This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Nondegeneracy of positive bubble solutions for generalized energy-critical Hartree equations

Xuemei Li Xuemei Li
Laboratory of Mathematics and Complex Systems,
Ministry of Education,
School of Mathematical Sciences,
Beijing Normal University,
Beijing, 100875, People’s Republic of China.
[email protected]
Chenxi Liu Chenxi Liu
Laboratory of Mathematics and Complex Systems,
Ministry of Education,
School of Mathematical Sciences,
Beijing Normal University,
Beijing, 100875, People’s Republic of China.
[email protected]
Xingdong Tang Xingdong Tang
School of Mathematics and Statistics,
Nanjing Univeristy of Information Science and Technology,
Nanjing, 210044, People’s Republic of China.
[email protected]
 and  Guixiang Xu Guixiang Xu
Laboratory of Mathematics and Complex Systems,
Ministry of Education,
School of Mathematical Sciences,
Beijing Normal University,
Beijing, 100875, People’s Republic of China.
[email protected]
Abstract.

In this paper, we show the nondegeneracy of positive bubble solutions for generalized energy-critical Hartree equations (NLH)

Δu(x)𝜶(N,λ)Nup(y)|xy|λdyup1(x)=0,xN-{\Delta u}\left(x\right)-{\bm{\alpha}}\left(N,\lambda\right)\int_{\mathbb{R}^{N}}{\frac{u^{p}\left(y\right)}{\left|\,x-y\,\right|^{\lambda}}}\mathrm{d}y\,u^{p-1}\left(x\right)=0,\quad x\in\mathbb{R}^{N}

where N3\displaystyle N\geqslant 3, 0<λ<N\displaystyle 0<\lambda<N, p=2NλN2\displaystyle p=\frac{2N-\lambda}{N-2} and 𝜶(N,λ)\displaystyle{\bm{\alpha}}\left(N,\lambda\right) is a normalized constant such that u(x)=(1+|x|2)N22\displaystyle u(x)=\left(1+|x|^{2}\right)^{-\frac{N-2}{2}} is a bubble solution of the equation (NLH). It solves an open nondegeneracy problem in [41, 27] and generalizes the partial nondegeneracy results in [15, 29, 34] to the full range 0<λ<N\displaystyle 0<\lambda<N. The key observation is that by use of the stereographic projection 𝒮\displaystyle\mathcal{S}, the weighted pushforward map 𝒮\displaystyle\mathcal{S}_{*} is one-to-one map between the null space of the linearized operator and the spherical harmonic function subspace 1N+1\displaystyle\mathcal{H}_{1}^{N+1} of degree one.

Key words and phrases:
Bubble solution; Funk-Hecke formula; Hartree equation; Nondegeneracy; Spherical harmonic functions; Stereographic projection
2010 Mathematics Subject Classification:
Primary 35B09, 47A74. Secondly 35P10, 42B37

1. Introduction

In this paper we consider the generalized energy-critical Hartree equations in N\displaystyle\mathbb{R}^{N}

Δu(x)𝜶(N,λ)Nup(y)|xy|λdyup1(x)=0,xN-{\Delta u}\left(x\right)-{\bm{\alpha}}\left(N,\lambda\right)\int_{\mathbb{R}^{N}}{\frac{u^{p}\left(y\right)}{\left|\,x-y\,\right|^{\lambda}}}\mathrm{d}y\,u^{p-1}\left(x\right)=0,\quad x\in\mathbb{R}^{N} (NLH)

where u\displaystyle u is a real-valued function, N3\displaystyle N\geqslant 3, 0<λ<N\displaystyle 0<\lambda<N, p=2NλN2\displaystyle p=\frac{2N-\lambda}{N-2} and the normalized constant

𝜶(N,λ)=N(N2)πN2Γ(Nλ2)Γ(Nλ2).{\bm{\alpha}}\left(N,\lambda\right)=\frac{N\left(N-2\right)}{\pi^{\frac{N}{2}}}\cdot\frac{\Gamma\left(N-\frac{\lambda}{2}\right)}{\Gamma\left(\frac{N-\lambda}{2}\right)}. (1.1)

The equation (NLH) is left invariant under the scaling transform

u(x)uδ(x)=δN22u(δx),u(x)\longmapsto u_{\delta}(x)=\delta^{\frac{N-2}{2}}u(\delta x),

which preserves the H˙1(N)\displaystyle\dot{H}^{1}(\mathbb{R}^{N}) norm. That is the reason why the equation (NLH) is called the energy-critical equation.

The equation (NLH), which is also called nonlinear Choquard or Choquard-Pekar equation, has several physical motivations. In the subcritical case N=3,\displaystyle N=3, p=2\displaystyle p=2 and λ=1\displaystyle\lambda=1, the equation (NLH) firstly appeared in the context of Fröhlich and Pekar’s polaron model, which describes the interaction between one single electron and the dielectric polarisable continuum, see [22, 23, 1, 46]. Later, Choquard proposed the equation (NLH) to describe an approximation to the Hartree-Fock theory of a plasma, and then attracted the substantial attention in the field of nonlinear elliptic equations, see [37, 40, 43]. The equation (NLH) also arises as a model problem in the study of stationary solutions to nonlinear Schrödinger equation with nonlocal nonlinearity:

iutΔu𝜶(N,λ)N|u(y)|p|xy|λdy|u|p2u=0,p2.iu_{t}-{\Delta u}-{\bm{\alpha}}\left(N,\lambda\right)\int_{\mathbb{R}^{N}}{\frac{\left|u\left(y\right)\right|^{p}}{\left|\,x-y\,\right|^{\lambda}}}\mathrm{d}y\,\left|u\right|^{p-2}u=0,\quad p\geqslant 2. (1.2)

Physically, the equation (1.2) effectively describes the mean field limit of quantum many-body systems, see e.g., [26, 33, 25], and references therein.

The existence and uniqueness of positive bubble solutions of the equation (NLH) has been known for some time, see e.g., [15, 28, 31, 41, 42, 43] and references therein.

The existence of bubble solutions of the equation (NLH) is closely related to the sharp \HLSinequality in N\displaystyle\mathbb{R}^{N}

(NN|f(x)|p|f(y)|p|xy|λdxdy)1pC(N,λ)fL2(N)2,\displaystyle\displaystyle\left(\int_{\mathbb{R}^{N}}\int_{\mathbb{R}^{N}}\frac{\left|f\left(x\right)\right|^{p}\left|f\left(y\right)\right|^{p}}{\left|x-y\right|^{\lambda}}\mathrm{d}x\mathrm{d}y\right)^{\frac{1}{p}}\leqslant\;\mathrm{C}\left(N,\lambda\right)\left\|\nabla f\right\|_{L^{2}(\mathbb{R}^{N})}^{2}, (1.3)

where N3\displaystyle N\geqslant 3, 0<λ<N\displaystyle 0<\lambda<N and p=2NλN2\displaystyle p=\frac{2N-\lambda}{N-2}. In fact, by use of the sharp \HLSinequality and the sharp \Sbinequality in N\displaystyle\mathbb{R}^{N} in [39], Miao, Wu and the fourth author firstly showed that the sharp constant C(N,λ)\displaystyle\mathrm{C}\left(N,\lambda\right) in (1.3) is obtained in the classical energy-critical case p=2\displaystyle p=2, λ=4<N\displaystyle\lambda=4<N if and only if

f(x)=c(δ2+|xx0|2)N22f\left(x\right)=c\cdot\left(\delta^{2}+\left|x-x_{0}\right|^{2}\right)^{-\frac{N-2}{2}} (1.4)

for some c{0},δ>0\displaystyle c\in\mathbb{R}\setminus\{0\},\leavevmode\nobreak\ \delta>0 and x0N\displaystyle x_{0}\in\mathbb{R}^{N} in [41]. Later, Du, Yang and Gao generalized the result in the general energy-critical case in [15, 28].

The existence of the extremizer for the sharp Hardy-Littlewood-Sobolev inequality (1.3) is more subtle than the fact that the inequality (1.3) holds. The rearrangement inequalities, the conformal transform and the stereographic projection are useful arguements to show the existence of the extremizer of (1.3), see [38, 39]. In fact, we have

Theorem 1.1.

[20, 28, 41] Let N3\displaystyle N\geqslant 3, 0<λ<N\displaystyle 0<\lambda<N, and p=2NλN2\displaystyle p=\frac{2N-\lambda}{N-2}. Then for any f,gH˙1(N){0}\displaystyle f,g\in\dot{H}^{1}\left(\mathbb{R}^{N}\right)\setminus\left\{0\right\}, the inequality

(NN|f(x)|p|g(y)|p|xy|λdxdy)1pC(N,λ)f2g2\left(\int_{\mathbb{R}^{N}}\int_{\mathbb{R}^{N}}\frac{\left|f\left(x\right)\right|^{p}\left|g\left(y\right)\right|^{p}}{\left|x-y\right|^{\lambda}}\mathrm{d}x\mathrm{d}y\right)^{\frac{1}{p}}\leqslant\mathrm{C}\left(N,\lambda\right)\left\|\nabla f\right\|_{2}\left\|\nabla g\right\|_{2} (1.5)

holds with sharp constant

C(N,λ)=(Γ(N)Γ(N2)(4π)N2)(Γ(N2)Γ(Nλ2)Γ(N)Γ(Nλ2)(4π)N)N22Nλ.\mathrm{C}\left(N,\lambda\right)=\left(\frac{\Gamma\left(N\right)}{\Gamma\left(\frac{N}{2}\right)\left(4\pi\right)^{\frac{N}{2}}}\right)\left(\frac{\Gamma\left(\frac{N}{2}\right)\Gamma\left(\frac{N-\lambda}{2}\right)}{\Gamma\left({N}\right)\Gamma\left(N-\frac{\lambda}{2}\right)}\left(4\pi\right)^{N}\right)^{\frac{N-2}{2N-\lambda}}. (1.6)

Moreover, the equality in (1.5) holds if and only if

f(x)=c(δ2+|xx0|2)N22,andg(x)=cf(x),f(x)=c\cdot\left(\delta^{2}+\left|x-x_{0}\right|^{2}\right)^{-\frac{N-2}{2}},\quad\text{and}\quad g\left(x\right)=c^{\prime}\cdot f(x),

where c,c{0}\displaystyle c,c^{\prime}\in\mathbb{R}\setminus\left\{0\right\}, δ>0\displaystyle\delta>0, and x0N\displaystyle x_{0}\in\mathbb{R}^{N}.

As for the rigidity classification of the positive solution to the equation (NLH) in L2NN2(N)\displaystyle L^{\frac{2N}{N-2}}(\mathbb{R}^{N}), Miao, Wu and the fourth author firstly showed that any nontrivial solutions to the equation (NLH) with constant sign in the case p=2\displaystyle p=2, λ=4<N\displaystyle\lambda=4<N must be the form of (1.4) by use of the Kelvin transform and the moving plane method in [41]. Later, Du, Yang [15] and Guo, Hu, Peng, Shuai [31] independently generalized the result in the general case. More precisely, we have

Proposition \theproposition ([15, 31, 41]).

Suppose that N3\displaystyle N\geqslant 3, 0<λ<N\displaystyle 0<\lambda<N and p=2NλN2\displaystyle p=\frac{2N-\lambda}{N-2}. Let u\displaystyle u be a nontrivial solution of the equation (NLH) with constant sign, then there exist c{0},δ>0\displaystyle c\in\mathbb{R}\setminus\{0\},\leavevmode\nobreak\ \delta>0 and x0N\displaystyle x_{0}\in\mathbb{R}^{N} such that u(x)=Uc,δ,x0(x)\displaystyle u\left(x\right)=U_{c,\delta,x_{0}}\left(x\right), where

Uc,δ,x0(x)=c(δ2+|xx0|2)N22.U_{c,\delta,x_{0}}\left(x\right)=c\cdot\left(\delta^{2}+\left|x-x_{0}\right|^{2}\right)^{-\frac{N-2}{2}}. (1.7)

Motivated by the nondegeneracy results of eigenfunctions and ground state in [18, 24, 52, 53], a natural question arises in the study of bubble solutions to the equation (NLH) is that

Are the positive solutions of (NLH) non-degenerate?

Since the equation (NLH) is invariant under the scaling and spatial translations, i. e., any solution v\displaystyle{v} solves the equation (NLH) if and only if vδ,x0(x)=δN22v(δx+x0)\displaystyle v_{\delta,x_{0}}\left(x\right)=\delta^{\frac{N-2}{2}}v\left(\delta x+x_{0}\right) satisfies

vδ,x0(x)𝜶(N,λ)Nvδ,x0p(y)|xy|λdyvδ,x0p1(x)=0-{\mathop{}\!\mathbin{\bigtriangleup}v_{\delta,x_{0}}}\left(x\right)-{\bm{\alpha}}\left(N,\lambda\right)\int_{\mathbb{R}^{N}}{\frac{v_{\delta,x_{0}}^{p}\left(y\right)}{\left|\,x-y\,\right|^{\lambda}}}\mathrm{d}y\,v_{\delta,x_{0}}^{p-1}\left(x\right)=0 (NLH*)

for any δ>0\displaystyle\delta>0 and x0N\displaystyle x_{0}\in\mathbb{R}^{N}. Hence, for simplicity, it suffices to consider the solution (1.7) with the normalized parameters c=1\displaystyle c=1, δ=1\displaystyle\delta=1 and x0=0,\displaystyle x_{0}=0, i.e.

u(x):=U1,1,0(x)=(1+|x|2)N22.u\left(x\right):=U_{1,1,0}\left(x\right)=\left(1+\left|x\right|^{2}\right)^{-\frac{N-2}{2}}. (1.8)

That is the reason why we choose the normalized constant 𝜶(N,λ)\displaystyle{\bm{\alpha}}\left(N,\lambda\right) in (NLH) and (NLH*). By differentiating (NLH*) with respect to δ\displaystyle\delta and x0\displaystyle x_{0} at (δ,x0)=(1,0)\displaystyle\left(\delta,x_{0}\right)=\left(1,0\right), we know that the generator

φj(x):=uxj(x)=(2N)u(x)xj1+|x|2,   1jN,\displaystyle\displaystyle\varphi_{j}\left(x\right):=\frac{\partial u}{\partial x_{j}}\left(x\right)=\left(2-N\right)u\left(x\right)\frac{x_{j}}{1+\left|x\right|^{2}},\;\;\leavevmode\nobreak\ 1\leqslant j\leqslant N, (1.9)

and

φN+1(x):=N22u(x)+xu(x)=N22u(x)1|x|21+|x|2,\displaystyle\displaystyle\varphi_{N+1}\left(x\right):=\frac{N-2}{2}u\left(x\right)+x\cdot\nabla u\left(x\right)=\frac{N-2}{2}u\left(x\right)\frac{1-\left|x\right|^{2}}{1+\left|x\right|^{2}}, (1.10)

are N+1\displaystyle N+1 linear independent bounded solutions with vanishing at infinity to the following linearized equation

φ=𝜶(N,λ)[p(1||λup1φ)up1+(p1)(1||λup)up2φ].\displaystyle\displaystyle-{\mathop{}\!\mathbin{\bigtriangleup}\varphi}={\bm{\alpha}}\left(N,\lambda\right)\left[{p\left(\frac{1}{\left|\,\cdot\,\right|^{\lambda}}\ast u^{p-1}\varphi\right)u^{p-1}+\left(p-1\right)\left(\frac{1}{\left|\,\cdot\,\right|^{\lambda}}\ast u^{p}\right)u^{p-2}\varphi}\right]. (1.11)
Definition 1.2.

The solution u\displaystyle u defined by (1.8) to the equation (NLH) is said to be nondegenerate if any bounded solution vanishing at infinity to the linearized equation (1.11) must be the linear combinations of the functions φ1,,φN\displaystyle\varphi_{1},\cdots,\varphi_{N} and φN+1\displaystyle\varphi_{N+1} defined by (1.9) and (1.10).

We now state the main result in this paper.

Theorem 1.3.

Let N3\displaystyle N\geqslant 3, λ(0,N)\displaystyle\lambda\in\left(0,N\right) and p=2NλN2\displaystyle p=\frac{2N-\lambda}{N-2}. Then the nontrivial solution Uc,δ,x0\displaystyle U_{c,\delta,x_{0}} of the equation (NLH) with constant sign is nondegenerate.

The result in Theorem 1.3 solves an open nondegeneracy problem in [27, 41], and generalizes the partial nondegeneracy results in [15, 29, 34, 41] to the full rang λ(0,N)\displaystyle\lambda\in(0,N). The argument in this paper is different with those in [29, 15] and [32, 34, 56]. In fact, we rewrite (1.11) as an integral form in N\displaystyle\mathbb{R}^{N}, and its equivalent integral form on the sphere 𝕊N\displaystyle\mathbb{S}^{N} via the stereographic projection 𝒮:N𝕊N\displaystyle\mathcal{S}:\mathbb{R}^{N}\longrightarrow\mathbb{S}^{N}. The key observation is that together with the spherical harmonic decomposition and the Funk-Hecke formula in [4, 8, 51], the weighted pushforward map 𝒮\displaystyle\mathcal{S}_{*} related to the stereographic projection 𝒮\displaystyle\mathcal{S} is one-to-one map between the null space of the linearized operator and the spherical harmonic function subspace 1N+1\displaystyle\mathcal{H}_{1}^{N+1} of degree one. The idea with use of the stereographic projection and the Funk-Hecke formula is inspired by Frank and Lieb in [21, 20],

Remark 1.4 (Nondegeneracy of positive solutions to nonlinear elliptic equations with local nonlinearity).

There were extensive literatures to show the nondegeneracy of positive solutions to nonlinear elliptic equations. Weinstein [55] and Oh [45] made use of the spherical harmonic expansion to obtain the nondegeneracy of positive solutions to nonlinear elliptic equation with subcritical nonlinearity

u(x)+u(x)up(x)=0,xN,1<p<N+2N2.-{\mathop{}\!\mathbin{\bigtriangleup}u}\left(x\right)+u\left(x\right)-u^{p}\left(x\right)=0,\quad x\in\mathbb{R}^{N},\quad 1<p<\frac{N+2}{N-2}.

Rey [48], Dolbeault and Jankowiak [14] made use of the stereographic projection to obtain the nondegeneracy of positive bubble solutions to nonlinear elliptic equation with critical nonlinearity

u(x)uN+2N2(x)=0,xN.-{\mathop{}\!\mathbin{\bigtriangleup}u}\left(x\right)-u^{\frac{N+2}{N-2}}\left(x\right)=0,\quad x\in\mathbb{R}^{N}. (1.12)

For other applications of the spherical harmonic expansion in the nondegeneracy of positive solutions for other nonlinear elliptic equations with local nonlinearity, please refer to [49, 30, 5, 9, 3, 16, 10, 18, 19, 17, 2, 47, 44, 52] and references therein.

Remark 1.5 (Nondegeneracy of positive solutions to nonlinear Hartree equations).

Let N3\displaystyle N\geqslant 3, 0<λ<N\displaystyle 0<\lambda<N and 1<p<2NλN2\displaystyle 1<p<\frac{2N-\lambda}{N-2}. Due to nonlocal nonlinearity of nonlinear Hartree equations, the nondegeneracy of positive solutions to the equation (NLH)

u(x)+u(x)Nup(y)|xy|λdyup1(x)=0,xN,-{\mathop{}\!\mathbin{\bigtriangleup}u}\left(x\right)+u\left(x\right)-\int_{\mathbb{R}^{N}}{\frac{u^{p}\left(y\right)}{\left|\,x-y\,\right|^{\lambda}}}\mathrm{d}y\,u^{p-1}\left(x\right)=0,\leavevmode\nobreak\ x\in\mathbb{R}^{N}, (1.13)

is more subtle than that of positive solutions to nonlinear elliptic equations with local nonlinearity.

Lenzmann firstly made use of the multipole expansion of the Newtonian potential , and obtained the nondegeneracy of the ground state to

u(x)+u(x)18π3u2(y)|xy|dyu(x)=0,x3-{\mathop{}\!\mathbin{\bigtriangleup}u}\left(x\right)+u\left(x\right)-\frac{1}{8\pi}\int_{\mathbb{R}^{3}}{\frac{u^{2}\left(y\right)}{\left|\,x-y\,\right|}}\mathrm{d}y\,u\left(x\right)=0,\leavevmode\nobreak\ x\in\mathbb{R}^{3} (1.14)

in [32], see also [54]. For the application of the multipole expansion of the Newtonian potential in N(3N5)\displaystyle\mathbb{R}^{N}(3\leqslant N\leqslant 5) to the nondegeneracy of positive solution to (1.13) with λ=N2\displaystyle\lambda=N-2 and p=2\displaystyle p=2, we can refer to [6]. Later, Xiang made use of a perturbation argument to obtain the non-degeneracy of positive solution to (1.13) for the case that λ=1\displaystyle\lambda=1 and p\displaystyle p is slightly larger than 2\displaystyle 2 in 3\displaystyle\mathbb{R}^{3} in [56], and recently, Li extended the perturbation argument to the non-degeneracy of positive solution to (1.13) for the case that λ\displaystyle\lambda close to N2\displaystyle N-2 and p\displaystyle p slightly larger than 2\displaystyle 2 in N\displaystyle\mathbb{R}^{N} in [36] . For other applications of the perturbation argument, please refer to [15, 29] for the case that λ\displaystyle\lambda is closed to 0\displaystyle 0 or N\displaystyle N.

Recently, Li, Tang and Xu made use of the spherical harmonic expansion and the multipole expansion of the Newtonian potential to obtain the non-degeneracy of bubble solutions to the energy-critical Hartree equation in 6\displaystyle\mathbb{R}^{6}

u(x)6u2(y)|xy|4dyu(x)=0,x6-{\mathop{}\!\mathbin{\bigtriangleup}u}\left(x\right)-\int_{\mathbb{R}^{6}}{\frac{u^{2}\left(y\right)}{\left|\,x-y\,\right|^{4}}}\mathrm{d}y\,u\left(x\right)=0,\leavevmode\nobreak\ x\in\mathbb{R}^{6} (1.15)

in [34]. We can also refer to [27].

Recently, the authors make use of the Moser iteration method in [13] to obtain the L(N)\displaystyle L^{\infty}(\mathbb{R}^{N}) regularity of the energy solution to the linearized equation (1.11), and show that the nontrivial solution Uc,δ,x0\displaystyle U_{c,\delta,x_{0}} of the equation (NLH) with constant sign is nondegenerate in the energy space H˙1(N)\displaystyle\dot{H}^{1}(\mathbb{R}^{N}) in [35]. At the same time, the authors consider long time dynamics of the radial threshold solution of the equation (1.2) and its rigidity classification in [35], which depends on the nondegeneracy of the bubble solutions in the energy space H˙1(N)\displaystyle\dot{H}^{1}(\mathbb{R}^{N}) and the spectrum of the linearized operator.

Remark 1.6 (Application of nondegeneracy of positive solution in the construction of multi-bubble solutions).

The existence of bubble solutions to the energy-critical nonlinear Hartree equation has been well-studied recently, see [29, 15, 31, 28, 41]. It is interesting to construct the existence of multi-bubble solutions to the equation (NLH). To the best of our knowledge, there are few results concerning multi-bubble solutions to (NLH) except that in [27]. However, for the limiting case λ=0\displaystyle\lambda=0 in (NLH), i.e.

u(x)uN+2N2(x)=0,xN,-{\mathop{}\!\mathbin{\bigtriangleup}u}\left(x\right)-u^{\frac{N+2}{N-2}}\left(x\right)=0,\quad x\in\mathbb{R}^{N}, (1.16)

the multi-bubble solutions has been constructed by using the \LSargument in [12, 11], where the nondegeneracy of positive solutions plays a crucial role.

Lastly, the rest of this paper is organized as follows. In Section 2, we introduce some notation, the preliminary results about the stererographic projection and the Funk-Hecke formula of the spherical harmonic functions. In Section 3, we prove Theorem 1.3.

Acknowledgements.

The authors were supported by National Key Research and Development Program of China (No. 2020YFA0712900) and by NSFC (No. 12371240, No. 12431008).

2. Notation and Preliminary Results

In this section, we introduce some notation. We denote x=(1+|x|2)12,\displaystyle\langle x\rangle=\left(1+\left|x\right|^{2}\right)^{\frac{1}{2}}, and use 𝕊N\displaystyle\mathbb{S}^{N} to denote the unit sphere in N+1\displaystyle\mathbb{R}^{N+1}, i.e.

𝕊N={ξ=(ξ1,ξ2,,ξN+1)N+1|j=1N+1ξj2=1},\mathbb{S}^{N}=\left\{\xi=\left(\xi_{1},\xi_{2},\cdots,\xi_{N+1}\right)\in\mathbb{R}^{N+1}\quad\middle|\quad\sum_{j=1}^{N+1}\xi_{j}^{2}=1\right\},

and gij(1i,jN+1)\displaystyle g_{ij}\left(1\leqslant i,\,j\leqslant N+1\right) stand for the metric on 𝕊N\displaystyle\mathbb{S}^{N}, which is inherited from N+1\displaystyle\mathbb{R}^{N+1}. For any 1p<+\displaystyle 1\leqslant p<+\infty, let us denote by Lp(N)\displaystyle L^{p}\left(\mathbb{R}^{N}\right) and Lp(𝕊N)\displaystyle L^{p}\left(\mathbb{S}^{N}\right) the space of real-valued p\displaystyle p-th power integrable functions on N\displaystyle\mathbb{R}^{N} and 𝕊n\displaystyle\mathbb{S}^{n}. Moreover, with a little abuse of notation, we equip Lp(N)\displaystyle L^{p}\left(\mathbb{R}^{N}\right) and Lp(𝕊N)\displaystyle L^{p}\left(\mathbb{S}^{N}\right) with the norms:

fp=(N|f(x)|pdx)1p, for fLp(N),\left\|f\right\|_{p}=\left(\int_{\mathbb{R}^{N}}\left|f\left(x\right)\right|^{p}\mathrm{d}x\right)^{\frac{1}{p}},\quad\text{\leavevmode\nobreak\ for\leavevmode\nobreak\ }\quad f\in L^{p}\left(\mathbb{R}^{N}\right),

and

Fp=(𝕊N|F(ξ)|pdξ)1p, for FLp(𝕊N),\left\|F\right\|_{p}=\left(\int_{\mathbb{S}^{N}}\left|F\left(\xi\right)\right|^{p}\mathrm{d}\xi\right)^{\frac{1}{p}},\quad\text{\leavevmode\nobreak\ for\leavevmode\nobreak\ }\quad F\in L^{p}\left(\mathbb{S}^{N}\right),

where dξ\displaystyle\mathrm{d}\xi is the standard volume element on the sphere 𝕊N\displaystyle\mathbb{S}^{N}.

We denote the stereographic projection 𝒮:N𝕊N{(0,0,,0,1)}\displaystyle\mathcal{S}:\mathbb{R}^{N}\mapsto\mathbb{S}^{N}\setminus\left\{\left(0,0,\cdots,0,-1\right)\right\} by

𝒮x=(2x1+|x|2,1|x|21+|x|2),\displaystyle\displaystyle\mathcal{S}x=\left(\frac{2x}{1+\left|x\right|^{2}},\frac{1-\left|x\right|^{2}}{1+\left|x\right|^{2}}\right),

and its inverse map 𝒮1:𝕊N{(0,0,,0,1)}N\displaystyle\mathcal{S}^{-1}:\mathbb{S}^{N}\setminus\left\{\left(0,0,\cdots,0,-1\right)\right\}\mapsto\mathbb{R}^{N} by

𝒮1(ξ1,ξ2,,ξN+1)=(ξ11+ξN+1,ξ21+ξN+1,,ξN1+ξN+1).\displaystyle\displaystyle\mathcal{S}^{-1}\left(\xi_{1},\xi_{2},\cdots,\xi_{N+1}\right)=\left(\frac{\xi_{1}}{1+\xi_{N+1}},\frac{\xi_{2}}{1+\xi_{N+1}},\cdots,\frac{\xi_{N}}{1+\xi_{N+1}}\right).

Let ρ(x)=(21+|x|2)12\displaystyle\rho\left(x\right)=\left(\frac{2}{1+\left|x\right|^{2}}\right)^{\frac{1}{2}}. From [39, 20], we have

gij=ρ4(x)δij,|𝒮x𝒮y|=|xy|ρ(x)ρ(y),\displaystyle\displaystyle g_{ij}=\rho^{4}\left(x\right)\delta_{ij},\;\;{\left|\mathcal{S}x-\mathcal{S}y\right|}={\left|x-y\right|}\rho\left(x\right)\rho\left(y\right), (2.1)

and

dξ=ρ2N(x)dx.\displaystyle\displaystyle\mathrm{d}\xi=\rho^{2N}\left(x\right)\mathrm{d}x. (2.2)

Therefore, for any FL1(𝕊N)\displaystyle F\in L^{1}\left(\mathbb{S}^{N}\right), we have the following identity

𝕊NF(ξ)dξ=NF(𝒮x)ρ2N(x)dx.\int_{\mathbb{S}^{N}}F\left(\xi\right)\mathrm{d}\xi=\int_{\mathbb{R}^{N}}F\left(\mathcal{S}x\right){\rho^{2N}\left(x\right)}\mathrm{d}x.

In order to relate the functions between in N\displaystyle\mathbb{R}^{N} and on the sphere 𝕊N\displaystyle\mathbb{S}^{N}, we can compose the functions in N\displaystyle\mathbb{R}^{N} and 𝕊N\displaystyle\mathbb{S}^{N} with the maps 𝒮±\displaystyle\mathcal{S}^{\pm}. For any f:N\displaystyle f:\mathbb{R}^{N}\mapsto\mathbb{R}, we denote the weighted pushforward map 𝒮f:𝕊N{(0,0,,0,1)}\displaystyle\mathcal{S}_{\ast}f:\mathbb{S}^{N}\setminus\left\{\left(0,0,\cdots,0,-1\right)\right\}\mapsto\mathbb{R} by

𝒮f(ξ)=ρ2N(𝒮1ξ)f(𝒮1ξ),\displaystyle\displaystyle\mathcal{S}_{\ast}f(\xi)=\rho^{2-N}\left(\mathcal{S}^{-1}\xi\right)f\left(\mathcal{S}^{-1}\xi\right), (2.3)

and for any F:𝕊N{(0,0,,0,1)}\displaystyle F:\mathbb{S}^{N}\setminus\left\{\left(0,0,\cdots,0,-1\right)\right\}\mapsto\mathbb{R}, we denote the weighted pullback map 𝒮F:N\displaystyle\mathcal{S}^{\ast}F:\mathbb{R}^{N}\mapsto\mathbb{R} by

𝒮F(x)=ρN2(x)F(𝒮x).\displaystyle\displaystyle\mathcal{S}^{\ast}F(x)=\rho^{N-2}\left(x\right)F\left(\mathcal{S}x\right). (2.4)

A simple calculation shows that

Proposition \theproposition.

Let φj\displaystyle\varphi_{j}, 1jN+1\displaystyle 1\leqslant j\leqslant N+1 be defined by (1.9) and (1.10) and 𝒮\displaystyle\mathcal{S}_{*} be defined by (2.3), then for any ξ𝕊N\displaystyle\xi\in\mathbb{S}^{N} and 1jN\displaystyle 1\leqslant j\leqslant N, we have

𝒮φj(ξ)=2N2 22N2ξj,and𝒮φN+1(ξ)=N22 22N2ξN+1.\displaystyle\displaystyle\mathcal{S}_{*}\varphi_{j}(\xi)=\frac{2-N}{2}\,2^{\frac{2-N}{2}}\xi_{j},\;\;\text{and}\;\;\mathcal{S}_{*}\varphi_{N+1}(\xi)=\frac{N-2}{2}\,2^{\frac{2-N}{2}}\xi_{N+1}. (2.5)
Proof.

First of all, for j=1,2,,N\displaystyle j=1,2,\cdots,N, we have by (2.3) that

𝒮φj(𝒮x)=ρ2N(x)φj(x),\displaystyle\displaystyle\mathcal{S}_{*}\varphi_{j}\left(\mathcal{S}x\right)=\rho^{2-N}\left(x\right)\varphi_{j}\left(x\right), (2.6)

which, together with (1.9) and (1.10), implies that

𝒮φj(𝒮x)=2N222N22xj1+|x|2=2N222N2(𝒮x)j=2N222N2ξj,\displaystyle\displaystyle\mathcal{S}_{*}\varphi_{j}\left(\mathcal{S}x\right)=\frac{2-N}{2}2^{\frac{2-N}{2}}\frac{2x_{j}}{1+\left|x\right|^{2}}=\frac{2-N}{2}2^{\frac{2-N}{2}}\left(\mathcal{S}x\right)_{j}=\frac{2-N}{2}2^{\frac{2-N}{2}}\xi_{j},

and

𝒮φN+1(𝒮x)=N2222N21|x|21+|x|2=N2222N2(𝒮x)N+1=N2222N2ξN+1,\displaystyle\displaystyle\mathcal{S}_{*}\varphi_{N+1}\left(\mathcal{S}x\right)=\frac{N-2}{2}2^{\frac{2-N}{2}}\frac{1-\left|x\right|^{2}}{1+\left|x\right|^{2}}=\frac{N-2}{2}2^{\frac{2-N}{2}}\left(\mathcal{S}x\right)_{N+1}=\frac{N-2}{2}2^{\frac{2-N}{2}}\xi_{N+1},

which implies (2.5) and completes the proof. ∎

We now introduce the spherical harmonic functions, which are related to the spectral properties of the Laplace-Beltrami opertor on the sphere 𝕊N\displaystyle\mathbb{S}^{N} (see [4, 8, 51]). In fact, we have the following orthogonal decomposition:

L2(𝕊N)=k=0kN+1,L^{2}\left(\mathbb{S}^{N}\right)=\bigoplus\limits_{k=0}^{\infty}\mathscr{H}_{k}^{N+1}, (2.7)

where kN+1(k0)\displaystyle\mathscr{H}_{k}^{N+1}\left(k\geqslant 0\right) denote the mutually orthogonal subspace of the restriction on 𝕊N\displaystyle\mathbb{S}^{N} of real, homogeneous harmonic polynomials of degree k\displaystyle k, and

dimkN+1:={1,if k=0,N+1,if k=1,(k+Nk)(k2+Nk2),if k2.\dim{\mathscr{H}_{k}^{N+1}}:=\begin{dcases}1,&\mbox{if }k=0,\\ N+1,&\mbox{if }k=1,\\ \binom{k+N}{k}-\binom{k-2+N}{k-2},&\mbox{if }k\geqslant 2.\end{dcases}

We will use {Yk,j1jdimkN+1}\displaystyle\left\{Y_{k,j}\mid 1\leqslant j\leqslant\dim{\mathscr{H}_{k}^{N+1}}\right\} to denote an orthonormal basis of kN+1\displaystyle\mathscr{H}_{k}^{N+1}. In particular, we have

Y1,j(ξ)=(N+1)Γ(N2)2πN2ξj,1jN+1,Y_{1,j}\left(\xi\right)=\sqrt{\frac{\left(N+1\right)\Gamma\left(\frac{N}{2}\right)}{2\pi^{\frac{N}{2}}}}\xi_{j},\quad 1\leqslant j\leqslant N+1,

and

1N+1=span{ξj| 1jN+1},{\mathscr{H}_{1}^{N+1}}=\mathrm{span}\left\{\xi_{j}\,\middle|\,1\leqslant j\leqslant N+1\right\}, (2.8)

which together with Proposition 2 implies that the weighted pushfoward map 𝒮\displaystyle\mathcal{S}_{*} is one-to-one map from the subspace Span{φj,1jN+1}L(N)\displaystyle\text{Span}\{\varphi_{j},1\leqslant j\leqslant N+1\}\subset L^{\infty}(\mathbb{R}^{N}) to the subspace 1N+1\displaystyle{\mathscr{H}_{1}^{N+1}}, and so is the weighted pullback map 𝒮:1N+1Span{φj,1jN+1}\displaystyle\mathcal{S}^{*}:{\mathscr{H}_{1}^{N+1}}\rightarrow\text{Span}\{\varphi_{j},1\leqslant j\leqslant N+1\}. This is the key observation in the proof of Theorem 1.3.

We recall the Funk-Hecke formula of the spherical harmonic functions as follows.

Lemma \thelemma ([4, 8]).

Let λ(0,N)\displaystyle\lambda\in\left(0,N\right), the integer k0\displaystyle k\geqslant 0 and μk(λ)\displaystyle\mu_{k}\left(\lambda\right) be defined by (2.10), then for any YkN+1\displaystyle Y\in\mathscr{H}_{k}^{N+1}, we have

𝕊N1|ξη|λY(η)dη=μk(λ)Y(ξ).\int_{\mathbb{S}^{N}}\frac{1}{\left|\xi-\eta\right|^{\lambda}}Y\left(\eta\right)\mathrm{d}\eta=\mu_{k}\left(\lambda\right)Y\left(\xi\right). (2.9)

where

μk(λ)=2NλπN2Γ(k+λ2)Γ(Nλ2)Γ(λ2)Γ(k+Nλ2).\mu_{k}\left(\lambda\right)=2^{N-\lambda}\pi^{\frac{N}{2}}\frac{\Gamma\left(k+\frac{\lambda}{2}\right)\Gamma\left(\frac{N-\lambda}{2}\right)}{\Gamma\left(\frac{\lambda}{2}\right)\Gamma\left(k+N-\frac{\lambda}{2}\right)}. (2.10)

In particular, the simple calculation gives that

μ0(N2)=8NπN2Γ(N2),μ1(N2)=N2N+2μ0(N2),\displaystyle\displaystyle\mu_{0}\left(N-2\right)=\frac{8}{N}\cdot\frac{\pi^{\frac{N}{2}}}{\Gamma\left(\frac{N}{2}\right)},\qquad\mu_{1}\left(N-2\right)=\frac{N-2}{N+2}\cdot\mu_{0}\left(N-2\right), (2.11)
μ0(λ)=2NλπN2Γ(Nλ2)Γ(Nλ2),μ1(λ)=λ2Nλμ0(λ).\displaystyle\displaystyle\mu_{0}\left(\lambda\right)=2^{N-\lambda}\pi^{\frac{N}{2}}\cdot\frac{\Gamma\left(\frac{N-\lambda}{2}\right)}{\Gamma\left(N-\frac{\lambda}{2}\right)},\qquad\mu_{1}\left(\lambda\right)=\frac{\lambda}{2N-\lambda}\cdot\mu_{0}\left(\lambda\right). (2.12)

and

μk(λ)>μk+1(λ),for allk0,\displaystyle\displaystyle\mu_{k}\left(\lambda\right)>\mu_{k+1}\left(\lambda\right),\quad\text{for all}\quad k\geqslant 0, (2.13)

As a direct consequence of the Funk-Hecke formula, we have

Lemma \thelemma.

Let λ(0,N)\displaystyle\lambda\in\left(0,N\right), the integer k0\displaystyle k\geqslant 0 and μk(λ)\displaystyle\mu_{k}\left(\lambda\right) be defined by (2.10), then for any YkN+1\displaystyle Y\in\mathscr{H}_{k}^{N+1}, we have

𝕊N𝕊N1|ξη|N21|ησ|λY(σ)dσdη=μk(N2)μk(λ)Y(ξ),\displaystyle\displaystyle\int_{\mathbb{S}^{N}}\int_{\mathbb{S}^{N}}\frac{1}{\left|\xi-\eta\right|^{N-2}}\frac{1}{\left|\eta-\sigma\right|^{\lambda}}Y\left(\sigma\right)\mathrm{d}\sigma\mathrm{d}\eta=\mu_{k}\left(N-2\right)\mu_{k}\left(\lambda\right)Y\left(\xi\right), (2.14)
𝕊N𝕊N1|ξη|N21|ησ|λY(η)dηdσ=μk(N2)μ0(λ)Y(ξ).\displaystyle\displaystyle\int_{\mathbb{S}^{N}}\int_{\mathbb{S}^{N}}\frac{1}{\left|\xi-\eta\right|^{N-2}}\frac{1}{\left|\eta-\sigma\right|^{\lambda}}Y\left(\eta\right)\mathrm{d}\eta\mathrm{d}\sigma=\mu_{k}\left(N-2\right)\mu_{0}\left(\lambda\right)Y\left(\xi\right). (2.15)
Proof.

We first show (2.14). Indeed, by Lemma 2, we have, for any YkN+1\displaystyle Y\in\mathscr{H}_{k}^{N+1},

𝕊N1|ησ|λY(σ)dσ=μk(λ)Y(η).\displaystyle\displaystyle\int_{\mathbb{S}^{N}}\frac{1}{\left|\eta-\sigma\right|^{\lambda}}Y\left(\sigma\right)\mathrm{d}\sigma=\mu_{k}\left(\lambda\right)Y\left(\eta\right). (2.16)

by Lemma 2 with λ=N2\displaystyle\lambda=N-2 again, we get

𝕊N1|ξη|N2(𝕊N1|ησ|λY(σ)dσ)dη=μk(N2)μk(λ)Y(ξ),\displaystyle\displaystyle\int_{\mathbb{S}^{N}}\frac{1}{\left|\xi-\eta\right|^{N-2}}\left(\int_{\mathbb{S}^{N}}\frac{1}{\left|\eta-\sigma\right|^{\lambda}}Y\left(\sigma\right)\mathrm{d}\sigma\right)\mathrm{d}\eta=\mu_{k}\left(N-2\right)\mu_{k}\left(\lambda\right)Y\left(\xi\right),

which, together with Fubini’s theorem, implies (2.14).

Next, we show (2.15). By Lemma 2 and the fact that 10N+1\displaystyle 1\in\mathscr{H}_{0}^{N+1}, we have

𝕊N1|ησ|λdσ=μ0(λ).\displaystyle\displaystyle\int_{\mathbb{S}^{N}}\frac{1}{\left|\eta-\sigma\right|^{\lambda}}\mathrm{d}\sigma=\mu_{0}\left(\lambda\right). (2.17)

By Lemma 2 with λ=N2\displaystyle\lambda=N-2 again, we obtain, for any YkN+1\displaystyle Y\in\mathscr{H}_{k}^{N+1},

𝕊N1|ξη|N2Y(η)(𝕊N1|ησ|λdσ)dη=μk(N2)μ0(λ)Y(ξ),\displaystyle\displaystyle\int_{\mathbb{S}^{N}}\frac{1}{\left|\xi-\eta\right|^{N-2}}Y\left(\eta\right)\left(\int_{\mathbb{S}^{N}}\frac{1}{\left|\eta-\sigma\right|^{\lambda}}\mathrm{d}\sigma\right)\mathrm{d}\eta=\mu_{k}\left(N-2\right)\mu_{0}\left(\lambda\right)Y\left(\xi\right),

which implies (2.15), and completes the proof. ∎

3. Proof of Theorem 1.3

In this section, we will prove Theorem 1.3, which is the main result in this paper. We firstly give an integral estimates, which will be used in next decay estimate.

Lemma \thelemma.

Let λ(0,N)\displaystyle\lambda\in\left(0,N\right) and θ+λ>N\displaystyle\theta+\lambda>N. Then

N1|xy|λ1yθdy{xNλθ,if θ<N,xλ(1+logx),if θ=N,xλ,if θ>N.\int_{\mathbb{R}^{N}}\frac{1}{\left|x-y\right|^{\lambda}}\frac{1}{\langle y\rangle^{\theta}}\mathrm{d}y\lesssim\begin{dcases}\langle x\rangle^{N-\lambda-\theta},&\quad\text{if }\quad\theta<N,\\ \langle x\rangle^{-\lambda}\left(1+{\log}{\langle x\rangle}\right),&\quad\text{if }\quad\theta=N,\\ \langle x\rangle^{-\lambda},&\quad\text{if }\quad\theta>N.\end{dcases} (3.1)
Proof.

The proof will be divided into three cases.

Case 1: x=𝟎\displaystyle\bm{x=0}. By a direct computation, using the assumptions that N>λ\displaystyle N>\lambda and N<θ+λ\displaystyle N<\theta+\lambda, we have

N1|y|λ1yθdy1.\displaystyle\displaystyle\int_{\mathbb{R}^{N}}\frac{1}{\left|y\right|^{\lambda}}\frac{1}{\langle y\rangle^{\theta}}\mathrm{d}y\lesssim 1. (3.2)

Case 2: x𝐁(𝟎,𝟏){𝟎}\displaystyle\bm{x\in\mathrm{B}\left(0,1\right)\setminus\left\{0\right\}}. On the one hand, for yB(x,2|x|)\displaystyle y\in\mathrm{B}\left(x,2\left|x\right|\right), we have y1\displaystyle\langle y\rangle\approx 1, which together with |x|<1\displaystyle\left|x\right|<1 and N>λ\displaystyle N>\lambda implies that,

B(x,2|x|)1|xy|λyθdy02rNλ1dr1.\displaystyle\displaystyle\int_{\mathrm{B}\left(x,2\left|x\right|\right)}\frac{1}{\left|x-y\right|^{\lambda}\langle y\rangle^{\theta}}\mathrm{d}y\lesssim\int_{0}^{2}r^{N-\lambda-1}\mathrm{d}r\lesssim 1. (3.3)

On the other hand, for yNB(x,2|x|)\displaystyle y\in\mathbb{R}^{N}\setminus\mathrm{B}\left(x,2\left|x\right|\right), we have |y||xy|\displaystyle\left|y\right|\approx\left|x-y\right|, which, together with the assumption that N<λ+θ\displaystyle N<\lambda+\theta, implies that

NB(x,2|x|)1|xy|λyθdyNB(0,2|x|)1|y|λyθdyxNλθ.\displaystyle\displaystyle\int_{\mathbb{R}^{N}\setminus\mathrm{B}\left(x,2\left|x\right|\right)}\frac{1}{\left|x-y\right|^{\lambda}\langle y\rangle^{\theta}}\mathrm{d}y\lesssim\int_{\mathbb{R}^{N}\setminus\mathrm{B}\left(0,2\left|x\right|\right)}\frac{1}{\left|y\right|^{\lambda}\langle y\rangle^{\theta}}\mathrm{d}y\lesssim\langle x\rangle^{N-\lambda-\theta}. (3.4)

Combining (3.3) with (3.4), we get

N1|xy|λyθdy1,for anyxB(0,1){0}.\displaystyle\displaystyle\int_{\mathbb{R}^{N}}\frac{1}{\left|x-y\right|^{\lambda}\langle y\rangle^{\theta}}\mathrm{d}y\lesssim 1,\quad\text{for any}\quad x\in\mathrm{B}\left(0,1\right)\setminus\left\{0\right\}. (3.5)

Case 3: xN𝐁(𝟎,𝟏)\displaystyle\bm{x\in\mathbb{R}^{N}\setminus\mathrm{B}\left(0,1\right)}. Firstly, noticing that for any yB(x,|x|2)\displaystyle y\in\mathrm{B}\left(x,\frac{\left|x\right|}{2}\right), we have yx\displaystyle\langle y\rangle\approx\langle x\rangle. Hence,

B(x,|x|2)1|xy|λyθdy1xθ0|x|2rNλ1drxNλθ,\int_{\mathrm{B}\left(x,\frac{\left|x\right|}{2}\right)}\frac{1}{\left|x-y\right|^{\lambda}\langle y\rangle^{\theta}}\mathrm{d}y\lesssim\frac{1}{\langle x\rangle^{\theta}}\int_{0}^{\frac{\left|x\right|}{2}}r^{N-\lambda-1}\mathrm{d}r\lesssim\langle x\rangle^{N-\lambda-\theta}, (3.6)

where we used the assumption that N>λ\displaystyle N>\lambda.

Secondly, for any yB(x,2|x|)B(x,|x|2)\displaystyle y\in\mathrm{B}\left(x,2{\left|x\right|}\right)\setminus\mathrm{B}\left(x,\frac{\left|x\right|}{2}\right), we have

|y|3|x|,and|xy|x,\left|y\right|\leqslant 3\left|x\right|,\quad\text{and}\quad\left|x-y\right|\approx\langle x\rangle,

which implies that,

B(x,2|x|)B(x,|x|2)1|xy|λyθdy1xλ03|x|rN1rθdr{xNλθ,ifθ<N,xλ(1+logx),ifθ=N,xλ,ifθ>N.\displaystyle\displaystyle\int_{\mathrm{B}\left(x,2{\left|x\right|}\right)\setminus\mathrm{B}\left(x,\frac{\left|x\right|}{2}\right)}\frac{1}{\left|x-y\right|^{\lambda}\langle y\rangle^{\theta}}\mathrm{d}y\lesssim\frac{1}{\langle x\rangle^{\lambda}}\int_{0}^{3\left|x\right|}\frac{r^{N-1}}{\langle r\rangle^{\theta}}\mathrm{d}r\lesssim\begin{dcases}\langle x\rangle^{N-\lambda-\theta},&\text{if}\;\theta<N,\\ \langle x\rangle^{-\lambda}\left(1+{\log}{\langle x\rangle}\right),&\text{if}\;\theta=N,\\ \langle x\rangle^{-\lambda},&\text{if}\;\theta>N.\end{dcases} (3.7)

Thirdly, for any yNB(x,2|x|)\displaystyle y\in\mathbb{R}^{N}\setminus\mathrm{B}\left(x,2{\left|x\right|}\right), we have y|yx|\displaystyle\langle y\rangle\approx\left|y-x\right|, which implies that,

NB(x,2|x|)1|xy|λyθdyNB(x,2|x|)1|xy|λ+θdy|x|NλθxNλθ,\displaystyle\displaystyle\int_{\mathbb{R}^{N}\setminus\mathrm{B}\left(x,2{\left|x\right|}\right)}\frac{1}{\left|x-y\right|^{\lambda}\langle y\rangle^{\theta}}\mathrm{d}y\lesssim\int_{\mathbb{R}^{N}\setminus\mathrm{B}\left(x,2{\left|x\right|}\right)}\frac{1}{\left|x-y\right|^{\lambda+\theta}\mathrm{d}y}\lesssim\left|x\right|^{N-\lambda-\theta}\approx\langle x\rangle^{N-\lambda-\theta}, (3.8)

where we used the assumption that N<λ+θ\displaystyle N<\lambda+\theta.

Finally, using (3.6), (3.7) and (3.8), we obtain that, for any xNB(0,1)\displaystyle x\in\mathbb{R}^{N}\setminus\mathrm{B}\left(0,1\right),

N1|xy|λyθdy{xNλθ,if θ<N,xλ(1+logx),if θ=N,xλ,if θ>N.\displaystyle\displaystyle\int_{\mathbb{R}^{N}}\frac{1}{\left|x-y\right|^{\lambda}\langle y\rangle^{\theta}}\mathrm{d}y\lesssim\begin{dcases}\langle x\rangle^{N-\lambda-\theta},&\text{if }\theta<N,\\ \langle x\rangle^{-\lambda}\left(1+{\log}{\langle x\rangle}\right),&\text{if }\theta=N,\\ \langle x\rangle^{-\lambda},&\text{if }\theta>N.\end{dcases} (3.9)

Combining (3.2), (3.5) with (3.9), we obtain(3.1) and complete the proof. ∎

Next, we denote

𝔑(φ)(x)\displaystyle\displaystyle\mathfrak{N}\left(\varphi\right)\left(x\right) =pNup1(y)φ(y)|xy|λdyup1(x)+(p1)Nup(y)|xy|λdyup2(x)φ(x)\displaystyle\displaystyle=p\int_{\mathbb{R}^{N}}\frac{u^{p-1}\left(y\right)\varphi\left(y\right)}{\left|x-y\right|^{\lambda}}\mathrm{d}y\,u^{p-1}\left(x\right)+\left(p-1\right)\int_{\mathbb{R}^{N}}\frac{u^{p}\left(y\right)}{\left|x-y\right|^{\lambda}}\mathrm{d}y\,u^{p-2}\left(x\right)\varphi\left(x\right)
=:𝔑1(φ)(x)+𝔑2(φ)(x),\displaystyle\displaystyle=:\mathfrak{N}_{1}\left(\varphi\right)\left(x\right)+\mathfrak{N}_{2}\left(\varphi\right)\left(x\right), (3.10)

where u\displaystyle u is defined by (1.8).

Lemma \thelemma.

Let λ(0,N)\displaystyle\lambda\in\left(0,N\right), and θ[0,N2]\displaystyle\theta\in[0,N-2]. If φ\displaystyle\varphi satisfies |φ(x)|1xθ\displaystyle\left|\varphi\left(x\right)\right|\lesssim\frac{1}{\langle x\rangle^{\theta}}, then we have

|𝔑(φ)(x)|1xθ+4.\left|\mathfrak{N}\left(\varphi\right)\left(x\right)\right|\lesssim\frac{1}{\langle x\rangle^{\theta+4}}. (3.11)
Proof.

First, by Section 3, we have

|𝔑1(φ)(x)|1xN+2λN1|xy|λ1yN+2λ1yθdy{1xN+2,ifθ+2>λ,1+logxxN+2,ifθ+2=λ,1xN+θ+4λ,ifθ+2<λ.\displaystyle\displaystyle\left|\mathfrak{N}_{1}\left(\varphi\right)\left(x\right)\right|\lesssim\frac{1}{\langle x\rangle^{N+2-\lambda}}\int_{\mathbb{R}^{N}}\frac{1}{\left|x-y\right|^{\lambda}}\frac{1}{\langle y\rangle^{N+2-\lambda}}\frac{1}{\langle y\rangle^{\theta}}\mathrm{d}y\lesssim\begin{dcases}\frac{1}{\langle x\rangle^{N+2}},&\quad\text{if}\quad\theta+2>\lambda,\\ \frac{1+\log\langle x\rangle}{\langle x\rangle^{N+2}},&\quad\text{if}\quad\theta+2=\lambda,\\ \frac{1}{\langle x\rangle^{N+\theta+4-\lambda}},&\quad\text{if}\quad\theta+2<\lambda.\end{dcases} (3.12)

which, together with the fact that N+2θ+4\displaystyle N+2\geqslant\theta+4, N>λ\displaystyle N>\lambda, and 1+logxxNλ1\displaystyle\frac{1+\log\langle x\rangle}{\langle x\rangle^{N-\lambda}}\lesssim 1, implies that

|𝔑1(φ)(x)|1xθ+4.\left|\mathfrak{N}_{1}\left(\varphi\right)\left(x\right)\right|\lesssim\frac{1}{\langle x\rangle^{\theta+4}}. (3.13)

Next, by Section 3 once again, we have

|𝔑2(φ)(x)|N1|xy|λ1y2Nλdy1x4+θλ1xθ+4.\displaystyle\displaystyle\left|\mathfrak{N}_{2}\left(\varphi\right)\left(x\right)\right|\lesssim\int_{\mathbb{R}^{N}}\frac{1}{\left|x-y\right|^{\lambda}}\frac{1}{\langle y\rangle^{2N-\lambda}}\mathrm{d}y\frac{1}{\langle x\rangle^{4+\theta-\lambda}}\lesssim\frac{1}{\langle x\rangle^{\theta+4}}. (3.14)

By combining (3.13) with (3.14), we can obtain the result. ∎

By Section 3 and the classical Riesz potential theory in [7, 50], we can rewrite the linearized equation (1.11) as an integral form.

Lemma \thelemma.

Let N3\displaystyle N\geqslant 3, λ(0,N)\displaystyle\lambda\in\left(0,N\right). If φL(N)\displaystyle\varphi\in L^{\infty}(\mathbb{R}^{N}) satisfies (1.11), then we have

φ(x)=G(N)𝜶(N,λ)N1|xy|N2𝔑(φ)(y)dy,\varphi\left(x\right)=\mathrm{G}\left(N\right){\bm{\alpha}}\left(N,\lambda\right)\int_{\mathbb{R}^{N}}\frac{1}{\left|x-y\right|^{N-2}}\mathfrak{N}\left(\varphi\right)\left(y\right)\mathrm{d}y, (3.15)

where 𝔑(φ)\displaystyle\mathfrak{N}\left(\varphi\right) is given by (3.10) and the constant G(N)=Γ(N2)2(N2)πN2.\displaystyle\mathrm{G}\left(N\right)=\frac{\Gamma\left(\frac{N}{2}\right)}{2\left(N-2\right)\pi^{\frac{N}{2}}}. Moreover, we have the following improved decay estimate

|φ(x)|1xN2.\left|\varphi\left(x\right)\right|\lesssim\frac{1}{\langle x\rangle^{N-2}}. (3.16)
Proof.

(3.15) follows from Section 3 and the classical Riesz potential theory in [7, 50]. Therefore, it suffices to show the decay estimate (3.16). It follows from (3.15) and the bootstrap argument on the decay rate.

Since φL(N)\displaystyle\varphi\in L^{\infty}(\mathbb{R}^{N}), we have |φ(x)|1,\displaystyle\left|\varphi\left(x\right)\right|\lesssim 1, which together with Section 3 implies that |𝔑(φ)(x)|1x4.\displaystyle\left|\mathfrak{N}\left(\varphi\right)\left(x\right)\right|\lesssim\frac{1}{\langle x\rangle^{4}}. Therefore, by Section 3, we have for some 0<ϵ1\displaystyle 0<\epsilon\ll 1 that

|φ(x)|{1xN2,if N<4,1x2(1ϵ),if N4.\left|\varphi\left(x\right)\right|\lesssim\begin{cases}\frac{1}{\langle x\rangle^{N-2}},&\mbox{if\leavevmode\nobreak\ \leavevmode\nobreak\ }N<4,\\ \frac{1}{\langle x\rangle^{2(1-\epsilon)}},&\mbox{if\leavevmode\nobreak\ \leavevmode\nobreak\ }N\geqslant 4.\end{cases}

which reduces to boost the case N4\displaystyle N\geqslant 4. Now, we assume by induction for some 1j[N22]\displaystyle 1\leqslant j\leqslant\left[\frac{N-2}{2}\right], which is the integer part of N22\displaystyle\frac{N-2}{2} that

|φ(x)|1x2(jϵ).\displaystyle\left|\varphi\left(x\right)\right|\lesssim\frac{1}{\langle x\rangle^{2(j-\epsilon)}}.

Repeating a similar argument as above, we can obtain that |𝔑(φ)(x)|1x2j+4ϵ\displaystyle\left|\mathfrak{N}\left(\varphi\right)\left(x\right)\right|\lesssim\frac{1}{\langle x\rangle^{2j+4-\epsilon}} and

|φ(x)|{1xN2,if N<2j+4ϵ,1x2(j+1ϵ),if N2j+4ϵ.\left|\varphi\left(x\right)\right|\lesssim\begin{cases}\frac{1}{\langle x\rangle^{N-2}},&\mbox{if\leavevmode\nobreak\ \leavevmode\nobreak\ }N<2j+4-\epsilon,\\ \frac{1}{\langle x\rangle^{2(j+1-\epsilon)}},&\mbox{if\leavevmode\nobreak\ \leavevmode\nobreak\ }N\geqslant 2j+4-\epsilon.\end{cases}

By the induction argument for j=1,,[N22]\displaystyle j=1,\cdots,\left[\frac{N-2}{2}\right], we can obtain the result. ∎

Remark 3.1.

The decay estimate in the above lemma is optimal since the null element φN+1\displaystyle\varphi_{N+1} defined by (1.10) satisfies (3.16).

Now we will make use of the stereographic projection to transform the integral equation (3.15) on N\displaystyle\mathbb{R}^{N} to that on the sphere 𝕊N\displaystyle\mathbb{S}^{N}. Let us denote

𝒯𝕊NΦ(ξ)=p𝒯𝕊N,1Φ(ξ)+(p1)𝒯𝕊N,2Φ(ξ),\mathcal{T}_{\mathbb{S}^{N}}{\Phi}\left(\xi\right)=p\mathcal{T}_{\mathbb{S}^{N},1}\Phi\left(\xi\right)+\left(p-1\right)\mathcal{T}_{\mathbb{S}^{N},2}\Phi\left(\xi\right), (3.17)

where ξ𝕊N\displaystyle\xi\in\mathbb{S}^{N} and

𝒯𝕊N,1Φ(ξ)\displaystyle\displaystyle\mathcal{T}_{\mathbb{S}^{N},1}\Phi\left(\xi\right) =2(p1)(N2)𝕊N𝕊N1|ξη|N21|ησ|λΦ(σ)dσdη,\displaystyle\displaystyle=2^{-(p-1)(N-2)}\int_{\mathbb{S}^{N}}\int_{\mathbb{S}^{N}}\frac{1}{\left|\xi-\eta\right|^{N-2}}\frac{1}{\left|\eta-\sigma\right|^{\lambda}}\Phi\left(\sigma\right)\mathrm{d}\sigma\mathrm{d}\eta, (3.18)
𝒯𝕊N,2Φ(ξ)\displaystyle\displaystyle\mathcal{T}_{\mathbb{S}^{N},2}\Phi\left(\xi\right) =2(p1)(N2)𝕊N𝕊N1|ξη|N21|ησ|λΦ(η)dηdσ.\displaystyle\displaystyle=2^{-(p-1)(N-2)}\int_{\mathbb{S}^{N}}\int_{\mathbb{S}^{N}}\frac{1}{\left|\xi-\eta\right|^{N-2}}\frac{1}{\left|\eta-\sigma\right|^{\lambda}}\Phi\left(\eta\right)\mathrm{d}\eta\mathrm{d}\sigma. (3.19)
Lemma \thelemma.

Let N3\displaystyle N\geqslant 3, and λ(0,N)\displaystyle\lambda\in\left(0,N\right). If φ\displaystyle\varphi satisfies (3.15) with |φ(x)|1xN2\displaystyle\left|\varphi\left(x\right)\right|\lesssim\frac{1}{\langle x\rangle^{N-2}}, then 𝒮φL2(𝕊N)\displaystyle{\mathcal{S}_{\ast}\varphi}\in L^{2}\left(\mathbb{S}^{N}\right) satisfies

𝒮φ(ξ)=G(N)𝜶(N,λ)𝒯𝕊N𝒮φ(ξ).{\mathcal{S}_{\ast}\varphi}\left(\xi\right)=\mathrm{G}\left(N\right){\bm{\alpha}}\left(N,\lambda\right)\mathcal{T}_{\mathbb{S}^{N}}{{\mathcal{S}_{\ast}\varphi}}\left(\xi\right). (3.20)
Proof.

By (2.2), (2.3) and the estimate |φ(x)|1xN2\displaystyle\left|\varphi\left(x\right)\right|\lesssim\frac{1}{\langle x\rangle^{N-2}}, we have

𝕊N|𝒮φ(ξ)|2dξ=N|φ(x)|2ρ4(x)dxN1x2Ndx<+.\int_{\mathbb{S}^{N}}\left|{\mathcal{S}_{\ast}\varphi}\left(\xi\right)\right|^{2}\mathrm{d}\xi=\int_{\mathbb{R}^{N}}\left|\varphi\left(x\right)\right|^{2}\rho^{4}\left(x\right)\mathrm{d}x\lesssim\int_{\mathbb{R}^{N}}\frac{1}{\langle x\rangle^{2N}}\mathrm{d}x<+\infty.

Now we turn to the proof of (3.20). First, by the definition of (3.10) with (1.8), and (2.1), we have

𝔑1(φ)(x)=\displaystyle\displaystyle\mathfrak{N}_{1}\left(\varphi\right)\left(x\right)= p 2(p1)(N2)ρN+2(x)N1|𝒮x𝒮y|λ[ρ2N(y)φ(y)]ρ2N(y)dy,\displaystyle\displaystyle p\,2^{-(p-1)(N-2)}\rho^{N+2}\left(x\right)\int_{\mathbb{R}^{N}}\frac{1}{\left|\mathcal{S}x-\mathcal{S}y\right|^{\lambda}}\left[\rho^{2-N}\left(y\right)\varphi\left(y\right)\right]\rho^{2N}\left(y\right)\mathrm{d}y,

which together with (2.3) implies that

𝔑1(φ)(x)=\displaystyle\displaystyle\mathfrak{N}_{1}\left(\varphi\right)\left(x\right)= p 2(p1)(N2)ρN+2(x)𝕊N1|𝒮xη|λ𝒮φ(η)dη.\displaystyle\displaystyle p\,2^{-(p-1)(N-2)}\rho^{N+2}\left(x\right)\int_{\mathbb{S}^{N}}\frac{1}{\left|\mathcal{S}x-\eta\right|^{\lambda}}{\mathcal{S}_{\ast}\varphi}\left(\eta\right)\mathrm{d}\eta. (3.21)

By (2.1) and (3.21), we have

N1|xy|N2𝔑1(φ)(y)dy\displaystyle\displaystyle\int_{\mathbb{R}^{N}}\frac{1}{\left|x-y\right|^{N-2}}\mathfrak{N}_{1}\left(\varphi\right)\left(y\right)\mathrm{d}y
=\displaystyle\displaystyle= p 2(p1)(N2)ρN2(x)N1|𝒮x𝒮y|N2𝕊N1|𝒮yσ|λ𝒮φ(σ)dσρ2N(y)dy,\displaystyle\displaystyle p\,2^{-(p-1)(N-2)}\rho^{N-2}\left(x\right)\int_{\mathbb{R}^{N}}\frac{1}{\left|\mathcal{S}x-\mathcal{S}y\right|^{N-2}}\int_{\mathbb{S}^{N}}\frac{1}{\left|\mathcal{S}y-\sigma\right|^{\lambda}}{\mathcal{S}_{\ast}\varphi}\left(\sigma\right)\mathrm{d}\sigma\rho^{2N}\left(y\right)\mathrm{d}y, (3.22)

which together with the stereographic projection implies that

N1|xy|N2\displaystyle\displaystyle\int_{\mathbb{R}^{N}}\frac{1}{\left|x-y\right|^{N-2}} 𝔑1(φ)(y)dy\displaystyle\displaystyle\mathfrak{N}_{1}\left(\varphi\right)\left(y\right)\mathrm{d}y
=\displaystyle\displaystyle= p 2(p1)(N2)ρN2(x)𝕊N𝕊N1|𝒮xη|N21|ησ|λ𝒮φ(σ)dσdη.\displaystyle\displaystyle p\,2^{-(p-1)(N-2)}\rho^{N-2}\left(x\right)\int_{\mathbb{S}^{N}}\int_{\mathbb{S}^{N}}\frac{1}{\left|\mathcal{S}x-\eta\right|^{N-2}}\frac{1}{\left|\eta-\sigma\right|^{\lambda}}{\mathcal{S}_{\ast}\varphi}\left(\sigma\right)\mathrm{d}\sigma\mathrm{d}\eta. (3.23)

Next, by the definition of (3.10) with (1.8) and (2.1), we have

𝔑2(φ)(x)=\displaystyle\displaystyle\mathfrak{N}_{2}\left(\varphi\right)\left(x\right)= (p1) 2(p1)(N2)ρ4(x)φ(x)N1|𝒮x𝒮y|λρ2N(y)dy,\displaystyle\displaystyle(p-1)\,2^{-(p-1)(N-2)}\rho^{4}\left(x\right)\varphi\left(x\right)\int_{\mathbb{R}^{N}}\frac{1}{\left|\mathcal{S}x-\mathcal{S}y\right|^{\lambda}}\rho^{2N}\left(y\right)\mathrm{d}y,

which together with the stereographic projection implies that

𝔑2(φ)(x)=(p1) 2(p1)(N2)ρ4(x)φ(x)𝕊N1|𝒮xη|λdη.\displaystyle\displaystyle\mathfrak{N}_{2}\left(\varphi\right)\left(x\right)=(p-1)\,2^{-(p-1)(N-2)}\rho^{4}\left(x\right)\varphi\left(x\right)\int_{\mathbb{S}^{N}}\frac{1}{\left|\mathcal{S}x-\eta\right|^{\lambda}}\mathrm{d}\eta. (3.24)

By (2.1) and (3.24), we have

N1|xy|N2𝔑2(φ)(y)dy\displaystyle\displaystyle\int_{\mathbb{R}^{N}}\frac{1}{\left|x-y\right|^{N-2}}\mathfrak{N}_{2}\left(\varphi\right)\left(y\right)\mathrm{d}y
=\displaystyle\displaystyle= (p1) 2(p1)(N2)ρN2(x)N1|𝒮x𝒮y|N2𝕊N1|𝒮yσ|λdσρ2N(y)φ(y)ρ2N(y)dy.\displaystyle\displaystyle(p-1)\,2^{-(p-1)(N-2)}\rho^{N-2}\left(x\right)\int_{\mathbb{R}^{N}}\frac{1}{\left|\mathcal{S}x-\mathcal{S}y\right|^{N-2}}\int_{\mathbb{S}^{N}}\frac{1}{\left|\mathcal{S}y-\sigma\right|^{\lambda}}\mathrm{d}\sigma\,\rho^{2-N}\left(y\right)\varphi\left(y\right)\rho^{2N}\left(y\right)\mathrm{d}y. (3.25)

By the stereographic projection and (2.3), we have

N1|xy|N2𝔑2(φ)(y)dy\displaystyle\displaystyle\int_{\mathbb{R}^{N}}\frac{1}{\left|x-y\right|^{N-2}}\mathfrak{N}_{2}\left(\varphi\right)\left(y\right)\mathrm{d}y
=\displaystyle\displaystyle= (p1) 2(p1)(N2)ρN2(x)𝕊N1|𝒮xη|N2𝒮φ(η)𝕊N1|ησ|λdηdσ.\displaystyle\displaystyle(p-1)\,2^{-(p-1)(N-2)}\rho^{N-2}\left(x\right)\int_{\mathbb{S}^{N}}\frac{1}{\left|\mathcal{S}x-\eta\right|^{N-2}}{\mathcal{S}_{\ast}\varphi}\left(\eta\right)\int_{\mathbb{S}^{N}}\frac{1}{\left|\eta-\sigma\right|^{\lambda}}\mathrm{d}\eta\mathrm{d}\sigma. (3.26)

Inserting (3.23) and (3.26) into (3.15), we obtain

ρ2N(x)φ(x)=G(N)𝜶(N,λ)𝒯𝕊N𝒮φ(𝒮x),\rho^{2-N}\left(x\right)\varphi\left(x\right)=\mathrm{G}\left(N\right){\bm{\alpha}}\left(N,\lambda\right)\mathcal{T}_{\mathbb{S}^{N}}{{\mathcal{S}_{\ast}\varphi}}\left(\mathcal{S}x\right),

which together with the fact (2.3) implies the result. ∎

Now we can use the spherical harmonic decomposition and the Funk-Hecke formula of the spherical harmonic functions in [4, 8, 51] to classify the solution of the equation (3.20) on the sphere 𝕊N\displaystyle\mathbb{S}^{N}.

Proposition \theproposition.

Let N3\displaystyle N\geqslant 3, λ(0,N)\displaystyle\lambda\in\left(0,N\right), and 𝒯𝕊N\displaystyle\mathcal{T}_{\mathbb{S}^{N}} be defined by (3.17). If ΦL2(𝕊N){0}\displaystyle\Phi\in L^{2}\left(\mathbb{S}^{N}\right)\setminus\left\{0\right\} satisfies

Φ(ξ)=G(N)𝜶(N,λ)𝒯𝕊NΦ(ξ),\Phi\left(\xi\right)=\mathrm{G}\left(N\right){\bm{\alpha}}\left(N,\lambda\right)\mathcal{T}_{\mathbb{S}^{N}}\Phi\left(\xi\right), (3.27)

then Φ1N+1\displaystyle\Phi\in\mathscr{H}_{1}^{N+1}.

Proof.

On the one hand, by (2.7), we decompose ΦL2(𝕊N){0}\displaystyle\Phi\in L^{2}\left(\mathbb{S}^{N}\right)\setminus\left\{0\right\} as the following.

Φ(ξ)=k=0j=1dimkN+1Φk,jYk,j(ξ),\Phi\left(\xi\right)=\sum_{k=0}^{\infty}\sum_{j=1}^{\dim{\mathscr{H}_{k}^{N+1}}}{\Phi_{k,j}}Y_{k,j}\left(\xi\right), (3.28)

where Φk,j=𝕊NΦ(ξ)Yk,j(ξ)dξ.\displaystyle\displaystyle{\Phi_{k,j}}=\int_{\mathbb{S}^{N}}\Phi\left(\xi\right)Y_{k,j}\left(\xi\right)\mathrm{d}\xi.

Combining (3.27), (3.28) with Section 2, we have for any k0\displaystyle k\geqslant 0 and 1jdimkN+1\displaystyle 1\leqslant j\leqslant\dim{\mathscr{H}_{k}^{N+1}},

Φk,j=G(N)𝜶(N,λ)2(p1)(N2)μk(N2)[pμk(λ)+(p1)μ0(λ)]Φk,j,{\Phi_{k,j}}=\mathrm{G}\left(N\right){\bm{\alpha}}\left(N,\lambda\right)2^{-(p-1)(N-2)}\mu_{k}\left(N-2\right)\left[{p\mu_{k}\left(\lambda\right)+\left(p-1\right)\mu_{0}\left(\lambda\right)}\right]{\Phi_{k,j}}, (3.29)

On the other hand, by (2.11) and (2.12), by a direct computation, we obtain for k=1\displaystyle k=1 that

G(N)𝜶(N,λ)2(p1)(N2)μ1(N2)[pμ1(λ)+(p1)μ0(λ)]=1,\displaystyle\displaystyle\mathrm{G}\left(N\right){\bm{\alpha}}\left(N,\lambda\right)2^{-(p-1)(N-2)}\mu_{1}\left(N-2\right)\left[{p\mu_{1}\left(\lambda\right)+\left(p-1\right)\mu_{0}\left(\lambda\right)}\right]=1, (3.30)

which, together with (2.13), implies for k=0\displaystyle k=0 that

G(N)𝜶(N,λ)2(p1)(N2)μ0(N2)[pμ0(λ)+(p1)μ0(λ)]>1,\displaystyle\displaystyle\mathrm{G}\left(N\right){\bm{\alpha}}\left(N,\lambda\right)2^{-(p-1)(N-2)}\mu_{0}\left(N-2\right)\left[{p\mu_{0}\left(\lambda\right)+\left(p-1\right)\mu_{0}\left(\lambda\right)}\right]>1, (3.31)

and for all k2\displaystyle k\geqslant 2 that

G(N)𝜶(N,λ)2(p1)(N2)μk(N2)[pμk(λ)+(p1)μ0(λ)]<1.\displaystyle\displaystyle\mathrm{G}\left(N\right){\bm{\alpha}}\left(N,\lambda\right)2^{-(p-1)(N-2)}\mu_{k}\left(N-2\right)\left[{p\mu_{k}\left(\lambda\right)+\left(p-1\right)\mu_{0}\left(\lambda\right)}\right]<1. (3.32)

Therefore, by inserting (3.30), (3.31) and (3.32) into (3.29), we get for any k=0\displaystyle k=0 and k2\displaystyle k\geqslant 2 that

Φk,j=0,for 1jdimkN+1.\Phi_{k,j}=0,\quad\text{for }\quad 1\leqslant j\leqslant\dim{\mathscr{H}_{k}^{N+1}}.

Hence, we obtain that Φ1N+1\displaystyle\Phi\in\mathscr{H}_{1}^{N+1} from (3.28). ∎

Proof of Theorem 1.3.

Let φL(N)\displaystyle\varphi\in L^{\infty}(\mathbb{R}^{N}) satisfy (1.11).

Firstly, by Section 3, the function φ\displaystyle\varphi satisfies (3.15) and the estimate |φ(x)|x(N2)\displaystyle\left|\varphi\left(x\right)\right|\lesssim\langle x\rangle^{-(N-2)}.

Secondly, by Section 3, we have 𝒮φL2(𝕊N)\displaystyle{\mathcal{S}_{\ast}\varphi}\in L^{2}\left(\mathbb{S}^{N}\right) satisfies (3.20). By Proposition 3, we get 𝒮φ1N+1\displaystyle{\mathcal{S}_{\ast}\varphi}\in\mathscr{H}_{1}^{N+1}, which together with (2.8) implies that

𝒮φspan{ξj| 1jN+1}.{\mathcal{S}_{\ast}\varphi}\in\mathrm{span}\left\{\xi_{j}\,\middle|\,1\leqslant j\leqslant N+1\right\}. (3.33)

Lastly, by Proposition 2, we have

φspan{φj| 1jN+1}.\varphi\in\mathrm{span}\left\{\varphi_{j}\,\middle|\,1\leqslant j\leqslant N+1\right\}. (3.34)

This completes the proof of Theorem 1.3. ∎

References

  • [1] A. Alexandrov and N. Mott. Polarons and Bipolarons. World Scientific, 1996.
  • [2] W. Ao, M. Musso and J. Wei. Nondegeneracy of nonradial sign-changing solutions to the nonlinear Schrödinger equation. Bull. de la Soc. Math. de France, 147(1):1-48, 2019.
  • [3] W. Ao, J. Wei and W. Yao. Uniqueness and nondegeneracy of sign-changing radial solutions to an almost critical elliptic problem. Adv. Difference Equ., 21(11/12):1049-1084, 2016.
  • [4] K. Atkinson and W. Han. Spherical Harmonics and Approximations on the Unit Sphere: an Introduction. Springer, Berlin, Heidelberg, 2012.
  • [5] T. Bartsch, T. Weth and M. Willem. A Sobolev inequality with remainder term and critical equations on domains with topology for the polyharmonic operator. Calc. Var. Partial Differential Equations, 18(3):253-268, 2003.
  • [6] G. Chen. Nondegeneracy of ground states and multiple semiclassical solutions of the Hartree equation for general dimensions. Results Math., 76(1):34, 2021.
  • [7] W. Chen, C. Li and B. Ou. Classification of solutions for an integral equation. Comm. Pure Appl. Math., 59(3):330-343, 2006.
  • [8] F. Dai and Y. Xu. Approximation Theory and Harmonic Analysis on Spheres and Balls. Springer, New York, NY, 2013.
  • [9] E. Dancer, F. Gladiali and M. Grossi. On the Hardy–Sobolev equation. Proc. Roy. Soc. Edinburgh Sect. A, 147(2):299-336, 2017.
  • [10] J. Dávila, M. del Pino and Y. Sire. Nondegeneracy of the bubble in the critical case for nonlocal equations. Proc. Amer. Math. Soc., 141(11):3865-3870, 2013.
  • [11] M. del Pino, M. Musso, F. Pacard and A. Pistoia. Large energy entire solutions for the Yamabe equation. J. Differential Equations, 251(9):2568-2597, 2011.
  • [12] M. del Pino, M. Musso, F. Pacard and A. Pistoia. Torus action on 𝕊n\displaystyle\mathbb{S}^{n} and sign changing solutions for conformally invariant equations. Ann. Sc. Norm. Super. Pisa Cl. Sci., 12(1):209-237, 2013.
  • [13] S. Dipierro, M. Medina and E. Valdinoci, Fractional elliptic problems with critical growth in the whole of N\displaystyle\mathbb{R}^{N}, Lecture Notes, Vol. 15 of Appunti. Scuola Normale Superiore di Pisa, Edizioni della Normale, Pisa, 2017.
  • [14] J. Dolbeault and G. Jankowiak. Sobolev and Hardy–Littlewood–Sobolev inequalities. J. Differential Equations, 257(6):1689-1720, 2014.
  • [15] L. Du and M. Yang. Uniqueness and nondegeneracy of solutions for a critical nonlocal equation. Discrete Contin. Dyn. Syst., 39(10):5847-5866, 2019.
  • [16] M. Fall and E. Valdinoci. Uniqueness and nondegeneracy of positive solutions of (Δ)su+u=up\displaystyle(-\Delta)^{s}u+u=u^{p} in N\displaystyle\mathbb{R}^{N} when s\displaystyle s is close to 1\displaystyle 1. Comm. Math. Phys., 329(1), 383-404, 2014.
  • [17] R. Frank, S. Kim and A. Pistoia. Non-degeneracy for the critical Lane–Emden system. Proc. Amer. Math. Soc., 149(1):265-278, 2021.
  • [18] R. Frank and E. Lenzmann. Uniqueness and nondegeneracy of ground states for (Δ)sQ+QQα+1=0\displaystyle(-\Delta)^{s}Q+Q-Q^{\alpha+1}=0 in \displaystyle\mathbb{R}. Acta of Math., 210(2), 261-318, 2013.
  • [19] R. Frank, E. Lenzmann and L. Silvestre. Uniqueness of radial solutions for the fractional Laplacian. Comm. Pure Appl. Math., 69(6), 1671–1726, 2016.
  • [20] R. Frank and E. Lieb. A new, rearrangement-free proof of the sharp Hardy-Littlewood-Sobolev inequality. Spectral theory, function spaces and inequalities, pages 55-67. 2012. Basel.
  • [21] R. Frank and E. Lieb. Sharp constants in several inequalities on the Heisenberg group. Ann. of Math., 176(1):349-381, July 2012.
  • [22] H. Fröhlich. Theory of electrical breakdown in ionic crystals. Proc. R. Soc. lond. A, 160(901):230-241, 1937.
  • [23] H. Fröhlich. Electrons in lattice fields. Adv. Psych., 3(11):325-361, 1954.
  • [24] J. Fröhlich, B.  Lars  G.  Jonsson and E.  Lenzmann. Effective dynamics for boson stars. Nonlinearity, 20, no.5, 1031–1075, 2007.
  • [25] J. Fröhlich and E. Lenzmann. Mean-field limit of quantum Bose gases and nonlinear Hartree equation. Sémin. Équ. Dériv. Partielles, 2003-2004. Exp. No. XIX, 26 pp.
  • [26] J. Fröhlich, T. Tsai and H.-T. Yau. On the point-particle (newtonian) limit of the non-linear Hartree equation. Comm. Math. Phys., 225(2):223-274, 2002.
  • [27] F. Gao, V. Moroz, M. Yang and S. Zhao. Construction of infinitely many solutions for a critical Choquard equation via local Pohozaev identities. Calc. Var. Partial Differential Equations, 61(6):222, 2022.
  • [28] F. Gao and M. Yang. The Brezis-Nirenberg type critical problem for the nonlinear Choquard equation. Sci. China Math., 61(7):1219-1242, 2018.
  • [29] J. Giacomoni, Y. Wei and M. Yang. Nondegeneracy of solutions for a critical Hartree equation. Nonlinear Anal., 199:111969, 2020.
  • [30] F. Gladiali, M. Grossi and S. Neves. Nonradial solutions for the Hénon equation in n\displaystyle\mathbb{R}^{n}. Adv. Math., 249:1-36, 2013.
  • [31] L. Guo, T. Hu, S. Peng and W. Shuai. Existence and uniqueness of solutions for Choquard equation involving Hardy-Littlewood-Sobolev critical exponent. Calc. Var. Partial Differential Equations, 58(4):128, 2019.
  • [32] E. Lenzmann. Uniqueness of ground states for pseudorelativistic Hartree equations. Anal. PDE, 2(1):1-27, February 2009.
  • [33] M. Lewin, P. Nam and N. Rougerie. Derivation of Hartree’s theory for generic mean-field Bose systems. Adv. Math., 254:570-621, 2014.
  • [34] X. Li, X. Tang and G. Xu. Nondegeneracy of the positive solutions for critical nonlinear Hartree equation in 6\displaystyle\mathbb{R}^{6}. Proc. Amer. Math. Soc., 150(12):5203-5216, 2022.
  • [35] X. Li, C. Liu, X. Tang and G. Xu. Dynamics of radial threshold solutions for generalized energy-critical Hartree equation. arXiv:2310.14646, 2023.
  • [36] Z. Li. A priori estimates, uniqueness and non-degeneracy of positive solutions of the Choquard equation. arXiv:2201.00368, 2022.
  • [37] E. Lieb. Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Stud. Appl. Math., 57(2):93-105, 1977.
  • [38] E. Lieb. Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities. Ann. of Math., 118(2):349-374, 1983.
  • [39] E. Lieb and M. Loss. Analysis. Graduate Studies in Mathematics Vol. 14, American Mathematical Society, Providence, Rhode island, 2001.
  • [40] P. L. Lions. The Choquard equation and related questions. Nonlinear Anal. Theory Methods Appl., 4(6):1063-1072, 1980.
  • [41] C. Miao, Y. Wu and G. Xu. Dynamics for the focusing, energy-critical nonlinear Hartree equation. Forum Math., 27(1):373-447, 2015.
  • [42] C. Miao, G. Xu and L. Zhao. Global well-posedness, scattering and blow-up for the energy-critical, focusing Hartree equation in the radial case. Coll. Math., 114(2):213-236, 2009.
  • [43] V. Moroz and J. van Schaftingen. A guide to the Choquard equation. J. Fixed Point Theory Appl., 19(1):773-813, 2017.
  • [44] M. Musso and J. Wei. Nondegeneracy of nodal solutions to the critical Yamabe problem. Comm. Math. Phys., 340(3):1049-1107, 2015.
  • [45] Y. Oh. On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential. Comm. Math. Phys., 131(2):223-253, 1990.
  • [46] S. Pekar. Research in electron theory of crystals. U.S. Atomic energy commission, division of technical information, 1963.
  • [47] A. Pistoia and G. Vaira. Nondegeneracy of the bubble for the critical p\displaystyle p–Laplace equation. Proc. Roy. Soc. Edinburgh Sect. A, 151(1):151-168, 2021.
  • [48] O. Rey. The role of the Green’s function in a non-linear elliptic equation involving the critical Sobolev exponent. J. Funct. Anal., 89(1):1-52, 1990.
  • [49] F. Robert. Nondegeneracy of positive solutions to nonlinear Hardy–Sobolev equations. Adv. Nonlinear Anal., 6(2):237-242, 2017.
  • [50] E. M. Stein. Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton, New Jersey, 1970.
  • [51] E. M. Stein and G. Weiss. Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton, New Jersey, 1971.
  • [52] T. Tao, Nonlinear dispersive equations, local and global analysis, CBMS. 106, Washington, DC, AMS Providence, RI, 2006.
  • [53] G. Teschl, Mathematical Methods in Quantum Mechanics with applications to Schrödinger Operators, Second Edition, GSM, Vol. 157, Amer. Math. Soc., Providence, Rhode Island, 2014.
  • [54] J. Wei and M. Winter. Strongly interacting bumps for the Schrödinger–Newton equations. J. Math. Phys., 50(1):012905, 2009.
  • [55] M. Weinstein. Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal., 16(3):472-491, 1985.
  • [56] C. Xiang. Uniqueness and nondegeneracy of ground states for Choquard equations in three dimensions. Calc. Var. Partial Differential Equations, 55(6):134, 2016.