This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\newaliascnt

lemma@alttheorem \newaliascntprop@alttheorem \newaliascntclaim@alttheorem \newaliascntcorollary@alttheorem \newaliascntdefinition@alttheorem \newaliascntexample@alttheorem \newaliascntremark@alttheorem

Non-uniqueness of integral curves for autonomous hamiltonian vector fields

Vikram Giri and Massimo Sorella Massimo Sorella École Polytechnique Fédérale de Lausanne, Institute of Mathematics, Station 8, CH-1015 Lausanne, Switzerland. [email protected]
Abstract.

In this work we prove the existence of an autonomous Hamiltonian vector field in W1,r(𝕋d;d)W^{1,r}({\mathbb{T}}^{d};\mathbb{R}^{d}) with r<d1r<d-1 and d4d\geq 4 for which the associated transport equation has non-unique positive solutions. As a consequence of Ambrosio’s superposition principle [A04], we show that this vector field has non-unique integral curves with a positive Lebesgue measure set of initial data and moreover we show that the Hamiltonian is not constant along these integral curves.

Keywords: autonomous vector fields, flows, Hamiltonian system, ODEs

MSC (2020): 70H33 - 35A02 - 35D30 - 35Q49 - 34A12.

1. Introduction

This paper is concerned with the study of Hamiltonian system which are deeply studied because they model various physical systems. More precisely, we consider the following ODEs on the d=2dd=2d^{\prime} dimensional torus 𝕋dd/d{\mathbb{T}}^{d}\simeq\mathbb{R}^{d}/{\mathbb{Z}}^{d}

{γ˙(t)=JH(t,γ(t))γ(0)=x0,\displaystyle\begin{cases}\dot{\gamma}(t)=J\nabla H(t,\gamma(t))\\ \gamma(0)=x_{0},\end{cases} (1.1)

where H:𝕋dH:{\mathbb{T}}^{d}\rightarrow\mathbb{R} is the autonomous Hamiltonian function, x0dx_{0}\in\mathbb{R}^{d}, γ:[0,1]𝕋d\gamma:[0,1]\rightarrow{\mathbb{T}}^{d} is a curve and JJ is the d×dd\times d matrix

J=(0dIdId0d).J=\begin{pmatrix}0_{d^{\prime}}&I_{d^{\prime}}\\ -I_{d^{\prime}}&0_{d^{\prime}}\end{pmatrix}.

Such a γ\gamma is called integral curve of the Hamiltonian vector field JHJ\nabla H starting from x0x_{0}, more precisely we give the following definition.

Definition \thedefinition@alt.

Let u:(0,1)×𝕋ddu:(0,1)\times{\mathbb{T}}^{d}\to\mathbb{R}^{d} be a Borel map. We say that γAC([0,1];𝕋d)\gamma\in AC([0,1];{\mathbb{T}}^{d}) is an integral curve of uu starting at xx if γ(0)=x\gamma(0)=x and γ(t)=u(t,γ(t))\gamma^{\prime}(t)=u(t,\gamma(t)) for a.e. t[0,1]t\in[0,1].

With such definition we recall that if the vector field is Lipschitz, which in our case means that HW2,(𝕋d,)H\in W^{2,\infty}({\mathbb{T}}^{d},\mathbb{R}), then by Cauchy-Lipschitz theorem we have uniqueness of integral curves of (1.1) for every starting point x0𝕋dx_{0}\in{\mathbb{T}}^{d}.

In the regular setting, i.e. when the Hamiltonian is in W2,(𝕋d)W^{2,\infty}({\mathbb{T}}^{d}), we have that the integral curves characterize the unique solution of the following continuity equation

{tρ+divx(ρJH)=0,ρ(,0)=ρ0(),\displaystyle\begin{cases}\partial_{t}\rho+\operatorname{div}_{x}(\rho J\nabla H)=0,\\ \rho(\cdot,0)=\rho_{0}(\cdot),\end{cases} (1.2)

where the unknown is the density ρ:[0,1]×𝕋d\rho:[0,1]\times{\mathbb{T}}^{d}\rightarrow\mathbb{R}, while the initial datum ρ0L(𝕋d)\rho_{0}\in L^{\infty}({\mathbb{T}}^{d}) and the vector field JHW1,(𝕋d,d)J\nabla H\in W^{1,\infty}({\mathbb{T}}^{d},\mathbb{R}^{d}) are given. More precisely, in this setting the unique solution (uniqueness holds thanks to a simple application of Grönwall lemma) of (1.2) is given by111We denote with X(t,)#(μ)X(t,\cdot)_{\#}(\mu) the pushforward of the measure μ\mu through the map XX at the fixed time tt.

ρ(t,)d=X(t,)#(ρ(0,)d),\rho(t,\cdot)\mathscr{L}^{d}=X(t,\cdot)_{\#}(\rho(0,\cdot)\mathscr{L}^{d}), (1.3)

where X:[0,1]×𝕋ddX:[0,1]\times{\mathbb{T}}^{d}\to\mathbb{R}^{d} is called the flow related to JHJ\nabla H and is defined collecting all the integral curves, namely X(t,x0)=γx0(t)X(t,x_{0})=\gamma_{x_{0}}(t), where γx0\gamma_{x_{0}} is the unique integral curve of (1.1) starting from x0x_{0}. The last result is classical and is known in the literature as Liouville’s theorem.

A lot of efforts were made in the last decades to understand what happens in the non regular setting. The first classical failing is the nonuniqueness of integral curves with vector fields uC0,α(𝕋d,d)u\in C^{0,\alpha}({\mathbb{T}}^{d},\mathbb{R}^{d}) for α[0,1)\alpha\in[0,1), that means that the previous results cannot be extended easily to less regular spaces.

From now on we will refer to solutions of (1.2) in the sense of distribution, so the reasonable assumption to talk about that is that HW1,q(𝕋d,d)H\in W^{1,q}({\mathbb{T}}^{d},\mathbb{R}^{d}) and ρL1((0,1),Lp(𝕋d))\rho\in L^{1}((0,1),L^{p}({\mathbb{T}}^{d})).

We now summarize the main results of the last decades that are important to understand our contribution. To do so we will present all the results in the particular case of autonomous hamiltonian vector fields, even if they do not require neither the autonomous hypothesis nor the hamiltonian. The interested reader can find the general results in the references we provide.

DiPerna and Lions proved in [DPL89] a result that implies the uniqueness of (1.2) solutions in the class of densities ρL((0,1),Lp(𝕋d))\rho\in L^{\infty}((0,1),L^{p}({\mathbb{T}}^{d})) once given ρ0Lp(𝕋d)\rho_{0}\in L^{p}({\mathbb{T}}^{d}) and the autonomous hamiltonian vector field HW2,q(𝕋d)H\in W^{2,q}({\mathbb{T}}^{d}), with pp and qq such that

1p+1q1.\frac{1}{p}+\frac{1}{q}\leq 1. (1.4)

The authors in [DPL89] consider also a selection of integral curves, which defines the so-called “Regular Lagrangian flow”. In turn, this characterizes the unique solution ρ\rho by (1.3) using as flow the “Regular Lagrangian flow”. To be precise here we give the definition of the “Regular Lagrangian flow” with the compressibility condition following Ambrosio’s definition (see in [A04, Section 6]).

Definition \thedefinition@alt (Regular Lagrangian flow).

Let u:(0,1)×𝕋ddu:(0,1)\times{\mathbb{T}}^{d}\to\mathbb{R}^{d} be Borel. We say that a Borel map X:[0,1]×ddX:[0,1]\times\mathbb{R}^{d}\to\mathbb{R}^{d} is a regular Lagrangian flow of uu if

  1. (i)

    for d\mathscr{L}^{d}-a.e. x𝕋dx\in{\mathbb{T}}^{d}, tX(t,x)t\mapsto X(t,x) is integral curve of uu with X(0,x)=xX(0,x)=x,

  2. (ii)

    there is a constant C>0C>0 such that for every t[0,1]t\in[0,1], X(t,.)#dCdX(t,.)_{\#}\mathscr{L}^{d}\leq C\mathscr{L}^{d}.

In [A08] Ambrosio proved the superposition principle, which implies the following: every non negative solution ρL1\rho\in L^{1} to (1.2) with an autonomous hamiltonian vector field such that ρJHL1\rho J\nabla H\in L^{1} are transported by a “generalized flow”, which is roughly speaking a measure supported on integral curves of the associated vector field. See [A08, Theorem 3.2] for the precise result, known in the literature as “Ambrosio’s superposition principle”. This result connects the ODE (1.1) with the PDE (1.2) in a larger class of regularity where uniqueness of solutions of (1.2) fails and hence it is crucial for us (see in [MoSz2019AnnPDE, MS20, MoSz2019Calc, BDLC20]).

We now turn to explain our contribution in this context. Large part of this paper is dedicated to prove a nonuniqueness result for positive solutions of the continuity equation (1.2) for Hamiltonian autonomous vector fields, more precisely we will prove the following theorem.

Theorem 1.1.

Let d4{{d\geq 4}} be an even integer, p(1,),r[1,]p\in(1,\infty),r\in[1,\infty] be such that

1p+1r>1+1d1\frac{1}{p}+\frac{1}{r}>1+\frac{1}{d-1} (1.5)

and denote by pp^{\prime} the dual exponent of pp, i.e. 1p+1p=1\frac{1}{p}+\frac{1}{p^{\prime}}=1. Then for every T>0T>0 there exists an autonomous Hamiltonian HW2,r(𝕋d;)H\in W^{2,r}({\mathbb{T}}^{d};\mathbb{R}) and a nonconstant ρC([0,T],L1(𝕋d))\rho\in C([0,T],L^{1}({\mathbb{T}}^{d})) such that ρJHC([0,T],L1(𝕋d))\rho J\nabla H\in C([0,T],L^{1}({\mathbb{T}}^{d})) and (1.2) holds with initial data ρ(0,)=1\rho(0,\cdot)=1 and for which ρc0\rho\geq c_{0} for some positive constant c0c_{0}. Moreover, if pd1p^{\prime}\geq d-1, we have the Hamiltonian HC(𝕋d;)H\in C({\mathbb{T}}^{d};\mathbb{R}).

The theorem above is proved using the “convex integration type” techniques borrowed from a groundbreaking work of Modena and Székelyhidi [MoSz2019AnnPDE, MoSz2019Calc] and subsequently improved by Modena and Sattig [MS20]. We refer to [DLSZ09, DLSZ13, DLSZ17, Is18, BV] and the references therein for the birth of this and related lines of research. See also some recent results related to convex integration in [CDRS21, CL20, CL20NS, CL21, SP21].

As a consequence of Ambrosio’s superposition principle and Theorem 1.1 we prove a non uniqueness result of integral curves for autonomous Hamiltonian vector fields. This strategy has already been used in the work of Brué, Colombo and De Lellis [BDLC20, Theorem 1.3].

Theorem 1.2.

For any even integer d4d\geq 4 and any real number r<d1r<d-1 there is an autonomous Hamiltonian HC(𝕋d;)W2,r(𝕋d;)H\in C({\mathbb{T}}^{d};\mathbb{R})\cap W^{2,r}({\mathbb{T}}^{d};\mathbb{R}) such that the following holds for every Borel map vv with v=JHda.e.:v=J\nabla H\ \mathcal{L}^{d}-a.e.:

(NU) There is a measurable set A𝕋dA\subset{\mathbb{T}}^{d} with positive Lebesgue measure such that for every xAx\in A there

are at least two integral curves of vv starting at xx.

The case d=2d=2 is not included in our theorem: indeed in the 2 dimensional setting our theorem statement would tell us that 1p+1r>2\frac{1}{p}+\frac{1}{r}>2 which is impossible for p,r1p,r\geq 1. Moreover, in [ABC09, Theorem 5.2], the authors proved a uniqueness result in dimension 22 which implies the uniqueness for the continuity equation (1.2) in the class ρL1((0,1)×2)\rho\in L^{1}((0,1)\times\mathbb{R}^{2}) for autonomous bounded Hamiltonian vector fields such that HW2,1W1,H\in W^{2,1}\cap W^{1,\infty} (see [ABC09, Section 2.15 (iii)] for this implication). They also explain in [ABC09, Section 6.2] the additional assumption that is needed in dimensions d>2d>2, which in turn is necessary and in general not satisfied by W2,r(𝕋d)W^{2,r}({\mathbb{T}}^{d}) with r<d1r<d-1, because of our result Theorem 1.2. We highlight that the Sard property, which is a key ingredient in [ABC09, Theorem 5.2], is true in Sobolev spaces Wd,1W^{d,1} without any Lipschitz assumption thanks to [BKK15], where dd is the dimension of the space.

Finally we discuss the “conservation of the Hamiltonian” along integral curves. It is well known that for a smooth Hamiltonian vector field, the Hamiltonian is constant along integral curves of the flow. Indeed, in physics it represents the total energy of the system. For Sobolev fields, the same conclusion is true for the integral curves of the associated Regular Lagrangian Flow. This can be proved by an approximation argument. However, the Hamiltonian is not necessarily constant along the non-unique integral curves constructed in Theorem 1.2; this is the content of the next theorem.

Theorem 1.3.

For any integer d4d\geq 4, and any real number r<d1r<d-1, there is an autonomous Hamiltonian HC(𝕋d;)W2,r(𝕋d;)H\in C({\mathbb{T}}^{d};\mathbb{R})\cap W^{2,r}({\mathbb{T}}^{d};\mathbb{R}) such that the following holds for every v=JHv=J\nabla H d\mathcal{L}^{d}-a.e.. There is a measurable set A𝕋dA\subset{\mathbb{T}}^{d} with positive Lebesgue measure such that for every xAx\in A there exists γx\gamma_{x} integral curve of vv starting from xx and

H(γx(0))>H(γx(1)),H(\gamma_{x}(0))>H(\gamma_{x}(1)),

in particular HH is not conserved along some integral curves starting from a non negligible set.

We now highlight the main new technical ideas in the convex integration scheme used to prove Theorem 1.1:

  • We perturb the autonomous vector field in a “universal way”, i.e. independently from the previous error (that in the literature is called “Reynolds error”). This allows us to preserve the autonomous property of the Hamiltonian.

  • We notice that it is not necessary to have ρLp\rho\in L^{p} and JHLpJ\nabla H\in L^{p^{\prime}}, but only need that ρ,ρJHL1\rho,\rho J\nabla H\in L^{1} in order to make sense of a distributional solution to (1.2) and to apply Ambrosio superposition principle.

  • We construct autonomous Hamiltonian vector fields (used in the scheme to perturb the previous Hamiltonian vector field)222This functions used in the perturbation step are called in the literature “building blocks”..

2. Preliminary Lemmas

2.1. Geometric lemma

We start with an elementary geometric fact, namely that every vector in d\mathbb{R}^{d} can be written as a positive linear combination of elements in a suitably chosen finite subset Λ\Lambda of dB1\mathbb{Q}^{d}\cap\partial B_{1}. This is reminiscent of the geometric lemma in [DLS13] and it is proved in [BDLC20, Lemma 3.1].

Lemma \thelemma@alt.

There exists a finite set {ξ}ξΛB1d\{\xi\}_{\xi\in\Lambda}\subseteq\partial B_{1}\cap\mathbb{Q}^{d} and smooth non-negative coefficients aξ(R)a_{\xi}(R) such that for every RB1R\in\partial B_{1}

R=ξΛaξ(R)ξ.R=\sum_{\xi\in\Lambda}a_{\xi}(R)\xi\,.

Moreover, for each ξΛ\xi\in\Lambda there exists ξ,ξ1,..,ξd2\xi^{\perp},\xi_{1},..,\xi_{d-2} such that {ξ,ξ,ξ1,..,ξd2}B1d\{\xi,\xi^{\perp},\xi_{1},..,\xi_{d-2}\}\subset\partial B_{1}\cap{\mathbb{Q}}^{d} form an orthonormal basis of d\mathbb{R}^{d} and Jξ=ξJ\xi^{\perp}=\xi. Finally, since we will periodize functions, let nn_{\ast}\in{\mathbb{N}} be

maxξΛlξ,\max_{\xi\in\Lambda}l_{\xi},

where lξl_{\xi} is the l.c.m. of the denominators of the rational numbers ξ,ξ,ξ1,..,ξd2\xi,\xi^{\perp},\xi_{1},..,\xi_{d-2}.

And we also recall the following result from [BDLC20, Lemma 4.2] to get the property of building blocks disjoint supports.

Lemma \thelemma@alt.

Let d3d\geq 3, 14>ρ>0\frac{1}{4}>\rho>0 and Λ𝕊d1d\Lambda\subseteq\mathbb{S}^{d-1}\cap\mathbb{Q}^{d} be a finite number of vectors. Then there exists μ0:=μ0(d,Λ)>0\mu_{0}:=\mu_{0}(d,\Lambda)>0 and a family of vectors {vξ}ξΛd\{v_{\xi}\}_{\xi\in\Lambda}\subseteq\mathbb{R}^{d} such that the periodized cylinders vξ+B2ρμ1+ξ+dv_{\xi}+B_{2\rho\mu^{-1}}+\mathbb{R}\xi+\mathbb{Z}^{d} are disjoint as ξ\xi varies in Λ\Lambda, provided μμ0\mu\geq\mu_{0}.

2.2. Antidivergences

We recall that the operator Δ1\nabla\Delta^{-1} is an anti-divergence when applied to smooth vector fields of 0 mean. As shown in [MoSz2019AnnPDE, Lemma 2.3] and [MS20, Lemma 3.5], however, the following lemma introduces an improved anti-divergence operator, for functions with a particular structure.

Lemma \thelemma@alt.

(Cp. with [MS20, Lemma 3.5]) Let λ\lambda\in{\mathbb{N}} and f,g:𝕋df,g:{\mathbb{T}}^{d}\to\mathbb{R} be smooth functions, and gλ=g(λx)g_{\lambda}=g(\lambda x). Assume that g=0\int g=0. Then if we set (fgλ)=fΔ1gλΔ1(fΔ1gλ+fgλ)\mathcal{R}(fg_{\lambda})=f\nabla\Delta^{-1}g_{\lambda}-\nabla\Delta^{-1}(\nabla f\cdot\nabla\Delta^{-1}g_{\lambda}+\int fg_{\lambda}), we have that div(fgλ)=fgλfgλ\operatorname{div}\mathcal{R}(fg_{\lambda})=fg_{\lambda}-\int fg_{\lambda} and for some C:=C(k,p)C:=C({k,p})

Dk(fgλ)LpCλk1fCk+1gWk,pfor every k,p[1,].\|D^{k}\mathcal{R}(fg_{\lambda})\|_{L^{p}}\leq C\lambda^{k-1}\|f\|_{C^{k+1}}\|g\|_{W^{k,p}}\qquad\mbox{for every }k\in{\mathbb{N}},p\in[1,\infty]. (2.1)
Proof.

It is enough to combine [MS20, Lemma 3.5] and the remark in [MS20, page 12]. ∎

2.3. Slow and fast variables

Finally we recall the following improved Hölder inequality, stated as in [MoSz2019AnnPDE, Lemma 2.6] (see also [BV, Lemma 3.7]). If λ\lambda\in{\mathbb{N}} and f,g:𝕋df,g:{\mathbb{T}}^{d}\to\mathbb{R} are smooth functions, then we have

f(x)g(λx)LpfLpgLp+C(p)dfC1gLpλ1/p\|f(x)g(\lambda x)\|_{L^{p}}\leq\|f\|_{L^{p}}\|g\|_{L^{p}}+\frac{C(p)\sqrt{d}\|f\|_{C^{1}}\|g\|_{L^{p}}}{\lambda^{1/p}} (2.2)

and

|f(x)g(λx)𝑑x||f(x)(g(λx)g)𝑑x|+|f||g|dfC1gL1λ+|f||g|.\Big{|}\int f(x)g(\lambda x)\,dx\Big{|}\leq\Big{|}\int f(x)\Big{(}g(\lambda x)-\int g\Big{)}\,dx\Big{|}+\Big{|}\int f\Big{|}\cdot\Big{|}\int g\Big{|}\leq\frac{\sqrt{d}\|f\|_{C^{1}}\|g\|_{L^{1}}}{\lambda}+\Big{|}\int f\Big{|}\cdot\Big{|}\int g\Big{|}. (2.3)

3. Building blocks

Let 0<ρ<140<\rho<\frac{1}{4} be a constant. We consider φCc(d1)\varphi\in C^{\infty}_{c}(\mathbb{R}^{d-1}) and ψCc(d1)\psi\in C^{\infty}_{c}(\mathbb{R}^{d-1}) which satisfy

φCc(Bρ)φ=1,φ0,\varphi\in C^{\infty}_{c}(B_{\rho})\qquad\int\varphi=1,\qquad\varphi\geq 0,\qquad

and

ψCc(B2ρ),ψ=0,ψ(x1,x2,..,xd1)=x1 on Bρ.\psi\in C^{\infty}_{c}(B_{2\rho}),\qquad\int\psi=0,\qquad\psi(x_{1},x_{2},..,x_{d-1})=x_{1}\mbox{ on }B_{\rho}.

Given μ1\mu\gg 1 we define

φ¯μ(x):=μ(d1)/pφ(μx),\displaystyle\overline{\varphi}_{\mu}(x):=\mu^{(d-1)/p}\varphi(\mu x),
ψ¯μ(x):=μ(d1)/pψ(μx).\displaystyle\overline{\psi}_{\mu}(x):=\mu^{(d-1)/p^{\prime}}\psi(\mu x).

By an abuse of notation, we periodize φ¯,ψ¯μ\overline{\varphi},\overline{\psi}_{\mu} so that the functions are treated as periodic functions defined on 𝕋d1{\mathbb{T}}^{d-1}. These periodic functions will allow us to define our building blocks, defined on 𝕋d{\mathbb{T}}^{d}.

Given Λ\Lambda and nn_{\ast}\in{\mathbb{N}} as in Lemma 2.1, for any ξΛ\xi\in\Lambda (we recall the notation of ξ,ξ1,..,ξd2\xi^{\perp},\xi_{1},..,\xi_{d-2} as in Lemma 2.1) and for any σ>0\sigma>0, we define Θ~ξ,μ,σ,H~ξ,μ:𝕋d\tilde{\Theta}_{\xi,\mu,\sigma},\tilde{H}_{\xi,\mu}:{\mathbb{T}}^{d}\to\mathbb{R} and the autonomous Hamiltonian vector field XH~ξ,μ:𝕋ddX_{\tilde{H}_{\xi,\mu}}:{\mathbb{T}}^{d}\to\mathbb{R}^{d}

Θξ,μ,σ(x):=σnd1φ¯μ(nξ(xvξ),nξ1(xvξ),nξ2(xvξ),..,nξd2(xvξ)),\displaystyle{\Theta}_{\xi,\mu,\sigma}(x):=\sigma n_{\ast}^{d-1}\overline{\varphi}_{\mu}(n_{\ast}\xi^{\perp}\cdot(x-v_{\xi}),n_{\ast}\xi_{1}\cdot(x-v_{\xi}),n_{\ast}\xi_{2}\cdot(x-v_{\xi}),..,n_{\ast}\xi_{d-2}\cdot(x-v_{\xi})),
Hξ,μ(x):=1μψ¯μ(nξ(xvξ),nξ1(xvξ),nξ2(xvξ),..,nξd2(xvξ)),\displaystyle{H}_{\xi,\mu}(x):=\frac{1}{\mu}\overline{\psi}_{\mu}(n_{\ast}\xi^{\perp}\cdot(x-v_{\xi}),n_{\ast}\xi_{1}\cdot(x-v_{\xi}),n_{\ast}\xi_{2}\cdot(x-v_{\xi}),..,n_{\ast}\xi_{d-2}\cdot(x-v_{\xi})),
XHξ,μ:=JHξ,μ(x).\displaystyle X_{{H}_{\xi,\mu}}:=J\nabla{H}_{\xi,\mu}(x).

where μμ0(d,Λ)\mu\geq\mu_{0}(d,\Lambda) and {vξ}ξΛ\{v_{\xi}\}_{\xi\in\Lambda} are given by Lemma 2.1 in order to get the following property on the supports of these family of functions

suppXHξ,μsuppΘξ,μ,σ=suppXHξ,μsuppXHξ,μ=suppΘξ,μ,σsuppΘξ,μ,σ=,\text{supp}X_{H_{\xi,\mu}}\cap\text{supp}\Theta_{\xi^{\prime},\mu,\sigma}=\text{supp}X_{H_{\xi,\mu}}\cap\text{supp}X_{H_{\xi^{\prime},\mu}}=\text{supp}\Theta_{\xi^{\prime},\mu,\sigma}\cap\text{supp}\Theta_{\xi,\mu,\sigma}=\emptyset,

for any ξξΛ\xi\neq\xi^{\prime}\in\Lambda.

Remark \theremark@alt.

In the previous definition we just multiply φ\varphi by σ\sigma, because we will need autonomous vector fields, but the natural choice is to split σ>0\sigma>0 as σ1/p\sigma^{1/p} and σ1/p\sigma^{1/p^{\prime}} as in [BDLC20, Section 4].

Finally, by standard computations, we have proved the following fundamental lemma for our building blocks.

Lemma \thelemma@alt.

Let d4d\geq 4, ΛB1d\Lambda\subset\partial B_{1}\cap{\mathbb{Q}}^{d} be a finite set. Then there exists μ0>0\mu_{0}>0 such that the following holds.

There exist two families of functions {Θξ,μ,σ}ξ,μ,σC(𝕋d)\{\Theta_{\xi,\mu,\sigma}\}_{\xi,\mu,\sigma}\subset C^{\infty}({\mathbb{T}}^{d}), {Hξ,μ,}ξ,μC(𝕋d;d)\{H_{\xi,\mu,}\}_{\xi,\mu}\subset C^{\infty}({\mathbb{T}}^{d};\mathbb{R}^{d}), where ξΛ\xi\in\Lambda and σ,μ\sigma,\mu\in\mathbb{R} such that for any μμ0\mu\geq\mu_{0}, σ>0\sigma>0 we have

div(XHξ,μΘξ,μ,σ)=0,\operatorname{div}(X_{H_{\xi,\mu}}\Theta_{\xi,\mu,\sigma})=0, (3.1)
divXHξ,μ=0,\operatorname{div}X_{H_{\xi,\mu}}=0,
XHξ,μ=0,\int X_{H_{\xi,\mu}}=0, (3.2)
XHξ,μΘξ,μ,σ=σξ.\int X_{H_{\xi,\mu}}\Theta_{\xi,\mu,\sigma}=\sigma\xi. (3.3)

For any kk\in{\mathbb{N}} and any s[1,]s\in[1,\infty] one has

DkΘξ,μ,σLsC(d,k,s,n)σμk+(d1)(1/p1/s),\|D^{k}\Theta_{\xi,\mu,\sigma}\|_{L^{s}}\leq C(d,k,s,n_{\ast})\sigma\mu^{k+(d-1)(1/p-1/s)}, (3.4)
DkXHξ,μLsC(d,k,s,n)μk+(d1)(1/p1/s),DkHξ,μLsC(d,k,s,n)μk1+(d1)(1/p1/s).\|D^{k}X_{H_{\xi,\mu}}\|_{L^{s}}\leq C(d,k,s,n_{\ast})\mu^{k+(d-1)(1/p^{\prime}-1/s)},\qquad\|D^{k}H_{\xi,\mu}\|_{L^{s}}\leq C(d,k,s,n_{\ast})\mu^{k-1+(d-1)(1/p^{\prime}-1/s)}. (3.5)

Finally, they have pairwise compact disjoint supports for any ξξ\xi\neq\xi^{\prime}, namely

suppXHξ,μsuppΘξ,μ,σ=suppXHξ,μsuppXHξ,μ=suppΘξ,μ,σsuppΘξ,μ,σ=,\displaystyle\text{supp}X_{H_{\xi,\mu}}\cap\text{supp}\Theta_{\xi^{\prime},\mu,\sigma}=\text{supp}X_{H_{\xi,\mu}}\cap\text{supp}X_{H_{\xi^{\prime},\mu}}=\text{supp}\Theta_{\xi^{\prime},\mu,\sigma}\cap\text{supp}\Theta_{\xi,\mu,\sigma}=\emptyset, (3.6)

for any ξξ\xi\neq\xi^{\prime}.

4. Iteration scheme

As in [MoSz2019AnnPDE] we consider the following system of equations in [0,T]×𝕋d[0,T]\times{\mathbb{T}}^{d}

tρq+div(ρqJHq)=divRq,\partial_{t}\rho_{q}+\operatorname{div}(\rho_{q}J\nabla H_{q})=-\operatorname{div}R_{q}, (4.1)

where we observe that divJH=0.\operatorname{div}J\nabla H=0. We then fix three parameters a0a_{0}, b>0b>0 and β>0\beta>0, to be chosen later only in terms of dd, pp, rr, and for any choice of a>a0a>a_{0} we define

λ0=a,λq+1=λqbandδq=λq2β.\lambda_{0}=a,\quad\lambda_{q+1}=\lambda_{q}^{b}\quad\mbox{and}\quad\delta_{q}=\lambda_{q}^{-2\beta}\,.

The following proposition builds a converging sequence of functions with the inductive estimates

maxtRq(t,)L1δq+1\max_{t}\|R_{q}(t,\cdot)\|_{L^{1}}\leq\delta_{q+1} (4.2)
maxt(ρq(t,)C1+tρq(t,)C0+HqC1+HqW2,p+HqW3,r)λqα,\max_{t}\left(\|\rho_{q}(t,\cdot)\|_{C^{1}}+\|\partial_{t}\rho_{q}(t,\cdot)\|_{C^{0}}+\|H_{q}\|_{C^{1}}+\|H_{q}\|_{W^{2,p^{\prime}}}+\|H_{q}\|_{W^{3,r}}\right)\leq\lambda_{q}^{\alpha}\,, (4.3)

where α\alpha is yet another positive parameter which will be specified later.

Proposition \theprop@alt.

There exist α,b,a0,M>5\alpha,b,a_{0},M>5, 0<β<(2b)10<\beta<(2b)^{-1} such that the following holds. For every aa0a\geq a_{0}, if (ρq,Hq,Rq)(\rho_{q},H_{q},R_{q}) solves (4.1) and enjoys the estimates (4.2), (4.3), then there exist (ρq+1,Hq+1,Rq+1)(\rho_{q+1},H_{q+1},R_{q+1}) which solves (4.1), enjoys the estimates (4.2), (4.3) with qq replaced by q+1q+1 and also the following properties:

  • (a)

    maxt(ρq+1ρq)(t,)L1δq+1\max_{t}\|(\rho_{q+1}-\rho_{q})(t,\cdot)\|_{L^{1}}\leq\delta_{q+1}

  • (b)

    Hq+1HqW2,r+Hq+1HqW1,pM2q\|H_{q+1}-H_{q}\|_{W^{2,r}}+\|H_{q+1}-H_{q}\|_{W^{1,p^{\prime}}}\leq\frac{M}{2^{q}},

  • (b+)

    If pd1p^{\prime}\geq d-1, then Hq+1HqLMλq\|H_{q+1}-H_{q}\|_{L^{\infty}}\leq\frac{M}{\lambda_{q}}

  • (c)

    maxtρq+1JHq+1ρqJHqL1Mδq+1\max_{t}\|\rho_{q+1}J\nabla H_{q+1}-\rho_{q}J\nabla H_{q}\|_{L^{1}}\leq M\delta_{q+1}

  • (d)

    inf(ρq+1ρq)δq+1\inf(\rho_{q+1}-\rho_{q})\geq-\delta_{q+1}

  • (e)

    if for some t0>0t_{0}>0 we have that ρq(t,)=1\rho_{q}(t,\cdot)=1 and Rq(t,)=0R_{q}(t,\cdot)=0 for every t[0,t0]t\in[0,t_{0}], then ρq+1(t,)=1\rho_{q+1}(t,\cdot)=1 and Rq+1(t,)=0R_{q+1}(t,\cdot)=0 for every t[0,t0λq1α]t\in[0,t_{0}-\lambda_{q}^{-1-\alpha}].

Our iterative proposition is quite similar to the one proposed in [BDLC20], but in order to get an autonomous vector field, we put all the ‘bad’ terms form the previous Reynolds error onto the definition of the new density. This gives much worse estimates on the new density: indeed we are unable to control its LpL^{p} norm. But the concentration parameter μ\mu allows us to control the density in the L1L^{1} norm. Point (c) in the above proposition allows us to show convergence of ρqJHq\rho_{q}J\nabla H_{q} in L1L^{1} which was previously done in [BDLC20] using Hölder’s inequality.

Also, in order to get an autonomous vector field, we are unable to use the non-autonomous building blocks of [BDLC20] but instead use the autonomous ‘Mikado flows’ that were used as building blocks in [MoSz2019AnnPDE]. The disadvantage of this approach that was already apparent in [MoSz2019AnnPDE], is that we are unable to get the full dimensional concentration dd but are only able to get a d1d-1 in eqn. 1.5.

4.1. Choice of the parameters

The choice of parameter is very similar to those in [BDLC20, Section 5.1]. We define first the constant

γ:=(1+1p)(min{d1p,d1p,1(d1)(1p1r)})1>0,\gamma:=\Big{(}1+\frac{1}{p}\Big{)}\left(\min\Big{\{}\frac{d-1}{p},\frac{d-1}{p^{\prime}},-1-(d-1)\Big{(}\frac{1}{p^{\prime}}-\frac{1}{r}\Big{)}\Big{\}}\right)^{-1}>0,

Notice that, up to enlarging rr, we can assume that the quantity in the previous line is less than 1/21/2, namely that γ>2\gamma>2. Hence we set α:=4+γ(d+1)\alpha:=4+\gamma(d+1),

b:=max{p,p}(3(1+α)(d+2)+2),b:=\max\{p,p^{\prime}\}(3(1+\alpha)(d+2)+2), (4.4)

and

β:=12bmin{p,p,r,1b+1}=12b(b+1).\beta:=\frac{1}{2b}\min\Big{\{}p,p^{\prime},r,\frac{1}{b+1}\Big{\}}=\frac{1}{2b(b+1)}. (4.5)

Finally, we choose a0a_{0} and MM sufficiently large (possibly depending on all previously fixed parameters) to absorb numerical constants in the inequalities. We set

:=λq1α,\ell:=\lambda_{q}^{-1-\alpha}, (4.6)
μq+1:=λq+1γ.\mu_{q+1}:=\lambda_{q+1}^{\gamma}. (4.7)

4.2. Convolution

The convolution step is the same of [BDLC20, Section 5.2]. We first perform a convolution of ρq\rho_{q} and uqu_{q} to have estimates on more than one derivative of these objects and of the corresponding error. Let ϕCc(B1)\phi\in C^{\infty}_{c}(B_{1}) be a standard convolution kernel in space-time, \ell as in (4.6) and define

ρ:=ρqϕ,H:=Hqϕ,u:=uqϕ,R:=Rqϕ.\rho_{\ell}:=\rho_{q}\ast\phi_{\ell},\qquad H_{\ell}:=H_{q}\ast\phi_{\ell},\qquad u_{\ell}:=u_{q}\ast\phi_{\ell},\qquad R_{\ell}:=R_{q}\ast\phi_{\ell}.

We observe that (ρ,u,R+(ρquq)ρu)(\rho_{\ell},u_{\ell},R_{\ell}+(\rho_{q}u_{q})_{\ell}-\rho_{\ell}u_{\ell}) solves system (4.1) and by (4.2), (4.5) enjoys the following estimates

RL1δq+1,\|R_{\ell}\|_{L^{1}}\leq\delta_{q+1}, (4.8)
ρρqLpρqC1λqαδq+1,\|\rho_{\ell}-\rho_{q}\|_{L^{p}}\leq\ell\|\rho_{q}\|_{C^{1}}\leq\ell\lambda_{q}^{\alpha}\leq\delta_{q+1}, (4.9)
uuqLpCλqαδq+1,\|u_{\ell}-u_{q}\|_{L^{p^{\prime}}}\leq C\ell\lambda_{q}^{\alpha}\leq\delta_{q+1},
uuqW1,rCλqαδq+1.\|u_{\ell}-u_{q}\|_{W^{1,r}}\leq C\ell\lambda_{q}^{\alpha}\leq\delta_{q+1}\,.

Indeed note that by (4.5)

λqα=λq1=δq+112bβδq+1\ell\lambda_{q}^{\alpha}=\lambda_{q}^{-1}=\delta_{q+1}^{\frac{1}{2b\beta}}\ll\delta_{q+1}

Next observe that

tNρC0+ρCN+uW1+N,r+tNuW1,rC(N)N+1(ρqC1+uqW2,r)C(N)N+1λqα\|\partial_{t}^{N}\rho_{\ell}\|_{C^{0}}+\|\rho_{\ell}\|_{C^{N}}+\|u_{\ell}\|_{W^{1+N,r}}+\|\partial_{t}^{N}u_{\ell}\|_{W^{1,r}}\leq C(N)\ell^{-N+1}(\|\rho_{q}\|_{C^{1}}+\|u_{q}\|_{W^{2,r}})\leq C(N)\ell^{-N+1}\lambda_{q}^{\alpha}

for every N{0}N\in{\mathbb{N}}\setminus\{0\}. Using the Sobolev embedding Wd,rWd,1C0W^{d,r}\subset{W^{d,1}\subset}C^{0} we then conclude

tNuC0+uCNC(N)Nd+2λqα.\|\partial_{t}^{N}u_{\ell}\|_{C^{0}}+\|u_{\ell}\|_{C^{N}}\leq C(N)\ell^{-N-d+2}\lambda_{q}^{\alpha}\,.

By Young’s inequality we estimate the higher derivatives of RR_{\ell} in terms of RqL1\|R_{q}\|_{L^{1}} to get

RCN+tNRC0DNρLRqL1C(N)NdC(N)λq(1+α)(d+N)\|R_{\ell}\|_{C^{N}}+\|\partial_{t}^{N}R_{\ell}\|_{C^{0}}\leq\|D^{N}\rho_{\ell}\|_{L^{\infty}}\|R_{q}\|_{L^{1}}\leq C(N)\ell^{-N-d}\leq C(N)\lambda_{q}^{(1+\alpha)(d+N)}\, (4.10)

for every NN\in{\mathbb{N}}. Finally, thanks to [BDLC20, Lemma 5.1] for the last part of the error we have

(ρquq)ρuL1C2λq2α14δq+2,\|(\rho_{q}u_{q})_{\ell}-\rho_{\ell}u_{\ell}\|_{L^{1}}\leq C\ell^{2}\lambda_{q}^{2\alpha}\leq\frac{1}{4}\delta_{q+2}, (4.11)

where we have assumed that aa is sufficiently large.

4.3. Definition of the perturbation

Let μq+1>0\mu_{q+1}>0 be as in (4.7) and let χCc(34,34)\chi\in C^{\infty}_{c}(-\frac{3}{4},\frac{3}{4}) such that nχ(τn)=1\sum_{n\in\mathbb{Z}}\chi(\tau-n)=1 for every τ\tau\in\mathbb{R}.

Fix a parameter κ=20δq+2\kappa=\frac{20}{\delta_{q+2}} and consider a finite set ΛB1d\Lambda\subset\partial B_{1}\cap{\mathbb{Q}}^{d} as in Lemma 2.1 and consider the related building blocks implicitly defined in Lemma 3. We define the new density, Hamiltonian ,and vector field by adding to ρ\rho_{\ell}, HH_{\ell} and uu_{\ell} a principal term and a smaller corrector, namely we set

ρq+1\displaystyle\rho_{q+1} :=ρ+θq+1(p)+θq+1(c),\displaystyle:=\rho_{\ell}+\theta_{q+1}^{(p)}+\theta_{q+1}^{(c)}\,,
Hq+1\displaystyle H_{q+1} :=H+hq+1,\displaystyle:=H_{\ell}+h_{q+1}\,,
uq+1\displaystyle u_{q+1} :=u+wq+1.\displaystyle:=u_{\ell}+w_{q+1}\ .

The principal perturbations are given, respectively, by

hq+1(x)\displaystyle h_{q+1}(x) =12qλq+1ξΛHξ,μq+1(λq+1x),\displaystyle=\frac{1}{2^{q}\lambda_{q+1}}\sum_{\xi\in\Lambda}H_{\xi,\mu_{q+1}}(\lambda_{q+1}x), (4.12)
wq+1(x)\displaystyle w_{q+1}(x) =12qξΛXHξ,μq+1(λq+1x),\displaystyle=\frac{1}{2^{q}}\sum_{\xi\in\Lambda}X_{H_{\xi,\mu_{q+1}}}(\lambda_{q+1}x), (4.13)
θq+1(p)(t,x)\displaystyle\theta^{(p)}_{q+1}(t,x) =2qn12ξΛχ(κ|R(t,x)|n)aξ(R(t,x)|R(t,x)|)Θξ,μq+1,n/κ(λq+1x),\displaystyle=2^{q}\sum_{n\geq 12}\sum_{\xi\in\Lambda}\chi(\kappa|R_{\ell}(t,x)|-n)a_{\xi}\left(\frac{R_{\ell}(t,x)}{|R_{\ell}(t,x)|}\right)\Theta_{\xi,\mu_{q+1},n/\kappa}(\lambda_{q+1}x)\,, (4.14)

where we understand that aξ(R(t,x)|R(t,x)|)a_{\xi}\left(\frac{R_{\ell}(t,x)}{|R_{\ell}(t,x)|}\right) is well defined because the term χ(κ|R(t,x)|n)\chi(\kappa|R_{\ell}(t,x)|-n) vanishes at points where RR_{\ell} vanishes. Furthermore, in the definition of θq+1(p)\theta^{(p)}_{q+1} the first sum runs for nn in the range

12nCdδq+21Cλqd(1+α)+2βb2Cλqd(1+α)+1.12\leq n\leq C\ell^{-d}\delta_{q+2}^{-1}\leq C\lambda_{q}^{d(1+\alpha)+2\beta b^{2}}\leq C\lambda_{q}^{d(1+\alpha)+1}. (4.15)

Indeed χ(κ|R(t,x)|n)=0\chi(\kappa|R_{\ell}(t,x)|-n)=0 if n20δq+21RC0+1n\geq 20\delta_{q+2}^{-1}\|R_{\ell}\|_{C^{0}}+1 and by (4.10) we obtain an upper bound for nn.
Notice that uq+1u_{q+1} is an autonomous Hamiltonian vector field. Indeed, we have that wq+1=Jhq+1w_{q+1}=J\nabla h_{q+1} and consequently uq+1=JHq+1u_{q+1}=J\nabla H_{q+1}.
The aim of the corrector term for the density is to ensure that the overall addition has zero average:

θq+1(c)(t):=θq+1(p)(t,x)𝑑x.\theta^{(c)}_{q+1}(t):=-\int\theta_{q+1}^{(p)}(t,x)\,dx.

5. Proof of the Proposition 4

In this section, we prove the main iterative proposition 4. The proof is very similar to the one found in [BDLC20] as we have very similar estimates on the building blocks. We provide details for the convenience of the reader.

Lemma \thelemma@alt.

For mm\in\mathbb{N}, N{0}N\in\mathbb{N}\setminus\{0\} and n2n\geq 2 we have

tmχ(κ|R|n)CNC(m,N)δq+22(N+m)(N+m)(1+d)C(m,N)λq(N+m)(d+2)(1+α)\displaystyle\|\partial^{m}_{t}\chi(\kappa|R_{\ell}|-n)\|_{C^{N}}\leq C(m,N)\delta_{q+2}^{-2(N+m)}\ell^{-(N+m)(1+d)}\leq C(m,N)\lambda_{q}^{(N+m)(d+2)(1+\alpha)} (5.1)
tm(aξ(R|R|))CNC(m,N)δq+2Nm(N+m)(1+d)C(m,N)λq(N+m)(d+2)(1+α)on {χ(κ|R|n)>0}.\displaystyle\|\partial^{m}_{t}(a_{\xi}({\textstyle{\frac{R_{\ell}}{|R_{\ell}|}}}))\|_{C^{N}}\leq C(m,N)\delta_{q+2}^{-N-m}\ell^{-(N+m)(1+d)}\leq C(m,N)\lambda_{q}^{(N+m)(d+2)(1+\alpha)}\qquad\mbox{on $\{\chi(\kappa|R_{\ell}|-n)>0\}$}. (5.2)

In the following estimates are crucial the choices of parameters ,b,β,γ\ell,b,\beta,\gamma and κ\kappa fixed in Subsection 4.1 and the inductive parameters λq+1,δq+1\lambda_{q+1},\delta_{q+1} and μq+1\mu_{q+1}.

5.1. Estimates on the perturbation

Here we show the inductive estimates are satisfied for the perturbed quantities.

5.1.1. Estimates on the velocity field and Hamiltonian

hq+1W1,pwq+1Lp2q|Λ|XHξ,μq+1(λq+1)Lp2q|Λ|Cμq+1(d1)(1/p1/p)C|Λ|2q\begin{split}\|h_{q+1}\|_{W^{1,p^{\prime}}}\lesssim\|w_{q+1}\|_{L^{p^{\prime}}}&\leq 2^{-q}|\Lambda|\|X_{H_{\xi,\mu_{q+1}}}(\lambda_{q+1}\cdot)\|_{L^{p^{\prime}}}\leq 2^{-q}|\Lambda|C\mu_{q+1}^{(d-1)(1/p^{\prime}-1/p^{\prime})}\\ &\leq C|\Lambda|2^{-q}\end{split} (5.3)

where we have used (3.5) in the third inequality.

hq+1W2,rwq+1W1,rwq+1Lr+Dwq+1Lr2q|Λ|XHξ,μq+1(λq+1)Lr+2q|Λ|λq+1DXHξ,μq+1(λq+1)Lr2q|Λ|Cμq+1(d1)(1/p1/r)+2q|Λ|Cλq+1μq+11+(d1)(1/p1/r)2q|Λ|Cλq+1γ(d1)(1/p1/r)+2q|Λ|Cλq+11+γ(1+(d1)(1/p1/r))2q|Λ|Cλq+1γ+2q|Λ|Cλq+11/pδq+1\begin{split}\|h_{q+1}\|_{W^{2,r}}\lesssim\|w_{q+1}\|_{W^{1,r}}&\leq\|w_{q+1}\|_{L^{r}}+\|Dw_{q+1}\|_{L^{r}}\\ &\leq 2^{-q}|\Lambda|\|X_{H_{\xi,\mu_{q+1}}}(\lambda_{q+1}\cdot)\|_{L^{r}}+2^{-q}|\Lambda|\lambda_{q+1}\|DX_{H_{\xi,\mu_{q+1}}}(\lambda_{q+1}\cdot)\|_{L^{r}}\\ &\leq 2^{-q}|\Lambda|C\mu_{q+1}^{(d-1)(1/p^{\prime}-1/r)}+2^{-q}|\Lambda|C\lambda_{q+1}\mu_{q+1}^{1+(d-1)(1/p^{\prime}-1/r)}\\ &\leq 2^{-q}|\Lambda|C\lambda_{q+1}^{\gamma(d-1)(1/p^{\prime}-1/r)}+2^{-q}|\Lambda|C\lambda_{q+1}^{1+\gamma(1+(d-1)(1/p^{\prime}-1/r))}\\ &\leq 2^{-q}|\Lambda|C\lambda_{q+1}^{-\gamma}+2^{-q}|\Lambda|C\lambda_{q+1}^{-1/p}\\ &\leq\delta_{q+1}\end{split} (5.4)

Here we have used (3.5) in the fourth inequality and (4.7) in the fifth inequality.

5.1.2. Estimates on the density

Using standard estimates, (3.4) and (4.15)

θq+1(p)(t,)L1n12ξΛ2qχ(κ|R(t,x)|n)aξ(R(t,x)|R(t,x)|)C0Θξ,μq+1,n/κ(λq+1x)L1C|Λ|2qn12nκμq+1(d1)(1/p1)C|Λ|2qκ1λq2d(1+α)+2μq+1(d1)(1/p1)C|Λ|2qκ1λq2d(1+α)+2μq+1(d1)/pδq+1\begin{split}\|\theta^{(p)}_{q+1}(t,\cdot)\|_{L^{1}}&\leq\sum_{n\geq 12}\sum_{\xi\in\Lambda}2^{q}\|\chi(\kappa|R_{\ell}(t,x)|-n)\textstyle{a_{\xi}\left(\frac{R_{\ell}(t,x)}{|R_{\ell}(t,x)|}\right)}\|_{C^{0}}\|\Theta_{\xi,\mu_{q+1},n/\kappa}(\lambda_{q+1}x)\|_{L^{1}}\\ &\leq C|\Lambda|2^{q}\sum_{n\geq 12}\frac{n}{\kappa}\mu_{q+1}^{(d-1)(1/p-1)}\leq C|\Lambda|2^{q}\kappa^{-1}\lambda_{q}^{2d(1+\alpha)+2}\mu_{q+1}^{(d-1)(1/p-1)}\\ &\leq C|\Lambda|2^{q}\kappa^{-1}\lambda_{q}^{2d(1+\alpha)+2}\mu_{q+1}^{-(d-1)/p^{\prime}}\leq\delta_{q+1}\end{split} (5.5)

Now note that by the definition of θq+1(c)(t)\theta^{(c)}_{q+1}(t) we have that

|θq+1(c)(t)|θq+1(p)(t,)L1|\theta^{(c)}_{q+1}(t)|\leq\|\theta^{(p)}_{q+1}(t,\cdot)\|_{L^{1}} (5.6)

From the above two estimates point (a)(a) of Theorem 4 is now proved. Now notice that since θq+1(p)\theta^{(p)}_{q+1} is non-negative, we have

infθq+1(p)(t,)+θq+1(c)(t)θq+1(c)(t)δq+1\displaystyle\inf\theta^{(p)}_{q+1}(t,\cdot)+\theta^{(c)}_{q+1}(t)\geq\theta^{(c)}_{q+1}(t)\geq-\delta_{q+1} (5.7)

From these computations point (d)(d) of Theorem 4 is now proved.

5.1.3. Estimates for Part (c) of Theorem 4

Using standard estimates, the improved Hölder inequality 2.2, (3.4) and (4.15)

θq+1(p)wq+1L1n12ξΛχ(κ|R(t,x)|n)aξ(R(t,x)|R(t,x)|)Θξ,μq+1,n/κ(λq+1x)XHξ,μq+1(λq+1x)L1Cλq+11n12ξΛχ(κ|R|n)aξ(R|R|)C1Θξ,μq+1,n/κXHξ,μq+1L1+n12ξΛχ(κ|R|n)aξ(R|R|)L1Θξ,μq+1,n/κXHξ,μq+1L1Cλq+11λq3(1+α)(d+2)+Cn12nκχ(κ|R|n)aξ(R|R|)L112δq+1+CRL1Mδq+1.\begin{split}\|\theta_{q+1}^{(p)}w_{q+1}\|_{L^{1}}&\leq\|\sum_{n\geq 12}\sum_{\xi\in\Lambda}\chi(\kappa|R_{\ell}(t,x)|-n)a_{\xi}\left(\frac{R_{\ell}(t,x)}{|R_{\ell}(t,x)|}\right)\Theta_{\xi,\mu_{q+1},n/\kappa}(\lambda_{q+1}x)X_{H_{\xi,\mu_{q+1}}}(\lambda_{q+1}x)\|_{L^{1}}\\ &\leq C\lambda_{q+1}^{-1}\sum_{n\geq 12}\sum_{\xi\in\Lambda}\|\chi(\kappa|R_{\ell}|-n)\textstyle{a_{\xi}\left(\frac{R_{\ell}}{|R_{\ell}|}\right)}\|_{C^{1}}\|\Theta_{\xi,\mu_{q+1},n/\kappa}X_{H_{\xi,\mu_{q+1}}}\|_{L^{1}}\\ &\qquad+\sum_{n\geq 12}\sum_{\xi\in\Lambda}\|\chi(\kappa|R_{\ell}|-n)\textstyle{a_{\xi}\left(\frac{R_{\ell}}{|R_{\ell}|}\right)}\|_{L^{1}}\|\Theta_{\xi,\mu_{q+1},n/\kappa}X_{H_{\xi,\mu_{q+1}}}\|_{L^{1}}\\ &\leq C\lambda_{q+1}^{-1}\lambda_{q}^{3(1+\alpha)(d+2)}+C\sum_{n\geq 12}\frac{n}{\kappa}\|\chi(\kappa|R_{\ell}|-n)\textstyle{a_{\xi}\left(\frac{R_{\ell}}{|R_{\ell}|}\right)}\|_{L^{1}}\\ &\leq\frac{1}{2}\delta_{q+1}+C\|R_{\ell}\|_{L^{1}}\leq M\delta_{q+1}.\end{split} (5.8)

We could also prove the above indirectly as we know the product cancels with RR_{\ell} up to a very small error.

5.2. Estimates on higher derivatives

Here we show that the perturbed quantities satisfy the estimate (4.3). By the choice of α\alpha, since in particular α2+γ(d+1)\alpha\geq 2+\gamma(d+1), we have that

ρq+1C1ρC1+θq+1C1ρqC1+2qn12ξΛ[n]χ(κ|R|n)aξ(R|R|)C1Θξ,μq+1,n/κ(λq+1x)C1Cλqα+C2qλq3(1+α)(d+2)λq+1μq+11+(d1)/pλq+1α.\begin{split}\|\rho_{q+1}\|_{C^{1}}&\leq\|\rho_{\ell}\|_{C^{1}}+\|\theta_{q+1}\|_{C^{1}}\leq\|\rho_{q}\|_{C^{1}}+2^{q}\sum_{n\geq 12}\sum_{\xi\in\Lambda^{[n]}}\|\chi(\kappa|R_{\ell}|-n)\textstyle{a_{\xi}\left(\frac{R_{\ell}}{|R_{\ell}|}\right)}\|_{C^{1}}\|\Theta_{\xi,\mu_{q+1},n/\kappa}(\lambda_{q+1}x)\|_{C^{1}}\\ &\leq C\lambda_{q}^{\alpha}+C2^{q}\lambda_{q}^{3(1+\alpha)(d+2)}\lambda_{q+1}\mu_{q+1}^{1+(d-1)/p}\leq\lambda_{q+1}^{\alpha}.\end{split} (5.9)

where in the above calculation, we have used (3.4), (4.7), (4.15) and Lemma 5. An entirely similar estimate is valid for tρq+1C0\|\partial_{t}\rho_{q+1}\|_{C^{0}}. Now we estimate the velocity field using (3.5) and (4.7):

uq+1C0uC0+wq+1C0uqC0+2qξΛXHξ,μq+1(λq+1x)C0λqα+C2qμq+11+(d1)/pλq+1α.\begin{split}\|u_{q+1}\|_{C^{0}}&\leq\|u_{\ell}\|_{C^{0}}+\|w_{q+1}\|_{C^{0}}\leq\|u_{q}\|_{C^{0}}+2^{-q}\sum_{\xi\in\Lambda}\|X_{H_{\xi,\mu_{q+1}}}(\lambda_{q+1}x)\|_{C^{0}}\\ &\leq\lambda_{q}^{\alpha}+C2^{-q}\mu_{q+1}^{1+(d-1)/p^{\prime}}\leq\lambda_{q+1}^{\alpha}.\end{split} (5.10)

Now we estimate the Sobolev norms of uq+1u_{q+1} which give us the estimates on Hq+1H_{q+1}.

u+wq+1W1,puW1,p+wq+1Lp+Dwq+1(t,)LpCλqα+2q|Λ|C+2q|Λ|CDXHξ,μq+1(λq+1)LpCλqα+2q|Λ|C+2q|Λ|Cλq+1μq+11+(d1)(1/p1/p)Cλqα+2q|Λ|C+2q|Λ|Cλq+11+γλq+1α\begin{split}\|u_{\ell}+w_{q+1}\|_{W^{1,p^{\prime}}}&\leq\|u_{\ell}\|_{W^{1,p^{\prime}}}+\|w_{q+1}\|_{L^{p^{\prime}}}+\|Dw_{q+1}(t,\cdot)\|_{L^{p^{\prime}}}\\ &\leq C\lambda_{q}^{\alpha}+2^{-q}|\Lambda|C+2^{-q}|\Lambda|C\|DX_{H_{\xi,\mu_{q+1}}}(\lambda_{q+1}\cdot)\|_{L^{p^{\prime}}}\\ &\leq C\lambda_{q}^{\alpha}+2^{-q}|\Lambda|C+2^{-q}|\Lambda|C\lambda_{q+1}\mu_{q+1}^{1+(d-1)(1/p^{\prime}-1/p^{\prime})}\\ &\leq C\lambda_{q}^{\alpha}+2^{-q}|\Lambda|C+2^{-q}|\Lambda|C\lambda_{q+1}^{1+\gamma}\leq\lambda_{q+1}^{\alpha}\\ \end{split} (5.11)

where we have used (3.5) and (4.7). Similarly we get

u+wq+1W2,ruW2,r+wq+1W1,r+D2wq+1(p)(t,)LruW2,r+2q|Λ|C+2q|Λ|Cλq+12D2XHξ,μq+1LruW2,r+2q|Λ|C+2q|Λ|Cλq+12μq+12+(d1)(1/p1/r)Cλqα+2q|Λ|C+2q|Λ|Cλq+12+γ(2+(d1)(1/p1/r))Cλqα+2q|Λ|C+2q|Λ|Cλq+1γ+1/pλq+1α\begin{split}\|u_{\ell}+w_{q+1}\|_{W^{2,r}}&\leq\|u_{\ell}\|_{W^{2,r}}+\|w_{q+1}\|_{W^{1,r}}+\|D^{2}w^{(p)}_{q+1}(t,\cdot)\|_{L^{r}}\\ &\leq\|u_{\ell}\|_{W^{2,r}}+2^{-q}|\Lambda|C+2^{-q}|\Lambda|C\lambda_{q+1}^{2}\|D^{2}X_{H_{\xi,\mu_{q+1}}}\|_{L^{r}}\\ &\leq\|u_{\ell}\|_{W^{2,r}}+2^{-q}|\Lambda|C+2^{-q}|\Lambda|C\lambda_{q+1}^{2}\mu_{q+1}^{2+(d-1)(1/p^{\prime}-1/r)}\\ &\leq C\lambda_{q}^{\alpha}+2^{-q}|\Lambda|C+2^{-q}|\Lambda|C\lambda_{q+1}^{2+\gamma(2+(d-1)(1/p^{\prime}-1/r))}\\ &\leq C\lambda_{q}^{\alpha}+2^{-q}|\Lambda|C+2^{-q}|\Lambda|C\lambda_{q+1}^{\gamma+1/p^{\prime}}\leq\lambda_{q+1}^{\alpha}\end{split} (5.12)

where we have used (5.4) in the second inequality.

5.3. Estimates on the new Reynold’s Stress

divRq+1=tρq+1+div(ρq+1uq+1)=div(θq+1(p)wq+1R)+tθq+1(p)+tθq+1(c)+div(θq+1(p)u+ρwq+1+θq+1(c)wq+1)+div((ρquq)ρu).\begin{split}-\operatorname{div}R_{q+1}=&\partial_{t}\rho_{q+1}+\operatorname{div}(\rho_{q+1}u_{q+1})=\operatorname{div}(\theta_{q+1}^{(p)}w_{q+1}-R_{\ell})+\partial_{t}\theta_{q+1}^{(p)}+\partial_{t}\theta_{q+1}^{(c)}\\ &+\operatorname{div}(\theta_{q+1}^{(p)}u_{\ell}+\rho_{\ell}w_{q+1}+\theta_{q+1}^{(c)}w_{q+1})+\operatorname{div}((\rho_{q}u_{q})_{\ell}-\rho_{\ell}u_{\ell}).\end{split} (5.13)

We firstly observe that point (e) is a consequence of standard mollification properties and the definition of the perturbations in Subsection 4.3.

Using Lemma 2.1, the property nχ(τn)=1\sum_{n\in\mathbb{Z}}\chi(\tau-n)=1 we get

θq+1(p)wq+1R\displaystyle\theta_{q+1}^{(p)}w_{q+1}-R_{\ell} =n12ξΛχ(κ|R(t,x)|n)aξ(R(t,x)|R(t,x)|)Θξ,μq+1,n/κ(λq+1x)XHξ,μq+1(λq+1x)R\displaystyle=\sum_{n\geq 12}\sum_{\xi\in\Lambda}\chi(\kappa|R_{\ell}(t,x)|-n)a_{\xi}\left(\frac{R_{\ell}(t,x)}{|R_{\ell}(t,x)|}\right)\Theta_{\xi,\mu_{q+1},n/\kappa}(\lambda_{q+1}x)X_{H_{\xi,\mu_{q+1}}}(\lambda_{q+1}x)-R_{\ell} (5.14)
=n12ξΛχ(κ|R(t,x)|n)aξ(R(t,x)|R(t,x)|)(Θξ,μq+1,n/κ(λq+1x)XHξ,μq+1(λq+1x)nκξ)\displaystyle=\sum_{n\geq 12}\sum_{\xi\in\Lambda}\chi(\kappa|R_{\ell}(t,x)|-n)a_{\xi}\left(\frac{R_{\ell}(t,x)}{|R_{\ell}(t,x)|}\right)\left(\Theta_{\xi,\mu_{q+1},n/\kappa}(\lambda_{q+1}x)X_{H_{\xi,\mu_{q+1}}}(\lambda_{q+1}x)-\frac{n}{\kappa}\xi\right) (5.15)
+n12ξΛχ(κ|R(t,x)|n)nκaξ(R(t,x)|R(t,x)|)ξR\displaystyle\quad+\sum_{n\geq 12}\sum_{\xi\in\Lambda}\chi(\kappa|R_{\ell}(t,x)|-n)\frac{n}{\kappa}a_{\xi}\left(\frac{R_{\ell}(t,x)}{|R_{\ell}(t,x)|}\right)\xi-R_{\ell} (5.16)

and the last sum is ready to “cancel” the error RR_{\ell}. Thus, on taking the divergence, we get

div(θq+1(p)wq+1R)=div(n12ξΛχ(κ|R(t,x)|n)aξ(R(t,x)|R(t,x)|)Θξ,μq+1,n/κ(λq+1x)XHξ,μq+1(λq+1x)R)=n12ξΛ(χ(κ|R(t,x)|n)aξ(R(t,x)|R(t,x)|))(Θξ,μq+1,n/κ(λq+1x)XHξ,μq+1(λq+1x)nκξ)+n12ξΛdiv(χ(κ|R(t,x)|n)nκaξ(R(t,x)|R(t,x)|)ξ)divR\begin{split}\operatorname{div}(\theta_{q+1}^{(p)}w_{q+1}&-R_{\ell})\\ &=\operatorname{div}\left(\sum_{n\geq 12}\sum_{\xi\in\Lambda}\chi(\kappa|R_{\ell}(t,x)|-n)a_{\xi}\left(\frac{R_{\ell}(t,x)}{|R_{\ell}(t,x)|}\right)\Theta_{\xi,\mu_{q+1},n/\kappa}(\lambda_{q+1}x)X_{H_{\xi,\mu_{q+1}}}(\lambda_{q+1}x)-R_{\ell}\right)\\ &=\sum_{n\geq 12}\sum_{\xi\in\Lambda}\nabla\left(\chi(\kappa|R_{\ell}(t,x)|-n)a_{\xi}\left(\frac{R_{\ell}(t,x)}{|R_{\ell}(t,x)|}\right)\right)\cdot\left(\Theta_{\xi,\mu_{q+1},n/\kappa}(\lambda_{q+1}x)X_{H_{\xi,\mu_{q+1}}}(\lambda_{q+1}x)-\frac{n}{\kappa}\xi\right)\\ &\quad+\sum_{n\geq 12}\sum_{\xi\in\Lambda}\operatorname{div}\left(\chi(\kappa|R_{\ell}(t,x)|-n)\frac{n}{\kappa}a_{\xi}\left(\frac{R_{\ell}(t,x)}{|R_{\ell}(t,x)|}\right)\xi\right)-\operatorname{div}R_{\ell}\end{split} (5.17)

For the first term, we apply the convex integration. The second term where

R~:=n12ξΛ(χ(κ|R(t,x)|n)nκaξ(R(t,x)|R(t,x)|)ξ)=n12χ(κ|R|n)R|R|nk.\tilde{R}_{\ell}:=\sum_{n\geq 12}\sum_{\xi\in\Lambda}\left(\chi(\kappa|R_{\ell}(t,x)|-n)\frac{n}{\kappa}a_{\xi}\left(\frac{R_{\ell}(t,x)}{|R_{\ell}(t,x)|}\right)\xi\right)=\sum_{n\geq 12}\chi(\kappa|R_{\ell}|-n)\frac{R_{\ell}}{|R_{\ell}|}\frac{n}{k}.

We have

|RR~|\displaystyle|R_{\ell}-\tilde{R}_{\ell}| |n=111χ(κ|R|n)R|+|n12χ(κ|R|n)(R|R|nkR)|\displaystyle\leq\Big{|}\sum_{n=-1}^{11}\chi(\kappa|R_{\ell}|-n)R_{\ell}\Big{|}+\Big{|}\sum_{n\geq 12}\chi(\kappa|R_{\ell}|-n)\left(\frac{R_{\ell}}{|R_{\ell}|}\frac{n}{k}-R_{\ell}\right)\Big{|}
13κ+n12χ(κ|R|n)||R|nκ|\displaystyle\leq\frac{13}{\kappa}+\sum_{n\geq 12}\chi(\kappa|R_{\ell}|-n)\left||R_{\ell}|-\frac{n}{\kappa}\right| (5.18)
1320δq+2+340δq+21520δq+2.\displaystyle\leq\frac{13}{20}\delta_{q+2}+\frac{3}{40}\delta_{q+2}\leq\frac{15}{20}\delta_{q+2}. (5.19)

We can now define Rq+1R_{q+1} which satisfies (5.13) as

Rq+1:=Rquadr+(R~R)+Rtime+θq+1(p)u+ρwq+1+[(ρquq)ρu],\begin{split}-R_{q+1}:=&R^{quadr}+(\tilde{R}_{\ell}-R_{\ell})+R^{time}+\theta_{q+1}^{(p)}u_{\ell}+\rho_{\ell}w_{q+1}+[(\rho_{q}u_{q})_{\ell}-\rho_{\ell}u_{\ell}],\end{split} (5.20)

where

Rquadr:=n12ξΛ[(χ(κ|R|n)aξ(R|R|))((Θξ,μq+1,n/κXHξ,μq+1)(λq+1x)nκξ)],R^{quadr}:=\sum_{n\geq 12}\sum_{\xi\in\Lambda}\mathcal{R}\left[\nabla\left(\chi(\kappa|R_{\ell}|-n)\textstyle{a_{\xi}\left(\frac{R_{\ell}}{|R_{\ell}|}\right)}\right)\cdot\left((\Theta_{\xi,\mu_{q+1},n/\kappa}X_{H_{\xi,\mu_{q+1}}})(\lambda_{q+1}x)-\frac{n}{\kappa}\xi\right)\right], (5.21)
Rtime:=Δ1(tθq+1(p)+tθq+1(c)),R^{time}:=\nabla\Delta^{-1}(\partial_{t}\theta_{q+1}^{(p)}+\partial_{t}\theta_{q+1}^{(c)}), (5.22)

Notice that RquadrR^{quadr} is well defined and by (3.3) the function (Θξ,μq+1,n/κXHξ,μq+1)(λq+1x)nκξ(\Theta_{\xi,\mu_{q+1},n/\kappa}X_{H_{\xi,\mu_{q+1}}})(\lambda_{q+1}x)-\frac{n}{\kappa}\xi has 0 mean. We have that tθq+1(p)+tθq+1(c)\partial_{t}\theta_{q+1}^{(p)}+\partial_{t}\theta_{q+1}^{(c)} has 0 mean, so that RtimeR^{time} is well defined.
We now estimate in L1L^{1} each term in the definition of Rq+1R_{q+1}. Recall that the estimate on (ρquq)ρuL1\|(\rho_{q}u_{q})_{\ell}-\rho_{\ell}u_{\ell}\|_{L^{1}} has been already established in (4.11).

By the property (2.1) of the anti-divergence operator \mathcal{R}, Lemma 5 and (4.15) we have

RquadrL1\displaystyle\|R^{quadr}\|_{L^{1}} Cλq+1n12ξΛχ(κ|R|n)aξ(R|R|)C2Θξ,μq+1,n/κXHξ,μq+1(λq+1x)L1\displaystyle\leq\frac{C}{\lambda_{q+1}}\sum_{n\geq 12}\sum_{\xi\in\Lambda}\|\chi(\kappa|R_{\ell}|-n)\textstyle{a_{\xi}\left(\frac{R_{\ell}}{|R_{\ell}|}\right)}\|_{C^{2}}\|\Theta_{\xi,\mu_{q+1},n/\kappa}X_{H_{\xi,\mu_{q+1}}}(\lambda_{q+1}x)\|_{L^{1}}
Cδq+2λq4(1+α)(d+2)+2λq+1δq+220.\displaystyle\leq C\delta_{q+2}\frac{\lambda_{q}^{4(1+\alpha)(d+2)+2}}{\lambda_{q+1}}\leq\frac{\delta_{q+2}}{20}.

To estimate the terms which are linear with respect to the fast variables, we take advantage of the concentration parameter μq+1\mu_{q+1}. First of all, by Calderon-Zygmund estimates we get

RtimeL1Ctθq+1(p)+tθq+1(c)L1tθq+1(p)L1+|tθq+1(c)|.\displaystyle\|R^{time}\|_{L^{1}}\leq C\|\partial_{t}\theta_{q+1}^{(p)}+\partial_{t}\theta_{q+1}^{(c)}\|_{L^{1}}\leq\|\partial_{t}\theta_{q+1}^{(p)}\|_{L^{1}}+|\partial_{t}\theta_{q+1}^{(c)}|.

Next, notice that

tθq+1(p)L1\displaystyle\|\partial_{t}\theta_{q+1}^{(p)}\|_{L^{1}} C2qn12ξΛt[χ(κ|R|n)aξ(R|R|)]C0Θξ,μq+1,n/κL1\displaystyle\leq C2^{q}\sum_{n\geq 12}\sum_{\xi\in\Lambda}\|\partial_{t}\big{[}\chi(\kappa|R_{\ell}|-n)\textstyle{a_{\xi}\left(\frac{R_{\ell}}{|R_{\ell}|}\right)}\big{]}\|_{C^{0}}\|\Theta_{\xi,\mu_{q+1},n/\kappa}\|_{L^{1}} (5.23)
C2qδq+2λq3(1+α)(d+2)μq+1d/pδq+220.\displaystyle\leq C2^{q}\delta_{q+2}\lambda_{q}^{3(1+\alpha)(d+2)}\mu_{q+1}^{-d/p^{\prime}}\leq\frac{\delta_{q+2}}{20}. (5.24)

From (5.23), (3.1) and (2.3) we get

|tθq+1(c)|tθq+1(p)L1δq+220\displaystyle|\partial_{t}\theta_{q+1}^{(c)}|\leq\|\partial_{t}\theta_{q+1}^{(p)}\|_{L^{1}}\leq\frac{\delta_{q+2}}{20}

Similarly, we have that

θq+1(p)u+ρwq+1L1θq+1(p)L1uL+ρLwq+1L1n12ξΛ[n]2qχ(κ|R|n)aξ(R|R|)LΘξ,μq+1,n/κL1uL+ρLXHξ,μq+1L1C2qδq+21/pλq2(1+α)(d+2)μq+1d/p+Cδq+21/pλq2(1+α)(d+2)μq+1d/pδq+220\begin{split}\|&\theta_{q+1}^{(p)}u_{\ell}+\rho_{\ell}w_{q+1}\|_{L^{1}}\leq\|\theta_{q+1}^{(p)}\|_{L^{1}}\|u_{\ell}\|_{L^{\infty}}+\|\rho_{\ell}\|_{L^{\infty}}\|w_{q+1}\|_{L^{1}}\\ &\leq\sum_{n\geq 12}\sum_{\xi\in\Lambda^{[n]}}2^{q}\|\chi(\kappa|R_{\ell}|-n)\textstyle{a_{\xi}\left(\frac{R_{\ell}}{|R_{\ell}|}\right)}\|_{L^{\infty}}\|\Theta_{\xi,\mu_{q+1},n/\kappa}\|_{L^{1}}\|u_{\ell}\|_{L^{\infty}}+\|\rho_{\ell}\|_{L^{\infty}}\|X_{H_{\xi,\mu_{q+1}}}\|_{L^{1}}\\ &\leq C2^{q}\delta_{q+2}^{1/p}\lambda_{q}^{2(1+\alpha)(d+2)}\mu^{-d/p^{\prime}}_{q+1}+C\delta_{q+2}^{1/p^{\prime}}\lambda_{q}^{2(1+\alpha)(d+2)}\mu^{-d/p}_{q+1}\leq\frac{\delta_{q+2}}{20}\end{split} (5.25)

In the last inequality we used 2βb212\beta b^{2}\leq 1, the definition of γ\gamma, and b(1+1/p)2(1+α)(d+2)+1b(1+1/p)\geq 2(1+\alpha)(d+2)+1.

5.4. Proof of items (b), (b+) and (c)

Firstly we prove point (b). By definitions (4.6), (4.12) and by the estimates (4.3), (5.4) we have

Hq+1HqW2,rHqHW2,r+hq+1W2,rλqα+C|Λ|λq+11/p1λq+C|Λ|λq+11/pMλq,\displaystyle\|H_{q+1}-H_{q}\|_{W^{2,r}}\leq\|H_{q}-H_{\ell}\|_{W^{2,r}}+\|h_{q+1}\|_{W^{2,r}}\leq\ell\lambda_{q}^{\alpha}+\frac{C|\Lambda|}{\lambda_{q+1}^{1/p}}\leq\frac{1}{\lambda_{q}}+\frac{C|\Lambda|}{\lambda_{q+1}^{1/p}}\leq\frac{M}{\lambda_{q}},

and similarly we can estimate Hq+1HqW1,p\|H_{q+1}-H_{q}\|_{W^{1,p^{\prime}}} using (5.3) instead of (5.4). If pd1p^{\prime}\geq d-1, by Lemma 3, the definition of \ell and (4.3) we get

Hq+1HqLHqHL+hq+1L1λq+C|Λ|2qλq+1Mλq,\displaystyle\|H_{q+1}-H_{q}\|_{L^{\infty}}\leq\|H_{q}-H_{\ell}\|_{L^{\infty}}+\|h_{q+1}\|_{L^{\infty}}\leq\frac{1}{\lambda_{q}}+\frac{C|\Lambda|}{2^{q}\lambda_{q+1}}\leq\frac{M}{\lambda_{q}},

which leads to point (b+). For point (c), using (5.8), (5.25), (4.6), divu=0\operatorname{div}u_{\ell}=0 and standard mollification estimates (see for instance [BDLC20, Lemma 5.1]) we have the following

ρq+1JHq+1ρqJHqL1\displaystyle\|\rho_{q+1}J\nabla H_{q+1}-\rho_{q}J\nabla H_{q}\|_{L^{1}} (ρ+θq+1)(u+wq+1)ρqJHqL1\displaystyle\leq\|(\rho_{\ell}+\theta_{q+1})(u_{\ell}+w_{q+1})-\rho_{q}J\nabla H_{q}\|_{L^{1}}
θq+1wq+1L1+θq+1u+ρwq+1L1+ρuρqJHqL1\displaystyle\leq\|\theta_{q+1}w_{q+1}\|_{L^{1}}+\|\theta_{q+1}u_{\ell}+\rho_{\ell}w_{q+1}\|_{L^{1}}+\|\rho_{\ell}u_{\ell}-\rho_{q}J\nabla H_{q}\|_{L^{1}}
2δq+1+δq+220+ρu(ρquq)L1+(ρquq)ρqJHqL1\displaystyle\leq 2\delta_{q+1}+\frac{\delta_{q+2}}{20}+\|\rho_{\ell}u_{\ell}-(\rho_{q}u_{q})_{\ell}\|_{L^{1}}+\|(\rho_{q}u_{q})_{\ell}-\rho_{q}J\nabla H_{q}\|_{L^{1}}
Mδq+1\displaystyle\leq M\delta_{q+1}

Note that the above estimate would imply that ρqJHqf\rho_{q}J\nabla H_{q}\to f in L1L^{1} for some fL1([0,T]×𝕋d;d)f\in L^{1}([0,T]\times{\mathbb{T}}^{d};\mathbb{R}^{d}). But as ρqρ\rho_{q}\to\rho and JHqJHJ\nabla H_{q}\to J\nabla H in L1L^{1}, up to subsequences they converge pointwise a.e. Thus we get that f=ρJHf=\rho J\nabla H a.e. on [0,T]×𝕋d[0,T]\times{\mathbb{T}}^{d}.

6. Proof of the main results

The proof of Theorem 1.1 and Theorem 1.2 are quite similar to [BDLC20, Theorem 1.4, Theorem 1.3] respectively, but we write them here for the convenience of the reader.

6.1. Proof of Theorem 1.1

Without loss of generality we assume T=1T=1. Let α,b,a0,M>5\alpha,b,a_{0},M>5, β>0\beta>0 be fixed as in Proposition 4. Let aa0a\geq a_{0} be chosen such that

q=0δq+1132M.\sum_{q=0}^{\infty}\delta_{q+1}\leq\frac{1}{32M}.

Let χ0\chi_{0} be a smooth time cut-off which equals 11 in [0,1/3][0,1/3] and 0 in [2/3,1][2/3,1],

We set λ=20a\lambda=20a and define the starting triple (ρ0,H0,R0)(\rho_{0},H_{0},R_{0}) of the iteration as follows:

ρ0=χ0(t)+(1+sin(λx1)4)(1χ0(t)),H0=0,R0=tχ0cos(λx1)4λe1.\rho_{0}=\chi_{0}(t)+\Big{(}1+\frac{\sin(\lambda x_{1})}{4}\Big{)}(1-\chi_{0}(t)),\qquad H_{0}=0,\qquad R_{0}=-\partial_{t}\chi_{0}\frac{\cos(\lambda x_{1})}{4\lambda}e_{1}\,.

Simple computations show that the tripe enjoys (4.1) with q=0q=0. Moreover R0L1Cλ1=(1/20)Cλ01\|R_{0}\|_{L^{1}}\leq C\lambda^{-1}=(1/20)C\lambda_{0}^{-1} and thus (4.2) is satisfied because 2β<12\beta<1 (again we need to assume a0a_{0} sufficiently large to absorb the constant). Next tρ0C0+ρ0C1Cλ=20Cλ0\|\partial_{t}\rho_{0}\|_{C^{0}}+\|\rho_{0}\|_{C^{1}}\leq C\lambda=20C\lambda_{0}. Since H00H_{0}\equiv 0 and α>1\alpha>1, we conclude that (4.3) is satisfied as well.

Next use Proposition 4 to build inductively (ρq,Hq,Rq)(\rho_{q},H_{q},R_{q}) for every q1q\geq 1. The sequence {ρq}q\{\rho_{q}\}_{q\in{\mathbb{N}}} is Cauchy in C(L1)C(L^{1}) and we denote by ρC([0,1],L1)\rho\in C([0,1],L^{1}) its limit. Similarly the sequence of autonomous Hamiltonians {Hq}q\{H_{q}\}_{q\in{\mathbb{N}}} is Cauchy in W1,pW^{1,p^{\prime}} and W2,rW^{2,r}; hence, we define HW1,pW2,rH\in W^{1,p^{\prime}}\cap W^{2,r} as its limit. Moreover, thanks to the property (c) and the fact that the sequences ρq\rho_{q} and JHqJ\nabla H_{q} (up to subsequences) converge pointwise a.e. we get that ρqJHq\rho_{q}J\nabla H_{q} converges in C(L1)C(L^{1}) to ρJH\rho J\nabla H.

Clearly ρ\rho and JHJ\nabla H solve the continuity equation and ρ\rho is non-negative on 𝕋d{\mathbb{T}}^{d} by

inf𝕋dρinfρ0+q=0inf(ρq+1ρq)34q=0δq+114.\inf_{{\mathbb{T}}^{d}}\rho\geq\inf\rho_{0}+\sum_{q=0}^{\infty}\inf(\rho_{q+1}-\rho_{q})\geq\frac{3}{4}-\sum_{q=0}^{\infty}\delta_{q+1}\geq\frac{1}{4}\,.

Moreover, ρ\rho does not coincide with the solution which is constantly 11, because

ρ1Lp1ρ0Lpq=0ρq+1ρqLp116Mq=0δq+1>0.\|\rho-1\|_{L^{p}}\geq\|1-\rho_{0}\|_{L^{p}}-\sum_{q=0}^{\infty}\|\rho_{q+1}-\rho_{q}\|_{L^{p}}\geq\frac{1}{16}-M\sum_{q=0}^{\infty}\delta_{q+1}>0.

Finally, since ρ0(t,)1\rho_{0}(t,\cdot)\equiv 1 for t[0,1/3]t\in[0,1/3], point (c) in Proposition 4 ensures that ρ(t,)1\rho(t,\cdot)\equiv 1 for every tt sufficiently close to 0.

6.2. Proof of Theorem 1.2

We first recall a general fact: if uu is an everywhere defined Borel vector field in L1([0,T]×𝕋d;d)L^{1}([0,T]\times{\mathbb{T}}^{d};\mathbb{R}^{d}) such that, for a.e. x𝕋dx\in{\mathbb{T}}^{d}, the integral curve starting from xx is unique, then the corresponding continuity equation is well posed in the class of non-negative, L1([0,T]×𝕋d)L^{1}([0,T]\times{\mathbb{T}}^{d}) solutions for any L1L^{1} initial datum such that ρuL1([0,T]×𝕋d)\rho u\in L^{1}([0,T]\times{\mathbb{T}}^{d}).

Indeed, Ambrosio’s superposition principle (see e.g. [A08, Theorem 3.2]) guarantees that each non-negative, L1([0,T]×𝕋d)L^{1}([0,T]\times{\mathbb{T}}^{d}) solution such that ρuL1([0,T]×𝕋d)\rho u\in L^{1}([0,T]\times{\mathbb{T}}^{d}) is transported by integral curves of the vector field, namely (no matter how the Borel representative is chosen) there is a probability measures η\eta on the space of absolutely continuous curves, supported on the integral curves of the vector field in the sense of Definition 1, such that ρ(t,x)d=(et)#η\rho(t,x)\,\mathscr{L}^{d}=(e_{t})_{\#}\eta for a.e. t[0,T]t\in[0,T] (where ete_{t} is the evaluation map at time tt). Let us consider the disintegration {ηx}x𝕋d\{\eta_{x}\}_{x\in{\mathbb{T}}^{d}} of η\eta with respect to the map e0e_{0}, which is ρ0\rho_{0}-a.e. well defined; since by assumption for a.e. x𝕋dx\in{\mathbb{T}}^{d}, the integral curve starting from xx is unique (and hence coincides with the regular Lagrangian flow), we deduce that ηx\eta_{x} is a Dirac delta on the curve tX(t,x)t\to X(t,x) and consequently ρ(t,)d=X(t,)#(ρ0d)\rho(t,\cdot)\mathscr{L}^{d}=X(t,\cdot)_{\#}(\rho_{0}\mathscr{L}^{d}). This concludes the proof of the claim.

Let u=JHu=J\nabla H be the autonomous Hamiltonian vector field given by Theorem 1.1 and observe that the Cauchy problem for the continuity equation (1.2) from the initial datum ρ01\rho_{0}\equiv 1 has two different non-negative solutions in [0,T][0,T]: ρ(1)1\rho^{(1)}\equiv 1 and the non-constant solution ρ(2)\rho^{(2)} given by Theorem 1.1. Hence, by the previous observation we conclude that there exists a set of initial data of positive measure such that the corresponding integral curves are non-unique. Since the fact that the two functions are distinct solutions of the continuity equation is independent of the pointwise representative chosen for the vector field, this completes the proof of Theorem 1.2.

7. Non conservation of the Hamiltonian along the trajectories

7.1. Proof of Theorem 1.3

We first prove a Theorem in the spirit of Theorem 1.1. We fix pd1p^{\prime}\geq d-1. Let α,b,a0,M>5\alpha,b,a_{0},M>5, β>0\beta>0 be fixed as in Proposition 4 and aa0a\geq a_{0} be chosen such that

Δ:=q=0δq+1116.\Delta:=\sum_{q=0}^{\infty}\delta_{q+1}\leq\frac{1}{16}.

We fix ψ¯0Cc((0,1))\overline{\psi}_{0}\in C^{\infty}_{c}((0,1)) such that ψ¯0Δ\overline{\psi}_{0}\geq\Delta, ψ¯0(x)=Δ\overline{\psi}_{0}(x)=\Delta for any x[0,1/2]x\in[0,1/2], ψ¯0L4\|\overline{\psi}_{0}\|_{L^{\infty}}\leq 4, 01ψ¯0=1\int_{0}^{1}\overline{\psi}_{0}=1 (just use the convolution of a proper function and the standard convolution properties). Then we fix H¯0Cc((0,1/2))\overline{H}_{0}\in C^{\infty}_{c}((0,1/2)) H¯00\overline{H}_{0}\geq 0 H¯0=1,\int\overline{H}_{0}=1, H¯0L4\|\overline{H}_{0}\|_{L^{\infty}}\leq 4. We extend these two functions as periodic functions on 𝕋d{\mathbb{T}}^{d}, imposing that they are independent on the last d1d-1 variables (we call them with the same name with a slight abuse of notation).

Let χ0\chi_{0} be a smooth time cut-off which equals 11 in [0,1/3][0,1/3] and 0 in [2/3,1][2/3,1],

We set λ=20a\lambda=20a and define the starting triple (ρ0,H0,R0)(\rho_{0},H_{0},R_{0}) of the iteration as follows:

ρ0(t,x)=χ0(t)+ψ¯(λx)(1χ0(t)),H0(x)=H¯0(λx1),R0=tχ0(ψ¯(λ)1),{\rho}_{0}(t,x)=\chi_{0}(t)+\overline{\psi}(\lambda x)(1-\chi_{0}(t)),\qquad{H}_{0}(x)=\overline{H}_{0}(\lambda x_{1}),\qquad R_{0}=-\partial_{t}\chi_{0}\mathcal{R}(\overline{\psi}(\lambda\cdot)-1),

where we have periodized the functions ψ¯\overline{\psi} and H¯0\overline{H}_{0} with the parameter λ0\lambda_{0}. Simple computations show that the tripe enjoys (4.1) with q=0q=0. Moreover, thanks to Lemma 2.2, R0L1Cλ1=(1/20)Cλ01\|R_{0}\|_{L^{1}}\leq C\lambda^{-1}=(1/20)C\lambda_{0}^{-1} and thus (4.2) is satisfied because 2β<12\beta<1 (again we need to assume a0a_{0} sufficiently large to absorb the constant). Next tρ0C0+ρ0C1Cλ=20Cλ0\|\partial_{t}\rho_{0}\|_{C^{0}}+\|\rho_{0}\|_{C^{1}}\leq C\lambda=20C\lambda_{0}. Since α>1\alpha>1, we conclude that (4.3) is satisfied as well.

Next use Proposition 4 to build inductively (ρq,Hq,Rq)(\rho_{q},H_{q},R_{q}) for every q1q\geq 1. The sequence {ρq}q\{\rho_{q}\}_{q\in{\mathbb{N}}} is Cauchy in C(L1)C(L^{1}) and we denote by ρC([0,1],L1)\rho\in C([0,1],L^{1}) its limit. Similarly the sequence of autonomous Hamiltonians {Hq}q\{H_{q}\}_{q\in{\mathbb{N}}} is Cauchy in W1,pW^{1,p^{\prime}}, W2,rW^{2,r} and LL^{\infty} (for the last property we used property (b+) of Proposition 4 since p>d1p^{\prime}>d-1); hence, we define HW1,pW2,rLH\in W^{1,p^{\prime}}\cap W^{2,r}\cap L^{\infty} as its limit, that is also continuous. Moreover, thanks to the property (c) and the fact that the sequences ρq\rho_{q} and JHqJ\nabla H_{q} converge a.e. we get that ρqJHq\rho_{q}J\nabla H_{q} converges in C(L1)C(L^{1}) to ρJH\rho J\nabla H.

Clearly ρ\rho and JHJ\nabla H solve the continuity equation and ρ\rho is non-negative on 𝕋d{\mathbb{T}}^{d} by

inf𝕋dρinfρ0+q=0inf(ρq+1ρq)ΔΔ=0.\inf_{{\mathbb{T}}^{d}}\rho\geq\inf\rho_{0}+\sum_{q=0}^{\infty}\inf(\rho_{q+1}-\rho_{q})\geq\Delta-\Delta=0.

Now we apply the Ambrosio’s superposition principle (see e.g. [A08, Theorem 3.2]) to the non negative solution ρ\rho (note that ρJHL1\rho J\nabla H\in L^{1}), which guarantees that ρ\rho is transported by integral curves of the vector field JHJ\nabla H, namely (no matter how the Borel representative is chosen) there is a probability measures η\eta on the space of absolutely continuous curves, supported on the integral curves of the vector field in the sense of Definition 1, such that ρ(t,x)d=(et)#η\rho(t,x)\,\mathscr{L}^{d}=(e_{t})_{\#}\eta for a.e. t[0,T]t\in[0,T] (where ete_{t} is the evaluation map at time tt). We use the notation {ηx}x𝕋d\{\eta_{x}\}_{x\in{\mathbb{T}}^{d}}, that are probability measure defined by the disintegration of η\eta with respect to the map e0e_{0}, which is d\mathcal{L}^{d}-a.e. well defined. To conclude the proof of our theorem is sufficient to prove that

𝕋dACH(γ(0))𝑑ηx(γ)𝑑x>𝕋dACH(γ(1))𝑑ηx(γ)𝑑x,\int_{{\mathbb{T}}^{d}}\int_{AC}H(\gamma(0))d\eta_{x}(\gamma)dx>\int_{{\mathbb{T}}^{d}}\int_{AC}H(\gamma(1))d\eta_{x}(\gamma)dx,

because ηx\eta_{x} is concentrated, for d\mathcal{L}^{d} a.e. x𝕋dx\in{\mathbb{T}}^{d}, on the family of absolutely continuous integral curves of JHJ\nabla H. Thanks to the superposition principle it is equivalent to prove that

𝕋dH(x)ρ(0,x)𝑑x>𝕋dH(x)ρ(1,x)𝑑x,\int_{{\mathbb{T}}^{d}}H(x)\rho(0,x)dx>\int_{{\mathbb{T}}^{d}}H(x)\rho(1,x)dx,

notice that the solution ρ\rho of the continuity equation with respect to the vector field JHJ\nabla H is independent to the pointwise representative of JHJ\nabla H, this would conclude the proof.

By properties (b+), (d) of Proposition 4 and the definition of ρ0\rho_{0}, we have the following estimates

𝕋dH(x)ρ(0,x)𝑑x=𝕋dH(x)𝑑x𝕋dH0(x)𝑑xHH0L11λ0.\displaystyle\int_{{\mathbb{T}}^{d}}H(x)\rho(0,x)dx=\int_{{\mathbb{T}}^{d}}H(x)dx\geq\int_{{\mathbb{T}}^{d}}H_{0}(x)dx-\|H-H_{0}\|_{L^{\infty}}\geq 1-\frac{1}{\lambda_{0}}.

and

𝕋d\displaystyle\int_{{\mathbb{T}}^{d}} H(x)ρ(1,x)dx\displaystyle H(x)\rho(1,x)dx
=𝕋d(H(x)H0(x))ρ(1,x)𝑑x+𝕋dH0(x)(ρ(1,x)ρ0(1,x))𝑑x+𝕋dH0(x)ρ0(1,x)𝑑x.\displaystyle=\int_{{\mathbb{T}}^{d}}(H(x)-H_{0}(x))\rho(1,x)dx+\int_{{\mathbb{T}}^{d}}H_{0}(x)(\rho(1,x)-\rho_{0}(1,x))dx+\int_{{\mathbb{T}}^{d}}H_{0}(x)\rho_{0}(1,x)dx.

By property (b+), the definition of λq+1=λqb\lambda_{q+1}=\lambda_{q}^{b} and the definition of H0H_{0} and ρ0\rho_{0} we estimate every summand and we get

𝕋d(H(x)H0(x))ρ(1,x)𝑑xHH0LρLtLx11λ0,\displaystyle\int_{{\mathbb{T}}^{d}}(H(x)-H_{0}(x))\rho(1,x)dx\leq\|H-H_{0}\|_{L^{\infty}}\|\rho\|_{L^{\infty}_{t}L^{1}_{x}}\leq\frac{1}{\lambda_{0}},
𝕋dH0(x)(ρ(1,x)ρ0(1,x))𝑑xH0Lρρ0LtLx14Δ,\displaystyle\int_{{\mathbb{T}}^{d}}H_{0}(x)(\rho(1,x)-\rho_{0}(1,x))dx\leq\|H_{0}\|_{L^{\infty}}\|\rho-\rho_{0}\|_{L^{\infty}_{t}L^{1}_{x}}\leq 4\Delta,
𝕋dH0(x)ρ0(1,x)𝑑x4Δ.\displaystyle\int_{{\mathbb{T}}^{d}}H_{0}(x)\rho_{0}(1,x)dx\leq 4\Delta.

The thesis follows observing that 1>2λ0+8Δ1>\frac{2}{\lambda_{0}}+8\Delta.

Acknowledgements

The authors would like to thank Thomas Alazard, Camillo De Lellis and Maria Colombo for introducing them to the problem. The authors also thank Elio Marconi and Riccardo Tione for advice on the introduction. VG has been supported by the National Science Foundation under Grant No. DMS-FRG-1854344 and MS has been supported by the SNSF Grant 182565.

References