This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Non-vanishing of quadratic twists of modular LL-functions of prime-related moduli

Peng Gao and Liangyi Zhao
Abstract.

In this paper, we study central values of the family of quadratic twists of modular LL-functions of moduli 8p8p, with pp ranging over odd primes. Assuming the truth of the generalized Riemann hypothesis, we establish a positive proportion non-vanishing result for the corresponding LL-values.

Mathematics Subject Classification (2010): 11M06, 11F67

Keywords: moments, quadratic twists, modular LL-functions, prime moduli

1. Introduction

The non-vanishing of the central values of LL-functions is very important subject in number theory, as these central values carry deep arithmetic information. S. Chowla [chow] conjectured that an LL-functions attached to a primitive Dirichlet character does not have a zero at s=12s=\tfrac{1}{2}. There are now two major approaches towards establishing positive proportion non-vanishing results for families of LL-function. One of them is the mollifier method that allows one to achieve a non-vanishing result unconditionally via evaluating mollified moments. For example, K. Soundararajan [sound1] applied this method to derive the well-known result that at least 87.5%87.5\% of the members of the family of quadratic Dirichlet LL-functions do not vanish at the central point.

The other modus operandi is provided by the density conjecture of N. Katz and P. Sarnak [KS1, K&S]. In this approach, one computes the one-level density of low-lying zeros of families of LL-functions to derive a corresponding non-vanishing result. In order to obtain better results, one often needs to make use of the generalized Riemann hypothesis (GRH). For example, A. E. Özluk and C. Snyder [O&S] used this process to show that at least 15/16=93.75%15/16=93.75\% of the members of the family of quadratic Dirichlet LL-functions have non-vanishing central values. Optimizing the test function as in [B&F, ILS], this percentage can be improved to (19cot1/4)/16(19-\cot 1/4)/16, approximately 94.27%.

Both of the above two ways may fail to yield any positive proportion non-vanishing result. In the first instance, the mollifier method requires one to evaluate at least two mollified moments of the family of LL-functions to deduce the desired result and evaluating higher mollified moments may be challenging. In the second approach, one needs the one-level density result to hold for test functions whose Fourier transforms have long supports in order to deduce a positive proportion non-vanishing result. The current technology often fall short of this, even under GRH.

To circumvent the above difficulties, one may apply the mollifier method with more flexibility by observing that the method works if one can bound one mollified moment from below and another from above instead of evaluating both moments asymptotically. Often, the lower bounds are relatively easier to achieve, and one may applies various tools obtain the upper bounds. For example, S. Baluyot and K. Pratt [B&P] were able to applied sieve method to bound the second mollified moment of the quadratic family of Dirichlet LL-functions of prime moduli from above to show that more than nine percent of the members of do not vanish at the central value. Another powerful method for establishing upper bounds was developed by K. Soundararajan in [Sound2009] with a refinement by A. J. Harper [Harper], which allows one to bound the LL-function by a very short Dirichlet polynomial over the primes under GRH.

One may also consider different choices of mollifiers, even though the optimal mollifiers are essentially found in many cases (see for example [sound1]). Applying these alternative mollifiers may bypass the difficulty of evaluating the mollified moments using the optimal ones. One systematic way for constructing new mollifiers originates from the study on sharp bounds for the moments of families of LL-functions in the work of M. Radziwiłł and K. Soundararajan [Radziwill&Sound] and the work of W. Heap and K. Soundararajan [H&Sound]. Compared to the optimal mollifiers used in the study of the non-vanishing issues, these new mollifiers can be thought of as obtained from using the Euler product to approximate the inverses of an LL-function, while the optimal mollifiers such as the one given in [sound1] are obtained from the consideration of employing Dirichlet series to approximate such an inverse. Thus, though suboptimal, these new mollifiers have the advantages of retaining essentially an Euler product structure, hence much easier to deploy when incorporated in the evaluations of the mollified moments.

Although the new mollifiers are primarily employed to obtain sharp bounds for the moments of families of LL-functions, there are emerging cases for applying them to study various subjects in number theory. For example, they have been used by S. Lester and M. Radziwiłł [LR21] to study sign changes of Fourier coefficients of half-integral weight modular forms, by C. David, A. Florea and M. Lalin [DFL21] to establish a positive proportion non-vanishing result of cubic LL-functions over function field, by M. Radziwiłł and K. Soundararajan [Radziwill&Sound] as well as by H. M. Bui, N. Evans, S. Lester and K. Pratt [BELP] to establish central limit theorem for the central values of LL-functions, by P. Gao and L. Zhao [G&Zhao10] to establish a positive proportion non-vanishing result of cubic Dirichlet LL-functions. We point out here the main result of S. Lester and M. Radziwiłł [LR21] essentially relies on evaluations of the first and second mollified moments of quadratic modular LL-functions and in particular implies a positive proportion non-vanishing result of the corresponding LL-values.

In view of the above applications of the Euler product-like mollifiers, it is now clear that one may be able to apply them to obtain positive proportion of non-vanishing results on central values of LL-functions in general, especially when using the optimal mollifiers is beyond the reach. It is the aim of the paper to illustrate this approach by addressing the non-vanishing issue of quadratic twists of modular LL-functions at the central point. To state our result, we fix a holomorphic Hecke eigenform ff of weight κ0(mod4)\kappa\equiv 0\pmod{4} for the full modular group SL2()SL_{2}(\mathbb{Z}). We write e(z)e(z) for e2πize^{2\pi iz} so that the Fourier expansion of ff at infinity is

f(z)=n=1λf(n)n(κ1)/2e(nz).f(z)=\sum_{n=1}^{\infty}\lambda_{f}(n)n^{(\kappa-1)/2}e(nz).

Here λf(n)\lambda_{f}(n)\in\mathbb{R} witht λf(1)=1\lambda_{f}(1)=1 and |λf(n)|d(n)|\lambda_{f}(n)|\leq d(n), for all n1n\geq 1 by Deligne’s bound [D], where d(n)d(n) is the divisor function of nn. Moreover, let χd=(d)\chi_{d}=\left(\frac{d}{\cdot}\right) denote the Kronecker symbol. Hence the twisted modular LL-function L(s,fχd)L(s,f\otimes\chi_{d}) for (s)>1\Re(s)>1 is defined as

L(s,fχd)\displaystyle L(s,f\otimes\chi_{d}) =n=1λf(n)χd(n)ns=pd(1λf(p)χd(p)ps+1p2s)1.\displaystyle=\sum_{n=1}^{\infty}\frac{\lambda_{f}(n)\chi_{d}(n)}{n^{s}}=\prod_{p\nmid d}\left(1-\frac{\lambda_{f}(p)\chi_{d}(p)}{p^{s}}+\frac{1}{p^{2s}}\right)^{-1}.

Define ϵ(d)=1\epsilon(d)=1 for d>0d>0 and ϵ(d)=1\epsilon(d)=-1 for d<0d<0. Then the function L(s,fχd)L(s,f\otimes\chi_{d}) satisfies the functional equation given by

Λ(s,fχd)=(|d|2π)sΓ(s+κ12)L(s,fχd)=iκϵ(d)Λ(1s,fχd).\displaystyle\Lambda(s,f\otimes\chi_{d})=\left(\frac{|d|}{2\pi}\right)^{s}\Gamma(s+\tfrac{\kappa-1}{2})L(s,f\otimes\chi_{d})=i^{\kappa}\epsilon(d)\Lambda(1-s,f\otimes\chi_{d}).

Let XX be a large number and we reserve the letter pp for primes throughout the paper. We consider the family {L(s,fχ8p):2<p<X}\{L(s,f\otimes\chi_{8p}):2<p<X\}. Note that our choice for κ\kappa ensures that the corresponding central LL-values do not automatically vanish due to the sign of the functional equation. Our main result in this paper establishes that a positive proportion of the members of the above family of LL-functions do not vanish at the central point.

Theorem 1.1.

Assume the truth of GRH. With the notations above, there exist infinitely many odd primes pp such that L(12,fχ8p)0L(\tfrac{1}{2},f\otimes\chi_{8p})\neq 0. More precisely, we have

(1.1) 2<pXL(12,fχ8p)0(logp)\displaystyle\sum_{\begin{subarray}{c}2<p\leq X\\ L(\frac{1}{2},f\otimes\chi_{8p})\neq 0\end{subarray}}(\log p) 2<pX(logp).\displaystyle\gg\sum_{\begin{subarray}{c}2<p\leq X\end{subarray}}(\log p).

2. Preliminaries

2.1. Various Sums

We gather a few results concerning sums over primes.

Lemma 2.2.

Let x2x\geq 2. We have, for some constants b1,b2b_{1},b_{2},

(2.1) px1p=\displaystyle\sum_{p\leq x}\frac{1}{p}= loglogx+b1+O(1logx),and\displaystyle\log\log x+b_{1}+O\Big{(}\frac{1}{\log x}\Big{)},\quad\mbox{and}
(2.2) pxλf2(p)p=\displaystyle\sum_{p\leq x}\frac{\lambda^{2}_{f}(p)}{p}= loglogx+b2+O(1logx).\displaystyle\log\log x+b_{2}+O\Big{(}\frac{1}{\log x}\Big{)}.

Also, for any integer j1j\geq 1, we have

(2.3) px(logp)jp=(logx)jj+O((logx)j1).\sum_{p\leq x}\frac{(\log p)^{j}}{p}=\frac{(\log x)^{j}}{j}+O((\log x)^{j-1}).

Let χ\chi be a primitive Dirichlet character modulo qq and assume that GRH holds for L(s,χ)L(s,\chi), we have

(2.4) pxlogpχ(p)=δχ=χ0x+O(x(log2qx)2),\displaystyle\sum_{p\leq x}\log p\cdot\chi(p)=\delta_{\chi=\chi_{0}}x+O(\sqrt{x}\left(\log 2qx)^{2}\right),

where we define δχ=χ0=1\delta_{\chi=\chi_{0}}=1 if χ=χ0\chi=\chi_{0} and δχ=χ0=0\delta_{\chi=\chi_{0}}=0 otherwise.

Proof.

The expression in (2.1) is a well-known formula due to Merten (see [MVa1, Theorem 2.7]) and (2.2) follows from the Rankin-Selberg theory for L(s,f)L(s,f) (see [iwakow, Chapter 5]). The formula in (2.3) follows from (2.1) by partial summation. Finally, (2.4) is a special case of [iwakow, Theorem 5.15]. ∎

For any positive odd integer cc, we write ψc\psi_{c} for the Dirichlet character with ψc(n)=(nc)\psi_{c}(n)=\left(\frac{n}{c}\right) for nn\in\mathbb{Z}. We also define δc==1\delta_{c=\square}=1 if cc is a perfect square and δc==0\delta_{c=\square}=0 otherwise. Let Φ\Phi be a smooth, non-negative function compactly supported on [1/2,5/2][1/2,5/2] satisfying Φ(x)=1\Phi(x)=1 for x[1,2]x\in[1,2]. We denote the Mellin transform of Φ(x)\Phi(x) by Φ^(s){\widehat{\Phi}}(s), that is,

Φ^(s)=0Φ(x)xsdxx.{\widehat{\Phi}}(s)=\int\limits_{0}^{\infty}\Phi(x)x^{s}\frac{\mathrm{d}x}{x}.

We note the following result concerning the smoothed quadratic character sums given in [G&Zhao11, Lemma 2.8].

Lemma 2.3.

Assume the truth of GRH. Let cc be a positive odd integer and Φ(X)\Phi(X) be a smooth function. Then for any ε>0\varepsilon>0,

(p,2)=1(logp)χ8p(c)Φ(pX)=δc=Φ^(1)X+O(X1/2+εloglog(c+2)).\sum_{(p,2)=1}(\log p)\chi_{8p}(c)\Phi\left(\frac{p}{X}\right)=\delta_{c=\square}\widehat{\Phi}(1)X+O\left(X^{1/2+\varepsilon}\log\log(c+2)\right).

2.4. Twisted First Moment

We recall the following approximate functional equation concerning L(12,fχ8p)L(\tfrac{1}{2},f\otimes\chi_{8p}) given in [sound1, p. 451].

Lemma 2.5 (Approximate functional equation).

For any odd prime pp, we have

L(12,fχ8p)=2n=1λf(n)χ8p(n)nV(np),\displaystyle\begin{split}L(\tfrac{1}{2},f\otimes\chi_{8p})=&2\sum^{\infty}_{\begin{subarray}{c}n=1\end{subarray}}\frac{\lambda_{f}(n)\chi_{8p}(n)}{\sqrt{n}}V\left(\frac{n}{p}\right),\end{split}

where for any real number t>0t>0,

(2.5) V(t)=12πi(2)(π8)s(Γ(κ/2+s)Γ(κ/2))tsdss.\displaystyle V(t)=\frac{1}{2\pi i}\int\limits\limits_{(2)}\left(\frac{\pi}{8}\right)^{-s}\left(\frac{\Gamma(\kappa/2+s)}{\Gamma(\kappa/2)}\right)t^{-s}\frac{\mathrm{d}s}{s}.

In the course of proving Theorem 1.1 , we need the following result on the twisted first moment of quadratic twists of L(12,fχ8p)L(\tfrac{1}{2},f\otimes\chi_{8p}).

Proposition 2.6.

Assume the truth of GRH and use the same notations as above. Let XX be a large real number and \ell a fixed positive odd integer. Further write \ell uniquely as =122\ell=\ell_{1}\ell^{2}_{2} with 1\ell_{1} square-free. We have

(2.6) (p,2)=1(logp)L(12,fχ8p)χ8p()Φ(pX)=CΦ^(1)λf(l1)l1g(l)X+O(X12+ε1ε),\displaystyle\sum_{(p,2)=1}(\log p)L(\tfrac{1}{2},f\otimes\chi_{8p})\chi_{8p}(\ell)\Phi\left(\frac{p}{X}\right)=C\widehat{\Phi}(1)\frac{\lambda_{f}(l_{1})}{\sqrt{l_{1}}g(l)}X+O\left(X^{\tfrac{1}{2}+\varepsilon}\ell_{1}^{\varepsilon}\right),

where CC is an explicit constant and g(l)g(l) is a multiplicative function such that 1/g(p)=1+O(1/p)1/g(p)=1+O(1/p).

Proof.

The approximate functional equation in Lemma 2.5 gives

:=(p,2)=1(logp)L(12,fχ8p)χ8p()Φ(pX)=2m=1λf(m)m1/2(p,2)=1(logp)χ8p(m)V(mp)Φ(pX).\mathcal{M}:=\sum_{(p,2)=1}(\log p)L(\tfrac{1}{2},f\otimes\chi_{8p})\chi_{8p}(\ell)\Phi\left(\frac{p}{X}\right)=2\sum^{\infty}_{m=1}\frac{\lambda_{f}(m)}{m^{1/2}}\sum_{(p,2)=1}(\log p)\chi_{8p}(m\ell)V(\frac{m}{p})\Phi\left(\frac{p}{X}\right).

Due to the rapid decay of Φ\Phi, we arrive at

(p,2)=1(logp)χ8p(m)V(mp)Φ(pX)=\displaystyle\sum_{(p,2)=1}(\log p)\chi_{8p}(m\ell)V\left(\frac{m}{p}\right)\Phi\left(\frac{p}{X}\right)= n=1χ8n(m)Λ(n)V(mn)Φ(nX)+O(pjX1+ε,j2(logp)Φ(pjX)).\displaystyle\sum^{\infty}_{n=1}\chi_{8n}(m\ell)\Lambda(n)V\left(\frac{m}{n}\right)\Phi\left(\frac{n}{X}\right)+O\left(\sum_{\begin{subarray}{c}p^{j}\leq X^{1+\varepsilon},j\geq 2\end{subarray}}(\log p)\Phi\left(\frac{p^{j}}{X}\right)\right).

By (2.4), the OO-term above is X1/2+ε\ll X^{1/2+\varepsilon}. To deal with the first term on the right-hand side above, we apply Mellin inversion to obtain that

(2.7) n=1χ8n(m)Λ(n)V(mn)Φ(nX)=\displaystyle\sum^{\infty}_{n=1}\chi_{8n}(m\ell)\Lambda(n)V(\frac{m}{n})\Phi\left(\frac{n}{X}\right)= χ8(m)2πi(2)L(s,ψm)L(s,ψm)f^(s)Xsds,\displaystyle-\frac{\chi_{8}(m\ell)}{2\pi i}\int\limits_{(2)}\frac{L^{\prime}(s,\psi_{m\ell})}{L(s,\psi_{m\ell})}\widehat{f}(s)X^{s}\mathrm{d}s,

where

f^(s)=0V(mXx)Φ(x)xs1dx.\widehat{f}(s)=\int\limits_{0}^{\infty}V\left(\frac{m}{Xx}\right)\Phi(x)x^{s-1}\mathrm{d}x.

Now repeated integration by parts yields the bound

f^(s)(1+|s|)E(1+m/X)E,\widehat{f}(s)\ll(1+|s|)^{-E}\left(1+m/X\right)^{-E},

for any (s)>0\Re(s)>0 and any integer E>0E>0.

We evaluate the integral in (2.7) by shifting the line of integration to (s)=1/2+ε\Re(s)=1/2+\varepsilon passing a pole at s=1s=1 with residue f^(1)X-\widehat{f}(1)X only if mm\ell is a perfect square. The integration on (s)=1/2+ε\Re(s)=1/2+\varepsilon can be estimated to be O(X1/2+εloglog(m+2))O(X^{1/2+\varepsilon}\log\log(m\ell+2)), thanks to the rapid decay of f^\widehat{f} on the vertical line and the estimate (see [iwakow, Theorem 5.17]) that under GRH, for (s)1/2+ε\Re(s)\geq 1/2+\varepsilon,

L(s,ψc)L(s,ψc)loglog((c+2)(1+|s|)).\displaystyle\frac{L^{\prime}(s,\psi_{c})}{L(s,\psi_{c})}\ll\log\log\big{(}(c+2)(1+|s|)\big{)}.

To treat the contribution from the poles, we deduce via the expression for VV in (2.5) that

f^(1)=0V(mXx)Φ(x)dx=12πi(2)(Xm)sΦ^(1+s)(8π)sΓ(κ/2+s)Γ(κ/2)dss.\displaystyle\widehat{f}(1)=\int\limits_{0}^{\infty}V\left(\frac{m}{Xx}\right)\Phi(x)\mathrm{d}x=\frac{1}{2\pi i}\int\limits_{(2)}\left(\frac{X}{m}\right)^{s}\widehat{\Phi}(1+s)\left(\frac{8}{\pi}\right)^{s}\frac{\Gamma(\kappa/2+s)}{\Gamma(\kappa/2)}\frac{\mathrm{d}s}{s}.

Note that mm\ell is a perfect square if and only if mm is a square multiple of 1\ell_{1}. So we may replace mm by 1m2\ell_{1}m^{2} and the contribution from the poles to \mathcal{M} is

(2.8) 2X112πi(2)Φ^(1+s)(8π)sΓ(κ/2+s)Γ(κ/2)(X1)s(m1(m,2)=1λf(l1m2)m1+2s)dss.\displaystyle\frac{2X}{\sqrt{\ell_{1}}}\frac{1}{2\pi i}\int\limits_{(2)}\widehat{\Phi}\left(1+s\right)\left(\frac{8}{\pi}\right)^{s}\frac{\Gamma(\kappa/2+s)}{\Gamma(\kappa/2)}\left(\frac{X}{\ell_{1}}\right)^{s}\Big{(}\sum_{\begin{subarray}{c}m\geq 1\\ (m,2)=1\end{subarray}}\frac{\lambda_{f}(l_{1}m^{2})}{m^{1+2s}}\Big{)}\frac{\mathrm{d}s}{s}.

To evaluate the last sum above, we recall that the symmetric square LL-function L(s,sym2f)L(s,\operatorname{sym}^{2}f) of ff is defined for (s)>1\Re(s)>1 by (see [iwakow, (25.73)])

L(s,sym2f)=\displaystyle L(s,\operatorname{sym}^{2}f)= ζ(2s)n1λ(n2)ns=p(1λ(p2)ps+λ(p2)p2s1p3s)1.\displaystyle\zeta(2s)\sum_{n\geq 1}\frac{\lambda(n^{2})}{n^{s}}=\prod_{p}\left(1-\frac{\lambda(p^{2})}{p^{s}}+\frac{\lambda(p^{2})}{p^{2s}}-\frac{1}{p^{3s}}\right)^{-1}.

It follows from a result of G. Shimura [Shimura] that the corresponding completed LL-function

Λ(s,sym2f)=\displaystyle\Lambda(s,\operatorname{sym}^{2}f)= π3s/2Γ(s+12)Γ(s+κ12)Γ(s+κ2)L(s,sym2f).\displaystyle\pi^{-3s/2}\Gamma\left(\frac{s+1}{2}\right)\Gamma\left(\frac{s+\kappa-1}{2}\right)\Gamma\left(\frac{s+\kappa}{2}\right)L(s,\operatorname{sym}^{2}f).

is entire and satisfies the functional equation Λ(s,sym2f)=Λ(1s,sym2f)\Lambda(s,\operatorname{sym}^{2}f)=\Lambda(1-s,\operatorname{sym}^{2}f). Combining this with [iwakow, (5.8)] and apply the convexity bounds (see [iwakow, Exercise 3, p. 100]) for LL-functions, we deduce that

(2.9) L(s,sym2f)(1+|s|)(3(1(s)))/2+ε,0(s)1.\displaystyle\begin{split}L(s,\operatorname{sym}^{2}f)\ll&\left(1+|s|\right)^{(3(1-\Re(s)))/2+\varepsilon},\quad 0\leq\Re(s)\leq 1.\end{split}

We apply the above notations to write

m1(m,2)=1λf(l1m2)m1+2s=λf(l1)ζ(2+4s)1L(1+2s,sym2f)p|2l(1+O(1p1+2s))1\displaystyle\sum_{\begin{subarray}{c}m\geq 1\\ (m,2)=1\end{subarray}}\frac{\lambda_{f}(l_{1}m^{2})}{m^{1+2s}}=\lambda_{f}(l_{1})\zeta(2+4s)^{-1}L(1+2s,\operatorname{sym}^{2}f)\prod_{p|2l}\left(1+O\left(\frac{1}{p^{1+2s}}\right)\right)^{-1}

We then evaluate the integral in (2.8) by moving the contour of integration to 1/2+ε-1/2+\varepsilon, crossing a simple pole at s=0s=0 only. The integral on the new line is estimated, using (2.9), to be

X1/2+ε|l|ε.\ll X^{1/2+\varepsilon}|l|^{\varepsilon}.

The residue of the pole in the above process can be easily computed and this leads to the main term on the right-hand side of (2.6). This completes the proof of the proposition. ∎

2.7. Upper bound for log|L(12,fχ8d)|\log|L(\tfrac{1}{2},f\otimes\chi_{8d})|

Although we are primarily interested in L(12,fχ8p)L(\tfrac{1}{2},f\otimes\chi_{8p}) in this paper, we include here an upper bound result from [S&Y] on log|L(12,fχ8d)|\log|L(\tfrac{1}{2},f\otimes\chi_{8d})| for any odd, square-free integer d>0d>0 in terms of a short Dirichlet polynomial over the primes.

Lemma 2.8.

Assume the truth of GRH for ζ(s)\zeta(s) and for L(s,χ8d)L(s,\chi_{8d}) for a fixed odd, square-free integer d>0d>0. We have for dXd\leq X, 2xX2\leq x\leq X,

log|L(12,fχ8d)|pxχ8d(p)λf(p)p1/2+1/logxlog(x/p)logx12loglogxp|dλf2(p)22p+2logXlogx+O(logXx1/2logx+1).\displaystyle\log|L(\tfrac{1}{2},f\otimes\chi_{8d})|\leq\sum_{\begin{subarray}{c}p\leq x\end{subarray}}\frac{\chi_{8d}(p)\lambda_{f}(p)}{p^{1/2+1/\log x}}\frac{\log(x/p)}{\log x}-\frac{1}{2}\log\log x-\sum_{\begin{subarray}{c}p|d\end{subarray}}\frac{\lambda^{2}_{f}(p)-2}{2p}+\frac{2\log X}{\log x}+O\left(\frac{\log X}{x^{1/2}\log x}+1\right).
Proof.

We write λf(p)=αp+βp\lambda_{f}(p)=\alpha_{p}+\beta_{p} where αpβp=1\alpha_{p}\beta_{p}=1 and note that |αp|=|βp|=1|\alpha_{p}|=|\beta_{p}|=1 by Deligne’s theorem [D]. Let λ0=0.4912\lambda_{0}=0.4912\ldots be the unique positive real number satisfying eλ0=λ0+λ02/2e^{-\lambda_{0}}=\lambda_{0}+\lambda^{2}_{0}/2. We set z1=z2=0z_{1}=z_{2}=0 in [S&Y, (6.1)]. Note that αpl+βpl\alpha^{l}_{p}+\beta^{l}_{p}\in\mathbb{R} for any integer l1l\geq 1. This leads to, for λλ0\lambda\geq\lambda_{0},

(2.10) log|L(12,fχ8d)|plxl1χ8d(pl)(αpl+βpl)lpl(1/2+λ/logx)log(x/pl)logx+(1+λ)logXlogx+O(1).\displaystyle\log|L(\tfrac{1}{2},f\otimes\chi_{8d})|\leq\sum_{\begin{subarray}{c}p^{l}\leq x\\ l\geq 1\end{subarray}}\frac{\chi_{8d}(p^{l})(\alpha^{l}_{p}+\beta^{l}_{p})}{lp^{l(1/2+\lambda/\log x)}}\frac{\log(x/p^{l})}{\log x}+(1+\lambda)\frac{\log X}{\log x}+O(1).

We set λ=1\lambda=1 and note that the terms with l3l\geq 3 are O(1)O(1) (see the paragraph below [S&Y, (6.1)]). Moreover,

αp+βp=λf(p)andαp2+βp2=λf2(p)2=λf(p2)1.\alpha_{p}+\beta_{p}=\lambda_{f}(p)\quad\mbox{and}\quad\alpha^{2}_{p}+\beta^{2}_{p}=\lambda^{2}_{f}(p)-2=\lambda_{f}(p^{2})-1.

Hence

(2.11) log|L(12,fχ8d)|pxχ8d(p)λf(p)p1/2+1/logxlog(x/p)logx+12px1/2χ8d(p2)(λf2(p)2)p1+2/logxlog(x/p2)logx+2logXlogx+O(1)=pxχ8d(p)λf(p)p1/2+1/logxlog(x/p)logx+12px1/2pd(λf2(p)2)p1+2/logxlog(x/p2)logx+2logXlogx+O(1).\displaystyle\begin{split}\log|L(\tfrac{1}{2},f\otimes\chi_{8d})|\leq&\sum_{\begin{subarray}{c}p\leq x\end{subarray}}\frac{\chi_{8d}(p)\lambda_{f}(p)}{p^{1/2+1/\log x}}\frac{\log(x/p)}{\log x}+\frac{1}{2}\sum_{\begin{subarray}{c}p\leq x^{1/2}\end{subarray}}\frac{\chi_{8d}(p^{2})(\lambda^{2}_{f}(p)-2)}{p^{1+2/\log x}}\frac{\log(x/p^{2})}{\log x}+\frac{2\log X}{\log x}+O(1)\\ =&\sum_{\begin{subarray}{c}p\leq x\end{subarray}}\frac{\chi_{8d}(p)\lambda_{f}(p)}{p^{1/2+1/\log x}}\frac{\log(x/p)}{\log x}+\frac{1}{2}\sum_{\begin{subarray}{c}p\leq x^{1/2}\\ p\nmid d\end{subarray}}\frac{(\lambda^{2}_{f}(p)-2)}{p^{1+2/\log x}}\frac{\log(x/p^{2})}{\log x}+\frac{2\log X}{\log x}+O(1).\end{split}

Now

(2.12) px1/2pd(λf2(p)2)p1+2/logxlog(x/p2)logx=px1/2pdλf2(p)2p1+2/logx2px1/2pd(λf2(p)2)p1+2/logxlogplogx.\displaystyle\begin{split}\sum_{\begin{subarray}{c}p\leq x^{1/2}\\ p\nmid d\end{subarray}}\frac{(\lambda^{2}_{f}(p)-2)}{p^{1+2/\log x}}\frac{\log(x/p^{2})}{\log x}=\sum_{\begin{subarray}{c}p\leq x^{1/2}\\ p\nmid d\end{subarray}}\frac{\lambda^{2}_{f}(p)-2}{p^{1+2/\log x}}-2\sum_{\begin{subarray}{c}p\leq x^{1/2}\\ p\nmid d\end{subarray}}\frac{(\lambda^{2}_{f}(p)-2)}{p^{1+2/\log x}}\frac{\log p}{\log x}.\end{split}

Applying Deligne’s bound, we see that

|λf2(p)2||λf2(p)|+2d(p2)+21.\displaystyle\begin{split}|\lambda^{2}_{f}(p)-2|\leq|\lambda^{2}_{f}(p)|+2\leq d(p^{2})+2\ll 1.\end{split}

It follows from this and and (2.3) in Lemma 2.2 that

(2.13) px1/2pd(λf2(p)2)p1+2/logxlogplogx1logxpx1/2logpp1.\displaystyle\sum_{\begin{subarray}{c}p\leq x^{1/2}\\ p\nmid d\end{subarray}}\frac{(\lambda^{2}_{f}(p)-2)}{p^{1+2/\log x}}\frac{\log p}{\log x}\ll\frac{1}{\log x}\sum_{\begin{subarray}{c}p\leq x^{1/2}\end{subarray}}\frac{\log p}{p}\ll 1.

For the other term on the right-hand side of (2.12),

(2.14) px1/2pdλf2(p)2p1+2/logx=px1/2pdλf2(p)2p+px1/2pd(λf2(p)2)(1p1+2/logx1p)=px1/2pdλf2(p)2p+O(px1/2logpplogx).\displaystyle\begin{split}\sum_{\begin{subarray}{c}p\leq x^{1/2}\\ p\nmid d\end{subarray}}\frac{\lambda^{2}_{f}(p)-2}{p^{1+2/\log x}}=&\sum_{\begin{subarray}{c}p\leq x^{1/2}\\ p\nmid d\end{subarray}}\frac{\lambda^{2}_{f}(p)-2}{p}+\sum_{\begin{subarray}{c}p\leq x^{1/2}\\ p\nmid d\end{subarray}}(\lambda^{2}_{f}(p)-2)\ \Big{(}\frac{1}{p^{1+2/\log x}}-\frac{1}{p}\Big{)}\\ =&\sum_{\begin{subarray}{c}p\leq x^{1/2}\\ p\nmid d\end{subarray}}\frac{\lambda^{2}_{f}(p)-2}{p}+O\Big{(}\sum_{\begin{subarray}{c}p\leq x^{1/2}\end{subarray}}\frac{\log p}{p\log x}\Big{)}.\end{split}

Now from (2.13), the last OO-term above is 1\ll 1.

Now, we have

(2.15) px1/2pdλf2(p)2p=px1/2λf2(p)2ppx1/2p|dλf2(p)2p=loglogxp|dλf2(p)2p+p>x1/2p|dλf2(p)2p+O(1),\displaystyle\begin{split}\sum_{\begin{subarray}{c}p\leq x^{1/2}\\ p\nmid d\end{subarray}}\frac{\lambda^{2}_{f}(p)-2}{p}=&\sum_{\begin{subarray}{c}p\leq x^{1/2}\end{subarray}}\frac{\lambda^{2}_{f}(p)-2}{p}-\sum_{\begin{subarray}{c}p\leq x^{1/2}\\ p|d\end{subarray}}\frac{\lambda^{2}_{f}(p)-2}{p}\\ =&-\log\log x-\sum_{\begin{subarray}{c}p|d\end{subarray}}\frac{\lambda^{2}_{f}(p)-2}{p}+\sum_{\begin{subarray}{c}p>x^{1/2}\\ p|d\end{subarray}}\frac{\lambda^{2}_{f}(p)-2}{p}+O(1),\end{split}

where the last estimation above follows from (2.1) and (2.2) in Lemma 2.2.

Lastly, we note that

(2.16) p>x1/2p|dλf2(p)2p1x1/2p>x1/2p|d1logXx1/2logx.\displaystyle\begin{split}\sum_{\begin{subarray}{c}p>x^{1/2}\\ p|d\end{subarray}}\frac{\lambda^{2}_{f}(p)-2}{p}\ll\frac{1}{x^{1/2}}\sum_{\begin{subarray}{c}p>x^{1/2}\\ p|d\end{subarray}}1\ll\frac{\log X}{x^{1/2}\log x}.\end{split}

Applying (2.12)–(2.16) in (2.11) this completes the proof of the lemma. ∎

3. Proof of Theorem 1.1

3.1. Setup

We shall follow the approach of A. J. Harper [Harper] and define for a large number MM,

α0=log2logX,αj=20j1(loglogX)2for allj1,and𝒥=𝒥X=1+max{j:αj10M}.\alpha_{0}=\frac{\log 2}{\log X},\;\;\;\;\;\alpha_{j}=\frac{20^{j-1}}{(\log\log X)^{2}}\;\;\;\mbox{for all}\;j\geq 1,\quad\mbox{and}\quad\mathcal{J}=\mathcal{J}_{X}=1+\max\{j:\alpha_{j}\leq 10^{-M}\}.

It follows from the above notations and Lemma 2.2 that we have for XX large enough,

(3.1) 𝒥logloglogX,α1=1(loglogX)2,andpX1/(loglogX)21ploglogX.\displaystyle\mathcal{J}\leq\log\log\log X,\quad\alpha_{1}=\frac{1}{(\log\log X)^{2}},\quad\mbox{and}\quad\sum_{p\leq X^{1/(\log\log X)^{2}}}\frac{1}{p}\leq\log\log X.

Also, for 1j𝒥11\leq j\leq\mathcal{J}-1 and XX large enough, we have

(3.2) 𝒥jlog(1/αj)log20,andXαj<pXαj+11p=logαj+1logαj+o(1)=log20+o(1)10.\displaystyle\mathcal{J}-j\leq\frac{\log(1/\alpha_{j})}{\log 20},\quad\mbox{and}\quad\sum_{X^{\alpha_{j}}<p\leq X^{\alpha_{j+1}}}\frac{1}{p}=\log\alpha_{j+1}-\log\alpha_{j}+o(1)=\log 20+o(1)\leq 10.

Combining (3.1) and (3.2) yields

Xαj1<pXαj1p100103M/4αj3/4,1j𝒥.\displaystyle\sum_{X^{\alpha_{j-1}}<p\leq X^{\alpha_{j}}}\frac{1}{p}\leq\frac{100}{10^{3M/4}}\alpha^{-3/4}_{j},\quad 1\leq j\leq\mathcal{J}.

For any real numbers x,yx,y with y0y\geq 0, we denote

(3.3) Ey(x)=j=02yxjj!.\displaystyle E_{y}(x)=\sum_{j=0}^{2\lceil y\rceil}\frac{x^{j}}{j!}.

We then define for any real number α\alpha and any 1j𝒥1\leq j\leq\mathcal{J},

𝒫j(p)=\displaystyle{\mathcal{P}}_{j}(p)= Xαj1<qXαjq primeχ8p(q)λf(q)q,j(p,α)=Ee2αj3/4(α𝒫j(p)),(p,α)=(logX)1/2j=1𝒥j(p,α).\displaystyle\sum_{\begin{subarray}{c}X^{\alpha_{j-1}}<q\leq X^{\alpha_{j}}\\ q\text{ prime}\end{subarray}}\frac{\chi_{8p}(q)\lambda_{f}(q)}{\sqrt{q}},\quad{\mathcal{M}}_{j}(p,\alpha)=E_{e^{2}\alpha^{-3/4}_{j}}\Big{(}\alpha{\mathcal{P}}_{j}(p)\Big{)},\quad{\mathcal{M}}(p,\alpha)=(\log X)^{1/2}\prod^{\mathcal{J}}_{j=1}{\mathcal{M}}_{j}(p,\alpha).

Note that each j(p,α){\mathcal{M}}_{j}(p,\alpha) is a short Dirichlet polynomial of length at most X2αje2kαj3/4X^{2\alpha_{j}\lceil e^{2}k\alpha^{-3/4}_{j}\rceil}. By taking XX large enough, we have that

j=1𝒥2αje2αj3/44e2k10M/4+1.\displaystyle\sum^{\mathcal{J}}_{j=1}2\alpha_{j}\lceil e^{2}\alpha^{-3/4}_{j}\rceil\leq\lceil 4e^{2}k10^{-M/4}\rceil+1.

It follows that (p,α){\mathcal{M}}(p,\alpha) is also a short Dirichlet polynomial of length at most X4e210M/4+1X^{\lceil 4e^{2}10^{-M/4}\rceil+1}.

In the sequal, we shall work exclusively with (p):=(p,1)\mathcal{M}(p):=\mathcal{M}(p,-1) and we remark here that the expression (p)\mathcal{M}(p) can now be regarded as a mollifier approximating |L(12,fχ8p)|1|L(\tfrac{1}{2},f\otimes\chi_{8p})|^{-1}, similar to those constructed in [LR21] and [DFL21].

Now, it is easy to see that in order to prove Theorem 1.1, it suffices to show that, for the function Φ\Phi defined in Section 2.4, we have

(3.4) 2<pX(logp)L(12,fχ8p)(p)Φ(pX)\displaystyle\sum_{2<p\leq X}(\log p)L(\tfrac{1}{2},f\otimes\chi_{8p})\mathcal{M}(p)\Phi\left(\frac{p}{X}\right)\gg X,and\displaystyle X,\quad\mbox{and}
(3.5) 2<pX(logp)|L(12,fχ8p)|2|(p)|2\displaystyle\sum_{2<p\leq X}(\log p)\left|L(\tfrac{1}{2},f\otimes\chi_{8p})\right|^{2}|\mathcal{M}(p)|^{2}\ll X.\displaystyle X.

In fact, (3.4) easily implies that

(3.6) 2<pX(logp)L(12,fχ8p)(p)\displaystyle\sum_{2<p\leq X}(\log p)L(\tfrac{1}{2},f\otimes\chi_{8p})\mathcal{M}(p)\gg X.\displaystyle X.

Thus, if we write 𝒩\mathcal{N} the left-hand side expression in (1.1), then (3.5) and (3.6) together with the Cauchy-Schwarz inequality imply that

X2(2<pX(logp)L(12,fχ8p)(p))2𝒩2<pX(logp)|L(12,fχ8p)|2|(p)|2𝒩X.\displaystyle\begin{split}X^{2}\ll&\left(\sum_{2<p\leq X}(\log p)L(\tfrac{1}{2},f\otimes\chi_{8p})\mathcal{M}(p)\right)^{2}\leq\ \mathcal{N}\sum_{2<p\leq X}(\log p)\left|L(\tfrac{1}{2},f\otimes\chi_{8p})\right|^{2}|\mathcal{M}(p)|^{2}\ll\mathcal{N}X.\end{split}

The assertion of Theorem 1.1 then readily follows from the above estimate together with the observation from (2.4) that as XX\rightarrow\infty,

2<pXlogpX.\displaystyle\begin{split}\sum_{\begin{subarray}{c}2<p\leq X\end{subarray}}\log p\sim X.\end{split}

It now remains to prove (3.4) and (3.5). As the proof of (3.4) is similar to that of [G&Zhao8, Proposition 2.1] upon using Proposition 2.6, we devote the remainder of the paper to the proof of (3.5). To that end, we first note the following special case of [S&Y, Theorem 6.1].

Proposition 3.2.

Assume the truth of GRH for ζ(s)\zeta(s), L(s,fχ8d)L(s,f\otimes\chi_{8d}) as well as the symmetric square LL-function L(s,sym2f)L(s,\operatorname{sym}^{2}f). For any real number k0k\geq 0 and any ε>0\varepsilon>0, we have

0<d<X(d,2)=1|L(12,fχ8d)|2kkX(logX)2k2k+ε,\displaystyle\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}0<d<X\\ (d,2)=1\end{subarray}}\left|L(\tfrac{1}{2},f\otimes\chi_{8d})\right|^{2k}\ll_{k}X(\log X)^{2k^{2}-k+\varepsilon},

where \sum^{*} denotes the sum over square-free integers.

Now, let

i,j(p)=\displaystyle{\mathcal{M}}_{i,j}(p)= Xαi1<qXαiq primeχ8p(q)q1/2+1/(logXαj)log(Xαj/q)logXαj,1ij𝒥.\displaystyle\sum_{\begin{subarray}{c}X^{\alpha_{i-1}}<q\leq X^{\alpha_{i}}\\ q\text{ prime}\end{subarray}}\frac{\chi_{8p}(q)}{q^{1/2+1/(\log X^{\alpha_{j}})}}\frac{\log(X^{\alpha_{j}}/q)}{\log X^{\alpha_{j}}},\quad 1\leq i\leq j\leq\mathcal{J}.

Moreover, we define for 0j𝒥10\leq j\leq\mathcal{J}-1,

𝒮(j)=\displaystyle\mathcal{S}(j)= {2<pX:|i,l(p)|αi3/4 1ij,il𝒥,but |j+1,l(p)|>αj+13/4 for some j+1l𝒥},\displaystyle\{2<p\leq X:|{\mathcal{M}}_{i,l}(p)|\leq\alpha_{i}^{-3/4}\;\forall\ 1\leq i\leq j,\;\forall\ i\leq l\leq\mathcal{J},\text{but }|{\mathcal{M}}_{j+1,l}(p)|>\alpha_{j+1}^{-3/4}\;\text{ for some }j+1\leq l\leq\mathcal{J}\},
𝒮(𝒥)=\displaystyle\mathcal{S}(\mathcal{J})= {2<pX:|i,𝒥(p)|αi3/41i𝒥}.\displaystyle\{2<p\leq X:|{\mathcal{M}}_{i,\mathcal{J}}(p)|\leq\alpha_{i}^{-3/4}\;\forall 1\leq i\leq\mathcal{J}\}.

Note that

{2<pX}=j=0𝒥𝒮(j).\{2<p\leq X\}=\bigcup_{j=0}^{\mathcal{J}}\mathcal{S}(j).

Thus, in order to establish (3.5), it suffices to show that

j=0𝒥p𝒮(j)(logp)|L(12,fχ8p)|2|(p)|2X.\displaystyle\sum_{j=0}^{\mathcal{J}}\sum_{p\in\mathcal{S}(j)}(\log p)\left|L(\tfrac{1}{2},f\otimes\chi_{8p})\right|^{2}|\mathcal{M}(p)|^{2}\ll X.

Observe that

meas(𝒮(0))2<pXl=1𝒥(α13/4|1,l(p)|)21/(10α1)Φ(pX).\displaystyle\begin{split}\text{meas}(\mathcal{S}(0))\ll&\sum_{2<p\leq X}\sum^{\mathcal{J}}_{l=1}\Big{(}\alpha^{3/4}_{1}{|\mathcal{M}}_{1,l}(p)|\Big{)}^{2\lceil 1/(10\alpha_{1})\rceil}\Phi\left(\frac{p}{X}\right).\end{split}

We use Lemma 2.3 to evaluate the last expression above in a manner similar to the treatments given in the proof of [G&Zhao8, Proposition 2.2] to arrive at

(3.7) meas(𝒮(0))\displaystyle\text{meas}(\mathcal{S}(0))\ll 𝒥Xe1/α1Xe(loglogX)2/10.\displaystyle\mathcal{J}Xe^{-1/\alpha_{1}}\ll Xe^{-(\log\log X)^{2}/10}.

We then deduce via Hölder’s inequality that

(3.8) p𝒮(0)(logp)|L(12,fχ8p)|2|(p)|2((logX)4meas(𝒮(0)))1/4(2<pX|L(12,χ8p)8|)1/4(2<pX|(p)|4)1/2.\displaystyle\begin{split}\sum_{p\in\mathcal{S}(0)}&(\log p)\left|L(\tfrac{1}{2},f\otimes\chi_{8p})\right|^{2}|\mathcal{M}(p)|^{2}\leq\Big{(}(\log X)^{4}\text{meas}(\mathcal{S}(0))\Big{)}^{1/4}\Big{(}\sum_{\begin{subarray}{c}2<p\leq X\end{subarray}}\left|L(\tfrac{1}{2},\chi_{8p})^{8}\right|\Big{)}^{1/4}\Big{(}\sum_{\begin{subarray}{c}2<p\leq X\end{subarray}}\left|\mathcal{M}(p)\right|^{4}\Big{)}^{1/2}.\end{split}

Similar to the proof of [G&Zhao8, Proposition 2.2], we apply Lemma 2.3 again to see that

(3.9) 2<pX|(p)|4X(logX)O(1).\displaystyle\sum_{\begin{subarray}{c}2<p\leq X\end{subarray}}\left|\mathcal{M}(p)\right|^{4}\ll X(\log X)^{O(1)}.

Also, setting k=4k=4 and ε=1\varepsilon=1 in Proposition 3.2 implies that

(3.10) 2<pX|L(12,fχ8p)|80<d<X(d,2)=1|L(12,fχ8d)|8X(logX)O(1)\displaystyle\sum_{\begin{subarray}{c}2<p\leq X\end{subarray}}\left|L(\tfrac{1}{2},f\otimes\chi_{8p})\right|^{8}\leq\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}0<d<X\\ (d,2)=1\end{subarray}}\left|L(\tfrac{1}{2},f\otimes\chi_{8d})\right|^{8}\ll X(\log X)^{O(1)}

We apply the estimations given in (3.7), (3.9) and (3.10) in (3.8) to deduce that

p𝒮(0)\displaystyle\sum_{p\in\mathcal{S}(0)} (logp)|L(12,fχ8p)|2|(p)|2X.\displaystyle(\log p)\left|L(\tfrac{1}{2},f\otimes\chi_{8p})\right|^{2}\left|\mathcal{M}(p)\right|^{2}\ll X.

Thus it remains to deal with the case in which j1j\geq 1. If p𝒮(j)p\in\mathcal{S}(j), we set x=Xαjx=X^{\alpha_{j}} in (2.10) and

|L(12,fχ8p)|2(logX)1exp(4αj)exp(2i=0ji,j(p)).\displaystyle\begin{split}&|L(\tfrac{1}{2},f\otimes\chi_{8p})|^{2}\ll(\log X)^{-1}\exp\Big{(}\frac{4}{\alpha_{j}}\Big{)}\exp\Big{(}2\sum^{j}_{i=0}{\mathcal{M}}_{i,j}(p)\Big{)}.\end{split}

As Mi,j(p)αi3/4M_{i,j}(p)\leq\alpha^{-3/4}_{i} if p𝒮(j)p\in\mathcal{S}(j), we can apply [Kirila, Lemma 5.2] to see that

exp(2i=0ji,j(p))i=1j|Ee2αi3/4(i,j(p))|2,\displaystyle\begin{split}\exp\Big{(}2\sum^{j}_{i=0}{\mathcal{M}}_{i,j}(p)\Big{)}\ll\prod^{j}_{i=1}\Big{|}E_{e^{2}\alpha^{-3/4}_{i}}({\mathcal{M}}_{i,j}(p))\Big{|}^{2},\end{split}

where Ee2αi3/4E_{e^{2}\alpha^{-3/4}_{i}} is defined as in (3.3).

We then deduce from the description on 𝒮(j)\mathcal{S}(j) that when j1j\geq 1,

p𝒮(j)(logp)|L(12,fχ8p)|2|(p)|2(logX)1exp(4αj)l=j+12<pX(logp)exp(2i=1ji,j(p))|(p)|2(αj+13/4j+1,l(p))21/(10αj+1)exp(4αj)l=j+12<pX(logp)i=1j|Ee2αi3/4(i,j(p))Ee2αi3/4(𝒫i(p))|2×|Ee2αj+13/4(𝒫j+1(p))|2(αj+13/4j+1,l(p))21/(10αj+1)i=j+2|Ee2αi3/4((2k2)𝒫i(p))|2.\displaystyle\begin{split}\sum_{p\in\mathcal{S}(j)}&(\log p)\left|L(\tfrac{1}{2},f\otimes\chi_{8p})\right|^{2}\left|\mathcal{M}(p)\right|^{2}\\ \ll&(\log X)^{-1}\exp\big{(}\frac{4}{\alpha_{j}}\big{)}\sum^{\mathcal{I}}_{l=j+1}\sum_{\begin{subarray}{c}2<p\leq X\end{subarray}}(\log p)\exp\Big{(}2\sum^{j}_{i=1}{\mathcal{M}}_{i,j}(p)\Big{)}\left|\mathcal{M}(p)\right|^{2}\Big{(}\alpha^{3/4}_{j+1}{\mathcal{M}}_{j+1,l}(p)\Big{)}^{2\lceil 1/(10\alpha_{j+1})\rceil}\\ \ll&\exp\big{(}\frac{4}{\alpha_{j}}\big{)}\sum^{\mathcal{I}}_{l=j+1}\sum_{\begin{subarray}{c}2<p\leq X\end{subarray}}(\log p)\prod^{j}_{i=1}\Big{|}E_{e^{2}\alpha^{-3/4}_{i}}({\mathcal{M}}_{i,j}(p))E_{e^{2}\alpha^{-3/4}_{i}}(-{\mathcal{P}}_{i}(p))\Big{|}^{2}\\ &\hskip 28.45274pt\times\Big{|}E_{e^{2}\alpha^{-3/4}_{j+1}}(-{\mathcal{P}}_{j+1}(p))\Big{|}^{2}\Big{(}\alpha^{3/4}_{j+1}{\mathcal{M}}_{j+1,l}(p)\Big{)}^{2\lceil 1/(10\alpha_{j+1})\rceil}\prod^{\mathcal{I}}_{i=j+2}\Big{|}E_{e^{2}\alpha^{-3/4}_{i}}((2k-2){\mathcal{P}}_{i}(p))\Big{|}^{2}.\end{split}

We proceed as in the proofs of [G&Zhao8, Proposition 2.2], making use of Lemma 2.3 and (3.2) to arrive at (by noting that 20/αj+1=1/αj20/\alpha_{j+1}=1/\alpha_{j})

p𝒮(j)(logp)|L(12,fχ8p)|2|(p)|2Xexp(4αj)(j)e122/αj+1(j)e42/αj+1Xe1/(10αj)X.\displaystyle\begin{split}\sum_{p\in\mathcal{S}(j)}(\log p)\left|L(\tfrac{1}{2},f\otimes\chi_{8p})\right|^{2}\left|\mathcal{M}(p)\right|^{2}\ll X\exp\Big{(}\frac{4}{\alpha_{j}}\Big{)}(\mathcal{I}-j)e^{-122/\alpha_{j+1}}\ll(\mathcal{I}-j)e^{-42/\alpha_{j+1}}X\ll e^{-1/(10\alpha_{j})}X.\end{split}

As the sum of the right side expression above over jj converges, we see that the above estimation implies (3.5) and this completes the proof of Theorem  1.1.

Acknowledgments. P. G. is supported in part by NSFC grant 11871082 and L. Z. by the Faculty Silverstar Grant PS65447 at the University of New South Wales (UNSW).

References

School of Mathematical Sciences School of Mathematics and Statistics
Beihang University University of New South Wales
Beijing 100191 China Sydney NSW 2052 Australia
Email: [email protected] Email: [email protected]