This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Nondegenerate extensions of near-group
braided fusion categories

Andrew Schopieray
(Department of Mathematical and Statistical Sciences
CAB 632
University of Alberta
Edmonton, Alberta
Canada T6G 2G1
[email protected]
)
Abstract

This is a study of weakly integral braided fusion categories with elementary fusion rules to determine which possess nondegenerately braided extensions of theoretically minimal dimension, or equivalently in this case, which satisfy the minimal modular extension conjecture. We classify near-group braided fusion categories satisfying the minimal modular extension conjecture; the remaining Tambara-Yamagami braided fusion categories provide arbitrarily large families of braided fusion categories with identical fusion rules violating the minimal modular extension conjecture. These examples generalize to braided fusion categories with the fusion rules of the representation categories of extraspecial pp-groups for any prime pp, which possess a minimal modular extension only if they arise as the adjoint subcategory of a twisted double of an extraspecial pp-group.

1 Introduction

A braided fusion category embeds into its center, or double [4, Definition 7.13.1], allowing specialized results about nondegenerately braided fusion categories to be used in generality. Unfortunately, the double is a large construction. The categorical and Frobenius-Perron dimensions are squared, and the rank of the double has yet to be bound in terms of the rank of the original. So given a braided fusion category π’ž\mathcal{C}, it is desirable to seek nondegenerately braided fusion categories π’Ÿ\mathcal{D} containing π’ž\mathcal{C} as a braided fusion subcategory which are smaller than the double in any sense. For dimension, the theoretical minimum that can be accomplished is FPdim​(π’Ÿ)=FPdim​(π’ž)​FPdim​(Cπ’žβ€‹(π’ž))\mathrm{FPdim}(\mathcal{D})=\mathrm{FPdim}(\mathcal{C})\mathrm{FPdim}(C_{\mathcal{C}}(\mathcal{C})) where Cπ’žβ€‹(π’ž)C_{\mathcal{C}}(\mathcal{C}) is the symmetric center of π’ž\mathcal{C} (see Section 2.1). Whether a nondegenerately braided extension of theoretically minimal dimension exists is a natural question which is approximately 20 years old now [16, Conjecture 5.2]. This question is often called the minimal modular extension conjecture as it was originally stated with the assumption of a spherical structure; the minimal modular extension conjecture is false with or without this assumption. The first counterexamples were explained by V.Β Drinfeld in private communications which have not appeared in print at this time. Obstructions to the existence of certain minimal modular extensions may be found in cohomological data of finite groups and this line of reasoning was used by C.Β Galindo and C.Β F.Β Venegas-RamΓ­rez in [8, Section 4.3] to provide novel counterexamples to the minimal modular extension conjecture. The smallest of these counterexamples [8, Proposition 4.11] is a fusion category of rank 5 and dimension 8 which is easily seen to be the representation category of the dihedral group of order 8 with a nonsymmetric braiding. In Proposition 4.1.3 we prove this is the first in an infinite family of counterexamples coming from the Tambara-Yamagami braided fusion categories. One way in which these arguments are novel is that they only rely on the fusion rules of the category, giving arbitrarily many examples with the same fusion rules as their rank is increased. The Tambara-Yamagami story is a large portion of the proof of Theorem 5.0.3: a classification of near-group braided fusion categories which possess a minimal modular extension. With 5 exceptions (Figure 1) these are realized as the unique fusion subcategory of a product of Ising braided fusion categories βŠ—\otimes-generated by the simple object of maximal dimension.

π’žrank​(π’ž)FPdim​(π’ž)FPdim​(Cπ’žβ€‹(π’ž))π’žβ€‹(𝔰​𝔩2,4)ad362π’žβ€‹(𝔰​𝔩2,4)adrev362𝒡​(VecQ8Ξ³)ad584𝒡​(VecQ8Ξ³)adrev584π’žβ€‹(𝔰​𝔩3,3)ad4123\begin{array}[]{|c|ccc|}\hline\cr\mathcal{C}&\mathrm{rank}(\mathcal{C})&\mathrm{FPdim}(\mathcal{C})&\mathrm{FPdim}(C_{\mathcal{C}}(\mathcal{C}))\\ \hline\cr\hline\cr\mathcal{C}(\mathfrak{sl}_{2},4)_{\mathrm{ad}}&3&6&2\\ \mathcal{C}(\mathfrak{sl}_{2},4)^{\mathrm{rev}}_{\mathrm{ad}}&3&6&2\\ \mathcal{Z}(\mathrm{Vec}^{\gamma}_{Q_{8}})_{\mathrm{ad}}&5&8&4\\ \mathcal{Z}(\mathrm{Vec}^{\gamma}_{Q_{8}})^{\mathrm{rev}}_{\mathrm{ad}}&5&8&4\\ \mathcal{C}(\mathfrak{sl}_{3},3)_{\mathrm{ad}}&4&12&3\\ \hline\cr\end{array}
Figure 1: Exceptional near-group braided fusion categories which possess minimal modular extensions; Ξ³\gamma is any generator of H3​(Q8,β„‚Γ—)H^{3}(Q_{8},\mathbb{C}^{\times})

The fusion rules of integral Tambara-Yamagami braided fusion categories coincide with the character rings of extraspecial 22-groups (see Section 2.4). In general, for each prime pp and nβˆˆβ„€β‰₯1n\in\mathbb{Z}_{\geq 1}, there exist nonsymmetrically braided fusion categories whose fusion rules coincide with the character rings of pΒ±1+2​np_{\pm}^{1+2n}, where pΒ±1+2​np_{\pm}^{1+2n} is either of the extraspecial pp-groups of order p2​n+1p^{2n+1}. It is an open problem to classify fusion categories with these fusion rules for pβ‰ 2p\neq 2, as well as to classify the compatible braidings. One computational hurdle is exponentially increasing multiplicities in the fusion rules as nn increases. This problem is of independent interest, but these nonsymmetrically braided fusion categories should provide yet another infinite class of counterexamples to the minimal modular extension conjecture. We prove in Proposition 6.0.2 that a nonsymmetrically braided fusion category whose fusion rules coincide with those of the character ring of pΒ±1+2​np_{\pm}^{1+2n} for some pβ‰ 2p\neq 2 and nβˆˆβ„€β‰₯1n\in\mathbb{Z}_{\geq 1} possesses a nondegenerately braided extension of theoretically minimal dimension only if it arises as the adjoint subcategory of a twisted double of an extraspecial pp-group.

Our exposition is divided into five additional sections. Section 2 describes the notation and vocabulary used in the remainder of the sections and provides the reader with further resources. Section 3 describes nondegenerately braided extensions for (β„€/2​℀)βŠ•2(\mathbb{Z}/2\mathbb{Z})^{\oplus 2} Tambara-Yamagami braided fusion categories in explicit detail, as this is the case where two important exceptions occur. The goal of Section 4 is to prove that (β„€/2​℀)βŠ•n(\mathbb{Z}/2\mathbb{Z})^{\oplus n} Tambara-Yamagami categories are more uniform for n>1n>1, with a large proportion lacking minimal modular extensions. Section 5 utilizes the existing classification of braided near-group fusion categories due to J.Β Thornton [24, Theorem III.4.6] to give a complete classification of braided near-group fusion categories satisfying the minimal modular extension conjecture. Lastly, Section 6 contains preliminary results which should allow the content of Section 4 to be generalized to arbitrary extraspecial pp-groups.

2 Preliminaries

2.1 Braided fusion categories

The basic object in what follows is a fusion category [5, Section 2]. Our exposition roughly follows the notation and language used in the standard textbook [4] which we will periodically cite. Fusion categories (over β„‚\mathbb{C}) are β„‚\mathbb{C}-linear, semisimple, rigid monoidal categories (with product βŠ—\otimes, unit πŸ™\mathbbm{1}, and duality βˆ—), which have finitely many isomorphism classes of simple objects and simple monoidal unit. The canonical examples of fusion categories are VecG\mathrm{Vec}_{G}, the category of GG-graded complex vector spaces, and Rep​(G)\mathrm{Rep}(G), the category of finite-dimensional complex representations of GG, for any finite group GG. The concepts in the remainder of this paragraph are based on the underlying Grothendieck ring of a fusion category [4, Chapter 3]. We denote the set of isomorphism classes of simple objects of a fusion category π’ž\mathcal{C} by π’ͺ​(π’ž)\mathcal{O}(\mathcal{C}). The decomposition of xβŠ—yx\otimes y into simple objects for any x,y∈π’ͺ​(π’ž)x,y\in\mathcal{O}(\mathcal{C}) are referred to as the fusion rules of π’ž\mathcal{C}, and are encoded in the fusion matrices Nx:=(Nx,yz)y,z∈π’ͺ​(π’ž)N_{x}:=(N_{x,y}^{z})_{y,z\in\mathcal{O}(\mathcal{C})} where Nx,yz:=dimβ„‚Homπ’žβ€‹(xβŠ—y,z)N_{x,y}^{z}:=\dim_{\mathbb{C}}\mathrm{Hom}_{\mathcal{C}}(x\otimes y,z). The largest real eigenvalue of NxN_{x} is known as the Frobenius-Perron dimension of xx, or FPdim​(x)\mathrm{FPdim}(x) for brevity, while the sum of FPdim​(x)2\mathrm{FPdim}(x)^{2} over all x∈π’ͺ​(π’ž)x\in\mathcal{O}(\mathcal{C}) will be denoted FPdim​(π’ž)\mathrm{FPdim}(\mathcal{C}). A simple object x∈π’ͺ​(π’ž)x\in\mathcal{O}(\mathcal{C}) is called invertible if FPdim​(x)=1\mathrm{FPdim}(x)=1 which implies xβŠ—y∈π’ͺ​(π’ž)x\otimes y\in\mathcal{O}(\mathcal{C}) for all y∈π’ͺ​(π’ž)y\in\mathcal{O}(\mathcal{C}). When all x∈π’ͺ​(π’ž)x\in\mathcal{O}(\mathcal{C}) are invertible, we say π’ž\mathcal{C} is pointed, and when FPdim​(x)βˆˆβ„€\mathrm{FPdim}(x)\in\mathbb{Z} for all simple xx in π’ž\mathcal{C}, we say π’ž\mathcal{C} is integral. But in general, π’žpt\mathcal{C}_{\mathrm{pt}} and π’žβ„š\mathcal{C}_{\mathbb{Q}} will be the maximal pointed and integral fusion subcategories of π’ž\mathcal{C}, respectively.

Note 2.1.1.

We use the notation π’žβ„š\mathcal{C}_{\mathbb{Q}} in lieu of π’žβ„€\mathcal{C}_{\mathbb{Z}} since if 𝕂\mathbb{K} is any algebraic number field, the objects xβˆˆπ’žx\in\mathcal{C} such that FPdim​(x)βˆˆπ•‚\mathrm{FPdim}(x)\in\mathbb{K} form π’žπ•‚\mathcal{C}_{\mathbb{K}}, a fusion subcategory of π’ž\mathcal{C} by [10, Proposition 1.6]. The fact that Frobenius-Perron dimensions are algebraic integers in these fields follows trivially from the definition.

The fusion categories VecG\mathrm{Vec}_{G} for finite groups GG are both integral and pointed, while the fusion categories Rep​(G)\mathrm{Rep}(G) are just integral unless GG is abelian. Both of these families of examples have commutative fusion rules. Moreso, for all objects x,yx,y, one can choose natural isomorphisms cx,y:xβŠ—yβ†’yβŠ—xc_{x,y}:x\otimes y\to y\otimes x satisfying braid-like compatibilities; a fusion category along with a choice of natural isomorphisms {cx,y}x,yβˆˆπ’ž\{c_{x,y}\}_{x,y\in\mathcal{C}} satisfying the conditions in [4, Definition 8.1.1] is known as a braided fusion category. If {cx,y}x,yβˆˆπ’ž\{c_{x,y}\}_{x,y\in\mathcal{C}} is a braiding on a fusion category π’ž\mathcal{C}, then {cy,xβˆ’1}x,yβˆˆπ’ž\{c_{y,x}^{-1}\}_{x,y\in\mathcal{C}} is also a braiding on π’ž\mathcal{C}; we denote this braided fusion category by π’žrev\mathcal{C}^{\mathrm{rev}}.

If ρ:Gβ†’GL​(V)\rho:G\to\mathrm{GL}(V) and Οƒ:Gβ†’GL​(W)\sigma:G\to\mathrm{GL}(W) are finite-dimensional complex representations of a finite group GG, then ΟβŠ—Οƒ\rho\otimes\sigma and ΟƒβŠ—Ο\sigma\otimes\rho are naturally isomorphic by simple transposition of bases of VβŠ—WV\otimes W and WβŠ—VW\otimes V. If we denote each transposition by cρ,Οƒc_{\rho,\sigma}, then Rep​(G)\mathrm{Rep}(G) along with {cρ,Οƒ}ρ,ΟƒβˆˆRep​(G)\{c_{\rho,\sigma}\}_{\rho,\sigma\in\mathrm{Rep}(G)} is a braided fusion category. In this case cΟƒ,ρ​cρ,Οƒ=idρ,Οƒc_{\sigma,\rho}c_{\rho,\sigma}=\mathrm{id}_{\rho,\sigma} for all ρ,ΟƒβˆˆRep​(G)\rho,\sigma\in\mathrm{Rep}(G) and we say that Rep​(G)\mathrm{Rep}(G) with this particular braiding is symmetrically braided [4, Section 9.9]. But there are potentially many other symmetric braidings one can equip the fusion category Rep​(G)\mathrm{Rep}(G) with. In particular, if z∈Z​(G)z\in Z(G) has order 2, then one can twist the standard symmetric braiding by the parity of the action of zz to produce another symmetric braiding [4, Example 9.9.1]. To differentiate between these braided fusion categories, we will denote them by Rep​(G,z)\mathrm{Rep}(G,z), and Rep​(G)\mathrm{Rep}(G) will be reserved solely for the underlying fusion category. For uniformity, Rep​(G)\mathrm{Rep}(G) equipped with the trivial symmetric braiding will be denoted Rep​(G,e)\mathrm{Rep}(G,e) and we refer to any braided fusion category braided equivalent to Rep​(G,e)\mathrm{Rep}(G,e) as Tannakian.

Note 2.1.2.

It is crucial to emphasize the difference between an equivalence of fusion categories and an equivalence of braided fusion categories [4, Definition 8.1.7] which is a strictly stronger condition. For example, [4, Corollary 9.9.25] states that if π’ž\mathcal{C} is a symmetrically braided fusion category, then π’ž\mathcal{C} is braided equivalent to Rep​(G,z)\mathrm{Rep}(G,z) for some finite group GG and z∈Z​(G)z\in Z(G) such that z2=ez^{2}=e. But there are multitudes of examples of braided fusion categories π’ž\mathcal{C} such that π’ž\mathcal{C} is equivalent to Rep​(G)\mathrm{Rep}(G) as a fusion category for a finite group GG but π’ž\mathcal{C} is not symmetrically braided (Section 2.5).

Any fusion subcategory π’ŸβŠ‚π’ž\mathcal{D}\subset\mathcal{C} of a braided fusion category π’ž\mathcal{C} is a braided fusion category with the braiding restricted to π’Ÿ\mathcal{D} from π’ž\mathcal{C}. We define the relative centralizer of π’Ÿ\mathcal{D} in π’ž\mathcal{C}, denoted Cπ’žβ€‹(π’Ÿ)C_{\mathcal{C}}(\mathcal{D}), as the full subcategory of xβˆˆπ’žx\in\mathcal{C} such that cy,x​cx,y=idxβŠ—yc_{y,x}c_{x,y}=\mathrm{id}_{x\otimes y} for all yβˆˆπ’žy\in\mathcal{C}. The special case of Cπ’žβ€‹(π’ž)C_{\mathcal{C}}(\mathcal{C}) is known as the symmetric center of π’ž\mathcal{C} as it is clearly a symmetrically braided fusion subcategory of π’ž\mathcal{C}. In much of the existing literature, the symmetric center of π’ž\mathcal{C} is simply denoted π’žβ€²\mathcal{C}^{\prime} but we will avoid this notation in the remainder of the exposition as the apostrophe is an overburdened symbol in mathematics. The condition of a braiding being symmetric can be restated as π’ͺ​(Cπ’žβ€‹(π’ž))=π’ͺ​(π’ž)\mathcal{O}(C_{\mathcal{C}}(\mathcal{C}))=\mathcal{O}(\mathcal{C}), while we refer to braided fusion categories such that π’ͺ​(Cπ’žβ€‹(π’ž))={πŸ™}\mathcal{O}(C_{\mathcal{C}}(\mathcal{C}))=\{\mathbbm{1}\} as nondegenerately braided. Of most importance in what follows is that if π’Ÿ\mathcal{D} is a braided fusion category and π’žβŠ‚π’Ÿ\mathcal{C}\subset\mathcal{D} a fusion subcategory, then [4, Theorem 8.21.5]

FPdim​(π’ž)​FPdim​(Cπ’Ÿβ€‹(π’ž))=FPdim​(π’Ÿ)​FPdim​(π’žβˆ©Cπ’Ÿβ€‹(π’Ÿ)).\mathrm{FPdim}(\mathcal{C})\mathrm{FPdim}(C_{\mathcal{D}}(\mathcal{C}))=\mathrm{FPdim}(\mathcal{D})\mathrm{FPdim}(\mathcal{C}\cap C_{\mathcal{D}}(\mathcal{D})). (1)

2.2 Covers and extensions

For a fixed braided fusion category, often one wants to consider categories containing the original which are larger but have more convenient properties. In this laissez-faire approach, the larger category will be called a cover because the larger category has been loosely thrown on top without any specific information about how the smaller category is being contained. When control is needed, the data of a cover along with specific instructions on how to connect the category to its cover will be called an extension.

Definition 2.2.1.

Let π’ž\mathcal{C} be a braided fusion category. If π’Ÿ\mathcal{D} is a braided fusion category and there exists a fully faithful braided tensor functor ΞΉ:π’žβ†ͺπ’Ÿ\iota:\mathcal{C}\hookrightarrow\mathcal{D}, then π’Ÿ\mathcal{D} is a cover of π’ž\mathcal{C}, while the pair (π’Ÿ,ΞΉ)(\mathcal{D},\iota) is an extension of π’ž\mathcal{C}.

Adjectives which apply to braided fusion categories apply to covers and extensions in a natural way. For example, a nondegenerate cover of π’ž\mathcal{C} would be a nondegenerately braided fusion category π’Ÿ\mathcal{D} which is also a cover of π’ž\mathcal{C}.

Definition 2.2.2.

Let π’ž\mathcal{C} be a braided fusion category with extensions (π’Ÿ,ΞΉ)(\mathcal{D},\iota) and (β„°,ΞΊ)(\mathcal{E},\kappa). A braided equivalence F:π’Ÿβ†’β„°F:\mathcal{D}\to\mathcal{E} is an equivalence of covers. If F∘ιF\circ\iota and ΞΊ\kappa are naturally isomorphic as braided tensor functors, we say that FF is an equivalence of extensions.

Our description of extensions in Definition 2.2.2 is essentially taken from [14, Definition 4.1] which emphasizes the importance of the embedding. The original definition [16, Conjecture 5.2] in the setting of modular tensor categories aligns with our definition of a cover. In a majority of the literature, there is a strong emphasis on studying nondegenerate covers or extensions π’žβŠ‚π’Ÿ\mathcal{C}\subset\mathcal{D} which have the smallest possible Frobenius-Perron dimension, which by Equation (1) is FPdim​(π’Ÿ)=FPdim​(π’ž)​FPdim​(Cπ’žβ€‹(π’ž))\mathrm{FPdim}(\mathcal{D})=\mathrm{FPdim}(\mathcal{C})\mathrm{FPdim}(C_{\mathcal{C}}(\mathcal{C})). This definition is equivalent to ensuring that no simple object is added in the cover which centralizes the original category. In this way, such covers can be thought of as the optimal vehicle for applying the results of nondegenerately braided fusion categories to arbitrary braided fuson categories.

Lemma 2.2.3.

Let π’Ÿ\mathcal{D} be a nondegenerate cover of a braided fusion category π’ž\mathcal{C}. Then FPdim​(π’Ÿ)=FPdim​(π’ž)​FPdim​(Cπ’žβ€‹(π’ž))\mathrm{FPdim}(\mathcal{D})=\mathrm{FPdim}(\mathcal{C})\mathrm{FPdim}(C_{\mathcal{C}}(\mathcal{C})) if and only if Cπ’Ÿβ€‹(π’ž)=Cπ’žβ€‹(π’ž)C_{\mathcal{D}}(\mathcal{C})=C_{\mathcal{C}}(\mathcal{C}).

Proof.

It is clear that Cπ’žβ€‹(π’ž)βŠ‚Cπ’Ÿβ€‹(π’ž)C_{\mathcal{C}}(\mathcal{C})\subset C_{\mathcal{D}}(\mathcal{C}) from definition. But FPdim​(Cπ’Ÿβ€‹(π’ž))​FPdim​(π’ž)=FPdim​(π’Ÿ)\mathrm{FPdim}(C_{\mathcal{D}}(\mathcal{C}))\mathrm{FPdim}(\mathcal{C})=\mathrm{FPdim}(\mathcal{D}) by Equation (1) applied to π’žβŠ‚π’Ÿ\mathcal{C}\subset\mathcal{D}. Therefore FPdim​(π’Ÿ)=FPdim​(π’ž)​FPdim​(Cπ’žβ€‹(π’ž))\mathrm{FPdim}(\mathcal{D})=\mathrm{FPdim}(\mathcal{C})\mathrm{FPdim}(C_{\mathcal{C}}(\mathcal{C})) if and only if FPdim​(Cπ’žβ€‹(π’ž))=FPdim​(Cπ’Ÿβ€‹(π’ž))\mathrm{FPdim}(C_{\mathcal{C}}(\mathcal{C}))=\mathrm{FPdim}(C_{\mathcal{D}}(\mathcal{C})), i.e.Β if and only if Cπ’žβ€‹(π’ž)=Cπ’Ÿβ€‹(π’ž)C_{\mathcal{C}}(\mathcal{C})=C_{\mathcal{D}}(\mathcal{C}). ∎

In the literature thus far, extensions satisfying the hypotheses of Lemma 2.2.3 have been referred to as minimal nondegenerate extensions or minimal modular extensions, with the addition of spherical structures (see Section 2.3). It has been shown that these extensions have additional algebraic structure in the unitary setting [14, Theorem 1.1] as well as physical meaning in the study of topological phases of matter [14, Section 2]. But for many braided fusion cateogries the entire study of minimal nondegenerate extensions in this sense is vaccuous, as none exist. We will retain this entrenched language for both covers and extensions with a hope that the notion of minimal extensions will eventually apply to all braided fusion categories.

2.3 Graded extensions and modular data

There are two structural tools for fusion and braided fusion categories that will be used frequently.

Firstly [4, Section 4.14], each fusion category π’ž\mathcal{C} (moreover, every fusion ring) possesses a universal grading, i.e.Β an additive decomposition of π’ž\mathcal{C} by graded components corresponding to elements of a finite group GG, such that the fusion rules of π’ž\mathcal{C} respect the operation of GG. This grading is faithful in the sense that no graded component is empty, and we will refer to GG as the universal grading group of π’ž\mathcal{C}. It follows from the definition of the universal grading that the trivial component, the fusion subcategory of π’ž\mathcal{C} βŠ—\otimes-generated by xβŠ—xβˆ—x\otimes x^{\ast} for all x∈π’ͺ​(π’ž)x\in\mathcal{O}(\mathcal{C}), is a fusion subcategory which we denote by π’žad\mathcal{C}_{\mathrm{ad}} and refer to as the adjoint subcategory [4, Section 4.14]. In this way, if the universal grading group of π’ž\mathcal{C} is a finite group GG, we say π’ž\mathcal{C} is a GG-graded extension of π’žad\mathcal{C}_{\mathrm{ad}}. If a fusion category π’ž\mathcal{C} is faithfully graded by a finite group GG, denote the graded components π’žg\mathcal{C}_{g} for g∈Gg\in G. We will repeatedly use the fact that all graded components are the same dimension [4, Theorem 3.5.2]. In particular, FPdim​(π’žad)=βˆ‘x∈π’ͺ​(π’ž)βˆ©π’žgFPdim​(x)2\mathrm{FPdim}(\mathcal{C}_{\mathrm{ad}})=\sum_{x\in\mathcal{O}(\mathcal{C})\cap\mathcal{C}_{g}}\mathrm{FPdim}(x)^{2} for all g∈Gg\in G and moreover FPdim​(π’ž)=|G|​FPdim​(π’žad)\mathrm{FPdim}(\mathcal{C})=|G|\mathrm{FPdim}(\mathcal{C}_{\mathrm{ad}}).

Secondly, if π’ž\mathcal{C} is a fusion category and FPdim​(π’ž)βˆˆβ„€\mathrm{FPdim}(\mathcal{C})\in\mathbb{Z} (i.e.Β π’ž\mathcal{C} is weakly integral), then π’ž\mathcal{C} possesses a canonical positive spherical structure [4, Corollary 9.6.6]. In practice, we only need this structure to allow us to take traces of endomorphisms in π’ž\mathcal{C}, producing numerical constraints in our proofs. The positivity of the canonical spherical structure corresponds to the fact that dim(x)\dim(x), the traces of the identity morphisms on x∈π’ͺ​(π’ž)x\in\mathcal{O}(\mathcal{C}), are precisely FPdim​(x)\mathrm{FPdim}(x). This implies FPdim​(π’ž)=dim(π’ž):=βˆ‘x∈π’ͺ​(π’ž)dim(x)2\mathrm{FPdim}(\mathcal{C})=\dim(\mathcal{C}):=\sum_{x\in\mathcal{O}(\mathcal{C})}\dim(x)^{2} hence in the setting of weakly integral fusion categories we will use FPdim\mathrm{FPdim} and dim\dim interchangeably, while for arbitrary fusion categories we will only use FPdim\mathrm{FPdim}. We will consider nondegenerately braided fusion categories as modular tensor categories [4, Definition 8.13.4] equipped with their unique positive spherical structure, when it suits our purposes, in order to utilize their modular data [4, Section 8.17]. Conveniently, the universal grading group of a modular tensor category π’ž\mathcal{C} is canonically isomorphic to π’ͺ​(π’žpt)\mathcal{O}(\mathcal{C}_{\mathrm{pt}}) [11, Theorem 6.3]. The modular data of a modular tensor category is an invertible |π’ͺ​(π’ž)|Γ—|π’ͺ​(π’ž)||\mathcal{O}(\mathcal{C})|\times|\mathcal{O}(\mathcal{C})| matrix S=(Sx,y)x,y∈π’ͺ​(π’ž)S=(S_{x,y})_{x,y\in\mathcal{O}(\mathcal{C})} consisting of the traces of the double-braidings [4, Section 8.13], and a diagonal matrix with diagonal elements (ΞΈx)x∈π’ͺ​(π’ž)(\theta_{x})_{x\in\mathcal{O}(\mathcal{C})} where ΞΈx\theta_{x} is the trace of the ribbon structure π’ž\mathcal{C}. The matrix SS is unitary [5, Proposition 2.12]; we will refer to this fact as orthogonality relations between simple objects of π’ž\mathcal{C}. Specifically, if x,y∈π’ͺ​(π’ž)x,y\in\mathcal{O}(\mathcal{C}), then βˆ‘z∈π’ͺ​(π’ž)Sx,z​Sy,zΒ―=dim(π’ž)\sum_{z\in\mathcal{O}(\mathcal{C})}S_{x,z}\overline{S_{y,z}}=\dim(\mathcal{C}) if xβ‰…yx\cong y, and is zero otherwise, using Ξ±Β―\overline{\alpha} as the complex conjugate of Ξ±βˆˆβ„‚\alpha\in\mathbb{C}. It is known that ΞΈx\theta_{x} are roots of unity for all x∈π’ͺ​(π’ž)x\in\mathcal{O}(\mathcal{C}) [4, Corollary 8.18.2] and we will refer to the order of the TT-matrix as the conductor of π’ž\mathcal{C}. Two formulas that will be used in our proofs are the Verlinde formula [4, Corollary 8.14.4], which states that the fusion rules of a modular tensor category are given by the SS-matrix via

dim(π’ž)​Ny,zw=βˆ‘x∈π’ͺ​(π’ž)Sx,y​Sx,z​Sx,wΒ―dim(x)\dim(\mathcal{C})N_{y,z}^{w}=\sum_{x\in\mathcal{O}(\mathcal{C})}\dfrac{S_{x,y}S_{x,z}\overline{S_{x,w}}}{\dim(x)} (2)

for all w,y,z∈π’ͺ​(π’ž)w,y,z\in\mathcal{O}(\mathcal{C}), and the balancing equation [4, Proposition 8.13.8], which states that even without nondegeneracy of the braiding,

Sx,y=ΞΈxβˆ’1​θyβˆ’1β€‹βˆ‘z∈π’ͺ​(π’ž)Nx,yz​θz​dim(z).S_{x,y}=\theta_{x}^{-1}\theta_{y}^{-1}\sum_{z\in\mathcal{O}(\mathcal{C})}N_{x,y}^{z}\theta_{z}\dim(z). (3)

The last benefit of the SS-matrix is that it allows a numerical test for two objects x,yx,y in a spherical braided fusion category π’ž\mathcal{C} to centralize one another, i.e.Β cy,x​cx,y=idxβŠ—yc_{y,x}c_{x,y}=\mathrm{id}_{x\otimes y}. By taking the trace of these endomorphisms we can see x,yx,y centralizing one another implies Sx,y=dim(x)​dim(y)S_{x,y}=\dim(x)\dim(y), and the converse is also true [16, Proposition 2.5].

2.4 Extraspecial pp-groups and their character rings

Let pp be a prime integer. Recall that a finite group GG is a pp-group if the order of GG is a power of pp. A pp-group GG is extraspecial if |Z​(G)|=p|Z(G)|=p and G/Z​(G)G/Z(G) is a non-trivial elementary abelian pp-group, i.e.Β isomorphic to (β„€/p​℀)βŠ•n(\mathbb{Z}/p\mathbb{Z})^{\oplus n} for some nβˆˆβ„€β‰₯1n\in\mathbb{Z}_{\geq 1}. For each prime integer pp and positive integer nn, there exist exactly two isomorphism classes of extraspecial pp-groups of order p2​n+1p^{2n+1} which are traditionally denoted pΒ±1+2​np^{1+2n}_{\pm}. There do not exist extraspecial pp-groups whose order is an even power of pp. All extraspecial pp-groups can be constructed as central products of the two extraspecial pp-groups of order p3p^{3}. For example, the extraspecial 22-groups of order 8 are the dihedral group D4=2+1+2D_{4}=2^{1+2}_{+} and the quaternion group Q8=2βˆ’1+2Q_{8}=2^{1+2}_{-}. Therefore, all extraspecial 22-groups are just central products of various copies of D4D_{4} and Q8Q_{8}.

The representation theory of extraspecial pp-groups is straightforward as p2​np^{2n} isomorphism classes of irreducible representations of pΒ±1+2​np^{1+2n}_{\pm} are one-dimensional, corresponding to the elementary abelian pp-group underlying pΒ±1+2​np^{1+2n}_{\pm}. We will abuse notation and denote these classes by gg for g∈(β„€/p​℀)βŠ•2​ng\in(\mathbb{Z}/p\mathbb{Z})^{\oplus 2n} whose fusion rules are simply those of the linear characters of (β„€/p​℀)βŠ•2​n(\mathbb{Z}/p\mathbb{Z})^{\oplus 2n}. The remaining pβˆ’1p-1 isomorphism classes of irreducible representations are faithful of dimension pnp^{n}, and are distinguished by their values on Z​(pΒ±1+2​n)Z(p^{1+2n}_{\pm}). Denote these classes by xgx_{g} for g∈(β„€/p​℀)Γ—g\in(\mathbb{Z}/p\mathbb{Z})^{\times}. The fusion rules involving xhx_{h} are then

gβŠ—xhβ‰…xhβŠ—gβ‰…xh,Β for all ​g∈(β„€/p​℀)βŠ•2​n,h∈(β„€/p​℀)Γ—\displaystyle g\otimes x_{h}\cong x_{h}\otimes g\cong x_{h},\,\,\,\text{ for all }g\in(\mathbb{Z}/p\mathbb{Z})^{\oplus 2n},h\in(\mathbb{Z}/p\mathbb{Z})^{\times} (4)
xgβŠ—xhβ‰…pn​xg​h​ if ​g​hβ‰ e,Β and\displaystyle x_{g}\otimes x_{h}\cong p^{n}x_{gh}\,\,\,\text{ if }gh\neq e,\text{ and } (5)
xgβŠ—xgβˆ’1≅⨁h∈(β„€/p​℀)βŠ•2​nh.\displaystyle x_{g}\otimes x_{g^{-1}}\cong\bigoplus_{h\in(\mathbb{Z}/p\mathbb{Z})^{\oplus 2n}}h. (6)

Extraspecial pp-groups are characterized by the degrees of their characters. This result can be found in standard textbooks on the character theory of finite groups such as [13, Proposition 7.7]. For our purposes, we will only need a trivial corollary of this fact.

Lemma 2.4.1.

Let RR be the character ring of an extraspecial pp-group. If GG is a finite group whose character ring is isomorphic to RR, then GG is an extraspecial pp-group.

2.5 Braided Tambara-Yamagami

Tambara-Yamagami fusion categories are β„€/2​℀\mathbbm{Z}/2\mathbb{Z}-graded extensions (see Section 2.3) of pointed fusion categories whose non-trivial graded component has exactly one isomorphism class of simple objects. We will denote the isomorphism classes of invertible objects by g∈Gg\in G, a finite group, and the isomorphism class of the noninvertible simple object by xx. The fusion rules for invertible elements follow the group operation of GG while fusion rules with xx must be gβŠ—xβ‰…xβŠ—gβ‰…xg\otimes x\cong x\otimes g\cong x and xβŠ—x≅⨁g∈Ggx\otimes x\cong\bigoplus_{g\in G}g. For example, Rep​(2Β±1+2​n)\mathrm{Rep}(2_{\pm}^{1+2n}) for nβˆˆβ„€β‰₯1n\in\mathbb{Z}_{\geq 1} are Tambara-Yamagami fusion categories whose adjoint subcategories have the fusion rules of an elementary abelian 22-group. It was shown in [23] that a Tambara-Yamagami fusion category (over β„‚\mathbb{C}) is characterized by the group of invertible objects, GG, which must be abelian, a nondegenerate bicharacter Ο‡:GΓ—Gβ†’β„‚Γ—\chi:G\times G\to\mathbb{C}^{\times} such that χ​(g,h)=χ​(h,g)\chi(g,h)=\chi(h,g) for all g,h∈Gg,h\in G, and an extension sign [6, Example 9.4] which is usually recorded as Ο„\tau, a square root of |G|βˆ’1|G|^{-1} as this value appears in many computations. It is reasonable to use the notation π’žβ€‹(Ο‡,Ο„)\mathcal{C}(\chi,\tau) for such a category since a description of Ο‡\chi includes a description of the finite abelian group GG. This is the original notation of D.Β Tambara and S.Β Yamagami [23, Definition 3.1].

It has been proven [21, Theorem 1.2(1)] that Tambara-Yamagami fusion categories possess a braiding if and only if GG is an elementary abelian 2-group, i.e.Β G=En:=(β„€/2​℀)βŠ•nG=E_{n}:=(\mathbb{Z}/2\mathbb{Z})^{\oplus n} for some nβˆˆβ„€β‰₯1n\in\mathbb{Z}_{\geq 1}. Up to isometry, there is a unique nondegenerate bicharacter Ο‡1\chi^{1} on EnE_{n} such that Ο‡1​(g,h)=Ο‡1​(h,g)\chi^{1}(g,h)=\chi^{1}(h,g) for all g∈Eng\in E_{n} when nn is odd and exactly two, Ο‡0,Ο‡1\chi^{0},\chi^{1}, up to isomorphism when nn is even [25, Section 5]. Specifically, Ο‡0​(g,g)=1\chi^{0}(g,g)=1 and Ο‡1​(g,g)=βˆ’1\chi^{1}(g,g)=-1 for all generators g∈Eng\in E_{n}. When no specific braiding needs to be defined, it will suffice to denote all braided Tambara-Yamagami fusion categories as π’žβ€‹(Ο‡nk,Ο„)\mathcal{C}(\chi^{k}_{n},\tau) where k=1,2k=1,2 and nn indicates EnE_{n} is the underlying group of invertible objects.

For fixed nβˆˆβ„€β‰₯1n\in\mathbb{Z}_{\geq 1}, it was further proven that there exist at most 2n+12^{n+1} inequivalent braidings for each π’žβ€‹(Ο‡nk,Ο„)\mathcal{C}(\chi_{n}^{k},\tau), indexed by choices of signs (Ξ΄1,…,Ξ΄n,Ο΅)(\delta_{1},\ldots,\delta_{n},\epsilon) [21, Theorem 1.2(2)]. Many of these braidings are equivalent. A more precise statement can be found in [7, Corollary 4.10] and elsewhere. Here the data (Ξ΄1,…,Ξ΄n,Ο΅)(\delta_{1},\ldots,\delta_{n},\epsilon) is replaced with (q,Ξ±)(q,\alpha) where q:Enβ†’β„‚Γ—q:E_{n}\to\mathbb{C}^{\times} is a quadratic form such that Ο‡nk​(g,h)=q​(g)​q​(h)​q​(g+h)βˆ’1\chi_{n}^{k}(g,h)=q(g)q(h)q(g+h)^{-1} for all g,h∈Eng,h\in E_{n}, and Ξ±βˆˆβ„‚\alpha\in\mathbb{C} is a chosen square root of Ο„β€‹βˆ‘g∈Enq​(g)\tau\sum_{g\in E_{n}}q(g). To translate between the two sets of data, q​(g)=Οƒ1​(g)q(g)=\sigma_{1}(g) for all g∈Eng\in E_{n} in the notation of [21, Section 2.3], while Ξ±=Οƒ3​(e)\alpha=\sigma_{3}(e). Two braidings (q,Ξ±)(q,\alpha), (qβ€²,Ξ±β€²)(q^{\prime},\alpha^{\prime}) on a fixed fusion category π’žβ€‹(Ο‡,Ο„)\mathcal{C}(\chi,\tau) with Ο‡:EnΓ—Enβ†’β„‚Γ—\chi:E_{n}\times E_{n}\to\mathbb{C}^{\times} are equivalent if and only if there exists a group automorphism f∈Aut​(En)f\in\mathrm{Aut}(E_{n}) such that q′​(f​(g))=q​(g)q^{\prime}(f(g))=q(g) for all g∈Eng\in E_{n} and Ξ±=Ξ±β€²\alpha=\alpha^{\prime} [7, Corollary 4.10]. This implies that ff satisfies χ​(g,h)=χ​(f​(g),f​(h))\chi(g,h)=\chi(f(g),f(h)) for all g,h∈Eng,h\in E_{n}.

Example 2.5.1.

The braided equivalence classes of π’žβ€‹(Ο‡11,Ο„)\mathcal{C}(\chi_{1}^{1},\tau) are given by the following sets of data in Figure 2, displayed in both the notation of [21, Section 2.3] and [7, Section 4.3], where we have indexed the categories by the primitive 16th root of unity Ξ±\alpha. We use the label ℐ\mathcal{I} as they have traditionally been referred to as Ising categories [3, Appendix B].

τδϡq​(e)q​(g)αℐ11/2111iΞΆ16ℐ3βˆ’1/2βˆ’111βˆ’iΞΆ163ℐ5βˆ’1/21βˆ’11iΞΆ165ℐ71/2βˆ’1βˆ’11βˆ’iΞΆ167ℐ91/21βˆ’11iΞΆ169ℐ11βˆ’1/2βˆ’1βˆ’11βˆ’iΞΆ1611ℐ13βˆ’1/2111iΞΆ1613ℐ151/2βˆ’111βˆ’iΞΆ1615\begin{array}[]{|c|c|cc|ccc|}\hline\cr&\tau&\delta&\epsilon&q(e)&q(g)&\alpha\\ \hline\cr\mathcal{I}_{1}&1/\sqrt{2}&1&1&1&i&\zeta_{16}\\ \mathcal{I}_{3}&-1/\sqrt{2}&-1&1&1&-i&\zeta_{16}^{3}\\ \mathcal{I}_{5}&-1/\sqrt{2}&1&-1&1&i&\zeta_{16}^{5}\\ \mathcal{I}_{7}&1/\sqrt{2}&-1&-1&1&-i&\zeta_{16}^{7}\\ \mathcal{I}_{9}&1/\sqrt{2}&1&-1&1&i&\zeta_{16}^{9}\\ \mathcal{I}_{11}&-1/\sqrt{2}&-1&-1&1&-i&\zeta_{16}^{11}\\ \mathcal{I}_{13}&-1/\sqrt{2}&1&1&1&i&\zeta_{16}^{13}\\ \mathcal{I}_{15}&1/\sqrt{2}&-1&1&1&-i&\zeta_{16}^{15}\\ \hline\cr\end{array}
Figure 2: Ο‡11\chi_{1}^{1} braidings
Example 2.5.2.

Order the elements of E2=(β„€/2​℀)βŠ•2E_{2}=(\mathbb{Z}/2\mathbb{Z})^{\oplus 2} as e,g1,g2,g1+g2e,g_{1},g_{2},g_{1}+g_{2}. For reference, the nondegenerate bilinear forms Ο‡2k:E2Γ—E2β†’β„‚Γ—\chi_{2}^{k}:E_{2}\times E_{2}\to\mathbb{C}^{\times} are given by

Ο‡20:[111111βˆ’1βˆ’11βˆ’11βˆ’11βˆ’1βˆ’11.],Β andΒ Ο‡21:[11111βˆ’11βˆ’111βˆ’1βˆ’11βˆ’1βˆ’11].\chi_{2}^{0}:\,\,\,\left[\begin{array}[]{cccc}1&1&1&1\\ 1&1&-1&-1\\ 1&-1&1&-1\\ 1&-1&-1&1.\end{array}\right],\qquad\text{ and }\qquad\chi_{2}^{1}:\,\,\,\left[\begin{array}[]{cccc}1&1&1&1\\ 1&-1&1&-1\\ 1&1&-1&-1\\ 1&-1&-1&1\end{array}\right]. (7)

There exist at most 8 braidings for each category which are defined by three sign choices in [21]: Ξ΄1\delta_{1}, Ξ΄2\delta_{2}, and Ο΅\epsilon. The choice of Ο΅\epsilon will always result in 2 inequivalent braidings by [7, Corollary 4.10(c)] when other parameters are held constant, so it remains to determine whether any assignments of Ξ΄1,Ξ΄2\delta_{1},\delta_{2} are equivalent. Commutation of group elements g1,g2g_{1},g_{2} with the noninvertible simple xx acts as multiplication by q​(gj)=Οƒ1​(gj)=Ξ΄j​χ​(gj,gj)q(g_{j})=\sigma_{1}(g_{j})=\delta_{j}\sqrt{\chi(g_{j},g_{j})} for j=1,2j=1,2, and as multiplication by

q​(g1+g2)=Οƒ1​(g1+g2)=Ξ΄1​δ2​χ​(g1,g1)​χ​(g2,g2)​χ​(g1,g2)=βˆ’Ξ΄0​δ1q(g_{1}+g_{2})=\sigma_{1}(g_{1}+g_{2})=\delta_{1}\delta_{2}\sqrt{\chi(g_{1},g_{1})}\sqrt{\chi(g_{2},g_{2})}\chi(g_{1},g_{2})=-\delta_{0}\delta_{1} (8)

by the commutation of g1+g2g_{1}+g_{2} with xx. Lastly, since xβŠ—x=eβŠ•g1βŠ•g2βŠ•(g1+g2)x\otimes x=e\oplus g_{1}\oplus g_{2}\oplus(g_{1}+g_{2}), we can describe the braiding of xx with itself on the component corresponding to e∈E2e\in E_{2} as multiplication by

Ξ±=Οƒ3​(e)=ϡ​τ​(1+Ξ΄1​χ​(g1,g1)+Ξ΄2​χ​(g2,g2)βˆ’Ξ΄1​δ2).\alpha=\sigma_{3}(e)=\epsilon\sqrt{\tau\left(1+\delta_{1}\sqrt{\chi(g_{1},g_{1})}+\delta_{2}\sqrt{\chi(g_{2},g_{2})}-\delta_{1}\delta_{2}\right)}. (9)

We have Aut​(E2)β‰…S3\mathrm{Aut}(E_{2})\cong S_{3}, but for Ο‡21\chi_{2}^{1}, only the permutation g1↔g2g_{1}\leftrightarrow g_{2} preserves qq as q​(g1+g2)βˆˆβ„q(g_{1}+g_{2})\in\mathbb{R} while q​(g1),q​(g2)βˆ‰β„q(g_{1}),q(g_{2})\not\in\mathbb{R}, leaving 6 inequivalent braidings on each π’žβ€‹(Ο‡21,Ο„)\mathcal{C}(\chi_{2}^{1},\tau). For Ο‡20\chi_{2}^{0}, q​(g)=Β±1q(g)=\pm 1 for all g∈E2g\in E_{2} and any two braidings are equivalent if the images of their quadratic forms qq have the same number of 1’s and βˆ’1-1’s, and Ξ±=Οƒ3​(e)\alpha=\sigma_{3}(e) corresponding to each is equal. Therefore, for a fixed fusion category π’žβ€‹(Ο‡20,Ο„)\mathcal{C}(\chi_{2}^{0},\tau) there are 44 inequivalent braidings for a total of 1616 braided equivalence classes of E2E_{2} Tambara-Yamagami braided fusion categories.

One can verify with the above formulas that the collections of braiding data in Figure 3, displayed in both the notation of [21, Section 2.3] and [7, Section 4.3], correspond to the 4 symmetrically braided E2E_{2} Tambara-Yamagami fusion categories, where z∈Z​(G)z\in Z(G) for G=D4,Q8G=D_{4},Q_{8} is the unique nontrivial central element. The observation that π’žβ€‹(Ο‡20,1/2)\mathcal{C}(\chi_{2}^{0},1/2) is equivalent to Rep​(D4)\mathrm{Rep}(D_{4}) and π’žβ€‹(Ο‡20,βˆ’1/2)\mathcal{C}(\chi_{2}^{0},-1/2) is equivalent to Rep​(Q8)\mathrm{Rep}(Q_{8}) as fusion categories was made in [23, Section 4]. The remaining 4 equivalence classes of braided fusion categories π’žβ€‹(Ο‡20,Ο„)\mathcal{C}(\chi_{2}^{0},\tau) in Figure 4, and 12 equivalence classes of braided fusion categories π’žβ€‹(Ο‡21,Ο„)\mathcal{C}(\chi_{2}^{1},\tau) in Figure 5, are not symmetrically braided. We label these braided fusion categories by their realizations which are discussed in Section 3.

τδ1Ξ΄2Ο΅q​(e)q​(g1)q​(g2)q​(g1+g2)Ξ±Rep​(D4,e)1/2111111βˆ’11Rep​(D4,z)1/211βˆ’1111βˆ’1βˆ’1Rep​(Q8,e)βˆ’1/2βˆ’1βˆ’111βˆ’1βˆ’1βˆ’11Rep​(Q8,z)βˆ’1/2βˆ’1βˆ’1βˆ’11βˆ’1βˆ’1βˆ’1βˆ’1\begin{array}[]{|c|c|ccc|ccccc|}\hline\cr&\tau&\delta_{1}&\delta_{2}&\epsilon&q(e)&q(g_{1})&q(g_{2})&q(g_{1}+g_{2})&\alpha\\ \hline\cr\mathrm{Rep}(D_{4},e)&1/2&1&1&1&1&1&1&-1&1\\ \mathrm{Rep}(D_{4},z)&1/2&1&1&-1&1&1&1&-1&-1\\ \mathrm{Rep}(Q_{8},e)&-1/2&-1&-1&1&1&-1&-1&-1&1\\ \mathrm{Rep}(Q_{8},z)&-1/2&-1&-1&-1&1&-1&-1&-1&-1\\ \hline\cr\end{array}
Figure 3: Symmetric Ο‡20\chi_{2}^{0} braidings
τδ1Ξ΄2Ο΅q​(e)q​(g1)q​(g2)q​(g1+g2)α𝒦1/2βˆ’1βˆ’111βˆ’1βˆ’1βˆ’1i𝒦rev1/2βˆ’1βˆ’1βˆ’11βˆ’1βˆ’1βˆ’1βˆ’i𝒡​(VecQ8Ξ³)adβˆ’1/2111111βˆ’1i𝒡​(VecQ8Ξ³)adrevβˆ’1/211βˆ’1111βˆ’1βˆ’i\begin{array}[]{|c|c|ccc|ccccc|}\hline\cr&\tau&\delta_{1}&\delta_{2}&\epsilon&q(e)&q(g_{1})&q(g_{2})&q(g_{1}+g_{2})&\alpha\\ \hline\cr\mathcal{K}&1/2&-1&-1&1&1&-1&-1&-1&i\\ \mathcal{K}^{\mathrm{rev}}&1/2&-1&-1&-1&1&-1&-1&-1&-i\\ \mathcal{Z}(\mathrm{Vec}^{\gamma}_{Q_{8}})_{\mathrm{ad}}&-1/2&1&1&1&1&1&1&-1&i\\ \mathcal{Z}(\mathrm{Vec}^{\gamma}_{Q_{8}})^{\mathrm{rev}}_{\mathrm{ad}}&-1/2&1&1&-1&1&1&1&-1&-i\\ \hline\cr\end{array}

Figure 4: Nonsymmetric Ο‡20\chi_{2}^{0} braidings
τδ1Ξ΄2Ο΅q​(e)q​(g1)q​(g2)q​(g1+g2)Ξ±(ℐ1βŠ β„1)β„š1/21111iiβˆ’1ΞΆ8(ℐ5βŠ β„5)β„š1/211βˆ’11iiβˆ’1ΞΆ85(ℐ΢1βŠ β„15)β„š1/21βˆ’111iβˆ’i11(ℐ1βŠ β„7)β„š1/21βˆ’1βˆ’11iβˆ’i1βˆ’1(ℐ7βŠ β„7)β„š1/2βˆ’1βˆ’111βˆ’iβˆ’iβˆ’1ΞΆ87(ℐ3βŠ β„3)β„š1/2βˆ’1βˆ’1βˆ’11βˆ’iβˆ’iβˆ’1ΞΆ83(ℐ1βŠ β„13)β„šβˆ’1/21111iiβˆ’1ΞΆ87(ℐ1βŠ β„5)β„šβˆ’1/211βˆ’11iiβˆ’1ΞΆ83(ℐ1βŠ β„3)β„šβˆ’1/21βˆ’111iβˆ’i1i(ℐ1βŠ β„11)β„šβˆ’1/21βˆ’1βˆ’11iβˆ’i1βˆ’i(ℐ3βŠ β„15)β„šβˆ’1/2βˆ’1βˆ’111βˆ’iβˆ’iβˆ’1ΞΆ8(ℐ3βŠ β„7)β„šβˆ’1/2βˆ’1βˆ’1βˆ’11βˆ’iβˆ’iβˆ’1ΞΆ85\begin{array}[]{|c|c|ccc|ccccc|}\hline\cr&\tau&\delta_{1}&\delta_{2}&\epsilon&q(e)&q(g_{1})&q(g_{2})&q(g_{1}+g_{2})&\alpha\\ \hline\cr(\mathcal{I}_{1}\boxtimes\mathcal{I}_{1})_{\mathbb{Q}}&1/2&1&1&1&1&i&i&-1&\zeta_{8}\\ (\mathcal{I}_{5}\boxtimes\mathcal{I}_{5})_{\mathbb{Q}}&1/2&1&1&-1&1&i&i&-1&\zeta^{5}_{8}\\ (\mathcal{I}_{\zeta_{1}}\boxtimes\mathcal{I}_{15})_{\mathbb{Q}}&1/2&1&-1&1&1&i&-i&1&1\\ (\mathcal{I}_{1}\boxtimes\mathcal{I}_{7})_{\mathbb{Q}}&1/2&1&-1&-1&1&i&-i&1&-1\\ (\mathcal{I}_{7}\boxtimes\mathcal{I}_{7})_{\mathbb{Q}}&1/2&-1&-1&1&1&-i&-i&-1&\zeta_{8}^{7}\\ (\mathcal{I}_{3}\boxtimes\mathcal{I}_{3})_{\mathbb{Q}}&1/2&-1&-1&-1&1&-i&-i&-1&\zeta_{8}^{3}\\ (\mathcal{I}_{1}\boxtimes\mathcal{I}_{13})_{\mathbb{Q}}&-1/2&1&1&1&1&i&i&-1&\zeta_{8}^{7}\\ (\mathcal{I}_{1}\boxtimes\mathcal{I}_{5})_{\mathbb{Q}}&-1/2&1&1&-1&1&i&i&-1&\zeta_{8}^{3}\\ (\mathcal{I}_{1}\boxtimes\mathcal{I}_{3})_{\mathbb{Q}}&-1/2&1&-1&1&1&i&-i&1&i\\ (\mathcal{I}_{1}\boxtimes\mathcal{I}_{11})_{\mathbb{Q}}&-1/2&1&-1&-1&1&i&-i&1&-i\\ (\mathcal{I}_{3}\boxtimes\mathcal{I}_{15})_{\mathbb{Q}}&-1/2&-1&-1&1&1&-i&-i&-1&\zeta_{8}\\ (\mathcal{I}_{3}\boxtimes\mathcal{I}_{7})_{\mathbb{Q}}&-1/2&-1&-1&-1&1&-i&-i&-1&\zeta_{8}^{5}\\ \hline\cr\end{array}
Figure 5: Ο‡21\chi_{2}^{1} braidings

2.6 Doubles and algebras

Lastly, we outline the center, or double construction, for fusion categories and its relation to commutative algebras. If π’ž\mathcal{C} is a fusion category, then 𝒡​(π’ž)\mathcal{Z}(\mathcal{C}), the center or double of π’ž\mathcal{C} has objects in correspondence with pairs (x,{ρy}yβˆˆπ’ž)(x,\{\rho_{y}\}_{y\in\mathcal{C}}) where xβˆˆπ’žx\in\mathcal{C} and ρy:xβŠ—yβ†’yβŠ—x\rho_{y}:x\otimes y\to y\otimes x is a natural isomorphism for all yβˆˆπ’žy\in\mathcal{C} satisfying the coherence diagram in [4, Definition 7.13.1] where one can find the definition of morphisms in this category, its monoidal product, etc. The goal of this construction is to create a nondegenerately braided fusion category from π’ž\mathcal{C} in a uniform manner, which often ends up being quite unwieldly. The namesake of the double comes from the fact that the representation category of the quantum double of a Hopf algebra HH is precisely the double 𝒡​(Rep​(H))\mathcal{Z}(\mathrm{Rep}(H)) [4, Proposition 7.14.6]. Let GG be a finite group and Ο‰βˆˆH3​(G,β„‚Γ—)\omega\in H^{3}(G,\mathbb{C}^{\times}) a cohomological twisting of the associativity of VecG\mathrm{Vec}_{G}, producing the fusion category of twisted GG-graded vector spaces VecGΟ‰\mathrm{Vec}_{G}^{\omega} [4, Example 2.3.8]. The center 𝒡​(VecGΟ‰)\mathcal{Z}(\mathrm{Vec}_{G}^{\omega}) is known as the twisted double of GG whose modular data has been known for quite some time [9, Sections 2.2 & 5.2].

Alternatively, twisted doubles of finite groups can be characterized by possessing maximal Tannakian fusion subcategories which we will understand through the following construction. In general, if π’ž\mathcal{C} is a braided fusion category and Rep​(G)βŠ‚π’ž\mathrm{Rep}(G)\subset\mathcal{C} is a Tannakian fusion subcategory for a finite group GG, then R:=βŠ•g∈GgR:=\oplus_{g\in G}g has the structure of a connected Γ©tale algebra in π’ž\mathcal{C} [1, Section 3]; we will refer to this algebra as the regular algebra of the Tannakian subcategory. The category of local RR-modules π’žR0\mathcal{C}_{R}^{0} is then a braided fusion category which is nondegenerately braided if and only if π’ž\mathcal{C} is [1, Corollary 3.30]. Moreover π’žR0\mathcal{C}_{R}^{0} inherits the spherical structure of π’ž\mathcal{C} so the passage π’žβ†’π’žR0\mathcal{C}\to\mathcal{C}_{R}^{0} sends modular tensor categories to modular tensor categories. When RR is the regular algebra of a Tannakian fusion subcategory β„°βŠ‚π’ž\mathcal{E}\subset\mathcal{C}, then the simple objects of π’žR0\mathcal{C}_{R}^{0} are summands of the free RR-modules RβŠ—xR\otimes x for x∈π’ͺ​(Cπ’žβ€‹(β„°))x\in\mathcal{O}(C_{\mathcal{C}}(\mathcal{E})) [1, Example 3.14].

We will use regular algebras of Tannakian subcategories for numerical arguments as well, but one important application is to prove a reconstruction theorem for twisted doubles of finite groups from Lagrangian subcategories, i.e.Β Tannakian fusion subcategories β„°\mathcal{E} of braided fusion categories π’ž\mathcal{C} such that FPdim​(β„°)2=FPdim​(π’ž)\mathrm{FPdim}(\mathcal{E})^{2}=\mathrm{FPdim}(\mathcal{C}). Theorem 4.5 of [2] states that a modular tensor category π’ž\mathcal{C} is braided equivalent to a twisted double of a finite group GG if and only if there exists a Lagrangian subcategory Rep​(G)βŠ‚π’ž\mathrm{Rep}(G)\subset\mathcal{C}.

3 Nondegenerate covers and extensions of π’žβ€‹(Ο‡2k,Ο„)\mathcal{C}(\chi_{2}^{k},\tau)

Here we describe minimal nondegenerate covers (Section 2.2) for nonsymmetrically braided E2E_{2} Tambara-Yamagami fusion categories when they exist, while 𝒡​(π’ž)\mathcal{Z}(\mathcal{C}) is known to be a minimal nondegenerate cover for all symmetrically braided fusion categories π’ž\mathcal{C}. The main objective of this section is to provide an independent proof that there exists a braided fusion category of Frobenius-Perron dimension 8 whose symmetric center has Frobenius-Perron dimension 4, which does not possess a nondegenerate cover of Frobenius-Perron dimension of 32 [8, Proposition 4.11]. In fact, there are 2 such braided fusion categories, equivalent as fusion categories, with reverse braidings, denoted 𝒦\mathcal{K} and 𝒦rev\mathcal{K}^{\mathrm{rev}} in Figure 4. We do so in a way that generalizes to an infinite family of examples which have not appeared in the literature thus far in Section 4, and also illustrates the structure between some minimal nondegenerate covers (Example 3.2.2).

3.1 Nonsymmetric Ο‡20\chi_{2}^{0} braidings

Let π’ž\mathcal{C} be one of the 4 nonsymmetrically braided fusion categories π’žβ€‹(Ο‡20,Ο„)\mathcal{C}(\chi^{0}_{2},\tau) (Figure 4). Note that the symmetric center Cπ’žβ€‹(π’ž)=π’žptC_{\mathcal{C}}(\mathcal{C})=\mathcal{C}_{\mathrm{pt}} is Tannakian, using the formulas of [21, Section 2.3(2)]. Let π’Ÿ\mathcal{D} be a nondegenerate cover of π’ž\mathcal{C} with FPdim​(π’Ÿ)=32\mathrm{FPdim}(\mathcal{D})=32. As π’Ÿ\mathcal{D} is weakly integral, we may assume π’Ÿ\mathcal{D} is a modular tensor category equipped with its unique positive spherical structure. We will refer to π’ͺ​(π’žpt)\mathcal{O}(\mathcal{C}_{\mathrm{pt}}) by its structure as an abelian group, E2=(β„€/2​℀)2E_{2}=(\mathbb{Z}/2\mathbb{Z})^{2}.

We will first demonstrate that π’Ÿpt=π’žpt\mathcal{D}_{\mathrm{pt}}=\mathcal{C}_{\mathrm{pt}} and π’Ÿad=π’ž\mathcal{D}_{\mathrm{ad}}=\mathcal{C}. To this end, since π’Ÿ\mathcal{D} is weakly integral, then [10, Lemma 1.1] implies π’Ÿad\mathcal{D}_{\mathrm{ad}} is integral, of dimension 44 or 88 since dim(π’Ÿ)=dim(π’Ÿpt)​dim(π’Ÿad)\dim(\mathcal{D})=\dim(\mathcal{D}_{\mathrm{pt}})\dim(\mathcal{D}_{\mathrm{ad}}) by [4, Corollaries 8.21.7 & 8.22.8]. Recall that π’Ÿ\mathcal{D} is nilpotent, as its dimension is a prime power [11, Example 4.5]. Hence in the former case, every y∈π’ͺ​(π’Ÿ)y\in\mathcal{O}(\mathcal{D}) satisfies dim(y)2∈{1,2,4}\dim(y)^{2}\in\{1,2,4\} as dim(y)2\dim(y)^{2} must divide dim(π’Ÿad)\dim(\mathcal{D}_{\mathrm{ad}}) [11, Theorem 5.2.]. If there exists simple yβˆˆπ’Ÿy\in\mathcal{D} with dim(y)2=2\dim(y)^{2}=2 then there exists a unique simple object g∈E2g\in E_{2} with gβŠ—yβ‰…yg\otimes y\cong y: the nontrivial summand of yβŠ—yβˆ—y\otimes y^{\ast}. The other two nontrivial h1,h2∈E2h_{1},h_{2}\in E_{2} must then satisfy hjβŠ—yβ‰…zh_{j}\otimes y\cong z where zz is another simple object in the same universally graded component as yy with dim(z)2=2\dim(z)^{2}=2. Morever yβŠ—zβ‰…h1βŠ•h2βˆˆπ’Ÿady\otimes z\cong h_{1}\oplus h_{2}\in\mathcal{D}_{\mathrm{ad}}. Therefore yβŠ—yβ‰…πŸ™βŠ•gy\otimes y\cong\mathbbm{1}\oplus g (and zβŠ—zβ‰…πŸ™βŠ•gz\otimes z\cong\mathbbm{1}\oplus g), implying yβ‰…yβˆ—y\cong y^{\ast}. This forces yy to βŠ—\otimes-generate a braided fusion category of dimension 4 which is not pointed. Such a category is an Ising modular tensor category, whose pointed subcategory is not Tannakian [3, Lemma B.18]. But π’žpt\mathcal{C}_{\mathrm{pt}} is Tannakian so this is cannot be the case. Hence every simple object is invertible or dimension 2 and thus lies in its own universally graded component. This implies gβŠ—xβ‰…xg\otimes x\cong x for any xx such that dim(x)=2\dim(x)=2, hence Sg,x=2S_{g,x}=2 by the balancing equation and thus xx is centralized by π’Ÿad\mathcal{D}_{\mathrm{ad}}. This is a contradiction since Cπ’Ÿβ€‹(π’Ÿad)=π’ŸptC_{\mathcal{D}}(\mathcal{D}_{\mathrm{ad}})=\mathcal{D}_{\mathrm{pt}}. We may then conclude that dim(π’Ÿad)=8\dim(\mathcal{D}_{\mathrm{ad}})=8, hence π’Ÿpt=π’žpt\mathcal{D}_{\mathrm{pt}}=\mathcal{C}_{\mathrm{pt}}, and lastly π’Ÿad=π’ž\mathcal{D}_{\mathrm{ad}}=\mathcal{C}.

We may now reveal the SS-matrix of π’Ÿ\mathcal{D} (Section 2.3). The balancing equation implies Sx,x=Sx,xβˆ—=4​θxβˆ’2S_{x,x}=S_{x,x^{\ast}}=4\theta_{x}^{-2} since ΞΈg=1\theta_{g}=1 for all g∈E2g\in E_{2}, while Sx,g=2S_{x,g}=2 for all g∈E2g\in E_{2} since xx centralizes gg. From the formulas of [21, Section 3.7] and [21, Section 2.3(2)], ΞΈx=Β±i\theta_{x}=\pm i since π’ž\mathcal{C} is not symmetric. Moreover Sx,x=βˆ’4S_{x,x}=-4. The orthogonality relation (Section 2.3) of xx with itself is

32=βˆ‘z∈π’ͺ​(π’Ÿ)|Sx,z|2=βˆ‘z∈π’ͺ​(π’ž)|Sx,z|2+βˆ‘z∈π’ͺ​(π’Ÿ)βˆ–π’ͺ​(π’ž)|Sx,z|2=4β‹…22+42+βˆ‘z∈π’ͺ​(π’Ÿ)βˆ–π’ͺ​(π’ž)|Sx,z|2.32=\sum_{z\in\mathcal{O}(\mathcal{D})}|S_{x,z}|^{2}=\sum_{z\in\mathcal{O}(\mathcal{C})}|S_{x,z}|^{2}+\sum_{z\in\mathcal{O}(\mathcal{D})\setminus\mathcal{O}(\mathcal{C})}|S_{x,z}|^{2}=4\cdot 2^{2}+4^{2}+\sum_{z\in\mathcal{O}(\mathcal{D})\setminus\mathcal{O}(\mathcal{C})}|S_{x,z}|^{2}. (10)

Therefore βˆ‘z∈π’ͺ​(π’Ÿ)βˆ–π’ͺ​(π’ž)|Sx,z|2=0\sum_{z\in\mathcal{O}(\mathcal{D})\setminus\mathcal{O}(\mathcal{C})}|S_{x,z}|^{2}=0 and moreover Sx,z=0S_{x,z}=0 for all z∈π’ͺ​(π’Ÿ)βˆ–π’ͺ​(π’ž)z\in\mathcal{O}(\mathcal{D})\setminus\mathcal{O}(\mathcal{C}). Verlinde formula then implies for y∈π’ͺ​(π’Ÿ)βˆ–π’ͺ​(π’ž)y\in\mathcal{O}(\mathcal{D})\setminus\mathcal{O}(\mathcal{C}),

dim(π’Ÿ)​Nx,yy=βˆ‘z∈E2Sx,z​Sy,z​Sy,zΒ―dim(z)=βˆ‘z∈E2Sx,z​|Sy,z|2,\dim(\mathcal{D})N_{x,y}^{y}=\sum_{z\in E_{2}}\dfrac{S_{x,z}S_{y,z}\overline{S_{y,z}}}{\dim(z)}=\sum_{z\in E_{2}}S_{x,z}|S_{y,z}|^{2}, (11)

since for every z∈π’ͺ​(π’Ÿ)βˆ–E2z\in\mathcal{O}(\mathcal{D})\setminus E_{2}, we have shown either Sx,z=0S_{x,z}=0 or Sy,z=0S_{y,z}=0. Moreover, we have computed the remaning SS-matrix entries above, implying

Ny,yβˆ—x=Nx,yy=132β€‹βˆ‘z∈E2Sx,z​|Sy,z|2=132β€‹βˆ‘z∈E22β‹…dim(y)2=dim(y)24.N^{x}_{y,y^{\ast}}=N_{x,y}^{y}=\dfrac{1}{32}\sum_{z\in E_{2}}S_{x,z}|S_{y,z}|^{2}=\dfrac{1}{32}\sum_{z\in E_{2}}2\cdot\dim(y)^{2}=\dfrac{\dim(y)^{2}}{4}. (12)

As this and dim(y)\dim(y) must be integers, and dim(y)2\dim(y)^{2} divides dim(π’Ÿad)=8\dim(\mathcal{D}_{\mathrm{ad}})=8, then dim(y)2=4\dim(y)^{2}=4 or dim(y)2=8\dim(y)^{2}=8. But if dim(y)2=8\dim(y)^{2}=8 then gβŠ—yβ‰…yg\otimes y\cong y for all g∈E2g\in E_{2} since yy is the unique simple object in its universally graded component, hence yy is centralized by E2E_{2}, i.e.Β yβˆˆπ’žady\in\mathcal{C}_{\mathrm{ad}}, a contradiction. Therefore dim(y)=2\dim(y)=2 and thus each nontrivially graded component contains exactly 2 simple objects of dimension 2, which are permuted transitively by E2E_{2}. Moreover rank​(π’Ÿ)=11\mathrm{rank}(\mathcal{D})=11.

To compute the remaining SS-matrix entries, let y∈π’ͺ​(π’Ÿ)βˆ–π’ͺ​(π’ž)y\in\mathcal{O}(\mathcal{D})\setminus\mathcal{O}(\mathcal{C}) with yβ€²y^{\prime} the only other simple object in the orbit of yy under the βŠ—\otimes-action of E2E_{2}. The orthogonality relation of yy with xx is

0=βˆ‘z∈π’ͺ​(π’Ÿ)Sy,z​Sx,z=βˆ‘z∈E2Sy,z​Sx,z=βˆ‘z∈E2ΞΈyβŠ—zΞΈy​dim(y)​dim(x)=8ΞΈy​(ΞΈy+ΞΈyβ€²).0=\sum_{z\in\mathcal{O}(\mathcal{D})}S_{y,z}S_{x,z}=\sum_{z\in E_{2}}S_{y,z}S_{x,z}=\sum_{z\in E_{2}}\dfrac{\theta_{y\otimes z}}{\theta_{y}}\dim(y)\dim(x)=\dfrac{8}{\theta_{y}}(\theta_{y}+\theta_{y^{\prime}}). (13)

Therefore ΞΈy=βˆ’ΞΈyβ€²\theta_{y}=-\theta_{y^{\prime}}. In particular, yβ‰…yβˆ—y\cong y^{\ast} for all y∈π’ͺ​(π’Ÿ)βˆ–π’ͺ​(π’ž)y\in\mathcal{O}(\mathcal{D})\setminus\mathcal{O}(\mathcal{C}) as duality is a permutation of each universally graded component since E2E_{2} has exponent 2, along with the fact that ΞΈyβˆ—=ΞΈy\theta_{y^{\ast}}=\theta_{y} in complete generality. The fact that ΞΈy=βˆ’ΞΈyβ€²\theta_{y}=-\theta_{y^{\prime}} also completes the SS-matrix columns for g∈E2g\in E_{2} since Sg,y=Sg,y=2S_{g,y}=S_{g,y}=2 if gβŠ—y=yg\otimes y=y and Sg,yβ€²=βˆ’2S_{g,y}^{\prime}=-2 if gβŠ—yβ‰…yβ€²g\otimes y\cong y^{\prime}. The balancing equation then implies

Sy,y=ΞΈyβˆ’2​(βˆ‘z∈E2Ny,yz​θz+2​θx+βˆ‘z∈π’ͺ​(π’Ÿ)βˆ–π’ͺ​(π’ž)2​Ny,yz​θz)=2​θyβˆ’2​(1+ΞΈx).S_{y,y}=\theta_{y}^{-2}\left(\sum_{z\in E_{2}}N_{y,y}^{z}\theta_{z}+2\theta_{x}+\sum_{z\in\mathcal{O}(\mathcal{D})\setminus\mathcal{O}(\mathcal{C})}2N_{y,y}^{z}\theta_{z}\right)=2\theta_{y}^{-2}(1+\theta_{x}). (14)

It was already determined that ΞΈx=Β±i\theta_{x}=\pm i, so (1/2)​(1+ΞΈx)=ΞΆ8βˆ’i​θx(1/\sqrt{2})(1+\theta_{x})=\zeta_{8}^{-i\theta_{x}} where ΞΆ8:=exp⁑(2​π​i/8)\zeta_{8}:=\exp(2\pi i/8). Thus Sy,y=2​2β‹…ΞΈyβˆ’2​΢8βˆ’i​θxS_{y,y}=2\sqrt{2}\cdot\theta_{y}^{-2}\zeta_{8}^{-i\theta_{x}}. But yβ‰…yβˆ—y\cong y^{\ast}, hence Sy,yβˆˆβ„S_{y,y}\in\mathbb{R} and therefore ΞΈy\theta_{y} is a primitive 16th root of unity for all y∈π’ͺ​(π’Ÿ)βˆ–π’ͺ​(π’ž)y\in\mathcal{O}(\mathcal{D})\setminus\mathcal{O}(\mathcal{C}). Moreover, we may define the signs Ξ΅y:=ΞΈyβˆ’2​΢8βˆ’i​θx\varepsilon_{y}:=\theta_{y}^{-2}\zeta_{8}^{-i\theta_{x}} so that Sy,y=Ξ΅y​2​2S_{y,y}=\varepsilon_{y}2\sqrt{2}. Furthermore, if yβ‰…ΜΈyβ€²y\not\cong y^{\prime} are in the same nontrivial graded component with gβŠ—yβ‰…yβ€²g\otimes y\cong y^{\prime} for some g∈Gg\in G, then by [4, Proposition 8.13.10],

Sy,yβ€²=Sy,gβŠ—y=12​Sy,g​Sy,y=ΞΈgβŠ—yΞΈy​Sy,y=βˆ’Sy,y.S_{y,y^{\prime}}=S_{y,g\otimes y}=\dfrac{1}{2}S_{y,g}S_{y,y}=\dfrac{\theta_{g\otimes y}}{\theta_{y}}S_{y,y}=-S_{y,y}. (15)

Orthogonality of yy with itself is then

32=βˆ‘z∈π’ͺ​(π’Ÿ)|Sy,z|2=4β‹…22+2β‹…(2​2)2+βˆ‘z∈π’ͺ​(π’Ÿ)βˆ–(π’ͺ​(π’ž)βˆͺ{y,yβ€²})|Sy,z|2.32=\sum_{z\in\mathcal{O}(\mathcal{D})}|S_{y,z}|^{2}=4\cdot 2^{2}+2\cdot(2\sqrt{2})^{2}+\sum_{z\in\mathcal{O}(\mathcal{D})\setminus(\mathcal{O}(\mathcal{C})\cup\{y,y^{\prime}\})}|S_{y,z}|^{2}. (16)

Therefore Sy,z=0S_{y,z}=0 for all zβ‰…ΜΈy,yβ€²βˆˆπ’ͺ​(π’Ÿ)βˆ–π’ͺ​(π’ž)z\not\cong y,y^{\prime}\in\mathcal{O}(\mathcal{D})\setminus\mathcal{O}(\mathcal{C}). Moreover, up to permutation of simple objects, there exist signs Ξ΅1,Ξ΅2,Ξ΅3\varepsilon_{1},\varepsilon_{2},\varepsilon_{3} (determined by the TT-matrix) such that the SS-matrix of π’Ÿ\mathcal{D} is

[111122222221111222βˆ’2βˆ’2βˆ’2βˆ’211112βˆ’2βˆ’222βˆ’2βˆ’211112βˆ’2βˆ’2βˆ’2βˆ’2222222βˆ’400000022βˆ’2βˆ’20Ξ΅1​2​2βˆ’Ξ΅1​2​2000022βˆ’2βˆ’20βˆ’Ξ΅1​2​2Ξ΅1​2​200002βˆ’22βˆ’2000Ξ΅2​2​2βˆ’Ξ΅2​2​2002βˆ’22βˆ’2000βˆ’Ξ΅2​2​2Ξ΅2​2​2002βˆ’2βˆ’2200000Ξ΅3​2​2βˆ’Ξ΅3​2​22βˆ’2βˆ’2200000βˆ’Ξ΅3​2​2Ξ΅3​2​2].\left[\begin{array}[]{ccccccccccc}1&1&1&1&2&2&2&2&2&2&2\\ 1&1&1&1&2&2&2&-2&-2&-2&-2\\ 1&1&1&1&2&-2&-2&2&2&-2&-2\\ 1&1&1&1&2&-2&-2&-2&-2&2&2\\ 2&2&2&2&-4&0&0&0&0&0&0\\ 2&2&-2&-2&0&\varepsilon_{1}2\sqrt{2}&-\varepsilon_{1}2\sqrt{2}&0&0&0&0\\ 2&2&-2&-2&0&-\varepsilon_{1}2\sqrt{2}&\varepsilon_{1}2\sqrt{2}&0&0&0&0\\ 2&-2&2&-2&0&0&0&\varepsilon_{2}2\sqrt{2}&-\varepsilon_{2}2\sqrt{2}&0&0\\ 2&-2&2&-2&0&0&0&-\varepsilon_{2}2\sqrt{2}&\varepsilon_{2}2\sqrt{2}&0&0\\ 2&-2&-2&2&0&0&0&0&0&\varepsilon_{3}2\sqrt{2}&-\varepsilon_{3}2\sqrt{2}\\ 2&-2&-2&2&0&0&0&0&0&-\varepsilon_{3}2\sqrt{2}&\varepsilon_{3}2\sqrt{2}\end{array}\right]. (17)

Let 𝒫\mathcal{P} be the unique (up to modular equivalence) pointed modular tensor category of rank 2 whose nontrivial simple object xβ€²x^{\prime} has full twist ΞΈxβ€²=ΞΈxβˆ’1\theta_{x^{\prime}}=\theta_{x}^{-1}. Then π’ŸβŠ π’«\mathcal{D}\boxtimes\mathcal{P} contains a Lagrangian subcategory βŠ—\otimes-generated by π’Ÿpt\mathcal{D}_{\mathrm{pt}} and the simple object x⊠xβ€²x\boxtimes x^{\prime}. This implies π’ŸβŠ π’«β‰ƒπ’΅β€‹(VecGΟ‰)\mathcal{D}\boxtimes\mathcal{P}\simeq\mathcal{Z}(\mathrm{Vec}_{G}^{\omega}) for a finite group GG of order 8 and a 33-cocycle Ο‰\omega on GG [2, Theorem 4.5]. There are 38 braided equivalence classes of 𝒡​(VecGΟ‰)\mathcal{Z}(\mathrm{Vec}_{G}^{\omega}) of this form [15, Section 2.8]. But moreover, π’ŸβŠ π’«\mathcal{D}\boxtimes\mathcal{P} must have conductor (Frobenius-Schur exponent) 16 and 12 simple objects whose twists are 16th roots of unity. There are only 4 braided equivalence classes of 𝒡​(VecGΟ‰)\mathcal{Z}(\mathrm{Vec}_{G}^{\omega}) with these characteristics which can be indexed as 𝒡​(VecQ8Ξ³)\mathcal{Z}(\mathrm{Vec}_{Q_{8}}^{\gamma}) where Ξ³\gamma is any of the 4 generators of H3​(Q8,β„‚Γ—)β‰…β„€/8​℀H^{3}(Q_{8},\mathbb{C}^{\times})\cong\mathbb{Z}/8\mathbb{Z} [12, Appendix A]. One can easily verify that each of 𝒡​(VecQ8Ξ³)\mathcal{Z}(\mathrm{Vec}_{Q_{8}}^{\gamma}) factors as a Deligne product in this way, proving the following result.

Lemma 3.1.1.

Let π’ž:=π’žβ€‹(Ο‡20,Ο„)\mathcal{C}:=\mathcal{C}(\chi_{2}^{0},\tau) be a nonsymmetrically braided fusion category. There exists a nondegenerate cover π’Ÿ\mathcal{D} of π’ž\mathcal{C} with FPdim​(π’Ÿ)=32\mathrm{FPdim}(\mathcal{D})=32 if and only if there exists a generator γ∈H3​(Q8,β„‚Γ—)\gamma\in H^{3}(Q_{8},\mathbb{C}^{\times}) and a braided equivalence π’žβ‰ƒπ’΅β€‹(VecQ8Ξ³)ad\mathcal{C}\simeq\mathcal{Z}(\mathrm{Vec}_{Q_{8}}^{\gamma})_{\mathrm{ad}}.

We have shown that if π’Ÿ\mathcal{D} is a nondegenerate cover of dimension 3232 of nonsymmetrically braided π’žβ€‹(Ο‡20,Ο„)\mathcal{C}(\chi_{2}^{0},\tau), then π’Ÿ\mathcal{D} is a factor of one of the 4 doubles 𝒡​(VecQ8Ξ³)\mathcal{Z}(\mathrm{Vec}_{Q_{8}}^{\gamma}) for a generator γ∈H3​(Q8,β„‚Γ—)\gamma\in H^{3}(Q_{8},\mathbb{C}^{\times}). Each 𝒡​(VecQ8Ξ³)\mathcal{Z}(\mathrm{Vec}_{Q_{8}}^{\gamma}) factors like this in exactly 4 ways, depending on the choice of the order 2 invertible object to include in the other factor, which is necessarily rank 2 and pointed. Therefore, there are at most 16 distinct minimal nondegenerate covers π’Ÿ\mathcal{D} over all π’žβ€‹(Ο‡20,Ο„)\mathcal{C}(\chi_{2}^{0},\tau); in fact, there are exactly 16 as they are differentiated by their modular data. We include the nontrivial TT-eigenvalues in Figure 6 which determine the SS-matrix in (17). As a result, we have recovered the original counterexample of the minimal modular extension conjecture due to V.Β Drinfeld (along with its reverse braiding).

Proposition 3.1.2.

Let π’ž\mathcal{C} be either of the E2E_{2} Tambara-Yamagami braided fusion categories labeled 𝒦\mathcal{K} and 𝒦rev\mathcal{K}^{\mathrm{rev}} from Figure 4. There does not exist a nondegenerate cover π’Ÿ\mathcal{D} of π’ž\mathcal{C} with FPdim​(π’Ÿ)=32\mathrm{FPdim}(\mathcal{D})=32.

Proof.

This follows from Lemma 3.1.1 along with [14, Theorem 4.22] and [14, Theorem 1.1]. The latter two imply that a nonsymmetrically braided E2E_{2} Tambara-Yamagami fusion category π’žβ€‹(Ο‡20,Ο„)\mathcal{C}(\chi_{2}^{0},\tau) has exactly |H3​(E2,β„‚Γ—)|=8|H^{3}(E_{2},\mathbb{C}^{\times})|=8 nondegenerate extensions of dimension 32, up to equivalence. Lemma 3.1.1 then implies only two such π’žβ€‹(Ο‡20,Ο„)\mathcal{C}(\chi_{2}^{0},\tau) can possess nondegenerate covers of this dimension, which are distinguished by the twist on the noninvertible simple object xx. ∎

ΞΈxΞΈy1ΞΈy1β€²ΞΈy2ΞΈy2β€²ΞΈy3β€²ΞΈy3β€²iΞΆ165βˆ’ΞΆ165ΞΆ165βˆ’ΞΆ165ΞΆ165βˆ’ΞΆ165ΞΆ16βˆ’ΞΆ16ΞΆ165βˆ’ΞΆ165ΞΆ16βˆ’ΞΆ16ΞΆ165βˆ’ΞΆ165ΞΆ16βˆ’ΞΆ16ΞΆ16βˆ’ΞΆ16ΞΆ16βˆ’ΞΆ16ΞΆ16βˆ’ΞΆ16ΞΆ165βˆ’ΞΆ165iΞΆ165βˆ’ΞΆ165ΞΆ165βˆ’ΞΆ165ΞΆ16βˆ’ΞΆ16ΞΆ16βˆ’ΞΆ16ΞΆ165βˆ’ΞΆ165ΞΆ165βˆ’ΞΆ165ΞΆ165βˆ’ΞΆ165ΞΆ16βˆ’ΞΆ16ΞΆ165βˆ’ΞΆ165ΞΆ16βˆ’ΞΆ16ΞΆ16βˆ’ΞΆ16ΞΆ16βˆ’ΞΆ16βˆ’iΞΆ167βˆ’ΞΆ167ΞΆ167βˆ’ΞΆ167ΞΆ167βˆ’ΞΆ167ΞΆ163βˆ’ΞΆ163ΞΆ167βˆ’ΞΆ167ΞΆ163βˆ’ΞΆ163ΞΆ167βˆ’ΞΆ167ΞΆ163βˆ’ΞΆ163ΞΆ163βˆ’ΞΆ163ΞΆ163βˆ’ΞΆ163ΞΆ163βˆ’ΞΆ163ΞΆ167βˆ’ΞΆ167βˆ’iΞΆ167βˆ’ΞΆ167ΞΆ167βˆ’ΞΆ167ΞΆ163βˆ’ΞΆ163ΞΆ163βˆ’ΞΆ163ΞΆ167βˆ’ΞΆ167ΞΆ167βˆ’ΞΆ167ΞΆ167βˆ’ΞΆ167ΞΆ163βˆ’ΞΆ163ΞΆ167βˆ’ΞΆ167ΞΆ163βˆ’ΞΆ163ΞΆ163βˆ’ΞΆ163ΞΆ163βˆ’ΞΆ163\begin{array}[]{|c|cc|cc|cc|}\hline\cr\theta_{x}&\theta_{y_{1}}&\theta_{y_{1}^{\prime}}&\theta_{y_{2}}&\theta_{y_{2}^{\prime}}&\theta_{y_{3}^{\prime}}&\theta_{y_{3}^{\prime}}\\ \hline\cr i&\zeta_{16}^{5}&-\zeta_{16}^{5}&\zeta_{16}^{5}&-\zeta_{16}^{5}&\zeta_{16}^{5}&-\zeta_{16}^{5}\\ &\zeta_{16}&-\zeta_{16}&\zeta_{16}^{5}&-\zeta_{16}^{5}&\zeta_{16}&-\zeta_{16}\\ &\zeta_{16}^{5}&-\zeta_{16}^{5}&\zeta_{16}&-\zeta_{16}&\zeta_{16}&-\zeta_{16}\\ &\zeta_{16}&-\zeta_{16}&\zeta_{16}&-\zeta_{16}&\zeta_{16}^{5}&-\zeta_{16}^{5}\\ \hline\cr i&\zeta_{16}^{5}&-\zeta_{16}^{5}&\zeta_{16}^{5}&-\zeta_{16}^{5}&\zeta_{16}&-\zeta_{16}\\ &\zeta_{16}&-\zeta_{16}&\zeta_{16}^{5}&-\zeta_{16}^{5}&\zeta_{16}^{5}&-\zeta_{16}^{5}\\ &\zeta_{16}^{5}&-\zeta_{16}^{5}&\zeta_{16}&-\zeta_{16}&\zeta_{16}^{5}&-\zeta_{16}^{5}\\ &\zeta_{16}&-\zeta_{16}&\zeta_{16}&-\zeta_{16}&\zeta_{16}&-\zeta_{16}\\ \hline\cr-i&\zeta_{16}^{7}&-\zeta_{16}^{7}&\zeta_{16}^{7}&-\zeta_{16}^{7}&\zeta_{16}^{7}&-\zeta_{16}^{7}\\ &\zeta_{16}^{3}&-\zeta_{16}^{3}&\zeta_{16}^{7}&-\zeta_{16}^{7}&\zeta_{16}^{3}&-\zeta_{16}^{3}\\ &\zeta_{16}^{7}&-\zeta_{16}^{7}&\zeta_{16}^{3}&-\zeta_{16}^{3}&\zeta_{16}^{3}&-\zeta_{16}^{3}\\ &\zeta_{16}^{3}&-\zeta_{16}^{3}&\zeta_{16}^{3}&-\zeta_{16}^{3}&\zeta_{16}^{7}&-\zeta_{16}^{7}\\ \hline\cr-i&\zeta_{16}^{7}&-\zeta_{16}^{7}&\zeta_{16}^{7}&-\zeta_{16}^{7}&\zeta_{16}^{3}&-\zeta_{16}^{3}\\ &\zeta_{16}^{3}&-\zeta_{16}^{3}&\zeta_{16}^{7}&-\zeta_{16}^{7}&\zeta_{16}^{7}&-\zeta_{16}^{7}\\ &\zeta_{16}^{7}&-\zeta_{16}^{7}&\zeta_{16}^{3}&-\zeta_{16}^{3}&\zeta_{16}^{7}&-\zeta_{16}^{7}\\ &\zeta_{16}^{3}&-\zeta_{16}^{3}&\zeta_{16}^{3}&-\zeta_{16}^{3}&\zeta_{16}^{3}&-\zeta_{16}^{3}\\ \hline\cr\end{array}
Figure 6: TT-matrices of minimal nondegenerate covers of 𝒡​(VecQ8Ξ³)ad\mathcal{Z}(\mathrm{Vec}^{\gamma}_{Q_{8}})_{\mathrm{ad}} for generators γ∈H3​(Q8,β„‚Γ—)\gamma\in H^{3}(Q_{8},\mathbb{C}^{\times})

3.2 Ο‡21\chi_{2}^{1} braidings

Here we consider the 12 braided equivalence classes of π’žβ€‹(Ο‡21,Ο„)\mathcal{C}(\chi_{2}^{1},\tau). Recall that the pointed fusion subcategory corresponding to E2E_{2} is symmetric in any case, and q​(gj)2=βˆ’1q(g_{j})^{2}=-1 for j=1,2j=1,2, hence g1,g2g_{1},g_{2} do not lie in the symmetric center of π’žβ€‹(Ο‡21,Ο„)\mathcal{C}(\chi_{2}^{1},\tau), while g1+g2g_{1}+g_{2} does as q​(g1+g2)2=1q(g_{1}+g_{2})^{2}=1. We have Ο‡21​(g1+g2,g1+g2)=1\chi^{1}_{2}(g_{1}+g_{2},g_{1}+g_{2})=1, hence the symmetric center of π’žβ€‹(Ο‡21,Ο„)\mathcal{C}(\chi_{2}^{1},\tau) is braided equivalent to Rep​(β„€/2​℀,e)\mathrm{Rep}(\mathbb{Z}/2\mathbb{Z},e) for any Ο‡21\chi_{2}^{1} braiding.

Let ℐ,ℐ′\mathcal{I},\mathcal{I}^{\prime} be any of the 8 Ising braided fusion categories and denote their isomorphism classes of simple objects by {e,g,x}\{e,g,x\} and {eβ€²,gβ€²,xβ€²}\{e^{\prime},g^{\prime},x^{\prime}\} where x,xβ€²x,x^{\prime} are the unique noninvertible isomorphism classes. These categories were described in Example 2.5.1. In particular each Ising braided fusion category is distinguished by a primitive 16th root of unity ΞΆ\zeta. It is clear that β„βŠ β„β€²\mathcal{I}\boxtimes\mathcal{I}^{\prime} is self-dual and β„βŠ β„β€²\mathcal{I}\boxtimes\mathcal{I}^{\prime} contains a maximal integral subcategory (β„βŠ β„β€²)β„š(\mathcal{I}\boxtimes\mathcal{I}^{\prime})_{\mathbb{Q}} with four invertible simple objects (β„βŠ β„β€²)pt(\mathcal{I}\boxtimes\mathcal{I}^{\prime})_{\mathrm{pt}} along with the simple object x⊠xβ€²x\boxtimes x^{\prime} of Frobenius-Perron dimension 22. The subcategory (β„βŠ β„β€²)β„š(\mathcal{I}\boxtimes\mathcal{I}^{\prime})_{\mathbb{Q}} can also be identified as the relative centralizer of the Tannakian subcategory generated by g⊠gβ€²g\boxtimes g^{\prime}. Therefore (β„βŠ β„β€²)β„š(\mathcal{I}\boxtimes\mathcal{I}^{\prime})_{\mathbb{Q}} is a braided fusion category of the form π’žβ€‹(Ο‡21,Ο„)\mathcal{C}(\chi_{2}^{1},\tau).

Conversely, assume a braided fusion category π’ž:=π’žβ€‹(Ο‡21,Ο„)\mathcal{C}:=\mathcal{C}(\chi_{2}^{1},\tau) is given with isomorphism classes of simple objects {e,g1,g2,g1+g2,x}\{e,g_{1},g_{2},g_{1}+g_{2},x\}. Without loss of generality, consider π’ž\mathcal{C} as a modular tensor category with its unique positive spherical structure. Assume π’Ÿ\mathcal{D} is a nondegenerate cover of π’ž\mathcal{C} with dim(π’Ÿ)=16\dim(\mathcal{D})=16 so that π’ž=Cπ’Ÿβ€‹(Cπ’žβ€‹(π’ž))\mathcal{C}=C_{\mathcal{D}}(C_{\mathcal{C}}(\mathcal{C})) by Lemma 2.2.3. If dim(π’Ÿpt)>dim(π’žpt)=4\dim(\mathcal{D}_{\mathrm{pt}})>\dim(\mathcal{C}_{\mathrm{pt}})=4 then the adjoint subcategory of π’Ÿ\mathcal{D} would have dimension 22 or 11. But π’žptβŠ‚π’Ÿad\mathcal{C}_{\mathrm{pt}}\subset\mathcal{D}_{\mathrm{ad}}, so we may conclude that each universally graded component has dimension 4 with π’žpt=π’Ÿad\mathcal{C}_{\mathrm{pt}}=\mathcal{D}_{\mathrm{ad}} as the trivially graded component. As π’Ÿ\mathcal{D} is nilpotent and weakly integral, dim(y)2∈{2,4}\dim(y)^{2}\in\{2,4\} for all noninvertible y∈π’ͺ​(π’Ÿ)y\in\mathcal{O}(\mathcal{D}). Any object of dimension 2 is unique in its universally graded component so it lies in Cπ’Ÿβ€‹(Cπ’žβ€‹(π’ž))=π’žC_{\mathcal{D}}(C_{\mathcal{C}}(\mathcal{C}))=\mathcal{C} by the balancing equation [4, Proposition 8.13.8] since ΞΈg1+g2=1\theta_{g_{1}+g_{2}}=1. Moreover x∈π’ͺ​(π’Ÿ)x\in\mathcal{O}(\mathcal{D}) is the unique simple object of dimension 2 while the other 2 nontrivial components have 2 isomorphism classes of simple objects of dimension 2\sqrt{2}. Let yβ‰…ΜΈyβ€²y\not\cong y^{\prime} be simple objects of dimension 2\sqrt{2} in a nontrivially graded component of π’Ÿ\mathcal{D}. If yβˆ—β‰…yβ€²y^{\ast}\cong y^{\prime}, we still have ΞΈy=ΞΈyβ€²\theta_{y}=\theta_{y^{\prime}}. Hence Sg1+g2,y=Sg1+g2,yβ€²=2S_{g_{1}+g_{2},y}=S_{g_{1}+g_{2},y^{\prime}}=\sqrt{2} by the balancing equation which again implies y,yβ€²βˆˆCπ’Ÿβ€‹(Cπ’žβ€‹(π’ž))=π’žy,y^{\prime}\in C_{\mathcal{D}}(C_{\mathcal{C}}(\mathcal{C}))=\mathcal{C}, a contradiction. Therefore we conclude that π’Ÿ\mathcal{D} is self-dual. Moreover, any simple object of dimension 2\sqrt{2} βŠ—\otimes-generates an Ising braided fusion category which is necessarily nondegenerately braided. Hence π’Ÿ\mathcal{D} factors as a product of Ising braided fusion categories [3, Theorem 3.13], finishing the proof of the following fact.

Lemma 3.2.1.

Let π’ž:=π’žβ€‹(Ο‡21,Ο„)\mathcal{C}:=\mathcal{C}(\chi_{2}^{1},\tau) be given. There exists a nondegenerate cover π’Ÿ\mathcal{D} of π’ž\mathcal{C} with FPdim​(π’Ÿ)=16\mathrm{FPdim}(\mathcal{D})=16 if and only if there exist Ising braided fusion categories ℐ,ℐ′\mathcal{I},\mathcal{I}^{\prime} and a braided equivalence π’žβ‰ƒ(β„βŠ β„β€²)β„š\mathcal{C}\simeq(\mathcal{I}\boxtimes\mathcal{I}^{\prime})_{\mathbb{Q}}.

There are at most (8+2βˆ’12)=36\binom{8+2-1}{2}=36 distinct products β„βŠ β„β€²\mathcal{I}\boxtimes\mathcal{I}^{\prime} up to braided equivalence since ⊠\boxtimes is symmetric, which we can sort by Witt equivalence [1, Definition 5.1] prior to sorting each Witt equivalence class by braided equivalence. If ℐ=ℐj\mathcal{I}=\mathcal{I}_{j} and ℐ′=ℐk\mathcal{I}^{\prime}=\mathcal{I}_{k} for some primitive 16th roots of unity ΞΆ=ΞΆ16j,ΞΆβ€²=ΞΆ16k\zeta=\zeta_{16}^{j},\zeta^{\prime}=\zeta_{16}^{k}, then the Witt equivalence classes of products β„βŠ β„β€²\mathcal{I}\boxtimes\mathcal{I}^{\prime} are indexed by 8th roots of unity ΞΎ\xi via ΞΎ:=f​(ΞΆ)​f​(ΞΆβ€²)/2\xi:=f(\zeta)f(\zeta^{\prime})/2 where f​(ΞΆ):=ΞΆβˆ’1​(ΞΆ2+ΞΆβˆ’2)f(\zeta):=\zeta^{-1}(\zeta^{2}+\zeta^{-2}) [3, Lemma B.24]. When ℐ,ℐ′\mathcal{I},\mathcal{I}^{\prime} are equipped with their unique positive spherical structure, this is the multiplicative central charge [4, Equation (8.60)] of β„βŠ β„β€²\mathcal{I}\boxtimes\mathcal{I}^{\prime}. Among Witt equivalence classes many of these products are braided equivalent. In particular it is easy to check that in β„βŠ β„β€²\mathcal{I}\boxtimes\mathcal{I}^{\prime}, any of the 4 simple objects of dimension 2\sqrt{2} βŠ—\otimes-generates an Ising braided fusion category ℐ′′\mathcal{I}^{\prime\prime} and β„βŠ β„β€²β‰ƒβ„β€²β€²βŠ Cβ„βŠ β„β€²β€‹(ℐ′′)\mathcal{I}\boxtimes\mathcal{I}^{\prime}\simeq\mathcal{I}^{\prime\prime}\boxtimes C_{\mathcal{I}\boxtimes\mathcal{I}^{\prime}}(\mathcal{I}^{\prime\prime}) is a braided equivalence which implies there exist at most 2 distinct nontrivial factorizations of this type. In particular, ℐjβŠ β„k≃ℐj+8βŠ β„k+8\mathcal{I}_{j}\boxtimes\mathcal{I}_{k}\simeq\mathcal{I}_{j+8}\boxtimes\mathcal{I}_{k+8} is a braided equivalence where j+8,k+8j+8,k+8 are considered modulo 16. Once accounting for this symmetry, the remaining 20 braided equivalence classes of categories β„βŠ β„β€²\mathcal{I}\boxtimes\mathcal{I}^{\prime}, which we collect in column 3 of Figure 7, are distinguished by the modular data associated to their unique positive spherical structure.

We further distinguish the braided equivalence classes of β„βŠ β„β€²\mathcal{I}\boxtimes\mathcal{I}^{\prime} in column 4 of Figure 7 by identifying those whose integral braided fusion subcategories are equivalent. This is straightforward because as fusion categories, (π’žβ€‹(Ο‡11,Ο„)βŠ π’žβ€‹(Ο‡11,Ο„β€²))β„šβ‰ƒπ’žβ€‹(Ο‡21,τ​τ′)(\mathcal{C}(\chi_{1}^{1},\tau)\boxtimes\mathcal{C}(\chi_{1}^{1},\tau^{\prime}))_{\mathbb{Q}}\simeq\mathcal{C}(\chi_{2}^{1},\tau\tau^{\prime}) (see Lemma 4.2.1). This shows there are at least 12 braided equivalence classes of (β„βŠ β„β€²)β„š(\mathcal{I}\boxtimes\mathcal{I}^{\prime})_{\mathbb{Q}}. As there are 12 braided equivalence classes of braided fusion categories π’žβ€‹(Ο‡21,Ο„)\mathcal{C}(\chi_{2}^{1},\tau), then there are exactly 12 braided equivalence classes of (ℐjβŠ β„k)β„š(\mathcal{I}_{j}\boxtimes\mathcal{I}_{k})_{\mathbb{Q}} across all products β„βŠ β„β€²\mathcal{I}\boxtimes\mathcal{I}^{\prime}.

ΞΎ(j,k)ℐjβŠ β„k​ br.eq. ​classes(ℐjβŠ β„k)β„šβ€‹Β br.eq. ​classes1(1,15),(3,13),(5,11),(7,9)(1,15),(3,13)(1,15)ΞΆ8(1,5),(3,11),(7,7),(9,13),(15,15)(1,5),(3,11),(7,7)(1,5),(7,7)i(1,3),(5,15),(7,13),(9,11)(1,3),(5,15)(1,3)ΞΆ83(1,9),(3,15),(5,5),(7,11),(13,13)(1,9),(3,15),(5,5)(1,9),(5,5)βˆ’1(1,7),(3,5),(9,15),(11,13)(1,7),(3,5)(1,7)ΞΆ85(1,13),(3,3),(5,9),(7,15),(11,11)(1,13),(3,3),(7,15)(1,13),(3,3)βˆ’i(1,11),(3,9),(5,7),(13,15)(1,11),(5,7)(1,11)ΞΆ87(1,1),(3,7),(5,13),(9,9),(11,15)(1,1),(3,7),(5,13)(1,1),(3,7)\begin{array}[]{|c|c|c|c|}\hline\cr\xi&(j,k)&\mathcal{I}_{j}\boxtimes\mathcal{I}_{k}\text{ br.eq. \!classes}&(\mathcal{I}_{j}\boxtimes\mathcal{I}_{k})_{\mathbb{Q}}\text{ br.eq. \!classes}\\ \hline\cr 1&(1,15),(3,13),(5,11),(7,9)&(1,15),(3,13)&(1,15)\\ \zeta_{8}&(1,5),(3,11),(7,7),(9,13),(15,15)&(1,5),(3,11),(7,7)&(1,5),(7,7)\\ i&(1,3),(5,15),(7,13),(9,11)&(1,3),(5,15)&(1,3)\\ \zeta_{8}^{3}&(1,9),(3,15),(5,5),(7,11),(13,13)&(1,9),(3,15),(5,5)&(1,9),(5,5)\\ -1&(1,7),(3,5),(9,15),(11,13)&(1,7),(3,5)&(1,7)\\ \zeta_{8}^{5}&(1,13),(3,3),(5,9),(7,15),(11,11)&(1,13),(3,3),(7,15)&(1,13),(3,3)\\ -i&(1,11),(3,9),(5,7),(13,15)&(1,11),(5,7)&(1,11)\\ \zeta_{8}^{7}&(1,1),(3,7),(5,13),(9,9),(11,15)&(1,1),(3,7),(5,13)&(1,1),(3,7)\\ \hline\cr\end{array}
Figure 7: Braided equivalence classes of β„βŠ β„β€²\mathcal{I}\boxtimes\mathcal{I}^{\prime} and (β„βŠ β„β€²)β„š(\mathcal{I}\boxtimes\mathcal{I}^{\prime})_{\mathbb{Q}}
Example 3.2.2.

The take-away from Figure 7 is that of the 12 braided equivalence classes of categories π’žβ€‹(Ο‡21,Ο„)\mathcal{C}(\chi_{2}^{1},\tau), 8 have 2 minimal nondegenerate covers up to equivalence, and 4 have a unique minimal nondegenerate cover up to equivalence. This is seemingly at odds with [14, Theorem 1.1] combined with [14, Theorem 4.22] which, since π’žβ€‹(Ο‡21,Ο„)\mathcal{C}(\chi_{2}^{1},\tau) have unitary structures and symmetric center Rep​(β„€/2​℀)\mathrm{Rep}(\mathbb{Z}/2\mathbb{Z}), imply that there are exactly 2 minimal nondegenerate extensions of π’žβ€‹(Ο‡21,Ο„)\mathcal{C}(\chi_{2}^{1},\tau) up to equivalence. The difference between the minimal nondegenerate covers of π’žβ€‹(Ο‡21,Ο„)\mathcal{C}(\chi_{2}^{1},\tau) and the minimal nondegenerate extensions of π’žβ€‹(Ο‡21,Ο„)\mathcal{C}(\chi_{2}^{1},\tau) lies in the braided autoequivalences of π’žβ€‹(Ο‡21,Ο„)\mathcal{C}(\chi_{2}^{1},\tau).

Recall [22, Proposition 1] that there is exactly one nontrivial element P∈AutβŠ—br​(π’žβ€‹(Ο‡21,Ο„))β‰…AutβŠ—br​((β„βŠ β„β€²)β„š)P\in\mathrm{Aut}_{\otimes}^{\mathrm{br}}(\mathcal{C}(\chi_{2}^{1},\tau))\cong\mathrm{Aut}_{\otimes}^{\mathrm{br}}((\mathcal{I}\boxtimes\mathcal{I}^{\prime})_{\mathbb{Q}}) which is the strict autoequivalence permuting g1↔g2g_{1}\leftrightarrow g_{2}. Now assume that PP lifts to a braided autoequivalence P~\tilde{P} of the cover β„βŠ β„β€²\mathcal{I}\boxtimes\mathcal{I}^{\prime}. Then the obvious extension (β„βŠ β„β€²,ΞΉ)(\mathcal{I}\boxtimes\mathcal{I}^{\prime},\iota) given by the chosen basis g1,g2g_{1},g_{2} of E2E_{2} is equivalent to (β„βŠ β„β€²,ι∘P)(\mathcal{I}\boxtimes\mathcal{I}^{\prime},\iota\circ P) precisely via the braided autoequivalence P~\tilde{P}. Conversely, assume F:(β„βŠ β„β€²,ΞΉ)β†’(β„βŠ β„β€²,ΞΊ)F:(\mathcal{I}\boxtimes\mathcal{I}^{\prime},\iota)\to(\mathcal{I}\boxtimes\mathcal{I}^{\prime},\kappa) is an equivalence of extensions. Then F|(β„βŠ β„β€²)β„š\left.F\right|_{(\mathcal{I}\boxtimes\mathcal{I}^{\prime})_{\mathbb{Q}}} is a braided autoequivalence of (β„βŠ β„β€²)β„š(\mathcal{I}\boxtimes\mathcal{I}^{\prime})_{\mathbb{Q}}. In particular, PP acts trivially on equivalence classes of minimal nondegenerate extensions of (β„βŠ β„β€²)β„š(\mathcal{I}\boxtimes\mathcal{I}^{\prime})_{\mathbb{Q}} if and only if PP lifts to a braided equivalence P~\tilde{P} of β„βŠ β„β€²\mathcal{I}\boxtimes\mathcal{I}^{\prime}. Any lifting P~\tilde{P} of the braided autoequivalence permuting g1↔g2g_{1}\leftrightarrow g_{2} must nontrivally permute the simple objects of dimension 2\sqrt{2} (so the fusion rules coincide). In the cases where β„βŠ β„β€²\mathcal{I}\boxtimes\mathcal{I}^{\prime} has a unique minimal nondegenerate cover, all simple objects of dimension 2\sqrt{2} have distinct twists, hence (β„βŠ β„β€²,ΞΉ)(\mathcal{I}\boxtimes\mathcal{I}^{\prime},\iota) and (β„βŠ β„β€²,P∘ι)(\mathcal{I}\boxtimes\mathcal{I}^{\prime},P\circ\iota) are inequivalent as extensions. In the cases where β„βŠ β„β€²\mathcal{I}\boxtimes\mathcal{I}^{\prime} has two inequivalent minimal nondegenerate covers, ΞΆ=ΞΆβ€²\zeta=\zeta^{\prime} or ΞΆ=βˆ’ΞΆβ€²\zeta=-\zeta^{\prime} which determines the lifting P~\tilde{P} on the level of objects. We graphically represent the two distinct situations in Figure 8 for ΞΎ=ΞΆ8\xi=\zeta_{8}.

(ℐ1βŠ β„5)β„š(\mathcal{I}_{1}\boxtimes\mathcal{I}_{5})_{\mathbb{Q}}ℐ1βŠ β„5\mathcal{I}_{1}\boxtimes\mathcal{I}_{5}PP(ℐ7βŠ β„7)β„š(\mathcal{I}_{7}\boxtimes\mathcal{I}_{7})_{\mathbb{Q}}ℐ3βŠ β„11\mathcal{I}_{3}\boxtimes\mathcal{I}_{11}ℐ7βŠ β„7\mathcal{I}_{7}\boxtimes\mathcal{I}_{7}PPPP
Figure 8: Minimal nondegenerate extensions of (β„βŠ β„β€²)β„š(\mathcal{I}\boxtimes\mathcal{I}^{\prime})_{\mathbb{Q}} with ΞΎ=ΞΆ8\xi=\zeta_{8}

4 General Tambara-Yamagami braided fusion categories

If π’žβ€‹(Ο‡nk,Ο„)\mathcal{C}(\chi_{n}^{k},\tau) is symmetrically braided, then by the formulas for the braidings in Section 2.5, we must have k=0k=0. All 4 of these symmetrically braided fusion categories possess minimal nondegenerate covers with FPdim​(π’žβ€‹(Ο‡nk,Ο„))2=24​n+2\mathrm{FPdim}(\mathcal{C}(\chi_{n}^{k},\tau))^{2}=2^{4n+2}, e.g.Β their doubles, 𝒡​(π’žβ€‹(Ο‡nk,Ο„))\mathcal{Z}(\mathcal{C}(\chi_{n}^{k},\tau)). The remainder of this section describes existence/nonexistence of minimal nondegenerate covers in the nonsymmetrically braided case. We prove in Section 4.1 that there do not exist nondegenerate covers of π’žβ€‹(Ο‡2​n0,Ο„)\mathcal{C}(\chi_{2n}^{0},\tau) with Frobenius-Perron dimension 24​n+12^{4n+1}. We prove in Section 4.2 that there exist minimal nondegenerate covers of all π’žβ€‹(Ο‡n1,Ο„)\mathcal{C}(\chi_{n}^{1},\tau).

4.1 Nonsymmetric Ο‡2​n0\chi_{2n}^{0} braidings

The proof of the following lemma is a generalization of the explanation in Section 3.1.

Lemma 4.1.1.

Let nonsymmetrically braided π’ž:=π’žβ€‹(Ο‡2​n0,Ο„)\mathcal{C}:=\mathcal{C}(\chi_{2n}^{0},\tau) be given for some nβˆˆβ„€β‰₯1n\in\mathbb{Z}_{\geq 1}. Let π’Ÿ\mathcal{D} be a nondegenerate cover of π’ž\mathcal{C} with FPdim​(π’Ÿ)=24​n+1\mathrm{FPdim}(\mathcal{D})=2^{4n+1} and consider π’Ÿ\mathcal{D} as a modular tensor category equipped with its unique positive spherical structure. Then ΞΈy\theta_{y} is a primitive 16th root of unity for all y∈π’ͺ​(π’Ÿ)βˆ–π’ͺ​(π’ž)y\in\mathcal{O}(\mathcal{D})\setminus\mathcal{O}(\mathcal{C}).

Proof.

Let π’ž:=π’žβ€‹(Ο‡2​n0,Ο„)\mathcal{C}:=\mathcal{C}(\chi_{2n}^{0},\tau) be given with π’ͺ​(π’žpt)=E2​n=(β„€/2​℀)βŠ•2​n\mathcal{O}(\mathcal{C}_{\mathrm{pt}})=E_{2n}=(\mathbb{Z}/2\mathbb{Z})^{\oplus 2n} and a unique isomorphism class of simple objects xx. We have Cπ’žβ€‹(π’ž)=π’žptC_{\mathcal{C}}(\mathcal{C})=\mathcal{C}_{\mathrm{pt}} is Tannakian with FPdim​(π’žpt)=22​n\mathrm{FPdim}(\mathcal{C}_{\mathrm{pt}})=2^{2n}; denote the regular algebra by RR. Let π’Ÿ\mathcal{D} be a nondegenerate cover with FPdim​(π’Ÿ)=24​n+1\mathrm{FPdim}(\mathcal{D})=2^{4n+1}. When π’Ÿ\mathcal{D} (and thus π’ž\mathcal{C}) are equipped with their unique positive spherical structure, then π’ŸR0\mathcal{D}_{R}^{0} is a rank 2 pointed modular tensor category by [1, Corollary 3.32], hence its multiplicative central charge is ξ​(π’Ÿ)=ΞΆ8Β±\xi(\mathcal{D})=\zeta_{8}^{\pm} [1, Remark 5.29]. On the other hand, Cπ’Ÿβ€‹(π’žpt)=π’žC_{\mathcal{D}}(\mathcal{C}_{\mathrm{pt}})=\mathcal{C} by Lemma 2.2.3, hence ξ​(π’Ÿ)​2=1+ΞΈx\xi(\mathcal{D})\sqrt{2}=1+\theta_{x} from [1, Example 3.14] and the definition [3, Section 6.2]. We reserve this fact for later use.

Also, since Cπ’Ÿβ€‹(π’Ÿpt)=π’ŸadC_{\mathcal{D}}(\mathcal{D}_{\mathrm{pt}})=\mathcal{D}_{\mathrm{ad}} [4, Corollary 8.22.8], if dim(π’Ÿpt)β‰₯22​n+1\dim(\mathcal{D}_{\mathrm{pt}})\geq 2^{2n+1}, then dim(π’Ÿad)≀22​n\dim(\mathcal{D}_{\mathrm{ad}})\leq 2^{2n} by Equation (1). But π’žptβŠ‚π’Ÿad\mathcal{C}_{\mathrm{pt}}\subset\mathcal{D}_{\mathrm{ad}}, therefore π’Ÿad=π’žpt\mathcal{D}_{\mathrm{ad}}=\mathcal{C}_{\mathrm{pt}} in this case. Therefore,

π’ž=Cπ’žβ€‹(π’žpt)βŠ‚Cπ’Ÿβ€‹(π’žpt)=Cπ’Ÿβ€‹(π’Ÿad)=π’Ÿpt,\mathcal{C}=C_{\mathcal{C}}(\mathcal{C}_{\mathrm{pt}})\subset C_{\mathcal{D}}(\mathcal{C}_{\mathrm{pt}})=C_{\mathcal{D}}(\mathcal{D}_{\mathrm{ad}})=\mathcal{D}_{\mathrm{pt}}, (18)

a contradiction. Moreover we may conclude that π’Ÿpt=π’žpt\mathcal{D}_{\mathrm{pt}}=\mathcal{C}_{\mathrm{pt}} and thus π’Ÿad=π’ž\mathcal{D}_{\mathrm{ad}}=\mathcal{C}.

Now let g∈E2​ng\in E_{2n} and y∈π’ͺ​(π’Ÿ)y\in\mathcal{O}(\mathcal{D}). The balancing equation states that Sg,y=ΞΈgβˆ’1​θyβˆ’1​θgβŠ—y​dim(gβŠ—y)S_{g,y}=\theta_{g}^{-1}\theta_{y}^{-1}\theta_{g\otimes y}\dim(g\otimes y), hence |Sg,y|2=dim(y)2|S_{g,y}|^{2}=\dim(y)^{2}. Also, Sx,x=Sx,xβˆ—=ΞΈxβˆ’2​22​nS_{x,x}=S_{x,x^{\ast}}=\theta_{x}^{-2}2^{2n}. Thus |Sx,x|2=24​n|S_{x,x}|^{2}=2^{4n}. The orthogonality relation of xx with itself yields

dim(π’Ÿ)\displaystyle\dim(\mathcal{D}) =βˆ‘g∈E2​n|Sg,x|2+|Sx,x|2+βˆ‘y∈π’ͺ​(π’Ÿ)βˆ–π’ͺ​(π’ž)|Sy,x|2\displaystyle=\sum_{g\in E_{2n}}|S_{g,x}|^{2}+|S_{x,x}|^{2}+\sum_{y\in\mathcal{O}(\mathcal{D})\setminus\mathcal{O}(\mathcal{C})}|S_{y,x}|^{2} (19)
=22​nβ‹…22​n+24​n+βˆ‘y∈π’ͺ​(π’Ÿ)βˆ–π’ͺ​(π’ž)|Sy,x|2\displaystyle=2^{2n}\cdot 2^{2n}+2^{4n}+\sum_{y\in\mathcal{O}(\mathcal{D})\setminus\mathcal{O}(\mathcal{C})}|S_{y,x}|^{2} (20)
=dim(π’Ÿ)+βˆ‘y∈π’ͺ​(π’Ÿ)βˆ–π’ͺ​(π’ž)|Sy,x|2.\displaystyle=\dim(\mathcal{D})+\sum_{y\in\mathcal{O}(\mathcal{D})\setminus\mathcal{O}(\mathcal{C})}|S_{y,x}|^{2}. (21)

Therefore βˆ‘y∈π’ͺ​(π’Ÿ)βˆ–π’ͺ​(π’ž)|Sy,x|2=0\sum_{y\in\mathcal{O}(\mathcal{D})\setminus\mathcal{O}(\mathcal{C})}|S_{y,x}|^{2}=0 and moreover Sx,y=Sy,x=0S_{x,y}=S_{y,x}=0 for every y∈π’ͺ​(π’Ÿ)βˆ–π’ͺ​(π’ž)y\in\mathcal{O}(\mathcal{D})\setminus\mathcal{O}(\mathcal{C}). Verlinde formula then implies for all y∈π’ͺ​(π’Ÿ)βˆ–π’ͺ​(π’ž)y\in\mathcal{O}(\mathcal{D})\setminus\mathcal{O}(\mathcal{C}),

dim(π’Ÿ)​Nx,yy=βˆ‘g∈E2​nSx,g​Sy,g​Sy,gΒ―dim(g)=βˆ‘g∈E2​nSx,g​|Sy,g|2,\dim(\mathcal{D})N_{x,y}^{y}=\sum_{g\in E_{2n}}\dfrac{S_{x,g}S_{y,g}\overline{S_{y,g}}}{\dim(g)}=\sum_{g\in E_{2n}}S_{x,g}|S_{y,g}|^{2}, (22)

since for every z∈π’ͺ​(π’Ÿ)βˆ–E2​nz\in\mathcal{O}(\mathcal{D})\setminus E_{2n}, we have shown either Sx,z=0S_{x,z}=0 or Sy,z=0S_{y,z}=0. Moreover, we have already computed the remaning SS-matrix entries above, implying

Ny,yβˆ—x=Nx,yy=124​n+1β€‹βˆ‘g∈E2​nSx,g​|Sy,g|2=124​n+1β€‹βˆ‘g∈E2​n2n​dim(y)2=dim(y)22n+1.N^{x}_{y,y^{\ast}}=N_{x,y}^{y}=\dfrac{1}{2^{4n+1}}\sum_{g\in E_{2n}}S_{x,g}|S_{y,g}|^{2}=\dfrac{1}{2^{4n+1}}\sum_{g\in E_{2n}}2^{n}\dim(y)^{2}=\dfrac{\dim(y)^{2}}{2^{n+1}}. (23)

Since yβŠ—yβˆ—β‰…Ny,yβˆ—x​xβŠ•β¨g∈E2​nNy,yβˆ—g​gy\otimes y^{\ast}\cong N_{y,y^{\ast}}^{x}x\oplus\bigoplus_{g\in E_{2n}}N_{y,y^{\ast}}^{g}g, we may compute the dimension of yβŠ—yβˆ—y\otimes y^{\ast} as

dim(y)2\displaystyle\dim(y)^{2} =βˆ‘g∈E2​nNy,yβˆ—g+dim(y)22n+1​2n\displaystyle=\sum_{g\in E_{2n}}N_{y,y^{\ast}}^{g}+\dfrac{\dim(y)^{2}}{2^{n+1}}2^{n} (24)
β‡’\displaystyle\Rightarrow βˆ‘g∈E2​nNy,yβˆ—g\displaystyle\sum_{g\in E_{2n}}N_{y,y^{\ast}}^{g} =dim(y)2/2,\displaystyle=\dim(y)^{2}/2, (25)

which is the order of the stabilizer subgroup of yy under the βŠ—\otimes-action of E2​nE_{2n}. The orbit-stabilizer thereom then implies that the cardinality of the orbit of yy is 22​n+1/dim(y)22^{2n+1}/\dim(y)^{2}. Moreover, by computing the dimension of this orbit, by [4, Theorem 3.5.2] each nontrivial graded component of π’Ÿ\mathcal{D} consists of the orbit of a single simple object under the βŠ—\otimes-action of E2​nE_{2n}. In particular, this implies there exists g∈E2​ng\in E_{2n} such that yβˆ—β‰…gβŠ—yy^{\ast}\cong g\otimes y since the universal grading group is an elementary abelian 22-group.

Lastly we compute with the balancing equation [4, Proposition 8.13.8],

Sy,yβˆ—\displaystyle S_{y,y^{\ast}} =ΞΈyβˆ’2​(βˆ‘g∈E2​nNy,yβˆ—g​dim(g)​θg+Ny,yβˆ—x​dim(x)​θx)\displaystyle=\theta_{y}^{-2}\left(\sum_{g\in E_{2n}}N_{y,y^{\ast}}^{g}\dim(g)\theta_{g}+N_{y,y^{\ast}}^{x}\dim(x)\theta_{x}\right) (26)
=ΞΈyβˆ’2​(dim(y)22+dim(y)22n+1​2n​θx)\displaystyle=\theta_{y}^{-2}\left(\dfrac{\dim(y)^{2}}{2}+\dfrac{\dim(y)^{2}}{2^{n+1}}2^{n}\theta_{x}\right) (27)
=dim(y)2​ξ​(π’Ÿ)​22​θy2.\displaystyle=\dfrac{\dim(y)^{2}\xi(\mathcal{D})\sqrt{2}}{2\theta_{y}^{2}}. (28)

As yβˆ—β‰…gβŠ—yy^{\ast}\cong g\otimes y for g∈Gg\in G, then by a trivial application of [4, Proposition 8.13.10] and recalling that ΞΈyβˆ—=ΞΈy\theta_{y^{\ast}}=\theta_{y}, we have

Sy,yΒ―=Sy,yβˆ—=Sy,gβŠ—y=1dim(y)​Sg,y​Sy,y=ΞΈgβŠ—yΞΈy​Sy,y=ΞΈyβˆ—ΞΈy​Sy,y=Sy,y.\overline{S_{y,y}}=S_{y,y^{\ast}}=S_{y,g\otimes y}=\dfrac{1}{\dim(y)}S_{g,y}S_{y,y}=\dfrac{\theta_{g\otimes y}}{\theta_{y}}S_{y,y}=\dfrac{\theta_{y^{\ast}}}{\theta_{y}}S_{y,y}=S_{y,y}. (29)

Moreover Sy,y=Sy,yβˆ—S_{y,y}=S_{y,y^{\ast}} is real and we may conclude from Equation (28) that ΞΈy2=±ξ​(π’Ÿ)\theta_{y}^{2}=\pm\xi(\mathcal{D}), i.e.Β ΞΈy\theta_{y} is a primitive 1616th root of unity for all y∈π’ͺ​(π’Ÿ)βˆ–π’ͺ​(π’ž)y\in\mathcal{O}(\mathcal{D})\setminus\mathcal{O}(\mathcal{C}). ∎

Lemma 4.1.2.

Let nonsymmetrically braided π’ž:=π’žβ€‹(Ο‡2​n0,Ο„)\mathcal{C}:=\mathcal{C}(\chi_{2n}^{0},\tau) be given for some nβˆˆβ„€β‰₯1n\in\mathbb{Z}_{\geq 1}. If π’Ÿ\mathcal{D} is a nondegenerate cover of π’ž\mathcal{C} with FPdim​(π’Ÿ)=24​n+1\mathrm{FPdim}(\mathcal{D})=2^{4n+1}, then π’Ÿ\mathcal{D} is integral.

Proof.

As π’Ÿ\mathcal{D} is a weakly integral modular tensor category, it may be equipped with its unique positive spherical structure, so that for all y∈π’ͺ​(π’Ÿ)y\in\mathcal{O}(\mathcal{D}), β„šβ€‹(FPdim​(y))\mathbb{Q}(\mathrm{FPdim}(y)) is either β„š\mathbb{Q} or β„šβ€‹(2)\mathbb{Q}(\sqrt{2}) by [4, Proposition 8.14.6] and [10, Proposition 1.4]. If there exists z∈π’ͺ​(π’Ÿ)z\in\mathcal{O}(\mathcal{D}) with β„šβ€‹(FPdim​(z))=β„šβ€‹(2)\mathbb{Q}(\mathrm{FPdim}(z))=\mathbb{Q}(\sqrt{2}), then the graded component containing zz along with the trivial component π’Ÿad=π’ž\mathcal{D}_{\mathrm{ad}}=\mathcal{C}, generate a fusion subcategory β„°βŠ‚π’Ÿ\mathcal{E}\subset\mathcal{D} with FPdim​(β„°)=22​n+2\mathrm{FPdim}(\mathcal{E})=2^{2n+2}, as the universal grading group has exponent 2. From the fact that π’žβŠŠβ„°\mathcal{C}\subsetneq\mathcal{E}, Cπ’Ÿβ€‹(β„°)C_{\mathcal{D}}(\mathcal{E}) is pointed with FPdim​(Cπ’Ÿβ€‹(β„°))=22​nβˆ’1\mathrm{FPdim}(C_{\mathcal{D}}(\mathcal{E}))=2^{2n-1}; let RR be the regular algebra. Then FPdim​(π’ŸR0)=8\mathrm{FPdim}(\mathcal{D}_{R}^{0})=8 by [1, Corollary 3.32] and the Frobenius-Perron dimensions of simple objects are known because π’ͺ​(π’ŸR0)\mathcal{O}(\mathcal{D}_{R}^{0}) corresponds to the isomorphism classes of simple summands of the free RR-modules RβŠ—wR\otimes w for w∈π’ͺ​(β„°)w\in\mathcal{O}(\mathcal{E}) (Section 2.6). There are two nonisomorphic invertible objects in π’ͺ​(π’ŸR0)\mathcal{O}(\mathcal{D}_{R}^{0}) corresponding to the free RR-modules on w∈π’ͺ​(π’Ÿpt)w\in\mathcal{O}(\mathcal{D}_{\mathrm{pt}}). The simple summands of RβŠ—xR\otimes x must all be isomorphic with Frobenius-Perron dimension 2, or else the sum of their dimensions is greater than or equal to 8. The remaining simple objects of π’ŸR0\mathcal{D}_{R}^{0} correspond to the (necessarily isomorphic) simple summands of the free RR-module RβŠ—zR\otimes z which must have Frobenius-Perron dimension 2\sqrt{2}. Moreover the list of dimensions of π’ŸR0\mathcal{D}_{R}^{0} is 1,1,2,21,1,2,\sqrt{2}. But no such fusion category exists since FPdim​((π’ŸR0)β„š)=6\mathrm{FPdim}((\mathcal{D}_{R}^{0})_{\mathbb{Q}})=6 does not divide FPdim​(π’ŸR0)=8\mathrm{FPdim}(\mathcal{D}_{R}^{0})=8, violating [5, Proposition 8.15].

∎

Proposition 4.1.3.

Let nonsymmetrically braided π’ž:=π’žβ€‹(Ο‡2​n0,Ο„)\mathcal{C}:=\mathcal{C}(\chi_{2n}^{0},\tau) be given for some nβˆˆβ„€β‰₯1n\in\mathbb{Z}_{\geq 1}. If there exists a nondegenerate cover π’Ÿ\mathcal{D} of π’ž\mathcal{C} with FPdim​(π’Ÿ)=24​n+1\mathrm{FPdim}(\mathcal{D})=2^{4n+1}, then n=1n=1.

Proof.

Let π’ž:=π’žβ€‹(Ο‡2​n0,Ο„)\mathcal{C}:=\mathcal{C}(\chi_{2n}^{0},\tau) be given and assume π’Ÿ\mathcal{D} is a nondegenerate cover of π’ž\mathcal{C} with FPdim​(π’Ÿ)=24​n+1\mathrm{FPdim}(\mathcal{D})=2^{4n+1}, which is a modular tensor category equipped with its unique positive spherical structure. Set 𝒫\mathcal{P} to be the pointed modular tensor category of rank 2 such that ξ​(π’Ÿ)=ξ​(𝒫)βˆ’1\xi(\mathcal{D})=\xi(\mathcal{P})^{-1}. Note that this implies the nontrivial simple object h∈π’ͺ​(𝒫)h\in\mathcal{O}(\mathcal{P}) has twist ΞΈh=ΞΈxβˆ’1\theta_{h}=\theta^{-1}_{x} by construction, where x∈π’ͺ​(π’ž)x\in\mathcal{O}(\mathcal{C}) is the unique noninvertible simple object. Lemma 4.1.2 ensures that π’Ÿ\mathcal{D} is integral, hence π’ŸβŠ π’«β‰ƒπ’΅β€‹(VecGΟ‰)\mathcal{D}\boxtimes\mathcal{P}\simeq\mathcal{Z}(\mathrm{Vec}_{G}^{\omega}) is a braided equivalence for some finite group GG of order 22​n+12^{2n+1} and Ο‰βˆˆH3​(G,β„‚Γ—)\omega\in H^{3}(G,\mathbb{C}^{\times}) [2, Theorem 1.3]. Lemma 4.1.1 implies that x⊠hx\boxtimes h is the unique noninvertible simple object z∈π’ͺ​(π’ŸβŠ π’«)z\in\mathcal{O}(\mathcal{D}\boxtimes\mathcal{P}) such that ΞΈz=1\theta_{z}=1, while g⊠eg\boxtimes e for g∈E2​ng\in E_{2n} are the only invertible objects with trivial twist. Therefore the fusion subcategory generated by these simple objects is the unique Lagrangian subcategory of 𝒡​(VecGΟ‰)\mathcal{Z}(\mathrm{Vec}_{G}^{\omega}), and has the fusion rules of the character ring of an extraspecial 2-group. Moreover GG is isomorphic to an extraspecial 22-group by Lemma 2.4. If n>1n>1 this is impossible due to Lemma 4.1.1 since the conductor (Frobenius-Schur exponent) of 𝒡​(VecGΟ‰)\mathcal{Z}(\mathrm{Vec}_{G}^{\omega}) is less than or equal to 8 for extra-special 22-groups GG of order greater than 232^{3} [12, Theorem 4.7]. ∎

4.2 Ο‡n1\chi_{n}^{1} braidings

Let π’ž:=π’žβ€‹(Ο‡n1,Ο„)\mathcal{C}:=\mathcal{C}(\chi_{n}^{1},\tau) be given. Recall from Section 2.5 that FPdim​(π’ž)=2n+1\mathrm{FPdim}(\mathcal{C})=2^{n+1} and FPdim​(Cπ’žβ€‹(π’ž))=2nβˆ’1\mathrm{FPdim}(C_{\mathcal{C}}(\mathcal{C}))=2^{n-1}. Here we will describe a nondegenerate cover of π’žβ€‹(Ο‡n1,Ο„)\mathcal{C}(\chi_{n}^{1},\tau) with Frobenius-Perron dimension 22​n2^{2n} which is the absolute minimum possible acccording to Equation (1).

Lemma 4.2.1.

Let nβˆˆβ„€β‰₯1n\in\mathbb{Z}_{\geq 1} and Ο„j=Β±1/2\tau_{j}=\pm 1/\sqrt{2} for 1≀j≀n1\leq j\leq n. Let π’žβ€‹(Ο‡11,Ο„j)\mathcal{C}(\chi_{1}^{1},\tau_{j}) be Ising braided fusion categories with braiding data qj:E1Γ—E1β†’β„‚Γ—q_{j}:E_{1}\times E_{1}\to\mathbb{C}^{\times} and Ξ±jβˆˆβ„‚\alpha_{j}\in\mathbb{C} as in Section 2.5. There is an equivalence of braided fusion categories

(⊠j=1nπ’ž(Ο‡11,Ο„j))0β‰ƒπ’ž(Ο‡n1,∏j=1nΟ„j)\left(\boxtimes_{j=1}^{n}\mathcal{C}(\chi_{1}^{1},\tau_{j})\right)_{0}\simeq\mathcal{C}\left(\chi^{1}_{n},\prod_{j=1}^{n}\tau_{j}\right) (30)

where (⊠j=1nπ’ž(Ο‡11,Ο„j))0\left(\boxtimes_{j=1}^{n}\mathcal{C}(\chi_{1}^{1},\tau_{j})\right)_{0} is the braided fusion subcategory generated by the unique simple object of maximal dimension. The braiding data for the righthand side of the equivalence in (30) is given by q:EnΓ—Enβ†’β„‚Γ—q:E_{n}\times E_{n}\to\mathbb{C}^{\times} defined on the basis gj∈π’ͺ​(π’žβ€‹(Ο‡11,Ο„j)pt)g_{j}\in\mathcal{O}(\mathcal{C}(\chi_{1}^{1},\tau_{j})_{\mathrm{pt}}) as q​(gj):=qj​(gj)q(g_{j}):=q_{j}(g_{j}), and Ξ±:=∏j=1nΞ±j\alpha:=\prod_{j=1}^{n}\alpha_{j}.

Proof.

Set π’Ÿ:=⊠j=1nπ’ž(Ο‡11,Ο„j)\mathcal{D}:=\boxtimes_{j=1}^{n}\mathcal{C}(\chi_{1}^{1},\tau_{j}) and let xj∈π’ͺ​(π’žβ€‹(Ο‡11,Ο„j))x_{j}\in\mathcal{O}(\mathcal{C}(\chi_{1}^{1},\tau_{j})) be the noninvertible simple object for all 1≀j≀n1\leq j\leq n. As Frobenius-Perron dimension is multiplicative across ⊠\boxtimes, there exists a unique simple object x:=x1βŠ β‹―βŠ xn∈π’ͺ​(π’Ÿ)x:=x_{1}\boxtimes\cdots\boxtimes x_{n}\in\mathcal{O}(\mathcal{D}) of squared Frobenius-Perron dimension 2n2^{n}. Therefore gβŠ—xβ‰…xg\otimes x\cong x for all g∈π’ͺ​(π’Ÿpt)g\in\mathcal{O}(\mathcal{D}_{\mathrm{pt}}). Hence xβŠ—xβ‰…βŠ•g∈π’ͺ​(π’Ÿpt)gx\otimes x\cong\oplus_{g\in\mathcal{O}(\mathcal{D}_{\mathrm{pt}})}g, and xx βŠ—\otimes-generates a braided fusion subcategory π’Ÿ0\mathcal{D}_{0} braided equivalent to an EnE_{n} Tambara-Yamagami fusion category π’žβ€‹(Ο‡,Ο„)\mathcal{C}(\chi,\tau) corresponding to some Ο‡:EnΓ—Enβ†’β„‚Γ—\chi:E_{n}\times E_{n}\to\mathbb{C}^{\times} and Ο„=Β±1/2n/2\tau=\pm 1/2^{n/2}. Since π’Ÿ0\mathcal{D}_{0} is braided, χ​(gj,gj)=βˆ’1\chi(g_{j},g_{j})=-1 for 1≀j≀n1\leq j\leq n as this is the braiding of gjg_{j} with itself in π’žβ€‹(Ο‡11,Ο„j)\mathcal{C}(\chi_{1}^{1},\tau_{j}). By the classification of symmetric nondegenerate bilinear forms on EnE_{n} [25, Section 5], we must have Ο‡=Ο‡n1\chi=\chi_{n}^{1}. Now recall that by definition the square of the braiding of xjx_{j} with itself is multiplication by Ξ±j2=Ο„j​(1+qj​(gj))\alpha^{2}_{j}=\tau_{j}(1+q_{j}(g_{j})) for all 1≀j≀n1\leq j\leq n, and the square of the braiding of xx with itself is multiplication by Ξ±2=Ο„β€‹βˆ‘g∈π’ͺ​(π’Ÿpt)q​(g)\alpha^{2}=\tau\sum_{g\in\mathcal{O}(\mathcal{D}_{\mathrm{pt}})}q(g). Since π’žβ€‹(Ο‡11,Ο„j)\mathcal{C}(\chi_{1}^{1},\tau_{j}) for 1≀j≀n1\leq j\leq n centralize one another pairwise, then Ξ±=Ξ±1​⋯​αn\alpha=\alpha_{1}\cdots\alpha_{n}. This implies

Ο„β€‹βˆ‘g∈π’ͺ​(π’Ÿpt)q​(g)=Ξ±2=∏j=1nΞ±j2=∏j=1nΟ„j​(1+qj​(gj))=∏j=1nΟ„jβ€‹βˆ‘g∈π’ͺ​(π’Ÿpt)q​(g),\tau\sum_{g\in\mathcal{O}(\mathcal{D}_{\mathrm{pt}})}q(g)=\alpha^{2}=\prod_{j=1}^{n}\alpha_{j}^{2}=\prod_{j=1}^{n}\tau_{j}\left(1+q_{j}(g_{j})\right)=\prod_{j=1}^{n}\tau_{j}\sum_{g\in\mathcal{O}(\mathcal{D}_{\mathrm{pt}})}q(g), (31)

when qq is defined as in the statement of the lemma. Moreover Ο„=∏j=1nΟ„j\tau=\prod_{j=1}^{n}\tau_{j}. ∎

Proposition 4.2.2.

Let π’ž:=π’žβ€‹(Ο‡n1,Ο„)\mathcal{C}:=\mathcal{C}(\chi_{n}^{1},\tau) be given for nβˆˆβ„€β‰₯1n\in\mathbb{Z}_{\geq 1}. Then there exists an nn-fold Deligne product of Ising braided fusion categories which is a minimal nondegenerate cover of π’ž\mathcal{C}.

Proof.

For n=1n=1 the statement is trivial so let nβ‰₯2n\geq 2. Consider any nn-fold Deligne product π’Ÿ:=⊠j=1nπ’ž(Ο‡11,Ο„j)\mathcal{D}:=\boxtimes_{j=1}^{n}\mathcal{C}(\chi_{1}^{1},\tau_{j}). We need only show that there exists some choice of Ο„j\tau_{j} and braiding data qjq_{j} and Ξ±j\alpha_{j} for 1≀j≀n1\leq j\leq n such that π’ž\mathcal{C} and π’Ÿ0\mathcal{D}_{0} are braided equivalent where π’Ÿ0\mathcal{D}_{0} is defined in Lemma 4.2.1. To this end, define Ο„j:=1/2\tau_{j}:=1/\sqrt{2} for all 1≀j≀nβˆ’11\leq j\leq n-1, Ο„n:=τ​|Ο„|βˆ’1​2\tau_{n}:=\tau|\tau|^{-1}\sqrt{2}. Then π’Ÿ0\mathcal{D}_{0} is equivalent to π’ž\mathcal{C} as a fusion category by Lemma 4.2.1. For the braiding, choose a basis g1,…,gng_{1},\ldots,g_{n} of EnE_{n} and define qj:E1Γ—E1β†’β„‚Γ—q_{j}:E_{1}\times E_{1}\to\mathbb{C}^{\times} by qj​(gj)=q​(gj)q_{j}(g_{j})=q(g_{j}). This ensures Ξ±2=∏j=1nΞ±j2\alpha^{2}=\prod_{j=1}^{n}\alpha_{j}^{2} as in the proof of Lemma 4.2.1, hence Ξ±=±∏j=1nΞ±j\alpha=\pm\prod_{j=1}^{n}\alpha_{j}. Therefore if Ξ±1,…,Ξ±n\alpha_{1},\ldots,\alpha_{n} are arbitrary and Ξ±=∏j=1nΞ±j\alpha=\prod_{j=1}^{n}\alpha_{j}, we are done, otherwise, switch Ξ±1β†¦βˆ’Ξ±1\alpha_{1}\mapsto-\alpha_{1}. ∎

Question 4.2.3.

Does there exist a minimal nondegenerate cover π’Ÿ\mathcal{D} of π’žβ€‹(Ο‡n1,Ο„)\mathcal{C}(\chi_{n}^{1},\tau) for some nβˆˆβ„€β‰₯1n\in\mathbb{Z}_{\geq 1} and Ο„=Β±1/2n/2\tau=\pm 1/2^{n/2} which is not braided equivalent to an nn-fold Deligne product of Ising braided fusion categories?

5 Braided near-group fusion categories

A fusion category is near-group if there exists exactly one isomorphism class of non-invertible objects. This definition is more general than Tambara-Yamagami since such a fusion category may have a trivial universal grading. Near-group fusion categories which possess a braiding were classified by J.Β Thornton [24, Theorem III.4.6]. Surprisingly, there are only 7 braided near-group fusion categories up to braided equivalence which are not symmetrically braided, or Tambara-Yamagami (Section 2.5). These are four of rank 2, two of rank 3, and one of rank 4.

Note 5.0.1.

G.Β Seitz [19] classified finite groups having a unique isomorphism class of irreducible representations with dimension greater than 1, giving a complete classification of symmetrically braided near-group fusion categories up to braided equivalence.

Example 5.0.2.

The 7 nonsymmetrically braided near-group group fusion categories which are not Tambara-Yamagami are easily found in nature. The four examples of rank 2 are described in detail in [17] and all have nondegenerate braidings. Therefore they are their own unique minimal nondegenerate cover and extension. They can be constructed from the category π’žβ€‹(𝔰​𝔩2,3)ad\mathcal{C}(\mathfrak{sl}_{2},3)_{\mathrm{ad}} in the notation of [18].

The two examples of rank 3 have the fusion rules of Rep​(S3)\mathrm{Rep}(S_{3}) (but nonsymmetric braidings) where S3S_{3} is the symmetric group on 33 elements, and can be found as braided fusion subcategories of the untwisted double 𝒡​(VecS3)\mathcal{Z}(\mathrm{Vec}_{S_{3}}) βŠ—\otimes-generated, respectively, by the simple objects (g,Ο‡)(g,\chi) where gg is any element of order 3 and Ο‡\chi is one of two nontrivial characters of degree 1 of the cyclic group C3C_{3}. Their symmetric center is Tannakian of rank 2 and they each possess 2 inequivalent nondegenerate covers with Frobenius-Perron dimension 1212, which can be realized from π’žβ€‹(𝔰​𝔩2,4)\mathcal{C}(\mathfrak{sl}_{2},4) in the notation of [18].

The unique example of rank 4 has the fusion rules of Rep​(A4)\mathrm{Rep}(A_{4}) and can be found as a braided fusion subcategory of the untwisted double 𝒡​(VecA4)\mathcal{Z}(\mathrm{Vec}_{A_{4}}) generated by the simple object (g,Ο‡)(g,\chi) where gg is any element of order 2 and Ο‡\chi is any character of degree 1 of C22C_{2}^{2} with χ​(g)=βˆ’1\chi(g)=-1. Its symmetric center is Tannakian of rank 3 and it possesses 3 inequivalent nondegenerate covers with Frobenius-Perron dimension 3636, which can be constructed from π’žβ€‹(𝔰​𝔩3,3)\mathcal{C}(\mathfrak{sl}_{3},3) in the notation of [18].

The classification of fusion categories with the fusion rules of the rank 3 and 4 examples above dates back to [20, Section 3].

The minimal nondegenerate covers for all the near-group fusion categories discussed so far are weakly integral, hence they have a unique positive spherical structure and can be considered as modular tensor categories (Section 2.3).

Theorem 5.0.3.

Let π’ž\mathcal{C} be a braided near-group fusion category. Then π’ž\mathcal{C} possesses a minimal modular extension if and only if π’ž\mathcal{C} is braided equivalent to

  • (a)

    𝒡​(VecQ8Ξ³)ad\mathcal{Z}(\mathrm{Vec}_{Q_{8}}^{\gamma})_{\mathrm{ad}} or 𝒡​(VecQ8Ξ³)adrev\mathcal{Z}(\mathrm{Vec}_{Q_{8}}^{\gamma})_{\mathrm{ad}}^{\mathrm{rev}} for some generator γ∈H3​(Q8,β„‚Γ—)\gamma\in H^{3}(Q_{8},\mathbb{C}^{\times}),

  • (b)

    π’žβ€‹(Ο‡n1,Ο„)\mathcal{C}(\chi_{n}^{1},\tau) for some nβˆˆβ„€β‰₯1n\in\mathbb{Z}_{\geq 1} and Ο„=Β±1/2n/2\tau=\pm 1/2^{n/2} with arbitrary braiding data (Section 2.5),

  • (c)

    a symmetrically braided near-group fusion category (Note 5.0.1), or

  • (d)

    one of the 7 nonsymmetrically braided near-group fusion categories in Example 5.0.2.

Proof.

This is a culmination of the results of Section 3, Proposition 4.1.3, [24, Theorem III.4.6], and Example 5.0.2. ∎

6 Extraspecial pp-groups and minimal nondegenerate covers

Here we extend the principal results of Section 4 to braided fusion categories whose fusion rules coincide with the character rings of extraspecial pp-groups when pp is an odd prime (see Section 2.4). Fusion and braided fusion categories of these Grothendieck equivalence classes have not been classified as they have for those when p=2p=2, so a complete generalization of Section 4 is left for future research.

Lemma 6.0.1.

Let π’ž\mathcal{C} be a braided fusion category Grothendieck equivalent to Rep​(pΒ±1+2​n)\mathrm{Rep}(p^{1+2n}_{\pm}) for an odd prime pp. Then Cπ’žβ€‹(π’ž)C_{\mathcal{C}}(\mathcal{C}) is Tannakian, and either Cπ’žβ€‹(π’ž)=π’žC_{\mathcal{C}}(\mathcal{C})=\mathcal{C} or Cπ’žβ€‹(π’ž)=π’žptC_{\mathcal{C}}(\mathcal{C})=\mathcal{C}_{\mathrm{pt}}.

Proof.

We know Cπ’žβ€‹(π’ž)C_{\mathcal{C}}(\mathcal{C}) is Tannakian by [4, Corollary 9.9.32(i)] since it is symmetrically braided and pp is odd. Any g∈π’ͺ​(π’žpt)g\in\mathcal{O}(\mathcal{C}_{\mathrm{pt}}) generates a pointed braided fusion subcategory π’Ÿ\mathcal{D} of dimension pp. Since pp is prime, Cπ’Ÿβ€‹(π’Ÿ)=π’ŸC_{\mathcal{D}}(\mathcal{D})=\mathcal{D} or Cπ’Ÿβ€‹(π’Ÿ)C_{\mathcal{D}}(\mathcal{D}) is trivial. In the latter case π’Ÿ\mathcal{D} is nondegenerately braided and π’ž\mathcal{C} factors as a nontrivial Deligne product [16, Theorem 4.2]. But the fusion rules cannot factor since each of the noninvertible objects βŠ—\otimes-generates all of π’ž\mathcal{C}, thus π’žpt\mathcal{C}_{\mathrm{pt}} is symmetrically braided and Tannakian. Lastly note that when equipped with its unique positive spherical structure, the balancing equation implies that g∈π’ͺ​(π’žpt)g\in\mathcal{O}(\mathcal{C}_{\mathrm{pt}}) centralize all noninvertible simple objects as they are fixed points of the βŠ—\otimes-action. Therefore π’žptβŠ‚Cπ’žβ€‹(π’ž)\mathcal{C}_{\mathrm{pt}}\subset C_{\mathcal{C}}(\mathcal{C}), which proves our claim since Cπ’žβ€‹(π’ž)βŠ‚π’žC_{\mathcal{C}}(\mathcal{C})\subset\mathcal{C} is a fusion subcategory. ∎

Proposition 6.0.2.

Let π’ž\mathcal{C} be a nonsymmetrically braided fusion category with the fusion rules of the character ring of pΒ±1+2​np^{1+2n}_{\pm} for an odd prime pp. If there exists a nondegenerate cover π’Ÿ\mathcal{D} of π’ž\mathcal{C} with FPdim​(π’Ÿ)=p4​n+1\mathrm{FPdim}(\mathcal{D})=p^{4n+1}, then there exists an extraspecial pp-group GG and 33-cocycle Ο‰βˆˆH3​(G,β„‚Γ—)\omega\in H^{3}(G,\mathbb{C}^{\times}) such that π’žβ‰ƒπ’΅β€‹(VecGΟ‰)ad\mathcal{C}\simeq\mathcal{Z}(\mathrm{Vec}_{G}^{\omega})_{\mathrm{ad}} is a braided equivalence.

Proof.

Lemma 6.0.1 implies that π’žpt\mathcal{C}_{\mathrm{pt}} is Tannakian since pp is odd; let RR be the regular algebra. Then FPdim​(π’ŸR0)=p4​n+1/(p2​n)2=p\mathrm{FPdim}(\mathcal{D}_{R}^{0})=p^{4n+1}/(p^{2n})^{2}=p [1, Corollary 3.32]. Let 𝒫:=(π’ŸR0)rev\mathcal{P}:=(\mathcal{D}_{R}^{0})^{\mathrm{rev}} so that ξ​(π’Ÿ)=ξ​(𝒫)βˆ’1\xi(\mathcal{D})=\xi(\mathcal{P})^{-1}. This implies [2, Theorem 1.3] there exists a finite pp-group GG, Ο‰βˆˆH3​(G,β„‚Γ—)\omega\in H^{3}(G,\mathbb{C}^{\times}), and a braided equivalence F:π’ŸβŠ π’«β†’π’΅β€‹(VecGΟ‰)F:\mathcal{D}\boxtimes\mathcal{P}\to\mathcal{Z}(\mathrm{Vec}_{G}^{\omega}). As FF is monoidal, for all X∈π’ͺ​(π’ž)X\in\mathcal{O}(\mathcal{C}), F​(X)∈π’ͺ​(𝒡​(VecGΟ‰)ad)F(X)\in\mathcal{O}(\mathcal{Z}(\mathrm{Vec}_{G}^{\omega})_{\mathrm{ad}}). But Equation (1) implies

FPdim​(𝒡​(VecGΟ‰)ad)=FPdim​(𝒡​(VecGΟ‰))FPdim​(𝒡​(VecGΟ‰)pt)=p4​n+2p2​n+1=p2​n+1=FPdim​(π’ž),\mathrm{FPdim}(\mathcal{Z}(\mathrm{Vec}_{G}^{\omega})_{\mathrm{ad}})=\dfrac{\mathrm{FPdim}(\mathcal{Z}(\mathrm{Vec}_{G}^{\omega}))}{\mathrm{FPdim}(\mathcal{Z}(\mathrm{Vec}_{G}^{\omega})_{\mathrm{pt}})}=\dfrac{p^{4n+2}}{p^{2n+1}}=p^{2n+1}=\mathrm{FPdim}(\mathcal{C}), (32)

thus the restriction F|π’ž:π’žβ†’π’΅β€‹(VecGΟ‰)ad\left.F\right|_{\mathcal{C}}:\mathcal{C}\to\mathcal{Z}(\mathrm{Vec}_{G}^{\omega})_{\mathrm{ad}} is a braided equivalence by [4, Proposition 6.3.3].

Finally, recall that π’ŸR0=𝒫rev\mathcal{D}_{R}^{0}=\mathcal{P}^{\mathrm{rev}}. Each nontrivial simple object of π’ŸR0\mathcal{D}_{R}^{0} corresponds to the summands of the free RR-module on some noninvertible x∈π’ͺ​(π’ž)x\in\mathcal{O}(\mathcal{C}) (see Section 2.6), so we can derive from this braided equivalence a bijection ψ:π’ͺ​(π’ž)βˆ–π’ͺ​(π’žpt)β†’π’ͺ​(𝒫)βˆ–{πŸ™}\psi:\mathcal{O}(\mathcal{C})\setminus\mathcal{O}(\mathcal{C}_{\mathrm{pt}})\to\mathcal{O}(\mathcal{P})\setminus\{\mathbbm{1}\}. Note that the simple objects g∈π’ͺ​(π’žpt)g\in\mathcal{O}(\mathcal{C}_{\mathrm{pt}}) and xβŠ Οˆβ€‹(x)x\boxtimes\psi(x) are closed under βŠ—\otimes and all have trivial twist, i.e.Β they βŠ—\otimes-generate a Tannakian fusion subcategory of π’ŸβŠ π’«\mathcal{D}\boxtimes\mathcal{P}. This subcategory is Lagrangian, with the fusion rules of the character ring of an extraspecial pp-group. Moreover by the reconstruction theorem for twisted doubles of finite groups [2, Theorem 4.5], the finite group GG can be chosen to be an extraspecial pp-group by Lemma 2.4.1. ∎

Acknowledgements.

This research was partially funded by the Pacific Institute for the Mathematical Sciences. We also thank Terry Gannon for his support through the preparation of this manuscript.

References

  • [1] Alexei Davydov, Michael MΓΌger, Dmitri Nikshych, and Victor Ostrik. The Witt group of nondegenerate braided fusion categories. Journal fΓΌr die reine und angewandte Mathematik (Crelles Journal), (677):135–177, 2013.
  • [2] Vladimir Drinfeld, Shlomo Gelaki, Dmitri Nikshych, and Victor Ostrik. Group-theoretical properties of nilpotent modular categories. arXiv:0704.0195, 2007.
  • [3] Vladimir Drinfeld, Shlomo Gelaki, Dmitri Nikshych, and Victor Ostrik. On braided fusion categories I. Selecta Mathematica, 16(1):1–119, 2010.
  • [4] Pavel Etingof, Shlomo Gelaki, Dmitri Nikshych, and Victor Ostrik. Tensor Categories. Mathematical Surveys and Monographs. American Mathematical Society, 2015.
  • [5] Pavel Etingof, Dmitri Nikshych, and Victor Ostrik. On fusion categories. Annals of Mathematics, 162(2):581–642, 2005.
  • [6] Pavel Etingof, Dmitri Nikshych, and Victor Ostrik. Fusion categories and homotopy theory. Quantum Topology, 1(3):209–273, 2010. With an appendix by Ehud Meir.
  • [7] CΓ©sar Galindo. Trivializing group actions on braided crossed tensor categories and graded braided tensor categories. arXiv:2010.00847, 2020.
  • [8] CΓ©sar Galindo and CΓ©sarΒ F. Venegas-RamΓ­rez. Categorical fermionic actions and minimal modular extensions. arXiv:1712.07097, 2017.
  • [9] T.Β Gannon, P.Β Ruelle, and M.Β A. Walton. Automorphism modular invariants of current algebras. Comm. Math. Phys., 179(1):121–156, 1996.
  • [10] Terry Gannon and Andrew Schopieray. Algebraic number fields generated by Frobenius-Perron dimensions in fusion rings. arXiv:1912.12260, 2019.
  • [11] Shlomo Gelaki and Dmitri Nikshych. Nilpotent fusion categories. Advances in Mathematics, 217(3):1053–1071, 2008.
  • [12] Christopher Goff, Geoffrey Mason, and Siu-Hung Ng. On the gauge equivalence of twisted quantum doubles of elementary abelian and extra-special 2-groups. J. Algebra, 312(2):849–875, 2007.
  • [13] Bertram Huppert. Character theory of finite groups, volumeΒ 25 of De Gruyter Expositions in Mathematics. Walter de Gruyter & Co., Berlin, 1998.
  • [14] Tian Lan, Liang Kong, and Xiao-Gang Wen. Modular extensions of unitary braided fusion categories and 2+1​D2+1{\rm D} topological/SPT orders with symmetries. Comm. Math. Phys., 351(2):709–739, 2017.
  • [15] Álvaro MuΓ±oz and Bernardo Uribe. Classification of pointed fusion categories of dimension 8 up to weak Morita equivalence. Comm. Algebra, 46(9):3873–3888, 2018.
  • [16] Michael MΓΌger. On the structure of modular categories. Proceedings of the London Mathematical Society, 87(2):291–308, 2003.
  • [17] Victor Ostrik. Fusion categories of rank 2. Mathematical Research Letters, 10:177–183, 2003.
  • [18] Andrew Schopieray. Lie theory for fusion categories: A research primer. In Topological phases of matter and quantum computation, volume 747 of Contemp. Math., pages 1–26. Amer. Math. Soc., Providence, RI, 2020.
  • [19] Gary Seitz. Finite groups having only one irreducible representation of degree greater than one. Proc. Amer. Math. Soc., 19:459–461, 1968.
  • [20] Jacob Siehler. Near-group categories. Algebr. Geom. Topol., 3:719–775, 2003.
  • [21] JacobΒ A. Siehler. Braided near-group categories. arXiv:math/0011037, 2000.
  • [22] D.Β Tambara. Representations of tensor categories with fusion rules of self-duality for abelian groups. Israel J. Math., 118:29–60, 2000.
  • [23] Daisuke Tambara and Shigeru Yamagami. Tensor categories with fusion rules of self-duality for finite abelian groups. J. Algebra, 209(2):692–707, 1998.
  • [24] JosiahΒ E. Thornton. Generalized near-group categories. ProQuest LLC, Ann Arbor, MI, 2012. Thesis (Ph.D.)–University of Oregon.
  • [25] C.Β T.Β C. Wall. Quadratic forms on finite groups, and related topics. Topology, 2:281–298, 1963.