\lim\mathrm{A}_{i}^{\prime}\mathrm{M}_{0}\Gamma/\Gamma\subset s=1,..,c0H0(NG(H0)K0)lxsΓ/Γ\displaystyle\bigcup_{s=1,..,c_{0}}\mathrm{H}_{0}(N_{\mathrm{G}}(\mathrm{H}_{0})\cap\mathrm{K}_{0})^{\circ}l_{x_{s}}\Gamma/\Gamma
=\displaystyle= s=1,..,c0H0KZlxsΓ/Γ\displaystyle\bigcup_{s=1,..,c_{0}}\mathrm{H}_{0}\mathrm{K}_{\mathrm{Z}}l_{x_{s}}\Gamma/\Gamma

because H0KZ=H0(ZG(H0)K0)=H0(NG(H0)K0)\mathrm{H}_{0}\mathrm{K}_{\mathrm{Z}}=\mathrm{H}_{0}(Z_{\mathrm{G}}(\mathrm{H}_{0})\cap\mathrm{K}_{0})^{\circ}=\mathrm{H}_{0}(N_{\mathrm{G}}(\mathrm{H}_{0})\cap\mathrm{K}_{0})^{\circ}.

As (𝔞i)(\mathfrak{a}^{\prime}_{i}) converges to 𝔞0\mathfrak{a}_{0} and they correspond to maximal \mathbb{R}-split subtori of 𝐙𝐆(𝐌Y)\bm{\mathrm{Z}}_{\bm{\mathrm{G}}}(\bm{\mathrm{M}}_{Y}), there exists εiid\varepsilon^{\prime}_{i}\to id in L\mathrm{L} such that

εiAiεi1=A0\varepsilon^{\prime}_{i}\mathrm{A}^{\prime}_{i}\varepsilon_{i}^{\prime-1}=\mathrm{A}_{0}

where we are using the fact that an orbit of an algebraic group is open in its closure, see [Spr98, 2.3.3]. So we have

limA0εiM0Γ/Γs=1,..,c0H0KZlxsΓ/Γ.\lim\mathrm{A}_{0}\varepsilon_{i}^{\prime}\mathrm{M}_{0}\Gamma/\Gamma\subset\bigcup_{s=1,..,c_{0}}\mathrm{H}_{0}\mathrm{K}_{\mathrm{Z}}l_{x_{s}}\Gamma/\Gamma.

Now this is a convergence inside LΓ/Γ\mathrm{L}\Gamma/\Gamma, which we identify with L/ΓL\mathrm{L}/\Gamma_{\mathrm{L}}. Thus

lim[A0εiM0]ΓLs=1,..,c0[H0KZlxs]ΓLinsideL/ΓL.\lim[\mathrm{A}_{0}\varepsilon_{i}^{\prime}\mathrm{M}_{0}]_{\Gamma_{\mathrm{L}}}\subset\bigcup_{s=1,..,c_{0}}[\mathrm{H}_{0}\mathrm{K}_{\mathrm{Z}}l_{x_{s}}]_{\Gamma_{\mathrm{L}}}\;\;\text{inside}\;\;\mathrm{L}/\Gamma_{\mathrm{L}}.

By applying π\pi^{\prime} we have

lim[π(A0εi)]π(ΓL)s=1,..,c0[π(A0KZlxs)]π(ΓL)insideπ(L)/π(ΓL).\lim[\pi(\mathrm{A}_{0}\varepsilon_{i}^{\prime})]_{\pi(\Gamma_{\mathrm{L}})}\subset\bigcup_{s=1,..,c_{0}}[\pi(\mathrm{A}_{0}\mathrm{K}_{\mathrm{Z}}l_{x_{s}})]_{\pi(\Gamma_{\mathrm{L}})}\;\;\text{inside}\;\;\pi(\mathrm{L})/\pi(\Gamma_{\mathrm{L}}).

By further projecting to π(KZ)\π(L)/π(ΓL)\pi(\mathrm{K}_{\mathrm{Z}})\backslash\pi(\mathrm{L})/\pi(\Gamma_{\mathrm{L}}), we have

limπ(A0)[π(εi)]π(ΓL)π(KZ)s=1,..,c0π(A0)[π(lxs)]π(ΓL)π(KZ).\displaystyle\lim\pi(\mathrm{A}_{0}){}_{\pi(\mathrm{K}_{\mathrm{Z}})}[\pi(\varepsilon_{i}^{\prime})]_{\pi(\Gamma_{\mathrm{L}})}\subset\bigcup_{s=1,..,c_{0}}\pi(\mathrm{A}_{0}){}_{\pi(\mathrm{K}_{\mathrm{Z}})}[\pi(l_{x_{s}})]_{\pi(\Gamma_{\mathrm{L}})}.

As the right hand side is a union of closed orbits of π(A0)\pi(\mathrm{A}_{0}), we may write it as a disjoint union by identifying certain indices,

limπ(A0)[π(εi)]π(ΓL)π(KZ)π(A0)[π(lxs)]π(ΓL)π(KZ).\lim\pi(\mathrm{A}_{0}){}_{\pi(\mathrm{K}_{\mathrm{Z}})}[\pi(\varepsilon_{i}^{\prime})]_{\pi(\Gamma_{\mathrm{L}})}\subset\bigsqcup\pi(\mathrm{A}_{0}){}_{\pi(\mathrm{K}_{\mathrm{Z}})}[\pi(l_{x_{s}})]_{\pi(\Gamma_{\mathrm{L}})}.

As each of π(A0)[π(lxs)]π(ΓL)π(KZ)\pi(\mathrm{A}_{0}){}_{\pi(\mathrm{K}_{\mathrm{Z}})}[\pi(l_{x_{s}})]_{\pi(\Gamma_{\mathrm{L}})} is a compact set, there exists bounded neighborhood 𝒩s\mathcal{N}_{s} such that the closures of 𝒩s\mathcal{N}_{s} as ss varies are disjoint. But for all ii, π(A0)[π(εi)]π(ΓL)π(KZ)\pi(\mathrm{A}_{0}){}_{\pi(\mathrm{K}_{\mathrm{Z}})}[\pi(\varepsilon_{i}^{\prime})]_{\pi(\Gamma_{\mathrm{L}})} are connected, so they are contained in exactly one 𝒩i\mathcal{N}_{i} for ii large enough and therefore

limπ(A0)[π(εi)]π(ΓL)π(KZ)π(A0)[id]π(ΓL)π(KZ).\lim\pi(\mathrm{A}_{0}){}_{\pi(\mathrm{K}_{\mathrm{Z}})}[\pi(\varepsilon_{i}^{\prime})]_{\pi(\Gamma_{\mathrm{L}})}\subset\pi(\mathrm{A}_{0}){}_{\pi(\mathrm{K}_{\mathrm{Z}})}[id]_{\pi(\Gamma_{\mathrm{L}})}.

Now take a small neighborhood 𝒩\mathcal{N} of

π(A0)[id]π(ΓLA0)π(KZ)𝒩π(KZ)\π(L)/π(ΓLA0).\pi(\mathrm{A}_{0}){}_{\pi(\mathrm{K}_{\mathrm{Z}})}[id]_{\pi(\Gamma_{\mathrm{L}}\cap\mathrm{A}_{0})}\subset\mathcal{N}\subset\pi(\mathrm{K}_{\mathrm{Z}})\backslash\pi(\mathrm{L})/\pi(\Gamma_{\mathrm{L}}\cap\mathrm{A}_{0}).

Let p:π(KZ)\π(L)/π(ΓL)π(KZ)\π(L)/π(ΓLA0)p:\pi(\mathrm{K}_{\mathrm{Z}})\backslash\pi(\mathrm{L})/\pi(\Gamma_{\mathrm{L}})\to\pi(\mathrm{K}_{\mathrm{Z}})\backslash\pi(\mathrm{L})/\pi(\Gamma_{\mathrm{L}}\cap\mathrm{A}_{0}) denote the natural projection. Choose 𝒩\mathcal{N} small enough such that pp restricted to 𝒩\mathcal{N} is a homeomorphism onto its image. Then for ii large enough,

π(A0)[π(εi)]π(ΓL)π(KZ)p(𝒩).\pi(\mathrm{A}_{0}){}_{\pi(\mathrm{K}_{\mathrm{Z}})}[\pi(\varepsilon_{i}^{\prime})]_{\pi(\Gamma_{\mathrm{L}})}\subset p(\mathcal{N}).

Hence for ii large enough,

π(A0)[π(εi)]π(ΓLAY)π(KZ)𝒩.\pi(\mathrm{A}_{0}){}_{\pi(\mathrm{K}_{\mathrm{Z}})}[\pi(\varepsilon_{i}^{\prime})]_{\pi(\Gamma_{\mathrm{L}}\cap\mathrm{A}_{Y})}\subset\mathcal{N}.

This shows, in particular, that π(A0εi)\pi(\mathrm{A}_{0}\varepsilon_{i}^{\prime}) is bounded in π(L)/π(A0)\pi(\mathrm{L})/\pi(\mathrm{A}_{0}). Consequently,

π(εi1A0εi)=π(A0),Hi=H0,Yi=K0\K0εiH0Γ/Γ.\pi(\varepsilon_{i}^{\prime-1}\mathrm{A}_{0}\varepsilon_{i}^{\prime})=\pi(\mathrm{A}_{0}),\quad\mathrm{H}^{\prime}_{i}=\rm\mathrm{H}_{0},\quad Y_{i}=\mathrm{K}_{0}\backslash\mathrm{K}_{0}\varepsilon_{i}\rm\mathrm{H}_{0}\Gamma/\Gamma.

But by item 2 of Lemma 5.3, H0\rm\mathrm{H}_{0} only has one totally geodesic orbit on K0\G\mathrm{K}_{0}\backslash\mathrm{G}. So K0\K0εiH0=K0\K0H0\mathrm{K}_{0}\backslash\mathrm{K}_{0}\varepsilon_{i}\rm\mathrm{H}_{0}=\mathrm{K}_{0}\backslash\mathrm{K}_{0}\rm\mathrm{H}_{0} and the proof completes.

5.5. Proof of Theorem 1.5

The proof follows the same line as in [Oh04].

By Lemma 5.3 and use the notation there, Y=K0\K0HigYΓ/ΓY=\mathrm{K}_{0}\backslash\mathrm{K}_{0}\mathrm{H}_{i}g_{Y}\Gamma/\Gamma for some i{1,,s}i\in\{1,...,s\} and gYGg_{Y}\in\mathrm{G}. By Theorem 1.2, we may assume gYg_{Y} belongs to a fixed compact set 𝒞G\mathcal{C}\in\mathrm{G}. Depending on 𝒞\mathcal{C}, we find a number C12>0C_{12}>0 such that

Vol(h1HigΓ/Γ)<C12Vol(HigΓ/Γ)\operatorname{Vol}(h^{-1}\mathrm{H}_{i}g\Gamma/\Gamma)<C_{12}\cdot\operatorname{Vol}(\mathrm{H}_{i}g\Gamma/\Gamma)

for all i{1,,s}i\in\{1,...,s\} and gGg\in\mathrm{G} such that HigΓ/Γ\mathrm{H}_{i}g\Gamma/\Gamma has finite volume. Let C11C_{11} be as in Lemma 5.4. Thus

Vol(gY1HigYΓ/Γ)C12Vol(HigYΓ/Γ)C11C12Vol(Y).\operatorname{Vol}(g_{Y}^{-1}\mathrm{H}_{i}g_{Y}\Gamma/\Gamma)\leq C_{12}\operatorname{Vol}(\mathrm{H}_{i}g_{Y}\Gamma/\Gamma)\leq C_{11}C_{12}\operatorname{Vol}(Y).

Thus for a fixed T>0T>0, Vol(gY1HigYΓ/Γ)\operatorname{Vol}(g_{Y}^{-1}\mathrm{H}_{i}g_{Y}\Gamma/\Gamma) as YY varies in 𝒯𝒢TN,rigid\mathcal{T}\mathcal{G}^{N,\operatorname{rigid}}_{\leq T} is bounded. By [DM93, Theorem 5.1], the set

{gY1HigYΓ|Y𝒯𝒢TN,rigid}\left\{g_{Y}^{-1}\mathrm{H}_{i}g_{Y}\cap\Gamma\;\middle|\;Y\in\mathcal{T}\mathcal{G}^{N,\operatorname{rigid}}_{\leq T}\right\}

is finite. To recover YY from gY1HigYΓg_{Y}^{-1}\mathrm{H}_{i}g_{Y}\cap\Gamma, it suffices to note that gY1HigYΓg_{Y}^{-1}\mathrm{H}_{i}g_{Y}\cap\Gamma is Zariski dense in gY1HigYg_{Y}^{-1}\mathrm{H}_{i}g_{Y} and that K0\K0HigY\mathrm{K}_{0}\backslash\mathrm{K}_{0}\mathrm{H}_{i}g_{Y} is the unique orbit of gY1HigYg_{Y}^{-1}\mathrm{H}_{i}g_{Y} on K0\G\mathrm{K}_{0}\backslash\mathrm{G} that is totally geodesic. So we are done.

References

  • [BJ06] Armand Borel and Lizhen Ji, Compactifications of symmetric and locally symmetric spaces, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 2006. MR 2189882
  • [Bor91] Armand Borel, Linear algebraic groups, second ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. MR 1102012
  • [Bor19] by same author, Introduction to arithmetic groups, University Lectures Series, vol. 73, American Mathematical Soc., 2019.
  • [BP92] Riccardo Benedetti and Carlo Petronio, Lectures on hyperbolic geometry, Universitext, Springer-Verlag, Berlin, 1992. MR 1219310
  • [BS73] A. Borel and J.-P. Serre, Corners and arithmetic groups, Comment. Math. Helv. 48 (1973), 436–491, Avec un appendice: Arrondissement des variétés à coins, par A. Douady et L. Hérault. MR 0387495
  • [Dan80] Shrikrishna G. Dani, A simple proof of Borel’s density theorem, Math. Z. 174 (1980), no. 1, 81–94. MR 591617
  • [DGU20] Christopher Daw, Alexander Gorodnik, and Emmanuel Ullmo, Convergence of measures on compactifications of locally symmetric spaces, Mathematische Zeitschrift (2020).
  • [DGUL19] Christopher Daw, Alexander Gorodnik, Emmanuel Ullmo, and Jialun Li, The space of homogeneous probability measures on Γ\X¯maxS\overline{\Gamma\backslash X}^{S}_{\rm max} is compact, arXiv e-prints (2019), arXiv:1910.04568.
  • [DM91] S. G. Dani and G. A. Margulis, Asymptotic behaviour of trajectories of unipotent flows on homogeneous spaces, Proc. Indian Acad. Sci. Math. Sci. 101 (1991), no. 1, 1–17. MR 1101994
  • [DM93] by same author, Limit distributions of orbits of unipotent flows and values of quadratic forms, I. M. Gel´fand Seminar, Adv. Soviet Math., vol. 16, Amer. Math. Soc., Providence, RI, 1993, pp. 91–137. MR 1237827
  • [EMS97] A. Eskin, S. Mozes, and N. Shah, Non-divergence of translates of certain algebraic measures, Geom. Funct. Anal. 7 (1997), no. 1, 48–80. MR 1437473
  • [EMV09] M. Einsiedler, G. Margulis, and A. Venkatesh, Effective equidistribution for closed orbits of semisimple groups on homogeneous spaces, Invent. Math. 177 (2009), no. 1, 137–212. MR 2507639
  • [Gro97] Frank D. Grosshans, Algebraic homogeneous spaces and invariant theory, Lecture Notes in Mathematics, vol. 1673, Springer-Verlag, Berlin, 1997. MR 1489234
  • [Hel01] Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics, vol. 34, American Mathematical Society, Providence, RI, 2001, Corrected reprint of the 1978 original. MR 1834454
  • [Kle10] Dmitry Kleinbock, Quantitative nondivergence and its Diophantine applications, Homogeneous flows, moduli spaces and arithmetic, Clay Math. Proc., vol. 10, Amer. Math. Soc., Providence, RI, 2010, pp. 131–153. MR 2648694
  • [KM98] D. Y. Kleinbock and G. A. Margulis, Flows on homogeneous spaces and Diophantine approximation on manifolds, Ann. of Math. (2) 148 (1998), no. 1, 339–360. MR 1652916
  • [KM18] Vincent Koziarz and Julien Maubon, Finiteness of totally geodesic exceptional divisors in Hermitian locally symmetric spaces, Bull. Soc. Math. France 146 (2018), no. 4, 613–631. MR 3936536
  • [Kna02] Anthony W. Knapp, Lie groups beyond an introduction, second ed., Progress in Mathematics, vol. 140, Birkhäuser Boston, Inc., Boston, MA, 2002. MR 1920389
  • [MS95] Shahar Mozes and Nimish Shah, On the space of ergodic invariant measures of unipotent flows, Ergodic Theory Dynam. Systems 15 (1995), no. 1, 149–159. MR 1314973
  • [Oh04] Hee Oh, Finiteness of compact maximal flats of bounded volume, Ergodic Theory Dynam. Systems 24 (2004), no. 1, 217–225. MR 2041269
  • [Ric67] R. W. Richardson, Jr., A rigidity theorem for subalgebras of Lie and associative algebras, Illinois J. Math. 11 (1967), 92–110. MR 206170
  • [RS18] Rodolphe Richard and Nimish A. Shah, Geometric results on linear actions of reductive Lie groups for applications to homogeneous dynamics, Ergodic Theory Dynam. Systems 38 (2018), no. 7, 2780–2800. MR 3846726
  • [Spr98] T. A. Springer, Linear algebraic groups, second ed., Progress in Mathematics, vol. 9, Birkhäuser Boston, Inc., Boston, MA, 1998. MR 1642713
  • [SW00] Nimish A. Shah and Barak Weiss, On actions of epimorphic subgroups on homogeneous spaces, Ergodic Theory Dynam. Systems 20 (2000), no. 2, 567–592. MR 1756987
  • [TW03] George Tomanov and Barak Weiss, Closed orbits for actions of maximal tori on homogeneous spaces, Duke Math. J. 119 (2003), no. 2, 367–392. MR 1997950
  • [Zha20] Runlin Zhang, Equidistribution of translates of a homogeneous measure on the Borel–Serre boundary, arXiv e-prints (2020), arXiv:2012.07468.