This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Nondegenerate solitons in the integrable fractional coupled Hirota equation

Ling An School of Mathematics, South China University of Technology, Guangzhou, China, 510641 [email protected] Liming Ling School of Mathematics, South China University of Technology, Guangzhou, China, 510641 [email protected]  and  Xiaoen Zhang School of Mathematics, South China University of Technology, Guangzhou, China, 510641 [email protected]
Abstract.

In this paper, based on the nonlinear fractional equations proposed by Ablowitz, Been, and Carr in the sense of Riesz fractional derivative, we explore the fractional coupled Hirota equation and give its explicit form. Unlike the previous nonlinear fractional equations, this type of nonlinear fractional equation is integrable. Therefore, we obtain the fractional nn-soliton solutions of the fractional coupled Hirota equation by inverse scattering transformation in the reflectionless case. In particular, we analyze the one- and two-soliton solutions of the fractional coupled Hirota equation and prove that the fractional two-soliton can also be regarded as a linear superposition of two fractional single solitons as |t||t|\to\infty. Moreover, under some special constraint, we also obtain the nondegenerate fractional soliton solutions and give a simple analysis for them.
Keywords: fractional coupled Hirota equation, anomalous dispersive relation, inverse scattering transform, squared eigenfunction, nondegenerate soliton solution.

1   Introduction

Fractional calculus belongs to the field of mathematical analysis, which can be used to study the application of integrals and derivatives of any order. The fractional calculus first emerged from some speculations made by Leibniz (1695, 16971695,\ 1697) and Euler (17301730) and has been developed up to nowadays. Fractional differential equations have profound physical background and rich theoretical connotation, and have been well applied in many fields, such as viscoelastic hydrodynamics [1, 2, 3], signal processing [4, 5], material anomalous diffusion and heat conduction [6, 7], biology [8, 9, 10], and so on. With the development of research, people began to explore the physical and mechanical background of the fractional operators and found that many classical mechanical theories defined by integer order differential operators were challenged. For example, because the turbulent velocity field of the atmosphere will change its vibration and direction randomly and violently, the velocity of the turbulent velocity field does not meet the requirements of classical mechanics with integer order differentiability. In this case, the non-classical mechanics based on fractional calculus can describe these “abnormal” physical phenomena well. Against that backdrop, many fractional differential equation models have been established.

So far, there are many types of the fractional equations. For example, in [11, 12], different versions of the fractional nonlinear Schrödinger (NLS) equation have been studied, and soliton type solutions have been found. However, none of these versions of the fractional NLS equation is integrable in the inverse scattering transform (IST) sense. In 20222022, Ablowitz, Been, and Carr proposed the integrable fractional nonlinear soliton equations based on the Riesz fractional derivative and IST integrability, such as the fractional NLS equation, the fractional Korteweg-deVries (KdV) equation, the fractional modified KdV (mKdV) equation, the fractional sine-Gordon equation and the fractional sinh-Gordon equation [13, 14]. This research process has three key elements: a general evolution equation solvable by the inverse scattering transformation, an anomalous dispersion relation of the fractional equation, and the completeness of the square eigenfunction. Subsequently, fractional higher-order mKdV equation [15], fractional higher-order NLS equation [16], and so on were studied [17]. It can be found that all of these above researches are related to the 2×22\times 2 matrix scattering problem, but to our best knowledge, there is little study for higher-order matrix scattering problem. In this paper, we expand the fractional integrable equation to the 3×33\times 3 Lax equation and give the fractional coupled Hirota (fcHirota) equation. Then we construct the soliton type solutions and give a simple asymptotic analysis.

The NLS equation can describe electromagnetic waves with slowly varying amplitude in nonlinear media [18]. In order to increase the bit rates, the pulse width needs to be reduced. However, the NLS equation becomes insufficient when the pulse length becomes comparable to the wavelength. Then the additional terms must be added, and the resulting pulse propagation is called the higher-order NLS equation [19], which includes effects like third-order dispersion, self-steepening, and stimulated Raman scattering. In 19741974, Manakov proposed the coupled NLS equation [20]. In 19921992, Tasgal and Potasek proposed the coupled higher-order NLS equation, which is the coupled version of the Hirota equation [21]. The coupled Hirota equation has the form

(1.1) {iut+12uxx+u(|u|2+|v|2)+iε(uxxx+ux(6|u|2+3|v|2)+3uvvx)=0,ivt+12vxx+v(|u|2+|v|2)+iε(vxxx+vx(6|v|2+3|u|2)+3vuux)=0,\begin{cases}\mathrm{i}u_{t}+\frac{1}{2}u_{xx}+u(|u|^{2}+|v|^{2})+\mathrm{i}\varepsilon\big{(}u_{xxx}+u_{x}(6|u|^{2}+3|v|^{2})+3uv^{*}v_{x}\big{)}=0,\\[2.0pt] \mathrm{i}v_{t}\ +\frac{1}{2}v_{xx}+v(|u|^{2}+|v|^{2})+\mathrm{i}\varepsilon\big{(}v_{xxx}+v_{x}(6|v|^{2}+3|u|^{2})+3vu^{*}u_{x}\big{)}=0,\end{cases}

where u(x,t)u(x,t) and v(x,t)v(x,t) represent the slowly varying complex amplitudes in two interacting optical modes, means the complex conjugate, and ε\varepsilon is a small dimensionless real parameter. When ε=0\varepsilon=0, the equation (1.1) is reduced to the coupled NLS equation. The equation (1.1) can not only simulate the propagation of ultrashort optical pulses in birefringent fiber [22], but also describe the collision of two waves caused by severe weather in deep ocean [23]. Based on the reported results of the equation (1.1), such as the Lax pair, the classical Darboux transformation, and so on [24, 25], we explore the fractional form of the coupled Hirota equation.

It should be pointed out that for the coupled Hirota equation, there exist many types of vector solitons, such as bright-bright solitons, bright-dark solitons, dark-dark solitons and so on [26]. From the study on vector solitons of the coupled Hirota equation, we can confirm that there exists a degeneracy in the structure of bright solitons, that is, the solitons in the multi-mode fibers propagate with the same wave numbers. To avoid the degeneracy, different propagation constants can be appropriately introduced in the structure of fundamental bright solitons of the coupled Hirota equation. Thus, a new class of fundamental bright solitons, namely nondegenerate fundamental vector bright solitons, can be obtained. The nondegenerate soliton solution of nonlinear integrable equations is a very interesting and important issue, which had been explored by many scholars recently [27, 28, 29]. We argue that this phenomenon is equally presented in the fcHirota equation.

The organization of this work is as follows: In Sec.2, we first define the fcHirota equation from a 3×33\times 3 scattering problem by introducing a recursive operator \mathcal{L}. According to the linearized equation of the fcHirota equation, the anomalous dispersion relation of the fcHirota equation is deduced. Then we establish a matrix Riemann-Hilbert problem (RHP) for the fcHirota equation by assuming that the potential functions are sufficiently smooth and rapidly tend to zero as |x||x|\rightarrow\infty, and give a constraint condition of the matrix 𝐕(λ;x,t){\bf V}(\lambda;x,t) as |x||x|\rightarrow\infty. Subsequently, we solve the RHP. At the same time, we construct the square eigenfunctions and the adjoint square eigenfunctions, and then use their completeness to derive the explicit form of the fcHirota equation. In Sec.3, we explore the fractional nn-soliton solutions and give a simple analysis for the fractional one- and two-soliton solutions. In addition, we investigate the nondegenerate case of the fractional soliton solutions of the fcHirota equation.

2   The IST for the fcHirota equation

In this section, we would like to combine the idea in [13] to derive the integrable fcHirota equation and solve this equation by the IST with the RHP.

2.1   The fcHirota equation and anomalous dispersive relation

Firstly, we consider the Ablowitz-Kaup-Newell-Segur (AKNS) scattering problem

(2.1a) Φx=𝐔Φ,\Phi_{x}={\bf U}\Phi,
(2.1b) Φt=𝐕Φ,\Phi_{t}={\bf V}\Phi,

where Φ(λ;x,t)\Phi(\lambda;x,t) is a wave function associated with λ\lambda, λ\lambda\in\mathbb{C} is an eigenvalue parameter, and 𝐔(λ;x,t){\bf U}(\lambda;x,t) can be expressed in the following polynomial with respect to λ\lambda

𝐔=iλΛ+𝐔0,Λ=diag(1,1,1),𝐔0(x,t)=[0𝐪(x,t)𝐫(x,t)0],𝐪(x,t)=[q1(x,t)q2(x,t)],𝐫(x,t)=[r1(x,t)r2(x,t)],\begin{split}&{\bf U}=-\mathrm{i}\lambda\Lambda+{\bf U}_{0},\ \ \ \ \Lambda={\rm diag}\left(1,-1,-1\right),\ \ \ {\bf U}_{0}(x,t)=\begin{bmatrix}0&{\bf q}(x,t)\\[4.0pt] {\bf r}^{\top}(x,t)&0\\ \end{bmatrix},\\ &{\bf q}(x,t)=\begin{bmatrix}q_{1}(x,t)&q_{2}(x,t)\end{bmatrix},\ \ \ \ {\bf r}(x,t)=\begin{bmatrix}r_{1}(x,t)&r_{2}(x,t)\end{bmatrix},\end{split}

the superscript denotes the transpose, and

𝐕(λ;x,t)=[𝐕1(λ;x,t)𝐕2(λ;x,t)𝐕3(λ;x,t)𝐕4(λ;x,t)].{\bf V}(\lambda;x,t)=\begin{bmatrix}{\bf V}_{1}(\lambda;x,t)&{\bf V}_{2}(\lambda;x,t)\\[4.0pt] {\bf V}_{3}^{\top}(\lambda;x,t)&{\bf V}_{4}(\lambda;x,t)\end{bmatrix}.

Note that the matrix 𝐕(λ;x,t){\bf V}(\lambda;x,t) has the same block structure as the matrix 𝐔(λ;x,t){\bf U}(\lambda;x,t). In order to ensure the compatibility of system (2.1), the following zero curvature equation needs to be satisfied

(2.2) 𝐔t𝐕x+[𝐔,𝐕]=0,{\bf U}_{t}-{\bf V}_{x}+[{\bf U},{\bf V}]=0,

where the commutator is defined by [𝐔,𝐕]𝐔𝐕𝐕𝐔.[{\bf U},{\bf V}]\equiv{\bf UV-VU}.

Combining the equation (2.2) and making appropriate assumptions, the integrable hierarchy associated with the third-order scattering problem can be obtained

(2.3) i[𝐪𝐫]t=()[𝐪𝐫],\mathrm{i}\begin{bmatrix}{\bf q}\\[4.0pt] -{\bf r}\end{bmatrix}_{t}=\mathcal{F}(\mathcal{L})\begin{bmatrix}{\bf q}\\[4.0pt] {\bf r}\end{bmatrix},

where ()\mathcal{F}(\mathcal{L}) is a function with respect to the operator \mathcal{L}, and here ()=n(n=1,2,)\mathcal{F}(\mathcal{L})=\mathcal{L}^{n}\ (n=1,2,\cdots). The recursion operator \mathcal{L} is

(2.4) [𝐪~𝐫~]=i[𝐪~x𝐪1(𝐫𝐪~𝐫~𝐪)(1(𝐪~𝐫+𝐪𝐫~))𝐪𝐫~x𝐫1(𝐪~𝐫𝐪𝐫~)+(1(𝐫𝐪~+𝐫~𝐪))𝐫],𝐪~=[q~1q~2],𝐫~=[r~1r~2],\begin{split}&\mathcal{L}\begin{bmatrix}\widetilde{{\bf q}}\\[4.0pt] \widetilde{{\bf r}}\end{bmatrix}=\mathrm{i}\begin{bmatrix}\widetilde{{\bf q}}_{x}-{\bf q}\partial_{-}^{-1}({\bf r}^{\top}\widetilde{{\bf q}}-\widetilde{{\bf r}}^{\top}{\bf q})-\big{(}\partial_{-}^{-1}(\widetilde{{\bf q}}{\bf r}^{\top}+{\bf q}\widetilde{{\bf r}}^{\top})\big{)}{\bf q}\\[4.0pt] -\widetilde{{\bf r}}_{x}-{\bf r}\partial_{-}^{-1}(\widetilde{{\bf q}}^{\top}{\bf r}-{\bf q}^{\top}\widetilde{{\bf r}})+\big{(}\partial_{-}^{-1}({\bf r}\widetilde{{\bf q}}^{\top}+\widetilde{{\bf r}}{\bf q}^{\top})\big{)}{\bf r}\end{bmatrix},\ \ \ \ \ \ \ \begin{split}\widetilde{{\bf q}}=&\begin{bmatrix}\widetilde{q}_{1}&\widetilde{q}_{2}\end{bmatrix},\\[4.0pt] \widetilde{{\bf r}}=&\begin{bmatrix}\widetilde{r}_{1}&\ \widetilde{r}_{2}\end{bmatrix},\end{split}\end{split}

where 1=xdy\partial_{-}^{-1}=\int_{-\infty}^{x}\mathrm{d}y. The adjoint operator of \mathcal{L} is defined as

(2.5) A[𝐪~𝐫~]=i[𝐪~x𝐫+1(𝐪𝐪~+𝐫~𝐫)(+1(𝐪~𝐪+𝐫𝐫~))𝐫𝐫~x+𝐪+1(𝐪~𝐪+𝐫𝐫~)(+1(𝐪𝐪~+𝐫~𝐫))𝐪],\mathcal{L}^{A}\begin{bmatrix}\widetilde{{\bf q}}\\[4.0pt] \widetilde{{\bf r}}\end{bmatrix}=\mathrm{i}\begin{bmatrix}-\widetilde{{\bf q}}_{x}-{\bf r}\partial_{+}^{-1}({\bf q}^{\top}\widetilde{{\bf q}}+\widetilde{{\bf r}}^{\top}{\bf r})-\big{(}\partial_{+}^{-1}(\widetilde{{\bf q}}{\bf q}^{\top}+{\bf r}\widetilde{{\bf r}}^{\top})\big{)}{\bf r}\\[4.0pt] \widetilde{{\bf r}}_{x}+{\bf q}\partial_{+}^{-1}(\widetilde{{\bf q}}^{\top}{\bf q}+{\bf r}^{\top}\widetilde{{\bf r}})-\big{(}\partial_{+}^{-1}({\bf q}\widetilde{{\bf q}}^{\top}+\widetilde{{\bf r}}{\bf r}^{\top})\big{)}{\bf q}\end{bmatrix},

where +1=x+dy\partial_{+}^{-1}=\int_{x}^{+\infty}\mathrm{d}y. In this case, given the value of nn and the symmetry relation between 𝐪(x,t){\bf q}(x,t) and 𝐫(x,t){\bf r}(x,t), the corresponding integer order integrable equation can be obtained. In order to introduce the fractional integrable equations, we need to make some appropriate changes to the function ()\mathcal{F}(\mathcal{L}). That is to say that we need to add the fractional power of the operator \mathcal{L} to ()\mathcal{F}(\mathcal{L}). In this paper, we take ()=(β+α)2|2|ϵ\mathcal{F}(\mathcal{L})=(\beta+\alpha\mathcal{L})\mathcal{L}^{2}|\mathcal{L}^{2}|^{\epsilon} with ϵ[0,1)\epsilon\in[0,1), α,β\alpha,\beta\in\mathbb{R}, then

(2.6) [𝐪𝐫]t=σ3|2|ϵ[iβ(𝐪xx2𝐪𝐫𝐪)α(𝐪xxx3𝐪x𝐫𝐪3𝐪𝐫𝐪x)iβ(𝐫xx2𝐫𝐪𝐫)+α(𝐫xxx3𝐫x𝐪𝐫3𝐫𝐪𝐫x)],\begin{bmatrix}{\bf q}\\ {\bf r}\end{bmatrix}_{t}=\sigma_{3}|\mathcal{L}^{2}|^{\epsilon}\begin{bmatrix}\mathrm{i}\beta({\bf q}_{xx}-2{\bf q}{\bf r}^{\top}{\bf q})-\alpha({\bf q}_{xxx}-3{\bf q}_{x}{\bf r}^{\top}{\bf q}-3{\bf q}{\bf r}^{\top}{\bf q}_{x})\\[4.0pt] \mathrm{i}\beta({\bf r}_{xx}-2{\bf r}{\bf q}^{\top}{\bf r})+\alpha({\bf r}_{xxx}-3{\bf r}_{x}{\bf q}^{\top}{\bf r}-3{\bf r}{\bf q}^{\top}{\bf r}_{x})\end{bmatrix},

where σ3=diag(1,1)\sigma_{3}={\rm diag}(1,-1). In particular, when β=0\beta=0, 𝐫=σ𝐪,σ=±1{\bf r}^{\top}=\sigma{\bf q}^{\dagger},\ \sigma=\pm 1, we can derive the fractional coupled complex mKdV equation, and when α=0\alpha=0, 𝐫=σ𝐪,σ=±1{\bf r}^{\top}=\sigma{\bf q}^{\dagger},\ \sigma=\pm 1, we can derive the fractional coupled NLS equation. Without loss of generality, we take β=12\beta=\frac{1}{2}, 𝐫=𝐪{\bf r}^{\top}=-{\bf q}^{\dagger}, then we can get the fcHirota equation which can be regarded as the fractional type to the coupled Hirota equation (1.1). Under this case, the corresponding operator ()\mathcal{F}(\mathcal{L}) becomes h()=(12+α)2|2|ϵ\mathcal{F}_{h}(\mathcal{L})=(\frac{1}{2}+\alpha\mathcal{L})\mathcal{L}^{2}|\mathcal{L}^{2}|^{\epsilon}. The explicit form of the fcHirota equation will be given in subsection 2.4.

Considering the linearization of the fcHirota equation (2.6) (i.e. when β=12,𝐫=𝐪\beta=\frac{1}{2},\ {\bf r}^{\top}=-{\bf q}^{\dagger})

(2.7) i𝐪t+|2|ϵ(12𝐪xx+iα𝐪xxx)=0,\mathrm{i}{\bf q}_{t}+|-\partial^{2}|^{\epsilon}\Big{(}\frac{1}{2}{\bf q}_{xx}+\mathrm{i}\alpha{\bf q}_{xxx}\Big{)}=0,

where |2|ϵ|-\partial^{2}|^{\epsilon} is the Riesz fractional derivative [13]. We substitute the formal solution

(2.8) 𝐪=[q1q2][ei(k1xω1(k1)t)ei(k2xω2(k2)t)]{\bf q}=\begin{bmatrix}q_{1}&q_{2}\end{bmatrix}\thicksim\begin{bmatrix}\mathrm{e}^{\mathrm{i}\big{(}k_{1}x-\omega_{1}(k_{1})t\big{)}}&\mathrm{e}^{\mathrm{i}\big{(}k_{2}x-\omega_{2}(k_{2})t\big{)}}\end{bmatrix}

into the equation (2.7), then the anomalous dispersive relations can be obtained

(2.9) ωj(kj)=h(kj)=(12αkj)kj2|kj2|ϵ,j=1,2,\omega_{j}(k_{j})=\mathcal{F}_{h}(-k_{j})=(\frac{1}{2}-\alpha k_{j})k_{j}^{2}|k_{j}^{2}|^{\epsilon},\ \ \ j=1,2,

in which we have h(kj)=ωj(kj)\mathcal{F}_{h}(k_{j})=\omega_{j}(-k_{j}).

2.2   The direct scattering

We assume that the potential 𝐪(x,t){\bf q}(x,t) is sufficiently smooth and rapidly tends to zero as |x||x|\to\infty. In integer order integrable equations, the matrix 𝐕(λ;x,t){\bf V}(\lambda;x,t) can be expressed as a matrix function concerning λ\lambda, while for the fractional integrable equations in the sense of this paper, the matrix 𝐕(λ;x,t){\bf V}(\lambda;x,t) usually cannot be given precisely. Nevertheless, here we need to give the constraints [16]

(2.10) {𝐕j(λ;x,t)0,j=1,2,3,𝐕4(λ;x,t)ih(2λ)𝕀2,|x|.\begin{cases}{\bf V}_{j}(\lambda;x,t)\to 0,\ \ j=1,2,3,\\[4.0pt] {\bf V}_{4}(\lambda;x,t)\to\mathrm{i}\mathcal{F}_{h}(2\lambda)\mathbb{I}_{2},\end{cases}\ \ |x|\to\infty.

Therefore, we can derive the asymptotic behavior

(2.11) Φ±(λ;x,t)eiλΛx+ih(2λ)Ωt,|x|,\Phi^{\pm}(\lambda;x,t)\sim\mathrm{e}^{-\mathrm{i}\lambda\Lambda x+\mathrm{i}\mathcal{F}_{h}(2\lambda)\Omega t},\ \ |x|\to\infty,

where Ω=diag(0,1,1)\Omega={\rm diag}(0,1,1), Φ±(λ;x,t)=[ϕ1±,ϕ2±,ϕ3±]\Phi^{\pm}(\lambda;x,t)=\begin{bmatrix}\phi^{\pm}_{1},&\phi^{\pm}_{2},&\phi^{\pm}_{3}\end{bmatrix}, and the superscripts ± refer to the cases x±x\to\pm\infty. Then the modified Jost solutions Ψ±(λ;x,t)\Psi^{\pm}(\lambda;x,t) can be defined as

(2.12) Ψ±(λ;x,t)=Φ±(λ;x,t)eiλΛxih(2λ)Ωt𝕀3,|x|.\Psi^{\pm}(\lambda;x,t)=\Phi^{\pm}(\lambda;x,t)\mathrm{e}^{\mathrm{i}\lambda\Lambda x-\mathrm{i}\mathcal{F}_{h}(2\lambda)\Omega t}\rightarrow\mathbb{I}_{3},\ \ \ |x|\to\infty.

And we can get an equation of Ψ(λ;x,t)\Psi(\lambda;x,t), which is equivalent to the equation (2.1a)

(2.13) Ψx=iλ[Λ,Ψ]+𝐔0Ψ.\Psi_{x}=-\mathrm{i}\lambda[\Lambda,\Psi]+{\bf U}_{0}\Psi.

In addition, the Volterra integral equations for Ψ±(λ;x,t)\Psi^{\pm}(\lambda;x,t) can be given as

(2.14) Ψ±(λ;x)=𝕀3+±xeiλadΛ^(xy)𝐔0(y)Ψ±(λ;y)𝑑y,\Psi^{\pm}(\lambda;x)=\mathbb{I}_{3}+\int_{\pm\infty}^{x}\mathrm{e}^{-\mathrm{i}\lambda{\rm ad}\widehat{\Lambda}(x-y)}{\bf U}_{0}(y)\Psi^{\pm}(\lambda;y)dy,

where eadΛ^𝐀=eΛ𝐀eΛ,\mathrm{e}^{{\rm ad}\widehat{\Lambda}}{\bf A}=\mathrm{e}^{\Lambda}{\bf A}\mathrm{e}^{-\Lambda}, Ψ±(λ;x,t)=[ψ1±,ψ2±,ψ3±]\Psi^{\pm}(\lambda;x,t)=\begin{bmatrix}\psi^{\pm}_{1},&\psi^{\pm}_{2},&\psi^{\pm}_{3}\end{bmatrix}. Let +={λ|λ>0},={λ|λ<0}.\mathbb{C^{+}}=\{\lambda|\Im\lambda>0\},\ \mathbb{C^{-}}=\{\lambda|\Im\lambda<0\}. Based on the equation (2.14), we can find that the first column of Ψ+\Psi^{+} (i.e., ψ1+\psi^{+}_{1}) only contains the exponential factor e2iλ(xy)\mathrm{e}^{2\mathrm{i}\lambda(x-y)}, which decays when λ\lambda\in\mathbb{C^{-}} due to the condition y>xy>x in the integral. Similarly, the second and the third columns (i.e., ψ2+,ψ3+\psi^{+}_{2},\ \psi^{+}_{3}) decay in the region λ+\lambda\in\mathbb{C^{+}}. We can analyze the analyticity of Ψ\Psi^{-} in the same way, and then we summarize the above analysis as follows: for any x,tx,t\in\mathbb{R}, ψ1,ψ2+,ψ3+\psi_{1}^{-},\ \psi_{2}^{+},\ \psi_{3}^{+} are analytic for λ+\lambda\in\mathbb{C}^{+}, while ψ1+,ψ2,ψ3\psi_{1}^{+},\ \psi_{2}^{-},\ \psi_{3}^{-} are analytic for λ\lambda\in\mathbb{C}^{-}.

From above, we know Φ±(λ;x,t)\Phi^{\pm}(\lambda;x,t) can be regarded as the fundamental solution of the equation (2.1). By the theory of ordinary differential equations, there exists a matrix 𝐒(λ)=(sij(λ))i,j=1,2,3{\bf S}(\lambda)=\left(s_{ij}(\lambda)\right)_{i,j=1,2,3} between them obeying the relation

(2.15) Φ=Φ+𝐒(λ),λ,\Phi^{-}=\Phi^{+}{\bf S}(\lambda),\ \ \ \ \lambda\in\mathbb{R},

and the matrix 𝐒(λ){\bf S}(\lambda) is called the scattering matrix. Combined with the equation (2.13), the equation (2.15) can be rewritten as

(2.16) Ψ=Ψ+eiλadΛ^x+ih(2λ)adΩ^t𝐒(λ),λ,\Psi^{-}=\Psi^{+}\mathrm{e}^{-\mathrm{i}\lambda{\rm ad}\widehat{\Lambda}x+\mathrm{i}\mathcal{F}_{h}(2\lambda){\rm ad}\widehat{\Omega}t}{\bf S}(\lambda),\ \ \ \lambda\in\mathbb{R},

where eadΩ^𝐀=eΩ𝐀eΩ.\mathrm{e}^{{\rm ad}\widehat{\Omega}}{\bf A}=\mathrm{e}^{\Omega}{\bf A}\mathrm{e}^{-\Omega}. Now we assume detΦ±=μ(λ)\det\Phi^{\pm}=\mu(\lambda) which implies det𝐒(λ)=1\det{\bf S}(\lambda)=1. Using (2.15),

(2.17) s1j(λ)=1μ|ϕj,ϕ2+,ϕ3+|,s2j(λ)=1μ|ϕ1+,ϕj,ϕ3+|,s3j(λ)=1μ|ϕj,ϕ1+,ϕ2+|,j=1,2,3,s_{1j}(\lambda)=\frac{1}{\mu}\big{|}\phi_{j}^{-},\phi_{2}^{+},\phi_{3}^{+}\big{|},\ \ s_{2j}(\lambda)=\frac{1}{\mu}\big{|}\phi_{1}^{+},\phi_{j}^{-},\phi_{3}^{+}\big{|},\ \ s_{3j}(\lambda)=\frac{1}{\mu}\big{|}\phi_{j}^{-},\phi_{1}^{+},\phi_{2}^{+}\big{|},\ \ \ \ j=1,2,3,

and we can find that s11(λ)s_{11}(\lambda) is analytic in +\mathbb{C^{+}}, {sjk(λ)}j,k=2,3\{s_{jk}(\lambda)\}_{j,k=2,3} are analytic in \mathbb{C^{-}}. In general, s12(λ),s13(λ)s_{12}(\lambda),\ s_{13}(\lambda), s21(λ),s31(λ)s_{21}(\lambda),\ s_{31}(\lambda) cannot be extended off the real λ\lambda-axis.

2.3   The inverse scattering

In what follows, we shall formulate the RHP using the properties of Ψ±(λ;x,t)\Psi^{\pm}(\lambda;x,t). To this end, we combine the ideas in [30] to construct two matrix functions 𝐏±(λ;x,t){\bf P}^{\pm}(\lambda;x,t) which are analytic in ±\mathbb{C}^{\pm}, respectively,

(2.18) 𝐏+(λ;x,t)=[ψ1ψ2+ψ3+]=Ψ𝐇1+Ψ+𝐇2,𝐏(λ;x,t)=[ψ~1ψ~2+ψ~3+]=𝐇1Ψ~+𝐇2Ψ~+,\begin{split}&{\bf P}^{+}(\lambda;x,t)=\begin{bmatrix}\psi_{1}^{-}&\psi_{2}^{+}&\psi_{3}^{+}\end{bmatrix}=\Psi^{-}{\bf H}_{1}+\Psi^{+}{\bf H}_{2},\\ &{\bf P}^{-}(\lambda;x,t)=\begin{bmatrix}\widetilde{\psi}^{-}_{1}&\widetilde{\psi}^{+}_{2}&\widetilde{\psi}^{+}_{3}\end{bmatrix}^{\top}={\bf H}_{1}\widetilde{\Psi}^{-}+{\bf H}_{2}\widetilde{\Psi}^{+},\end{split}

where

(2.19) 𝐇1=diag(1,0,0),𝐇2=diag(0,1,1),Ψ~±=(Ψ±)1=[ψ~1±ψ~2±ψ~3±].{\bf H}_{1}={\rm diag}(1,0,0),\ \ \ \ {\bf H}_{2}={\rm diag}(0,1,1),\ \ \ \widetilde{\Psi}^{\pm}=(\Psi^{\pm})^{-1}=\begin{bmatrix}\widetilde{\psi}^{\pm}_{1}&\widetilde{\psi}^{\pm}_{2}&\widetilde{\psi}^{\pm}_{3}\end{bmatrix}^{\top}.

There are some properties of 𝐏±(λ;x,t){\bf P}^{\pm}(\lambda;x,t) which can be derived through a series of complex analyses, and we summarize them in the proposition 1.

Proposition 1.

The matrix functions 𝐏±(λ;x,t){\bf P}^{\pm}(\lambda;x,t) have the following properties:
(1)(1) det𝐏+(λ;x,t)=s11(λ),det𝐏(λ;x,t)=s^11(λ),\det{\bf P}^{+}(\lambda;x,t)=s_{11}(\lambda),\ \det{\bf P}^{-}(\lambda;x,t)=\widehat{s}_{11}(\lambda), where 𝐒1(λ)=(s^jk(λ))j,k=1,2,3{\bf S}^{-1}(\lambda)=\big{(}\widehat{s}_{jk}(\lambda)\big{)}_{j,k=1,2,3}.
(2)(2) limx+𝐏+(λ;x,t)=[s11(λ)00𝕀2],λ+,\lim\limits_{x\to+\infty}{\bf P}^{+}(\lambda;x,t)=\begin{bmatrix}s_{11}(\lambda)&0\\[4.0pt] 0&\mathbb{I}_{2}\end{bmatrix},\ \lambda\in\mathbb{C^{+}},    limx𝐏(λ;x,t)=[s^11(λ)00𝕀2],λ.\lim\limits_{x\to-\infty}{\bf P}^{-}(\lambda;x,t)=\begin{bmatrix}\widehat{s}_{11}(\lambda)&0\\[4.0pt] 0&\mathbb{I}_{2}\end{bmatrix},\ \lambda\in\mathbb{C^{-}}.
(3)(3) 𝐏±(λ;x,t)𝕀3,λ±{\bf P}^{\pm}(\lambda;x,t)\to\mathbb{I}_{3},\ \ \lambda\in\mathbb{C}^{\pm}.

Moreover, from the fact that 𝐔0(x,t)=𝐔0(x,t){\bf U}_{0}^{\dagger}(x,t)=-{\bf U}_{0}(x,t), we have Ψ(λ;x,t)=Ψ1(λ;x,t)\Psi^{\dagger}(\lambda^{*};x,t)=\Psi^{-1}(\lambda;x,t). Then the symmetry relation of 𝐒(λ){\bf S}(\lambda) can be obtained by combining the equation (2.16)

(2.20) 𝐒(λ)=𝐒1(λ),{\bf S}^{\dagger}(\lambda^{*})={\bf S}^{-1}(\lambda),

which implies s11(λ)=s^11(λ),λs^{*}_{11}(\lambda^{*})=\widehat{s}_{11}(\lambda),\ \lambda\in\mathbb{C^{-}}. Note that the inverse of the solution of the adjoint matrix spectral problem is exactly the solution of the matrix spectral problem. So we can define a sectional analytic solution 𝐌(λ;x,t){\bf M}(\lambda;x,t)

(2.21) 𝐌+(λ;x,t)=𝐏+(λ;x,t),λ+,𝐌(λ;x,t)=(𝐏(λ;x,t))1,λ.\begin{split}&{\bf M}^{+}(\lambda;x,t)={\bf P}^{+}(\lambda;x,t),\ \ \ \ \ \ \ \ \ \ \lambda\in\mathbb{C^{+}},\\ &{\bf M}^{-}(\lambda;x,t)=\big{(}{\bf P}^{-}(\lambda;x,t)\big{)}^{-1},\ \ \ \lambda\in\mathbb{C^{-}}.\end{split}

Then we can formulate the following RHP.
Riemann-Hilbert problem 11We can find a matrix 𝐌(λ;x,t){\bf M}(\lambda;x,t) with the following properties:

  • 𝐀𝐧𝐚𝐥𝐲𝐭𝐢𝐜𝐢𝐭𝐲:{\bf Analyticity:} 𝐌±(λ;x,t){\bf M}^{\pm}(\lambda;x,t) are analytic in ±\mathbb{C}^{\pm}, respectively.

  • 𝐉𝐮𝐦𝐩𝐜𝐨𝐧𝐝𝐢𝐭𝐢𝐨𝐧:{\bf Jump\ condition:} The two matrix functions 𝐌±(λ;x,t){\bf M}^{\pm}(\lambda;x,t) can be linked by

    𝐌+(λ;x,t)=𝐌(λ;x,t)𝐉(λ;x,t),{\bf M}^{+}(\lambda;x,t)={\bf M}^{-}(\lambda;x,t){\bf J}(\lambda;x,t),

    where the matrix 𝐉(λ;x,t){\bf J}(\lambda;x,t) is

    𝐉(λ;x,t)=eiλadΛ^x+ih(2λ)adΩ^t((𝐇1𝐒1+𝐇2)(𝐒𝐇1+𝐇2))=[1ei(2λx+h(2λ)t)s^12ei(2λx+h(2λ)t)s^13ei(2λx+h(2λ)t)s2110ei(2λx+h(2λ)t)s3101].\begin{split}{\bf J}(\lambda;x,t)&=\mathrm{e}^{-\mathrm{i}\lambda{\rm ad}\widehat{\Lambda}x+\mathrm{i}\mathcal{F}_{h}(2\lambda){\rm ad}\widehat{\Omega}t}\big{(}({\bf H}_{1}{\bf S}^{-1}+{\bf H}_{2})({\bf S}{\bf H}_{1}+{\bf H}_{2})\big{)}\\[4.0pt] &=\begin{bmatrix}1&\mathrm{e}^{-\mathrm{i}(2\lambda x+\mathcal{F}_{h}(2\lambda)t)}\widehat{s}_{12}&\mathrm{e}^{-\mathrm{i}(2\lambda x+\mathcal{F}_{h}(2\lambda)t)}\widehat{s}_{13}\\[4.0pt] \mathrm{e}^{\mathrm{i}(2\lambda x+\mathcal{F}_{h}(2\lambda)t)}s_{21}&1&0\\[4.0pt] \mathrm{e}^{\mathrm{i}(2\lambda x+\mathcal{F}_{h}(2\lambda)t)}s_{31}&0&1\end{bmatrix}.\end{split}
  • 𝐍𝐨𝐫𝐦𝐚𝐥𝐢𝐳𝐚𝐭𝐢𝐨𝐧:{\bf Normalization:} 𝐌(λ;x,t)𝕀3{\bf M}(\lambda;x,t)\rightarrow\mathbb{I}_{3}, as λ\lambda\to\infty.

The RHP with zeros generates soliton solutions. The uniqueness of the RHP 11 does not hold unless the zeros of det𝐏±(λ;x,t)\det{\bf P}^{\pm}(\lambda;x,t) in ±\mathbb{C}^{\pm} are specified and the kernel structures of 𝐏±(λ;x,t){\bf P}^{\pm}(\lambda;x,t) at these zeros are determined. In view of (2.20), it is clear that if λ\lambda is a zero of s11(λ)s_{11}(\lambda), λ\lambda^{*} will be a zero of s^11(λ)\widehat{s}_{11}(\lambda). Based on these results, we suppose that s11(λ)s_{11}(\lambda) has nn simple zeros {λk}1n\{\lambda_{k}\}_{1}^{n}. Accordingly, each zero of s^11(λ)\widehat{s}_{11}(\lambda) is complex conjugate to that of s11(λ)s_{11}(\lambda), and we define them by {λ^j}1n\{\widehat{\lambda}_{j}\}_{1}^{n}. Under this assumption, the kernel of 𝐏+(λ;x,t){\bf P}^{+}(\lambda;x,t) contains a single column vector |vk=[v1k,v2k,v3k]|v_{k}\rangle=\begin{bmatrix}v_{1k},&v_{2k},&v_{3k}\end{bmatrix}^{\top} and the kernel of 𝐏(λ;x,t){\bf P}^{-}(\lambda;x,t) contains a single row vector v^j|=[v^j1,v^j2,v^j3]\langle\widehat{v}_{j}|=\begin{bmatrix}\widehat{v}_{j1},&\widehat{v}_{j2},&\widehat{v}_{j3}\end{bmatrix},

(2.22) 𝐏+(λk;x,t)|vk=0,v^j|𝐏(λ^j;x,t)=0,j,k=1,2,,n.{\bf P}^{+}(\lambda_{k};x,t)|v_{k}\rangle=0,\ \ \ \ \langle\widehat{v}_{j}|{\bf P}^{-}(\widehat{\lambda}_{j};x,t)=0,\ \ \ \ j,k=1,2,\cdots,n.

Then we should eliminate the zero structures of 𝐏±(λ;x,t){\bf P}^{\pm}(\lambda;x,t) at λk,λ^j\lambda_{k},\ \widehat{\lambda}_{j} to ensure that the RHP 11 can be solved via the Plemelj formula. Combining the idea in [30], we assume

(2.23) 𝐆+(λ;x,t)=𝕀3𝐯𝐍1Γ^𝐯^,(𝐆(λ;x,t))1=𝕀3+𝐯Γ𝐍1𝐯^,{\bf G}^{+}(\lambda;x,t)=\mathbb{I}_{3}-{\bf v}{\bf N}^{-1}\widehat{\Gamma}\widehat{{\bf v}},\ \ \ \ \ ({\bf G}^{-}(\lambda;x,t))^{-1}=\mathbb{I}_{3}+{\bf v}\Gamma{\bf N}^{-1}\widehat{{\bf v}},

where 𝐍(λ;x,t){\bf N}(\lambda;x,t) is a matrix of order nn with its (j,k)(j,k)-th element given by njk=v^j|vkλkλ^j,n_{jk}=\frac{\langle\widehat{v}_{j}|v_{k}\rangle}{\lambda_{k}-\widehat{\lambda}_{j}}, and

𝐯=(|v1,,|vn),Γ=diag((λλ1)1,,(λλn)1),𝐯^=(v^1|,,v^n|),Γ^=diag((λλ^1)1,,(λλ^n)1).\begin{split}&{\bf v}=\big{(}|v_{1}\rangle,\cdots,|v_{n}\rangle\big{)},\ \ \ \ \Gamma={\rm diag}\big{(}(\lambda-\lambda_{1})^{-1},\cdots,(\lambda-\lambda_{n})^{-1}\big{)},\\ &\widehat{{\bf v}}=\big{(}\langle\widehat{v}_{1}|,\cdots,\langle\widehat{v}_{n}|\big{)}^{\top},\ \ \widehat{\Gamma}={\rm diag}\big{(}(\lambda-\widehat{\lambda}_{1})^{-1},\cdots,(\lambda-\widehat{\lambda}_{n})^{-1}\big{)}.\end{split}

Then there is 𝐆+(λ;x,t)(𝐆(λ;x,t))1=𝕀3.{\bf G}^{+}(\lambda;x,t)({\bf G}^{-}(\lambda;x,t))^{-1}=\mathbb{I}_{3}. From the above, we can construct two matrix functions

(2.24) 𝐌~+(λ;x,t)=𝐌+(λ;x,t)(𝐆+(λ;x,t))1,𝐌~(λ;x,t)=𝐌(λ;x,t)(𝐆(λ;x,t))1.\widetilde{{\bf M}}^{+}(\lambda;x,t)={\bf M}^{+}(\lambda;x,t)\big{(}{\bf G}^{+}(\lambda;x,t)\big{)}^{-1},\ \ \ \ \ \widetilde{{\bf M}}^{-}(\lambda;x,t)={\bf M}^{-}(\lambda;x,t)\big{(}{\bf G}^{-}(\lambda;x,t)\big{)}^{-1}.

Then a new RHP can be constructed.
Riemann-Hilbert problem 22The matrix 𝐌~(λ;x,t)\widetilde{{\bf M}}(\lambda;x,t) has the following properties:

  • 𝐀𝐧𝐚𝐥𝐲𝐭𝐢𝐜𝐢𝐭𝐲:{\bf Analyticity:} 𝐌~±(λ;x,t)\widetilde{{\bf M}}^{\pm}(\lambda;x,t) is analytic in ±,\mathbb{C}^{\pm}, respectively.

  • 𝐉𝐮𝐦𝐩𝐜𝐨𝐧𝐝𝐢𝐭𝐢𝐨𝐧:{\bf Jump\ condition:} When λ\lambda\in\mathbb{R}, the jump relation between 𝐌~±(λ;x,t)\widetilde{{\bf M}}^{\pm}(\lambda;x,t) is as follows

    𝐌~+(λ;x,t)=𝐌~(λ;x,t)𝐉~(λ;x,t),\widetilde{{\bf M}}^{+}(\lambda;x,t)=\widetilde{{\bf M}}^{-}(\lambda;x,t)\ \widetilde{{\bf J}}(\lambda;x,t),

    where the jump matrix is

    𝐉~(λ;x,t)=𝐆(λ;x,t)𝐉(λ;x,t)(𝐆+(λ;x,t))1.\widetilde{{\bf J}}(\lambda;x,t)={\bf G}^{-}(\lambda;x,t){\bf J}(\lambda;x,t)\big{(}{\bf G}^{+}(\lambda;x,t)\big{)}^{-1}.
  • 𝐍𝐨𝐫𝐦𝐚𝐥𝐢𝐳𝐚𝐭𝐢𝐨𝐧:{\bf Normalization:} 𝐌~(λ;x,t)𝕀3\widetilde{{\bf M}}(\lambda;x,t)\rightarrow\mathbb{I}_{3}, as λ\lambda\to\infty.

Then the solution to the RHP 22 can be obtained by applying the Plemelj formula

(2.25) 𝐌~(λ)=𝕀3+12πi𝐌~(ξ)(𝐆(ξ)(𝐉(ξ)𝕀)(𝐆+(ξ))1)ξλ𝑑ξ.\widetilde{\bf M}(\lambda)=\mathbb{I}_{3}+\frac{1}{2\pi\mathrm{i}}\int_{\mathbb{R}}\frac{\widetilde{\bf M}^{-}(\xi)\left({\bf G}^{-}(\xi)({\bf J}(\xi)-\mathbb{I})({\bf G}^{+}(\xi))^{-1}\right)}{\xi-\lambda}d\xi.

Thus, when λ+,\lambda\rightarrow+\infty,

(2.26) 𝐌+(λ)=𝕀31λ(12πi𝐌~(ξ)(𝐆(ξ)(𝐉(ξ)𝕀)(𝐆+(ξ))1)𝑑ξ+𝐯𝐍1𝐯^)+𝒪(λ2).{\bf M}^{+}(\lambda)=\mathbb{I}_{3}-\frac{1}{\lambda}\left(\frac{1}{2\pi\mathrm{i}}\int_{\mathbb{R}}\widetilde{\bf M}^{-}(\xi)\Big{(}{\bf G}^{-}(\xi)({\bf J}(\xi)-\mathbb{I})({\bf G}^{+}(\xi))^{-1}\Big{)}d\xi+{\bf v}{\bf N}^{-1}\widehat{{\bf v}}\right)+\mathcal{O}(\lambda^{-2}).

To recover the potential functions q1(x,t)q_{1}(x,t) and q2(x,t)q_{2}(x,t), we expand 𝐌+(λ;x,t){\bf M}^{+}(\lambda;x,t) at large-λ\lambda as

(2.27) 𝐌+(λ;x,t)=𝕀3+1λ𝐌1+(x,t)+1λ2𝐌2+(x,t)+.{\bf M}^{+}(\lambda;x,t)=\mathbb{I}_{3}+\frac{1}{\lambda}\ {\bf M}^{+}_{1}(x,t)+\frac{1}{\lambda^{2}}\ {\bf M}^{+}_{2}(x,t)+\cdots.

Then the potential functions can be recovered by substituting (2.27) into (2.13) and comparing the coefficients of both sides of the equations to the same power of λ\lambda. From the coefficient of the highest power of λ\lambda, we can obtain

(2.28) 𝐔0=i[Λ,𝐌1+]=limλ+iλ[Λ,𝐌+].{\bf U}_{0}=\mathrm{i}[\Lambda,{\bf M}^{+}_{1}]=\lim\limits_{\lambda\rightarrow+\infty}\mathrm{i}\lambda[\Lambda,{\bf M}^{+}].

Therefore

(2.29) q1(x,t)=2i(𝐌1+(x,t))12,q2(x,t)=2i(𝐌1+(x,t))13.q_{1}(x,t)=2\mathrm{i}\big{(}{\bf M}^{+}_{1}(x,t)\big{)}_{12},\ \ \ \ q_{2}(x,t)=2\mathrm{i}\big{(}{\bf M}^{+}_{1}(x,t)\big{)}_{13}.

2.4   The explicit form of the fcHirota equation

Based on the idea in [31, 30], we can construct the squared eigenfunctions {𝐙1±(λ;x,t),𝐙2±(λ;x,t)}\{{\bf Z}_{1}^{\pm}(\lambda;x,t),\ {\bf Z}_{2}^{\pm}(\lambda;x,t)\} and the adjoint squared eigenfunctions {Ω1±(λ;x,t),Ω2±(λ;x,t)}\{\Omega_{1}^{\pm}(\lambda;x,t),\ \Omega_{2}^{\pm}(\lambda;x,t)\}, which are also the eigenfunctions of the recursion operator \mathcal{L} and its adjoint A\mathcal{L}^{A}, respectively,

(2.30) 𝐙j±=2λ𝐙j±,AΩj±=2λΩj±,j=1,2,\mathcal{L}{\bf Z}_{j}^{\pm}=2\lambda{\bf Z}_{j}^{\pm},\ \ \ \ \mathcal{L}^{A}\Omega_{j}^{\pm}=2\lambda\Omega_{j}^{\pm},\ \ j=1,2,

where

(2.31) 𝐙j+=[ϕ1,j+1+ϕ~12+ϕ1,j+1+ϕ~13+ϕ2,j+1+ϕ~11+ϕ3,j+1+ϕ~11+],𝐙j=[ϕ11+ϕ~j+1,2+ϕ11+ϕ~j+1,3+ϕ21+ϕ~j+1,1+ϕ31+ϕ~j+1,1+],Ωj+=[φ^j1ϕ21φ^j1ϕ31φ^j2ϕ11φ^j3ϕ11],Ωj=[ϕ~11φ2jϕ~11φ3jϕ~12φ1jϕ~13φ1j],j=1,2,[φ1φ2]=[ϕ2ϕ3][s33s23s32s22],[φ^1φ^2]=[s^33s^23s^32s^22][ϕ~2ϕ~3],Φ~±=(Φ±)1=[ϕ~1±ϕ~2±ϕ~3±],ϕ~k±=[ϕ~k1±ϕ~k2±ϕ~k3±],k=1,2,3,φl=[φ1lφ2lφ3l],φ^l=[φ^l1φ^l2φ^l3],l=1,2.\begin{split}&{\bf Z}_{j}^{+}=\begin{bmatrix}\phi_{1,j+1}^{+}\ \widetilde{\phi}_{12}^{+}\\[4.0pt] \phi_{1,j+1}^{+}\ \widetilde{\phi}_{13}^{+}\\[4.0pt] \phi_{2,j+1}^{+}\ \widetilde{\phi}_{11}^{+}\\[4.0pt] \phi_{3,j+1}^{+}\ \widetilde{\phi}_{11}^{+}\end{bmatrix},\ \ {\bf Z}_{j}^{-}=\begin{bmatrix}\phi_{11}^{+}\ \widetilde{\phi}_{j+1,2}^{+}\\[4.0pt] \phi_{11}^{+}\ \widetilde{\phi}_{j+1,3}^{+}\\[4.0pt] \phi_{21}^{+}\ \widetilde{\phi}_{j+1,1}^{+}\\[4.0pt] \phi_{31}^{+}\ \widetilde{\phi}_{j+1,1}^{+}\end{bmatrix},\ \ \ \Omega_{j}^{+}=\begin{bmatrix}\ \ \ \widehat{\varphi}_{j1}\ \phi_{21}^{-}\\[4.0pt] \ \ \ \widehat{\varphi}_{j1}\ \phi_{31}^{-}\\[4.0pt] -\widehat{\varphi}_{j2}\ \phi_{11}^{-}\\[4.0pt] -\widehat{\varphi}_{j3}\ \phi_{11}^{-}\end{bmatrix},\ \ \Omega_{j}^{-}=\begin{bmatrix}-\widetilde{\phi}^{-}_{11}\ \varphi_{2j}\\[4.0pt] -\widetilde{\phi}^{-}_{11}\ \varphi_{3j}\\[4.0pt] \ \ \ \widetilde{\phi}^{-}_{12}\ \varphi_{1j}\\[4.0pt] \ \ \ \widetilde{\phi}^{-}_{13}\ \varphi_{1j}\end{bmatrix},\ \ j=1,2,\\[4.0pt] &\begin{bmatrix}\varphi_{1}&\varphi_{2}\end{bmatrix}=\begin{bmatrix}\phi_{2}^{-}&\phi_{3}^{-}\end{bmatrix}\begin{bmatrix}s_{33}&-s_{23}\\[4.0pt] -s_{32}&s_{22}\end{bmatrix},\ \ \ \ \ \ \ \begin{bmatrix}\widehat{\varphi}_{1}&\widehat{\varphi}_{2}\end{bmatrix}^{\top}=\begin{bmatrix}\widehat{s}_{33}&-\widehat{s}_{23}\\[4.0pt] -\widehat{s}_{32}&\widehat{s}_{22}\end{bmatrix}\begin{bmatrix}\widetilde{\phi}^{-}_{2}\\[4.0pt] \widetilde{\phi}^{-}_{3}\end{bmatrix},\\[4.0pt] &\ \ \widetilde{\Phi}^{\pm}=(\Phi^{\pm})^{-1}=\begin{bmatrix}\widetilde{\phi}^{\pm}_{1}&\widetilde{\phi}^{\pm}_{2}&\widetilde{\phi}^{\pm}_{3}\end{bmatrix}^{\top},\ \ \ \ \widetilde{\phi}^{\pm}_{k}=\begin{bmatrix}\widetilde{\phi}^{\pm}_{k1}&\widetilde{\phi}^{\pm}_{k2}&\widetilde{\phi}^{\pm}_{k3}\end{bmatrix},\ \ k=1,2,3,\\[4.0pt] &\ \ \ \varphi_{l}=\begin{bmatrix}\varphi_{1l}&\varphi_{2l}&\varphi_{3l}\end{bmatrix}^{\top},\ \ \ \ \widehat{\varphi}_{l}=\begin{bmatrix}\widehat{\varphi}_{l1}&\widehat{\varphi}_{l2}&\widehat{\varphi}_{l3}\end{bmatrix},\ \ l=1,2.\end{split}

and the eigenfunctions 𝐙j±(λ;x,t),Ωj±(λ;x,t)(j=1,2){\bf Z}_{j}^{\pm}(\lambda;x,t),\ \Omega_{j}^{\pm}(\lambda;x,t)\ (j=1,2) are all complete. Here, the superscript ± of 𝐙j±(λ;x,t){\bf Z}_{j}^{\pm}(\lambda;x,t) and Ωj±(λ;x,t)\Omega_{j}^{\pm}(\lambda;x,t) mean that they are analytic for λ±\lambda\in\mathbb{C}^{\pm}, respectively. Similarly,

(2.32) h()𝐙j±=h(2λ)𝐙j±,h(A)Ωj±=h(2λ)Ωj±,j=1,2.\mathcal{F}_{h}(\mathcal{L}){\bf Z}_{j}^{\pm}=\mathcal{F}_{h}(2\lambda){\bf Z}_{j}^{\pm},\ \ \ \ \mathcal{F}_{h}(\mathcal{L}^{A})\Omega_{j}^{\pm}=\mathcal{F}_{h}(2\lambda)\Omega_{j}^{\pm},\ \ j=1,2.

Then we assume a sufficiently smooth and decaying vector function ϑ(x,t)=[ϑ1,ϑ2,ϑ3,ϑ4]\vartheta(x,t)=\begin{bmatrix}\vartheta_{1},&\vartheta_{2},&\vartheta_{3},&\vartheta_{4}\end{bmatrix}^{\top} which may be expanded in terms of the eigenfunctions (2.31) as

(2.33) ϑ(x,t)=1π(Γ+s112(ξ)𝐅1(ξ;x,y,t)ϑ(y,t)dydξ+Γs^112(ξ)𝐅2(ξ;x,y,t)ϑ(y,t)dydξ),\vartheta(x,t)=-\frac{1}{\pi}\bigg{(}\int_{\Gamma_{\mathbb{R}}^{+}}s_{11}^{-2}(\xi)\int_{\mathbb{R}}{\bf F}_{1}(\xi;x,y,t)\vartheta(y,t)\mathrm{d}y\mathrm{d}\xi+\int_{\Gamma_{\mathbb{R}}^{-}}\widehat{s}_{11}^{\ -2}(\xi)\int_{\mathbb{R}}{\bf F}_{2}(\xi;x,y,t)\vartheta(y,t)\mathrm{d}y\mathrm{d}\xi\bigg{)},

where

(2.34) 𝐅1(λ;x,y,t)=j=12𝐙j+(λ;x,t)(Ωj+(λ;y,t)),𝐅2(λ;x,y,t)=j=12𝐙j(λ;x,t)(Ωj(λ;y,t)),{\bf F}_{1}(\lambda;x,y,t)=\sum\limits_{j=1}^{2}{\bf Z}_{j}^{+}(\lambda;x,t)\big{(}\Omega_{j}^{+}(\lambda;y,t)\big{)}^{\top},\ \ \ {\bf F}_{2}(\lambda;x,y,t)=\sum\limits_{j=1}^{2}{\bf Z}_{j}^{-}(\lambda;x,t)\big{(}\Omega_{j}^{-}(\lambda;y,t)\big{)}^{\top},

and Γ±\Gamma_{\mathbb{R}}^{\pm} are the semicircular contour in the upper and lower half plane evaluated from -\infty to ++\infty, respectively. Note that 𝐅1(λ;x,y,t){\bf F}_{1}(\lambda;x,y,t) is analytic in the upper half plane, while 𝐅2(λ;x,y,t){\bf F}_{2}(\lambda;x,y,t) is analytic in the lower half plane, and s112(λ),s^112(λ)s_{11}^{-2}(\lambda),\ \widehat{s}_{11}^{\ -2}(\lambda) are meromorphic in the upper and lower half-planes, respectively.

So we can use h()\mathcal{F}_{h}(\mathcal{L}) to act on the vector function ϑ(x,t)\vartheta(x,t) to get

(2.35) h()ϑ(x,t)=1π(Γ+h(2λ)s112(ξ)𝐅1(ξ;x,y,t)ϑ(y,t)dydξ+Γh(2λ)s^112(ξ)𝐅2(ξ;x,y,t)ϑ(y,t)dydξ).\mathcal{F}_{h}(\mathcal{L})\vartheta(x,t)=-\frac{1}{\pi}\bigg{(}\int_{\Gamma_{\mathbb{R}}^{+}}\mathcal{F}_{h}(2\lambda)s_{11}^{-2}(\xi)\int_{\mathbb{R}}{\bf F}_{1}(\xi;x,y,t)\vartheta(y,t)\mathrm{d}y\mathrm{d}\xi\\ +\int_{\Gamma_{\mathbb{R}}^{-}}\mathcal{F}_{h}(2\lambda)\widehat{s}_{11}^{\ -2}(\xi)\int_{\mathbb{R}}{\bf F}_{2}(\xi;x,y,t)\vartheta(y,t)\mathrm{d}y\mathrm{d}\xi\bigg{)}.

Then we take ϑ(x,t)=[𝐪𝐪]\vartheta(x,t)=\begin{bmatrix}\ \ \ {\bf q}^{\top}\\[3.0pt] -{\bf q}^{\dagger}\end{bmatrix}, yields

(2.36) h()[𝐪𝐪]=1π(Γ+|4ξ2|ϵs112(ξ)𝐅1(ξ;x,y,t)ϑ^(y,t)dydξ+Γ|4ξ2|ϵs^112(ξ)𝐅2(ξ;x,y,t)ϑ^(y,t)dydξ),\mathcal{F}_{h}(\mathcal{L})\begin{bmatrix}\ \ \ {\bf q}^{\top}\\[3.0pt] -{\bf q}^{\dagger}\end{bmatrix}=-\frac{1}{\pi}\bigg{(}\int_{\Gamma_{\mathbb{R}}^{+}}|4\xi^{2}|^{\epsilon}\ s_{11}^{-2}(\xi)\int_{\mathbb{R}}{\bf F}_{1}(\xi;x,y,t)\widehat{\vartheta}(y,t)\mathrm{d}y\mathrm{d}\xi\\ +\int_{\Gamma_{\mathbb{R}}^{-}}|4\xi^{2}|^{\epsilon}\ \widehat{s}_{11}^{\ -2}(\xi)\int_{\mathbb{R}}{\bf F}_{2}(\xi;x,y,t)\widehat{\vartheta}(y,t)\mathrm{d}y\mathrm{d}\xi\bigg{)},

where

(2.37) ϑ^(x,t)=[ϑ^1ϑ^2ϑ^3ϑ^4]=[12(q1xx+2q1(|q1|2+|q2|2))iα(q1xxx+3q1x(2|q1|2+|q2|2)+3q2xq1q2)12(q2xx+2q2(|q1|2+|q2|2))iα(q2xxx+3q1xq1q2+3q2x(|q1|2+2|q2|2))12(q1xx+2q1(|q1|2+|q2|2))iα(q1xxx+3q1x(2|q1|2+|q2|2)+3q2xq1q2)12(q2xx+2q2(|q1|2+|q2|2))iα(q2xxx+3q1xq1q2+3q2x(|q1|2+2|q2|2))].\widehat{\vartheta}(x,t)=\begin{bmatrix}\widehat{\vartheta}_{1}\\[4.0pt] \widehat{\vartheta}_{2}\\[4.0pt] \widehat{\vartheta}_{3}\\[4.0pt] \widehat{\vartheta}_{4}\end{bmatrix}=\begin{bmatrix}-\frac{1}{2}\big{(}q_{1xx}+2q_{1}(|q_{1}|^{2}+|q_{2}|^{2})\big{)}-\mathrm{i}\alpha\big{(}q_{1xxx}+3q_{1x}(2|q_{1}|^{2}+|q_{2}|^{2})+3q_{2x}q_{1}q_{2}^{*}\big{)}\\[4.0pt] -\frac{1}{2}\big{(}q_{2xx}+2q_{2}(|q_{1}|^{2}+|q_{2}|^{2})\big{)}-\mathrm{i}\alpha\big{(}q_{2xxx}+3q_{1x}q_{1}^{*}q_{2}+3q_{2x}(|q_{1}|^{2}+2|q_{2}|^{2})\big{)}\\[4.0pt] \ \ \ \frac{1}{2}\big{(}q_{1xx}^{*}+2q_{1}^{*}(|q_{1}|^{2}+|q_{2}|^{2})\big{)}-\mathrm{i}\alpha\big{(}q_{1xxx}^{*}+3q_{1x}^{*}(2|q_{1}|^{2}+|q_{2}|^{2})+3q_{2x}^{*}q_{1}^{*}q_{2}\big{)}\\[4.0pt] \ \ \ \frac{1}{2}\big{(}q_{2xx}^{*}+2q_{2}^{*}(|q_{1}|^{2}+|q_{2}|^{2})\big{)}-\mathrm{i}\alpha\big{(}q_{2xxx}^{*}+3q_{1x}^{*}q_{1}q_{2}^{*}+3q_{2x}^{*}(|q_{1}|^{2}+2|q_{2}|^{2})\big{)}\end{bmatrix}.

Therefore, we have the explicit representation of the fcHirota equation by combining the equations (2.3),  (2.6) and (2.36),

i𝐪^t+1π(Γ+|4ξ2|ϵs112(ξ)𝐅1(ξ;x,y,t)ϑ^(y,t)dydξ+Γ|4ξ2|ϵs^112(ξ)𝐅2(ξ;x,y,t)ϑ^(y,t)dydξ)=0,\mathrm{i}\widehat{{\bf q}}_{t}{+}\frac{1}{\pi}\bigg{(}\int_{\Gamma_{\mathbb{R}}^{+}}|4\xi^{2}|^{\epsilon}\ s_{11}^{-2}(\xi)\int_{\mathbb{R}}{\bf F}_{1}(\xi;x,y,t)\widehat{\vartheta}(y,t)\mathrm{d}y\mathrm{d}\xi{+}\int_{\Gamma_{\mathbb{R}}^{-}}|4\xi^{2}|^{\epsilon}\ \widehat{s}_{11}^{\ -2}(\xi)\int_{\mathbb{R}}{\bf F}_{2}(\xi;x,y,t)\widehat{\vartheta}(y,t)\mathrm{d}y\mathrm{d}\xi\bigg{)}{=}0,

where 𝐪^(x,t)=[q1,q2,q1,q2]\widehat{{\bf q}}(x,t)=\begin{bmatrix}q_{1},&q_{2},&q_{1}^{*},&q_{2}^{*}\end{bmatrix}. Then the fcHirota equation is given by

(2.38) {iq1t+1π(Γ+|4λ2|ϵs112(λ)τ11(λ;x,y,t)dydλ+Γ|4λ2|ϵs^112(λ)τ12(λ;x,y,t)dydλ)=0,iq2t+1π(Γ+|4λ2|ϵs112(λ)τ21(λ;x,y,t)dydλ+Γ|4λ2|ϵs^112(λ)τ22(λ;x,y,t)dydλ)=0,\begin{cases}\mathrm{i}q_{1t}+\frac{1}{\pi}\Big{(}\int_{\Gamma_{\mathbb{R}}^{+}}|4\lambda^{2}|^{\epsilon}\ s_{11}^{-2}(\lambda)\int_{\mathbb{R}}\tau_{11}(\lambda;x,y,t)\mathrm{d}y\mathrm{d}\lambda+\int_{\Gamma_{\mathbb{R}}^{-}}|4\lambda^{2}|^{\epsilon}\ \widehat{s}_{11}^{\ -2}(\lambda)\int_{\mathbb{R}}\tau_{12}(\lambda;x,y,t)\mathrm{d}y\mathrm{d}\lambda\Big{)}=0,\\[4.0pt] \mathrm{i}q_{2t}+\frac{1}{\pi}\Big{(}\int_{\Gamma_{\mathbb{R}}^{+}}|4\lambda^{2}|^{\epsilon}\ s_{11}^{-2}(\lambda)\int_{\mathbb{R}}\tau_{21}(\lambda;x,y,t)\mathrm{d}y\mathrm{d}\lambda+\int_{\Gamma_{\mathbb{R}}^{-}}|4\lambda^{2}|^{\epsilon}\ \widehat{s}_{11}^{\ -2}(\lambda)\int_{\mathbb{R}}\tau_{22}(\lambda;x,y,t)\mathrm{d}y\mathrm{d}\lambda\Big{)}=0,\end{cases}

where

(2.39) τj1(λ;x,y,t)=ϕ~1,j+1+ϕ11((ϕ12+φ^12+ϕ13+φ^22)ϑ^3+(ϕ12+φ^13+ϕ13+φ^23)ϑ^4)+ϕ~1,j+1+(ϕ12+φ^11+ϕ13+φ^21)(ϕ21ϑ^1+ϕ31ϑ^2),τj2(λ;x,y,t)=ϕ11+ϕ~11((ϕ~2,j+1+φ21+ϕ~3,j+1+φ22)ϑ^1+(ϕ~2,j+1+φ31+ϕ~3,j+1+φ32)ϑ^2)+ϕ11+(ϕ~2,j+1+φ11+ϕ~3,j+1+φ12)(ϕ~12ϑ^3+ϕ~13ϑ^4),j=1,2,\begin{split}\tau_{j1}(\lambda;x,y,t)=&-\widetilde{\phi}^{+}_{1,j+1}\phi_{11}^{-}\Big{(}(\phi_{12}^{+}\widehat{\varphi}_{12}+\phi_{13}^{+}\widehat{\varphi}_{22})\widehat{\vartheta}_{3}+(\phi_{12}^{+}\widehat{\varphi}_{13}+\phi_{13}^{+}\widehat{\varphi}_{23})\widehat{\vartheta}_{4}\Big{)}\\[2.0pt] &+\widetilde{\phi}^{+}_{1,j+1}\big{(}\phi_{12}^{+}\widehat{\varphi}_{11}+\phi_{13}^{+}\widehat{\varphi}_{21}\big{)}\big{(}\phi_{21}^{-}\widehat{\vartheta}_{1}+\phi_{31}^{-}\widehat{\vartheta}_{2}\big{)},\\[4.0pt] \tau_{j2}(\lambda;x,y,t)=&-\phi_{11}^{+}\widetilde{\phi}_{11}^{-}\Big{(}(\widetilde{\phi}^{+}_{2,j+1}\varphi_{21}+\widetilde{\phi}^{+}_{3,j+1}\varphi_{22})\widehat{\vartheta}_{1}+(\widetilde{\phi}^{+}_{2,j+1}\varphi_{31}+\widetilde{\phi}^{+}_{3,j+1}\varphi_{32})\widehat{\vartheta}_{2}\Big{)}\\[2.0pt] &+\phi_{11}^{+}\big{(}\widetilde{\phi}^{+}_{2,j+1}\varphi_{11}+\widetilde{\phi}^{+}_{3,j+1}\varphi_{12}\big{)}\big{(}\widetilde{\phi}_{12}^{-}\widehat{\vartheta}_{3}+\widetilde{\phi}_{13}^{-}\widehat{\vartheta}_{4}\big{)},\ \ \ \ \ \ j=1,2,\end{split}

and in equation (2.39), ϑ^l=ϑ^l(y,t)(l=1,,4)\widehat{\vartheta}_{l}=\widehat{\vartheta}_{l}(y,t)\ (l=1,\cdots,4),

ϕ1k+=ϕ1k+(λ;x,t),ϕ~k,j+1+=ϕ~k,j+1+(λ;x,t),φkj=φkj(λ;y,t),ϕk1=ϕk1(λ;y,t),ϕ~1k=ϕ~1k(λ;y,t),φ^jk=φ^jk(λ;y,t),j=1,2,k=1,2,3.\begin{split}&\phi_{1k}^{+}=\phi_{1k}^{+}(\lambda;x,t),\ \ \ \ \widetilde{\phi}^{+}_{k,j+1}=\widetilde{\phi}_{k,j+1}^{+}(\lambda;x,t),\ \ \ \ \varphi_{kj}=\varphi_{kj}(\lambda;y,t),\\ &\phi_{k1}^{-}=\phi_{k1}^{-}(\lambda;y,t),\ \ \ \ \widetilde{\phi}_{1k}^{-}=\widetilde{\phi}_{1k}^{-}(\lambda;y,t),\ \ \ \ \ \ \ \ \ \ \ \ \ \widehat{\varphi}_{jk}=\widehat{\varphi}_{jk}(\lambda;y,t),\ \ \ \ j=1,2,\ k=1,2,3.\end{split}

In particular, when ϵ=0\epsilon=0, the equation (2.38) will degenerate into the classical coupled Hirota equation.

Based on the results obtained in this section, we will analyze the fractional soliton solutions of the fcHirota equation in the next section.

3   Fractional nn-soliton solution

To find the fractional soliton solutions, we need to set J(λ;x,t)=𝕀J(\lambda;x,t)=\mathbb{I} in the RHP 22. This can be achieved by assuming s^12(λ)=s^13(λ)=s21(λ)=s31(λ)=0,\widehat{s}_{12}(\lambda)=\widehat{s}_{13}(\lambda)=s_{21}(\lambda)=s_{31}(\lambda)=0, which means that there is no reflection in the scattering problem. Under these conditions,

(3.1) 𝐌+(λ)=𝕀31λ𝐯𝐍1𝐯^+𝒪(λ2),λ+.{\bf M}^{+}(\lambda)=\mathbb{I}_{3}-\frac{1}{\lambda}\ {\bf v}{\bf N}^{-1}\widehat{{\bf v}}+\mathcal{O}(\lambda^{-2}),\ \ \lambda\in\mathbb{C^{+}}\rightarrow\infty.

Below we can easily find the spatial and temporal evolutions for the vectors |vk|v_{k}\rangle and v^j|\langle\widehat{v}_{j}|. For example, let us take the xx-derivative of both sides of the equation 𝐏+(λk;x,t)|vk=0{\bf P}^{+}(\lambda_{k};x,t)|v_{k}\rangle=0. Then there is

(3.2) |vk(λk;x)=eiλkΛx+x0xζk(y)𝑑yγk,γk=[γ1kγ2kγ3k].|v_{k}(\lambda_{k};x)\rangle=\mathrm{e}^{-\mathrm{i}\lambda_{k}\Lambda x+\int^{x}_{x_{0}}\zeta_{k}(y)dy}\gamma_{k},\ \ \ \gamma_{k}=\begin{bmatrix}\gamma_{1k}&\gamma_{2k}&\gamma_{3k}\end{bmatrix}^{\top}.

Without losing generality, we take ζk(x)=0,\zeta_{k}(x)=0, then

(3.3) |vk(λk;x)=eiλkΛxγk.|v_{k}(\lambda_{k};x)\rangle=\mathrm{e}^{-\mathrm{i}\lambda_{k}\Lambda x}\gamma_{k}.

Similarly, we can obtain another relation with respect to tt. Summing up, we obtain

(3.4) |vk(λk;x,t)=eiλkΛx+ih(2λk)Ωtγk, 1kn,|v_{k}(\lambda_{k};x,t)\rangle=\mathrm{e}^{-\mathrm{i}\lambda_{k}\Lambda x+\mathrm{i}\mathcal{F}_{h}(2\lambda_{k})\Omega t}\gamma_{k},\ \ 1\leq k\leq n,

where γk\gamma_{k} is independent of xx and tt. And we can obtain the concrete representation of v^j|\langle\widehat{v}_{j}|

(3.5) v^j(λ^j;x,t)|=γ^jeiλ^jΛxih(2λ^j)Ωt,γ^j=[γ^j1γ^j2γ^j3], 1jn,\langle\widehat{v}_{j}(\widehat{\lambda}_{j};x,t)|=\widehat{\gamma}_{j}\mathrm{e}^{\mathrm{i}\widehat{\lambda}_{j}\Lambda x-\mathrm{i}\mathcal{F}_{h}(2\widehat{\lambda}_{j})\Omega t},\ \ \ \widehat{\gamma}_{j}=\begin{bmatrix}\widehat{\gamma}_{j1}&\widehat{\gamma}_{j2}&\widehat{\gamma}_{j3}\end{bmatrix},\ \ \ 1\leq j\leq n,

where γ^j\widehat{\gamma}_{j} is independent of xx and tt. For convenience, we denote

(3.6) |vk(λk;x,t)=[eiλkxγ1keiθϵ(λk;x,t)γ2keiθϵ(λk;x,t)γ3k],v^j(λ^j;x,t)|=[eiλ^jxγ^j1eiθϵ(λ^j;x,t)γ^j2eiθϵ(λ^j;x,t)γ^j3],|v_{k}(\lambda_{k};x,t)\rangle=\begin{bmatrix}\mathrm{e}^{-\mathrm{i}\lambda_{k}x}\gamma_{1k}\\[4.0pt] \mathrm{e}^{\mathrm{i}\theta_{\epsilon}(\lambda_{k};x,t)}\gamma_{2k}\\[4.0pt] \mathrm{e}^{\mathrm{i}\theta_{\epsilon}(\lambda_{k};x,t)}\gamma_{3k}\end{bmatrix},\ \ \ \ \ \ \ \langle\widehat{v}_{j}(\widehat{\lambda}_{j};x,t)|=\begin{bmatrix}\mathrm{e}^{\mathrm{i}\widehat{\lambda}_{j}x}\widehat{\gamma}_{j1}\\[4.0pt] \mathrm{e}^{-\mathrm{i}\theta_{\epsilon}(\widehat{\lambda}_{j};x,t)}\widehat{\gamma}_{j2}\\[4.0pt] \mathrm{e}^{-\mathrm{i}\theta_{\epsilon}(\widehat{\lambda}_{j};x,t)}\widehat{\gamma}_{j3}\end{bmatrix}^{\top},

where θϵ(λ;x,t)=λx+2(1+4αλ)λ2|4λ2|ϵt\theta_{\epsilon}(\lambda;x,t)=\lambda x+2(1+4\alpha\lambda)\lambda^{2}|4\lambda^{2}|^{\epsilon}t, and γlk,γ^jl,(l=1,2,3)\gamma_{lk},\ \widehat{\gamma}_{jl},\ (l=1,2,3) are all complex constants. Furthermore, we know s11(λ)=s^11(λ),λs^{*}_{11}(\lambda^{*})=\widehat{s}_{11}(\lambda),\ \lambda\in\mathbb{C^{-}}. Together with s11(λk)=0,s^11(λ^j)=0s_{11}(\lambda_{k})=0,\ \widehat{s}_{11}(\widehat{\lambda}_{j})=0, we can suppose

(3.7) λ^k=λk,λk+,k=1,,n.\widehat{\lambda}_{k}=\lambda_{k}^{*},\ \ \ \lambda_{k}\in\mathbb{C}^{+},\ \ k=1,\cdots,n.

Based on the above preparations, we have the fractional nn-soliton solution of the fcHirota equation as

(3.8) q1[n](x,t)=2idet(𝐓1)det(𝐍),q2[n](x,t)=2idet(𝐓2)det(𝐍),q_{1}^{[n]}(x,t)=-2\mathrm{i}\frac{\det({\bf T}_{1})}{\det({\bf N})},\ \ \ \ \ \ \ q_{2}^{[n]}(x,t)=-2\mathrm{i}\frac{\det({\bf T}_{2})}{\det({\bf N})},

where

(3.9) 𝐍(λ;x,t)=[v^1|v1λ1λ^1v^1|vnλnλ^1v^n|v1λ1λ^nv^n|vnλnλ^n],𝐓j(λ;x,t)=[𝐍v^(j+1)v(1)0],j=1, 2,{\bf N}(\lambda;x,t)=\begin{bmatrix}\dfrac{\langle\widehat{v}_{1}|v_{1}\rangle}{\lambda_{1}-\widehat{\lambda}_{1}}&\cdots&\dfrac{\langle\widehat{v}_{1}|v_{n}\rangle}{\lambda_{n}-\widehat{\lambda}_{1}}\\[4.0pt] \vdots&\ddots&\vdots\\[4.0pt] \dfrac{\langle\widehat{v}_{n}|v_{1}\rangle}{\lambda_{1}-\widehat{\lambda}_{n}}&\cdots&\dfrac{\langle\widehat{v}_{n}|v_{n}\rangle}{\lambda_{n}-\widehat{\lambda}_{n}}\end{bmatrix},\ \ \ \ \ \ {\bf T}_{j}(\lambda;x,t)=\begin{bmatrix}{\bf N}&-\widehat{v}^{(j+1)}\\[4.0pt] v^{(1)}&0\end{bmatrix},\ \ j=1,\ 2,

here v(j),v^(j)v^{(j)},\ \widehat{v}^{(j)} denote the jj-th row of 𝐯{\bf v} and 𝐯^\widehat{{\bf v}}, respectively, and

(3.10) v(1)=[eiλ1xγ11eiλ2xγ12eiλnxγ1n],v^(j)=[eiθϵ(λ^1;x,t)γ^1jeiθϵ(λ^2;x,t)γ^2jeiθϵ(λ^n;x,t)γ^nj],j=1, 2, 3.\begin{split}&v^{(1)}=\begin{bmatrix}\mathrm{e}^{-\mathrm{i}\lambda_{1}x}\gamma_{11}&\mathrm{e}^{-\mathrm{i}\lambda_{2}x}\gamma_{12}&\cdots&\mathrm{e}^{-\mathrm{i}\lambda_{n}x}\gamma_{1n}\end{bmatrix},\\ &\widehat{v}^{(j)}=\begin{bmatrix}\mathrm{e}^{-\mathrm{i}\theta_{\epsilon}(\widehat{\lambda}_{1};x,t)}\widehat{\gamma}_{1j}&\mathrm{e}^{-\mathrm{i}\theta_{\epsilon}(\widehat{\lambda}_{2};x,t)}\widehat{\gamma}_{2j}&\cdots&\mathrm{e}^{-\mathrm{i}\theta_{\epsilon}(\widehat{\lambda}_{n};x,t)}\widehat{\gamma}_{nj}\end{bmatrix}^{\top},\ \ j=1,\ 2,\ 3.\end{split}

And the condition γ^11γjkγ^kjγ11=0(j=2,3,k=1,,n)\widehat{\gamma}_{11}\gamma_{jk}^{*}-\widehat{\gamma}_{kj}\gamma_{11}^{*}=0\ (j=2,3,\ k=1,\cdots,n), which can be derived from the symmetry property of 𝐌1+(λ;x,t){\bf M}_{1}^{+}(\lambda;x,t), also need to be satisfied.

In what follows, we take γ^kj=γjk\widehat{\gamma}_{kj}=\gamma_{jk}^{*} (j=1,2,3,k=1,,nj=1,2,3,k=1,\cdots,n), then v^k(λ^k;x,t)|=|vk(λk;x,t)(k=1,,n)\langle\widehat{v}_{k}(\widehat{\lambda}_{k};x,t)|=|v_{k}(\lambda_{k};x,t)\rangle^{\dagger}\ (k=1,\cdots,n). And we will discuss the fractional one- and two-soliton solutions of the fcHirota equation in terms of the equation (3.8) with n=1,2n=1,2.

3.1   Fractional one-soliton solution

We choose the spectral parameter λ1=a1+ib1\lambda_{1}=a_{1}+\mathrm{i}b_{1} with b10b_{1}\neq 0, then the expression of fractional one-soliton solution of the fcHirota equation can be written as

(3.11) q1[1](x,t)=2b1γ21(γ11g1)1ef2sech(f1),q2[1](x,t)=2b1γ31(γ11g1)1ef2sech(f1),q_{1}^{[1]}(x,t)=2b_{1}\gamma_{21}^{*}\big{(}\gamma_{11}^{*}\sqrt{g_{1}}\big{)}^{-1}\mathrm{e}^{f_{2}}{\rm sech}(f_{1}),\ \ \ \ q_{2}^{[1]}(x,t)=2b_{1}\gamma_{31}^{*}\big{(}\gamma_{11}^{*}\sqrt{g_{1}}\big{)}^{-1}\mathrm{e}^{f_{2}}{\rm sech}(f_{1}),

where

(3.12) f1=2b1x+41+ϵb1(a1+2α(3a12b12))(a12+b12)ϵtlng1,f2=2ia1x21+2ϵi(4αa1(a123b12)+(a12b12))(a12+b12)ϵt,g1=|γ21|2+|γ31|2|γ11|2.\begin{split}&f_{1}=2b_{1}x+4^{1+\epsilon}b_{1}\big{(}a_{1}+2\alpha(3a_{1}^{2}-b_{1}^{2})\big{)}(a_{1}^{2}+b_{1}^{2})^{\epsilon}t-\ln\sqrt{g_{1}},\\[2.0pt] &f_{2}=-2\mathrm{i}a_{1}x-2^{1+2\epsilon}\mathrm{i}\big{(}4\alpha a_{1}(a_{1}^{2}-3b_{1}^{2})+(a_{1}^{2}-b_{1}^{2})\big{)}(a_{1}^{2}+b_{1}^{2})^{\epsilon}t,\\[2.0pt] &g_{1}=\dfrac{|\gamma_{21}|^{2}+|\gamma_{31}|^{2}}{|\gamma_{11}|^{2}}.\end{split}

The graphs of this soliton are illustrated in Fig.3.1 by choosing the different values of ϵ\epsilon.

Refer to caption
Figure 3.1. Fractional one-soliton solution (3.11). Choosing the parameters: γ11=1,γ21=1,γ31=2,a1=1,b1=1,α=15.\gamma_{11}=1,\ \gamma_{21}=1,\ \gamma_{31}=2,\ a_{1}=1,\ b_{1}=1,\ \alpha=-\frac{1}{5}.

One may notice that the solutions of q1[1](x,t)q_{1}^{[1]}(x,t) and q2[1](x,t)q_{2}^{[1]}(x,t) are basically the same, while their amplitudes are different, which is reflected in the difference of the values of γ21\gamma_{21}^{*} and γ31\gamma_{31}^{*}, and it can be observed in Fig.3.2(a)-(b).

Refer to caption
Figure 3.2. (a) and (b): the direction of wave propagation. The parameter values are the same as in Fig.3.1, and ϵ=25\epsilon=\frac{2}{5}. (c): wave velocity, phase velocity and group velocity of the solution (3.11).

Through the analysis, we find that the wave velocity vw(a1,b1,α,ϵ)v_{w}(a_{1},b_{1},\alpha,\epsilon), phase velocity vp(a1,b1,α,ϵ)v_{p}(a_{1},b_{1},\alpha,\epsilon), and group velocity vg(a1,b1,α,ϵ)v_{g}(a_{1},b_{1},\alpha,\epsilon) of the fractional one-soliton solutions q1[1](x,t)q_{1}^{[1]}(x,t) and q2[1](x,t)q_{2}^{[1]}(x,t) are the same. Furthermore, we can give their forms from the solution (3.11)

(3.13) vw(a1,b1,α,ϵ)=21+2ϵ(a1+2α(3a12b12))(a12+b12)ϵ,vp(a1,b1,α,ϵ)=4ϵ(4α(a123b12)+a11(a12b12))(a12+b12)ϵ,vg(a1,b1,α,ϵ)=21+2ϵ(ϵa1((a12b12)+4αa1(a123b12))+(a12+b12)(a1+6α(a12b12)))(a12+b12)ϵ1.\begin{split}&v_{w}(a_{1},b_{1},\alpha,\epsilon)=-2^{1+2\epsilon}\big{(}a_{1}+2\alpha(3a_{1}^{2}-b_{1}^{2})\big{)}(a_{1}^{2}+b_{1}^{2})^{\epsilon},\\ &v_{p}(a_{1},b_{1},\alpha,\epsilon)=-4^{\epsilon}\big{(}4\alpha(a_{1}^{2}-3b_{1}^{2})+a_{1}^{-1}(a_{1}^{2}-b_{1}^{2})\big{)}(a_{1}^{2}+b_{1}^{2})^{\epsilon},\\ &v_{g}(a_{1},b_{1},\alpha,\epsilon)=-2^{1+2\epsilon}\left(\epsilon a_{1}\big{(}(a_{1}^{2}-b_{1}^{2})+4\alpha a_{1}(a_{1}^{2}-3b_{1}^{2})\big{)}+(a_{1}^{2}+b_{1}^{2})\big{(}a_{1}+6\alpha(a_{1}^{2}-b_{1}^{2})\big{)}\right)(a_{1}^{2}+b_{1}^{2})^{\epsilon-1}.\end{split}

According to the parameter values in Fig.3.1 and the equation (3.13), vw=0.4×8ϵ<0v_{w}=-0.4\times 8^{\epsilon}<0. So the soliton is left-going travelling-wave solitons (see Fig.3.2(a)-(b)) at ϵ=0, 0.4, 0.8\epsilon=0,\ 0.4,\ 0.8. Furthermore, with the increase of ϵ\epsilon, the velocity of the travelling-wave will be faster (see Fig.3.2(c)).

3.2   Fractional two-soliton solution

For n=2n=2, we choose the spectral parameters λ1=a1+ib1,λ2=a2+ib2\lambda_{1}=a_{1}+\mathrm{i}b_{1},\ \lambda_{2}=a_{2}+\mathrm{i}b_{2}, and λ^j=λj\widehat{\lambda}_{j}=\lambda_{j}^{*} (j=1,2j=1,2), then the expression of the fractional two-soliton solution of the fcHirota equation can be expressed as

(3.14) q1[2](x,t)=2idet(𝐓1)det(𝐍),q2[2](x,t)=2idet(𝐓2)det(𝐍),q_{1}^{[2]}(x,t)=-2\mathrm{i}\frac{\det({\bf T}_{1})}{\det({\bf N})},\ \ \ \ \ \ \ q_{2}^{[2]}(x,t)=-2\mathrm{i}\frac{\det({\bf T}_{2})}{\det({\bf N})},

where

(3.15) 𝐍(λ;x,t)=[v^1|v1λ1λ^1v^1|v2λ2λ^1v^2|v1λ1λ^2v^2|v2λ2λ^2],𝐓j1(λ;x,t)=[v^1|v1λ1λ^1v^1|v2λ2λ^1eiθϵ(λ^1;x,t)γ^1jv^2|v1λ1λ^2v^2|v2λ2λ^2eiθϵ(λ^2;x,t)γ^2jeiλ1xγ11eiλ2xγ120],\begin{split}&{\bf N}(\lambda;x,t)=\begin{bmatrix}\dfrac{\langle\widehat{v}_{1}|v_{1}\rangle}{\lambda_{1}-\widehat{\lambda}_{1}}&\dfrac{\langle\widehat{v}_{1}|v_{2}\rangle}{\lambda_{2}-\widehat{\lambda}_{1}}\\[15.0pt] \dfrac{\langle\widehat{v}_{2}|v_{1}\rangle}{\lambda_{1}-\widehat{\lambda}_{2}}&\dfrac{\langle\widehat{v}_{2}|v_{2}\rangle}{\lambda_{2}-\widehat{\lambda}_{2}}\end{bmatrix},\ \ \ {\bf T}_{j-1}(\lambda;x,t)=\begin{bmatrix}\dfrac{\langle\widehat{v}_{1}|v_{1}\rangle}{\lambda_{1}-\widehat{\lambda}_{1}}&\dfrac{\langle\widehat{v}_{1}|v_{2}\rangle}{\lambda_{2}-\widehat{\lambda}_{1}}&-\mathrm{e}^{-\mathrm{i}\theta_{\epsilon}(\widehat{\lambda}_{1};x,t)}\widehat{\gamma}_{1j}\\[12.0pt] \dfrac{\langle\widehat{v}_{2}|v_{1}\rangle}{\lambda_{1}-\widehat{\lambda}_{2}}&\dfrac{\langle\widehat{v}_{2}|v_{2}\rangle}{\lambda_{2}-\widehat{\lambda}_{2}}&-\mathrm{e}^{-\mathrm{i}\theta_{\epsilon}(\widehat{\lambda}_{2};x,t)}\widehat{\gamma}_{2j}\\[12.0pt] \mathrm{e}^{-\mathrm{i}\lambda_{1}x}\gamma_{11}&\mathrm{e}^{-\mathrm{i}\lambda_{2}x}\gamma_{12}&0\end{bmatrix},\end{split}

and γ^kj=γjk(j=1,2,3,k=1,2)\widehat{\gamma}_{kj}=\gamma_{jk}^{*}\ (j=1,2,3,k=1,2). The graphs of the solitons are illustrated in Fig.3.3. From Figs.3.3-3.4, we know that the solitons are right-going travelling-wave solitons at ϵ=0, 0.4, 0.8\epsilon=0,\ 0.4,\ 0.8. Moreover, with the increase of ϵ\epsilon, the velocity of the travelling-wave will be slower.

Refer to caption
Figure 3.3. Fractional two-soliton solution (3.14). Upper row: the graphs of the solution |q1[2]|\big{|}q_{1}^{[2]}\big{|}. lower row: the graphs of the solution |q2[2]|\big{|}q_{2}^{[2]}\big{|}. The parameters are as follows: γ11=2+i,γ21=1i,γ31=2+i,γ12=1+i,γ22=1+i,γ32=1+12i,a1=12,b1=1,a2=1,b2=12,α=15.\gamma_{11}=2+\mathrm{i},\ \gamma_{21}=1-\mathrm{i},\ \gamma_{31}=-2+\mathrm{i},\ \gamma_{12}=1+\mathrm{i},\ \gamma_{22}=-1+\mathrm{i},\ \gamma_{32}=1+\frac{1}{2}\mathrm{i},\ a_{1}=-\frac{1}{2},\ b_{1}=1,\ a_{2}=1,\ b_{2}=\frac{1}{2},\ \alpha=-\frac{1}{5}.
Refer to caption
Figure 3.4. The direction of wave propagation. The parameter values are the same as in Fig.3.3, and ϵ=25\epsilon=\frac{2}{5}.

Next, we will analyze the asymptotic analysis of the fractional two-soliton solution.

Theorem 1.

For the fractional coupled Hirota equation, we define λ^j=λj,λj\(j=1,2)\widehat{\lambda}_{j}=\lambda_{j}^{*},\ \lambda_{j}\in\mathbb{C}\backslash\mathbb{R}\ (j=1,2), then its fractional two-soliton solutions q1[2](x,t)q_{1}^{[2]}(x,t) and q2[2](x,t)q_{2}^{[2]}(x,t) can be approximated as the sum of two fractional one-soliton solutions, as |t||t|\to\infty.

Proof.

We suppose λ1=a1+ib1,λ2=a2+ib2\lambda_{1}=a_{1}+\mathrm{i}b_{1},\ \lambda_{2}=a_{2}+\mathrm{i}b_{2}. Firstly, we know

|vk(λk;x,t)=[eiλkxγ1keiθϵ(λk;x,t)γ2keiθϵ(λk;x,t)γ3k],|v_{k}(\lambda_{k};x,t)\rangle=\begin{bmatrix}\mathrm{e}^{-\mathrm{i}\lambda_{k}x}\gamma_{1k}&\mathrm{e}^{\mathrm{i}\theta_{\epsilon}(\lambda_{k};x,t)}\gamma_{2k}&\mathrm{e}^{\mathrm{i}\theta_{\epsilon}(\lambda_{k};x,t)}\gamma_{3k}\end{bmatrix}^{\top},

and Re(iθϵ(λk;x,t))=bk(x+Bkt){\rm Re}\big{(}\mathrm{i}\theta_{\epsilon}(\lambda_{k};x,t)\big{)}=-b_{k}(x+B_{k}t), where

Bk=41+ϵ(2α(3ak2bk2)+ak)(ak2+bk2)ϵ,k=1, 2.B_{k}=4^{1+\epsilon}\big{(}2\alpha(3a_{k}^{2}-b_{k}^{2})+a_{k}\big{)}(a_{k}^{2}+b_{k}^{2})^{\epsilon},\ \ k=1,\ 2.

Now we fix Re(iθϵ(λ1;x,t))=c1(|c1|),{\rm Re}\big{(}\mathrm{i}\theta_{\epsilon}(\lambda_{1};x,t)\big{)}=c_{1}\ (|c_{1}|\ll\infty), then

Re(iθϵ(λ2;x,t))=b2(x+B2t)=b2((B1B2)t+c1b1).{\rm Re}\big{(}\mathrm{i}\theta_{\epsilon}(\lambda_{2};x,t)\big{)}=-b_{2}(x+B_{2}t)=b_{2}\left((B_{1}-B_{2})t+\frac{c_{1}}{b_{1}}\right).

Without loss of generality, we assume that b1,b2,B2B1>0b_{1},\ b_{2},\ B_{2}-B_{1}>0. It is easy to find that when t+t\rightarrow+\infty, Re(iθϵ(λ2;x,t)){\rm Re}\big{(}\mathrm{i}\theta_{\epsilon}(\lambda_{2};x,t)\big{)}\rightarrow-\infty, i.e., |v2[1,0,0]|v_{2}\rangle\rightarrow\begin{bmatrix}1,&0,&0\end{bmatrix}^{\top}. Then we have

𝐍[|γ11|2ei(λ1λ1)x+(|γ21|2+|γ31|2)eiθϵ(λ1;x,t)iθϵ(λ1;x,t)λ1λ1γ11eiλ1xλ2λ1γ11eiλ1xλ1λ21λ2λ2],𝐓1[𝐍γ21eiθϵ(λ1;x,t)0γ11eiλ1x10],ast+.\begin{split}{\bf N}\rightarrow&\begin{bmatrix}\dfrac{|\gamma_{11}|^{2}\mathrm{e}^{-\mathrm{i}(\lambda_{1}-\lambda_{1}^{*})x}+(|\gamma_{21}|^{2}+|\gamma_{31}|^{2})\mathrm{e}^{\mathrm{i}\theta_{\epsilon}(\lambda_{1};x,t)-\mathrm{i}\theta_{\epsilon}^{*}(\lambda_{1};x,t)}}{\lambda_{1}-\lambda_{1}^{*}}&\dfrac{\gamma_{11}^{*}\mathrm{e}^{\mathrm{i}\lambda_{1}^{*}x}}{\lambda_{2}-\lambda_{1}^{*}}\\[10.0pt] \dfrac{\gamma_{11}\mathrm{e}^{-\mathrm{i}\lambda_{1}x}}{\lambda_{1}-\lambda_{2}^{*}}&\dfrac{1}{\lambda_{2}-\lambda_{2}^{*}}\\ \end{bmatrix},\\[8.0pt] {\bf T}_{1}\rightarrow&\left[\begin{array}[]{cccc}\lx@intercol\hfil\raisebox{-6.45831pt}[0.0pt]{${\bf N}$}\hfil\lx@intercol&-\gamma_{21}^{*}\mathrm{e}^{-\mathrm{i}\theta_{\epsilon}^{*}(\lambda_{1};x,t)}\\[4.0pt] &&0\\[4.0pt] \gamma_{11}\mathrm{e}^{-\mathrm{i}\lambda_{1}x}&1&0\end{array}\right],\ \ \ \ {\rm as}\ \ t\to+\infty.\end{split}

Based on the solution (3.14),

q11,+[2](x,t)=2b1γ21(γ11g1)1eh1iη1isech(h2η1r)+𝒪(eb2(B1B2)t),q^{[2]}_{11,+}(x,t)=2b_{1}\gamma_{21}^{*}(\gamma_{11}^{*}\sqrt{g_{1}})^{-1}\mathrm{e}^{h_{1}-\mathrm{i}\eta_{1i}}\ {\rm sech}(h_{2}-\eta_{1r})+\mathcal{O}\big{(}\mathrm{e}^{b_{2}(B_{1}-B_{2})t}\big{)},

where the subscript + refers to the case of t+t\to+\infty, g1g_{1} is given by (3.12),

h1=i(2a1x+21+2ϵ(4αa1(a123b12)+a12b12)(a12+b12)ϵt),h2=2b1x+41+ϵ(2αb1(3a12b12)+a1b1)(a12+b12)ϵt,η1=ln(g1λ1λ2λ1λ2):=η1r+iη1i.\begin{split}&h_{1}=-\mathrm{i}\Big{(}2a_{1}x+2^{1+2\epsilon}\big{(}4\alpha a_{1}(a_{1}^{2}-3b_{1}^{2})+a_{1}^{2}-b_{1}^{2}\big{)}(a_{1}^{2}+b_{1}^{2})^{\epsilon}t\Big{)},\\ &h_{2}=2b_{1}x+4^{1+\epsilon}\big{(}2\alpha b_{1}(3a_{1}^{2}-b_{1}^{2})+a_{1}b_{1}\big{)}(a_{1}^{2}+b_{1}^{2})^{\epsilon}t,\\ &\eta_{1}=\ln\Big{(}\sqrt{g_{1}}\ \frac{\lambda_{1}-\lambda_{2}^{*}}{\lambda_{1}-\lambda_{2}}\Big{)}:=\eta_{1r}+\mathrm{i}\eta_{1i}.\end{split}

When tt{\rightarrow}-\infty, Re(iθϵ(λ2;x,t))+{\rm Re}\big{(}\mathrm{i}\theta_{\epsilon}(\lambda_{2};x,t)\big{)}{\rightarrow}+\infty, that is, |v2[0,γ22,γ32]|v_{2}\rangle{\to}\begin{bmatrix}0,&\gamma_{22},&\gamma_{32}\end{bmatrix}^{\top}. Then

𝐍[|γ11|2ei(λ1λ1)x+(|γ21|2+|γ31|2)eiθϵ(λ1;x,t)iθϵ(λ1;x,t)λ1λ1(γ21γ22+γ31γ32)eiθϵ(λ1;x,t)xλ2λ1(γ21γ22+γ31γ32)eiθϵ(λ1;x,t)xλ1λ2|γ22|2+|γ32|2λ2λ2],𝐓1[𝐍γ21eiθϵ(λ1;x,t)γ22γ11eiλ1x00],ast.\begin{split}{\bf N}\rightarrow&\begin{bmatrix}\dfrac{|\gamma_{11}|^{2}\mathrm{e}^{-\mathrm{i}(\lambda_{1}-\lambda_{1}^{*})x}+(|\gamma_{21}|^{2}+|\gamma_{31}|^{2})\mathrm{e}^{\mathrm{i}\theta_{\epsilon}(\lambda_{1};x,t)-\mathrm{i}\theta_{\epsilon}^{*}(\lambda_{1};x,t)}}{\lambda_{1}-\lambda_{1}^{*}}&\dfrac{(\gamma_{21}^{*}\gamma_{22}+\gamma_{31}^{*}\gamma_{32})\mathrm{e}^{-\mathrm{i}\theta_{\epsilon}^{*}(\lambda_{1};x,t)x}}{\lambda_{2}-\lambda_{1}^{*}}\\[10.0pt] \dfrac{(\gamma_{21}\gamma_{22}^{*}+\gamma_{31}\gamma_{32}^{*})\mathrm{e}^{\mathrm{i}\theta_{\epsilon}(\lambda_{1};x,t)x}}{\lambda_{1}-\lambda_{2}^{*}}&\dfrac{|\gamma_{22}|^{2}+|\gamma_{32}|^{2}}{\lambda_{2}-\lambda_{2}^{*}}\\ \end{bmatrix},\\[8.0pt] {\bf T}_{1}\rightarrow&\left[\begin{array}[]{cccc}\lx@intercol\hfil\raisebox{-6.45831pt}[0.0pt]{${\bf N}$}\hfil\lx@intercol&-\gamma_{21}^{*}\mathrm{e}^{-\mathrm{i}\theta_{\epsilon}^{*}(\lambda_{1};x,t)}\\[4.0pt] &&-\gamma_{22}^{*}\\[4.0pt] \gamma_{11}\mathrm{e}^{-\mathrm{i}\lambda_{1}x}&0&0\end{array}\right],\ \ \ \ {\rm as}\ \ t\to-\infty.\end{split}

Therefore,

q11,[2](x,t)=2b1η2(γ21γ11+2ib2γ22(γ21γ22+γ31γ32)γ11(|γ22|2+|γ32|2)(a1a2i(b1+b2)))eh1sech(h2lnη2)+𝒪(eb2(B1B2)t),\begin{split}q_{11,-}^{[2]}(x,t)=&\frac{2b_{1}}{\sqrt{\eta_{2}}}\bigg{(}\frac{\gamma_{21}^{*}}{\gamma_{11}^{*}}+\frac{2\mathrm{i}b_{2}\gamma_{22}^{*}(\gamma_{21}^{*}\gamma_{22}+\gamma_{31}^{*}\gamma_{32})}{\gamma_{11}^{*}(|\gamma_{22}|^{2}+|\gamma_{32}|^{2})\big{(}a_{1}-a_{2}-\mathrm{i}(b_{1}+b_{2})\big{)}}\bigg{)}\mathrm{e}^{h_{1}}\ {\rm sech}(h_{2}-\ln\sqrt{\eta_{2}})\\ &+\mathcal{O}\big{(}\mathrm{e}^{-b_{2}(B_{1}-B_{2})t}\big{)},\end{split}

where the subscript - refers to the case of tt\to-\infty,

η2=g14b1b2g2|λ1λ2|2,g2=|γ21γ22+γ31γ32|2|γ11|2(|γ22|2+|γ32|2).\eta_{2}=g_{1}-\frac{4b_{1}b_{2}g_{2}}{|\lambda_{1}-\lambda_{2}^{*}|^{2}},\ \ \ g_{2}=\dfrac{|\gamma_{21}\gamma_{22}^{*}+\gamma_{31}\gamma_{32}^{*}|^{2}}{|\gamma_{11}|^{2}\big{(}|\gamma_{22}|^{2}+|\gamma_{32}|^{2}\big{)}}.

Note that η2>0\eta_{2}>0 can be obtained through analysis.

Similarly, we can analyze |v1(λk;x,t)|v_{1}(\lambda_{k};x,t)\rangle by fixing Re(iθϵ(λ2;x,t))=c2(|c2|){\rm Re}\big{(}\mathrm{i}\theta_{\epsilon}(\lambda_{2};x,t)\big{)}=c_{2}\ (|c_{2}|\ll\infty), then we can obtain

q12,+[2](x,t)=2b2η3(γ22γ122ib1γ21(γ21γ22+γ31γ32)γ12(|γ21|2+|γ31|2)(a1a2+i(b1+b2)))eh3sech(h4lnη3)+𝒪(eb1(B1B2)t),q12,[2](x,t)=2b2γ22(γ12g3)1eh3iη4isech(h4η4r)+𝒪(eb1(B1B2)t),\begin{split}q_{12,+}^{[2]}(x,t)=&\frac{2b_{2}}{\sqrt{\eta_{3}}}\bigg{(}\frac{\gamma_{22}^{*}}{\gamma_{12}^{*}}-\frac{2\mathrm{i}b_{1}\gamma_{21}^{*}(\gamma_{21}\gamma_{22}^{*}+\gamma_{31}\gamma_{32}^{*})}{\gamma_{12}^{*}(|\gamma_{21}|^{2}+|\gamma_{31}|^{2})\big{(}a_{1}-a_{2}+\mathrm{i}(b_{1}+b_{2})\big{)}}\bigg{)}\mathrm{e}^{h_{3}}\ {\rm sech}(h_{4}-\ln\sqrt{\eta_{3}})\\ &+\mathcal{O}\big{(}\mathrm{e}^{b_{1}(B_{1}-B_{2})t}\big{)},\\ q_{12,-}^{[2]}(x,t)=&2b_{2}\gamma_{22}^{*}(\gamma_{12}^{*}\sqrt{g_{3}})^{-1}\mathrm{e}^{h_{3}-\mathrm{i}\eta_{4i}}\ {\rm sech}(h_{4}-\eta_{4r})+\mathcal{O}\big{(}\mathrm{e}^{-b_{1}(B_{1}-B_{2})t}\big{)},\end{split}

and

h3=i(2a2x+21+2ϵ(4αa2(a223b22)+a22b22)(a22+b22)ϵt),h4=2b2x+41+ϵ(2αb2(3a22b22)+a2b2)(a22+b22)ϵt,η3=g34b1b2g4|λ1λ2|2,η4=ln(g3λ1λ2λ1λ2):=η4r+iη4i,g3=|γ22|2+|γ32|2|γ12|2,g4=|γ21γ22+γ31γ32|2|γ12|2(|γ21|2+|γ31|2).\begin{split}&h_{3}=-\mathrm{i}\Big{(}2a_{2}x+2^{1+2\epsilon}\big{(}4\alpha a_{2}(a_{2}^{2}-3b_{2}^{2})+a_{2}^{2}-b_{2}^{2}\big{)}(a_{2}^{2}+b_{2}^{2})^{\epsilon}t\Big{)},\\ &h_{4}=2b_{2}x+4^{1+\epsilon}\big{(}2\alpha b_{2}(3a_{2}^{2}-b_{2}^{2})+a_{2}b_{2}\big{)}(a_{2}^{2}+b_{2}^{2})^{\epsilon}t,\\ &\eta_{3}=g_{3}-\frac{4b_{1}b_{2}g_{4}}{|\lambda_{1}-\lambda_{2}^{*}|^{2}},\ \ \ \ \ \eta_{4}=\ln\Big{(}\sqrt{g_{3}}\ \frac{\lambda_{1}^{*}-\lambda_{2}}{\lambda_{1}-\lambda_{2}}\Big{)}:=\eta_{4r}+\mathrm{i}\eta_{4i},\\ &g_{3}=\frac{|\gamma_{22}|^{2}+|\gamma_{32}|^{2}}{|\gamma_{12}|^{2}},\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ g_{4}=\dfrac{|\gamma_{21}\gamma_{22}^{*}+\gamma_{31}^{*}\gamma_{32}|^{2}}{|\gamma_{12}|^{2}\big{(}|\gamma_{21}|^{2}+|\gamma_{31}|^{2}\big{)}}.\end{split}

Note that η3>0\eta_{3}>0 can also be obtained through analysis. Then

q1,+[2](x,t)=2b2η3(γ22γ122ib1γ21(γ21γ22+γ31γ32)γ12(|γ21|2+|γ31|2)(a1a2+i(b1+b2)))eh3sech(h4lnη3)+2b1γ21(γ11g1)1eh1iη1isech(h2η1r)+𝒪(eι1),q_{1,+}^{[2]}(x,t)=\frac{2b_{2}}{\sqrt{\eta_{3}}}\Big{(}\frac{\gamma_{22}^{*}}{\gamma_{12}^{*}}-\frac{2\mathrm{i}b_{1}\gamma_{21}^{*}(\gamma_{21}\gamma_{22}^{*}+\gamma_{31}\gamma_{32}^{*})}{\gamma_{12}^{*}(|\gamma_{21}|^{2}+|\gamma_{31}|^{2})\big{(}a_{1}-a_{2}+\mathrm{i}(b_{1}+b_{2})\big{)}}\Big{)}\mathrm{e}^{h_{3}}\ {\rm sech}(h_{4}-\ln\sqrt{\eta_{3}})\\[2.0pt] +2b_{1}\gamma_{21}^{*}(\gamma_{11}^{*}\sqrt{g_{1}})^{-1}\mathrm{e}^{h_{1}-\mathrm{i}\eta_{1i}}\ {\rm sech}(h_{2}-\eta_{1r})+\mathcal{O}\big{(}\mathrm{e}^{\iota_{1}}\big{)},
q1,[2](x,t)=2b1η2(γ21γ11+2ib2γ22(γ21γ22+γ31γ32)γ11(|γ22|2+|γ32|2)(a1a2i(b1+b2)))eh1sech(h2lnη2)+2b2γ22(γ21g3)1eh3iη4isech(h4η4r)+𝒪(eι2),q_{1,-}^{[2]}(x,t)=\frac{2b_{1}}{\sqrt{\eta_{2}}}\Big{(}\frac{\gamma_{21}^{*}}{\gamma_{11}^{*}}+\frac{2\mathrm{i}b_{2}\gamma_{22}^{*}(\gamma_{21}^{*}\gamma_{22}+\gamma_{31}^{*}\gamma_{32})}{\gamma_{11}^{*}(|\gamma_{22}|^{2}+|\gamma_{32}|^{2})\big{(}a_{1}-a_{2}-\mathrm{i}(b_{1}+b_{2})\big{)}}\Big{)}\mathrm{e}^{h_{1}}\ {\rm sech}(h_{2}-\ln\sqrt{\eta_{2}})\\[2.0pt] +2b_{2}\gamma_{22}^{*}(\gamma_{21}^{*}\sqrt{g_{3}})^{-1}\mathrm{e}^{h_{3}-\mathrm{i}\eta_{4i}}\ {\rm sech}(h_{4}-\eta_{4r})+\mathcal{O}\big{(}\mathrm{e}^{\iota_{2}}\big{)},

where

ι1=min(b1(B1B2)t,b2(B1B2)t),ι2=min(b1(B1B2)t,b2(B1B2)t).\iota_{1}=\min\big{(}b_{1}(B_{1}-B_{2})t,b_{2}(B_{1}-B_{2})t\big{)},\ \ \ \iota_{2}=\min\big{(}-b_{1}(B_{1}-B_{2})t,-b_{2}(B_{1}-B_{2})t\big{)}.

The asymptotic expression of q2[2](x,t)q_{2}^{[2]}(x,t) can also be obtained by using the same method as above. ∎

We take the solution q1[2](x,t)q_{1}^{[2]}(x,t) as an example to compare the exact solution q1[2](x,t)q_{1}^{[2]}(x,t) and the asymptotic solutions q1,±[2](x,t)q_{1,\pm}^{[2]}(x,t) at t=±10t=\pm 10, respectively. The relevant results can be verified in Fig.3.5.

Refer to caption
Figure 3.5. The comparision between the exact solutions and the asymptotic solutions. The upper row is at t=10t=-10, and the lower row is at t=10t=10.

Based on the proof process of the theorem 1, we assume that the amplitudes of |q11,[2]|\big{|}q_{11,-}^{[2]}\big{|}, |q12,[2]|\big{|}q_{12,-}^{[2]}\big{|}, |q11,+[2]|\big{|}q_{11,+}^{[2]}\big{|}, and |q12,+[2]|\big{|}q_{12,+}^{[2]}\big{|} are A11,A_{11,-}, A12,A_{12,-}, A11,+A_{11,+}, and A12,+A_{12,+}, respectively. Obviously, after the collision of two solitons in the propagation process, their amplitudes will change. The amplitude of one soliton changes from A11,A_{11,-} to A11,+A_{11,+}, and the amplitude of the other soliton changes from A12,A_{12,-} to A12,+A_{12,+}. The q2q_{2} component will have the same property. We assume that the corresponding amplitudes in the q2q_{2} component are A21,A_{21,-}, A22,A_{22,-}, A21,+A_{21,+}, and A22,+A_{22,+}, respectively. Then we can obtain A11,2+A21,2=A11,+2+A21,+2A_{11,-}^{2}+A_{21,-}^{2}=A_{11,+}^{2}+A_{21,+}^{2} and A12,2+A22,2=A12,+2+A22,+2A_{12,-}^{2}+A_{22,-}^{2}=A_{12,+}^{2}+A_{22,+}^{2} from the analysis. This also means that the total mass of the components q1q_{1} and q2q_{2} is conserved before and after the collision.

3.3   Nondegenerate fractional soliton solution

In the above studies, we construct the fractional nn-soliton solutions. When n=1,2n=1,2, we list the explicit expressions in the equations (3.11) and (3.14). Note that the bright soliton solutions we obtained in subsection 3.1 are degenerate. Here, by degeneracy, we mean that the properties of the fundamental bright solitons in all components are described by a single wave number [28]. The degeneracy will restrict the structure and trajectory of the single solitons. Thus the solitons in both q1q_{1} component and q2q_{2} component will only have a single-hump. We classify multi-component solitons into degenerate solitons and nondegenerate solitons according to the different wave numbers present in their solutions. We refer to the solitons that propagate with the same wave numbers in all components as degenerate vector solitons, and the solitons that propagate with different wave numbers as nondegenerate vector solitons [28]. With a similar analysis as [27], we find that the nondegenerate soliton solutions can be given by choosing the following special conditions,

(3.16) {γ21=γ32=0orγ22=γ31=0,(a1+2α(3a12b12))(a12+b12)ϵ(a2+2α(3a22b22))(a22+b22)ϵ=0.\begin{cases}\gamma_{21}=\gamma_{32}=0\ \ {\rm or}\ \ \gamma_{22}=\gamma_{31}=0,\\[3.0pt] \big{(}a_{1}+2\alpha(3a_{1}^{2}-b_{1}^{2})\big{)}(a_{1}^{2}+b_{1}^{2})^{\epsilon}-\big{(}a_{2}+2\alpha(3a_{2}^{2}-b_{2}^{2})\big{)}(a_{2}^{2}+b_{2}^{2})^{\epsilon}=0.\end{cases}

The two distinct complex wave numbers λ1=a1+ib1\lambda_{1}=a_{1}+\mathrm{i}b_{1} and λ2=a2+ib2\lambda_{2}=a_{2}+\mathrm{i}b_{2} (λ1λ2\lambda_{1}\neq\lambda_{2}) in the equation (3.14) makes the two-soliton solution as nondegenerate one. In this subsection, we take γ21=γ32=0\gamma_{21}=\gamma_{32}=0 uniformly. Then the nondegenerate fractional soliton solution is

(3.17) q1[2]=4b2((a1a2)+i(b1+b2))γ22γ12ef4((a1a2ib2)(1+|γ31γ11|2e2(f3))+ib1(1|γ31γ11|2e2(f3)))((a1a2)2+(b1+b2)2)(1+|γ31γ11|2e2(f3))(1+|γ22γ12|2e2(f4))4b1b2,q2[2]=4b1((a1a2)i(b1+b2))γ31γ11ef3((a1a2+ib1)(1+|γ22γ12|2e2(f4))ib2(1|γ22γ12|2e2(f4)))((a1a2)2+(b1+b2)2)(1+|γ31γ11|2e2(f3))(1+|γ22γ12|2e2(f4))4b1b2,\begin{split}q_{1}^{[2]}=&\dfrac{4b_{2}\big{(}(a_{1}-a_{2})+\mathrm{i}(b_{1}+b_{2})\big{)}\frac{\gamma_{22}^{*}}{\gamma_{12}^{*}}\mathrm{e}^{f_{4}^{*}}\Big{(}(a_{1}-a_{2}-\mathrm{i}b_{2})(1+\big{|}\frac{\gamma_{31}}{\gamma_{11}}\big{|}^{2}\mathrm{e}^{2\Re(f_{3})})+\mathrm{i}b_{1}(1-\big{|}\frac{\gamma_{31}}{\gamma_{11}}\big{|}^{2}\mathrm{e}^{2\Re(f_{3})})\Big{)}}{\big{(}(a_{1}-a_{2})^{2}+(b_{1}+b_{2})^{2}\big{)}\big{(}1+\big{|}\frac{\gamma_{31}}{\gamma_{11}}\big{|}^{2}\mathrm{e}^{2\Re(f_{3})}\big{)}\big{(}1+\big{|}\frac{\gamma_{22}}{\gamma_{12}}\big{|}^{2}\mathrm{e}^{2\Re(f_{4})}\big{)}-4b_{1}b_{2}},\\[4.0pt] q_{2}^{[2]}=&\dfrac{4b_{1}\big{(}(a_{1}-a_{2})-\mathrm{i}(b_{1}+b_{2})\big{)}\frac{\gamma_{31}^{*}}{\gamma_{11}^{*}}\mathrm{e}^{f_{3}^{*}}\Big{(}(a_{1}-a_{2}+\mathrm{i}b_{1})(1+\big{|}\frac{\gamma_{22}}{\gamma_{12}}\big{|}^{2}\mathrm{e}^{2\Re(f_{4})})-\mathrm{i}b_{2}(1-\big{|}\frac{\gamma_{22}}{\gamma_{12}}\big{|}^{2}\mathrm{e}^{2\Re(f_{4})})\Big{)}}{\big{(}(a_{1}-a_{2})^{2}+(b_{1}+b_{2})^{2}\big{)}\big{(}1+\big{|}\frac{\gamma_{31}}{\gamma_{11}}\big{|}^{2}\mathrm{e}^{2\Re(f_{3})}\big{)}\big{(}1+\big{|}\frac{\gamma_{22}}{\gamma_{12}}\big{|}^{2}\mathrm{e}^{2\Re(f_{4})}\big{)}-4b_{1}b_{2}},\end{split}

where

(3.18) fk+2=2bkx41+ϵbk(ak+2α(3ak2bk2))(ak2+bk2)ϵt+i(2akx+21+2ϵ(4αak(ak23bk2)+(ak2bk2))(ak2+bk2)ϵt),k=1,2.f_{k+2}=-2b_{k}x-4^{1+\epsilon}b_{k}\big{(}a_{k}+2\alpha(3a_{k}^{2}-b_{k}^{2})\big{)}(a_{k}^{2}+b_{k}^{2})^{\epsilon}t\\ +\mathrm{i}\Big{(}2a_{k}x+2^{1+2\epsilon}\big{(}4\alpha a_{k}(a_{k}^{2}-3b_{k}^{2})+(a_{k}^{2}-b_{k}^{2})\big{)}(a_{k}^{2}+b_{k}^{2})^{\epsilon}t\Big{)},\ \ \ \ k=1,2.

The solution (3.17) allows both the symmetric and the asymmetric profiles, including a double-hump and a single-hump profiles. The symmetric and asymmetric properties of the solution (3.17) can be determined by calculating the corresponding extremum points. We assume γ11=γ12=1\gamma_{11}=\gamma_{12}=1, then the different density profiles for double-hump solitons in fcHirota equation can be obtained by choosing appropriate values for the remaining parameters which are shown in Fig.3.6. The symmetric double-hump soliton in Fig.3.6(b) is obtained numerically. According to the extreme value theory, we numerically find two maximum points of the modulu of q1[2]q_{1}^{[2]} in the equation (3.17), and at these two maximum points, the corresponding maxima are equal. Under the selection of such parameters, symmetric double-hump soliton will appear.

Refer to caption
Figure 3.6. Three different density profiles for double-hump solitons in fcHirota equation at t=0t=0: (a) asymmetric double-hump solitons, (b) symmetric single-hump-double-hump solitons, and (c) approximate symmetric double-hump solitons. The blue solid lines and the red dotted lines represent the q1q_{1} component and the q2q_{2} component, respectively. The parameters are as follows: (a) ϵ=25,γ31=γ22=15,α=14,a1=920,b1=255,a2=120,b2=1\epsilon=\frac{2}{5},\ \gamma_{31}=\gamma_{22}=\frac{1}{5},\ \alpha=\frac{1}{4},\ a_{1}=-\frac{9}{20},\ b_{1}=\frac{2\sqrt{5}}{5},\ a_{2}=-\frac{1}{20},\ b_{2}=1, (b) ϵ=25,γ31=γ22=99140127800,α=14,a1=0,b1=58,a2=12,b2=38\epsilon=\frac{2}{5},\ \gamma_{31}=\gamma_{22}=\frac{99}{140}-\frac{1}{27800},\ \alpha=\frac{1}{4},\ a_{1}=0,\ b_{1}=\frac{5}{8},\ a_{2}=-\frac{1}{2},\ b_{2}=\frac{3}{8}, (c) ϵ=25,γ31=γ22=12,α=1,a1=0,b1=1,a2=18,b2=378\epsilon=\frac{2}{5},\ \gamma_{31}=\gamma_{22}=\frac{1}{2},\ \alpha=1,\ a_{1}=0,\ b_{1}=1,\ a_{2}=-\frac{1}{8},\ b_{2}=\frac{3\sqrt{7}}{8}.

Furthermore, when we choose α=0\alpha=0, the solution (3.17) is reduced to the nondegenerate fractional soliton solution of the fractional coupled NLS equation. And we display three different density profiles for double-hump solitons in Fig.3.7. For convenience, we also assume γ11=γ12=1\gamma_{11}=\gamma_{12}=1.

Refer to caption
Figure 3.7. Three different density profiles for double-hump solitons in fractional coupled NLS equation at t=0t=0: (a) asymmetric double-hump solitons, (b) symmetric single-hump-double-hump solitons, and (c) approximate symmetric double-hump solitons. The blue solid lines and the red dotted lines represent the q1q_{1} component and the q2q_{2} component, respectively. Here the parameters are: (a) ϵ=25,γ31=115,γ22=13,a1=a2=0,b1=87,b2=1\epsilon=\frac{2}{5},\ \gamma_{31}=\frac{1}{\sqrt{15}},\ \gamma_{22}=\frac{1}{3},\ a_{1}=a_{2}=0,\ b_{1}=\frac{8}{7},\ b_{2}=1, (b) ϵ=25,γ31=γ22=22,a1=a2=0,b1=1,b2=13\epsilon=\frac{2}{5},\ \gamma_{31}=\gamma_{22}=\frac{\sqrt{2}}{2},\ a_{1}=a_{2}=0,\ b_{1}=1,\ b_{2}=\frac{1}{3}, (c) ϵ=25,γ31=γ22=20012001,a1=a2=0,b1=1+11000,b2=1\epsilon=\frac{2}{5},\ \gamma_{31}=\gamma_{22}=\frac{\sqrt{2001}}{2001},\ a_{1}=a_{2}=0,\ b_{1}=1+\frac{1}{1000},\ b_{2}=1.

Note that when t=0t=0, the solution (3.17) appears to be independent of the parameter α\alpha, but in fact, the parameters a1,a2,b1a_{1},\ a_{2},\ b_{1}, and b2b_{2} must satisfy the second condition in the equation (3.16). Therefore, the solution (3.17) at t=0t=0 will still be controlled by the parameter α\alpha. Moreover, it is worth noting that the solution (3.17) appears zero if and only if α=0\alpha=0 and b1>b2b_{1}>b_{2}. For example, it is obvious that the parameters taken in Fig.3.7 (a)-(c) satisfy the above conditions.

4   Conclusion

In conclusion, we developed the fractional extension of the coupled Hirota equation in terms of the Riesz fractional derivative. Then we investigate the IST with the matrix RHP to study the fractional nn-soliton solutions of the fcHirota equation. Furthermore, we analyzed the one- and two-soliton solutions of this equation. It can be found that the physical properties of the fractional solitons are identical to the regular ones expect the change in velocities described by equation (3.13). And from Figs.3.1 and 3.3, the fractional solitons propagate without dissipating or spreading out. Moreover, we showed that a fractional two-soliton could also be regarded as a superposition of two fractional single solitons of the fcHirota equation as |t||t|\to\infty. In particular, we also study the nondegenerate fractional soliton solutions. In addition, the general formula of the fractional nn-soliton solution of the fcHirota equation is derived. These phenomena have greatly enriched the dynamics in the field of integrable systems, and will be helpful in predicting the super-dispersive transport of nonlinear waves in fractional nonlinear media.

Furthermore, there is an important equation in integrable systems, which is called the Sasa-Satsuma equation. It can also be regarded as the higher-order NLS equation, which has the form

(4.1) iqt+α1qxx+α2|q|2q+iδ(β1qxxx+β2|q|2qx+β3q(|q|2)x)=0,\mathrm{i}q_{t}+\alpha_{1}q_{xx}+\alpha_{2}|q|^{2}q+\mathrm{i}\delta\big{(}\beta_{1}q_{xxx}+\beta_{2}|q|^{2}q_{x}+\beta_{3}q(|q|^{2})_{x}\big{)}=0,

where αj,βj\alpha_{j},\ \beta_{j} are all real constants, and q(x,t)q(x,t) is a complex valued function. When β1:β2:β3=1:6:0\beta_{1}:\beta_{2}:\beta_{3}=1:6:0 and β1:β2:β3=1:6:3\beta_{1}:\beta_{2}:\beta_{3}=1:6:3, the equation (4.1) can be reduced to the Hirota equation [32] and the Sasa-Satsuma equation [33], respectively. Obviously, the Sasa-Satsuma equation has one more term called the stimulated Raman scattering than the Hirota equation. In [34, 35, 36], it can be seen that the properties of the corresponding solutions of the Sasa-Satsuma equation are more complicated than the counterparts of the Hirota equation. So it is significant to study the Sasa-Satsuma equation. Compared with the Hirota equation, the Sasa-Satsuma equation also admits the symmetric double-hump solitons in addition to the common single-hump solitons under the vanishing background. The double-hump solitons exhibit like two in-phase solitons propagating at the same speed and a fixed separation. However, for the Hirota equation, the double-hump solitons appear only in its two-component or multi-component system. In Sec.3, we find that the double-hump solitons also exist in fcHirota equation, and the related properties of the solitons of the fcHirota equation are very similar to the coupled Hirota equation. We can speculate that the fractional Sasa-Satsuma equation may also have the same properties as the Sasa-Satsuma equation, for example, the symmetric double-hump solitons may also exist under the vanishing background. All these issues discussed above are worth our further consideration.

Acknowledgements

Liming Ling is supported by National Natural Science Foundation of China (No. 12122105). Xiaoen Zhang is supported by the National Natural Science Foundation of China (No.12101246), the China Postdoctoral Science Foundation (No. 2020M682692), the Guangzhou Science and Technology Program of China(No. 202102020783).

Conflict of interest

The authors declare that they have no conflict of interest with other people or organization that may inappropriately influence the author’s work.

References

  • [1] I. Grigorenko and E. Grigorenko. Chaotic dynamics of the fractional Lorenz system. Phys. Rev. Lett., 91(3):034101, 2003.
  • [2] T. Hayat, S. Nadeem, and S. Asghar. Periodic unidirectional flows of a viscoelastic fluid with the fractional Maxwell model. Appl. Math. Comput., 151(1):153–161, 2004.
  • [3] D. Tripathi, S. K. Pandey, and S. Das. Peristaltic flow of viscoelastic fluid with fractional Maxwell model through a channel. Appl. Math. Comput., 215(10):3645–3654, 2010.
  • [4] A. W. Lohmann, D. Mendlovic, and R. G. Dorsch Z. Zalevsky. Some important fractional transformations for signal processing. Opt. Commun., 125(1-3):18–20, 1996.
  • [5] E. Sejdić, I. Djurović, and L. J. Stanković. Fractional Fourier transform as a signal processing tool: An overview of recent developments. Signal Process., 91(6):1351–1369, 2011.
  • [6] R. Metzler, E. Barkai, and J. Klafter. Anomalous diffusion and relaxation close to thermal equilibrium: A fractional Fokker-Planck equation approach. Phys. Rev. Lett., 82(18):3563, 1999.
  • [7] B. I. Henry, T. A. M. Langlands, and S. L. Wearne. Anomalous diffusion with linear reaction dynamics: from continuous time random walks to fractional reaction-diffusion equations. Phys. Rev. E, 74(3):031116, 2006.
  • [8] E. Ahmed and A. S. Elgazzar. On fractional order differential equations model for nonlocal epidemics. Phys. A, 379(2):607–614, 2007.
  • [9] A. M. A. El-Sayed, S. Z. Rida, and A. A. M. Arafa. Exact solutions of fractional-order biological population model. Commun. Theor. Phys. (Beijing), 52(6):992, 2009.
  • [10] F. Liu and K. Burrage. Novel techniques in parameter estimation for fractional dynamical models arising from biological systems. Comput. Math. Appl., 62(3):822–833, 2011.
  • [11] U. Al Khawaja, M. Al-Refai, G. Shchedrin, and L. D. Carr. High-accuracy power series solutions with arbitrarily large radius of convergence for the fractional nonlinear Schrödinger-type equations. J. Phys. A, 51(23):235201, 2018.
  • [12] P. Li, B. A. Malomed, and D. Mihalache. Symmetry-breaking bifurcations and ghost states in the fractional nonlinear Schrödinger equation with a PT-symmetric potential. Opt. Lett., 46(13):3267–3270, 2021.
  • [13] M. J. Ablowitz, J. B. Been, and L. D. Carr. Fractional Integrable Nonlinear Soliton Equations. Phys. Rev. Lett., 128(18):184101, 2022.
  • [14] M. J. Ablowitz, J. B. Been, and L. D. Carr. Integrable Fractional Modified Korteweg-de Vries, Sine-Gordon, and Sinh-Gordon Equations. arXiv:2203.13755, 2022.
  • [15] M. Zhang, W. Weng, and Z. Yan. Interactions of fractional N-solitons with anomalous dispersions for the integrable combined fractional higher-order mKdV hierarchy. arXiv:2208.04497, 2022.
  • [16] W. Weng, M. Zhang, and Z. Yan. Dynamics of fractional N-soliton solutions with anomalous dispersions of integrable fractional higher-order nonlinear Schrödinger equations. arXiv:2208.04493, 2022.
  • [17] Z. Yan. New Integrable Multi-Lëvy-Index and Mixed Fractional Nonlinear Soliton Hierarchies. arXiv:2208.13393, 2022.
  • [18] A. Hasegawa and F. Tappert. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Appl. Phys. Lett., 23(3):142–144, 1973.
  • [19] L. F. Mollenauer, R. H. Stolen, and J. P. Gordon. Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys. Rev. Lett., 45(13):1095, 1980.
  • [20] S. V. Manakov. On the theory of two-dimensional stationary self-focusing of electromagnetic waves. Sov. Phys. JETP, 38(2):248–253, 1974.
  • [21] R. S. Tasgal and M. J. Potasek. Soliton solutions to coupled higher-order nonlinear Schrödinger equations. J. Math. Phys., 33(3):1208–1215, 1992.
  • [22] K. Porsezian and N. Nakkeeran. Optical solitons in birefringent fibre-Bäcklund transformation approach. Pure Appl. Opt., 6(1):L7, 1997.
  • [23] A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev. Rogue waves and rational solutions of the Hirota equation. Phys. Rev. E, 81(4):046602, 2010.
  • [24] S. G. Bindu, A. Mahalingam, and K. Porsezian. Dark soliton solutions of the coupled Hirota equation in nonlinear fiber. Phys. Lett. A, 286(5):321–331, 2001.
  • [25] X. Wang, Y. Li, and Y. Chen. Generalized Darboux transformation and localized waves in coupled Hirota equations. Wave Motion, 51(7):1149–1160, 2014.
  • [26] D. S. Wang, S. Yin, Y. Tian, and Y. Liu. Integrability and bright soliton solutions to the coupled nonlinear Schrödinger equation with higher-order effects. Appl. Math. Comput., 229:296–309, 2014.
  • [27] Y. H. Qin, L. C. Zhao, and L. Ling. Nondegenerate bound-state solitons in multicomponent Bose-Einstein condensates. Phys. Rev. E, 100(2):022212, 2019.
  • [28] S. Stalin, R. Ramakrishnan, and M. Lakshmanan. Nondegenerate bright solitons in coupled nonlinear Schrödinger systems: Recent developments on optical vector solitons. Photonics, 8(7):258, 2021.
  • [29] S. Stalin, R. Ramakrishnan, and M. Lakshmanan. Dynamics of nondegenerate vector solitons in a long-wave-short-wave resonance interaction system. Phys. Rev. E, 105(4):044203, 2022.
  • [30] J. Yang. Nonlinear waves in integrable and nonintegrable systems. SIAM, 2010.
  • [31] D. J. Kaup. Closure of the squared Zakharov-Shabat eigenstates. J. Math. Anal. Appl., 54(3):849–864, 1976.
  • [32] R. Hirota. Exact envelope-soliton solutions of a nonlinear wave equation. J. Math. Phys., 14(7):805–809, 1973.
  • [33] N. Sasa and J. Satsuma. New-type of soliton solutions for a higher-order nonlinear Schrödinger equation. J. Phys. Soc. Japan, 60(2):409–417, 1991.
  • [34] T. Xu, D. Wang, M. Li, and H. Liang. Soliton and breather solutions of the Sasa-Satsuma equation via the Darboux transformation. Phys. Scr., 89(7):075207, 2014.
  • [35] J. J. Nimmo and H. Yilmaz. Binary Darboux transformation for the Sasa-Satsuma equation. J. Phys. A, 48(42):425202, 2015.
  • [36] L. Liu, B. Tian, H. P. Chai, and Y. Q. Yuan. Certain bright soliton interactions of the Sasa-Satsuma equation in a monomode optical fiber. Phys. Rev. E, 95(3):032202, 2017.