This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Non-uniformly Stable Matchingsthanks: This work was supported by JST ERATO Grant Number JPMJER2301, Japan.

Naoyuki Kamiyama
(Institute of Mathematics for Industry
Kyushu University, Fukuoka, Japan
[email protected])
Abstract

Super-stability and strong stability are properties of a matching in the stable matching problem with ties. In this paper, we introduce a common generalization of super-stability and strong stability, which we call non-uniform stability. First, we prove that we can determine the existence of a non-uniformly stable matching in polynomial time. Next, we give a polyhedral characterization of the set of non-uniformly stable matchings. Finally, we prove that the set of non-uniformly stable matchings forms a distributive lattice.

1 Introduction

In this paper, we consider a problem of finding a matching satisfying some property between two disjoint groups of agents. In particular, we are interested in the setting where each agent has a preference over agents in the other group. Stability, which was introduced by Gale and Shapley [3], is one of the most fundamental properties in this setting. Informally speaking, a matching is said to be stable if there does not exist an unmatched pair of agents having incentive to deviate from the current matching. Gale and Shapley [3] proved that if the preference of an agent is strict (i.e., a strict total order), then there always exists a stable matching and we can find a stable matching in polynomial time.

Irving [7] considered a variant of the stable matching problem where ties are allowed in the preferences of agents. For this setting, Irving [7] introduced the following three properties of a matching (see, e.g., [11] and [25, Chapter 3] for a survey of the stable matching problem with ties). The first property is weak stability. This stability guarantees that there does not exist an unmatched pair of agents such that both prefer the other agent to the current partner. Irving [7] proved that there always exists a weakly stable matching, and a weakly stable matching can be found in polynomial time by using the algorithm of Gale and Shapley [3] with tie-breaking. The second one is strong stability. This stability guarantees that there does not exist an unmatched pair of agents such that the other agent is not worse than the current partner for both agents, and at least one of the agents prefers the other agent to the current partner. The third one is super-stability. This stability guarantees that there does not exist an unmatched pair of agents such that the other agent is not worse than the current partner for both agents. It is known that a super-stable matching and a strongly stable matching may not exist [7]. Thus, the problem of checking the existence of a matching satisfying these properties is one of the fundamental algorithmic challenges for super-stability and strong stability. For example, Irving [7] proposed polynomial-time algorithms for checking the existence of a super-stable matching and a strongly stable matching (see also [23]).

Similar results have been obtained for both super-stability and strong stability. Since their definitions are different, the same results are separately proved for these properties by using the same techniques. The main motivation of this paper is the following theoretical question. Can we prove the same results for super-stability and strong stability at the same time? In order to solve this question, in this paper, we first introduce a common generalization of super-stability and strong stability, which we call non-uniform stability. Then, in Section 3, we prove that we can check the existence of a non-uniformly stable matching in polynomial time. Our algorithm is a careful unification of the algorithms proposed by Irving [7] for super-stability and strong stability. Next, in Section 4, we give a polyhedral characterization of the set of non-uniformly stable matchings (i.e., a linear inequality description of the convex hull of the set of characteristic vectors of non-uniformly stable matchings). For the setting where the preferences are strict, polyhedral characterizations of the set of stable matchings were given in, e.g., [2, 31, 35]. For the setting where ties in the preferences are allowed, Hu and Garg [6] gave a polyhedral characterization of the set of super-stable matchings, and Kunysz [19] gave a polyhedral characterization of the set of strongly stable matchings (see also [6, 12]). Our proposed characterization is a natural unification of those given by Hu and Garg [6] and Kunysz [19]. Our proof is based on the proofs of Hu and Garg [6] for super-stability and strong stability. Finally, in Section 5, we first prove a structure of the set of vertices covered by a non-uniformly stable matching, which is a common generalization of the same results for super-stability [23, Lemma 4.1] and strong stability [23, Lemma 3.1]. Then we prove that the set of non-uniformly stable matchings forms a distributive lattice. This result is a common generalization of the distributive lattice structures of stable matchings with strict preferences (Knuth [18] attributes this result to Conway), super-stable matchings [34], and strongly stable matchings [24].

1.1 Related work

In the one-to-one setting, Irving [7] proposed polynomial-time algorithms for the super-stable matching problem and the strongly stable matching problem (see also [23]). Kunysz, Paluch, and Ghosal [21] considered a characterization of the set of all strongly stable matchings. Kunysz [19] considered the weighted version of the strongly stable matching problem. In the many-to-one setting, Irving, Manlove, and Scott [8] proposed a polynomial-time algorithm for the super-stable matching problem. Furthermore, Irving, Manlove, and Scott [9] and Kavitha, Mehlhorn, Michail, and Paluch [17] proposed polynomial-time algorithms for the strongly stable matching problem. In the many-to-many setting, Scott [33] considered the super-stable matching problem, and the papers [1, 20, 22] considered the strongly stable matching problem. Olaosebikan and Manlove [28, 29] considered super-stability and strong stability in the student-project allocation problem. Furthermore, Kamiyama [15, 16] considered strong stability and super-stability under matroid constraints. Strong stability and super-stability with master lists were considered in, e.g., [10, 13, 14, 30].

2 Preliminaries

Let +\mathbb{R}_{+} denote the set of non-negative real numbers. For each finite set UU, each vector x+Ux\in\mathbb{R}_{+}^{U}, and each subset WUW\subseteq U, we define x(W):=uWx(u)x(W):=\sum_{u\in W}x(u). For each positive integer zz, we define [z]:={1,2,,z}[z]:=\{1,2,\dots,z\}. Define [0]:=[0]:=\emptyset.

2.1 Setting

Throughout this paper, we are given a finite simple undirected bipartite graph G=(V,E)G=(V,E) such that the vertex set VV of GG is partitioned into V1V_{1} and V2V_{2}, and every edge in the edge set EE of GG connects a vertex in V1V_{1} and a vertex in V2V_{2}. In addition, we are given subsets E1,E2EE_{1},E_{2}\subseteq E such that E1E2=E_{1}\cap E_{2}=\emptyset and E1E2=EE_{1}\cup E_{2}=E. In this paper, we do not distinguish between an edge eEe\in E and the set consisting of the two end vertices of ee. For each edge eEe\in E, if we write e=(v,w)e=(v,w), then this means that eV1={v}e\cap V_{1}=\{v\} and eV2={w}e\cap V_{2}=\{w\}.

For each subset FEF\subseteq E and each vertex vVv\in V, let F(v)F(v) denote the set of edges eFe\in F such that vev\in e. Thus, E(v)E(v) denotes the set of edges in EE incident to vv. A subset μE\mu\subseteq E is called a matching in GG if |μ(v)|1|\mu(v)|\leq 1 for every vertex vVv\in V. For each matching μ\mu in GG and each vertex vVv\in V such that |μ(v)|=1|\mu(v)|=1, we do not distinguish between μ(v)\mu(v) and the element in μ(v)\mu(v). For each subset FEF\subseteq E, a matching μ\mu in GG is called a matching in FF if μF\mu\subseteq F. Furthermore, for each subset FEF\subseteq E, a matching μ\mu in FF is called a maximum-size matching in FF if |μ||σ||\mu|\geq|\sigma| for every matching σ\sigma in FF.

For each vertex vVv\in V, we are given a transitive and complete binary relation v\succsim_{v} on E(v){}E(v)\cup\{\emptyset\} such that eve\succsim_{v}\emptyset and ≿̸ve\emptyset\not\succsim_{v}e for every edge eE(v)e\in E(v). (In this paper, the completeness of a binary relation means that, for every pair of elements e,fE(v){}e,f\in E(v)\cup\{\emptyset\}, at least one of evfe\succsim_{v}f and fvef\succsim_{v}e holds.) For each vertex vVv\in V and each pair of elements e,fE(v){}e,f\in E(v)\cup\{\emptyset\}, if evfe\succsim_{v}f and f≿̸vef\not\succsim_{v}e (resp. evfe\succsim_{v}f and fvef\succsim_{v}e), then we write evfe\succ_{v}f (resp. evfe\sim_{v}f). Intuitively speaking, evfe\succ_{v}f means that vv prefers ee to ff, and evfe\sim_{v}f means that vv is indifferent between ee and ff.

2.2 Non-uniform stability

Let μ\mu be a matching in GG. For each edge eEμe\in E\setminus\mu, we say that ee weakly blocks μ\mu if evμ(v)e\succsim_{v}\mu(v) for every vertex vev\in e. Furthermore, for each edge eEμe\in E\setminus\mu, we say that ee strongly blocks μ\mu if evμ(v)e\succsim_{v}\mu(v) for every vertex vev\in e and there exists a vertex wew\in e such that ewμ(w)e\succ_{w}\mu(w). Then μ\mu is said to be non-uniformly stable if the following two conditions are satisfied.

(S1)

Any edge eE1μe\in E_{1}\setminus\mu does not weakly block μ\mu.

(S2)

Any edge eE2μe\in E_{2}\setminus\mu does not strongly block μ\mu.

If E1=EE_{1}=E, then non-uniform stability is equivalent to super-stability. Furthermore, if E2=EE_{2}=E, then non-uniform stability is equivalent to strong stability. Thus, non-uniform stability is a common generalization of super-stability and strong stability. For simplicity, we may say that an edge eEμe\in E\setminus\mu blocks μ\mu if the following condition is satisfied. If eE1e\in E_{1}, then ee weakly blocks μ\mu. Otherwise (i.e., eE2e\in E_{2}), ee strongly blocks μ\mu.

2.3 Notation

Let FF be a subset of EE. Let ii be an integer in {1,2}\{1,2\}. Then we define the characteristic vector χF{0,1}E\chi_{F}\in\{0,1\}^{E} of FF by χF(e):=1\chi_{F}(e):=1 for each edge eFe\in F and χF(e):=0\chi_{F}(e):=0 for each edge eEFe\in E\setminus F. For each subset XVX\subseteq V, we define X(F)X(F) as the set of vertices vXv\in X such that F(v)F(v)\neq\emptyset. Thus, for each integer i{1,2}i\in\{1,2\}, Vi(F)V_{i}(F) denotes the set of vertices vViv\in V_{i} such that F(v)F(v)\neq\emptyset. For each subset XViX\subseteq V_{i}, we define F(X):=vXF(v)F(X):=\bigcup_{v\in X}F(v). For each subset XViX\subseteq V_{i}, we define ΓF(X)\Gamma_{F}(X) as the set of vertices vV3iv\in V_{3-i} such that F(X)E(v)F(X)\cap E(v)\neq\emptyset. That is, ΓF(X)\Gamma_{F}(X) is the set of vertices in V3iV_{3-i} adjacent to a vertex in XX via an edges in FF. For each vertex vVv\in V, we use ΓF(v)\Gamma_{F}(v) instead of ΓF({v})\Gamma_{F}(\{v\}). Define the real-valued function ρi,F\rho_{i,F} on 2Vi(F)2^{V_{i}(F)} by ρi,F(X):=|ΓF(X)||X|\rho_{i,F}(X):=|\Gamma_{F}(X)|-|X| for each subset XVi(F)X\subseteq V_{i}(F). It is not difficult to see that, for every pair of subsets X,YVi(F)X,Y\subseteq V_{i}(F),

ρi,F(X)+ρi,F(Y)ρi,F(XY)+ρi,F(XY),\rho_{i,F}(X)+\rho_{i,F}(Y)\geq\rho_{i,F}(X\cup Y)+\rho_{i,F}(X\cap Y),

i.e., ρi,F\rho_{i,F} is submodular. Then it is known that there exists the unique (inclusion-wise) minimal minimizer of ρi,F\rho_{i,F}, and we can find it in polynomial time (see, e.g., [27, Note 10.12]). In addition, it is known that there exists a matching μ\mu in FF such that |μ|=|Vi(F)||\mu|=|V_{i}(F)| if and only if, for every subset XVi(F)X\subseteq V_{i}(F), |X||ΓF(X)||X|\leq|\Gamma_{F}(X)| holds [4] (see also [32, Theorem 16.7]).

Let vv be a vertex in VV. Then, for each edge eE(v)e\in E(v) and each symbol {v,v,v}\odot\in\{\succ_{v},\succsim_{v},\sim_{v}\}, we define E[e]E[\mathop{\odot}e] as the set of edges fE(v)f\in E(v) such that fef\odot e. Furthermore, for each edge eE(v)e\in E(v) and each symbol {v,v}\odot\in\{\succ_{v},\succsim_{v}\}, we define E[e]E[e\mathop{\odot}] as the set of edges fE(v)f\in E(v) such that efe\odot f.

Let FF be a subset of EE. A sequence (v1,v2,,vk)(v_{1},v_{2},\dots,v_{k}) of distinct vertices in VV is called a path in FF if {vi,vi+1}F\{v_{i},v_{i+1}\}\in F for every integer i[k1]i\in[k-1]. A sequence (v1,v2,,vk+1)(v_{1},v_{2},\dots,v_{k+1}) of vertices in VV is called a cycle in FF if (v1,v2,,vk)(v_{1},v_{2},\dots,v_{k}) is a path in FF, v1=vk+1v_{1}=v_{k+1}, and {vk,v1}F\{v_{k},v_{1}\}\in F.

3 Algorithm

In this section, we propose a polynomial-time algorithm for the problem of checking the existence of a non-uniformly stable matching, and finding it if it exists.

For each vertex vV1v\in V_{1} and each subset FEF\subseteq E, we define Chv(F){\rm Ch}_{v}(F) as the set of edges eF(v)e\in F(v) such that evfe\succsim_{v}f for every edge fF(v)f\in F(v). In other words, for each vertex vV1v\in V_{1}, Chv(F){\rm Ch}_{v}(F) is the set of the most preferable edges in F(v)F(v) for vv. For each vertex vV2v\in V_{2} and each subset FEF\subseteq E, we define Chv(F){\rm Ch}_{v}(F) as the output of Algorithm 1. For each vertex vV2v\in V_{2}, Chv(F){\rm Ch}_{v}(F) is some subset of the most preferable edges in F(v)F(v) for vv.

Input: a vertex vV2v\in V_{2} and a subset FEF\subseteq E
1 Define B:={eF(v)evf for every edge fF(v)}B:=\{e\in F(v)\mid\mbox{$e\succsim_{v}f$ for every edge $f\in F(v)$}\}.
2 if BE1=B\cap E_{1}=\emptyset then
3       Output BB and halt.
4 else if |BE1|=1|B\cap E_{1}|=1 then
5       Output BE1B\cap E_{1} and halt.
6 else
7       Output \emptyset and halt.
8 end if
Algorithm 1 Algorithm for defining Chv(F){\rm Ch}_{v}(F) for a vertex vV2v\in V_{2}

For each subset FEF\subseteq E, we define

Ch1(F):=vV1Chv(F),Ch2(F):=vV2Chv(F),Ch(F):=Ch2(Ch1(F)).{\rm Ch}_{1}(F):=\bigcup_{v\in V_{1}}{\rm Ch}_{v}(F),\ \ \ {\rm Ch}_{2}(F):=\bigcup_{v\in V_{2}}{\rm Ch}_{v}(F),\ \ \ {\rm Ch}(F):={\rm Ch}_{2}({\rm Ch}_{1}(F)).

For each matching μ\mu in GG, we define 𝖻𝗅𝗈𝖼𝗄(μ){\sf block}(\mu) as the set of edges e=(v,w)Eμe=(v,w)\in E\setminus\mu such that μ(w)\mu(w)\neq\emptyset and ee blocks μ\mu.

Our algorithm is described in Algorithm 2.

1 Set t:=0t:=0. Define 𝖱0:={\sf R}_{0}:=\emptyset.
2 do
3       Set t:=t+1t:=t+1 and i:=0i:=0. Define 𝖯t,0:=𝖱t1{\sf P}_{t,0}:={\sf R}_{t-1}.
4       do
5             Set i:=i+1i:=i+1.
6             Define Lt,i:=Ch(E𝖯t,i1)L_{t,i}:={\rm Ch}(E\setminus{\sf P}_{t,i-1}) and 𝖰t,i:=Ch1(E𝖯t,i1)Lt,i{\sf Q}_{t,i}:={\rm Ch}_{1}(E\setminus{\sf P}_{t,i-1})\setminus L_{t,i}.
7             if 𝖰t,i{\sf Q}_{t,i}\neq\emptyset then
8                   Define 𝖯t,i:=𝖯t,i1𝖰t,i{\sf P}_{t,i}:={\sf P}_{t,i-1}\cup{\sf Q}_{t,i}.
9             else
10                   Find a maximum-size matching μt,i\mu_{t,i} in Lt,iL_{t,i}.
11                   if |μt,i|<|V1(E𝖯t,i1)||\mu_{t,i}|<|V_{1}(E\setminus{\sf P}_{t,i-1})| then
12                         Find the minimal minimizer Nt,iN_{t,i} of ρ1,Lt,i\rho_{1,L_{t,i}}.
13                         Define 𝖯t,i:=𝖯t,i1Lt,i(Nt,i){\sf P}_{t,i}:={\sf P}_{t,i-1}\cup L_{t,i}(N_{t,i}).
14                   else
15                         Define 𝖯t,i:=𝖯t,i1{\sf P}_{t,i}:={\sf P}_{t,i-1}.
16                   end if
17                  
18             end if
19            
20      while 𝖯t,i𝖯t,i1{\sf P}_{t,i}\neq{\sf P}_{t,i-1};
21      Define it:=ii_{t}:=i.
22       if 𝖯t,it𝖻𝗅𝗈𝖼𝗄(μt,it){\sf P}_{t,i_{t}}\cap{\sf block}(\mu_{t,i_{t}})\neq\emptyset then
23             Define et=(vt,wt)e_{t}=(v_{t},w_{t}) as an arbitrary edge in 𝖯t,it𝖻𝗅𝗈𝖼𝗄(μt,it){\sf P}_{t,i_{t}}\cap{\sf block}(\mu_{t,i_{t}}).
24             Define 𝖱t:=𝖯t,it{μt,it(wt)}{\sf R}_{t}:={\sf P}_{t,i_{t}}\cup\{\mu_{t,i_{t}}(w_{t})\}.
25       else
26             Define 𝖱t:=𝖯t,it{\sf R}_{t}:={\sf P}_{t,i_{t}}.
27       end if
28      
29while 𝖱t𝖯t,it{\sf R}_{t}\neq{\sf P}_{t,i_{t}};
30Define k:=tk:=t and μo:=μk,ik\mu_{\rm o}:=\mu_{k,i_{k}}.
31 if there exists an edge eR=(vR,wR)𝖱kCh(E𝖱k)e_{\rm R}=(v_{\rm R},w_{\rm R})\in{\sf R}_{k}\cup{\rm Ch}(E\setminus{\sf R}_{k}) such that μo(wR)=\mu_{\rm o}(w_{\rm R})=\emptyset then
32       Output No and halt.
33 else
34       Output μo\mu_{\rm o} and halt.
35 end if
Algorithm 2 Proposed algorithm

First, we prove that Algorithm 2 is well-defined. To this end, it is sufficient to prove that, in Step 20, μt,it\mu_{t,i_{t}} is well-defined. If 𝖰t,it{\sf Q}_{t,i_{t}}\neq\emptyset, then 𝖯t,it1𝖯t,it{\sf P}_{t,i_{t}-1}\neq{\sf P}_{t,i_{t}}. However, this contradicts the fact that Algorithm 2 proceeds to Step 19. Thus, 𝖰t,it={\sf Q}_{t,i_{t}}=\emptyset. In this case, μt,it\mu_{t,i_{t}} is defined in Step 10.

In the course of Algorithm 2, 𝖯t,i1𝖯t,i{\sf P}_{t,i-1}\subseteq{\sf P}_{t,i} and 𝖱t1𝖱t{\sf R}_{t-1}\subseteq{\sf R}_{t}. Furthermore, we can find μt,i\mu_{t,i} in polynomial time by using, e.g., the algorithm in [5], and Nt,iN_{t,i} can be found in polynomial time (see, e.g., [27, Note 10.12]). Thus, Algorithm 2 is a polynomial-time algorithm.

In the rest of this section, we prove the correctness of Algorithm 2.

First, we prove that if Algorithm 2 outputs μo\mu_{\rm o}, then μo\mu_{\rm o} is a non-uniformly stable matching in GG. To this end, we need the following lemmas.

Lemma 1.

In Step 12 of Algorithm 2, we have Lt,i(Nt,i)L_{t,i}(N_{t,i})\neq\emptyset.

Proof.

Since Nt,iV1(Lt,i)N_{t,i}\subseteq V_{1}(L_{t,i}), it suffices to prove that Nt,iN_{t,i}\neq\emptyset. Since V1(E𝖯t,i1)=V1(Lt,i)V_{1}(E\setminus{\sf P}_{t,i-1})=V_{1}(L_{t,i}) follows from 𝖰t,i={\sf Q}_{t,i}=\emptyset, we have |μt,i|<|V1(Lt,i)||\mu_{t,i}|<|V_{1}(L_{t,i})|. Thus, since μt,i\mu_{t,i} is a maximum-size matching in Lt,iL_{t,i}, there exists a subset XV1(Lt,i)X\subseteq V_{1}(L_{t,i}) such that |X|>|ΓLt,i(X)||X|>|\Gamma_{L_{t,i}}(X)|, i.e., ρ1,Lt,i(X)<0\rho_{1,L_{t,i}}(X)<0. Since Nt,iN_{t,i} is a minimizer of ρ1,Lt,i\rho_{1,L_{t,i}}, this implies that ρ1,Lt,i(Nt,i)<0\rho_{1,L_{t,i}}(N_{t,i})<0. Thus, Nt,iN_{t,i}\neq\emptyset. ∎

Notice that the definition of Algorithm 2 implies that 𝖯k,ik1=𝖯k,ik=𝖱k{\sf P}_{k,i_{k}-1}={\sf P}_{k,i_{k}}={\sf R}_{k}. In what follows, we use this fact.

Lemma 2.

In Step 27 of Algorithm 2, μo(v)Ch(E𝖱k)\mu_{\rm o}(v)\in{\rm Ch}(E\setminus{\sf R}_{k}) for every vertex vV1(E𝖱k)v\in V_{1}(E\setminus{\sf R}_{k}).

Proof.

It follows from Lemma 1 and the condition in Step 11 that |μo||V1(E𝖱k)||\mu_{\rm o}|\geq|V_{1}(E\setminus{\sf R}_{k})|. Thus, since μoLk,ikE𝖱k\mu_{\rm o}\subseteq L_{k,i_{k}}\subseteq E\setminus{\sf R}_{k}, μo(v)\mu_{\rm o}(v)\neq\emptyset holds for every vertex vV1(E𝖱k)v\in V_{1}(E\setminus{\sf R}_{k}). This implies that since μoLk,ik=Ch(E𝖱k)\mu_{\rm o}\subseteq L_{k,i_{k}}={\rm Ch}(E\setminus{\sf R}_{k}), μo(v)Ch(E𝖱k)\mu_{\rm o}(v)\in{\rm Ch}(E\setminus{\sf R}_{k}) for every vertex vV1(E𝖱k)v\in V_{1}(E\setminus{\sf R}_{k}). ∎

Lemma 3.

If Algorithm 2 outputs μo\mu_{\rm o}, then μo\mu_{\rm o} is a non-uniformly stable matching in GG.

Proof.

Assume that Algorithm 2 outputs μo\mu_{\rm o}. Since μo\mu_{\rm o} is clearly a matching in GG, we prove that μo\mu_{\rm o} is non-uniformly stable. Assume that there exists an edge e=(v,w)Eμoe=(v,w)\in E\setminus\mu_{\rm o} blocking μo\mu_{\rm o}.

We first consider the case where μo(w)=\mu_{\rm o}(w)=\emptyset. In this case, if e𝖱ke\in{\sf R}_{k}, then Algorithm 2 outputs 𝐍𝐨{\bf No} in Step 29. This is a contradiction. Thus, we can assume that e𝖱ke\notin{\sf R}_{k}. Then since ee blocks μo\mu_{\rm o}, we have evμo(v)e\succsim_{v}\mu_{\rm o}(v). Since eE𝖱ke\in E\setminus{\sf R}_{k}, we have vV1(E𝖱k)v\in V_{1}(E\setminus{\sf R}_{k}). Thus, Lemma 2 implies that μo(v)Ch(E𝖱k)\mu_{\rm o}(v)\in{\rm Ch}(E\setminus{\sf R}_{k}). Since evμo(v)e\succsim_{v}\mu_{\rm o}(v) and eE𝖱ke\in E\setminus{\sf R}_{k}, we have eCh1(E𝖱k)e\in{\rm Ch}_{1}(E\setminus{\sf R}_{k}). Since 𝖰k,ik={\sf Q}_{k,i_{k}}=\emptyset, this implies that eCh(E𝖱k)e\in{\rm Ch}(E\setminus{\sf R}_{k}). This implies that Algorithm 2 outputs 𝐍𝐨{\bf No} in Step 29. This is a contradiction.

Next, we consider the case where μo(w)\mu_{\rm o}(w)\neq\emptyset. In this case, e𝖻𝗅𝗈𝖼𝗄(μo)e\in{\sf block}(\mu_{\rm o}). Thus, if e𝖯k,ike\in{\sf P}_{k,i_{k}}, then 𝖱k𝖯k,ik{\sf R}_{k}\neq{\sf P}_{k,i_{k}}. This is a contradiction. Thus, e𝖯k,ik=𝖱ke\notin{\sf P}_{k,i_{k}}={\sf R}_{k}, i.e., eE𝖱ke\in E\setminus{\sf R}_{k}. This implies that since μoCh(E𝖱k)\mu_{\rm o}\subseteq{\rm Ch}(E\setminus{\sf R}_{k}) and ee blocks μo\mu_{\rm o}, we have evμo(v)e\sim_{v}\mu_{\rm o}(v). Thus, eCh1(E𝖱k)e\in{\rm Ch}_{1}(E\setminus{\sf R}_{k}). Since 𝖰k,ik={\sf Q}_{k,i_{k}}=\emptyset, eCh(E𝖱k)e\in{\rm Ch}(E\setminus{\sf R}_{k}). Thus, ewμo(w)e\sim_{w}\mu_{\rm o}(w). Since ee blocks μo\mu_{\rm o}, eE1e\in E_{1}. Thus, the definition of Chw(){\rm Ch}_{w}(\cdot) implies that μo(w)Lk,ik\mu_{\rm o}(w)\notin L_{k,i_{k}}. This contradicts the fact that μoLk,ik\mu_{\rm o}\subseteq L_{k,i_{k}}. This completes the proof. ∎

Next, we prove that if Algorithm 2 outputs No, then there does not exist a non-uniformly stable matching in GG. The following lemma plays an important role in the proof of this part. We prove this lemma in the next subsection.

Lemma 4.

For every non-uniformly stable matching σ\sigma in GG, we have σ𝖱k=\sigma\cap{\sf R}_{k}=\emptyset.

Furthermore, we need the following lemma.

Lemma 5.

In the course of Algorithm 2, for every vertex vV1v\in V_{1}, every edge e𝖱t(v)e\in{\sf R}_{t}(v), and every edge fE(v)𝖱tf\in E(v)\setminus{\sf R}_{t}, we have evfe\succsim_{v}f.

Proof.

This lemma follows from the fact that 𝖯t,i𝖯t,i1Ch1(E𝖯t,i1){\sf P}_{t,i}\setminus{\sf P}_{t,i-1}\subseteq{\rm Ch}_{1}(E\setminus{\sf P}_{t,i-1}) for every integer i[it]i\in[i_{t}] and μt,itLt,itCh1(E𝖯t,it)\mu_{t,i_{t}}\subseteq L_{t,i_{t}}\subseteq{\rm Ch}_{1}(E\setminus{\sf P}_{t,i_{t}}). ∎

Lemma 6.

If Algorithm 2 outputs No, then there does not exist a non-uniformly stable matching in GG.

Proof.

Assume that Algorithm 2 outputs No and there exists a non-uniformly stable matching σ\sigma in GG. Then there exists an edge eR=(vR,wR)𝖱kCh(E𝖱k)e_{\rm R}=(v_{\rm R},w_{\rm R})\in{\sf R}_{k}\cup{\rm Ch}(E\setminus{\sf R}_{k}) such that μo(wR)=\mu_{\rm o}(w_{\rm R})=\emptyset. We define μ+:=μo{eR}\mu^{+}:=\mu_{\rm o}\cup\{e_{\rm R}\}. Then since μoCh(E𝖱k)\mu_{\rm o}\subseteq{\rm Ch}(E\setminus{\sf R}_{k}), μ+𝖱kCh(E𝖱k)\mu^{+}\subseteq{\sf R}_{k}\cup{\rm Ch}(E\setminus{\sf R}_{k}). Lemma 4 implies that σE𝖱k\sigma\subseteq E\setminus{\sf R}_{k}. Thus, since μo(wR)=\mu_{\rm o}(w_{\rm R})=\emptyset, Lemma 2 implies that |V2(σ)||V2(μo)|<|V2(μ+)||V_{2}(\sigma)|\leq|V_{2}(\mu_{\rm o})|<|V_{2}(\mu^{+})|. This implies that there exists an edge e=(v,w)μ+σe=(v,w)\in\mu^{+}\setminus\sigma such that μ+(w)\mu^{+}(w)\neq\emptyset and σ(w)=\sigma(w)=\emptyset. Since eμ+𝖱kCh(E𝖱k)e\in\mu^{+}\subseteq{\sf R}_{k}\cup{\rm Ch}(E\setminus{\sf R}_{k}) and σE𝖱k\sigma\subseteq E\setminus{\sf R}_{k}, Lemma 5 implies that evσ(v)e\succsim_{v}\sigma(v). However, this contradicts the fact that σ\sigma is non-uniformly stable. ∎

Theorem 1.

If Algorithm 2 outputs μo\mu_{\rm o}, then μo\mu_{\rm o} is a non-uniformly stable matching in GG. If Algorithm 2 outputs No, then there does not exist a non-uniformly stable matching in GG.

Proof.

This theorem follows from Lemmas 3 and 6. ∎

3.1 Proof of Lemma 4

In this subsection, we prove Lemma 4.

An edge eEe\in E is called a bad edge if e𝖱ke\in{\sf R}_{k} and there exists a non-uniformly stable matching σ\sigma in GG such that eσe\in\sigma. If there does not exist a bad edge in EE, then the proof is done. Thus, we assume that there exists a bad edge in EE. Then we define Δ\Delta as the set of integers t[k]t\in[k] such that 𝖱t𝖱t1{\sf R}_{t}\setminus{\sf R}_{t-1} contains a bad edge in EE. Furthermore, we define zz as the minimum integer in Δ\Delta. We divide the proof into the following two cases.

Case 1.

There exists an integer i[iz]i\in[i_{z}] such that 𝖯z,i𝖯z,i1{\sf P}_{z,i}\setminus{\sf P}_{z,i-1} contains a bad edge in EE.

Case 2.

𝖯z,iz𝖱z1{\sf P}_{z,i_{z}}\setminus{\sf R}_{z-1} does not contain a bad edge in EE.

Case 1. Define qq as the minimum integer in [iz][i_{z}] such that 𝖯z,q𝖯z,q1{\sf P}_{z,q}\setminus{\sf P}_{z,q-1} contains a bad edge in EE. Let f=(v,w)f=(v,w) be a bad edge in EE that is contained in 𝖯z,q𝖯z,q1{\sf P}_{z,q}\setminus{\sf P}_{z,q-1}. Then there exists a non-uniformly stable matching σ\sigma in GG such that fσf\in\sigma. If σ𝖯z,q1\sigma\cap{\sf P}_{z,q-1}\neq\emptyset, then this contradicts the minimality of qq. Thus, σE𝖯z,q1\sigma\subseteq E\setminus{\sf P}_{z,q-1}.

First, we consider the case where f𝖰z,qf\in{\sf Q}_{z,q}. The definition of Algorithm 1 implies that there exists an edge g=(u,w)Ch1(E𝖯z,q1)g=(u,w)\in{\rm Ch}_{1}(E\setminus{\sf P}_{z,q-1}) satisfying one of the following conditions.

  • gwfg\succ_{w}f.

  • gwfg\sim_{w}f, gfg\neq f, and gE1g\in E_{1}.

Furthermore, since σE𝖯z,q1\sigma\subseteq E\setminus{\sf P}_{z,q-1}, guσ(u)g\succsim_{u}\sigma(u). Thus, gg blocks σ\sigma. This is a contradiction.

Next, we consider the case where fLz,q(Nz,q)f\in L_{z,q}(N_{z,q}). In this case, 𝖰z,q={\sf Q}_{z,q}=\emptyset. For simplicity, we define L:=Lz,qL:=L_{z,q} and N:=Nz,qN:=N_{z,q}. Since 𝖰z,q={\sf Q}_{z,q}=\emptyset, L=Ch1(E𝖯z,q1)L={\rm Ch}_{1}(E\setminus{\sf P}_{z,q-1}).

Claim 1.

There exists a vertex vNv\in N satisfying the following conditions.

  • σ(v)L\sigma(v)\notin L.

  • There exists a vertex wΓL(v)w\in\Gamma_{L}(v) such that σ(w)L\sigma(w)\in L.

Proof.

Define TT as the set of vertices vNv\in N such that σ(v)L\sigma(v)\in L. Then the existence of ff implies that TT\neq\emptyset. Thus, NTNN\setminus T\subsetneq N. Since σ\sigma is a matching in GG, |Γσ(T)|=|T||\Gamma_{\sigma}(T)|=|T|. In order to prove this claim, it is sufficient to prove that there exists a vertex vNTv\in N\setminus T such that ΓL(v)Γσ(T)\Gamma_{L}(v)\cap\Gamma_{\sigma}(T)\neq\emptyset. Assume that there exists such a vertex vNTv\in N\setminus T. Let ww be a vertex in ΓL(v)Γσ(T)\Gamma_{L}(v)\cap\Gamma_{\sigma}(T). Then since wΓσ(T)w\in\Gamma_{\sigma}(T), there exists a vertex uTu\in T such that wΓσ(u)w\in\Gamma_{\sigma}(u). Since σ\sigma is a matching in GG, Γσ(u)={w}\Gamma_{\sigma}(u)=\{w\}. Thus, σ(w)=σ(u)L\sigma(w)=\sigma(u)\in L. If ΓL(v)Γσ(T)=\Gamma_{L}(v)\cap\Gamma_{\sigma}(T)=\emptyset for every vertex vNTv\in N\setminus T, then ΓL(NT)ΓL(N)Γσ(T)\Gamma_{L}(N\setminus T)\subseteq\Gamma_{L}(N)\setminus\Gamma_{\sigma}(T). Since σ(u)L\sigma(u)\in L for every vertex uTu\in T, Γσ(T)ΓL(N)\Gamma_{\sigma}(T)\subseteq\Gamma_{L}(N). Thus,

|ΓL(NT)||NT||ΓL(N)Γσ(T)||N|+|T|=|ΓL(N)||Γσ(T)||N|+|T|=|ΓL(N)||N|.\begin{split}&|\Gamma_{L}(N\setminus T)|-|N\setminus T|\leq|\Gamma_{L}(N)\setminus\Gamma_{\sigma}(T)|-|N|+|T|\\ &=|\Gamma_{L}(N)|-|\Gamma_{\sigma}(T)|-|N|+|T|=|\Gamma_{L}(N)|-|N|.\end{split}

However, this contradicts the fact that NN is the minimal minimizer of ρ1,L\rho_{1,L}. ∎

Let vv be a vertex in NN satisfying the conditions in Claim 1. Furthermore, let ww be a vertex in ΓL(v)\Gamma_{L}(v) such that σ(w)L\sigma(w)\in L. Let ee be the edge in LL such that e=(v,w)e=(v,w). Since e,σ(w)Le,\sigma(w)\in L, we have ewσ(w)e\sim_{w}\sigma(w). Since 𝖯z,q1{\sf P}_{z,q-1} does not contain a bad edge in EE, σ(v)E𝖯z,q1\sigma(v)\in E\setminus{\sf P}_{z,q-1}.

Claim 2.

evσ(v)e\succ_{v}\sigma(v).

Proof.

Recall that L=Ch1(E𝖯z,q1)L={\rm Ch}_{1}(E\setminus{\sf P}_{z,q-1}). If σ(v)ve\sigma(v)\succsim_{v}e, then since eLe\in L and σ(v)E𝖯z,q1\sigma(v)\in E\setminus{\sf P}_{z,q-1}, we have σ(v)L\sigma(v)\in L. However, this contradicts the fact that σ(v)L\sigma(v)\notin L. ∎

Claim 2 implies that ee blocks σ\sigma. This contradicts the fact that σ\sigma is non-uniformly stable.

Case 2. In this case, μz,iz(wz)\mu_{z,i_{z}}(w_{z}) is a bad edge in EE. Thus, there exists a non-uniformly stable matching σ\sigma in GG such that μz,iz(wz)σ\mu_{z,i_{z}}(w_{z})\in\sigma. Since 𝖯z,iz{\sf P}_{z,i_{z}} does not contain a bad edge in EE, we have σ𝖯z,iz=\sigma\cap{\sf P}_{z,i_{z}}=\emptyset and ezσe_{z}\notin\sigma. Since eze_{z} blocks μz,iz\mu_{z,i_{z}}, if μz,iz(vz)vzσ(vz)\mu_{z,i_{z}}(v_{z})\succsim_{v_{z}}\sigma(v_{z}), then eze_{z} blocks σ\sigma. Since

μz,izLz,iz=Ch(E𝖯z,iz1)=Ch(E𝖯z,iz)\mu_{z,i_{z}}\subseteq L_{z,i_{z}}={\rm Ch}(E\setminus{\sf P}_{z,i_{z}-1})={\rm Ch}(E\setminus{\sf P}_{z,i_{z}})

and σE𝖯z,iz\sigma\subseteq E\setminus{\sf P}_{z,i_{z}}, we have μz,iz(vz)vzσ(vz)\mu_{z,i_{z}}(v_{z})\succsim_{v_{z}}\sigma(v_{z}). This completes the proof.

4 Polyhedral Characterization

Define 𝐏{\bf P} as the convex hull of {χμμ is a non-uniformly stable matching in G}\{\chi_{\mu}\mid\mbox{$\mu$ is a non-uniformly stable matching in $G$}\}. Furthermore, we define 𝐒{\bf S} as the set of vectors x+Ex\in\mathbb{R}_{+}^{E} satisfying the following conditions.

x(E(v))1(vV).x(E(v))\leq 1\ \ \ \mbox{($\forall v\in V$)}. (1)
x(e)+vex(E[ve])1(eE1).\displaystyle{x(e)+\sum_{v\in e}x(E[\succ_{v}e])\geq 1}\ \ \ \mbox{($\forall e\in E_{1}$)}. (2)
x(E[ve])+wex(E[we])1(eE2ve).\displaystyle{x(E[\sim_{v}e])+\sum_{w\in e}x(E[\succ_{w}e])\geq 1}\ \ \ \mbox{($\forall e\in E_{2}$, $\forall v\in e$)}. (3)

Hu and Garg [6] proved that if E1=EE_{1}=E, then 𝐏=𝐒{\bf P}={\bf S}. Furthermore, Kunysz [19] proved that if E2=EE_{2}=E, then 𝐏=𝐒{\bf P}={\bf S} (see also [6, 12]). In this section, we prove the following theorem.

Theorem 2.

𝐏=𝐒{\bf P}={\bf S}.

Theorem 2 follows from the following two lemmas.

Lemma 7.

For every non-uniformly stable matching μ\mu in GG, χμ\chi_{\mu} satisfies (1), (2), and (3).

Proof.

Since μ\mu is a matching in GG, χμ\chi_{\mu} satisfies (1).

Next, we prove that χμ\chi_{\mu} satisfies (2). Let ee be an edge in E1E_{1}. If eμe\in\mu, then since χμ(e)=1\chi_{\mu}(e)=1, χμ\chi_{\mu} satisfies (2). Assume that eμe\notin\mu. Then since μ\mu is non-uniformly stable, there exists a vertex vev\in e such that μ(v)ve\mu(v)\succ_{v}e. This implies that χμ(E[ve])1\chi_{\mu}(E[\succ_{v}e])\geq 1. Thus, χμ\chi_{\mu} satisfies (2).

Finally, we prove that χμ\chi_{\mu} satisfies (3). Let ee be an edge in E2E_{2}. If eμe\in\mu, then χμ(E[ve])1\chi_{\mu}(E[\sim_{v}e])\geq 1 for every vertex vev\in e. Thus, χμ\chi_{\mu} satisfies (3). Assume that eμe\notin\mu. Then, in this case, since μ\mu is non-uniformly stable, one of the following statements holds. (i) There exists a vertex wew\in e such that μ(w)we\mu(w)\succ_{w}e. (ii) μ(v)ve\mu(v)\sim_{v}e for every vertex vev\in e. If (i) holds, then χμ(E[we])1\chi_{\mu}(E[\succ_{w}e])\geq 1. If (ii) holds, then χμ(E[ve])1\chi_{\mu}(E[\sim_{v}e])\geq 1 for every vertex vev\in e. Thus, χμ\chi_{\mu} satisfies (3). ∎

Lemma 8.

For every extreme point xx of 𝐒{\bf S}, there exists a non-uniformly stable matching μ\mu in GG such that χμ=x\chi_{\mu}=x.

We give the proof of Lemma 8 in the next subsection.

Proof of Theorem 2.

Since 𝐒{\bf S} is bounded, 𝐒{\bf S} is a polytope (see, e.g., [26, Corollary 3.14.]). Thus, 𝐒{\bf S} is the convex hull of the extreme points of 𝐒{\bf S} (see, e.g., [26, Theorem 3.37]). This implies that this theorem follows from Lemmas 7 and 8. ∎

4.1 Proof of Lemma 8

In this proof, we fix an extreme point xx of 𝐒{\bf S}. Then we prove that there exists a non-uniformly stable matching μ\mu in GG such that χμ=x\chi_{\mu}=x. The following lemma implies that it is sufficient to prove that x{0,1}Ex\in\{0,1\}^{E}.

Lemma 9.

For every vector y𝐒{0,1}Ey\in{\bf S}\cap\{0,1\}^{E}, there exists a non-uniformly stable matching μ\mu in GG such that χμ=y\chi_{\mu}=y.

Proof.

Let yy be a vector in 𝐒{0,1}E{\bf S}\cap\{0,1\}^{E}. Define μ\mu as the set of edges eEe\in E such that y(e)=1y(e)=1. Clearly, χμ=y\chi_{\mu}=y. Thus, it suffices to prove that μ\mu is a non-uniformly stable matching in GG. Since (1) implies that μ\mu is a matching in GG, we prove that μ\mu is non-uniformly stable.

Let ee be an edge in EμE\setminus\mu. First, we assume that eE1e\in E_{1}. Since eμe\notin\mu, y(e)=0y(e)=0. Thus, (2) implies that there exist a vertex vev\in e and an edge fE(v)f\in E(v) such that y(f)=1y(f)=1 and fvef\succ_{v}e. This implies that ee does not block μ\mu. Next, we assume that eE2e\in E_{2}. Then (3) implies that at least one of the following statements holds. (i) There exist a vertex wew\in e and an edge fE(w)f\in E(w) such that y(f)=1y(f)=1 and fwef\succ_{w}e. (ii) For every vertex vev\in e, there exists an edge fE(v)f\in E(v) such that y(f)=1y(f)=1 and fvef\sim_{v}e. In any case, ee does not block μ\mu. This completes the proof. ∎

In the rest of this proof, we prove that x{0,1}Ex\in\{0,1\}^{E}.

Define 𝗌𝗎𝗉𝗉{\sf supp} as the set of edges eEe\in E such that x(e)>0x(e)>0. For each vertex vVv\in V such that 𝗌𝗎𝗉𝗉(v){\sf supp}(v)\neq\emptyset, we define 𝖳(v){\sf T}(v) (resp. 𝖡(v){\sf B}(v)) as the set of edges e𝗌𝗎𝗉𝗉(v)e\in{\sf supp}(v) such that evfe\succsim_{v}f (resp. fvef\succsim_{v}e) for every edge f𝗌𝗎𝗉𝗉(v)f\in{\sf supp}(v). For each integer i{1,2}i\in\{1,2\}, we define SiS_{i} as the set of vertices vViv\in V_{i} such that 𝗌𝗎𝗉𝗉(v){\sf supp}(v)\neq\emptyset. For each integer i{1,2}i\in\{1,2\}, we define Fi:=vSi𝖳(v)F_{i}:=\bigcup_{v\in S_{i}}{\sf T}(v). It should be noted that Si=Vi(Fi)S_{i}=V_{i}(F_{i}).

Lemma 10.

Let vv and e={v,w}e=\{v,w\} be a vertex in VV and an edge in 𝖳(v){\sf T}(v), respectively.

(E1)

If eE1e\in E_{1}, then x(E(w))=1x(E(w))=1, and 𝖡(w)={e}{\sf B}(w)=\{e\}.

(E2)

If eE2e\in E_{2}, then x(E(w))=1x(E(w))=1, e𝖡(w)e\in{\sf B}(w), and x(E[ve])x(E[we])x(E[\sim_{v}e])\geq x(E[\sim_{w}e]).

Proof.

(E1) Since e𝖳(v)e\in{\sf T}(v), x(f)=0x(f)=0 for every edge fE[ve]f\in E[\succ_{v}e]. Thus, (2) implies that

1x(e)+x(E[ve])+x(E[we])=x(e)+x(E[we])=x(E(w))x(E[ew])x(E[we]{e})1x(E[ew])x(E[we]{e})1.\begin{split}1&\leq x(e)+x(E[\succ_{v}e])+x(E[\succ_{w}e])=x(e)+x(E[\succ_{w}e])\\ &=x(E(w))-x(E[e\succ_{w}])-x(E[\sim_{w}e]\setminus\{e\})\leq 1-x(E[e\succ_{w}])-x(E[\sim_{w}e]\setminus\{e\})\leq 1.\end{split}

This implies that (i) x(E(w))=1x(E(w))=1, (ii) x(f)=0x(f)=0 for every edge fE[ew]f\in E[e\succ_{w}], and (iii) x(f)=0x(f)=0 for every edge fE[we]{e}f\in E[\sim_{w}e]\setminus\{e\}. Thus, (ii) and (iii) imply that 𝖡(w)={e}{\sf B}(w)=\{e\}.

(E2) Since e𝖳(v)e\in{\sf T}(v), x(f)=0x(f)=0 for every edge fE[ve]f\in E[\succ_{v}e]. Thus, (3) for ww implies that

1x(E[we])+x(E[ve])+x(E[we])=x(E[we])+x(E[we])=x(E(w))x(E[ew])1x(E[ew])1.\begin{split}1&\leq x(E[\sim_{w}e])+x(E[\succ_{v}e])+x(E[\succ_{w}e])=x(E[\sim_{w}e])+x(E[\succ_{w}e])\\ &=x(E(w))-x(E[e\succ_{w}])\leq 1-x(E[e\succ_{w}])\leq 1.\end{split}

Thus, we have (i) x(E(w))=1x(E(w))=1, and (ii) x(f)=0x(f)=0 for every edge fE[ew]f\in E[e\succ_{w}]. Thus, (ii) implies that e𝖡(w)e\in{\sf B}(w). Furthermore, (3) for vv implies that

1x(E[ve])+x(E[ve])+x(E[we])=x(E[ve])+x(E[we])=x(E[ve])+x(E(w))x(E[ew])x(E[ve])+1x(E[ew])=x(E[ve])+1x(E[we]).\begin{split}1&\leq x(E[\sim_{v}e])+x(E[\succ_{v}e])+x(E[\succ_{w}e])=x(E[\sim_{v}e])+x(E[\succ_{w}e])\\ &=x(E[\sim_{v}e])+x(E(w))-x(E[e\succsim_{w}])\leq x(E[\sim_{v}e])+1-x(E[e\succsim_{w}])\\ &=x(E[\sim_{v}e])+1-x(E[\sim_{w}e]).\end{split}

This implies that x(E[ve])x(E[we])x(E[\sim_{v}e])\geq x(E[\sim_{w}e]). This completes the proof. ∎

Lemma 11.

For every integer i{1,2}i\in\{1,2\}, there exists a matching μi\mu_{i} in FiF_{i} such that |μi|=|Si||\mu_{i}|=|S_{i}|.

Proof.

Let ii be an integer in {1,2}\{1,2\}. Assume that there does not exist a matching μi\mu_{i} in FiF_{i} such that |μi|=|Si||\mu_{i}|=|S_{i}|. Since Si=Vi(Fi)S_{i}=V_{i}(F_{i}), there exists a subset NVi(Fi)N\subseteq V_{i}(F_{i}) such that |N|>|ΓFi(N)||N|>|\Gamma_{F_{i}}(N)|. Let NN be the minimal minimizer of ρi,Fi\rho_{i,F_{i}}. For simplicity, we define M:=ΓFi(N)M:=\Gamma_{F_{i}}(N).

Claim 3.

There exists a matching σ\sigma in Fi(N)F_{i}(N) such that |σ|=|M||\sigma|=|M|.

Proof.

Assume that there does not exist a matching σ\sigma in Fi(N)F_{i}(N) such that |σ|=|M||\sigma|=|M|. In this case, since M=V3i(Fi(N))M=V_{3-i}(F_{i}(N)), there exists a subset XMX\subseteq M such that |X|>|ΓFi(N)(X)||X|>|\Gamma_{F_{i}(N)}(X)|. Since ΓFi(v)X=\Gamma_{F_{i}}(v)\cap X=\emptyset for every vertex vNΓFi(N)(X)v\in N\setminus\Gamma_{F_{i}(N)}(X), ΓFi(NΓFi(N)(X))MX\Gamma_{F_{i}}(N\setminus\Gamma_{F_{i}(N)}(X))\subseteq M\setminus X. Thus,

|M||N||ΓFi(NΓFi(N)(X))|+|NΓFi(N)(X)||M||N||M|+|X|+|N||ΓFi(N)(X)|=|X||ΓFi(N)(X)|>0.\begin{split}&|M|-|N|-|\Gamma_{F_{i}}(N\setminus\Gamma_{F_{i}(N)}(X))|+|N\setminus\Gamma_{F_{i}(N)}(X)|\\ &\geq|M|-|N|-|M|+|X|+|N|-|\Gamma_{F_{i}(N)}(X)|=|X|-|\Gamma_{F_{i}(N)}(X)|>0.\end{split}

This contradicts the fact that NN is a minimizer of ρi,Fi\rho_{i,F_{i}}. ∎

Let σ\sigma be a matching in Fi(N)F_{i}(N) such that |σ|=|M||\sigma|=|M|. Then Lemma 10 implies that

vN(σ)x(E[vσ(v)])wMx(E[wσ(w)]).\sum_{v\in N(\sigma)}x(E[\sim_{v}\sigma(v)])\geq\sum_{w\in M}x(E[\sim_{w}\sigma(w)]).

Furthermore, since Lemma 10 implies that 𝖳(v)wM𝖡(w){\sf T}(v)\subseteq\bigcup_{w\in M}{\sf B}(w) for every vertex vN(σ)v\in N(\sigma),

wMx(E[wσ(w)])=wMx(𝖡(w))vN(σ)x(𝖳(v))=vN(σ)x(E[vσ(v)]).\sum_{w\in M}x(E[\sim_{w}\sigma(w)])=\sum_{w\in M}x({\sf B}(w))\geq\sum_{v\in N(\sigma)}x({\sf T}(v))=\sum_{v\in N(\sigma)}x(E[\sim_{v}\sigma(v)]).

Thus, we have

wMx(𝖡(w))=vN(σ)x(𝖳(v)).\sum_{w\in M}x({\sf B}(w))=\sum_{v\in N(\sigma)}x({\sf T}(v)).

Since |N|>|M||N|>|M|, there exists an edge fFi(NN(σ))f\in F_{i}(N\setminus N(\sigma)). Furthermore, Lemma 10 implies that f𝖡(w)f\in{\sf B}(w) for some vertex wMw\in M. Thus,

wMx(𝖡(w))=vN(σ)x(𝖳(v))<x(f)+vN(σ)x(𝖳(v))wMx(𝖡(v)).\sum_{w\in M}x({\sf B}(w))=\sum_{v\in N(\sigma)}x({\sf T}(v))<x(f)+\sum_{v\in N(\sigma)}x({\sf T}(v))\leq\sum_{w\in M}x({\sf B}(v)).

However, this is a contradiction. ∎

In what follows, for each integer i{1,2}i\in\{1,2\}, let μi\mu_{i} be a matching in FiF_{i} such that |μi|=|Si||\mu_{i}|=|S_{i}|.

Lemma 12.

|S1|=|S2||S_{1}|=|S_{2}|.

Proof.

For every integer i{1,2}i\in\{1,2\}, the existence of μi\mu_{i} implies that |Si||S3i||S_{i}|\leq|S_{3-i}|. ∎

Lemma 12 implies that μ1(v)\mu_{1}(v)\neq\emptyset if and only if μ2(v)\mu_{2}(v)\neq\emptyset for every vertex vVv\in V. Lemma 10 implies that μi(v)vμ3i(v)\mu_{i}(v)\succsim_{v}\mu_{3-i}(v) for every integer i{1,2}i\in\{1,2\} and every vertex vSiv\in S_{i}.

Lemma 13.

x(E(v))=1x(E(v))=1 for every vertex vS1S2v\in S_{1}\cup S_{2}.

Proof.

This lemma immediately follows from Lemmas 10 and 12. ∎

Lemma 14.

For every integer i{1,2}i\in\{1,2\} and every vertex vSiv\in S_{i}, if Fi(v)E1F_{i}(v)\cap E_{1}\neq\emptyset, then we have μi(v)E1\mu_{i}(v)\in E_{1}.

Proof.

Let ii be an integer in {1,2}\{1,2\}. Let vv be a vertex in SiS_{i} such that Fi(v)E1F_{i}(v)\cap E_{1}\neq\emptyset, and let e={v,w}e=\{v,w\} be an edge in Fi(v)E1F_{i}(v)\cap E_{1}. Lemma 12 implies that μi(w)\mu_{i}(w)\neq\emptyset. Thus, it suffices to prove that Fi(w)={e}F_{i}(w)=\{e\}. Lemma 10 implies that 𝖡(w)={e}{\sf B}(w)=\{e\}. If there exists an edge fFi(w){e}f\in F_{i}(w)\setminus\{e\}, then Lemma 10 implies that f𝖡(w)f\in{\sf B}(w). This contradicts the fact that 𝖡(w)={e}{\sf B}(w)=\{e\}. ∎

We now ready to prove Lemma 8. Recall that Lemma 9 implies that it is sufficient to prove that x{0,1}Ex\in\{0,1\}^{E}. For each vector y+Ey\in\mathbb{R}_{+}^{E} and each edge eE1e\in E_{1}, we define 𝖫𝖲1(e;y){\sf LS}_{1}(e;y) by

𝖫𝖲1(e;y):=y(e)+vey(E[ve]).{\sf LS}_{1}(e;y):=y(e)+\sum_{v\in e}y(E[\succ_{v}e]).

Define 2\mathcal{E}_{2} as the set of pairs (e,v)(e,v) such that eE2e\in E_{2} and vev\in e. For each vector y+Ey\in\mathbb{R}_{+}^{E} and each element (e,v)2(e,v)\in\mathcal{E}_{2}, we define 𝖫𝖲2(e,v;y){\sf LS}_{2}(e,v;y) by

𝖫𝖲2(e,v;y):=y(E[ve])+wey(E[we]).{\sf LS}_{2}(e,v;y):=y(E[\sim_{v}e])+\sum_{w\in e}y(E[\succ_{w}e]).

Define E1E_{1}^{\ast} as the set of edges eE1e\in E_{1} such that 𝖫𝖲1(e;x)=1{\sf LS}_{1}(e;x)=1. Furthermore, we define 2\mathcal{E}_{2}^{\ast} as the set of pairs (e,v)2(e,v)\in\mathcal{E}_{2} such that 𝖫𝖲2(e,v;x)=1{\sf LS}_{2}(e,v;x)=1. Define ε0,ε1,ε2\varepsilon_{0},\varepsilon_{1},\varepsilon_{2} by

ε0:=mine𝗌𝗎𝗉𝗉x(e),ε1:=mineE1E1𝖫𝖲1(e;x)1,ε2:=min(e,v)22𝖫𝖲2(e,v;x)1.\varepsilon_{0}:=\min_{e\in{\sf supp}}x(e),\ \ \ \varepsilon_{1}:=\min_{e\in E_{1}\setminus E_{1}^{\ast}}{\sf LS}_{1}(e;x)-1,\ \ \ \varepsilon_{2}:=\min_{(e,v)\in\mathcal{E}_{2}\setminus\mathcal{E}_{2}^{\ast}}{\sf LS}_{2}(e,v;x)-1.

Define ε:=min{ε0,ε1,ε2}/2>0\varepsilon:=\min\{\varepsilon_{0},\varepsilon_{1},\varepsilon_{2}\}/2>0. Define zi:=x+ε(χμiχμ3i)z_{i}:=x+\varepsilon(\chi_{\mu_{i}}-\chi_{\mu_{3-i}}) for each integer i{1,2}i\in\{1,2\}.

Lemma 15.

For every integer i{1,2}i\in\{1,2\}, zi𝐒z_{i}\in{\bf S}.

Proof.

Let ii be an integer in {1,2}\{1,2\}. Since ε<ε0\varepsilon<\varepsilon_{0}, we have zi+Ez_{i}\in\mathbb{R}_{+}^{E}. Thus, in what follows, we prove that ziz_{i} satisfies (1), (2), and (3).

(1) Since x(E(v))=zi(E(v))x(E(v))=z_{i}(E(v)) for every vertex vVv\in V and xx satisfies (1), ziz_{i} satisfies (1).

(2) Let e={v,w}e=\{v,w\} be an edge in E1E_{1} such that eVi={v}e\cap V_{i}=\{v\}. If eE1E1e\in E_{1}\setminus E_{1}^{\ast}, then

𝖫𝖲1(e;zi)𝖫𝖲1(e;x)2ε𝖫𝖲1(e;x)ε1𝖫𝖲1(e;x)(𝖫𝖲1(e;x)1)=1.{\sf LS}_{1}(e;z_{i})\geq{\sf LS}_{1}(e;x)-2\varepsilon\geq{\sf LS}_{1}(e;x)-\varepsilon_{1}\geq{\sf LS}_{1}(e;x)-({\sf LS}_{1}(e;x)-1)=1.

Thus, we assume that eE1e\in E^{\ast}_{1}. Since 𝖫𝖲1(e;x)1{\sf LS}_{1}(e;x)\geq 1, it is sufficient to prove that

𝖫𝖲1(e;zi)𝖫𝖲1(e;x).{\sf LS}_{1}(e;z_{i})\geq{\sf LS}_{1}(e;x). (4)

If eμie\in\mu_{i}, then eμ3i(v)e\succsim\mu_{3-i}(v). Thus, (4) holds. Assume that eμ3iμie\in\mu_{3-i}\setminus\mu_{i}. Then e=μ3i(v)e=\mu_{3-i}(v). If μi(v)ve\mu_{i}(v)\succ_{v}e, then (4) holds. Thus, we assume that μi(v)ve\mu_{i}(v)\sim_{v}e. Since eμie\notin\mu_{i}, eμi(v)e\neq\mu_{i}(v). Since μ3i(v)𝖡(v)\mu_{3-i}(v)\in{\sf B}(v), μi(v)𝖡(v)\mu_{i}(v)\in{\sf B}(v). Lemma 10 implies that 𝖡(v)={μ3i(v)}{\sf B}(v)=\{\mu_{3-i}(v)\}. This is a contradiction.

We consider the case where eμ1μ2e\notin\mu_{1}\cup\mu_{2}. First, we assume that μi(v)ve\mu_{i}(v)\succ_{v}e. If evμ3i(v)e\succsim_{v}\mu_{3-i}(v), then (4) holds. If μ3i(v)ve\mu_{3-i}(v)\succ_{v}e, then since μ3i(v)𝖡(v)\mu_{3-i}(v)\in{\sf B}(v), Lemma 13 implies that x(E[ve])=1x(E[\succ_{v}e])=1. Thus, since eE1e\in E^{\ast}_{1}, we have x(e)=0x(e)=0 and x(E[we])=0x(E[\succ_{w}e])=0. This implies that ewμ3i(w)e\succsim_{w}\mu_{3-i}(w), and thus (4) holds. Next, we assume that evμi(v)e\succsim_{v}\mu_{i}(v). Then since μi(v)𝖳(v)\mu_{i}(v)\in{\sf T}(v), x(E[ve])=0x(E[\succ_{v}e])=0. Thus, we have x(e)+x(E[we])=1x(e)+x(E[\succ_{w}e])=1. This implies that since μi(w)𝖡(w)\mu_{i}(w)\in{\sf B}(w) and eμi(w)e\neq\mu_{i}(w), we have μi(w)we\mu_{i}(w)\succ_{w}e. Thus, (4) holds.

(3) Let e={v,w}e=\{v,w\} be an edge in E2E_{2} such that eVi={v}e\cap V_{i}=\{v\}.

First, we consider (3) for (e,v)(e,v). If (e,v)22(e,v)\in\mathcal{E}_{2}\setminus\mathcal{E}_{2}^{\ast}, then

𝖫𝖲2(e,v;zi)𝖫𝖲2(e,v;x)2ε𝖫𝖲2(e,v;x)ε2𝖫𝖲2(e,v;x)(𝖫𝖲2(e,v;x)1)=1.{\sf LS}_{2}(e,v;z_{i})\geq{\sf LS}_{2}(e,v;x)-2\varepsilon\geq{\sf LS}_{2}(e,v;x)-\varepsilon_{2}\geq{\sf LS}_{2}(e,v;x)-({\sf LS}_{2}(e,v;x)-1)=1.

Thus, we assume that (e,v)2(e,v)\in\mathcal{E}_{2}^{\ast}. Since 𝖫𝖲2(e,v;x)1{\sf LS}_{2}(e,v;x)\geq 1, it is sufficient to prove that

𝖫𝖲2(e,v;zi)𝖫𝖲2(e,v;x).{\sf LS}_{2}(e,v;z_{i})\geq{\sf LS}_{2}(e,v;x). (5)

If eμ3ie\in\mu_{3-i}, then μi(v)ve\mu_{i}(v)\succsim_{v}e, and thus (5) holds. Assume that eμiμ3ie\in\mu_{i}\setminus\mu_{3-i}. If evμ3i(v)e\succ_{v}\mu_{3-i}(v), then (5) holds. Assume that evμ3i(v)e\sim_{v}\mu_{3-i}(v). Then μ3i(v)𝖳(v)\mu_{3-i}(v)\in{\sf T}(v). Thus, since μ3i(v)𝖡(v)\mu_{3-i}(v)\in{\sf B}(v), Lemma 13 implies that x(E[ve])=1x(E[\sim_{v}e])=1. This implies that since (e,v)2(e,v)\in\mathcal{E}_{2}^{\ast}, x(E[we])=0x(E[\succ_{w}e])=0. Thus, ewμ3i(w)e\succsim_{w}\mu_{3-i}(w). Since eμ3i(w)e\neq\mu_{3-i}(w) follows from eμ3i(v)e\neq\mu_{3-i}(v), (5) holds.

We consider the case where eμ1μ2e\notin\mu_{1}\cup\mu_{2}. First, we assume that μi(v)ve\mu_{i}(v)\succsim_{v}e. If evμ3i(v)e\succ_{v}\mu_{3-i}(v), then (5) holds. If μ3i(v)ve\mu_{3-i}(v)\succsim_{v}e, then since μ3i(v)𝖡(v)\mu_{3-i}(v)\in{\sf B}(v), Lemma 13 implies that x(E[ve])=1x(E[\succsim_{v}e])=1. Since (e,v)2(e,v)\in\mathcal{E}^{\ast}_{2}, x(E[we])=0x(E[\succ_{w}e])=0. This implies that ewμ3i(w)e\succsim_{w}\mu_{3-i}(w). Thus, since eμ3i(w)e\neq\mu_{3-i}(w), (5) holds. Next, we assume that evμi(v)e\succ_{v}\mu_{i}(v). Since μi(v)𝖳(v)\mu_{i}(v)\in{\sf T}(v), we have x(E[ve])=0x(E[\succsim_{v}e])=0. This implies that x(E[we])=1x(E[\succ_{w}e])=1. Thus, μi(w)we\mu_{i}(w)\succ_{w}e and (5) holds.

Next, we consider (3) for (e,w)(e,w). If (e,w)22(e,w)\in\mathcal{E}_{2}\setminus\mathcal{E}_{2}^{\ast}, then

𝖫𝖲2(e,w;zi)𝖫𝖲2(e,w;x)2ε𝖫𝖲2(e,w;x)ε2𝖫𝖲2(e,w;x)(𝖫𝖲2(e,w;x)1)=1.{\sf LS}_{2}(e,w;z_{i})\geq{\sf LS}_{2}(e,w;x)-2\varepsilon\geq{\sf LS}_{2}(e,w;x)-\varepsilon_{2}\geq{\sf LS}_{2}(e,w;x)-({\sf LS}_{2}(e,w;x)-1)=1.

Thus, we assume that (e,w)2(e,w)\in\mathcal{E}_{2}^{\ast}. Since 𝖫𝖲2(e,w;x)1{\sf LS}_{2}(e,w;x)\geq 1, it is sufficient to prove that

𝖫𝖲2(e,w;zi)𝖫𝖲2(e,w;x).{\sf LS}_{2}(e,w;z_{i})\geq{\sf LS}_{2}(e,w;x). (6)

If eμie\in\mu_{i}, then since evμ3i(v)e\succsim_{v}\mu_{3-i}(v), (6) holds. Assume that eμ3iμie\in\mu_{3-i}\setminus\mu_{i}. If μi(v)vμ3i(v)\mu_{i}(v)\succ_{v}\mu_{3-i}(v), then (6) holds. If μi(v)vμ3i(v)\mu_{i}(v)\sim_{v}\mu_{3-i}(v), then it follows from Lemma 13 that x(E[ve])=1x(E[\sim_{v}e])=1. Thus, we have x(E[ve])=0x(E[\succ_{v}e])=0. This implies that x(E[we])=1x(E[\succsim_{w}e])=1. Thus, μi(w)we\mu_{i}(w)\succsim_{w}e and (6) holds.

We consider the case where eμ1μ2e\notin\mu_{1}\cup\mu_{2}. First, we assume that μi(v)ve\mu_{i}(v)\succ_{v}e. If evμ3i(v)e\succsim_{v}\mu_{3-i}(v), then (6) holds. Thus, we assume that μ3i(v)ve\mu_{3-i}(v)\succ_{v}e. Since μ3i(v)𝖡(v)\mu_{3-i}(v)\in{\sf B}(v), Lemma 13 implies that x(E[ve])=1x(E[\succ_{v}e])=1. Thus, since (e,v)2(e,v)\in\mathcal{E}^{\ast}_{2}, we have x(E[we])=0x(E[\succsim_{w}e])=0. Thus, ewμ3i(w)e\succ_{w}\mu_{3-i}(w) and (6) holds. Next, we assume that evμi(v)e\succsim_{v}\mu_{i}(v). Since μi(v)𝖳(v)\mu_{i}(v)\in{\sf T}(v), x(E[ve])=0x(E[\succ_{v}e])=0. This implies that x(E[we])=1x(E[\succsim_{w}e])=1. Thus, μi(w)we\mu_{i}(w)\succsim_{w}e and (6) holds. ∎

We are now ready to prove that x{0,1}Ex\in\{0,1\}^{E}. Since xx is an extreme point of 𝐒{\bf S}, Lemma 15 implies that we have μ1=μ2\mu_{1}=\mu_{2}. Define μ:=μ1\mu:=\mu_{1}. Define W1W_{1} as the set of vertices vS1S2v\in S_{1}\cup S_{2} such that μ(v)E1\mu(v)\in E_{1}. Define W2:=(S1S2)W1W_{2}:=(S_{1}\cup S_{2})\setminus W_{1}. That is, W2W_{2} is the set of vertices vS1S2v\in S_{1}\cup S_{2} such that μ(v)E2\mu(v)\in E_{2}. In what follows, we prove that 𝗌𝗎𝗉𝗉(v)={μ(v)}{\sf supp}(v)=\{\mu(v)\} for every vertex vS1S2v\in S_{1}\cup S_{2}. If we can prove this, then, for every vertex vS1S2v\in S_{1}\cup S_{2}, Lemma 13 implies that x(μ(v))=1x(\mu(v))=1 and x(e)=0x(e)=0 for every edge eE(v){μ(v)}e\in E(v)\setminus\{\mu(v)\}. This completes the proof.

Claim 4.

Let vv be a vertex in W1W_{1}. Then 𝗌𝗎𝗉𝗉(v)={μ(v)}{\sf supp}(v)=\{\mu(v)\}.

Proof.

Since μ(v)𝖳(v)\mu(v)\in{\sf T}(v) and μ(v)𝖡(v)\mu(v)\in{\sf B}(v), we have 𝗌𝗎𝗉𝗉(v)𝖡(v){\sf supp}(v)\subseteq{\sf B}(v). Thus, since 𝖡(v)={μ(v)}{\sf B}(v)=\{\mu(v)\}, we have 𝗌𝗎𝗉𝗉(v)={μ(v)}{\sf supp}(v)=\{\mu(v)\}. This completes the proof. ∎

For every vertex vW2v\in W_{2}, Lemma 10 implies that μ(v)𝖳(v)𝖡(v)\mu(v)\in{\sf T}(v)\cap{\sf B}(v). Thus, for every vertex vW2v\in W_{2}, we have 𝗌𝗎𝗉𝗉(v)=𝖳(v){\sf supp}(v)={\sf T}(v). For every vertex vW2v\in W_{2}, since μ(v)E2\mu(v)\in E_{2}, Lemma 14 implies that 𝗌𝗎𝗉𝗉(v)E2{\sf supp}(v)\subseteq E_{2}. Let W2W^{\prime}_{2} be the set of vertices vW2v\in W_{2} such that |𝗌𝗎𝗉𝗉(v)|2|{\sf supp}(v)|\geq 2.

Claim 5.

For every vertex vW2v\in W_{2}^{\prime} and every edge e={v,w}𝗌𝗎𝗉𝗉(v)e=\{v,w\}\in{\sf supp}(v), we have wW2w\in W_{2}^{\prime}.

Proof.

First, we prove that wW2w\in W_{2}. If wW1w\in W_{1}, then Claim 4 implies that 𝗌𝗎𝗉𝗉(w)={μ(w)}{\sf supp}(w)=\{\mu(w)\}. Thus, since e𝗌𝗎𝗉𝗉(w)e\in{\sf supp}(w), μ(v)=e=μ(w)E1\mu(v)=e=\mu(w)\in E_{1}. This contradicts the fact that vW2v\in W_{2}.

Since vW2v\in W_{2}^{\prime}, x(e)<1x(e)<1. Thus, Lemma 13 implies that wW2w\in W_{2}^{\prime}. ∎

The following claim implies that 𝗌𝗎𝗉𝗉(v)={μ(v)}{\sf supp}(v)=\{\mu(v)\} for every vertex vW2v\in W_{2}.

Claim 6.

W2=W^{\prime}_{2}=\emptyset.

Proof.

Assume that W2W^{\prime}_{2}\neq\emptyset. Claim 5 implies that there exists a cycle (v1,v2,,v2k+1)(v_{1},v_{2},\dots,v_{2k+1}) in 𝗌𝗎𝗉𝗉{\sf supp}. Notice that vW2v_{\ell}\in W_{2}^{\prime} and {v,v+1}E2\{v_{\ell},v_{\ell+1}\}\in E_{2} for every integer [2k]\ell\in[2k]. For each integer [k]\ell\in[k], we define f1:={v21,v2}f_{\ell}^{1}:=\{v_{2\ell-1},v_{2\ell}\} and f2:={v2,v2+1}f_{\ell}^{2}:=\{v_{2\ell},v_{2\ell+1}\}. Define

δ1:=min[k]x(f1),δ2:=min[k]x(f2),δ:=min{δ1,δ2}>0.\delta_{1}:=\min_{\ell\in[k]}x(f^{1}_{\ell}),\ \ \ \ \delta_{2}:=\min_{\ell\in[k]}x(f^{2}_{\ell}),\ \ \ \ \delta:=\min\{\delta_{1},\delta_{2}\}>0.

For each integer i{1,2}i\in\{1,2\}, we define zi+Ez_{i}\in\mathbb{R}_{+}^{E} as follows.

zi(e):={x(e)+δif e=fi for some integer [k]x(e)δif e=f3i for some integer [k]x(e)otherwise.z_{i}(e):=\begin{cases}x(e)+\delta&\mbox{if $e=f^{i}_{\ell}$ for some integer $\ell\in[k]$}\\ x(e)-\delta&\mbox{if $e=f^{3-i}_{\ell}$ for some integer $\ell\in[k]$}\\ x(e)&\mbox{otherwise}.\end{cases}

If we can prove that z1,z2𝐒z_{1},z_{2}\in{\bf S}, then since x=(z1+z2)/2x=(z_{1}+z_{2})/2, this contradicts the fact that xx is an extreme point of 𝐒{\bf S}. Thus, the proof is done. In what follows, let ii be an integer in {1,2}\{1,2\}, and we prove that zi𝐒z_{i}\in{\bf S}.

Since 𝗌𝗎𝗉𝗉(v)=𝖳(v){\sf supp}(v)={\sf T}(v) for every vertex vW2v\in W_{2}, x(E[ve])=zi(E[ve])x(E[\sim_{v}e])=z_{i}(E[\sim_{v}e]) and x(E[ve])=zi(E[ve])x(E[\succ_{v}e])=z_{i}(E[\succ_{v}e]) for every edge eEe\in E and every vertex vev\in e. Furthermore, since 𝗌𝗎𝗉𝗉(v)E2{\sf supp}(v)\subseteq E_{2} for every vertex vW2v\in W_{2}, x(e)=zi(e)x(e)=z_{i}(e) for every edge eE1e\in E_{1}. Thus, since x𝐒x\in{\bf S}, zi𝐒z_{i}\in{\bf S}. ∎

5 Structure

In this section, we first consider the set of vertices covered by a non-uniformly stable matching. Next, we prove that the set of non-uniformly stable matchings forms a distributive lattice.

In the proofs of the following results, we do not use the information about which of E1E_{1} and E2E_{2} an edge in EE belongs to. We only use the fact that, for every matching μ\mu in GG, if an edge eEμe\in E\setminus\mu strongly blocks μ\mu, then ee weakly blocks μ\mu. Thus, the following proofs are basically the same as the proofs of the results for strong stability [23, 24]. For completeness, we give the full proofs of the following results.

Theorem 3.

For every pair of non-uniformly stable matchings μ1,μ2\mu_{1},\mu_{2} in GG, V(μ1)=V(μ2)V(\mu_{1})=V(\mu_{2}).

Proof.

Assume that there exists a pair of non-uniformly stable matchings μ1,μ2\mu_{1},\mu_{2} in GG such that V(μ1)V(μ2)V(\mu_{1})\neq V(\mu_{2}). Define F:=(μ1μ2)(μ2μ1)F:=(\mu_{1}\setminus\mu_{2})\cup(\mu_{2}\setminus\mu_{1}). Since V(μ1)V(μ2)V(\mu_{1})\neq V(\mu_{2}), there exists a vertex v1Vv_{1}\in V such that |F(v1)|=1|F(v_{1})|=1. Assume that F(v1)={e1}F(v_{1})=\{e_{1}\}. Since VV is finite, there exists a path (v1,v2,,vk)(v_{1},v_{2},\dots,v_{k}) in FF such that (i) |F(vk)|=1|F(v_{k})|=1, and (ii) |F(v+1)μ1|=|F(v+1)μ2|=1|F(v_{\ell+1})\cap\mu_{1}|=|F(v_{\ell+1})\cap\mu_{2}|=1 for every integer [k2]\ell\in[k-2]. For each integer [k1]\ell\in[k-1], we define e:={v,v+1}e_{\ell}:=\{v_{\ell},v_{\ell+1}\}. Since μ1,μ2\mu_{1},\mu_{2} are non-uniformly stable, e+1v+1ee_{\ell+1}\succ_{v_{\ell+1}}e_{\ell} for every integer [k2]\ell\in[k-2]. Assume that ek1μie_{k-1}\in\mu_{i}. Then since μ3i(vk)=\mu_{3-i}(v_{k})=\emptyset and μi(vk1)vk1μ3i(vk1)\mu_{i}(v_{k-1})\succ_{v_{k-1}}\mu_{3-i}(v_{k-1}), ek1e_{k-1} blocks μ3i\mu_{3-i}. However, this contradicts the fact that μ3i\mu_{3-i} is non-uniformly stable. This completes the proof. ∎

Next, we prove that the set of non-uniformly stable matchings forms a distributive lattice. Define 𝒮\mathcal{S} as the set of non-uniformly stable matchings in GG. For each pair of elements μ,σ𝒮\mu,\sigma\in\mathcal{S}, we define the subsets μσ,μσμσ\mu\wedge\sigma,\mu\vee\sigma\subseteq\mu\cup\sigma by

(μσ)(v):={μ(v)if μ(v)vσ(v)σ(v)if σ(v)vμ(v),(μσ)(v):={μ(v)if σ(v)vμ(v)σ(v)if μ(v)vσ(v)(\mu\wedge\sigma)(v):=\begin{cases}\mu(v)&\mbox{if $\mu(v)\succsim_{v}\sigma(v)$}\\ \sigma(v)&\mbox{if $\sigma(v)\succ_{v}\mu(v)$},\end{cases}\ \ \ \ \ (\mu\vee\sigma)(v):=\begin{cases}\mu(v)&\mbox{if $\sigma(v)\succsim_{v}\mu(v)$}\\ \sigma(v)&\mbox{if $\mu(v)\succ_{v}\sigma(v)$}\end{cases}

for each vertex vV1v\in V_{1}.

Let μ,σ\mu,\sigma be elements in 𝒮\mathcal{S}. Define F:=(μσ)(σμ)F:=(\mu\setminus\sigma)\cup(\sigma\setminus\mu). Then Theorem 3 implies that there exists the set 𝒞(μ,σ)\mathcal{C}(\mu,\sigma) of cycles in FF satisfying the following conditions.

  • For every pair of elements (v1,v2,,vk+1),(w1,w2,,w+1)𝒞(μ,σ)(v_{1},v_{2},\dots,v_{k+1}),(w_{1},w_{2},\ldots,w_{\ell+1})\in\mathcal{C}(\mu,\sigma) and every pair of integers i[k]i\in[k] and j[]j\in[\ell], we have viwjv_{i}\neq w_{j}.

  • For every edge eFe\in F, there exist an element (v1,v2,,vk+1)𝒞(μ,σ)(v_{1},v_{2},\dots,v_{k+1})\in\mathcal{C}(\mu,\sigma) and an integer [k]\ell\in[k] such that e={v,v+1}e=\{v_{\ell},v_{\ell+1}\}.

In other words, 𝒞(μ,σ)\mathcal{C}(\mu,\sigma) is the set of cycles that exactly covers the edges in FF.

Lemma 16.

Let μ,σ\mu,\sigma be elements in 𝒮\mathcal{S}. Let (v1,v2,,vk+1)(v_{1},v_{2},\dots,v_{k+1}) be an element in 𝒞(μ,σ)\mathcal{C}(\mu,\sigma). Define e:={v,v+1}e_{\ell}:=\{v_{\ell},v_{\ell+1}\} for each vertex [k]\ell\in[k] and e0:=eke_{0}:=e_{k}. Then one of the following statements holds.

(C1)

eve1e_{\ell}\succ_{v_{\ell}}e_{\ell-1} for every integer [k]\ell\in[k].

(C2)

e1vee_{\ell-1}\succ_{v_{\ell}}e_{\ell} for every integer [k]\ell\in[k].

(C3)

eve1e_{\ell}\sim_{v_{\ell}}e_{\ell-1} for every integer [k]\ell\in[k].

Proof.

First, we consider the case where e1v1eke_{1}\succ_{v_{1}}e_{k}. If there does not exist an integer [k]\ell\in[k] such that e1vee_{\ell-1}\succsim_{v_{\ell}}e_{\ell}, then (C1) holds. We assume that there exists an integer [k]\ell\in[k] such that e1vee_{\ell-1}\succsim_{v_{\ell}}e_{\ell}. Let jj be the minimum integer in [k][k] such that ej1vjeje_{j-1}\succsim_{v_{j}}e_{j}. Notice that we have j>1j>1. Then ej1vj1ej2e_{j-1}\succ_{v_{j-1}}e_{j-2}. However, ej1e_{j-1} blocks one of μ\mu and σ\sigma. This is a contradiction.

Next, we consider the case where ekv1e1e_{k}\succ_{v_{1}}e_{1}. If there does not exist an integer [k]\ell\in[k] such that eve1e_{\ell}\succsim_{v_{\ell}}e_{\ell-1}, then (C2) holds. Thus, we assume that there exists an integer [k]\ell\in[k] such that eve1e_{\ell}\succsim_{v_{\ell}}e_{\ell-1}. Let jj be the maximum integer in [k][k] such that ejvjej1e_{j}\succsim_{v_{j}}e_{j-1}. If j=kj=k, then we define ej+1:=e1e_{j+1}:=e_{1}. Then ejvj+1ej+1e_{j}\succ_{v_{j+1}}e_{j+1}. However, eje_{j} blocks one of μ\mu and σ\sigma. This is a contradiction.

Third, we consider the case where e1v1eke_{1}\sim_{v_{1}}e_{k}. If there does not exist an integer [k]\ell\in[k] such that e≁ve1e_{\ell}\not\sim_{v_{\ell}}e_{\ell-1}, then (C3) holds. Thus, we assume that there exists an integer [k]\ell\in[k] such that e≁ve1e_{\ell}\not\sim_{v_{\ell}}e_{\ell-1}. Let jj be the minimum integer in [k][k] such that ej≁vjej1e_{j}\not\sim_{v_{j}}e_{j-1}. Notice that j>1j>1. Assume that ejvjej1e_{j}\succ_{v_{j}}e_{j-1}. Since μ,σ𝒮\mu,\sigma\in\mathcal{S}, ekvkek1e_{k}\succ_{v_{k}}e_{k-1}. This implies that eke_{k} blocks one of μ\mu and σ\sigma. Assume that ej1vjeje_{j-1}\succ_{v_{j}}e_{j}. Then ej1e_{j-1} blocks one of μ\mu and σ\sigma. ∎

Lemma 17.

For every pair of elements μ,σ𝒮\mu,\sigma\in\mathcal{S}, μσ𝒮\mu\wedge\sigma\in\mathcal{S} and μσ𝒮\mu\vee\sigma\in\mathcal{S}.

Proof.

Let μ,σ\mu,\sigma be elements in 𝒮\mathcal{S}. For every symbol {,}\odot\in\{\wedge,\vee\}, Lemma 16 implies that one of the following statements holds for each element (v1,v2,,v2k+1)𝒞(μ,σ)(v_{1},v_{2},\dots,v_{2k+1})\in\mathcal{C}(\mu,\sigma).

  • {v21,v2}μσ\{v_{2\ell-1},v_{2\ell}\}\in\mu\odot\sigma and {v2,v2+1}μσ\{v_{2\ell},v_{2\ell+1}\}\notin\mu\odot\sigma for every integer [k]\ell\in[k].

  • {v21,v2}μσ\{v_{2\ell-1},v_{2\ell}\}\notin\mu\odot\sigma and {v2,v2+1}μσ\{v_{2\ell},v_{2\ell+1}\}\in\mu\odot\sigma for every integer [k]\ell\in[k].

Thus, μσ,μσ\mu\wedge\sigma,\mu\vee\sigma are matchings in GG.

Let \odot be a symbol in {,}\{\wedge,\vee\}. We prove that μσ\mu\odot\sigma is non-uniformly stable. Let e=(v,w)e=(v,w) be an edge in E(μσ)E\setminus(\mu\odot\sigma). If eμσe\in\mu\cup\sigma, then there exists an element ξ{μ,σ}\xi\in\{\mu,\sigma\} such that, for every vertex ueu\in e, ξ(u)=(μσ)(u)\xi(u)=(\mu\odot\sigma)(u). Thus, in this case, since μ,σ𝒮\mu,\sigma\in\mathcal{S}, ee does not block μσ\mu\odot\sigma. Assume that eμσe\notin\mu\cup\sigma. If there exists an element ξ{μ,σ}\xi\in\{\mu,\sigma\} such that, for every vertex ueu\in e, ξ(u)=(μσ)(u)\xi(u)=(\mu\odot\sigma)(u), then since μ,σ𝒮\mu,\sigma\in\mathcal{S}, ee does not block μσ\mu\odot\sigma. In what follows, we assume that there does not exist such an element ξ{μ,σ}\xi\in\{\mu,\sigma\}.

First, we consider the case where (μσ)(v)=μ(v)(\mu\odot\sigma)(v)=\mu(v) and (μσ)(w)=σ(w)(\mu\odot\sigma)(w)=\sigma(w). If =\odot=\wedge, then μ(v)vσ(v)\mu(v)\succsim_{v}\sigma(v) and μ(w)wσ(w)\mu(w)\succ_{w}\sigma(w). This implies that (μσ)(v)vσ(v)(\mu\odot\sigma)(v)\succsim_{v}\sigma(v) and (μσ)(w)wσ(w)(\mu\odot\sigma)(w)\succsim_{w}\sigma(w). Thus, since σ𝒮\sigma\in\mathcal{S}, ee does not block μσ\mu\odot\sigma. If =\odot=\vee, then σ(v)vμ(v)\sigma(v)\succsim_{v}\mu(v) and σ(w)wμ(w)\sigma(w)\succ_{w}\mu(w). This implies that (μσ)(v)vμ(v)(\mu\odot\sigma)(v)\succsim_{v}\mu(v) and (μσ)(w)wμ(w)(\mu\odot\sigma)(w)\succsim_{w}\mu(w). Thus, since μ𝒮\mu\in\mathcal{S}, ee does not block μσ\mu\odot\sigma.

Next, we consider the case where (μσ)(v)=σ(v)(\mu\odot\sigma)(v)=\sigma(v) and (μσ)(w)=μ(w)(\mu\odot\sigma)(w)=\mu(w). If =\odot=\wedge, then σ(v)vμ(v)\sigma(v)\succ_{v}\mu(v) and σ(w)wμ(w)\sigma(w)\succsim_{w}\mu(w). This implies that (μσ)(v)vμ(v)(\mu\odot\sigma)(v)\succsim_{v}\mu(v) and (μσ)(w)wμ(w)(\mu\odot\sigma)(w)\succsim_{w}\mu(w). Thus, since μ𝒮\mu\in\mathcal{S}, ee does not block μσ\mu\odot\sigma. If =\odot=\vee, then μ(v)vσ(v)\mu(v)\succ_{v}\sigma(v) and μ(w)wσ(w)\mu(w)\succsim_{w}\sigma(w). This implies that (μσ)(v)vσ(v)(\mu\odot\sigma)(v)\succsim_{v}\sigma(v) and (μσ)(w)wσ(w)(\mu\odot\sigma)(w)\succsim_{w}\sigma(w). Thus, since σ𝒮\sigma\in\mathcal{S}, ee does not block μσ\mu\odot\sigma. ∎

The following lemma is the same as [24, Lemma 10]. For completeness, we give its proof.

Lemma 18.

Let μ,σ,ξ\mu,\sigma,\xi be elements in 𝒮\mathcal{S}, and let vv be a vertex in V1V_{1}. Furthermore, let \oplus be a symbol in {,}\{\wedge,\vee\}, and let \ominus be the symbol in {,}{}\{\wedge,\vee\}\setminus\{\oplus\}. Then the following statements hold.

(μμ)(v)=μ(v),(μσ)(v)v(σμ)(v),(μ(μσ))(v)=μ(v).\displaystyle(\mu\oplus\mu)(v)=\mu(v),\ \ (\mu\oplus\sigma)(v)\sim_{v}(\sigma\oplus\mu)(v),\ \ (\mu\oplus(\mu\ominus\sigma))(v)=\mu(v). (7)
(μ(σξ))(v)=((μσ)ξ)(v).\displaystyle(\mu\oplus(\sigma\oplus\xi))(v)=((\mu\oplus\sigma)\oplus\xi)(v). (8)
(μ(σξ))(v)=((μσ)(μξ))(v).\displaystyle(\mu\oplus(\sigma\ominus\xi))(v)=((\mu\oplus\sigma)\ominus(\mu\oplus\xi))(v). (9)
Proof.

It is not difficult to see that (7) follows from the definition. If ϕ1(v)vϕ2(v)\phi_{1}(v)\sim_{v}\phi_{2}(v) holds for every pair of distinct elements ϕ1,ϕ2{μ,σ,ξ}\phi_{1},\phi_{2}\in\{\mu,\sigma,\xi\}, then (8) and (9) clearly hold. In addition, if ϕ1(v)≁vϕ2(v)\phi_{1}(v)\not\sim_{v}\phi_{2}(v) holds for every pair of distinct elements ϕ1,ϕ2{μ,σ,ξ}\phi_{1},\phi_{2}\in\{\mu,\sigma,\xi\}, then (8) and (9) clearly hold. Thus, in what follows, we assume that there exist distinct elements ϕ1,ϕ2,ϕ3{μ,σ,ξ}\phi_{1},\phi_{2},\phi_{3}\in\{\mu,\sigma,\xi\} such that ϕ1(v)vϕ2(v)≁vϕ3(v)\phi_{1}(v)\sim_{v}\phi_{2}(v)\not\sim_{v}\phi_{3}(v), and then we consider (8) and (9).

First, we consider the case where =\oplus=\wedge. If ϕ3(v)vϕ2(v)\phi_{3}(v)\succ_{v}\phi_{2}(v), then the left-hand side and the right-hand side of (8) (resp. (9)) are ϕ3(v)\phi_{3}(v) (resp. μ(v)\mu(v)). Thus, we assume that ϕ2(v)vϕ3(v)\phi_{2}(v)\succ_{v}\phi_{3}(v) If ϕ3=μ\phi_{3}=\mu, then the left-hand sides and the right-hand sides of (8) and (9) are σ(v)\sigma(v). Otherwise (i.e., ϕ3μ\phi_{3}\neq\mu), the left-hand sides and the right-hand sides of (8) and (9) are μ(v)\mu(v).

Next, we consider the case where =\oplus=\vee. If ϕ2(v)vϕ3(v)\phi_{2}(v)\succ_{v}\phi_{3}(v), then the left-hand side and the right-hand side of (8) (resp. (9)) are ϕ3(v)\phi_{3}(v) (resp. μ(v)\mu(v)). Thus, we assume that ϕ3(v)vϕ2(v)\phi_{3}(v)\succ_{v}\phi_{2}(v) If ϕ3=μ\phi_{3}=\mu, then the left-hand sides and the right-hand sides of (8) and (9) are σ(v)\sigma(v). Otherwise (i.e., ϕ3μ\phi_{3}\neq\mu), the left-hand sides and the right-hand sides of (8) and (9) are μ(v)\mu(v). ∎

Define the binary relation \equiv on 𝒮\mathcal{S} as follows. For each pair of elements μ,σ𝒮\mu,\sigma\in\mathcal{S}, μσ\mu\equiv\sigma if and only if μ(v)vσ(v)\mu(v)\sim_{v}\sigma(v) holds for every vertex vV1v\in V_{1}. Then it is not difficult to see that \equiv is an equivalence relation on 𝒮\mathcal{S}. Define \mathbb{C} as the set of equivalence classes given by \equiv. Then, for each element μ𝒮\mu\in\mathcal{S}, let μ\langle\mu\rangle denote the element CC\in\mathbb{C} such that μC\mu\in C. Define the binary operations ,\wedge_{\equiv},\vee_{\equiv} on \mathbb{C} as follows. For each pair of elements μ,σ\langle\mu\rangle,\langle\sigma\rangle\in\mathbb{C}, we define μσ:=μσ\langle\mu\rangle\wedge_{\equiv}\langle\sigma\rangle:=\langle\mu\wedge\sigma\rangle and μσ:=μσ\langle\mu\rangle\vee_{\equiv}\langle\sigma\rangle:=\langle\mu\vee\sigma\rangle. Notice that since Lemma 17 implies that μσ𝒮\mu\wedge\sigma\in\mathcal{S} and μσ𝒮\mu\vee\sigma\in\mathcal{S} for every pair of elements μ,σ𝒮\mu,\sigma\in\mathcal{S}, the binary operations ,\wedge_{\equiv},\vee_{\equiv} are well-defined.

We are now ready to give the main result of this section.

Theorem 4.

(,,)(\mathbb{C},\wedge_{\equiv},\vee_{\equiv}) is a distributive lattice.

Proof.

Let μ,σ,ξ\mu,\sigma,\xi be elements in 𝒮\mathcal{S}. Furthermore, let \oplus be a symbol in {,}\{\wedge_{\equiv},\vee_{\equiv}\}, and let \ominus be the symbol in {,}{}\{\wedge_{\equiv},\vee_{\equiv}\}\setminus\{\oplus\}. Then it suffices to prove that the following statements hold.

μμ=μ,μσ=σμ,μ(μσ)=μ.\displaystyle\langle\mu\rangle\oplus\langle\mu\rangle=\langle\mu\rangle,\ \ \langle\mu\rangle\oplus\langle\sigma\rangle=\langle\sigma\rangle\oplus\langle\mu\rangle,\ \ \langle\mu\rangle\oplus(\langle\mu\rangle\ominus\langle\sigma\rangle)=\langle\mu\rangle. (10)
μ(σξ)=(μσ)ξ.\displaystyle\langle\mu\rangle\oplus(\langle\sigma\rangle\oplus\langle\xi\rangle)=(\langle\mu\rangle\oplus\langle\sigma\rangle)\oplus\langle\xi\rangle. (11)
μ(σξ)=(μσ)(μξ).\displaystyle\langle\mu\rangle\oplus(\langle\sigma\rangle\ominus\langle\xi\rangle)=(\langle\mu\rangle\oplus\langle\sigma\rangle)\ominus(\langle\mu\rangle\oplus\langle\xi\rangle). (12)

Then since μ1=μ2\langle\mu_{1}\rangle=\langle\mu_{2}\rangle for every pair of elements μ1,μ2𝒮\mu_{1},\mu_{2}\in\mathcal{S} such that μ1(v)vμ2(v)\mu_{1}(v)\sim_{v}\mu_{2}(v) for every vertex vV1v\in V_{1}, (7) implies (10). Furthermore, (8) and (9) imply (11) and (12), respectively. ∎

References

  • [1] Ning Chen and Arpita Ghosh. Strongly stable assignment. In Mark de Berg and Ulrich Meyer, editors, Proceedings of the 18th Annual European Symposium on Algorithms, Part II, volume 6347 of Lecture Notes in Computer Science, pages 147–158, Berlin, Heidelberg, Germany, 2010. Springer.
  • [2] Tamás Fleiner. A fixed-point approach to stable matchings and some applications. Mathematics of Operations Research, 28(1):103–126, 2003.
  • [3] David Gale and Lloyd S. Shapley. College admissions and the stability of marriage. The American Mathematical Monthly, 69(1):9–15, 1962.
  • [4] Philip Hall. On representatives of subsets. Journal of the London Mathematical Society, 1(1):26–30, 1935.
  • [5] John E. Hopcroft and Richard M. Karp. An n5/2n^{5/2} algorithm for maximum matchings in bipartite graphs. SIAM Journal on Computing, 2(4):225–231, 1973.
  • [6] Changyong Hu and Vijay K. Garg. Characterization of super-stable matchings. In Anna Lubiw and Mohammad R. Salavatipour, editors, Proceedings of the 17th Algorithm and Data Structures Symposium, volume 12808 of Lecture Notes in Computer Science, pages 485–498, Cham, Switzerland, 2021. Springer.
  • [7] Robert W. Irving. Stable marriage and indifference. Discrete Applied Mathematics, 48(3):261–272, 1994.
  • [8] Robert W. Irving, David F. Manlove, and Sandy Scott. The hospitals/residents problem with ties. In Magnús M. Halldórsson, editor, Proceedings of the 7th Scandinavian Workshop on Algorithm Theory, volume 1851 of Lecture Notes in Computer Science, pages 259–271, Berlin, Heidelberg, Germany, 2000. Springer.
  • [9] Robert W. Irving, David F. Manlove, and Sandy Scott. Strong stability in the hospitals/residents problem. In Helmut Alt and Michel Habib, editors, Proceedings of the 20th Annual Symposium on Theoretical Aspects of Computer Science, volume 2607 of Lecture Notes in Computer Science, pages 439–450, Berlin, Heidelberg, Germany, 2003. Springer.
  • [10] Robert W. Irving, David F. Manlove, and Sandy Scott. The stable marriage problem with master preference lists. Discrete Applied Mathematics, 156(15):2959–2977, 2008.
  • [11] Kazuo Iwama and Shuichi Miyazaki. Stable marriage with ties and incomplete lists. In Ming-Yang Kao, editor, Encyclopedia of Algorithms. Springer, Boston, MA, 2008 edition, 2008.
  • [12] Noelia Juarez, Pablo A. Neme, and Jorge Oviedo. Marriage market with indifferences: A linear programming approach. Journal of the Operations Research Society of China, 11:219–242, 2023.
  • [13] Naoyuki Kamiyama. Stable matchings with ties, master preference lists, and matroid constraints. In Martin Hoefer, editor, Proceedings of the 8th International Symposium on Algorithmic Game Theory, volume 9347 of Lecture Notes in Computer Science, pages 3–14, Berlin, Heidelberg, Germany, 2015. Springer.
  • [14] Naoyuki Kamiyama. Many-to-many stable matchings with ties, master preference lists, and matroid constraints. In Edith Elkind, Manuela Veloso, Noa Agmon, and Matthew E. Taylor, editors, Proceedings of the 18th International Conference on Autonomous Agents and Multiagent Systems, pages 583–591, Richland, SC, 2019. International Foundation for Autonomous Agents and Multiagent Systems.
  • [15] Naoyuki Kamiyama. A matroid generalization of the super-stable matching problem. SIAM Journal on Discrete Mathematics, 36(2):1467–1482, 2022.
  • [16] Naoyuki Kamiyama. Strongly stable matchings under matroid constraints. Technical Report arXiv:2208.11272, arXiv, 2022.
  • [17] Telikepalli Kavitha, Kurt Mehlhorn, Dimitrios Michail, and Katarzyna E. Paluch. Strongly stable matchings in time O(nm)O(nm) and extension to the hospitals-residents problem. ACM Transactions on Algorithms, 3(2):Article 15, 2007.
  • [18] Donald E. Knuth. Stable Marriage and its Relation to Other Combinatorial Problems, volume 10 of CRM Proceedings and Lecture Notes. American Mathematical Society, Providence, RI, 1997.
  • [19] Adam Kunysz. An algorithm for the maximum weight strongly stable matching problem. In Wen-Lian Hsu, Der-Tsai Lee, and Chung-Shou Liao, editors, Proceedings of the 29th International Symposium on Algorithms and Computation, volume 123 of LIPIcs, pages 42:1–42:13, Wadern, Germany, 2018. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.
  • [20] Adam Kunysz. A faster algorithm for the strongly stable bb-matching problem. In Pinar Heggernes, editor, Proceedings of the 11th International Conference on Algorithms and Complexity, volume 11485 of Lecture Notes in Computer Science, pages 299–310, Cham, Switzerland, 2019. Springer.
  • [21] Adam Kunysz, Katarzyna E. Paluch, and Pratik Ghosal. Characterisation of strongly stable matchings. In Robert Krauthgamer, editor, Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 107–119, Philadelphia, PA, 2016. Society for Industrial and Applied Mathematics.
  • [22] Varun S. Malhotra. On the stability of multiple partner stable marriages with ties. In Susanne Albers and Tomasz Radzik, editors, Proceedings of the 12th Annual European Symposium on Algorithms, volume 3221 of Lecture Notes in Computer Science, pages 508–519, Berlin, Heidelberg, Germany, 2004. Springer.
  • [23] David F. Manlove. Stable marriage with ties and unacceptable partners. Technical Report TR-1999-29, The University of Glasgow, Department of Computing Science, 1999.
  • [24] David F. Manlove. The structure of stable marriage with indifference. Discrete Applied Mathematics, 122(1-3):167–181, 2002.
  • [25] David F. Manlove. Algorithmics of Matching under Preferences. World Scientific, Singapore, 2013.
  • [26] Giacomo Zambelli Michele Conforti, Gérard Cornuéjols. Integer Programming. Springer, Cham, Switzerland, 2014.
  • [27] Kazuo Murota. Discrete Convex Analysis, volume 10 of SIAM Monographs on Discrete Mathematics and Applications. Society for Industrial and Applied Mathematics, Philadelphia, PA, 2003.
  • [28] Sofiat Olaosebikan and David F. Manlove. An algorithm for strong stability in the student-project allocation problem with ties. In Manoj Changat and Sandip Das, editors, Proceedings of the 8th Annual International Conference on Algorithms and Discrete Applied Mathematics, volume 12016 of Lecture Notes in Computer Science, pages 384–399, Cham, Switzerland, 2020. Springer.
  • [29] Sofiat Olaosebikan and David F. Manlove. Super-stability in the student-project allocation problem with ties. Journal of Combinatorial Optimization, 43(5):1203–1239, 2022.
  • [30] Gregg O’Malley. Algorithmic Aspects of Stable Matching Problems. PhD thesis, The University of Glasgow, 2007.
  • [31] Uriel G. Rothblum. Characterization of stable matchings as extreme points of a polytope. Mathematical Programming, 54:57–67, 1992.
  • [32] Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency, volume 24 of Algorithms and Combinatorics. Springer, Berlin, Heidelberg, Germany, 2002.
  • [33] Sandy Scott. A Study of Stable Marriage Problems with Ties. PhD thesis, The University of Glasgow, 2005.
  • [34] Boris Spieker. The set of super-stable marriages forms a distributive lattice. Discrete Applied Mathematics, 58(1):79–84, 1995.
  • [35] John H. Vande Vate. Linear programming brings marital bliss. Operations Research Letters, 8(3):147–153, 1989.