This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Non-Riemannian Volume Elements Dynamically Generate Inflation

David Benisty 
Physics Department, Ben Gurion University of the Negev
Beer Sheva, Israel
Frankfurt Institute for Advanced Studies (FIAS)
Frankfurt am Main, Germany
Eduardo Guendelman 
Physics Department, Ben Gurion University of the Negev
Beer Sheva, Israel
Frankfurt Institute for Advanced Studies (FIAS)
Frankfurt am Main, Germany
Bahamas Advanced Study Institute and Conferences
Stella Maris, Long Island, The Bahamas
Emil Nissimov and Svetlana Pacheva 
Institute for Nuclear Research and Nuclear Energy
Bulgarian Academy of Sciences, Sofia, Bulgaria
 e-mail address: benidav@post.bgu.ac.il e-mail address: guendel@bgu.ac.il, guendelman@fias.uni-frankfurt.de e-mail address: nissimov@inrne.bas.bg, svetlana@inrne.bas.bg
Abstract

Our primary objective is the formulation of a plausible cosmological inflationary model entirely in terms of a pure modified gravity without any a priori matter couplings within the formalism of non-Riemannian spacetime volume elements. The non-Riemannian volume elements dynamically create in the physical Einstein frame a canonical scalar matter field and produce a non-trivial inflationary scalar potential with a large flat region and a low-lying stable minimum corresponding to the late universe stage. This dynamically generated inflationary potential is a substantial generalization of the classic Starobinsky potential. Our model predicts scalar power spectral index and tensor to scalar ratio in accordance with the available observational data.

1 Introduction

The theoretical framework based on the concept of “inflation” in the study of the evolution of the early Universe provides an attractive solution explaining the “puzzles” of Big-Bang cosmology (the horizon problem, the flatness problem, the magnetic monople problem, etc. [1]-[5]. Likewise it is an important instrumentarium for treatment of primordial density perturbations [6, 7]. For some recent detailed accounts, see Refs.[8]-[12].

On the other hand, in a parallel development another groundbreaking concept emerged in the last decade or so about the intrinsic necessity to modify (extend) gravity theories beyond the scope of standard Einstein’s general relativity with the main motivation to overcome the limitations of the latter coming from: (i) Cosmology – for solving the problems of dark energy and dark matter and explaining the large scale structure of the Universe [13, 14]; (ii) Quantum field theory in curved spacetime – due to renormalization of ultraviolet divergences in higher loops [15]; (iii) Modern string theory – due to the natural appearance of higher-order curvature invariants and scalar-tensor couplings in low-energy effective field theories [16].

Various classes of modified gravity theories have been employed to construct viable inflationary models: f(R)f(R)-gravity; scalar-tensor gravity; Gauss-Bonnet gravity (see Refs.[17]-[21] for a detailed accounts); recently also based on non-local gravity (Ref.[22] and references therein) or based on brane-world scenarios (Ref.[23] and references therein). The first early successful cosmological model based on the extended f(R)=R+R2f(R)=R+R^{2}-gravity is the classical Starobinsky potential [1].

A further specific broad class of actively developed modified (extended) gravitational theories is based on the formalism of non-Riemannian spacetime volume elements (originally proposed in Refs.[24]-[28]; see Refs.[29, 30] for a systematic geometric formulation). This formalism was used as a basis for constructing a series of extended gravity-matter models describing unified dark energy and dark matter scenario [31, 32], quintessential cosmological models with gravity-assisted and inflaton-assisted dynamical suppression (in the “early” universe) or dynamical generation (in the post-inflationary universe) of electroweak spontaneous symmetry breaking and charge confinement [33]-[35], as well as a novel mechanism for dynamical supersymmetric Brout-Englert-Higgs effect in supergravity [29].

In what follows we will describe in some detail the construction of a viable cosmological inflationary model starting from a modified pure gravity involving several independent non-Riemannian volume elements and without any a priori coupling to matter fields.

2 Brief Reminder on Non-Riemannian Volume-Forms (Volume Elements)

Let us briefly recall the essence of the non-Riemannian volume-form formalism (cf. Ref.[36]).

In integrals over differentiable manifolds (not necessarily Riemannian one, so no metric is needed) volume-forms are given by nonsingular maximal rank differential forms ω\omega:

ω()=𝑑xDΩ(),ω=1D!ωμ1μDdxμ1dxμD,\int_{{\mathcal{M}}}\omega\bigl{(}\ldots\bigr{)}=\int_{{\mathcal{M}}}dx^{D}\,\Omega\bigl{(}\ldots\bigr{)}\;\;,\;\;\omega=\frac{1}{D!}\omega_{\mu_{1}\ldots\mu_{D}}dx^{\mu_{1}}\wedge\ldots\wedge dx^{\mu_{D}}\;, (1)

where ωμ1μD=εμ1μDΩ\omega_{\mu_{1}\ldots\mu_{D}}=-\varepsilon_{\mu_{1}\ldots\mu_{D}}\Omega and Ω\Omega is the volume element density (our conventions for the totally anti-symmetric symbols are ε01D1=1,ε01D1=1\varepsilon^{01\ldots D-1}=1\;,\;\varepsilon_{01\ldots D-1}=-1).

In Riemannian DD-dimensional spacetime manifolds a standard generally-covariant volume-form is defined through the “D-bein” (frame-bundle) canonical one-forms eA=eμAdxμe^{A}=e^{A}_{\mu}dx^{\mu} (A=0,,D1A=0,\ldots,D-1):

ω=e0eD1=deteμAdxμ1dxμD,\omega=e^{0}\wedge\ldots\wedge e^{D-1}=\det\|e^{A}_{\mu}\|\,dx^{\mu_{1}}\wedge\ldots\wedge dx^{\mu_{D}}\;, (2)

where the standard Riemannian volume element density reads Ω=deteμA=detgμνg\Omega=\det\|e^{A}_{\mu}\|=\sqrt{-\det\|g_{\mu\nu}\|}\equiv\sqrt{-g}.

To construct modified gravitational theories as alternatives to ordinary standard theories in Einstein’s general relativity, instead of g\sqrt{-g} we can employ one or more alternative non-Riemannian volume element(s) as in (1) given by non-singular exact DD-forms ω=dA\omega=dA, where: A=1(D1)!Aμ1μD1dxμ1dxμ1A=\frac{1}{(D-1)!}A_{\mu_{1}\ldots\mu_{D-1}}dx^{\mu_{1}}\wedge\ldots\wedge dx^{\mu_{-1}} and the corresponding volume element density reads:

ΩΦ(A)=1(D1)!εμ1μDμ1Aμ2μD.\Omega\equiv\Phi(A)=\frac{1}{(D-1)!}\varepsilon^{\mu_{1}\ldots\mu_{D}}\,\partial_{\mu_{1}}A_{\mu_{2}\ldots\mu_{D}}\;. (3)

Thus, non-Riemannian volume element densities Φ(A)\Phi(A) are defined in terms of the (scalar density of the) dual field-strength of auxiliary rank D1D-1 tensor gauge fields Aμ1μD1A_{\mu_{1}\ldots\mu_{D-1}}.

As an important remark, let us note that in the first-order (Palatini) formalism (gμνg_{\mu\nu} and Γμνλ\Gamma_{\mu\nu}^{\lambda} a priori independent), the auxiliary tensor gauge fields Aμ1μD1A_{\mu_{1}\ldots\mu_{D-1}} turn out to be (almost) pure-gauge – no propagating field degrees of freedom except for few discrete degrees of freedom with conserved canonical momenta appearing as arbitrary integration constants. See Refs.[30]-[33] (appendices A) for a systematic proof of the latter fact using the standard canonical Hamiltonian treatment of systems with gauge symmetries, i.e., systems with first-class Hamiltonian constraints a’la Dirac [37, 38].

However, in the second-order (metric) formalism (where Γμνλ\Gamma_{\mu\nu}^{\lambda} is the usual Levi-Civita connection of the metric gμνg_{\mu\nu}) the first non-Riemannian volume form Φ(A)\Phi(A), replacing g\sqrt{-g} in the modified Einstein-Hilbert part of the action:

S=d4xΦ(A)R+,S=\int d^{4}x\Phi(A)R+\ldots\;, (4)

is not any more pure-gauge. The reason is that in the action (4) the scalar curvature RR (in the metric formalism) containes second-order (time) derivatives (the latter amount to a total derivative in the ordinary case S=d4xgR+S=\int d^{4}x\sqrt{-g}R+\ldots).

So defining χ1Φ(A)/g\chi_{1}\equiv\Phi(A)/\sqrt{-g}, the latter field becomes physical degree of freedom as seen from the equations of motion resulting from varying (4) w.r.t. gμνg^{\mu\nu}:

Rμν+1χ1(gμνχ1μνχ1)+=0R_{\mu\nu}+\frac{1}{\chi_{1}}\bigl{(}g_{\mu\nu}\Box\chi_{1}-\nabla_{\mu}\nabla_{\nu}\chi_{1}\bigr{)}+\ldots=0 (5)

3 Modified Pure Gravity with Non-Riemannian Volume Elements

Let us now consider the following simple modified gravity model without any couplings to matter fields (we will use “Planck units” 16πGN=116\pi G_{N}=1):

S=d4x{Φ1(A)[R2Λ0Φ1(A)g]+Φ2(B)Φ0(C)g}.S=\int d^{4}x\Bigl{\{}\Phi_{1}(A)\Bigl{[}R-2\Lambda_{0}\frac{\Phi_{1}(A)}{\sqrt{-g}}\Bigr{]}+\Phi_{2}(B)\frac{\Phi_{0}(C)}{\sqrt{-g}}\Bigr{\}}\;. (6)

Here RR is the scalar curvature in the metric formalism and:

Φ1(A)13!εμνκλμAνκλ,Φ2(B)13!εμνκλμBνκλ,\displaystyle\Phi_{1}(A)\equiv\frac{1}{3!}\varepsilon^{\mu\nu\kappa\lambda}\partial_{\mu}A_{\nu\kappa\lambda}\;,\;\Phi_{2}(B)\equiv\frac{1}{3!}\varepsilon^{\mu\nu\kappa\lambda}\partial_{\mu}B_{\nu\kappa\lambda}\;,
Φ0(C)13!εμνκλμCνκλ,\displaystyle\Phi_{0}(C)\equiv\frac{1}{3!}\varepsilon^{\mu\nu\kappa\lambda}\partial_{\mu}C_{\nu\kappa\lambda}\;,\phantom{aaaaaa} (7)

denote three different independent non-Riemannian volume element denisties as in (3) for D=4D=4. Λ0\Lambda_{0} is dimensionful parameter which will turn out in what follows to play the role of an inflationary scale.

It is important to stress that the form of the action (6) is uniquely specified by the requirement about global Weyl-scale invariance under:

gμνλgμν,AμνκλAμνκ,Bμνκλ2Bμνκ,CμνκCμνκ.\displaystyle g_{\mu\nu}\to\lambda g_{\mu\nu}\;,\;A_{\mu\nu\kappa}\to\lambda A_{\mu\nu\kappa}\;,\;B_{\mu\nu\kappa}\to\lambda^{2}B_{\mu\nu\kappa}\;,\;C_{\mu\nu\kappa}\to C_{\mu\nu\kappa}\;. (8)

where λ=const\lambda={\rm const}. Its importance within the context of non-Riemannian volume element formalism has been originally stressed in [26].

The equations of motion from the action (6) w.r.t. the auxiliary gauge fields Aμνλ,Bμνλ,CμνλA_{\mu\nu\lambda},\,B_{\mu\nu\lambda}\,,C_{\mu\nu\lambda} defining the non-Riemannian volume elements (7) yield, respectively:

R4Λ0Φ1(A)g=M1const,\displaystyle R-4\Lambda_{0}\frac{\Phi_{1}(A)}{\sqrt{-g}}=-M_{1}\equiv{\rm const}\;, (9)
Φ0(C)g=M2const,Φ2(B)g=χ2const.\displaystyle\frac{\Phi_{0}(C)}{\sqrt{-g}}=-M_{2}\equiv{\rm const}\;\;,\;\;\frac{\Phi_{2}(B)}{\sqrt{-g}}=\chi_{2}\equiv{\rm const}\;. (10)

Here M1,M2M_{1},M_{2} and χ2\chi_{2} are (dimensionful and dimensionless, respectively) free integration constants; M1,M2M_{1},M_{2} indicate spontaneous breaking of global Weyl symmetry (8).

Also, it is important to observe that, since the scalar curvature RR contains terms with second-order time derivatives on gμνg_{\mu\nu}, Eq.(9) is a genuine dynamical equation of motion and not a constraint.

The equations of motion w.r.t. gμνg_{\mu\nu} from (6) read:

RμνΛ0χ1gμν+1χ1(gμνχ1μνχ1)χ2M2χ1gμν=0,R_{\mu\nu}-\Lambda_{0}\chi_{1}\,g_{\mu\nu}+\frac{1}{\chi_{1}}\bigl{(}g_{\mu\nu}\Box{\chi_{1}}-\nabla_{\mu}\nabla_{\nu}\chi_{1}\Bigr{)}-\frac{\chi_{2}M_{2}}{\chi_{1}}g_{\mu\nu}=0\;, (11)

with χ1Φ(A)/g\chi_{1}\equiv\Phi(A)/\sqrt{-g}. Taking the trace of (11):

3χ1χ14χ2M2χ1M1=03\frac{\Box\chi_{1}}{\chi_{1}}-\frac{4\chi_{2}M_{2}}{\chi_{1}}-M_{1}=0 (12)

yields a dynamical equation of motion for the composite scalar field χ1\chi_{1}.

4 From Modified Gravity to the Physical Einstein Frame

We now transform Eqs.(11) and (12) to the physical Einstein frame via the conformal transformation g¯μν=χ1gμν{\bar{g}}_{\mu\nu}=\chi_{1}g_{\mu\nu}, upon using the well-known (cf. Ref.[39]) conformal transformation formulas (bars indicate magnitudes in the g¯μν{\bar{g}}_{\mu\nu}-frame):

Rμν(g)=Rμν(g¯)3g¯μνχ1g¯κλκχ11/2λχ11/2\displaystyle R_{\mu\nu}(g)=R_{\mu\nu}(\bar{g})-3\frac{{\bar{g}}_{\mu\nu}}{\chi_{1}}{\bar{g}}^{\kappa\lambda}\partial_{\kappa}\chi_{1}^{1/2}\partial_{\lambda}\chi_{1}^{1/2}
+χ11/2(¯μ¯νχ11/2+g¯μν¯χ11/2),\displaystyle+\chi_{1}^{-1/2}\bigl{(}{\bar{\nabla}}_{\mu}{\bar{\nabla}}_{\nu}\chi_{1}^{1/2}+{\bar{g}}_{\mu\nu}{\bar{\Box}}\chi_{1}^{1/2}\bigr{)}\;, (13)
χ1=χ1(¯χ12g¯μνμχ11/2νχ1χ11/2).\displaystyle\Box\chi_{1}=\chi_{1}\Bigl{(}{\bar{\Box}}\chi_{1}-2{\bar{g}}^{\mu\nu}\frac{\partial_{\mu}\chi_{1}^{1/2}\partial_{\nu}\chi_{1}}{\chi_{1}^{1/2}}\Bigr{)}\;. (14)

Hereby the transformed equations acquire the standard form of Einstein equations w.r.t. the new “Einstein-frame” metric g¯μν{\bar{g}}_{\mu\nu}:

Rμν(g¯)12g¯μνR(g¯)=12[μuνug¯μν(12g¯κλκuλu+Ueff(u))],\displaystyle R_{\mu\nu}(\bar{g})-\frac{1}{2}{\bar{g}}_{\mu\nu}R(\bar{g})=\frac{1}{2}\Bigl{[}\partial_{\mu}u\partial_{\nu}u-{\bar{g}}_{\mu\nu}\bigl{(}\frac{1}{2}{\bar{g}}^{\kappa\lambda}\partial_{\kappa}u\partial_{\lambda}u+U_{\rm eff}(u)\bigr{)}\Bigr{]}\;, (15)
¯u+Ueffu=0,\displaystyle{\bar{\Box}}u+\frac{{\partial{U_{\rm eff}}}}{{\partial{u}}}=0\;, (16)

where we have redefined

Φ1(A)/gχ1=exp(u/3)\Phi_{1}(A)/\sqrt{-g}\equiv\chi_{1}=\exp{\bigl{(}u/\sqrt{3}\bigr{)}} (17)

in order to obtain a canonically normalized kinetic term for the scalar field uu, and where we have obtained a dynamically generated effective scalar potential:

Ueff(u)=2Λ0M1exp(u3)+χ2M2exp(2u3).U_{\rm eff}(u)=2\Lambda_{0}-M_{1}\exp{\bigl{(}-\frac{u}{\sqrt{3}}\bigr{)}}+\chi_{2}M_{2}\exp{\bigl{(}-2\frac{u}{\sqrt{3}}\bigr{)}}\;. (18)

UeffU_{\rm eff} (18) is a generalization of the classic Starobinsky potential [1]; the latter is a special case of (18) for Λ0=14M1=12χ2M2\Lambda_{0}=\frac{1}{4}M_{1}=\frac{1}{2}\chi_{2}M_{2}.

Accordingly, the corresponding Einstein-frame action reads:

SEF=d4xg¯[R(g¯)12g¯μνμuνuUeff(u)],S_{\rm EF}=\int d^{4}x\sqrt{-{\bar{g}}}\Bigl{[}R({\bar{g}})-\frac{1}{2}{\bar{g}}^{\mu\nu}\partial_{\mu}u\partial_{\nu}u-U_{\rm eff}(u)\Bigr{]}\;, (19)

with UeffU_{\rm eff} as in (18).

Let us particularly emphasize that the Einstein-frame action (19) is entirely dynamically generated:

     (a) The canonical scalar field uu is dynamically created from the ratio of the volume-element densities Φ1(A)/g\Phi_{1}(A)/\sqrt{-g} (17);

     (b) The effective potential Ueff(u)U_{\rm eff}(u) (18) is dynamically generated due to the appearance of the free integration constants M1,2,χ2M_{1,2},\chi_{2} in (18) as a result of the specific (constrained) dynamics (9)-(10) of the auxiliary gauge fields Aμνλ,Bμνλ,CμνλA_{\mu\nu\lambda},B_{\mu\nu\lambda},C_{\mu\nu\lambda} – constituents of the non-Riemannian volume element densities Φ(A),Φ(B),Φ(C)\Phi(A),\Phi(B),\Phi(C) (7). Ueff(u)U_{\rm eff}(u) (18) is graphically depicted on Fig.1.

Refer to caption
Figure 1: Qualitative shape of the dynamically generated effective scalar potential UeffU_{\rm eff} (18) as function of uu. The unit for uu is MPlanck/2M_{Planck}/\sqrt{2}.

The dynamically generated potential Ueff(u)U_{\rm eff}(u) (18) has two main features relevant for cosmological applications.

First, Ueff(u)U_{\rm eff}(u) (18) possesses a long flat region for large positive uu and, second, it has a stable minimum for a small finite value u=uu=u_{*}:

  • (i) Ueff(u)2Λ0U_{\rm eff}(u)\simeq 2\Lambda_{0} for large uu;

  • (ii) Ueffu=0\frac{{\partial{U_{\rm eff}}}}{{\partial{u}}}=0\; for uuu\equiv u_{*} where:

    exp(u3)=M12χ2M2,2Ueffu2|u=u=M126χ2M2>0.\exp\bigl{(}-\frac{u_{*}}{\sqrt{3}}\bigr{)}=\frac{M_{1}}{2\chi_{2}M_{2}}\quad,\quad\frac{\partial^{2}U_{\rm eff}}{\partial u^{2}}\bigg{|}_{u=u_{*}}=\frac{M_{1}^{2}}{6\chi_{2}M_{2}}>0\;. (20)

The flat region of Ueff(u)U_{\rm eff}(u) for large positive uu correspond to “early” universe’ slow-roll inflationary evolution with energy scale 2Λ02\Lambda_{0}. On the other hand, the region around the stable minimum at u=uu=u_{*} (20) correspond to “late” universe’ evolution where:

Ueff(u)=2Λ0M124χ2M22ΛDEU_{\rm eff}(u_{*})=2\Lambda_{0}-\frac{M_{1}^{2}}{4\chi_{2}M_{2}}\equiv 2\Lambda_{\rm DE} (21)

is the dark energy density value dynamically generated through the free integration constants M1,2,χ2M_{1,2},\,\chi_{2}.

5 FLRW Reduction and Evolution of the Homogeneous Solution

Let us mow consider the reduction of the Einstein-frame action (19) to the Friedmann-Lemaitre-Robertson-Walker (FLRW) setting with metric ds2=N2dt2+a(t)2dx2ds^{2}=-N^{2}dt^{2}+a(t)^{2}d{\vec{x}}^{2}, and with u=u(t)u=u(t).

The FLRW-reduced action reads:

SFLRW=d4x[6aa.2N+Na3(12u.2+M1eu/3M2χ2e2u/32Λ0)].S_{\rm FLRW}=\int d^{4}x\Bigl{[}-6\frac{a\stackrel{{\scriptstyle.}}{{a}}^{2}}{N}+Na^{3}\Bigl{(}\frac{1}{2}\stackrel{{\scriptstyle.}}{{u}}^{2}+M_{1}e^{-u/\sqrt{3}}-M_{2}\chi_{2}e^{-2u/\sqrt{3}}-2\Lambda_{0}\Bigr{)}\Bigr{]}\;. (22)

We will study the evolution of u=u(t)u=u(t) and a=a(t)a=a(t) specified by (22) using the method of autonomous dynamical systems.

The pertinent Friedmann and uu-field equations resulting from (22) are given by:

H2=16ρ,ρ=12u.2+Ueff(u),\displaystyle H^{2}=\frac{1}{6}\rho\;\;,\;\;\rho=\frac{1}{2}\stackrel{{\scriptstyle.}}{{u}}^{2}+U_{\rm eff}(u)\;, (23)
H.=14(ρ+p),p=12u.2Ueff(u),\displaystyle\stackrel{{\scriptstyle.}}{{H}}=-\frac{1}{4}(\rho+p)\;\;,\;\;p=\frac{1}{2}\stackrel{{\scriptstyle.}}{{u}}^{2}-U_{\rm eff}(u)\;, (24)
u..+3Hu.+Ueffu=0.\displaystyle\stackrel{{\scriptstyle..}}{{u}}+3H\stackrel{{\scriptstyle.}}{{u}}+\frac{{\partial{U_{\rm eff}}}}{{\partial{u}}}=0\;. (25)

It is instructive (following Ref.[40]) to rewite the system of Eqs.(23)-(25) in terms of a set of dimensionless variables:

x:=u˙12H,y:=Ueff(u)2ΛDE6H,z:=ΛDE3H,x:=\frac{\dot{u}}{\sqrt{12}H},\quad y:=\frac{\sqrt{U_{\rm eff}(u)-2\Lambda_{\rm DE}}}{\sqrt{6}H},\quad z:=\frac{\sqrt{\Lambda_{\rm DE}}}{\sqrt{3}H}\;, (26)

with LDE=Λ0M128χ2M2L_{\rm DE}=\Lambda_{0}-\frac{M_{1}^{2}}{8\chi_{2}M_{2}} as in (21).

The first Friedman Eq.(23) yields an algebraic constraint x2+y2+z2=1x^{2}+y^{2}+z^{2}=1, so that the autonomous dynamical system w.r.t. (x,z)(x,z) reads:

x=32ΛDEz2[M1ξ(x,z)+2M2χ2ξ2(x,z)]3x(1x2),\displaystyle x^{\prime}=\frac{\sqrt{3}}{2\Lambda_{DE}}z^{2}\left[-M_{1}\xi(x,z)+2M_{2}\chi_{2}\xi^{2}(x,z)\right]-3x(1-x^{2})\;,
z=3zx2,\displaystyle z^{\prime}=3zx^{2}\quad,\phantom{aaaaaaaaaaaa} (27)

where the primes denote derivative w.r.t. the parameter 𝒩=loga{\mathcal{N}}=\log a (number of ee-foldings), and the function ξ(x,z)\xi(x,z) is defined as:

ξ(x,z)=M12χ2M2[18Λ0M2χ2M121x2z2z2].\xi(x,z)=\frac{M_{1}}{2\chi_{2}M_{2}}\Bigl{[}1-\sqrt{\frac{8\Lambda_{0}M_{2}\chi_{2}}{M_{1}^{2}}\,\frac{1-x^{2}-z^{2}}{z^{2}}}\Bigr{]}\;. (28)

Phase space portrait of the autonomous system (27) is depicted numerically on Fig.2.

Refer to caption
Figure 2: Phase space portrait of the autonomous system (27). The xx axis denotes the relative kinetic part of the scalar inflaton, and the zz axis denotes the relative part of the dark energy density ΛDE\Lambda_{\rm DE}.

The autonomous system (27) possesses the following two critical points:

(a) Stable critical point A(x=0,z=1)A\left(x=0,z=1\right) corresponding to the “late” universe de Sitter behavior with a cosmological constant ΛDE\Lambda_{\rm DE} (21).

(b) Unstable critical point B(x=0,z=ΛDE/Λ0)B\left(x=0,z=\sqrt{\Lambda_{\rm DE}/\Lambda_{0}}\right) corresponding to beginning of evolution in the “early” universe at large uu. If the evolution starts at any point close to BB, then the dynamics drives the system away from BB all the way towards the stable point AA at late times.

Numerical solutions of the FLRW system (23)-(25) are graphically presented on Fig.3 for the Hubble parameter H(t)H(t), and on Fig.4 for the scalar field u(t)u(t).

Refer to caption
Figure 3: Numerical example of the solution for the Hubble parameter H(t)H(t) vs. time. Initially for short times the inflationary Hubble parameter is large and afterwards approaches its cosmological late time value.
Refer to caption
Figure 4: Numerical example of the solution for the scalar field u(t)u(t) vs. time. The unit for uu is MPlanck/2M_{Planck}/\sqrt{2}. The blown-up rectangle depicts the oscillations of u(t)u(t) around the minimum of UeffU_{\rm eff} (18).

6 Perturbations and Observables

In order to check the viability of our model we will investigate the perturbations of the above FLRW background evolution (23)-(25), in particular focusing on the inflationary observables such as the scalar power spectral index nsn_{s} and the tensor-to-scalar ratio rr (for definitions, see e.g. Ref.[41]). As usual, we introduce the Hubble slow-roll parameters, which in our case using the potential Ueff(u)U_{\rm eff}(u) (18) read:

ϵ=(Ueff(u)Ueff(u))2=4ζ23(1/2ζ)2[(1/2ζ)2+δ/4]2,\displaystyle\epsilon=\Bigl{(}\frac{U_{\rm eff}^{\prime}(u)}{U_{\rm eff}(u)}\Bigr{)}^{2}=\frac{4\zeta^{2}}{3}\frac{\bigl{(}1/2-\zeta\bigr{)}^{2}}{\bigl{[}\bigl{(}1/2-\zeta\bigr{)}^{2}+\delta/4\bigr{]}^{2}}\;, (29)
|η|=2|Ueff′′(u)Ueff(u)|=2ζ3(14ζ)[(1/2ζ)2+δ/4],\displaystyle|\eta|=2|\frac{U_{\rm eff}^{\prime\prime}(u)}{U_{\rm eff}(u)}|=\frac{2\zeta}{3}\frac{\bigl{(}1-4\zeta\bigr{)}}{\bigl{[}\bigl{(}1/2-\zeta\bigr{)}^{2}+\delta/4\bigr{]}}\;, (30)

where:

ζM2χ2M1eu/3,δ8M2χ2M12ΛDE,\zeta\equiv\frac{M_{2}\chi_{2}}{M_{1}}\,e^{-u/\sqrt{3}}\quad,\quad\delta\equiv\frac{8M_{2}\chi_{2}}{M_{1}^{2}}\Lambda_{\rm DE}\;, (31)

with ΛDE\Lambda_{\rm DE} – the dark energy density (21), and therefore the parameter δ\delta being very small.

Inflation ends when ϵ(uf)=1\epsilon(u_{f})=1 for some u=ufu=u_{f} whose value (using the short-hand notation ζfM2χ2M1euf/3\zeta_{f}\equiv\frac{M_{2}\chi_{2}}{M_{1}}e^{-u_{f}/\sqrt{3}}) is given by:

ζf=12(1+2/3)[1+131/3(1+2/3)δ]12(1+2/3).\zeta_{f}=\frac{1}{2\bigl{(}1+2/\sqrt{3}\bigr{)}}\Bigl{[}1+\frac{1}{\sqrt{3}}-\sqrt{1/3-\bigl{(}1+2/\sqrt{3}\bigr{)}\delta}\Bigr{]}\simeq\frac{1}{2\bigl{(}1+2/\sqrt{3}\bigr{)}}\;. (32)

For the number of ee-foldings 𝒩=12uiuf𝑑uUeff/Ueff{\mathcal{N}}=\frac{1}{2}\int_{u_{i}}^{u_{f}}du\;U_{\rm eff}/U_{\rm eff}^{\prime} we obtain:

𝒩=38(1+δ)(1/ζi1/ζf)34(1δ)logζfζi+34δlog(12ζi12ζf),{\mathcal{N}}=\frac{3}{8}(1+\delta)\Bigl{(}1/\zeta_{i}-1/\zeta_{f}\Bigr{)}-\frac{3}{4}(1-\delta)\log\frac{\zeta_{f}}{\zeta_{i}}+\frac{3}{4}\delta\,\log\Bigl{(}\frac{1-2\zeta_{i}}{1-2\zeta_{f}}\Bigr{)}\;, (33)

where ζiM2χ2M1eui/3\zeta_{i}\equiv\frac{M_{2}\chi_{2}}{M_{1}}e^{-u_{i}/\sqrt{3}} and u=uiu=u_{i} is very large corresponding to the start of the inflation.

Ignoring the very small δ\delta we have for 𝒩{\mathcal{N}} approximately:

𝒩3M18M2χ2eui/334ui34(1+2/3)+34log(2(1+2/3)).{\mathcal{N}}\simeq\frac{3M_{1}}{8M_{2}\chi_{2}}e^{u_{i}/\sqrt{3}}-\frac{\sqrt{3}}{4}u_{i}-\frac{3}{4}\bigl{(}1+2/\sqrt{3}\bigr{)}+\frac{3}{4}\log\Bigl{(}2\bigl{(}1+2/\sqrt{3}\bigr{)}\Bigr{)}\;. (34)

Using the slow-roll parameters (29)-(30), one can calculate the values of the scalar spectral index nsn_{s} and the tensor-to-scalar ratio rr, respectively, as functions of the ee-foldings 𝒩{\mathcal{N}}:

r16ϵ(ui(𝒩)),ns16ϵ(ui(𝒩))+2η(ui(𝒩)),r\approx 16\,\epsilon\bigl{(}u_{i}({\mathcal{N}})\bigr{)}\quad,\quad n_{s}\approx 1-6\,\epsilon\bigl{(}u_{i}({\mathcal{N}})\bigr{)}+2\eta\,\bigl{(}u_{i}({\mathcal{N}})\bigr{)}\;, (35)

where ui(𝒩)u_{i}({\mathcal{N}}) is the solution of the transcedental Eq.(34) for uiu_{i} as a function of 𝒩{\mathcal{N}}. From (35), (34), (29), (30) we find:

r12[𝒩+34ui(𝒩)+c0]2,c03234log(2(1+2/3)),\displaystyle r\simeq\frac{12}{\Bigl{[}{\mathcal{N}}+\frac{\sqrt{3}}{4}u_{i}({\mathcal{N}})+c_{0}\Bigr{]}^{2}}\;\;\;,\;\;c_{0}\equiv\frac{\sqrt{3}}{2}-\frac{3}{4}\log\Bigl{(}2\bigl{(}1+2/\sqrt{3}\bigr{)}\Bigr{)}\;, (36)
ns1r4r3.\displaystyle n_{s}\simeq 1-\frac{r}{4}-\sqrt{\frac{r}{3}}\;\;.\phantom{aaaaaaaaaa} (37)

The numerical results for (36)-(37) are depicted on Fig.5.

Refer to caption
Figure 5: The predicted values of the rr and nsn_{s} for different number of ee-foldings

The different values of the rr and nsn_{s} are compatible with the PLANCK observational data (0.95<ns<0.97,r<0.0640.95<n_{s}<0.97\;,\;r<0.064) (cf. Ref.[42]).

Indeed, for the viable example of 𝒩=60{\mathcal{N}}=60 ee-foldings until the end of inflation we obtain from (34)-(37):

ns0.969,r0.002.n_{s}\approx 0.969\quad,\quad r\approx 0.002\;. (38)

7 Conclusions

  • We proposed a very simple modified gravity model without any initial coupling to matter fields in terms of several alternative non-Riemannian spacetime volume elements within the second order (metric) formalism.

  • We show how the non-Riemannian volume elements, when passing to the physical Einstein frame, create a canonical scalar field and produce dynamically a non-trivial inflationary-type potential for the latter possesing a large flat region describing slow-roll inflation and a stable low-lying minimum corresponding to the late universe stage.

  • We study the evolution and stability of the cosmological solutions from the point of view of the theory of dynamical systems. Our model predicts scalar spectral index ns0.969n_{s}\approx 0.969 and tensor-to-scalar ratio r0.002r\approx 0.002 for 60 ee-folds, which is in accordance with the observational data.

Acknowledgments

E.N. and S.P. are sincerely grateful to Prof. Branko Dragovich, Prof. Marko Vojinovich and all the organizers of the Tenth Meeting in Modern Mathematical Physics in Belgrade for cordial hospitality. We all gratefully acknowledge support of our collaboration through the academic exchange agreement between the Ben-Gurion University in Beer-Sheva, Israel, and the Bulgarian Academy of Sciences. D.B., E.N. and E.G. have received partial support from European COST actions CA15117, CA16104 and CA18108. E.N. and S.P. are also thankful to Bulgarian National Science Fund for support via research grant DN-18/1.

References

  • [1] A. Starobinsky, JETP Lett., 30 (1979) 682  [Pisma Zh. Eksp. Teor. Fiz., 30 (1979) 719].
  • [2] A. Starobinsky, Phys. Lett. 91B (1980) 99.
  • [3] A. Guth, Phys. Rev. D23 (1981) 347.
  • [4] A. Linde, Phys. Lett. 108B (1982) 389.
  • [5] A. Albrecht and P Steinhardt, Phys. Rev. Lett. 48 (1982) 1220.
  • [6] V. Mukhanov and G. Chibisov, JETP Lett. 33 (1981) 532  [Pisma Zh. Eksp. Teor. Fiz. 33 (1981) 549].
  • [7] A. Guth and S. Y. Pi, Phys. Rev. Lett. 49 (1982) 1110.
  • [8] S. Weinberg, Cosmology, Oxford Univ. Press, 2008.
  • [9] D. Lyth, Cosmology for Physicists, CRC, 2017.
  • [10] G. Calcagni, Classical and Quantum Cosmology, Springer, 2017.
  • [11] D. Gorbunov and V. Rubakov, Introduction to the Theory of the Early Universe. Hot Big Bang Theory, 2nd Ed., World Scientific, 2018.
  • [12] V. Mukhanov and S. Winitzki, Introduction to Quantum Effects in Gravity, Cambridge Univ. Press, 2007.
  • [13] S. Perlmutter et al. [Supernova Cosmology Project Collaboration], Astrophys. J.  517 (1999) 565  (astro-ph/9812133).
  • [14] E. Copeland, M. Sami and S. Tsujikawa, Int. J. Mod. Phys. D 15 (2006) 1753  (hep-th/0603057).
  • [15] S. Weinberg, Ultraviolet divergences in quantum theories of gravitation, in General Relativity. An Einstein Centenary Survey, pp. 790-831, S. Hawking and W. Israel (eds.), Cambridge Univ. Press, 1979.
  • [16] M. Green, J. Schwarz and E. Witten, Superstring Theory, vol.1, Cambridge Univ. Press, 1988
  • [17] S. Capozziello and V. Faraoni, Beyond Einstein Gravity – A Survey of Gravitational Theories for Cosmology and Astrophysics, Springer, 2011.
  • [18] S. Capozziello and M. De Laurentis, Phys. Reports 509, 167 (2011)  (arXiv:1108.6266).
  • [19] S. Nojiri and S. Odintsov, Phys. Reports 505, 59 (2011).
  • [20] E. Berti et.al., Class. Quantum Grav. 32 (2016) 243001  (arXiv:1501.07274).
  • [21] S. Nojiri, S. Odintsov and V. Oikonomou, Phys. Reports 692, 1 (2017)  (arXiv:1705.11098).
  • [22] I.Dimitrijevic, B. Dragovich, Al. Koshelev, Z. Rakic and J. Stankovic, Phys. Lett. 797B (2019)  (arXiv:1906.07560).
  • [23] N. Bilic, D. Dimitrijevic, G. Djordjevic, M. Miloevic and M. Stojanovci, JCAP 08 (2019) 034  (arXiv:1809.07216).
  • [24] E. I. Guendelman and A. Kaganovich, Phys. Rev. D53 (1996) 7020  (arXiv:gr-qc/9605026).
  • [25] F.Gronwald, U.Muench, A.Macias, F. Hehl, Phys. Rev. D58 (1998) 084021  (arXiv:gr-qc/9712063).
  • [26] E. I. Guendelman, Mod. Phys. Lett. A14 (1999) 1043-1052  (arXiv:gr-qc/9901017).
  • [27] E. I. Guendelman and A. Kaganovich, Phys. Rev. D60 (1999) 065004  (arXiv:gr-qc/9905029).
  • [28] E.I. Guendelman and A.B. Kaganovich, Ann. Phys. 323 (2008) 866  (arXiv:0704.1998).
  • [29] E. I. Guendelman, E. Nissimov and S. Pacheva, Bulg. J. Phys. 41 (2014) 123  (arXiv:1404.4733).
  • [30] E. I. Guendelman, E. Nissimov and S. Pacheva, Int. J. Mod. Phys. A30 (2015) 1550133  (arXiv:1504.01031).
  • [31] E. I. Guendelman, E. Nissimov and S. Pacheva, Eur. J. Phys. C75, (2015) 472-479  (arXiv:1508.02008).
  • [32] E. I. Guendelman, E. Nissimov and S. Pacheva, Eur. J. Phys. C76 (2016) 90  (arXiv:1511.07071).
  • [33] E. I. Guendelman, E. Nissimov and S. Pacheva, Int. J. Mod. Phys. D25 (2016) 1644008  (arXiv:1603.06231).
  • [34] E. I. Guendelman, E. Nissimov and S. Pacheva, in “Quantum Theory and Symmetries with Lie Theory and Its Applications in Physics”, vol.2 ed. V. Dobrev, Springer Proceedings in Mathematics and Statistics v.225, Springer, 2018  (arXiv:1712.09844).
  • [35] E. I. Guendelman, E. Nissimov and S. Pacheva, AIP Conference Proceedings 2075 (2019) 090030  (arXiv:1808.03640).
  • [36] M. Spivak, “Calculus On Manifolds – a Modern Approach To Classical Theorems Of Advanced Calculus”, Ch.5, p.126, CRC Press, 2018.
  • [37] M. Henneaux and C. Teitelboim, Quantization of Gauge Systems, Princeton Univ. Press, 1991.
  • [38] H. Rothe and K. Rothe, Classical and Quantum Dynamics of Constrained Hamiltonian Systems, Ch.3, World Scientific, 2010.
  • [39] M. Dabrowski, J. Garecki and D. Blaschke, Ann. Phys. 18 (2009) 13  (arXiv:0806.2683).
  • [40] S. Bahamonde, C. G. Boehmer, S. Carloni, E. J. Copeland, W. Fang and N. Tamanini, Phys. Rep.  775-777 (2018) 1  (arXiv:1712.03107).
  • [41] S. Nojiri, S. Odintsov and E. Saridakis, Phys. Lett. 797B (2019) 134829  (arXiv:1904.01345).
  • [42] Y. Akrami et al. [Planck Collaboration], arXiv:1807.06211 .