This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

11institutetext: Centre of Advanced Studies, Department of Physics, The University of Burdwan,
Burdwan 713 104, India

String and brane phenomenology Quantum cosmology Particle-theory and field-theory models of the early Universe (including cosmic pancakes, cosmic strings, chaotic phenomena, inflationary universe, etc.)

Non-perturbative stabilization of two Kähler moduli in type-IIB/F theory and the inflaton potential

Abhijit Let    Arunoday Sarkar    Chitrak Sarkar    Buddhadeb Ghosh
Abstract

We consider a combination of perturbative and non-perturbative corrections in Kähler moduli stabilizations in the configuration of three magnetised intersecting D7 branes in the type-IIB/F theory, compactified on the 6d T6/ZNT^{6}/Z_{N} orbifold of Calabi-Yau three-fold (CY3CY_{3}). Two of the Kähler moduli are stabilized non-perturbatively, out of the three which get perturbative corrections up to one-loop-order multi-graviton scattering amplitudes in the large volume scenario. In this framework, the dSdS vacua are achieved through all Kähler moduli stabilizations by considering the DD-term. We obtain inflaton potentials of slow-roll plateau-type, which are expected by recent cosmological observations. Calculations of cosmological parameters with the potentials yield experimentally favoured values.

pacs:
11.25.Wx
pacs:
98.80.Qc
pacs:
98.80.Cq

The prime motivation of moduli stabilization in string theory [1] is to provide a four-dimensional UV-finite effective theory from a ten-dimensional string compactification scenario. Such a theory should resolve the inadequacies of the standard model of particle physics and concomitantly serve as a consistent foundation for the cosmological inflation in the early universe. The latter is more robust not only for explaining the observational CMB anisotropies, polarizations and large-scale structure surveys but also for verifying the string theory and its ingredients from the cosmological point of view. The current frontier of theoretical physics is looking for the major developments in an inflationary model building in the arena of string cosmology.

In particular, it is imperative to know whether an inflaton potential is derivable in the framework of string theory through Kähler moduli stabilizations using various quantum corrections of perturbative and non-perturbative origins [2, 3, 4, 5]. This is a challenging task because the possibility of obtaining a (meta)stable dSdS vacuum as an effective description of cosmology in four dimensions is still debatable in so far as the reliability of the quantum corrections vis-à-vis the various proposed conjectures such as the swampland (see, for example, [6, 7, 8, 9, 10, 11]) is considered. Nonetheless, very recently this issue has been rejuvenated in Refs.[12, 13, 5] by showing that the combined effects of the perturbative [14, 2, 15, 3, 16] and the non-perturbative [17, 18, 19, 20] quantum corrections can be a viable path towards realizing a cosmologically favourable stable dS4dS_{4} vacuum in the string theory. Specifically, Ref. [13] illustrates that several coupling regimes among the non-perturbatively stabilized Kähler moduli exist, which can be adapted to redefine the parameters of the final effective potential. But, very few efforts have been made to achieve the slow-roll plateau and to correctly understand the corresponding cumulative quantum dynamics of the Kähler moduli fields with these couplings.

In our recent work [5], we have shown that if we stabilize one of the three Kähler moduli fields non-perturbatively corresponding to three intersecting D7D7 branes in type-IIB/F theory compactified on T6/NT^{6}/\mathbb{Z}_{N} orbifold and other two only perturbatively, then after a suitable canonical normalization procedure, we can get a slow-roll inflaton potential in the dSdS space. The efficacy of this potential has been checked [5] by comparing the calculated constraints of inflation with those of the Planck-2018 data [21, 22]. We also mention here that there is an auxiliary field in this formalism, which is stabilized at the bottom of the potential.

We extend, here, our study by stabilizing two of the Kähler moduli non-perturbatively. Then, we examine the possible parameter spaces for the origin of the slow-roll inflaton potential by analysing various moduli couplings and the various manifolds. The implications of this generalization will be discussed.

We have considered, here, a geometrical configuration which is based on the model proposed in Refs. [15, 12, 2], containing three magnetized D7D7 branes wrapping intersecting four-cycles. The complexified volume modulus, contains the Kähler moduli τk\tau_{k}, whose simplified form is given in [23], as,

ρk=bk+iτk,k=1,2,3,\rho_{k}=b_{k}+i\tau_{k},\quad k=1,2,3, (1)

where, bkb_{k} is a four-cycle axion coming from the RR\boldmath RR sector in type-IIB theory and τk\tau_{k} is a Kähler modulus which corresponds to the volume of the four-cycle wrapped by the D7D7 brane. The imaginary part of the volume modulus gives the volume of the CY3CY_{3} and it is given in [5, 13] as,

𝒱=τ1τ2τ3=i8(ρ1ρ¯1)(ρ2ρ¯2)(ρ3ρ¯3).\mathcal{V}=\sqrt{\tau_{1}\tau_{2}\tau_{3}}=\sqrt{\frac{i}{8}(\rho_{1}-\bar{\rho}_{1})(\rho_{2}-\bar{\rho}_{2})(\rho_{3}-\bar{\rho}_{3})}. (2)

Type-IIB string theory contains three-form fluxes G3=F3SH3G_{3}=F_{3}-SH_{3}, where S=C0+ieϕS=C_{0}+ie^{-\phi} is known as axion-dilaton (AD) moduli field, ϕ\phi is called dilaton field which is related to string coupling constant as gs=eϕg_{s}=e^{\phi} and F3=dC2,F_{3}=dC_{2},H3=dB2H_{3}=dB_{2} are the three-form field strengths. Here C0,C2C_{0},C_{2} are zero- and two- form potentials respectively and B2B_{2} is a Kalb-Ramond field. The fluxes around the compactified cycles in CY3\boldmath CY_{3} generate the flux-induced superpotential which is given in [24], as,

𝒲0(S,zα)=χ6G3(S,zα)Ω(zα),\small\mathcal{W}_{0}(S,z_{\alpha})=\int_{\chi_{{}_{6}}}G_{3}(S,z_{\alpha})\wedge\Omega{(z_{\alpha})}, (3)

where Ω(zα)\Omega{(z_{\alpha})} represents the (3,0) holomorphic form which is a function of complex-structure (CS) moduli fields (zα)z_{\alpha}), ‘α\alpha’ runs over all CS moduli (α=1,2,..h2,1;h2,1\alpha=1,2,........h^{2,1};\quad h^{2,1} is a non-vanishing hodge number of CY3CY_{3}). The tree-level superpotential (3) is independent of Kähler moduli.

There is another important ingredient in string theory known as Kähler potential which generates the metric of moduli (CS and Kähler structure (KS)) spaces of CY3CY_{3}, i.e.\it{i.e.}, KIJ¯=IJ¯𝒦0K_{I\bar{J}}=\partial_{I}\partial_{\bar{J}}\mathcal{K}_{0}, where ‘I’, ‘J’ run over all moduli fields (CS, KS and AD), and 𝒦0\mathcal{K}_{0} is tree level Kähler potential which depends logarithmically on all moduli fields [13, 5], as,

𝒦0=2ln((ρ1ρ¯1)(ρ2ρ¯2)(ρ3ρ¯3)(2i)3)ln(i(SS¯)ln(iχ6ΩΩ¯).\small\begin{split}\mathcal{K}_{0}=-2\ln\Big{(}\sqrt{\frac{(\rho_{1}-\bar{\rho}_{1})(\rho_{2}-\bar{\rho}_{2})(\rho_{3}-\bar{\rho}_{3})}{\left(2i\right)^{3}}}\Big{)}\\ -\ln\big{(}-i(S-\bar{S}\big{)}-\ln\Big{(}-i\int_{\chi_{{}_{6}}}\Omega\wedge\bar{\Omega}\Big{)}.\end{split} (4)

In order to compute the F-term potential for various moduli fields in D=4,𝒩=1D=4,\ \mathcal{N}=1 supergravity theory, a standard formula has been given in [23]:

VF=e𝒦I,J(KIJ¯𝒟I𝒲𝒟J¯𝒲¯3|𝒲|2),\displaystyle\small V_{F}=e^{\mathcal{K}}\sum_{I,J}\Big{(}K^{I\bar{J}}\mathcal{D}_{I}\mathcal{W}\mathcal{D}_{\bar{J}}\mathcal{\bar{W}}-3|\mathcal{W}|^{2}\Big{)}, (5)

where KIJ¯K^{I\bar{J}} is the inverse metric of KIJ¯K_{I\bar{J}} and 𝒟𝒲=𝒲+(𝒦)𝒲\mathcal{D}\mathcal{W}=\partial\mathcal{W}+\left({\partial\mathcal{K}}\right)\mathcal{W} is a covariant derivative. At tree-level, the F-term potential for Kähler moduli vanishes and we obtain the F-term potential from eq. (5) for all CS and the dilaton moduli fields, i.e.,

VF=e𝒦0a,bKa,b¯𝒟a𝒲0𝒟b¯𝒲¯0,\small V_{F}=e^{\mathcal{K}_{0}}\sum_{a,b}K^{a,\bar{b}}\mathcal{D}_{a}\mathcal{W}_{0}\mathcal{D}_{\bar{b}}\mathcal{\bar{W}}_{0}, (6)

where, a,b label the indices of moduli fields, excluding the Kähler ones. Using the supersymmetric conditions (𝒟S𝒲0=0\mathcal{D}_{S}\mathcal{W}_{0}=0 and 𝒟zα𝒲0=0\mathcal{D}_{z_{\alpha}}\mathcal{W}_{0}=0), all CS and dilaton moduli are fixed with large masses [17, 23], but Kähler moduli remain unstabilized. We now begin discussing the stabilization of the Kähler moduli.

At first, we focus on the non-perturbative modification of 𝒲0\mathcal{W}_{0}. In this context, two mechanisms viz., Euclidian D3 branes instantons and gaugino condensations from stacks of D7 branes have been proposed by KKLT [17]. Taking either effect, the superpotential becomes Kähler moduli dependent, as,

𝒲=𝒲0+kAkeiakρk,\displaystyle\small\mathcal{W}=\mathcal{W}_{0}+\sum_{k}A_{k}e^{ia_{k}\rho_{k}}, (7)

where ‘kk’ depends on the number of smaller Kähler moduli as against other moduli which are suppressed exponentially, in a model-dependent way. 𝒲0\mathcal{W}_{0} is flux-induced tree-level superpotential defined in (3) which is considered to be a real constant. The coefficient AkA_{k}, also a real constant [17], is a function of CS moduli and dilaton [25] (In the case of gaugino condensation on stack of D7 branes, wrapping four-cycles, AkA_{k} depends on CS and dilaton and open-string moduli associated with the D7 branes[18]). aka_{k} is a real constant, whose numerical values are 2π2\pi for instanton effect and (2π/Nk2\pi/N_{k}) for gaugino condensation, where NkN_{k} is the rank of the gauge group linked with the branes. In general, the non-perturbative effects act on the Kähler moduli in all the directions of the moduli space. For example, in the KKLT model, all Kähler moduli appear in the superpotential [26, 27].

In our earlier work[5], non-perturbative contribution from a single modulus in the superpotential has ensured stable dSdS vacua and a plateau-type potential, which describes the slow-roll inflation. However, due to the variety of compactification manifolds, a more likely scenario is that more than one Kähler moduli contribute to the non-perturbative correction in the superpotential. The present paper aims to take two non-perturbative terms in the superpotential, which come from Kähler moduli, ρ1\rho_{1} and ρ2\rho_{2} [13] and examine the consequences of this procedure on the overall behaviour of the inflaton potential. The non-perturbatively corrected superpotential in eq.(7) becomes,

𝒲=𝒲0+A1eia1ρ1+A2eia2ρ2.\small\mathcal{W}=\mathcal{W}_{0}+A_{1}e^{ia_{1}\rho_{1}}+A_{2}e^{ia_{2}\rho_{2}}. (8)

The remaining modulus (ρ3\rho_{3}) is assumed to be large, so that we can work within a large volume scenario (LVS)[28]. It is described in [29] that the flux-induced superpotential (𝒲0\mathcal{W}_{0}) in string theory can not receive perturbative corrections due to a non-renormalization theorem. The volume term of Kähler potential (𝒦0\mathcal{K}_{0}) in eq. (4) can receive various types of perturbative corrections, e.g.\it{e.g.}, α\alpha^{\prime}- and logarithmic one-loop corrections. In [30], the authors described the α3\alpha^{\prime 3} contribution to the Kähler potential and computed the modified kähler potential in type-IIB theory by using mirror symmetry, which changes the volume with a constant shifting term ξ=ζ(3)χ/4(2π)3gs3/2\boldmath\xi=-\zeta(3)\chi/4(2\pi)^{3}g_{s}^{3/2}, where χ\chi is the Euler number of CY3\boldmath CY_{3}. The one-loop multi-graviton scattering amplitude in type-IIB string theory gives rise to the second type of quantum correction [16] to the Kähler potential. However, the low-energy expansions [31, 32] of multi-graviton scattering amplitude generate the R4\boldmath R^{4} coupling terms [33, 16], whose coefficients contain both the tree-level as well as the one-loop contributions. Considering only the gravitational sector, the supergravity action with quantum corrections upto one-loop order in type-IIB string theory is given by [34, 16, 13],

Sgrav=1(2π)7α44×χ6e2ϕ(10)+χ(2π)4α×4(2ζ(3)e2ϕ+4ζ(2))(4),\begin{split}\small S_{grav}=\frac{1}{{(2\pi)}^{7}\alpha^{\prime 4}}\int_{\mathcal{M}_{4}\times{\chi}_{{}_{6}}}e^{-2\phi}\mathcal{R}_{(10)}+\frac{\chi}{{(2\pi)}^{4}\alpha^{\prime}}\\ \times\int_{\mathcal{M}_{4}}\Big{(}2\zeta(3)e^{-2\phi}+4\zeta(2)\Big{)}{\mathcal{R}_{(4)}},\end{split} (9)

where, the terms involving the Riemann zeta functions ζ(3),ζ(2)\zeta(3),\zeta(2) come respectively from the tree-level and the one-loop scattering amplitudes, after low energy expansions [31]. (d)\mathcal{R}_{(d)} is defined as the d-dimensional Ricci scalar. The localized EH term ((4)=Re2)(\mathcal{R}_{(4)}=\boldmath R\wedge\boldmath e^{2}) [34, 16], appears in four dimensions through dimensional reduction, for non-vanishing Euler number of CY3\boldmath CY_{3}. Here, e\it{e} is a ‘vielbein’. The Euler number in eq. (9) is given by,

χ=3!(2π)3χ6RRR,\small\chi=\frac{3!}{(2\pi)^{3}}\int_{\chi_{{}_{6}}}R\wedge R\wedge R, (10)

where, R\boldmath R is the 2-form Ricci curvature. Orbifold fixed points in type-IIB string theory, compactified on T6/T^{6}/\mathbb{Z_{N}}, which are associated with vertices for non-zero Euler numbers, are the sources of localized gravity. The localized sources emit massless gravitons and massive KKKK excitations, which propagate along all directions in the compactified 6d6d space. The width (ω\omega) of the localized gravity implicitly depends on Euler number of CY3\boldmath CY_{3} as [16],

ωlsN,\small\omega\approx\frac{l_{s}}{\sqrt{N}}, (11)

where lsl_{s} is the fundamental string length and the integer N is related to the Euler number of CY3\boldmath CY_{3} ( |χ|N|\chi|\sim N). The KKKK modes are exchanged between localized gravity sources and the D7-branes/O7 planes, which can give rise to one-loop logarithmic correction [16], and the supergravity action eq. (9) takes the form

Sgrav=1(2π)7α44×χ6e2ϕ(10)+χ(2π)4α4(2ζ(3)e2ϕ+4ζ(2)(1ke2ϕTklog(Rkω)))(4),\small\begin{split}S_{grav}=\frac{1}{{(2\pi)}^{7}\alpha^{\prime 4}}\int_{\mathcal{M}_{4}\times{\chi}_{{}_{6}}}e^{-2\phi}\mathcal{R}_{(10)}\\ +\frac{\chi}{{(2\pi)}^{4}\alpha^{\prime}}\int_{\mathcal{M}_{4}}(2\zeta(3)e^{-2\phi}\\ +4\zeta(2)(1-\sum_{k}e^{2\phi}T_{k}\log(\frac{R^{k}_{\perp}}{\omega}))){\mathcal{R}_{(4)}},\end{split} (12)

where, TkT_{k} is the tension of the k-th D7 brane, and RR_{\perp} stands for the size of the two-dimensional space transverse to the D7 branes. For simplicity, tensions of all D7 branes are assumed to be the same, (i.e.\it{i.e.}, TkT_{k}=T=eϕT0e^{-\phi}T_{0}). The quantum corrected term (δ\delta) can be deduced from eq. (12), which is written as[16, 13, 15],

δ=ξ+j=13ηjln(τj)=ξ+ηln(τ1τ2τ3),\small\delta=\xi+\sum_{j=1}^{3}\eta_{j}\ln{(\tau_{j})}=\xi+\eta\ln{(\tau_{1}\tau_{2}\tau_{3})}, (13)

where, the coefficient ηjη=12gsT0ξ\eta_{j}\equiv\eta=-\frac{1}{2}g_{s}T_{0}\xi is a constant and ξ\xi is associated with χ\chi: ξ=ζ(2)gs22χ\xi=-\frac{\zeta(2)g_{s}^{2}}{2}\chi for orbifolds and ξ=ζ(3)4χ\xi=-\frac{\zeta(3)}{4}\chi for the smooth CY3CY_{3} (i.e.\it{i.e.}, the non-compact limit). The term δ\delta in eq. (13) modifies the tree level Kähler potential and the volume term become [13, 16],

𝒦(ρ1,ρ2,ρ3)=2ln(𝒱+ξ+2ηln𝒱)=2ln𝒴,\small\mathcal{K}(\rho_{1},\rho_{2},\rho_{3})=-2\ln{(\mathcal{V}+\xi+2\eta\ln{\mathcal{V}})}=-2\ln{\mathcal{Y}}, (14)

where, 𝒴=(𝒱+ξ+2ηln𝒱)\mathcal{Y}=(\mathcal{V}+\xi+2\eta\ln{\mathcal{V}}). The no-scale structure (i.e.\it{i.e.}, k,k=13𝒦0ρkρ¯kρk𝒦0ρ¯k𝒦0=3\sum_{k,k^{\prime}=1}^{3}{\mathcal{K}_{0}}^{{\rho_{k}}\bar{\rho}_{k^{\prime}}}\partial_{\rho_{k}}\mathcal{K}_{0}\partial_{\bar{\rho}_{k^{\prime}}}\mathcal{K}_{0}=3) is broken by the Kähler potential eq. (14), as,

k,k=13𝒦ρkρ¯kρk𝒦ρ¯k𝒦3.\small\sum_{k,k^{\prime}=1}^{3}{\mathcal{K}}^{{\rho_{k}}\bar{\rho}_{k^{\prime}}}\partial_{\rho_{k}}\mathcal{K}\partial_{\bar{\rho}_{k^{\prime}}}\mathcal{K}\neq 3. (15)

Eq.(15) implies a non-vanishing dependence of FF-term potential on Kähler moduli and the eq. (5) becomes,

VF=e𝒦(k,k=13𝒦ρkρ¯k𝒟ρk𝒲𝒟ρ¯k𝒲¯3𝒲𝒲¯),\small V_{F}=e^{\mathcal{K}}\left(\sum_{k,k^{\prime}=1}^{3}{\mathcal{K}}^{\rho_{k}\bar{\rho}_{k^{\prime}}}\mathcal{D}_{\rho_{k}}\mathcal{W}\mathcal{D}_{\bar{\rho}_{k^{\prime}}}\bar{\mathcal{W}}-3\mathcal{W}\bar{\mathcal{W}}\right), (16)

using eqs. (16),(8) and (14), the F-term potential has been computed in WOLFRAM MATHEMATICA 12, and the exact forms are obtained as,

VF(p)=e𝒦j,j¯(𝒦ρjρj¯ρj𝒦ρj¯𝒦3)|𝒲0|2=3𝒲02(8𝒱η+4η2+4ηξ+8η2ln𝒱𝒱ξ2𝒱ηln𝒱)𝒴2(2𝒱2+16η𝒱+12η2+(4η𝒱)(ξ+2ηln𝒱))\small\begin{split}V_{F}^{(p)}&=e^{\mathcal{K}}\sum_{j,\bar{{j^{\prime}}}}\left(\mathcal{K}^{\rho_{j}{\bar{\rho_{j^{\prime}}}}}\partial_{\rho_{j}}\mathcal{K}\partial_{\bar{\rho_{j^{\prime}}}}\mathcal{K}-3\right)|\mathcal{W}_{0}|^{2}\\ &=\frac{-3\mathcal{W}_{0}^{2}\left(8\mathcal{V}\eta+4\eta^{2}+4\eta\xi+8\eta^{2}\ln\mathcal{V}-\mathcal{V}\xi-2\mathcal{V}\eta\ln\mathcal{V}\right)}{\mathcal{Y}^{2}\left(2\mathcal{V}^{2}+16\eta\mathcal{V}+12\eta^{2}+\left(4\eta-\mathcal{V}\right)\left(\xi+2\eta\ln{\mathcal{V}}\right)\right)}\end{split} (17)

and

VF(r)=8(a12τ12A1~2+a22τ22A2~2)𝒴(𝒱+2η)×((𝒱2+6𝒱η+4η2+2η(ξ+2ηln𝒱))(2𝒱2+16η𝒱+12η2+(4η𝒱)(ξ+2ηln𝒱)))+(8𝒲(a1τ1A1~+a2τ2A2~)𝒴2(2𝒱2+16η𝒱+12η2+(4η𝒱)(ξ+2ηln𝒱)))×(𝒱2+6𝒱η+4η2+2η(ξ+2ηln𝒱))+8𝒲×((a1τ1A1~+a2τ2A2~)(4𝒱η4η2+𝒱ξ+2𝒱ηln𝒱)𝒴2(2𝒱2+16η𝒱+12η2+(4η𝒱)(ξ+2ηln𝒱)))+8𝒲a1a2τ1τ2A1~A2~𝒴(𝒱+2η)×((4𝒱η4η2+𝒱ξ+2𝒱ηln𝒱)(2𝒱2+16η𝒱+12η2+(4η𝒱)(ξ+2ηln𝒱)))+(3(8𝒱+4η+4ηξ+8η2ln𝒱𝒱ξ2𝒱ln𝒱)𝒴2(2𝒱2+16η𝒱+12η2+(4η𝒱)(ξ+2ηln𝒱)))×(𝒲2𝒲02).\small V_{F}^{(r)}=\frac{8\left(a_{1}^{2}\tau_{1}^{2}\tilde{A_{1}}^{2}+a_{2}^{2}\tau_{2}^{2}\tilde{A_{2}}^{2}\right)}{\mathcal{Y}\left(\mathcal{V}+2\eta\right)}\\ \times\left(\frac{\left(\mathcal{V}^{2}+6\mathcal{V}\eta+4\eta^{2}+2\eta\left(\xi+2\eta\ln\mathcal{V}\right)\right)}{\left(2\mathcal{V}^{2}+16\eta\mathcal{V}+12\eta^{2}+\left(4\eta-\mathcal{V}\right)\left(\xi+2\eta\ln{\mathcal{V}}\right)\right)}\right)\\ +\left(\frac{8\mathcal{W}\left(a_{1}\tau_{1}\tilde{A_{1}}+a_{2}\tau_{2}\tilde{A_{2}}\right)}{\mathcal{Y}^{2}\left(2\mathcal{V}^{2}+16\eta\mathcal{V}+12\eta^{2}+\left(4\eta-\mathcal{V}\right)\left(\xi+2\eta\ln{\mathcal{V}}\right)\right)}\right)\\ \times\left(\mathcal{V}^{2}+6\mathcal{V}\eta+4\eta^{2}+2\eta\left(\xi+2\eta\ln\mathcal{V}\right)\right)+8\mathcal{W}\\ \times\left(\frac{\left(a_{1}\tau_{1}\tilde{A_{1}}+a_{2}\tau_{2}\tilde{A_{2}}\right)\left(-4\mathcal{V}\eta-4\eta^{2}+\mathcal{V}\xi+2\mathcal{V}\eta\ln\mathcal{V}\right)}{\mathcal{Y}^{2}\left(2\mathcal{V}^{2}+16\eta\mathcal{V}+12\eta^{2}+\left(4\eta-\mathcal{V}\right)\left(\xi+2\eta\ln{\mathcal{V}}\right)\right)}\right)\\ +\frac{8\mathcal{W}a_{1}a_{2}\tau_{1}\tau_{2}\tilde{A_{1}}\tilde{A_{2}}}{\mathcal{Y}\left(\mathcal{V}+2\eta\right)}\\ \times\left(\frac{\left(-4\mathcal{V}\eta-4\eta^{2}+\mathcal{V}\xi+2\mathcal{V}\eta\ln\mathcal{V}\right)}{\left(2\mathcal{V}^{2}+16\eta\mathcal{V}+12\eta^{2}+\left(4\eta-\mathcal{V}\right)\left(\xi+2\eta\ln{\mathcal{V}}\right)\right)}\right)\\ +\left(\frac{-3\left(8\mathcal{V}+4\eta+4\eta\xi+8\eta^{2}\ln\mathcal{V}-\mathcal{V}\xi-2\mathcal{V}\ln\mathcal{V}\right)}{\mathcal{Y}^{2}\left(2\mathcal{V}^{2}+16\eta\mathcal{V}+12\eta^{2}+\left(4\eta-\mathcal{V}\right)\left(\xi+2\eta\ln{\mathcal{V}}\right)\right)}\right)\\ \times\left(\mathcal{W}^{2}-\mathcal{W}_{0}^{2}\right). (18)

In the derivations of eqs.(17) and (18), we have assumed bkb_{k}’s (see eq.(1)) to be zero. The indices ‘p’ and ‘r’ respectively refer to purely perturbative and remaining terms and A1~=A1ea1τ1\tilde{A_{1}}=A_{1}e^{-a_{1}\tau_{1}}, A2~=A2ea2τ2\tilde{A_{2}}=A_{2}e^{-a_{2}\tau_{2}}. At the large volume approximations (i.e\it{i.e},𝒱η,ξ\mathcal{V}\gg\eta,\xi), expanding the eqs. (17) and (18) and neglecting the terms 𝒪(ξ2)\mathcal{O}(\xi^{2}), 𝒪(η2)\mathcal{O}(\eta^{2}), and 𝒪(1𝒱5)\mathcal{O}(\frac{1}{\mathcal{V}^{5}}), we get the separate results for non-perturbative, perturbative and mixing terms, as,

VF(np)=4𝒱2(a1τ1A1~((1+a1τ1)A1~+(𝒲0+A2~))+a2τ2A2~((1+a2τ2)A2~+(𝒲0+A1~))),\small V_{F}^{(np)}=\frac{4}{\mathcal{V}^{2}}\Big{(}a_{1}\tau_{1}\tilde{A_{1}}\big{(}\big{(}1+a_{1}\tau_{1}\big{)}\tilde{A_{1}}+\big{(}\mathcal{W}_{0}+\tilde{A_{2}}\big{)}\big{)}\\ +a_{2}\tau_{2}\tilde{A_{2}}\big{(}\big{(}1+a_{2}\tau_{2}\big{)}\tilde{A_{2}}+\big{(}\mathcal{W}_{0}+\tilde{A_{1}}\big{)}\big{)}\Big{)}, (19)
VF(p)=3𝒲02𝒱3(ξ2η(4ln𝒱))9𝒲0𝒱4ηξln𝒱,\small V_{F}^{(p)}=\frac{3\mathcal{W}_{0}}{2\mathcal{V}^{3}}\left(\xi-2\eta\left(4-\ln\mathcal{V}\right)\right)-\frac{9\mathcal{W}_{0}}{\mathcal{V}^{4}}\eta\xi\ln\mathcal{V}, (20)
VF(m)=A1~(1A1~+𝒢1𝒲0)+A2~(2A2~+𝒢2𝒲0)+A1~A2~,\small V_{F}^{(m)}=\tilde{A_{1}}\left(\mathcal{F}_{1}\tilde{A_{1}}+\mathcal{G}_{1}\mathcal{W}_{0}\right)+\tilde{A_{2}}\left(\mathcal{F}_{2}\tilde{A_{2}}+\mathcal{G}_{2}\mathcal{W}_{0}\right)\\ +\mathcal{H}\tilde{A_{1}}\tilde{A_{2}}, (21)

where,

1=12𝒱3((ξ+2ηln𝒱)(3+2a1τ1)(12a1τ1)8η(4a12τ12+6a1τ1+3))+ηξ(3+a1τ1)((32a1τ1)ln𝒱+2a1τ1)𝒱4,\small\mathcal{F}_{1}=\frac{1}{2\mathcal{V}^{3}}\big{(}\left(\xi+2\eta\ln\mathcal{V}\right)\left(3+2a_{1}\tau_{1}\right)\left(1-2a_{1}\tau-1\right)\\ -8\eta\left(4a_{1}^{2}\tau_{1}^{2}+6a_{1}\tau_{1}+3\right)\big{)}\\ +\frac{\eta\xi\left(3+a_{1}\tau_{1}\right)\left(\left(3-2a_{1}\tau_{1}\right)\ln\mathcal{V}+2a_{1}\tau_{1}\right)}{\mathcal{V}^{4}}, (22)
𝒢1=(ξ+2ηln𝒱)(32a1τ1)24η(1+a1τ1)𝒱36ξη𝒱4((32a1τ1)ln𝒱+2a1τ1),\small\begin{split}\mathcal{G}_{1}=\frac{\left(\xi+2\eta\ln\mathcal{V}\right)\left(3-2a_{1}\tau_{1}\right)-24\eta\left(1+a_{1}\tau_{1}\right)}{\mathcal{V}^{3}}\\ -\frac{6\xi\eta}{\mathcal{V}^{4}}\big{(}\left(3-2a_{1}\tau_{1}\right)\ln\mathcal{V}+2a_{1}\tau_{1}\big{)},\end{split} (23)
2=12𝒱3(ξ+2ηln𝒱)(3+2a2τ2)(12a2τ2)8η(4a22τ22+6a2τ2+3)+ηξ(3+a2τ2)((32a2τ2)ln𝒱+2a2τ2)𝒱4,\small\mathcal{F}_{2}=\frac{1}{2\mathcal{V}^{3}}\left(\xi+2\eta\ln\mathcal{V}\right)\left(3+2a_{2}\tau_{2}\right)\left(1-2a_{2}\tau-2\right)\\ -8\eta\left(4a_{2}^{2}\tau_{2}^{2}+6a_{2}\tau_{2}+3\right)\\ +\frac{\eta\xi\left(3+a_{2}\tau_{2}\right)\left(\left(3-2a_{2}\tau_{2}\right)\ln\mathcal{V}+2a_{2}\tau_{2}\right)}{\mathcal{V}^{4}}, (24)
𝒢2=(ξ+2ηln𝒱)(32a2τ2)24η(1+a2τ2)𝒱36ξη𝒱4((32a2τ2)ln𝒱+2a2τ2),\small\mathcal{G}_{2}=\frac{\left(\xi+2\eta\ln\mathcal{V}\right)\left(3-2a_{2}\tau_{2}\right)-24\eta\left(1+a_{2}\tau_{2}\right)}{\mathcal{V}^{3}}\\ -\frac{6\xi\eta}{\mathcal{V}^{4}}\big{(}\left(3-2a_{2}\tau_{2}\right)\ln\mathcal{V}+2a_{2}\tau_{2}\big{)}, (25)
=1𝒱3((ξ+2ηln𝒱)(4a1a2τ1τ22a1τ12a2τ2+3)8η(2a1a2τ1τ2+3a1τ1+3a2τ2+3))ηξ𝒱4(((8a1a2τ1τ212a1τ1a2τ218)ln𝒱)4(8a1a2τ1τ2+3a1τ1+3a2τ2)),\small\mathcal{H}=\frac{1}{\mathcal{V}^{3}}\Big{(}\left(\xi+2\eta\ln\mathcal{V}\right)\left(4a_{1}a_{2}\tau_{1}\tau_{2}-2a_{1}\tau_{1}-2a_{2}\tau_{2}+3\right)\\ -8\eta\left(2a_{1}a_{2}\tau_{1}\tau_{2}+3a_{1}\tau_{1}+3a_{2}\tau_{2}+3\right)\Big{)}\\ -\frac{\eta\xi}{\mathcal{V}^{4}}\Big{(}\left(\left(8a_{1}a_{2}\tau_{1}\tau_{2}-12a_{1}\tau_{1}-a_{2}\tau_{2}-18\right)\ln\mathcal{V}\right)\\ -4\left(8a_{1}a_{2}\tau_{1}\tau_{2}+3a_{1}\tau_{1}+3a_{2}\tau_{2}\right)\Big{)}, (26)

where the indices ‘np’ and ‘m’ respectively refer to non-perturbative and mixing terms.

The perturbative contributions 𝒪(ξ,η)\mathcal{O}(\xi,\eta) in eq. (14) can be neglected in large volume limit and the Kähler potential in (14) reduces as[13],

𝒦2ln𝒱.\small\mathcal{K}\approx-2\ln\mathcal{V}. (27)

The supersymmetric stabilization conditions for the moduli ρ1\rho_{1} and ρ2\rho_{2} are [13]

𝒟ρ1𝒲|ρ2=iτ2ρ1=iτ1=𝒟ρ2𝒲|ρ2=iτ2ρ1=iτ1=0.\small\mathcal{D}_{\rho_{1}}\mathcal{W}|^{\rho_{1}=i\tau_{1}}_{\rho_{2}=i\tau_{2}}=\mathcal{D}_{\rho_{2}}\mathcal{W}|^{\rho_{1}=i\tau_{1}}_{\rho_{2}=i\tau_{2}}=0\ . (28)

Now, taking the derivative of (27) with respect to ρ1\rho_{1} and ρ2\rho_{2}, we get,

ρ1𝒦=1ρ1ρ1¯;ρ2𝒦=1ρ2ρ2¯.\small\partial_{\rho_{1}}\mathcal{K}=-\frac{1}{\rho_{1}-\bar{\rho_{1}}};\quad\partial_{\rho_{2}}\mathcal{K}=-\frac{1}{\rho_{2}-\bar{\rho_{2}}}. (29)

Therefore, the covariant derivatives in (28) becomes as,

𝒟ρ1𝒲|ρ1=iτ1ρ2=iτ2=A1~(2a1τ1+1)+(𝒲0+A2~)2iτ1=0\small\begin{split}\mathcal{D}_{\rho_{1}}\mathcal{W}|_{\rho_{1}=i\tau_{1}}^{{\rho_{2}}=i\tau_{2}}=\frac{\tilde{A_{1}}(2a_{1}\tau_{1}+1)+\left(\mathcal{W}_{0}+\tilde{A_{2}}\right)}{-2i\tau_{1}}=0\end{split} (30)
𝒟ρ2𝒲|ρ1=iτ1ρ2=iτ2=A2~(2a2τ2+1)+(𝒲0+A1~)2iτ2=0.\small\begin{split}\mathcal{D}_{\rho_{2}}\mathcal{W}|_{\rho_{1}=i\tau_{1}}^{{\rho_{2}=i\tau_{2}}}=\frac{\tilde{A_{2}}(2a_{2}\tau_{2}+1)+(\mathcal{W}_{0}+\tilde{A_{1}})}{-2i\tau_{2}}=0\ .\end{split} (31)

By combining the eqs. (30) and (31), we obtain,

a1τ1a2τ2ea1τ1=A2A1ea2τ2=βea2τ2,\small\frac{a_{1}\tau_{1}}{a_{2}\tau_{2}}e^{-a_{1}\tau_{1}}=\frac{A_{2}}{A_{1}}e^{-a_{2}\tau_{2}}=\beta e^{-a_{2}\tau_{2}}, (32)
(a1τ1a2τ2(2a2τ2+1)+1)ea1τ1=γ,\small\Big{(}\frac{a_{1}\tau_{1}}{a_{2}\tau_{2}}\big{(}2a_{2}\tau_{2}+1\big{)}+1\Big{)}e^{-a_{1}\tau_{1}}=-\gamma, (33)

where, γ=𝒲0A1\gamma=\frac{\mathcal{W}_{0}}{A_{1}} and β=A2A1\beta=\frac{A_{2}}{A_{1}} are constant. The non-perturbative contributions are assumed to be much less than |𝒲0||\mathcal{W}_{0}|[13] which implies, from eq.(32), a limitation: βea2τ2γ\beta e^{-a_{2}\tau_{2}}\ll\gamma. In our formalism, we consider two cases:

First Case: a2τ2a1τ1a_{2}\tau_{2}\gg a_{1}\tau_{1}. Then, from eq. (33), we get

w1=(1+2a1τ12)=W0/1(γ2e),\small w_{1}=-\left(\frac{1+2a_{1}\tau_{1}}{2}\right)=W_{0/-1}\left(\frac{\gamma}{2\sqrt{e}}\right), (34)

similarly, from eq. (32), we get,

a2τ2=w2=W0/1(a1τ1βea1τ1),\small-a_{2}\tau_{2}=w_{2}=W_{0/{-1}}\Big{(}-\frac{a_{1}\tau_{1}}{\beta}e^{-a_{1}\tau_{1}}\Big{)}, (35)

where, W0/1W_{0/-1} is Lambert WW-function, with ‘0’ and ‘-1’ corresponding to the upper and the lower branch, respectively. The positive values of a1τ1a_{1}\tau_{1} in eq. (34) restricts us to work in the lower branch. Then, from the range of the argument of the W1W_{-1} function we get [13]

2/eγ<0.\small-2/\sqrt{e}\leq\gamma<0. (36)

Now, in order to get simplified expressions in what follows, we introduce a new parameter:

ϵ=1+2w1w1.\small\epsilon=-\frac{1+2w_{1}}{w_{1}}. (37)

Using eq. (37), the F-term potentials together become

VF(1)=(ϵ𝒲0)232w22𝒱3((2w2+1)(14w2+3)(ξ+2ηln𝒱)24η16w2𝒱(1+w2)+2ηξ24w2(68w22+60w2+9)ln𝒱𝒱),\small V_{F}^{(1)}=\frac{\left(\epsilon\mathcal{W}_{0}\right)^{2}}{32w_{2}^{2}\mathcal{V}^{3}}\Big{(}\left(2w_{2}+1\right)\left(14w_{2}+3\right)\left(\xi+2\eta\ln\mathcal{V}\right)\\ -24\eta-16w_{2}\mathcal{V}\left(1+w_{2}\right)\\ +2\eta\xi\frac{24w_{2}-\left(68w_{2}^{2}+60w_{2}+9\right)\ln\mathcal{V}}{\mathcal{V}}\Big{)}, (38)

where, the superscript ‘(1)’ signifies the first case. Here, w2=a2τ21w_{2}=-a_{2}\tau_{2}\ll-1 because a1τ1𝒪(1)a_{1}\tau_{1}\gtrsim\mathcal{O}(1), so that higher order non-perturbative contributions are eliminated[35]. In this scenario, eq. (38) becomes,

VF(1)=(ϵ𝒲0)2(7(ξ+2ηln𝒱)4𝒱8𝒱317ηξln𝒱4𝒱4).\small V_{F}^{(1)}=\left(\epsilon\mathcal{W}_{0}\right)^{2}\left(\frac{7\left(\xi+2\eta\ln{\mathcal{V}}\right)-4\mathcal{V}}{8\mathcal{V}^{3}}-\frac{17\eta\xi\ln{\mathcal{V}}}{4\mathcal{V}^{4}}\right). (39)

Second case: a1τ1a2τ2𝒪(1)a_{1}\tau_{1}\approx a_{2}\tau_{2}\gtrsim\mathcal{O}(1). Then from eq.32 β1\beta\approx 1. Now, from eq.(33), we get

w=(1+a1τ1)=W0/1(γ2e).\small w^{\prime}=-(1+a_{1}\tau_{1})=W_{0/-1}\Big{(}\frac{\gamma}{2e}\Big{)}. (40)

Like in the first case we work in the W1W_{-1} branch, which gives the limiting values as 2γ<0-2\leq\gamma<0. Now, in terms of a new parameter

ϵ=1+ww,\epsilon^{\prime}=\frac{1+w^{\prime}}{w^{\prime}}, (41)

we get the F-term potential (𝑐𝑓.\it{cf.}, eq.38) as,

VF(2)=(ϵ𝒲0)2(7(ξ+2ηln𝒱)2𝒱32𝒱217ηξln𝒱𝒱4),\small V_{F}^{(2)}=\left(\epsilon^{\prime}\mathcal{W}_{0}\right)^{2}\left(\frac{7\left(\xi+2\eta\ln\mathcal{V}\right)}{2\mathcal{V}^{3}}-\frac{2}{\mathcal{V}^{2}}-\frac{17\eta\xi\ln\mathcal{V}}{\mathcal{V}^{4}}\right), (42)

where the superscript ‘(2)’ denotes the second case.

The FF-term potentials in eqs. (39) and (42) exhibit AdSAdS minima, as shown in Figures (1) and (2) respectively, plotted for three different values of ξ\xi. Eqs. (39) and (42) are not cosmologically very useful because they are in AdSAdS space.

To get dSdS vacua, an uplifting agent [17, 28, 26] have to be added in FF-term. In the present geometrical set-up, the world volume fluxes along the D7D7 branes, when the fluxes are associated with U(1)U(1) gauge fields, naturally, give rise to the DD-term contribution [36, 13, 15] which uplifts the AdSAdS to a dSdS vacuum. The original formula of DD-term potential in the intersecting D7D7 branes is given in [15, 37, 18, 36] and we use the DD-term potential, which takes the form [15, 12], as,

VD=i=13gi22(1Qiρi𝒦+jqj|Φj|2)2i=13diτi3,\small\begin{split}V_{D}=\sum_{i=1}^{3}\frac{g_{i}^{2}}{2}\left(\sqrt{-1}Q_{i}\partial_{\rho_{i}}\mathcal{K}+\sum_{j}q_{j}|\langle\Phi_{j}\rangle|^{2}\right)^{2}\approx\sum_{i=1}^{3}\frac{d_{i}}{\tau_{i}^{3}},\end{split} (43)

where gig_{i}’s (gi2=τi+g_{i}^{-2}=\tau_{i}+ flux and curvature part containing dilaton) stands for gauge coupling of D7 branes, QiQ_{i} are the charges of four-cycle volume moduli ρi\rho_{i} acquired under U(1) as a shift symmetry and did_{i} are positive constants which are proportional to charges Qi2Q_{i}^{2} For simplicity, the matter fields Φj\Phi_{j} are assumed to have zero VEVs[5, 13].

The effective potential is the sum of the FF-term and the DD-term potentials, i.e.\it{i.e.},

Veff=VF+VD.\small V_{\mathrm{eff}}=V_{F}+V_{D}. (44)

In the first case, from eqs.(39),(43) and (2), we get the effective potential as,

Veff(1)=(ϵ𝒲0)2(7(ξ+2ηln𝒱)4𝒱8𝒱317ηξln𝒱4𝒱4)+d1τ13+d3τ33+d2τ13τ33𝒱6.\small V_{\mathrm{eff}}^{(1)}=(\epsilon\mathcal{W}_{0})^{2}\left(\frac{7(\xi+2\eta\ln\mathcal{V})-4\mathcal{V}}{8\mathcal{V}^{3}}-17\eta\xi\frac{\ln\mathcal{V}}{4\mathcal{V}^{4}}\right)\\ +\frac{d_{1}}{\tau_{1}^{3}}+\frac{d_{3}}{\tau_{3}^{3}}+\frac{d_{2}\tau_{1}^{3}\tau_{3}^{3}}{\mathcal{V}^{6}}. (45)

Similarly. the second case, from eqs. (42), (43) and (2), we get the effective potential as,

Veff(2)=(ϵ𝒲0)2(7(ξ+2ηln𝒱)4𝒱2𝒱317ηξln𝒱𝒱4)+d1τ13+d3τ33+d2τ13τ33𝒱6.\small\begin{split}V_{\mathrm{eff}}^{(2)}=(\epsilon^{\prime}\mathcal{W}_{0})^{2}\left(\frac{7(\xi+2\eta\ln\mathcal{V})-4\mathcal{V}}{2\mathcal{V}^{3}}-17\eta\xi\frac{\ln\mathcal{V}}{\mathcal{V}^{4}}\right)\\ +\frac{d_{1}}{\tau_{1}^{3}}+\frac{d_{3}}{\tau_{3}^{3}}+\frac{d_{2}\tau_{1}^{3}\tau_{3}^{3}}{\mathcal{V}^{6}}.\end{split} (46)

In eqs. (45) and (46), we have replaced τ2\tau_{2}, one of the stabilized moduli. By minimizing eqs. (45) and (46) with respect to τ3\tau_{3}, we get its value at which the potential is minimum:

τ3min=(d3d2)1/6𝒱τ11/2.\small\tau_{3}^{min}=\left(\frac{d_{3}}{d_{2}}\right)^{1/6}\frac{\mathcal{V}}{\tau_{1}^{1/2}}. (47)

Using eq. (47) in eqs.(45) and (46), we get

Veff(1)|τ3min=(ϵ𝒲0)2(7(ξ+2ηln𝒱)4𝒱+r8𝒱317ηξln𝒱4𝒱4)+d1τ13,\small\begin{split}V_{\mathrm{eff}}^{(1)}|_{\tau_{3}^{min}}&=(\epsilon\mathcal{W}_{0})^{2}\left(\frac{7(\xi+2\eta\ln\mathcal{V})-4\mathcal{V}+r}{8\mathcal{V}^{3}}-\frac{17\eta\xi\ln\mathcal{V}}{4\mathcal{V}^{4}}\right)\\ &+\frac{d_{1}}{\tau_{1}^{3}},\end{split} (48)
Veff(2)|τ3min=(ϵ𝒲0)2(7(ξ+2ηln𝒱)4𝒱+r2𝒱317ηξln𝒱𝒱4)+d1τ13,\small\begin{split}V_{\mathrm{eff}}^{(2)}|_{\tau_{3}^{min}}&=(\epsilon^{\prime}\mathcal{W}_{0})^{2}\left(\frac{7(\xi+2\eta\ln\mathcal{V})-4\mathcal{V}+r^{\prime}}{2\mathcal{V}^{3}}-\frac{17\eta\xi\ln\mathcal{V}}{\mathcal{V}^{4}}\right)\\ &+\frac{d_{1}}{\tau_{1}^{3}},\end{split} (49)

where, d=2d2d3d=2\sqrt{d_{2}d_{3}}, r=8dτ13/2(ϵ𝒲0)2r=\frac{8d\tau_{1}^{3/2}}{(\epsilon\mathcal{W}_{0})^{2}} and r=2dτ13/2(ϵ𝒲0)2r^{\prime}=\frac{2d\tau_{1}^{3/2}}{(\epsilon^{\prime}\mathcal{W}_{0})^{2}}. In eqs. (48) and (49) all the moduli τ1,2,3\tau_{1,2,3} are stabilized and the potentials are functions of 𝒱\mathcal{V}.

Due to the absence of τ3\tau_{3} modulus in superpotential, it can not be fixed by the supersymmetric condition. In this way, only one internal coordinate 𝑣𝑖𝑧.\it{viz.}, τ3\tau_{3} is assumed to be variable along 𝒱\mathcal{V}. Then, we need a suitable transformation of τ3\tau_{3} modulus to obtain a canonically normalized fields ϕ\phi where τ1,2\tau_{1,2} are considered constant according to eqs. (30) and (31), as they are supersymmetrically stabilized. The appropriate transformation is [2, 5], as,

ϕ=12ln(τ1τ2τ3)=2ln𝒱.\small\phi=\frac{1}{\sqrt{2}}\ln(\tau_{1}\tau_{2}\tau_{3})=\sqrt{2}\ln\mathcal{V}. (50)

The canonical normalized field ϕ\phi eq.(50) may act as an inflaton field. The corresponding inflaton potentials in the first case are obtained from eqs. (48) by using eq.(50), i.e.,

V(1)(ϕ)=p1e3ϕ2[ϕq1eϕ2s1ϕeϕ2+x1]+d1τ13.\small\boxed{V^{(1)}(\phi)=p_{1}e^{-\frac{3\phi}{\sqrt{2}}}\left[\phi-q_{1}e^{\frac{\phi}{\sqrt{2}}}-s_{1}\phi e^{-\frac{\phi}{\sqrt{2}}}+x_{1}\right]+\frac{d_{1}}{\tau_{1}^{3}}}. (51)

where, p1=72η(ϵ𝒲0)28,q1=472η,s1=17ξ7,x1=r+7ξ72ηp_{1}=\frac{7\sqrt{2}\eta\left(\epsilon\mathcal{W}_{0}\right)^{2}}{8},q_{1}=\frac{4}{7\sqrt{2}\eta},s_{1}=\frac{17\xi}{7},x_{1}=\frac{r+7\xi}{7\sqrt{2}\eta} are constant parameters. In the second case, the inflaton potential is obtained from eqs. (49)and (50) as

V(2)(ϕ)=p2e3ϕ2[ϕq2eϕ2s2ϕeϕ2+x2]+d1τ13.\small\boxed{V^{(2)}(\phi)=p_{2}e^{-\frac{3\phi}{\sqrt{2}}}\left[\phi-q_{2}e^{\frac{\phi}{\sqrt{2}}}-s_{2}\phi e^{-\frac{\phi}{\sqrt{2}}}+x_{2}\right]+\frac{d_{1}}{\tau_{1}^{3}}}. (52)

where, p2=72η(ϵ𝒲0)22,q2=472η,s2=17ξ7,x2=r+7ξ72ηp_{2}=\frac{7\sqrt{2}\eta\left(\epsilon^{\prime}\mathcal{W}_{0}\right)^{2}}{2},q_{2}=\frac{4}{7\sqrt{2}\eta},s_{2}=\frac{17\xi}{7},x_{2}=\frac{r^{\prime}+7\xi}{7\sqrt{2}\eta}. It is shown that the resulting inflaton potentials V(ϕ)V(\phi) eqs. (51) and (52) have the same form but different parameters. The factor d1τ13\frac{d_{1}}{\tau_{1}^{3}} in the inflaton potentials eqs. (51) and (52) serves as a constant uplifting term and d1d_{1} is a positive uplifting constant. In our framework, we choose the parameter space as follows:

Table 1: Parameter sets for the first case. We choose the parameters of variations as in refs.[5, 12, 13]. We have chosen the values of η\eta (-0.2) and the d1,2,3d_{1,2,3} suitably to uplift the potentials to the dSdS space.
𝒲0\mathcal{W}_{0} ϵ\epsilon ξ\xi dd d1d_{1} a1a_{1} τ1\tau_{1} mϕm_{\phi} (MPM_{P})
-1 1.67 75 .974 .069 0.1 25 .0037
-1 1.67 85 .974 .069 0.1 25 .0034
-1 1.67 95 .974 .069 0.1 25 .0032
Table 2: Parameter sets for the second case.
𝒲0\mathcal{W}_{0} ϵ\epsilon^{\prime} ξ\xi dd d1d_{1} a1a_{1} τ1\tau_{1} mϕm_{\phi} (MPM_{P})
-1 0.75 100 .09 .128 0.1 30 .0040
-1 0.75 110 .09 .128 0.1 30 .0035
-1 0.75 120 .09 .128 0.1 30 .0032
\onefigure

[width=0.5]New_plots/C1_ADS_CH.pdf

Figure 1: First case: F-term potential eq.(39) with AdSAdS minima for different values of ξ\xi.
\onefigure

[width=0.5]New_plots/C2_ADS_CH.pdf

Figure 2: Second case: FF-term potential eq.(42) with AdSAdS minima for different values of ξ\xi
\onefigure

[width=0.5]New_plots/C1_DS_INF_CH.pdf

Figure 3: The uplifted inflaton potential eq.(51) with dSdS minima for different values of ξ\xi. The calculated values of mϕm_{\phi} (in Planck unit) are shown in the last column of Table 1
\onefigure

[width=0.5]New_plots/C2_DS_INF_CH.pdf

Figure 4: The uplifted inflaton potential eq.(52) with dSdS minima for different values of ξ\xi. The calculated values of mϕm_{\phi} (in Planck unit) are shown in the last column of Table 3

The inflaton potentials eqs. (51) and (52), which are plotted in Figures 3 and 4 for three values of ξ\xi, describe dSdS vacua with a plateau nature. Indeed, these plateau nature of inflaton potential arises naturally from the fixing of Kahler moduli (τ1,2\tau_{1,2}) by supersymmetric conditions eqs. (30) and (31).

Now, following Ref. [38] we have computed the values of some cosmological parameters for inflaton potentials (eqs. (51) and (52)) and presented them in Table 3, along with corresponding experimental data [21, 22].

Table 3: Cosmological parameters (both calculational and the Planck data[21, 22]) at k=0.002k=0.002 Mpc-1.
Parameters POT-1 (ξ=75\xi=75) POT-2 (ξ=100\xi=100) Planck Value
V1/4V^{1/4} (MpM_{p}) 4.58×1024.58\times 10^{-2} 4.66×1024.66\times 10^{-2} <6.99<6.99 ×103\times 10^{-3}
nsn_{s} 0.9621 0.9753 0.96490.9649 ±0.0042\pm 0.0042
ntn_{t} 1.81-1.81 ×104\times 10^{-4} 8.09-8.09 ×105\times 10^{-5} <8<-8 ×103\times 10^{-3}
rr 1.45×1031.45\times 10^{-3} 6.47×1046.47\times 10^{-4} <0.064
NN 60.5 59.8 60-65

Table 3 shows that the parameters: the scalar spectral index (nsn_{s}), the tensor spectral index (ntn_{t}), the tensor-to-scalar ratio (rr), the number of e-folding (NN) are favourably explained by calculations with the obtained potentials. However, the scales of the potentials are off from the corresponding experimental values by about one order of magnitude. It should be mentioned here that our calculations are based on microscopic k-space analysis of first order cosmological perturbations [38]

In conclusion, we have worked in the 6d T6/ZnT^{6}/Z_{n} orbifold of CY3CY_{3}, with three intersecting magnetized D7D7 branes, where the superpotentials of two Kähler moduli are non-perturbativly corrected in addition to the perturbative corrections [16, 30] of the three Kähler moduli in the LVS [28]. In contrast to our earlier work [5], no auxiliary field arises in the present calculations along with the inflaton field, in course of the canonical transformation. Like in the earlier case [5], we have obtained here slow-roll inflaton potentials and experimentally-favoured cosmological parameters. However, the scales of inflation do not exactly conform to the experimental ones. Stabilizations of more moduli e.g.\it{e.g.}, axions might improve the scenario.

Acknowledgements.
The authors acknowledge the University Grants Commission for the CAS-II program. AL acknowledges CSIR, the Government of India for NET fellowship. AS and CS acknowledge the Government of West Bengal for granting them Swami Vivekananda fellowship.

References

  • [1] \NameBecker K., Becker M. Schwarz J. H. \BookString theory and M-theory: A modern introduction (Cambridge University Press) 2006.
  • [2] \NameAntoniadis I., Chen Y. Leontaris G. K. \REVIEWInt. J. Mod. Phys. A3420191950042.
  • [3] \NameAntoniadis I., Lacombe O. Leontaris G. K. \REVIEWEur. Phys. J. C8020201014.
  • [4] \NameConlon J. P. Quevedo F. \REVIEWJHEP012006146.
  • [5] \NameLet A., Sarkar A., Sarkar C. Ghosh B. \REVIEWEPL139202259002.
  • [6] \NameAgrawal P., Obied G., Steinhardt P. J. Vafa C. \REVIEWPhys. Lett. B7842018271.
  • [7] \NamePalti E. \REVIEWFortsch. Phys.6720191900037.
  • [8] \NameJunghans D. \REVIEWJHEP032019150.
  • [9] \NameAkrami Y., Kallosh R., Linde A. Vardanyan V. \REVIEWFortsch. Phys.6720191800075.
  • [10] \NameDenef F., Hebecker A. Wrase T. \REVIEWPhys. Rev. D982018086004.
  • [11] \NameConlon J. P. \REVIEWInt. J. Mod. Phys. A3320181850178.
  • [12] \NameBasiouris V. Leontaris G. K. \REVIEWPhys. Lett. B8102020135809.
  • [13] \NameBasiouris V. Leontaris G. K. \REVIEWFortsch. Phys.7020222100181.
  • [14] \NameAntoniadis I., Chen Y. Leontaris G. K. \REVIEWPoSCORFU20182019068.
  • [15] \NameAntoniadis I., Chen Y. Leontaris G. K. \REVIEWEur. Phys. J. C782018766.
  • [16] \NameAntoniadis I., Chen Y. Leontaris G. K. \REVIEWJHEP012020149.
  • [17] \NameKachru S., Kallosh R., Linde A. D. Trivedi S. P. \REVIEWPhys. Rev. D682003046005.
  • [18] \NameHaack M., Krefl D., Lust D., Van Proeyen A. Zagermann M. \REVIEWJHEP012007078.
  • [19] \NameBianchi M., Collinucci A. Martucci L. \REVIEWJHEP122011045.
  • [20] \NameBena I., Graña M., Kovensky N. Retolaza A. \REVIEWJHEP102019200.
  • [21] \NameAkrami Y. et al. \REVIEWAstron. Astrophys.6412020A10.
  • [22] \NameAghanim N. et al. \REVIEWAstron. Astrophys.6412020A6 [Erratum: Astron.Astrophys. 652, C4 (2021)].
  • [23] \NameGiddings S. B., Kachru S. Polchinski J. \REVIEWPhys. Rev. D662002106006.
  • [24] \NameGukov S., Vafa C. Witten E. \REVIEWNucl. Phys. B584200069 [Erratum: Nucl.Phys.B 608, 477–478 (2001)].
  • [25] \NameCicoli M., Conlon J. P. Quevedo F. \REVIEWJHEP012008052.
  • [26] \NameAbdusSalam S., Abel S., Cicoli M., Quevedo F. Shukla P. \REVIEWJHEP082020047.
  • [27] \NameMoritz J., Retolaza A. Westphal A. \REVIEWPhys. Rev. D972018046010.
  • [28] \NameBalasubramanian V., Berglund P., Conlon J. P. Quevedo F. \REVIEWJHEP032005007.
  • [29] \NameBurgess C. P., Escoda C. Quevedo F. \REVIEWJHEP062006044.
  • [30] \NameBecker K., Becker M., Haack M. Louis J. \REVIEWJHEP062002060.
  • [31] \NameGreen M. B. Vanhove P. \REVIEWPhys. Rev. D612000104011.
  • [32] \NameGreen M. B., Russo J. G. Vanhove P. \REVIEWPhys. Rev. D812010086008.
  • [33] \NameAntoniadis I., Ferrara S., Minasian R. Narain K. S. \REVIEWNucl. Phys. B5071997571.
  • [34] \NameAntoniadis I., Minasian R. Vanhove P. \REVIEWNucl. Phys. B648200369.
  • [35] \NameBalasubramanian V. Berglund P. \REVIEWJHEP112004085.
  • [36] \NameBurgess C. P., Kallosh R. Quevedo F. \REVIEWJHEP102003056.
  • [37] \NameCremades D., Garcia del Moral M. P., Quevedo F. Suruliz K. \REVIEWJHEP052007100.
  • [38] \NameSarkar A., Sarkar C. Ghosh B. \REVIEWJCAP112021029.