This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Non-linear equation in the re-summed next-to-leading order of perturbative QCD:
the leading twist approximation

Carlos Contreras [email protected] Departamento de Física, Universidad Técnica Federico Santa María, Avda. España 1680, Casilla 110-V, Valparaíso, Chile    Eugene   Levin [email protected], [email protected] Departamento de Física, Universidad Técnica Federico Santa María, Avda. España 1680, Casilla 110-V, Valparaíso, Chile Centro Científico- Tecnológico de Valparaíso, Avda. España 1680, Casilla 110-V, Valparaíso, Chile Department of Particle Physics, School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Science, Tel Aviv University, Tel Aviv, 69978, Israel    Rodrigo Meneses [email protected] Escuela de Ingeniería Civil, Facultad de Ingeniería, Universidad de Valparaíso, General Cruz 222, Valparaíso, Chile    Michael Sanhueza [email protected] Departamento de Física, Universidad Técnica Federico Santa María, Avda. España 1680, Casilla 110-V, Valparaíso, Chile
Abstract

In this paper, we use the re-summation procedure, suggested in Refs.DIMST ; SALAM ; SALAM1 ; SALAM2 , to fix the BFKL kernel in the NLO. However, we suggest a different way to introduce the non-linear corrections in the saturation region, which is based on the leading twist non-linear equation. In the kinematic region: τr2Qs2(Y) 1\tau\,\equiv\,r^{2}Q^{2}_{s}(Y)\,\leq\,1 , where rr denotes the size of the dipole, YY its rapidity and QsQ_{s} the saturation scale, we found that the re-summation contributes mostly to the leading twist of the BFKL equation. Assuming that the scattering amplitude is small, we suggest using the linear evolution equation in this region. For τ> 1\tau\,>\,1 we are dealing with the re-summation of (α¯Slnτ)n\left(\bar{\alpha}_{S}\,\ln\tau\right)^{n} and other corrections in NLO approximation for the leading twist. We find the BFKL kernel in this kinematic region and write the non-linear equation, which we solve analytically. We believe the new equation could be a basis for a consistent phenomenology based on the CGC approach.

BFKL Pomeron, CGC/saturation approach, solution to non-linear equation, deep inelastic structure function
pacs:
12.38.Cy, 12.38g,24.85.+p,25.30.Hm

I Introduction

The Colour Glass Condensate(CGC) approach is the only candidate for an effective theory at high energies, which is based on our microscopic theory: QCD (see Ref.KOLEB for a review). However, it has been known for a long time, that to describe the scattering amplitude in the framework of CGCJIMWLK1 ; JIMWLK2 ; JIMWLK3 ; JIMWLK4 ; JIMWLK5 ; JIMWLK6 ; BK we need to include at least the next-to-leading order corrections to the non-linear equations. Indeed, the two essential parameters, that determine the high energy scattering, are the BFKL PomeronBFKL intercept, which is equal to  2.8α¯S\,2.8\bar{\alpha}_{S}, which leads to the energy behaviour of the scattering amplitude Nexp(2.8α¯Sln(1x))N\propto\exp\left(2.8\,\bar{\alpha}_{S}\ln(\frac{1}{x})\right), and the energy behaviour of the new dimensional scale: saturation momentum Qs2exp(4.88α¯Sln(1x))Q^{2}_{s}\propto\exp\left(4.88\,\bar{\alpha}_{S}\ln(\frac{1}{x})\right) . Both show the increase in the leading order CGC approach, which cannot be reconciled with the available experimental data. So, the large NLO corrections appear as the only way out, now as well as two decades ago.

The non-linear equations in the NLO has been written in Refs.NLOBK0 ; NLOBK01 ; NLOBK1 ; NLOBK2 ; JIMWLKNLO1 ; JIMWLKNLO2 ; JIMWLKNLO3 ; DIMST , but their use in high energy phenomenology is marred by the instabilities due to the presence of large and negative NLO corrections enhanced by double collinear logarithms (see Ref.DIMST for discussions and references). These problems have been found in Refs.BFKLNLO ; BFKLNLO1 , identified and solved in Refs.SALAM ; SALAM1 ; SALAM2 for the linear BFKL equation. It turns out that instabilities are closely related to the wrong choice of the energy(rapidity) scale, and we need to introduce the re-summed NLO corrections to cure this problem.

In this paper, we use the re-summation procedure, suggested in Refs.SALAM ; SALAM1 ; SALAM2 , to fix the BFKL kernel in the NLO, which coincides with the kernel used in Ref.DIMST . However, we suggest a different way to introduce the non-linear corrections, than in Ref.DIMST , which is based on the approach, developed in Ref.LETU for the leading twist non-linear equation in the LO. Our first observation is that the re-summation contributes mostly to the leading twist of the BFKL equation in the kinematic region τr2Qs2(Y)< 1\tau\,\equiv\,r^{2}Q^{2}_{s}(Y)\,<\,1 , where rr denotes the size of the dipole, YY its rapidity and QsQ_{s} the saturation scale. We assume that at τ=1\tau=1 the scattering amplitude is small and we can neglect the non-linear corrections. Therefore, for τ<1\tau<1 we can restrict ourselves by the linear BFKL equation. For τ> 1\tau\,>\,1 we are dealing with the re-summation of (α¯Slnτ)n\left(\bar{\alpha}_{S}\,\ln\tau\right)^{n} and other corrections in NLO approximation for the leading twist. In this paper we find the BFKL kernel in this kinematic region, and write the non-linear equation. We found the analytical solution of this equation, and believe the new equation could be a basis for a consistent phenomenology based on the CGC approach.

II BK non -linear equation

The BK evolution equation for the dipole-target scattering amplitude N(𝒙10,𝒃,Y;R)N\left(\boldsymbol{x}_{10},\boldsymbol{b},Y;R\right) has in the leading order (LO) of perturbative QCDKOLEB ; BK ; GLR ; MUQI ; MV the following form:

YN(𝒙10,𝒃,Y;R)=\displaystyle\frac{\partial}{\partial Y}N\left(\boldsymbol{x}_{10},\boldsymbol{b},Y;R\right)=
α¯Sd2𝒙22πK(𝒙02,𝒙12;𝒙10)(N(𝒙12,𝒃12𝒙20,Y;R)+N(𝒙20,𝒃12𝒙12,Y;R)N(𝒙10,𝒃,Y;R)\displaystyle\bar{\alpha}_{S}\!\!\int\frac{d^{2}\boldsymbol{x}_{2}}{2\,\pi}\,K\left(\boldsymbol{x}_{02},\boldsymbol{x}_{12};\boldsymbol{x}_{10}\right)\Bigg{(}N\left(\boldsymbol{x}_{12},\boldsymbol{b}-\frac{1}{2}\boldsymbol{x}_{20},Y;R\right)+N\left(\boldsymbol{x}_{20},\boldsymbol{b}-\frac{1}{2}\boldsymbol{x}_{12},Y;R\right)-N\left(\boldsymbol{x}_{10},\boldsymbol{b},Y;R\right)
N(𝒙12,𝒃12𝒙20,Y;R)N(𝒙20,𝒃12𝒙12,Y;R))\displaystyle-\,\,N\left(\boldsymbol{x}_{12},\boldsymbol{b}-\frac{1}{2}\boldsymbol{x}_{20},Y;R\right)\,N\left(\boldsymbol{x}_{20},\boldsymbol{b}-\frac{1}{2}\boldsymbol{x}_{12},Y;R\right)\Bigg{)} (1)

where 𝒙ik=𝒙i𝒙k\boldsymbol{x}_{ik}\,\,=\,\,\boldsymbol{x}_{i}\,-\,\boldsymbol{x}_{k} and 𝒙10𝒓\boldsymbol{x}_{10}\equiv\,\boldsymbol{r}, 𝒙20𝒓\boldsymbol{x}_{20}\,\equiv\,\boldsymbol{r}^{\prime} and 𝒙12𝒓𝒓\boldsymbol{x}_{12}\,\equiv\,\boldsymbol{r}\,-\,\boldsymbol{r}^{\prime}. YY is the rapidity of the scattering dipole and 𝒃\boldsymbol{b} is the impact factor. K(𝒙02,𝒙12;𝒙10)K\left(\boldsymbol{x}_{02},\boldsymbol{x}_{12};\boldsymbol{x}_{10}\right) is the kernel of the BFKL equation which in the leading order has the following form:

KLO(𝒙02,𝒙12;𝒙10)=x102x022x122K^{\rm LO}\left(\boldsymbol{x}_{02},\boldsymbol{x}_{12};\boldsymbol{x}_{10}\right)\,\,=\,\,\frac{x^{2}_{10}}{x^{2}_{02}\,x^{2}_{12}} (2)

In Eq. (II) RR denotes the size of the target dipole and α¯S=NcαS/π\bar{\alpha}_{S}\,=\,N_{c}\alpha_{S}/\pi where NcN_{c} is the number of colours.

For the kernel of the LO BFKL equation (see Eq. (2)) the eigenvalues take the formBFKL ; LIP :

ωLO(α¯S,γ)=α¯SχLO(γ)=α¯S(2ψ(1)ψ(γ)ψ(1γ))\omega_{\rm LO}\left(\bar{\alpha}_{S},\gamma\right)\,\,=\,\,\bar{\alpha}_{S}\,\chi^{LO}\left(\gamma\right)\,\,\,=\,\,\,\bar{\alpha}_{S}\left(2\psi\left(1\right)\,-\,\psi\left(\gamma\right)\,-\,\psi\left(1-\gamma\right)\right) (3)

where ψ(z)\psi(z) denotes the Euler psi-function ψ(z)=dlnΓ(z)/dz\psi\left(z\right)=d\ln\Gamma(z)/dz.

In the next-to-leading order (NLO), the non-linear equation has a more complicated formNLOBK0 ; NLOBK01 ; NLOBK1 ; NLOBK2 :

dS10dY=\displaystyle\frac{\mathrm{d}S_{10}}{\mathrm{d}Y}\!= α¯S2πd2x2x102x122x022{1+α¯Sb(lnx102μ2x122x202x102lnx122x022)\displaystyle\frac{\bar{\alpha}_{S}}{2\pi}\!\int\!\!\mathrm{d}^{2}x_{2}\frac{x_{10}^{2}}{x_{12}^{2}x_{02}^{2}}\Bigg{\{}1\!+\!\bar{\alpha}_{S}b\left(\ln x_{10}^{2}\mu^{2}\!-\!\frac{x_{12}^{2}\!-\!x_{20}^{2}}{x_{10}^{2}}\ln\frac{x_{12}^{2}}{x_{02}^{2}}\right)
+α¯S(6736π212518NfNc12lnx122x102lnx022x102)}(S12S20S10)\displaystyle+\bar{\alpha}_{S}\left(\frac{67}{36}\!-\!\frac{\pi^{2}}{12}\!-\!\frac{5}{18}\,\frac{N_{f}}{N_{c}}\!-\!\frac{1}{2}\ln\frac{x_{12}^{2}}{x_{10}^{2}}\ln\frac{x_{02}^{2}}{x_{10}^{2}}\right)\Bigg{\}}\left(S_{12}S_{20}\!-\!S_{10}\right)
+α¯S28π2d2x2d2x3x234{2+x122x032+x132x0224x102x232x122x032x132x032lnx122x032x142x022\displaystyle+\frac{\bar{\alpha}_{S}^{2}}{8\pi^{2}}\int\frac{\mathrm{d}^{2}x_{2}\,\mathrm{d}^{2}x_{3}}{x_{23}^{4}}\Bigg{\{}-2+\frac{x_{12}^{2}x_{03}^{2}+x_{13}^{2}x_{02}^{2}-4x_{10}^{2}x_{23}^{2}}{x_{12}^{2}x_{03}^{2}-x_{13}^{2}x_{03}^{2}}\ln\frac{x_{12}^{2}x_{03}^{2}}{x_{14}^{2}x_{02}^{2}}
+x102x232x122x032(1+x102x232x122x232x132x022)lnx122x232x132x022}(S12S23S03S12S30)\displaystyle+\frac{x_{10}^{2}x_{23}^{2}}{x_{12}^{2}x_{03}^{2}}\left(1+\frac{x_{10}^{2}x_{23}^{2}}{x_{12}^{2}x_{23}^{2}-x_{13}^{2}x_{02}^{2}}\right)\ln\frac{x_{12}^{2}x_{23}^{2}}{x_{13}^{2}x_{02}^{2}}\Bigg{\}}\left(S_{12}S_{23}S_{03}-S_{12}S_{30}\right) (4)

In Eq. (II) xik=𝒙i𝒙jx_{ik}\,=\,\boldsymbol{x}_{i}\,-\,\boldsymbol{x}_{j}, μ\mu denotes the renormalization scale for the running QCD coupling, b=11Nc 2Nf12πb\,=\,\frac{11N_{c}\,-\,2N_{f}}{12\,\pi} and NfN_{f} and NcN_{c} are the number of fermions and colours, respectively. SijS_{ij} denotes the S-matrix for scattering of a dipole of size xijx_{ij} with the target, which can be written using the scattering amplitude NijN_{ij} , as follows Sij=1NijS_{ij}=1-N_{ij}. Eq. (II) gives the explicit form of the BFKL kernel in the NLO, but as it has been alluded to we need to re-sum the NLO corrections to avoid instabilities. We re-sum in the approximation, that was suggested in Ref.DIMST , which we will discuss below. It turns out, that in the framework of this re-summation we can neglect the contribution, which is proportional to S13S32S13S32S_{13}\,S_{32}\,-\,S_{13}S_{32} in Eq. (II); and reduce Eq. (II) to Eq. (II) with the kernel, which has to be found in the re-summed NLO. An additional argument for such simplification stems from the fact that deep in the saturation region, where Sij0S_{ij}\to 0, all terms except the first one, which is proportional to S12S_{12}, are small and can be neglected. In other words, deep in the saturation region Eq. (II) reduces to Eq. (II) without addressing the specific form of re-summation.

In the next-to-leading order the kernel is derived in Refs.BFKLNLO ; BFKLNLO1 and has the following form:

ωNLO(α¯S,γ)=α¯SχLO(γ)+α¯S2χNLO(γ)\omega_{\rm NLO}\left(\bar{\alpha}_{S},\gamma\right)\,\,=\,\,\bar{\alpha}_{S}\,\chi^{LO}\left(\gamma\right)\,\,+\,\,\bar{\alpha}_{S}^{2}\,\chi^{NLO}\left(\gamma\right) (5)

The explicit form of χNLO(γ)\chi^{NLO}\left(\gamma\right) is given in Ref.BFKLNLO . However, χNLO(γ)\chi^{NLO}\left(\gamma\right) turns out to be singular at γ1\gamma\to 1, χNLO(γ) 1/(1γ)3\chi^{NLO}\left(\gamma\right)\,\propto\,1/(1-\gamma)^{3}. Such singularities indicate, that we have to calculate higher order corrections to obtain a reliable result. The procedure to re-sum high order corrections is suggested in Ref. SALAM ; SALAM1 ; SALAM2 ; KMRS . The resulting spectrum of the BFKL equation in the NLO, can be found from the solution of the following equation SALAM ; SALAM1 ; SALAM2

ωNLO(α¯S,γ)=α¯S(χ0(ωNLO,γ)+ωNLOχ1(ωNLO,γ)χ0(ωNLO,γ))\omega_{\rm NLO}\left(\bar{\alpha}_{S},\gamma\right)\,=\,\bar{\alpha}_{S}\left(\chi_{0}\left(\omega_{\rm NLO},\gamma\right)\,+\,\omega_{\rm NLO}\,\frac{\chi_{1}\left(\omega_{\rm NLO},\gamma\right)}{\chi_{0}\left(\omega_{\rm NLO},\gamma\right)}\right) (6)

where

χ0(ω,γ)=χLO(γ)11γ+11γ+ω\chi_{0}\left(\omega,\gamma\right)\,\,=\,\,\chi^{LO}\left(\gamma\right)\,-\,\frac{1}{1\,-\,\gamma}\,+\,\frac{1}{1\,-\,\gamma\,+\,\omega} (7)

and

χ1(ω,γ)=\displaystyle\chi_{1}\left(\omega,\gamma\right)\,\,= (8)
χNLO(γ)+F(11γ11γ+ω)+AT(ω)AT(0)γ2+AT(ω)b(1γ+ω)2AT(0)b(1γ)2\displaystyle\,\,\chi^{NLO}\left(\gamma\right)\,+\,F\left(\frac{1}{1-\gamma}\,-\,\frac{1}{1\,-\,\gamma\,+\,\omega}\right)\,+\,\frac{A_{T}\left(\omega\right)\,-\,A_{T}\left(0\right)}{\gamma^{2}}\,+\,\frac{A_{T}\left(\omega\right)-b}{\left(1\,-\,\gamma\,+\,\omega\right)^{2}}\,-\,\frac{A_{T}\left(0\right)-b}{\left(1\,-\,\gamma\right)^{2}}

Functions χNLO(γ)\chi^{NLO}\left(\gamma\right) and AT(ω)A_{T}\left(\omega\right) as well as the constants (FF and bb), are defined in Refs.SALAM ; SALAM1 ; SALAM2 .

In Ref. KMRS Khoze, Martin, Ryskin and Stirling (KMRS) sugested an economic form of χ1(ω,γ)\chi_{1}\left(\omega,\gamma\right), which coincides with Eq. (8) to within 7%7\%, and, therefore, gives reasonable estimates of all constants and functions in Eq. (8). The equation for ω\omega takes the form

ωKMRS=α¯S(1ωKMRS)(1γ+11γ+ωKMRS+(2ψ(1)ψ(2γ)ψ(1+γ)) high twist contributions)\omega^{\rm KMRS}\,=\,\bar{\alpha}_{S}\left(1-\omega^{\rm KMRS}\right)\left(\frac{1}{\gamma}+\frac{1}{1-\gamma+\omega^{\rm KMRS}}\,+\,\underbrace{\left(2\psi(1)-\psi\left(2-\gamma\right)-\psi\left(1+\gamma\right)\right)}_{\mbox{ high twist contributions}}\right) (9)

One can see that γ(ω)0\gamma(\omega)\to 0 when ω1\omega\to 1 as follows from energy conservation.

III NLO BFKL kernel in the perturbative QCD region

III.1 Eigenfunctions of the BFKL equation

Therefore, the linear BFKL equation in the NLO takes the form:

YN(𝒙10,𝒃,Y;R)=α¯Sd2𝒙22πK(𝒙02,𝒙12;𝒙10){N(𝒙12,𝒃12𝒙20,Y;R)+N(𝒙20,𝒃12𝒙12,Y;R)N(𝒙10,𝒃,Y;R)}\frac{\partial}{\partial Y}N\left(\boldsymbol{x}_{10},\boldsymbol{b},Y;R\right)=\bar{\alpha}_{S}\!\!\int\frac{d^{2}\boldsymbol{x}_{2}}{2\,\pi}\,K\left(\boldsymbol{x}_{02},\boldsymbol{x}_{12};\boldsymbol{x}_{10}\right)\Bigg{\{}N\left(\boldsymbol{x}_{12},\boldsymbol{b}-\frac{1}{2}\boldsymbol{x}_{20},Y;R\right)+N\left(\boldsymbol{x}_{20},\boldsymbol{b}-\frac{1}{2}\boldsymbol{x}_{12},Y;R\right)-N\left(\boldsymbol{x}_{10},\boldsymbol{b},Y;R\right)\Bigg{\}} (10)

The general solution to Eq. (10) can be written as follows

N(r,b,Y;R)=ϵiϵ+idγ2πieω(α¯S,γ)Yϕγ(𝒓,𝑹,𝒃)ϕin(γ,R)N\left(r,b,Y;R\right)\,\,\,=\,\,\,\int^{\epsilon+i\infty}_{\epsilon-i\infty}\frac{d\gamma}{2\,\pi\,i}e^{\omega\left(\bar{\alpha}_{S},\gamma\right)\,Y}\,\phi_{\gamma}\left(\boldsymbol{r},\boldsymbol{R},\boldsymbol{b}\right)\,\phi_{\rm in}\left(\gamma,R\right) (11)

where ϕγ(𝒓,𝑹,𝒃)\phi_{\gamma}\left(\boldsymbol{r},\boldsymbol{R},\boldsymbol{b}\right) is the eigenfunction of the BFKL equation and ϕin(γ,R)\phi_{\rm in}\left(\gamma,R\right) can be found from the initial condition at Y=0Y=0. In Eq. (11) 𝒓𝒙10\boldsymbol{r}\,\equiv\,\boldsymbol{x}_{10} denotes the size of the scattering dipole, while RR the size of the target.

In Ref.LIP it was proved that the eigenfunction of the BFKL equation has the following form

ϕγ(𝒓,𝑹,𝒃)\displaystyle\phi_{\gamma}\left(\boldsymbol{r},\boldsymbol{R},\boldsymbol{b}\right)\, =\displaystyle= (r2R2(𝒃+12(𝒓𝑹))2(𝒃12(𝒓𝑹))2)γ=eγξ\displaystyle\,\left(\frac{r^{2}\,R^{2}}{\left(\boldsymbol{b}+\frac{1}{2}(\boldsymbol{r}-\boldsymbol{R})\right)^{2}\,\left(\boldsymbol{b}-\frac{1}{2}(\boldsymbol{r}-\boldsymbol{R})\right)^{2}}\right)^{\gamma}\,\,=\,\,\,e^{\gamma\,\xi} (12)
withξ\displaystyle\mbox{with}~{}~{}~{}\xi\, =\displaystyle= ln(r2R2(𝒃+12(𝒓𝑹))2(𝒃12(𝒓𝑹))2)\displaystyle\,\ln\left(\frac{r^{2}\,R^{2}}{\left(\boldsymbol{b}+\frac{1}{2}(\boldsymbol{r}-\boldsymbol{R})\right)^{2}\,\left(\boldsymbol{b}-\frac{1}{2}(\boldsymbol{r}-\boldsymbol{R})\right)^{2}}\right) (13)

for any kernel, which satisfies the conformal symmetry. Using Eq. (12) we can re-write the general solution in the form:

N(ξ,Y;R)=ϵiϵ+idγ2πieω(α¯S,γ)Y+γξϕin(γ,R)N\left(\xi,Y;R\right)\,\,\,=\,\,\,\int^{\epsilon+i\infty}_{\epsilon-i\infty}\frac{d\gamma}{2\,\pi\,i}e^{\omega\left(\bar{\alpha}_{S},\gamma\right)\,Y\,\,+\,\,\gamma\,\xi}\,\phi_{\rm in}\left(\gamma,R\right) (14)

where ξ=ln(r2Qs2(Y=0;𝒃,𝑹))\xi\,=\,\ln\left(r^{2}\,Q^{2}_{s}\left(Y=0;\boldsymbol{b},\boldsymbol{R}\right)\right). Comparing Eq. (13) with this definition of ξ\xi, one can see that

Qs2(Y=0;𝒃,𝑹)=R2(𝒃+12𝑹)2(𝒃12𝑹)2Q^{2}_{s}\left(Y=0;\boldsymbol{b},\boldsymbol{R}\right)\,=\,\frac{R^{2}}{\left(\boldsymbol{b}\,+\,\frac{1}{2}\boldsymbol{R}\right)^{2}\,\left(\boldsymbol{b}\,-\,\frac{1}{2}\boldsymbol{R}\right)^{2}} (15)

for rRr\ll R.

III.2 Eigenvalues of the BFKL equation

As has been mentioned, the re-summation, that has been suggested in Ref.DIMST is determined by the anomalous dimension γ\gamma in the vicinity of the eigenvalues at γ 1\gamma\,\to\,1. The singular part of the general kernel in the NLO (see Eq. (6)) has the following form:

ω=α¯S1γ+ω;\omega\,\,=\,\,\frac{\bar{\alpha}_{S}}{1-\gamma+\omega}; (16)

with the solution:

ω(γ)=12((1γ)+4α¯S+(1γ)2)\omega\left(\gamma\right)\,\,=\,\,\frac{1}{2}\left(-\left(1-\gamma\right)\,+\,\sqrt{4\,\bar{\alpha}_{S}\,+\,\left(1-\gamma\right)^{2}}\right) (17)

It is instructive to note that Eq. (9) gives

ω=α¯S1γ+ω(1ω);\omega\,\,=\,\,\frac{\bar{\alpha}_{S}}{1-\gamma+\omega}\,\left(1\,-\,\omega\right); (18)

All other terms in Eq. (9) vanish at γ=1\gamma=1. Solving Eq. (18) we obtain

ωω>=12((1γ+α¯S)+4α¯S+(1γ+α¯S)2)\omega\,\,\equiv\omega_{>}\,\,=\,\,\frac{1}{2}\left(-\left(1\,-\,\gamma\,+\,\bar{\alpha}_{S}\right)\,+\,\sqrt{4\,\bar{\alpha}_{S}\,+\,\left(1\,-\,\gamma\,+\,\bar{\alpha}_{S}\right)^{2}}\right) (19)

Eq. (19) gives a good description of the eigenvalues of Eq. (9) ωKMRS\omega^{\rm KMRS} for γ>1γcr=γ¯\gamma>1-\gamma_{cr}=\bar{\gamma} (see Fig. 1). This is the reason that we denote this eigenvalue as ω>\omega_{>}.

Refer to caption Refer to caption
Fig. 1-a Fig. 1-b
Figure 1: The eigenvalues ωKMRS\omega^{\rm KMRS} versus γ\gamma. The vertical dashed lines show the value of γ¯=1γcr\bar{\gamma}=1-\gamma_{cr}, which is given by Eq. (21), for different values of α¯S\bar{\alpha}_{S}. ω>\omega_{>} is given by Eq. (19), while ω<\omega_{<} is solution to the following equation: ω<=α¯S(1ω<){1γω<}\omega_{<}\,\,=\,\,\bar{\alpha}_{S}\left(1\,-\,\omega_{<}\right)\Bigg{\{}\frac{1}{\gamma}\,\,-\,\,\omega_{<}\Bigg{\}} which we will discuss below in section IV-A.

III.3 Saturation and geometric scaling behaviour of the scattering amplitude in the NLO

It is well knownKOLEB ; GLR ; BALE ; LETU ; IIML ; MUT , that one does not need to know the precise structure of the non-linear corrections for finding the saturation momentum, as well as for discussing the behaviour of the scattering amplitude in the vicinity of the saturation scale. We only need to find the solution of the linear BFKL equation, which is a wave package that satisfies the condition, that phase and group velocities are equalGLR . This solution determines the new dimensional scale of the problem: the saturation momentum QsQ_{s}. The equation takes the form

vgroup=dω(γ)dγ=vphase=ω(γ)γv_{\rm group}=\,\frac{d\omega\left(\gamma\right)}{d\gamma}\,=\,v_{\rm phase}\,=\,\frac{\omega\left(\gamma\right)}{\gamma} (20)

For the eigenvalues of the BFKL equation in the NLO given by Eq. (17), the solution to Eq. (20) takes the form:

γ¯=  1γcr=12+2α¯S\bar{\gamma}\,\,=\,\,1\,-\,\gamma_{cr}\,\,=\,\,\frac{1}{2}+2\bar{\alpha}_{S} (21)

The equation

ω(γ¯)γ¯Yξs=4α¯S1+ 4α¯SYξs=  0;ln(Qs2/Q02(Y=Y0))=4α¯S1+ 4α¯S(YY0);\displaystyle\frac{\omega\left(\bar{\gamma}\right)}{\bar{\gamma}}\,Y\,\,-\,\,\xi_{s}\,\,=\,\,\frac{4\bar{\alpha}_{S}}{1\,+\,4\bar{\alpha}_{S}}\,Y\,\,-\,\,\xi_{s}\,\,=\,\,0;~{}~{}~{}\ln\Big{(}Q^{2}_{s}/Q^{2}_{0}\left(Y=Y_{0}\right)\Big{)}\,=\,\frac{4\bar{\alpha}_{S}}{1\,+\,4\bar{\alpha}_{S}}\,\left(Y-Y_{0}\right);
Qs2=Qs2(Y=Y0)exp(4α¯S1+4α¯S(YY0))\displaystyle Q^{2}_{s}\,=\,Q^{2}_{s}\left(Y=Y_{0}\right)\exp\left(\frac{4\bar{\alpha}_{S}}{1+4\bar{\alpha}_{S}}\left(Y-Y_{0}\right)\right) (22)

determines the saturation momentum ξs=ln(rs2Qs2(Y=Y0))=ln(Qs2(Y)/Qs2(Y0))\xi_{s}\,\,=\,\,-\ln\left(r^{2}_{s}\,Q^{2}_{s}\left(Y=Y_{0}\right)\right)\,\,=\,\,\ln\left(Q^{2}_{s}\left(Y\right)/Q^{2}_{s}\left(Y_{0}\right)\right)111Actually Qs2(Y=Y0)Q^{2}_{s}\left(Y=Y_{0}\right) depends on other variables as well (see Eq. (15)), but we will omit these variable in the further presentation..

For Eq. (19) it turns out that

γ¯=  1γcr=1+6α¯S+α¯S2)2(α¯S+1);ln(Qs2(Y)/Qs2(Y0))=4α¯S1+ 6α¯S+α¯S2(YY0)λ(YY0);\bar{\gamma}\,\,=\,\,1\,-\,\gamma_{cr}\,\,=\,\,\frac{1+6\bar{\alpha}_{S}+\bar{\alpha}_{S}^{2})}{2(\bar{\alpha}_{S}+1)};~{}~{}~{}~{}~{}\,\,\ln\left(Q^{2}_{s}\left(Y\right)/Q^{2}_{s}\left(Y_{0}\right)\right)=\,\frac{4\bar{\alpha}_{S}}{1\,+\,6\bar{\alpha}_{S}\,+\,\bar{\alpha}_{S}^{2}}\,\left(Y-Y_{0}\right)\,\,\equiv\,\,\lambda\,\left(Y-Y_{0}\right)\,; (23)

From Fig. 2 one can see that Eq. (23) leads to the value of λ0.25\lambda\approx 0.25, which describes the experimental data at α¯S  0.2\bar{\alpha}_{S}\,\,\approx\,\,0.2.

In the vicinity of the saturation scale where r2Qs2(Y)=τ1r^{2}Q^{2}_{s}\left(Y\right)\,=\,\tau\to 1, the scattering amplitude has the following formIIML ; MUT :

N(r2,Y)=N0(r2Qs2)1γcr=N0τ1γcrN\left(r^{2},Y\right)\,\,=\,\,N_{0}\left(r^{2}\,Q^{2}_{s}\right)^{1-\gamma_{cr}}\,\,=\,\,N_{0}\,\,\tau^{1-\gamma_{cr}} (24)

This equation gives the initial conditions for the scattering amplitude in the saturation domain. These conditions have the forms:

N(r2,Y)=N(τ=1)=N0;dln(N(r2,Y))dξ|τ=1=  1γcr;N\left(r^{2},Y\right)\,\,=\,\,N\left(\tau=1\right)\,\,=\,\,N_{0};~{}~{}~{}~{}~{}~{}~{}\frac{d\ln\left(N\left(r^{2},Y\right)\right)}{d\xi}|_{\tau=1}\,\,=\,\,1-\gamma_{cr}; (25)
Refer to caption
Figure 2: λ(α¯S)\lambda\left(\bar{\alpha}_{S}\right), which determines the energy dependence of the saturation scale Qs2(1x)λ(α¯S)Q^{2}_{s}\,\,\propto\,\,\left(\frac{1}{x}\right)^{\lambda\left(\bar{\alpha}_{S}\right)}, versus α¯S\bar{\alpha}_{S}.

III.4 Double log approximation (DLA) in the re-summed NLO approximation

III.4.1 DLA in the LO approximation

In the leading order BFKL equation, the DLA stems from the eigenfunction

ω(γ)=α¯S1γ\omega\left(\gamma\right)\,\,=\,\,\frac{\bar{\alpha}_{S}}{1-\gamma} (26)

In the coordinate representation (see the linear part of Eq. (II)) the DLA comes from the distances x12x02x01x_{12}\sim x_{02}\,\,\gg\,\,x_{01}. For such distances the BFKL equation has the form

YN(𝒙10,𝒃,Y)=\displaystyle\frac{\partial}{\partial Y}N\left(\boldsymbol{x}_{10},\boldsymbol{b},Y\right)=
α¯Sd2𝒙22πK(𝒙02,𝒙12;𝒙10)(N(𝒙12,𝒃12𝒙20,Y)+N(𝒙20,𝒃12𝒙12,Y)N(𝒙10,𝒃,Y))\displaystyle\bar{\alpha}_{S}\!\!\int\frac{d^{2}\boldsymbol{x}_{2}}{2\,\pi}\,K\left(\boldsymbol{x}_{02},\boldsymbol{x}_{12};\boldsymbol{x}_{10}\right)\Bigg{(}N\left(\boldsymbol{x}_{12},\boldsymbol{b}-\frac{1}{2}\boldsymbol{x}_{20},Y\right)+N\left(\boldsymbol{x}_{20},\boldsymbol{b}-\frac{1}{2}\boldsymbol{x}_{12},Y\right)-N\left(\boldsymbol{x}_{10},\boldsymbol{b},Y\right)\Bigg{)}
x12x02x01α¯Sx012x012dx122x124N(𝒙12,𝒃,Y)\displaystyle\xrightarrow{x_{12}\sim x_{02}\,\,\gg\,\,x_{01}}\,\,\bar{\alpha}_{S}\,x^{2}_{01}\,\int_{x^{2}_{01}}\frac{dx^{2}_{12}}{x^{4}_{12}}N\left(\boldsymbol{x}_{12},\boldsymbol{b},Y\right) (27)

In the derivation of Eq. (III.4.1) we used Eq. (2) for the kernel and assumed that bx12b\,\gg\,x_{12}. Note, that the gluon reggeization term (N(𝒙10,𝒃,Y)N\left(\boldsymbol{x}_{10},\boldsymbol{b},Y\right)) in Eq. (III.4.1) does not contribute in the DLA.

Introducing N~(xij)=N(xij)/xij2\tilde{N}\left(x_{ij}\right)\,=\,N(x_{ij})/x^{2}_{ij} and changing ξξ=ξ\xi\,\to\xi^{\prime}=-\xi we obtain Eq. (III.4.1) in the traditional form:

YN~(ξ,Y;b)=α¯Sξ𝑑ξ′′N~(ξ′′,Y;b);2YξN~(ξ,Y;b)=α¯SN~(ξ,Y;b).\frac{\partial}{\partial Y}\tilde{N}\left(\xi^{\prime},Y;b\right)=\bar{\alpha}_{S}\int^{\xi^{\prime}}d\xi^{\prime\prime}\,\tilde{N}\left(\xi^{\prime\prime},Y;b\right)\,;~{}~{}~{}~{}~{}~{}~{}~{}~{}\frac{\partial^{2}}{\partial Y\,\partial\,\xi^{\prime}}\tilde{N}\left(\xi^{\prime},Y;b\right)\,\,=\,\,\bar{\alpha}_{S}\,\tilde{N}\left(\xi^{\prime},Y;b\right)\,. (28)

Eq. (28) follows naturally from the general solution to the BFKL equation222The dependance on bb appears in the definition of ξ\xi (see Eq. (12)) and in the initial condition (function n~in(γ)\tilde{n}_{in}\left(\gamma\right)). In the following we omit bb dependance and hope, that it will not cause any difficulties.:

N~(ξ,Y;b)=ϵiϵ+idω2πiϵiϵ+idγ2πi1ωω(γ)eωY(1γ)ξn~in(γ)\tilde{N}\left(\xi,Y;b\right)\,\,=\,\,\int^{\epsilon+i\infty}_{\epsilon-i\infty}\frac{d\omega}{2\,\pi\,i}\,\,\int^{\epsilon+i\infty}_{\epsilon-i\infty}\frac{d\gamma}{2\,\pi\,i}\frac{1}{\omega\,\,-\,\,\omega\left(\gamma\right)}\,e^{\omega\,Y\,-\,\left(1-\gamma\right)\xi}\tilde{n}_{in}\left(\gamma\right) (29)

using the eigenvalue of Eq. (26). Indeed, plugging Eq. (26) into Eq. (29) and taking the integral over γ\gamma, closing the contour of integration we obtain

N~(ξ,Y;b)=ϵiϵ+idω2πieωYα¯Sωξn~in(ω)=n=0ξnn!ϵiϵ+idω2πi(α¯Sω)neωYn~in(ω)\tilde{N}\left(\xi,Y;b\right)\,\,=\,\,\int^{\epsilon+i\infty}_{\epsilon-i\infty}\frac{d\omega}{2\,\pi\,i}\,e^{\omega\,Y\,-\,\frac{\bar{\alpha}_{S}}{\omega}\,\xi}\,\,\tilde{n}_{in}\left(\omega\right)\,\,=\,\,\sum^{\infty}_{n=0}\frac{\xi^{\prime n}}{n!}\int^{\epsilon+i\infty}_{\epsilon-i\infty}\frac{d\omega}{2\,\pi\,i}\,\left(\frac{\bar{\alpha}_{S}}{\omega}\right)^{n}\,e^{\omega\,Y}\,\,\tilde{n}_{in}\left(\omega\right) (30)

Taking the integral over ω\omega we obtain the solution which is a series, with a general term which is proportional (α¯SYξ)n\left(\bar{\alpha}_{S}\,Y\,\xi^{\prime}\right)^{n}. The particular form of the solution is determined by the function n~in(ω)\tilde{n}_{in}\left(\omega\right) which we can find from the initial condition at Y=0Y=0.

III.4.2 DLA in the NLO for BFKL equation

We wish to find the DLA in the NLO , using Eq. (29) in which we substitute the solution333Eq. (31) was derived from Eq. (9) in Ref.ASV and has been discussed in Ref.DIMST . to Eq. (16) with respect to γ\gamma:

1γ=α¯Sωω1\,-\,\gamma\,\,\,=\,\,\,\frac{\bar{\alpha}_{S}}{\omega}\,\,-\,\,\omega (31)

Plugging Eq. (31) into Eq. (29) we obtain

N~(ξ,Y;b)=ϵiϵ+idω2πieω(Y+ξ)α¯Sωξn~in(ω)=n=0ξnn!ϵiϵ+idω2πi(α¯Sω)neωηn~in(ω)\tilde{N}\left(\xi,Y;b\right)\,\,=\,\,\int^{\epsilon+i\infty}_{\epsilon-i\infty}\frac{d\omega}{2\,\pi\,i}\,e^{\omega\,\left(Y\,\,+\,\,\xi\right)\,-\,\frac{\bar{\alpha}_{S}}{\omega}\,\xi}\,\,\tilde{n}_{in}\left(\omega\right)\,\,=\,\,\sum^{\infty}_{n=0}\frac{\xi^{\prime n}}{n!}\int^{\epsilon+i\infty}_{\epsilon-i\infty}\frac{d\omega}{2\,\pi\,i}\,\left(\frac{\bar{\alpha}_{S}}{\omega}\right)^{n}\,e^{\omega\,\eta}\,\,\tilde{n}_{in}\left(\omega\right) (32)

where we have introduced new variables: η=Yξ\eta\,\,=\,\,Y\,\,-\,\,\xi^{\prime} and ξ=ξ\xi^{\prime}\,=\,-\xi. From Eq. (32) one can see that the solution is a series with the general term (α¯Sηξ)n\propto\,\left(\bar{\alpha}_{S}\,\eta\,\xi^{\prime}\right)^{n}, whose exact form is determined by the initial condition at Y=0Y=0.

The solution of Eq. (32) can be re-written in more economical form:

ηN~(ξ,η;b)=α¯Sξ𝑑ξ′′N~(ξ′′,η;b);2ηξN~(ξ,η;b)=α¯SN~(ξ,η;b),\frac{\partial}{\partial\,\eta}\tilde{N}\left(\xi^{\prime},\eta;b\right)=\bar{\alpha}_{S}\int^{\xi^{\prime}}d\xi^{\prime\prime}\,\tilde{N}\left(\xi^{\prime\prime},\eta;b\right)\,;~{}~{}~{}~{}~{}~{}~{}~{}~{}\frac{\partial^{2}}{\partial\,\eta\,\partial\,\xi^{\prime}}\tilde{N}\left(\xi^{\prime},\eta;b\right)\,\,=\,\,\bar{\alpha}_{S}\,\tilde{N}\left(\xi^{\prime},\eta;b\right)\,, (33)

Therefore, we see that the only difference of the DLA in the NLO, stems from a new variable η,\eta, which replaces Y=ln(1/x)Y\,=\,\ln(1/x). The physical meaning of this replacement has been examined in detail in Ref.DIMST . The point of it is the fact, that the partons (gluons) in the wave function of the fast hadrons are ordered in accord of the lifetimes of the partons, which are proportional tixiP/ki,T2t_{i}\,\sim x_{i}\,P/k^{2}_{i,T}, where xix_{i} denotes the fraction of the longitudinal momentum of the fast hadron, with the moment PP, and ki,Tk_{i,T} is the transverse momentum of the ii-th parton. The ordering that leads to the logs in η\eta, has the form t1t2ti1titnt_{1}\,\gg\,t_{2}\,\gg\,\dots\,t_{i-1}\,\gg\,t_{i}\gg\,\,\dots\,t_{n}.

It is instructive to note, that the form of the kernel and the differential Eq. (33) are quite different, from the ones that has been discussed in Refs.DIMST ; CLM . Indeed, in Ref.DIMST it is suggested that the linear equation has the form:

dN(r,Y;b)dY=α¯Sdr2r2r4J1(2α¯Sρ2)α¯Sρ2N(r,Y;b)\frac{dN\left(r,Y;b\right)}{dY}\,\,=\,\,\bar{\alpha}_{S}\int\frac{dr^{\prime 2}\,r^{2}}{r^{\prime 4}}\,\,\frac{J_{1}\left(2\sqrt{\bar{\alpha}_{S}\rho^{2}}\right)}{\sqrt{\bar{\alpha}_{S}\rho^{2}}}\,N\left(r^{\prime},Y;b\right) (34)

where ρLx02,x01Lx12,x01\rho\,\equiv\,\sqrt{L_{x_{02},x_{01}}L_{x_{12},x_{01}}} and Lxi2,x01ln(xi22/x012)L_{x_{i2},x_{01}}\equiv\ln(x_{i2}^{2}/x_{01}^{2}).

The solution to Eq. (34) has the following form for η=Yξ> 0\eta=Y\,-\,\xi^{\prime}\,>\,0 DIMST ; CLM

N(ξ,Y)=eξϕin(0)Y(I1(2α¯Sξη)α¯Sξη)N\left(\xi^{\prime},Y\right)\,\,\,=\,\,e^{-\xi^{\prime}}\,\,\phi_{in}\left(0\right)\,\,Y\,\left(\displaystyle{\dfrac{I_{1}\left(2\,\sqrt{\bar{\alpha}_{S}\,\xi^{\prime}\,\eta}\right)}{\sqrt{\bar{\alpha}_{S}\,\xi^{\prime}\,\eta}}}\right) (35)

Assuming that solution to Eq. (33) depends on one variable ζ= 2α¯Sξη\zeta\,=\,2\,\sqrt{\,\bar{\alpha}_{S}\,\xi^{\prime}\,\eta} we obtain that this equation takes the form:

d2N~(ζ)dζ2+1ζdN~(ζ)dζ=N~(ζ)\frac{d^{2}\,\widetilde{N}\left(\zeta\right)}{d\,\zeta^{2}}\,\,+\,\,\frac{1}{\zeta}\frac{d\,\widetilde{N}\left(\zeta\right)}{d\,\zeta}\,\,=\,\,\,\widetilde{N}\left(\zeta\right) (36)

which has the solution N~(ζ)=C1I0(ζ)\widetilde{N}\left(\zeta\right)\,\,=\,\,C_{1}\,I_{0}\left(\zeta\right) (see formula 8.494(1) in Ref.RY ).

Summing double logs and comparing these two solutions, one can see that both are function of α¯Sηξ\bar{\alpha}_{S}\,\eta\,\xi^{\prime}. Both solutions at α¯Sηξ 1\bar{\alpha}_{S}\,\eta\,\xi^{\prime}\,\,\gg\,1 have the asymptotic behaviour

N(ξ,Y)ζ 1H(Y,ξ)e2α¯SηξξN\left(\xi^{\prime},Y\right)\,\,\,\xrightarrow{\zeta\,\gg\,1}\,\,H\left(Y,\xi\right)\,e^{2\,\sqrt{\bar{\alpha}_{S}\,\eta\,\xi^{\prime}}\,\,-\,\,\,\xi^{\prime}}\,\, (37)

The function HH depends on YY and ξ\xi^{\prime} logarithmically.

The expression for the saturation momentum stems from the equation

2α¯Sηξξ=  02\,\sqrt{\bar{\alpha}_{S}\,\eta\,\xi^{\prime}}\,\,-\,\,\,\xi^{\prime}\,\,=\,\,0 (38)

which gives the condition when NH(Y,ξ)ConstN\,\sim\,H\left(Y,\xi\right)\,\,\sim\,{\rm Const}, since HH is slowly changing function.

It is easy to see that Eq. (38) leads to the saturation momentum of Eq. (III.3).

However, to understand better the difference between these two equations, we would like to re-write Eq. (34) in the form of Eq. (33). The general solution to Eq. (34) has the following form:

N~(ξ,Y)=ϵiϵ+idγ2πie12(γ+4α¯S+γ2)Y+γξϕin(γ,R)\widetilde{N}\left(\xi^{\prime},Y\right)\,\,\,=\,\,\,\int^{\epsilon+i\infty}_{\epsilon-i\infty}\frac{d\gamma^{\prime}}{2\,\pi\,i}e^{\frac{1}{2}\left(-\gamma^{\prime}\,+\,\sqrt{4\,\bar{\alpha}_{S}\,+\,\gamma^{\prime 2}}\right)\,Y\,\,+\,\,\gamma^{\prime}\,\xi^{\prime}}\,\phi_{\rm in}\left(\gamma^{\prime},R\right) (39)

where we use Eq. (17) for ω(γ)\omega(\gamma), and replace 1γ1\,-\,\gamma by γ\gamma^{\prime}. The function ϕin(γ,R)\phi_{\rm in}\left(\gamma^{\prime},R\right) is determined by the initial condition at Y=0Y=0 and RR denotes the size of the target dipole.

Using Eq. (39) we see that N~(ξ,Y)\widetilde{N}\left(\xi^{\prime},Y\right) satisfies the following equation:

2N~(ξ,Y)Yξ+2N~(ξ,Y)Y2=ϵiϵ+idγ2πi(ω(γ)γ+ω2(γ))e12(γ+4α¯S+γ2)Y+γξϕin(γ,R)\displaystyle\frac{\partial^{2}\,\widetilde{N}\left(\xi^{\prime},Y\right)}{\partial Y\,\partial\,\xi^{\prime}}\,\,+\,\,\frac{\partial^{2}\,\widetilde{N}\left(\xi^{\prime},Y\right)}{\partial Y^{2}}\,\,=\,\,\int^{\epsilon+i\infty}_{\epsilon-i\infty}\frac{d\gamma^{\prime}}{2\,\pi\,i}\Big{(}\omega\left(\gamma^{\prime}\right)\,\gamma^{\prime}\,\,+\,\,\omega^{2}\left(\gamma^{\prime}\right)\Big{)}e^{\frac{1}{2}\left(-\gamma^{\prime}\,+\,\sqrt{4\,\bar{\alpha}_{S}\,+\,\gamma^{\prime 2}}\right)\,Y\,\,+\,\,\gamma^{\prime}\,\xi^{\prime}}\,\phi_{\rm in}\left(\gamma^{\prime},R\right)
=ϵiϵ+idγ2πi{12(γ+γ2+ 4α¯S)γ+14(γ+γ2+ 4α¯S)2}e12(γ+4α¯S+γ2)Y+γξϕin(γ,R)\displaystyle=\,\,\int^{\epsilon+i\infty}_{\epsilon-i\infty}\frac{d\gamma^{\prime}}{2\,\pi\,i}\Bigg{\{}\frac{1}{2}\Big{(}-\gamma^{\prime}\,+\,\sqrt{\gamma^{\prime 2}\,+\,4\,\bar{\alpha}_{S}}\Big{)}\,\gamma^{\prime}\,\,+\,\,\frac{1}{4}\Big{(}-\gamma^{\prime}\,+\,\sqrt{\gamma^{\prime 2}\,+\,4\,\bar{\alpha}_{S}}\Big{)}^{2}\Bigg{\}}\,e^{\frac{1}{2}\left(-\gamma^{\prime}\,+\,\sqrt{4\,\bar{\alpha}_{S}\,+\,\gamma^{\prime 2}}\right)\,Y\,\,+\,\,\gamma^{\prime}\,\xi^{\prime}}\,\phi_{\rm in}\left(\gamma^{\prime},R\right)\,
=α¯SN~(ξ,Y)\displaystyle\,\,=\,\,\bar{\alpha}_{S}\,\widetilde{N}\left(\xi^{\prime},Y\right) (40)

Assuming that N~(ξ,Y)=N~(ξ,ηYξ)\widetilde{N}\left(\xi^{\prime},Y\right)\,\,=\,\,\widetilde{N}\left(\xi^{\prime},\eta\equiv Y\,-\,\xi^{\prime}\right) Eq. (III.4.2), can be reduced to Eq. (33). Indeed, one can see that the solution of Eq. (32) satisfies both these equations.

III.4.3 Non-linear evolution in LO DLA

Gluon reggeization:

The linear evolution equation in the leading order DLA is given by Eq. (28). To include non-linear corrections, we need to consider the general BK equation (see Eq. (II)), with the kernel in the DLA approximation. The first question which arises, is how to treat the reggeization term in Eq. (III.4.1), which is neglected in the DLA. Indeed, this term does not contribute in the DLA and including it, is a particular way to make estimates beyond those of the DLA. We believe that it is necessary to do this, to provide the correct behaviour of the scattering amplitude which should approach 1 (N 1N\,\to\,1) for large YY. Bearing this in mind we need to preserve the gluon reggeization term in Eq. (III.4.1), which has the form

YN(𝒙10,𝒃,Y;R)=\displaystyle\frac{\partial}{\partial Y}N\left(\boldsymbol{x}_{10},\boldsymbol{b},Y;R\right)=
α¯Sd2𝒙22πK(𝒙02,𝒙12;𝒙10){N(𝒙12,𝒃12𝒙20,Y;R)+N(𝒙20,𝒃12𝒙12,Y;R)N(𝒙10,𝒃,Y)}\displaystyle\bar{\alpha}_{S}\!\!\int\frac{d^{2}\boldsymbol{x}_{2}}{2\,\pi}\,K\left(\boldsymbol{x}_{02},\boldsymbol{x}_{12};\boldsymbol{x}_{10}\right)\Bigg{\{}N\left(\boldsymbol{x}_{12},\boldsymbol{b}-\frac{1}{2}\boldsymbol{x}_{20},Y;R\right)+N\left(\boldsymbol{x}_{20},\boldsymbol{b}-\frac{1}{2}\boldsymbol{x}_{12},Y;R\right)-N\left(\boldsymbol{x}_{10},\boldsymbol{b},Y\right)\Bigg{\}}
x12x02x0112α¯Sx012x012dx122x124(2N(𝒙12,𝒃,Y;R)N(𝒙01,𝒃,Y;R))\displaystyle\xrightarrow{x_{12}\sim x_{02}\,\,\gg\,\,x_{01}}\,\,\frac{1}{2}\,\bar{\alpha}_{S}\,x^{2}_{01}\,\int_{x^{2}_{01}}\frac{dx^{2}_{12}}{x^{4}_{12}}\Bigg{(}2\,N\left(\boldsymbol{x}_{12},\boldsymbol{b},Y;R\right)\,\,-\,\,N\left(\boldsymbol{x}_{01},\boldsymbol{b},Y;R\right)\Bigg{)} (41)

Using N~=R2N/x012\tilde{N}\,\,=\,\,R^{2}\,N/x^{2}_{01} and ξ=ln(R2/x012)\xi^{\prime}=\ln\left(R^{2}/x^{2}_{01}\right)444In definition of ξ\xi^{\prime} we assumed that bRb\,\ll\,R. For bRb\,\gg\,R, ξ=ln(b2/x012)\xi^{\prime}\,\,=\,\,\ln\left(b^{2}/x^{2}_{01}\right). we can re-write Eq. (III.4.3) in the form:

2YξN~(ξ,Y)=α¯SN~(ξ,Y)12α¯SξN~(ξ,Y)\frac{\partial^{2}}{\partial Y\,\partial\,\xi^{\prime}}\tilde{N}\left(\xi^{\prime},Y\right)\,\,=\,\,\bar{\alpha}_{S}\,\tilde{N}\left(\xi^{\prime},Y\right)\,\,-\,\,\frac{1}{2}\,\bar{\alpha}_{S}\frac{\partial}{\partial\,\xi^{\prime}}\tilde{N}\left(\xi^{\prime},Y\right) (42)

This equation corresponds to the eigenvalue ω(γ)\omega(\gamma) for the amplitude N~(ξ,Y)\tilde{N}\left(\xi^{\prime},Y\right):

ω(γ)=α¯Sγ12α¯S\omega\left(\gamma\right)\,\,=\,\,\frac{\bar{\alpha}_{S}}{\gamma}\,\,-\,\,\frac{1}{2}\,\bar{\alpha}_{S} (43)

For the dipole amplitude, N(ξ,Y)N\left(\xi^{\prime},Y\right), Eq. (III.4.3) takes the following form:

2YξN(ξ,Y)+YN(ξ,Y)=12α¯SN(ξ,Y)12α¯SξN(ξ,Y)\frac{\partial^{2}}{\partial Y\,\partial\,\xi^{\prime}}N\left(\xi^{\prime},Y\right)\,\,+\,\,\frac{\partial}{\partial Y}N\left(\xi^{\prime},Y\right)\,\,=\,\,\frac{1}{2}\,\bar{\alpha}_{S}\,N\left(\xi^{\prime},Y\right)\,\,-\,\,\frac{1}{2}\,\bar{\alpha}_{S}\frac{\partial}{\partial\,\xi^{\prime}}N\left(\xi^{\prime},Y\right) (44)

which leads to the eigenvalue ω(γ)\omega(\gamma) :

ω(γ)=12α¯S1+γ1γ\omega\left(\gamma\right)\,\,=\,\,\frac{1}{2}\,\bar{\alpha}_{S}\,\frac{1\,+\,\gamma}{1\,-\,\gamma} (45)

Applying the procedure, that has been discussed in subsection III-C we obtain

ln(Qs2(Y)/Qs2(Y=0))=12α¯S(3+22)Y=λY;andγ¯=2 1\ln\left(Q^{2}_{s}\left(Y\right)/Q^{2}_{s}\left(Y=0\right)\right)\,\,=\,\,\frac{1}{2}\bar{\alpha}_{S}\left(3+2\sqrt{2}\right)\,Y\,\,=\,\,\lambda\,Y;~{}~{}~{}~{}~{}\mbox{\rm and}~{}~{}~{}\bar{\gamma}\,\,=\,\,\,\sqrt{2}\,-\,1 (46)

We would like to mention that the value of λ\lambda turns out to be 30% less that the LO DLA value, λ=4α¯S\lambda=4\,\bar{\alpha}_{S}.

Non-linear equation:

Finally, we need to re-write the general BK equation (see Eq. (II)) and account for the non-linear term. Using the BFKL kernel in the DLA we obtain

YN~(ξ,Y)\displaystyle\frac{\partial}{\partial\,Y}\tilde{N}\left(\xi^{\prime},Y\right) =\displaystyle= α¯Sξ𝑑ξ′′{N~(ξ′′,Y)12eξ′′N~2(ξ′′,Y)}12α¯SN~(ξ,Y);\displaystyle\bar{\alpha}_{S}\int^{\xi^{\prime}}d\xi^{\prime\prime}\,\Bigg{\{}\tilde{N}\left(\xi^{\prime\prime},Y\right)\,\,-\,\,\frac{1}{2}\,e^{-\xi^{\prime\prime}}\tilde{N}^{2}\left(\xi^{\prime\prime},Y\right)\Bigg{\}}\,\,-\,\,\frac{1}{2}\,\bar{\alpha}_{S}\tilde{N}\left(\xi^{\prime},Y\right);
2YξN~(ξ,Y)\displaystyle\frac{\partial^{2}}{\partial\,Y\,\partial\,\xi^{\prime}}\tilde{N}\left(\xi^{\prime},\ Y\right)\,\, =\displaystyle= α¯S{N~(ξ,Y)12eξN~2(ξ,Y)}12α¯SξN~(ξ,Y).\displaystyle\,\,\bar{\alpha}_{S}\,\Bigg{\{}\tilde{N}\left(\xi^{\prime},Y\right)\,\,-\,\,\frac{1}{2}\,e^{-\xi^{\prime}}\tilde{N}^{2}\left(\xi^{\prime},Y\right)\Bigg{\}}\,\,-\,\,\frac{1}{2}\,\bar{\alpha}_{S}\frac{\partial}{\partial\,\xi^{\prime}}\tilde{N}\left(\xi^{\prime},Y\right). (47)

For the dipole amplitude N=eξN~N\,=\,e^{-\xi^{\prime}}\tilde{N}, Eq. (III.4.3) has the following form

2YξN(ξ,Y)+YN(ξ,Y)=12α¯S{N(ξ,Y;𝒃)N2(ξ,Y)}12α¯SξN(ξ,Y)\frac{\partial^{2}}{\partial\,Y\,\partial\,\xi^{\prime}}\,N\left(\xi^{\prime},Y\right)\,\,+\,\,\frac{\partial}{\partial\,Y}\,N\left(\xi^{\prime},Y\right)=\,\,\frac{1}{2}\,\bar{\alpha}_{S}\,\Bigg{\{}N\left(\xi^{\prime},Y;\boldsymbol{b}\right)\,\,-\,\,N^{2}\left(\xi^{\prime},Y\right)\Bigg{\}}\,\,-\,\,\frac{1}{2}\,\bar{\alpha}_{S}\frac{\partial}{\partial\,\xi^{\prime}}\,N\left(\xi^{\prime},Y\right) (48)

Eq. (48) has the traveling wave solution, which is a function of one variable z=αY+βξz\,\,=\,\,\alpha\,Y\,\,+\,\,\beta\,\xi^{\prime}. Indeed Eq. (48) takes the form

αβd2dz2N(z)+(α+12α¯Sβ)ddzN(z)=12α¯S{N(z)N2(z)}\alpha\,\beta\,\frac{d^{2}}{dz^{2}}\,N\left(z\right)\,\,+\,\,\left(\alpha\,\,+\,\,\frac{1}{2}\,\bar{\alpha}_{S}\,\beta\right)\frac{d}{d\,z}\,N\left(z\right)=\,\,\frac{1}{2}\,\bar{\alpha}_{S}\,\Bigg{\{}N\left(z\right)\,\,-\,\,N^{2}\left(z\right)\Bigg{\}} (49)

From Eq. (43) the natural choice for the parameters α\alpha and β\beta is α=12α¯S(3+22)\alpha\,\,=\,\,\frac{1}{2}\,\bar{\alpha}_{S}\,\left(3+2\sqrt{2}\right) and β=1\beta\,=\,-1.

We postpone the discussion of the nonlinear equation to the next section. For small N 1N\,\ll\,1, we can neglect the non-linear term, and Eq. (49) leads to the scattering amplitude NN which is equal to

N(z)=N0exp((2 1)z)=N0(r2Qs2(Y))2 1\,N\left(z\right)\,\,=\,\,N_{0}\,\exp\left(\left(\sqrt{2}\,-\,1\right)\,z\right)\,\,=\,\,N_{0}\left(r^{2}\,Q^{2}_{s}\left(Y\right)\right)^{\sqrt{2}\,-\,1} (50)

this coincides with the general form of Eq. (24) where λ\lambda and γ¯\bar{\gamma} are determined by Eq. (46).

III.4.4 Non-linear evolution in NLO DLA:

Equation:

As we have discussed in section III-D-2, the difference between LO DLA and NLO DLA (see Eq. (31)) stems only from the new energy variable: η=Yξ\eta\,=\,Y\,\,-\,\,\xi^{\prime}. Therefore, the non-linear equations have the form:

ηN~(ξ,η)\displaystyle\frac{\partial}{\partial\,\eta}\tilde{N}\left(\xi^{\prime},\eta\right) =\displaystyle= α¯Sξ𝑑ξ′′{N~(ξ′′,η)12eξ′′N~2(ξ′′,η)}12α¯SN~(ξ,η);\displaystyle\bar{\alpha}_{S}\int^{\xi^{\prime}}d\xi^{\prime\prime}\,\Bigg{\{}\tilde{N}\left(\xi^{\prime\prime},\eta\right)\,\,-\,\,\frac{1}{2}\,e^{-\xi^{\prime\prime}}\tilde{N}^{2}\left(\xi^{\prime\prime},\eta\right)\Bigg{\}}\,\,-\,\,\frac{1}{2}\,\bar{\alpha}_{S}\tilde{N}\left(\xi^{\prime},\eta\right);
2ηξN~(ξ,η)\displaystyle\frac{\partial^{2}}{\partial\,\eta\,\partial\,\xi^{\prime}}\tilde{N}\left(\xi^{\prime},\eta\right)\,\, =\displaystyle= α¯S{N~(ξ,η)12eξN~2(ξ,η)}12α¯SξN~(ξ,η;);\displaystyle\,\,\bar{\alpha}_{S}\,\Bigg{\{}\tilde{N}\left(\xi^{\prime},\eta\right)\,\,-\,\,\frac{1}{2}\,e^{-\xi^{\prime}}\tilde{N}^{2}\left(\xi^{\prime},\eta\right)\Bigg{\}}\,\,-\,\,\frac{1}{2}\,\bar{\alpha}_{S}\frac{\partial}{\partial\,\xi^{\prime}}\tilde{N}\left(\xi^{\prime},\eta;\right); (51)

The last term in Eq. (III.4.4) comes from the gluon reggeization (the third term in Eq. (II)). It does not contribute to the DLA approximation, but has to be taken into account together with the non-linear corrections , since it provides the correct asymptotic behaviour of the scattering amplitude N 1N\,\to\,1 at Y  1Y\,\,\gg\,\,1.

The linear equation for the amplitude N~(ξ,Y)\tilde{N}\left(\xi^{\prime},Y\right) , whose origin is Eq. (III.4.4) neglecting the non-linear term, can be written, using Eq. (42), as the following equation for the eigenvalue ω(γ)\omega(\gamma^{\prime}):

ω(γ)(γ+ω(γ))=α¯S12α¯Sγ\omega(\gamma^{\prime})\Big{(}\gamma^{\prime}\,\,+\,\,\omega(\gamma^{\prime})\Big{)}\,\,=\,\,\bar{\alpha}_{S}\,\,-\,\,\frac{1}{2}\,\bar{\alpha}_{S}\,\gamma^{\prime} (52)

Eq. (52) differs from Eq. (31), by the last term in the r.h.s. of this equation, which takes into account the gluon reggeization contribution.

The solution which has the following form:

N~(ξ,Y)=ϵiϵ+idγ2πieω(γ)Y+γξϕin(γ,R)\widetilde{N}\left(\xi^{\prime},Y\right)\,\,\,=\,\,\,\int^{\epsilon+i\infty}_{\epsilon-i\infty}\frac{d\gamma}{2\,\pi\,i}e^{\omega(\gamma^{\prime})\,Y\,\,+\,\,\gamma^{\prime}\,\xi^{\prime}}\,\phi_{\rm in}\left(\gamma^{\prime},R\right) (53)

where ω(γ)\omega(\gamma^{\prime}) is taken from Eq. (52).

In Fig. 3 we plot ωm\omega_{m}, which is the solution to the equation:

ωm(γ+ωm)=(1ωm)(α¯S12α¯Sγ)\omega_{m}\Big{(}\gamma\,\,+\,\,\omega_{m}\Big{)}\,\,=\,\left(1\,\,-\,\,\omega_{m}\right)\,\left(\bar{\alpha}_{S}\,\,-\,\,\frac{1}{2}\,\bar{\alpha}_{S}\,\gamma\right) (54)

This equation is the generalization of Eq. (52) in where we took into account, energy conservation.

Note, that this equation introduces conservation of energy into Eq. (52). The solution to Eq. (54) has the form:

ωm(γ)=14(α¯Sγ+(α¯Sγ2α¯S2γ)2+8(2α¯Sα¯Sγ)2α¯S2γ)\omega_{m}\left(\gamma\right)\,\,=\,\,\frac{1}{4}\left(\bar{\alpha}_{S}\gamma+\sqrt{(\bar{\alpha}_{S}\gamma-2\bar{\alpha}_{S}-2\gamma)^{2}+8(2\bar{\alpha}_{S}-\bar{\alpha}_{S}\gamma)}-2\bar{\alpha}_{S}-2\gamma\right) (55)
Refer to caption Refer to caption
Fig. 3-a Fig. 3-b
Figure 3: The eigenvalues ω\omega versus γ\gamma. The vertical dashed lines show the value of γ¯=1γcr\bar{\gamma}=1-\gamma_{cr} for different values of α¯S\bar{\alpha}_{S}. ω>ωm\omega_{>}\,\equiv\,\omega_{m} is given by Eq. (55). ω<\omega_{<} is the same as in Fig. 1, which we discuss below in section IV-A . ωKMRS\omega^{\rm KMRS} is given by Eq. (9).

For the dipole amplitude N=eξN~N\,=\,e^{-\xi^{\prime}}\tilde{N} Eq. (III.4.4) has the following form

2ηξN(ξ,η)+ηN(ξ,η)=12α¯S{N(ξ,η)N2(ξ,η)}12α¯SξN(ξ,η)\frac{\partial^{2}}{\partial\,\eta\,\partial\,\xi^{\prime}}\,N\left(\xi^{\prime},\eta\right)\,\,+\,\,\frac{\partial}{\partial\,\eta}\,N\left(\xi^{\prime},\eta\right)=\,\,\frac{1}{2}\,\bar{\alpha}_{S}\,\Bigg{\{}N\left(\xi^{\prime},\eta\right)\,\,-\,\,N^{2}\left(\xi^{\prime},\eta\right)\Bigg{\}}\,\,-\,\,\frac{1}{2}\,\bar{\alpha}_{S}\frac{\partial}{\partial\,\xi^{\prime}}\,N\left(\xi^{\prime},\eta\right) (56)

For Eq. (56), as well as for Eq. (48), we can find a solution, which is the function of one variable z=αη+βξz\,\,=\,\,\alpha\,\eta\,\,+\,\,\beta\,\xi^{\prime}. Indeed, the equation Eq. (56) takes the form

αβd2dz2N(z)+(α+12α¯Sβ)ddzN(z)=12α¯S{N(z)N2(z)}\alpha\,\beta\,\frac{d^{2}}{dz^{2}}\,N\left(z\right)\,\,+\,\,\left(\alpha\,\,+\,\,\frac{1}{2}\,\,\bar{\alpha}_{S}\,\beta\right)\frac{d}{d\,z}\,N\left(z\right)=\,\,\frac{1}{2}\,\bar{\alpha}_{S}\,\Bigg{\{}N\left(z\right)\,\,-\,\,N^{2}\left(z\right)\Bigg{\}} (57)

As we have seen in the discussion of Eq. (48), the natural choice of parameters α\alpha and β\beta is α=12α¯S(3+22)aα¯S\alpha\,=\,\,\frac{1}{2}\,\bar{\alpha}_{S}\,\left(3+2\sqrt{2}\right)\,\equiv\,a\,\bar{\alpha}_{S} and β=1\beta\,=\,-1.

Solution: generalities:

We have not found the explicit solution to Eq. (57). This is the reason for discussing the general features of the solution in this subsection, based on the phase portrait (see Ref.DIFEQ ). The equation can be re-written in the matrix form as

ddz(N(z)Nz(z))=(Nz(z)(112a)Nz(z)12aN(z)(1N(z)))\displaystyle{\frac{d}{d\,z}\left(\begin{array}[]{c}N\left(z\right)\\ N^{\prime}_{z}\left(z\right)\end{array}\right)\,\,=\,\,\left(\begin{array}[]{c}N^{\prime}_{z}\left(z\right)\\ \left(1-\frac{1}{2\,a}\right)\,N^{\prime}_{z}\left(z\right)\,-\,\frac{1}{2\,a}\,N\left(z\right)\Big{(}1\,\,-\,\,N\left(z\right)\Big{)}\end{array}\right)} (58)

Eq. (58) has two critical points: (0,0)\left(0,0\right) and (1,0)\left(1,0\right). Near these critical points, Eq. (58) can be re-written in the matrix form:

ddz(ΔN(z)ΔNz(z))=𝐃𝐅(𝐍crit,𝐍crit)(ΔN(z)ΔNz(z))\displaystyle{\frac{d}{d\,z}\left(\begin{array}[]{c}\Delta N\left(z\right)\\ \Delta N^{\prime}_{z}\left(z\right)\end{array}\right)\,\,=\,\,\mathbf{DF\left(N_{\rm crit},N^{\prime}_{\rm crit}\right)}\left(\begin{array}[]{c}\Delta N\left(z\right)\\ \Delta N^{\prime}_{z}\left(z\right)\end{array}\right)} (59)

where ΔN\Delta N denotes a small deviation of NN in the vicinity of the critical point NcritN_{\rm crit}. Matrices 𝐃𝐅\mathbf{DF} have the following forms:

𝐃𝐅(𝟎,𝟎)=(0112a112a);𝐃𝐅(𝟏,𝟎)=(0112a112a)\displaystyle{\mathbf{DF\left(0,0\right)}\,\,=\,\,\left(\begin{array}[]{c c}0&1\\ -\frac{1}{2\,a}&1-\frac{1}{2\,a}\end{array}\right);~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\mathbf{DF\left(1,0\right)}\,\,=\,\,\left(\begin{array}[]{c c}0&1\\ \frac{1}{2\,a}&1-\frac{1}{2\,a}\end{array}\right)} (60)

The eigenvalues of these matrices are equal to

critical point (0,0) \displaystyle\to (λ1,λ2)=(2 1,2 1);\displaystyle~{}~{}\left(\lambda_{1},\lambda_{2}\right)\,\,=\,\,\left(\sqrt{2}\,-\,1,\,\sqrt{2}\,-\,1\right);
critical point (1,0) \displaystyle\to (λ1,λ2)=(1,3+ 22);\displaystyle~{}~{}\left(\lambda_{1},\lambda_{2}\right)\,\,=\,\,\left(1,\,-3\,+\,2\,\sqrt{2}\right); (61)

Therefore, the point (0,0) is the source from which our system originates, while the point (1,0) is a saddle point, since only one of the eigenvalues is negative. Hence, there exist one solution of our equation which gives

limzN=  0;limz+N=  1;\lim_{z\,\to\,-\,\infty}N\,\,=\,\,0;\lim_{z\,\to\,+\,\infty}\,N\,\,=\,\,1; (62)

The path for this solution in the plane (N(z),Nz(z))\left(N(z),N_{z}(z)\right) is shown in Fig. 4 by a red line.

Refer to caption
Figure 4: The phase portrait of Eq. (57) (or Eq. (58)).The unique heteroclinic orbit for this equation is shown in red.

Using Eq. (III.4.4), we can find solutions in the vicinity of the critical points. Indeed, at zz\,\to\,-\infty the eigenfunctions of Eq. (59) in the vicinity of the critical point (0,0) have the form:

𝐅𝟏=(2+ 11)eλ1z;𝐅𝟐=(12 1)eλ2z;\displaystyle{\mathbf{F_{1}}\,\,=\,\,\left(\begin{array}[]{c}\sqrt{2}\,+\,1\\ 1\end{array}\right)\,e^{\lambda_{1}\,z};~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\mathbf{F_{2}}\,\,=\,\,\left(\begin{array}[]{c}1\\ \sqrt{2}\,-\,1\end{array}\right)\,e^{\lambda_{2}\,z};} (63)

Therefore, the general solution at zz\,\to\,-\infty has the form

(N(z)Nz(z))=C1𝐅𝟏+C2𝐅𝟐\displaystyle{\left(\begin{array}[]{c}N\left(z\right)\\ N^{\prime}_{z}\left(z\right)\end{array}\right)\,\,=\,\,C_{1}\,\,\mathbf{F_{1}}\,\,\,+\,\,C_{2}\,\,\mathbf{F_{2}}} (64)

Note that λ1=λ2\lambda_{1}=\lambda_{2}, similarly, at zz\,\to\,\infty we have in the vicinity of the critical point (1,0):

𝐅𝟏=(11)eλ1z;𝐅𝟐=(13 22)eλ2z;\displaystyle{\mathbf{F_{1}}\,\,=\,\,\left(\begin{array}[]{c}1\\ 1\end{array}\right)\,e^{\lambda_{1}\,z};~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\mathbf{F_{2}}\,\,=\,\,\left(\begin{array}[]{c}1\\ 3\,-\,2\sqrt{2}\end{array}\right)\,e^{\lambda_{2}\,z};} (65)

and

(ΔN(z)ΔNz(z))=C1𝐅𝟏+C2𝐅𝟐\displaystyle{\left(\begin{array}[]{c}\Delta N\left(z\right)\\ \Delta N^{\prime}_{z}\left(z\right)\end{array}\right)\,\,=\,\,C_{1}\,\,\mathbf{F_{1}}\,\,\,+\,\,C_{2}\,\,\mathbf{F_{2}}} (66)

Since in vicinity of the critical point (1,0) λ1\lambda_{1} is positive, we need to put C1=0C_{1}=0 and therefore, we have

N(z)=  1C2exp((322)z)N\left(z\right)\,\,=\,\,1\,\,-\,C_{2}\exp\left(-\,\left(3\,-2\,\sqrt{2}\right)\,z\right) (67)
Analytical solutions in the bounded regions:

The previous analysis can be improved in two different kinematic regions: at small N< 1N\,<\,1, when non-linear corrections are small; and at N 1N\,\to\,1, where we can develop the semi-classical approach.

Eq. (57) can be solved, by looking for the solution ddzN(z)=F(N)\frac{d}{d\,z}\,N\left(z\right)\,\,=\,\,F\left(N\right). The equation takes the form:

12αβddNF2(N)+(α+12α¯Sβ)F(N)=12α¯S{NN2}\frac{1}{2}\,\alpha\,\beta\,\frac{d}{dN}\,F^{2}\left(N\right)\,\,+\,\,\left(\alpha\,\,+\,\,\frac{1}{2}\,\bar{\alpha}_{S}\,\beta\right)\,F\left(N\right)=\,\,\frac{1}{2}\,\bar{\alpha}_{S}\,\Big{\{}N\,\,-\,\,N^{2}\Big{\}} (68)

For N 1N\,\ll\,1 the solution of Eq. (68) takes the form:

F(N)=C1N;αβC12+(α+12α¯Sβ)C1=12α¯SF\left(N\right)\,\,=\,\,C_{1}\,N;~{}~{}~{}~{}\alpha\,\beta\,C^{2}_{1}\,\,+\,\,\left(\alpha\,\,+\,\,\frac{1}{2}\,\bar{\alpha}_{S}\,\beta\right)\,C_{1}\,\,=\,\,\frac{1}{2}\,\bar{\alpha}_{S} (69)

As we have seen (see Eq. (48) and Eq. (56)), the natural choice of parameters α\alpha and β\beta is, α=12α¯S(3+22)aα¯S\alpha\,=\,\,\frac{1}{2}\,\bar{\alpha}_{S}\,\left(3+2\sqrt{2}\right)\,\equiv\,a\,\bar{\alpha}_{S} and, β=1\beta\,=\,-1, which leads to C1=(2 1)C_{1}\,\,=\,\,\,\left(\sqrt{2}\,-\,1\right). The dependence of NN on zz can be recovered from the equation:

ddzN=F(N)=(2 1)N\frac{d}{d\,z}N\,=\,F\left(N\right)\,=\,\left(\sqrt{2}\,-\,1\right)\,N (70)

which has the solution:

lnN=(2 1)z+C2;N(z)=(N0=eC2)eC1z=N0(r2Qs2(Y))γ¯\ln N\,\,=\,\,\left(\sqrt{2}\,-\,1\right)\,z+C_{2};~{}~{}~{}~{}~{}~{}~{}~{}~{}N\left(z\right)\,\,=\,\,\left(N_{0}\,=\,e^{C_{2}}\right)\,e^{C_{1}\,z}\,\,\,=\,\,\,N_{0}\,\left(r^{2}\,Q^{2}_{s}\left(Y\right)\right)^{\bar{\gamma}} (71)

with Qs2(Y)=Qs2(Y= 0)exp(λY)Q^{2}_{s}\left(Y\right)\,\,=\,\,Q^{2}_{s}\left(Y\,=\,0\right)\exp\left(\lambda\,Y\right) , where

λ=12α¯S1+22 1+12α¯S(1+2)andγ¯=21+12α¯S(1+2)\lambda\,\,=\,\,\frac{1}{2}\bar{\alpha}_{S}\,\,\frac{1\,+\,\sqrt{2}}{\sqrt{2}\,-\,1\,+\,\frac{1}{2}\bar{\alpha}_{S}\left(1\,+\,\sqrt{2}\right)}~{}~{}~{}~{}\mbox{and}~{}~{}~{}~{}~{}~{}~{}\bar{\gamma}\,\,\,=\,\,\,\sqrt{2}-1\,+\,\frac{1}{2}\bar{\alpha}_{S}\left(1\,+\,\sqrt{2}\right) (72)

Note that Eq. (71) gives N(z)N\left(z\right), as a function of z=αη+ξz\,=\,\alpha\,\eta\,\,+\,\,\xi (see Eq. (57)) in the vicinity of the saturation scale. As we have discussed, the energy variable η\eta leads to the Eq. (III.4.4), and Eq. (20) determines Qs2(η)=Qs2( 0)expληηQ^{2}_{s}(\eta)\,=\,Q^{2}_{s}\left(\,0\right)\exp\,\lambda_{\eta}\,\eta. Therefore, to obtain N=N0(r2Qs2(Y))γ¯N\,=\,N_{0}\,\left(r^{2}\,Q^{2}_{s}\left(Y\right)\right)^{\bar{\gamma}} we need to re-calculate the variable zz in terms of YY and ξ\xi: z=λη(Y+ξ)+ξz\,\,=\,\,\lambda_{\eta}\,(Y\,+\,\xi)\,\,+\,\,\xi. Hence, in Eq. (71)

C1zγ¯η=C1(ληY+(1+λη))=(λYY+ξ)γ¯C_{1}\,z\,\,\equiv\bar{\gamma}_{\eta}\,\,=\,\,C_{1}\left(\lambda_{\eta}\,Y\,\,+\,\,(1\,+\,\lambda_{\eta})\right)\,\,=\,\,\left(\lambda_{Y}\,Y\,\,+\,\,\xi\right)\,\bar{\gamma} (73)

with

γ¯=C1(1+λη);λY=λη1+λη\bar{\gamma}\,\,=\,\,C_{1}\,\left(1\,+\,\lambda_{\eta}\right);~{}~{}~{}~{}~{}~{}\lambda_{Y}\,\,=\,\,\frac{\lambda_{\eta}}{1\,\,+\,\,\lambda_{\eta}} (74)

Eq. (74) leads too the final expression in Eq. (71) .

It should be noted, that Eq. (71) is the same as the solution of Eq. (III.4.4) and Eq. (63), which we obtained in a different way.

In Fig. 5 we plot the dependence λ\lambda on the values of α¯S\bar{\alpha}_{S}. One can see that Eq. (72) leads to λ 0.3\lambda\,\approx\,0.3 at rather large values of α¯S0.2\bar{\alpha}_{S}\approx 0.2, which is needed for the description of the HERA experimental data

Refer to caption Refer to caption
Fig. 5-a Fig. 5-b
Figure 5: Fig. 5-a: λ\lambda for Y dependence of the saturation scale: Qs2(Y)=Qs2(Y= 0)exp(λY)Q^{2}_{s}\left(Y\right)\,\,=\,\,Q^{2}_{s}\left(Y\,=\,0\right)\exp\left(\lambda\,Y\right) versus α¯S\bar{\alpha}_{S} . The solid line corresponds to λ=4α¯S\lambda=4\bar{\alpha}_{S} in LO DLA, dashed green curve describes the NLO DLA (see Eq. (III.3)) and the dashed red curve is Eq. (72). Fig. 5-b: λ(α¯S)\lambda(\bar{\alpha}_{S}) and γ¯(α¯S)\bar{\gamma}(\bar{\alpha}_{S}) from Eq. (III.4.5).

In the kinematic region, where N  1N\,\,\to\,\,1 it is more convenient to solve Eq. (57) directly, by looking for the solution in the form N= 1exp(Ω(z))N\,=\,1\,-\,\exp\left(-\Omega(z)\right), assuming that Ω(z)\Omega\left(z\right) is a smooth function of zz (Ωzz(z)Ωz2(z)\Omega_{zz}\left(z\right)\,\ll\,\Omega^{2}_{z}\left(z\right)). For such a function Ω(z)\Omega\left(z\right), Eq. (57) can be re-written in the form:

αβ(ddzΩ(z))2+(α+12α¯Sβ)ddzΩ(z)=12α¯S{1exp(Ω(z))}-\,\alpha\,\beta\,\left(\frac{d}{dz}\,\Omega\left(z\right)\right)^{2}\,\,+\,\,\left(\alpha\,\,+\,\,\frac{1}{2}\,\bar{\alpha}_{S}\,\beta\right)\frac{d}{d\,z}\,\Omega\left(z\right)=\,\,\frac{1}{2}\,\bar{\alpha}_{S}\,\Bigg{\{}1\,\,-\,\,\exp\left(-\,\Omega\left(z\right)\right)\Bigg{\}} (75)

Solving Eq. (75) we obtain

ddzΩ(z)=(2 1)(1±2exp(Ω(z)))\frac{d}{d\,z}\,\Omega\left(z\right)\,\,=\,\,\left(\sqrt{2}\,-\,1\right)\,\left(-1\,\pm\,\sqrt{2\,\,-\,\,\,\exp\left(-\Omega\left(z\right)\right)}\right) (76)

Therefore, Ω(z)\Omega\left(z\right) can be found from the equation

12 1Ω0Ω(z)dΩ 1±2exp(Ω)=z\frac{1}{\sqrt{2}\,-\,1}\,\int^{\Omega\left(z\right)}_{\Omega_{0}}\frac{d\,\Omega^{\prime}}{-\,1\,\pm\,\sqrt{2\,\,-\,\,\,\exp\left(-\Omega^{\prime}\right)}}\,\,=\,\,z (77)

We choose the sign ++ in Eq. (77) since we are looking for Ω(z)\Omega(z) which is positive at large zz, leading to N 1N\,\leq\,1.

Using Eq. (77) we can evaluate Ωz(z)\Omega^{\prime}_{z}\left(z\right) and Ωzz′′(z)\Omega^{\prime\prime}_{zz}\left(z\right):

Ωz(z)\displaystyle\Omega^{\prime}_{z}\left(z\right)\,\, =\displaystyle= (2 1)(12eΩ(z));\displaystyle\,\,-\,\left(\sqrt{2}\,-\,1\right)\,\left(1\,\,-\,\,\,\sqrt{2\,-\,e^{-\Omega(z)}}\right)\,;
Ωzz′′(z)\displaystyle\Omega^{\prime\prime}_{zz}\left(z\right)\,\, =\displaystyle= 12(2 1)2(112eΩ(z))eΩ(z);\displaystyle\,\,\frac{1}{2}\,\left(\sqrt{2}\,-\,1\right)^{2}\,\Bigg{(}1\,\,-\,\,\frac{1}{\sqrt{2\,-\,e^{-\Omega(z)}}}\Bigg{)}\,e^{-\,\Omega\left(z\right)}\,; (78)

The integral over Ω\Omega^{\prime} can be taken then, and Eq. (77)has the form:

z\displaystyle z\, =\displaystyle= 121(Ωlog(1eΩ)+22tanh1(1eΩ2)2tanh1(2eΩ)\displaystyle\,-\,\frac{1}{\sqrt{2}-1}\,\Bigg{(}-\,\Omega\,-\log\left(1-e^{-\,\Omega}\right)+2\sqrt{2}\tanh^{-1}\left(\sqrt{1-\frac{e^{-\,\Omega}}{2}}\right)-2\tanh^{-1}\left(\sqrt{2-e^{-\,\Omega}}\right) (79)
Ω0+log(1eΩ0) 22tanh1(1eΩ02)+ 2tanh1(2eΩ0))\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\,\Omega_{0}\,+\log\left(1-e^{-\,\Omega_{0}}\right)\,-\,2\sqrt{2}\tanh^{-1}\left(\sqrt{1-\frac{e^{-\,\Omega_{0}}}{2}}\right)\,+\,2\tanh^{-1}\left(\sqrt{2-e^{-\,\Omega_{0}}}\right)\Bigg{)}

where Ω0\Omega_{0} is the initial value of Ω\Omega at z=0z=0.

At large zz, Ω(z)(21)z\,\Omega\left(z\right)\,\,\to\,\,\left(\sqrt{2}-1\right)\,z, while at small zz, Ω(z)=exp(12(21)z)\Omega\left(z\right)\,\,=\,\,\exp\left(\frac{1}{2}\left(\sqrt{2}-1\right)\,z\right). Note, that we obtain similar behaviour of the amplitude at z 0z\,\to\,0 as in Eq. (71), but with a different power of zz.

In Fig. 6 we plot the solution of Eq. (54). Note, that Fig. 6-c shows that Ωzz′′Ωz2\Omega^{\prime\prime}_{zz}\,\ll\,\Omega^{\prime 2}_{z} only for z> 12÷15z\,>\,12\div 15. Therefore, for z< 12÷15z\,<\,12\div 15 we have to solve the following equation:

αβ{d2dz2Ω(z)+(ddzΩ(z))2}+(α+12α¯Sβ)ddzΩ(z)=12α¯S{1exp(Ω(z))}-\,\alpha\,\beta\,\Bigg{\{}-\frac{d^{2}}{d\,z^{2}}\,\Omega\left(z\right)\,\,+\,\,\left(\frac{d}{dz}\,\Omega\left(z\right)\right)^{2}\Bigg{\}}\,\,+\,\,\left(\alpha\,\,+\,\,\frac{1}{2}\,\bar{\alpha}_{S}\,\beta\right)\frac{d}{d\,z}\,\Omega\left(z\right)=\,\,\frac{1}{2}\,\bar{\alpha}_{S}\,\Bigg{\{}1\,\,-\,\,\exp\left(-\,\Omega\left(z\right)\right)\Bigg{\}} (80)
Refer to caption Refer to caption Refer to caption
Fig. 6-a Fig. 6-b Fig. 6-c
Figure 6: Fig. 6-a: Function Ω(z)\Omega\left(z\right)\, versus zz: the solid line shows the solution of Eq. (77) with the initial value of Ω0=0.1\Omega_{0}=0.1. The dotted line describes the solution at N 1N\,\to\,1 which is Ω=18(173)z\Omega\,=\,\frac{1}{8}\left(\sqrt{17}-3\right)z. The dotted line describes the solution at small N< 1N\,<\,1 (see Eq. (37)). Fig. 6-b: Scattering amplitude N= 1exp(Ω)N\,=\,1-\exp\left(-\Omega\right) versus zz. Fig. 6-c: Functions Ωz(z)\Omega^{\prime}_{z}\left(z\right)\, and Ωzz′′(z)\Omega^{\prime\prime}_{zz}\left(z\right)\, versus zz.
Practical way to obtain estimates for the scattering amplitude:

The difficulties in solving the general equations (see Eq. (57) and Eq. (80)), are that the critical point (1,0) is not a stable point, but only a saddle point. This means that there exists only one path which gives the solution with N 1N\,\to\,1 at large zz (see Fig. 4). It is difficult to find this trajectory analytically or/and numerically. These difficulties are illustrate by Fig. 7 where Nz/NN^{\prime}_{z}/N and NN for the semiclassical solution of Eq. (75) are shown in green, while the values of Nz/NN^{\prime}_{z}/N for small NN, are plotted in red. One can see that it is not possible to find a function which provides a smooth matching to these two solutions. The only possibility is to find the exact solution, that covers a large region of zz .

Refer to caption
Figure 7: Nz/NN^{\prime}_{z}/N and NN for the semiclassical solution of Eq. (75) are shown in green, while in red we show the values of Nz/NN^{\prime}_{z}/N for the solution of Eq. (71) for small NN.

The one way out, comes from the hope that the solution at small NN, is sufficient to cover the region of γ\gamma from γ¯\bar{\gamma} to γ=12\gamma=\frac{1}{2}, where we have to use Eq. (57). We believe that for smaller γ\gamma we need to use the different expression for the eigenvalues ω(γ)\omega\left(\gamma\right), which is given by Eq. (94).

III.4.5 Energy conservation in DLA

We need to consider Eq. (18), which follows from Eq. (9) in the region γ 1\gamma\,\to\,1, for taking energy conservation into account. Resolving this equation with respect to γ\gamma we obtain for the amplitude N~(ξ,Y)\tilde{N}\left(\xi^{\prime},Y\right):

1γ=α¯S(1ω  1)ω1\,-\,\gamma\,\,\,=\,\,\,\bar{\alpha}_{S}\Bigg{(}\frac{1}{\omega}\,\,-\,\,1\Bigg{)}\,\,-\,\,\omega (81)

which leads to the following equation

2ηξN~(ξ,η;b)+α¯SηN~(ξ,η;b)=α¯SN~(ξ,η;b);\frac{\partial^{2}}{\partial\,\eta\,\partial\,\xi^{\prime}}\tilde{N}\left(\xi^{\prime},\eta;b\right)\,\,+\,\,\bar{\alpha}_{S}\frac{\partial}{\partial\,\eta}\tilde{N}\left(\xi^{\prime},\eta;b\right)=\,\,\bar{\alpha}_{S}\,\tilde{N}\left(\xi^{\prime},\eta;b\right)\,; (82)

instead of Eq. (33). Repeating the same procedure as in section III-C-3, the following non-linear equation can be written:

2ηξN(ξ,η)+(1+α¯S)ηN(ξ,η)+12α¯SξN(ξ,η)=12α¯S{N(ξ,η)N2(ξ,η)}.\frac{\partial^{2}}{\partial\,\eta\,\partial\,\xi^{\prime}}N\left(\xi^{\prime},\eta\right)\,\,+\,\,\left(1\,+\,\bar{\alpha}_{S}\right)\frac{\partial}{\partial\,\eta}N\left(\xi^{\prime},\eta\right)\,\,+\,\,\frac{1}{2}\,\bar{\alpha}_{S}\,\frac{\partial}{\partial\,\xi^{\prime}}N\left(\xi^{\prime},\eta\right)=\,\,\frac{1}{2}\,\bar{\alpha}_{S}\,\Bigg{\{}N\left(\xi^{\prime},\eta\right)\,\,-\,\,N^{2}\left(\xi^{\prime},\eta\right)\Bigg{\}}. (83)

Neglecting the N2N^{2} term in Eq. (83), we have a linear equation which determines the value of the saturation scale Qs2(η)=Qs2( 0)expληηQ^{2}_{s}\left(\eta\right)\,\,=\,Q^{2}_{s}\left(\,0\right)\exp\,\lambda_{\eta}\,\eta and γ¯η\bar{\gamma}_{\eta}:

γ¯η=2+α¯S  1;λη=12α¯S2+α¯S32+α¯S 4+ 2α¯S(2+α¯S 1)\bar{\gamma}_{\eta}\,\,=\,\,\sqrt{2\,+\,\bar{\alpha}_{S}}\,\,-\,\,1;~{}~{}~{}~{}\lambda_{\eta}\,\,=\,\,\frac{1}{2}\,\bar{\alpha}_{S}\frac{\sqrt{2\,+\,\bar{\alpha}_{S}}}{3\sqrt{2\,+\,\bar{\alpha}_{S}}\,-\,4\,+\,2\,\bar{\alpha}_{S}\left(\sqrt{2\,+\,\bar{\alpha}_{S}}\,-\,1\right)} (84)

Tedious but simple calculations following the procedure of section III-C lead to

ln(Qs2(Y)/Qs2(Y=0))\displaystyle\ln\left(Q^{2}_{s}\left(Y\right)/Q^{2}_{s}\left(Y=0\right)\right)\,\, =\displaystyle= λYwithλ=α¯S(2+α¯S+ 1)1+α¯S(2+ 3α¯S2+α¯S);\displaystyle\,\,\lambda\,Y~{}~{}~{}\mbox{with}\,\,\,\,\lambda\,\,=\,\,\frac{\bar{\alpha}_{S}\,\left(\sqrt{2\,+\,\bar{\alpha}_{S}}\,+\,1\right)}{\sqrt{1\,+\,\bar{\alpha}_{S}}\left(2\,+\,3\bar{\alpha}_{S}\,-\,\sqrt{2\,+\,\bar{\alpha}_{S}}\right)};
γ¯\displaystyle\bar{\gamma}\,\, =\displaystyle= 2+α¯S 1+α¯S1+2+α¯S2(1+α¯S)\displaystyle\,\sqrt{2\,+\,\bar{\alpha}_{S}}\,-\,1\,\,+\,\,\bar{\alpha}_{S}\frac{1\,+\,\sqrt{2\,+\,\bar{\alpha}_{S}}}{2\,\left(1\,+\,\bar{\alpha}_{S}\right)} (85)

The values of λ(α¯S)\lambda(\bar{\alpha}_{S}) and γ¯(α¯S)\bar{\gamma}(\bar{\alpha}_{S}) are plotted in Fig. 5-b.

Introducing a new variable z=αη+βξz\,\,=\,\,\alpha\,\eta\,\,+\,\,\beta\,\xi^{\prime}, this equation has the form:

αβd2dz2N(z)+(α(1+α¯S)+12α¯S)ddzN(z)=12α¯S{N(z)N2(z)}\alpha\,\beta\,\frac{d^{2}}{d\,z^{2}}N\left(z\right)\,\,+\,\,\left(\alpha\,\left(1\,+\,\bar{\alpha}_{S}\right)\,\,+\,\,\frac{1}{2}\,\bar{\alpha}_{S}\right)\,\frac{d}{d\,z}N\left(z\right)=\,\,\frac{1}{2}\,\bar{\alpha}_{S}\,\Bigg{\{}N\left(z\right)\,\,-\,\,N^{2}\left(z\right)\Bigg{\}} (86)

A natural choice of α\alpha and β\beta is α=λη(α¯S)\alpha\,\,=\,\,\lambda_{\eta}(\bar{\alpha}_{S}) and β=1\beta\,=\,-1. Considering Nz(z)=F(N)N^{\prime}_{z}\left(z\right)\,=\,F\left(N\right) we can re-write Eq. (86) in the form

2αβddNF2(N)+(α(1+α¯S)+12βα¯S)F(N)=12α¯S{NN2}2\alpha\,\beta\,\frac{d}{dN}\,F^{2}\left(N\right)\,\,+\,\,\left(\alpha\,\left(1\,+\,\bar{\alpha}_{S}\right)\,\,+\,\,\frac{1}{2}\beta\bar{\alpha}_{S}\right)\,F\left(N\right)=\,\,\frac{1}{2}\,\bar{\alpha}_{S}\,\Bigg{\{}N\,\,-\,\,N^{2}\Bigg{\}} (87)

For N 1N\,\ll\,1, the solution of Eq. (87) can be obtained in the same way as the solution of Eq. (69):

F(N)=C1N;αβC12+(α(1+α¯S)+12α¯Sβ1+α¯S)C1=12α¯SF\left(N\right)\,\,=\,\,C_{1}\,N;~{}~{}~{}~{}\alpha\,\beta\,C^{2}_{1}\,\,+\,\,\,\left(\alpha\left(1+\bar{\alpha}_{S}\right)\,\,+\,\,\frac{1}{2}\,\frac{\bar{\alpha}_{S}\,\beta}{1+\bar{\alpha}_{S}}\right)\,C_{1}\,\,=\,\,\frac{1}{2}\bar{\alpha}_{S} (88)

The solution to Eq. (88) can be written as follows:

N(z)=N0(r2Qs2(Y))γ¯N\left(z\right)\,\,=\,\,\,N_{0}\,\left(r^{2}\,Q^{2}_{s}\left(Y\right)\right)^{\bar{\gamma}} (89)

with λ\lambda and γ¯\bar{\gamma} given in Eq. (III.4.5).

IV NLO BFKL kernel in the saturation domain

IV.1 The kernel in 𝜸\gamma-representation

The BFKL kernel of Eq. (3) includes the summation over all twist contributions. In the simplified approach we restrict ourselves to the leading twist term only, which has the formLETU

χ(γ)={1γforτ=rQs> 1summing(ln(rQs))n;11γforτ=rQs< 1summing(ln(1/(rΛQCD)))n;\displaystyle\chi\left(\gamma\right)\,\,=\,\,\left\{\begin{array}[]{l}\,\,\,\frac{1}{\gamma}\,\,\,\,\,\,\,\,\,\,\mbox{for}\,\,\,\tau\,=\,rQ_{s}\,>\,1\,\,\,\,\,\,\mbox{summing}\left(\ln\left(rQ_{s}\right)\right)^{n};\\ \\ \,\,\,\frac{1}{1\,-\,\gamma}\,\,\,\,\,\mbox{for}\,\,\,\tau\,=\,rQ_{s}\,<\,1\,\,\,\,\,\mbox{summing}\left(\ln\left(1/(r\,\Lambda_{\rm QCD})\right)\right)^{n};\\ \end{array}\right. (93)

instead of the full expression of Eq. (3).

In the previous section we specified how we changed the kernel in the perturbative QCD region, taking into account the NLO corrections. We now desire to find how we need to change the kernel 1/γ1/\gamma for τ=rQs> 1\tau\,=\,rQ_{s}\,>\,1 (in the saturation region). For this purpose we re-write Eq. (9) in the vicinity of γ0\gamma\to 0, where it has the form:

ω<=α¯S(1ω<){1γω<}\omega_{<}\,\,=\,\,\bar{\alpha}_{S}\left(1\,-\,\omega_{<}\right)\Bigg{\{}\frac{1}{\gamma}\,\,-\,\,\omega_{<}\Bigg{\}} (94)

This eigenvalue describes the behaviour of ωKMRS\omega^{\rm KMRS} for γ12\gamma\leq\frac{1}{2} (see Fig. 3). We start from the simplified expression for Eq. (94):

ω<=α¯S{1γω<}\omega_{<}\,\,=\,\,\bar{\alpha}_{S}\Bigg{\{}\frac{1}{\gamma}\,\,-\,\,\omega_{<}\Bigg{\}} (95)

Resolving Eq. (95) with respect of γ\gamma we obtain

γ=α¯S1+α¯S1ω\gamma\,\,=\,\,\frac{\bar{\alpha}_{S}}{1+\bar{\alpha}_{S}}\,\frac{1}{\omega} (96)

which differs from the behaviour of the LO kernel, only by replacing α¯Sα¯S/(1+α¯S)\bar{\alpha}_{S}\,\to\,\bar{\alpha}_{S}/\left(1\,+\,\bar{\alpha}_{S}\right). Therefore, we can discuss the non-linear equation in the LO, substituting α¯S/(1+α¯S)\bar{\alpha}_{S}/\left(1\,+\,\bar{\alpha}_{S}\right) in place of α¯S\bar{\alpha}_{S}, at the final stage.

IV.2 The non-linear equation

In the saturation region where τ>  1\tau\,\,>\,\,1, the logarithms originate from the decay of a large size dipole, into one small size dipole and one large size dipoleLETU . However, the size of the small dipole is still larger than 1/Qs1/Q_{s}. This observation can be translated in the following form of the kernel in the LO

α¯S2πK(𝒙01;𝒙02,𝒙12)d2x02\displaystyle\frac{\bar{\alpha}_{S}}{2\pi}\int\,\displaystyle{K\left(\boldsymbol{x}_{01};\boldsymbol{x}_{02},\boldsymbol{x}_{12}\right)}\,d^{2}x_{02}\, \displaystyle\rightarrow α¯S21/Qs2(Y,b)x012dx022x022+α¯S21/Qs2(Y,b)x012d|𝒙01𝒙02|2|𝒙01𝒙02|2\displaystyle\,\frac{\bar{\alpha}_{S}}{2}\,\int^{x^{2}_{01}}_{1/Q^{2}_{s}(Y,b)}\frac{dx^{2}_{02}}{x_{02}^{2}}\,\,+\,\,\frac{\bar{\alpha}_{S}}{2}\,\int^{x^{2}_{01}}_{1/Q^{2}_{s}(Y,b)}\frac{d|\boldsymbol{x}_{01}-\boldsymbol{x}_{02}|^{2}}{|\boldsymbol{x}_{01}-\boldsymbol{x}_{02}|^{2}}\,\, (97)
=\displaystyle= α¯S2ξsξ𝑑ξ02+α¯S2ξsξ𝑑ξ12\displaystyle\,\,\frac{\bar{\alpha}_{S}}{2}\,\int^{\xi}_{-\xi_{s}}d\xi_{02}\,\,+\,\,\frac{\bar{\alpha}_{S}}{2}\,\int^{\xi}_{-\xi_{s}}d\xi_{12}

where ξik=ln(xik2Qs2(Y=Y0))\xi_{ik}\,=\,\ln\left(x^{2}_{ik}Q_{s}^{2}(Y=Y_{0})\right) and ξs=ln(Qs2(Y)/Qs2(Y=Y0))\xi_{s}\,=\,\ln\left(Q^{2}_{s}(Y)/Q_{s}^{2}(Y=Y_{0})\right).

Inside the saturation region the BK equation of the LO takes the form

2N^(Y,𝒙;𝒃)Yξ=α¯S{(1N^(Y,ξ;𝒃)ξ)N^(Y,ξ;𝒃)}\frac{\partial^{2}\widehat{N}\left(Y,\boldsymbol{x};\boldsymbol{b}\right)}{\partial Y\,\partial\xi}\,\,=\,\,\bar{\alpha}_{S}\,\left\{\left(1\,\,-\,\frac{\partial\widehat{N}\left(Y,\xi;\boldsymbol{b}\right)}{\partial\xi}\right)\,\widehat{N}\left(Y,\xi;\boldsymbol{b}\right)\right\} (98)

where N^(Y,ξ;𝒃)=ξ𝑑ξN(Y,ξ;𝒃)\widehat{N}\left(Y,\xi;\boldsymbol{b}\right)\,\,=\,\,\int^{\xi}d\xi^{\prime}\,N\left(Y,\xi^{\prime};\boldsymbol{b}\right) .

For the NLO kernel of Eq. (96),   Eq. (98) takes the form:

2N^(Y,ξ;𝒃)Yξ=α¯S1+α¯S{(1N^(Y,ξ;𝒃)ξ)N^(Y,ξ;𝒃)}\frac{\partial^{2}\widehat{N}\left(Y,\xi;\boldsymbol{b}\right)}{\partial Y\,\partial\xi}\,\,=\,\,\frac{\bar{\alpha}_{S}}{1\,+\,\bar{\alpha}_{S}}\,\left\{\left(1\,\,-\,\frac{\partial\widehat{N}\left(Y,\xi;\boldsymbol{b}\right)}{\partial\xi}\right)\,\widehat{N}\left(Y,\xi;\boldsymbol{b}\right)\right\} (99)

IV.3 The solution

For solving this equation we introduce function Ω(Y;ξ,𝒃)\Omega\left(Y;\xi,\boldsymbol{b}\right)LETU

N(Y,ξ)=  1exp(Ω(Y,ξ))N\left(Y,\xi\right)\,\,=\,\,1\,\,-\,\,\exp\left(-\Omega\left(Y,\xi\right)\right) (100)

Substituting Eq. (100) into Eq. (99) we reduce it to the form

Ω(Y,ξ)Y=α¯S1+α¯SN~(Y,ξ);2Ω(Y,ξ)Yξ=α¯S1+α¯S(1exp(Ω(Y,ξ)));\displaystyle\frac{\partial\Omega\left(Y,\xi\right)}{\partial Y}\,\,=\,\,\frac{\bar{\alpha}_{S}}{1+\bar{\alpha}_{S}}\widetilde{N}\left(Y,\xi\right);~{}~{}~{}\frac{\partial^{2}\Omega\left(Y,\xi\right)}{\partial Y\,\partial\xi}\,\,\,=\,\,\frac{\bar{\alpha}_{S}}{1+\bar{\alpha}_{S}}\Bigg{(}1-\,\exp\left(-\Omega\left(Y,\xi\right)\right)\Bigg{)}; (101a)
2Ω(ξs;ζ)ξsξ=α¯Sλ(α¯S)(1+α¯S)(1exp(Ω(ξs;ζ)))σ(1exp(Ω(ξs;ζ)))\displaystyle~{}\frac{\partial^{2}\Omega\left(\xi_{s};\zeta\right)}{\partial\xi_{s}\,\partial\xi}\,\,\,=\,\,\frac{\bar{\alpha}_{S}}{\lambda(\bar{\alpha}_{S})\,\left(1\,\,+\,\,\bar{\alpha}_{S}\right)}\Bigg{(}1-\,\exp\left(-\Omega\left(\xi_{s};\zeta\right)\right)\Bigg{)}\,\,\equiv\,\,\sigma\Bigg{(}1-\,\exp\left(-\Omega\left(\xi_{s};\zeta\right)\right)\Bigg{)} (101b)

where λ\lambda is given by Eq. (72). The variable ξs\xi_{s} is defined as

ξs=ln(Qs2(Y)/Qs2(Y=0;𝒃,𝑹))=λY\xi_{s}\,\,=\,\,\ln\left(Q^{2}_{s}\left(Y\right)/Q^{2}_{s}\left(Y=0;\boldsymbol{b},\boldsymbol{R}\right)\right)\,\,=\,\,\lambda\,Y (102)

The use of this variable indicates the main idea of our approach: we wish to match the solution of the non-linear Eq. (101b) with the solution of the non-linear Eq. (87). However, we assume that for γ¯12\bar{\gamma}\,\geq\,\frac{1}{2} we need the solution for Eq. (87) for N<  1N\,\,<\,\,1 , where it has the form N=N0exp(γ¯z)N\,\,=\,\,N_{0}\,\exp\left(\bar{\gamma}\,z\right) with zz

z=ξs+ξz\,\,=\,\,\xi_{s}\,\,+\,\,\xi (103)

and γ¯\bar{\gamma} is determined by Eq. (72).

Eq. (101b) has a traveling wave solution (see formula 3.4.1.1 of Ref.MATH ). For Eq. (101b) in the canonical form:

2Ω(ξs;ζ~)t+22Ω(ξs;ζ~)t2=σ(1exp(Ω(ξs;ζ~))),\frac{\partial^{2}\Omega\left(\xi_{s};\tilde{\zeta}\right)}{\partial t^{2}_{+}}\,\,-\,\,\frac{\partial^{2}\Omega\left(\xi_{s};\tilde{\zeta}\right)}{\partial t^{2}_{-}}\,\,\,=\,\,\sigma\,\,\Bigg{(}1-\,\exp\left(-\Omega\left(\xi_{s};\tilde{\zeta}\right)\right)\Bigg{)}, (104)

with t±=ξs±ξt_{\pm}=\xi_{s}\pm\xi, the solution takes the form:

Ω0ΩdΩC1+2(μ2κ2)σ(Ω+exp(Ω))=μt++κt+C2\int^{\Omega}_{\Omega_{0}}\frac{d\Omega^{\prime}}{\sqrt{C_{1}+\frac{2}{(\mu^{2}-\kappa^{2})}\sigma\left(\Omega^{\prime}+\exp\left(-\Omega^{\prime}\right)\right)}}\,\,=\,\,\mu t_{+}+\kappa t_{-}+C_{2} (105)

where all constants have to be determined from the initial and boundary conditions of Eq. (25). First we see that C2=0C_{2}=0 and κ=0\kappa=0. From the condition Ωz/Ω=γ¯\Omega^{\prime}_{z}/\Omega\,\,=\,\,\bar{\gamma} at t+=0t_{+}=0 we can find C1C_{1}. Indeed, differentiating Eq. (105) with respect to t+t_{+} one can see that at t+=0t_{+}=0 we have:

dΩdt+|t+=01C1+2σμ2(1+12Ω02)=μ\frac{d\Omega}{dt_{+}}|_{t_{+}=0}\,\frac{1}{\sqrt{C_{1}\,\,+\,\,\frac{2\,\sigma}{\mu^{2}}\left(1\,\,+\,\,\frac{1}{2}\,\Omega^{2}_{0}\right)}}\,\,=\,\,\mu (106)

From Eq. (106) one can see that choosing

C1=2σμ2+Ω02(1σμ2);andμ=γ¯C_{1}\,\,=\,\,-\,\frac{2\sigma}{\mu^{2}}\,\,+\,\,\Omega^{2}_{0}\left(1\,\,-\,\,\frac{\sigma}{\mu^{2}}\right);~{}~{}~{}~{}~{}\mbox{and}\,~{}~{}~{}\mu\,\,=\,\,\bar{\gamma} (107)

we satisfy the initial condition dln(Ω)dz|t+=0=γ¯\frac{d\ln\left(\Omega\right)}{dz}|_{t_{+}=0}=\,\bar{\gamma} of Eq. (72).

Finally, the solution of Eq. (105) can be re-written in the following form for Ω01\Omega_{0}\ll 1:

Ω0ΩdΩΩ02(1σγ¯2)+2σγ¯2(1+Ω+eΩ)=γ¯z\int^{\Omega}_{\Omega_{0}}\frac{d\Omega^{\prime}}{\sqrt{\Omega^{2}_{0}\,\left(1\,\,-\,\,\frac{\sigma}{\bar{\gamma}^{2}}\right)\,\,+\,\,\frac{2\,\sigma}{\bar{\gamma}^{2}}\left(-1\,\,+\,\,\Omega^{\prime}\,\,+\,\,\,e^{-\,\Omega^{\prime}}\right)}}\,\,=\,\,\bar{\gamma}\,z (108)

For ΩΩ0\Omega\to\Omega_{0} and if Ω01\Omega_{0}\ll 1, Eq. (108) can be solved explicitly giving

Ω=Ω0{cosh(σ(ξs+ξ))+γ¯σsinh(σ(ξs+ξ))}\Omega\,\,=\,\,\Omega_{0}\Bigg{\{}\cosh\left(\sqrt{\sigma}\left(\xi_{s}+\xi\right)\right)\,\,+\,\,\frac{\bar{\gamma}}{\sqrt{\sigma}}\,\sinh\left(\sqrt{\sigma}\left(\xi_{s}+\xi\right)\right)\Bigg{\}} (109)

Eq. (109) gives the solution which depends only on one variable z=ξs+ξz\,\,=\,\,\xi_{s}+\xi, and satisfies the initial conditions of Eq. (25).

At large zz we obtain the solutionLETU :

Ω(z)=σ2z2+Const\Omega\left(z\right)\,\,=\,\,\frac{\sigma}{2}\,z^{2}\,\,+\,\,{\rm Const} (110)

or in terms of the amplitude

N(z)=  1Consteσ2z2N\left(z\right)\,\,=\,\,1\,\,-\,\,{\rm Const}\,e^{-\,\frac{\sigma}{2}\,z^{2}} (111)

We wish to stress that Eq. (111) reproduces the asymptotic solution to Eq. (II), which has been derived in Refs.CLMP ; XCWZ , for fixed α¯S\bar{\alpha}_{S}.

It should be noted that both solutions of Eq. (109) and Eq. (110) can be derived directly from Eq. (104) assuming 1exp(Ω)Ω1\,-\,\exp\left(-\Omega\right)\,\,\to\,\Omega and 1exp(Ω) 11\,-\,\exp\left(-\Omega\right)\,\,\to\,1 for small zz and large zz, respectively.

IV.4 Non-linear equation: NLO + energy conservation

In this section we discuss the general form of the eigenvalues which is given by Eq. (94). We obtain the following solution for ω\omega from this equation.

ω(γ)=αS~1γ+αS~=αS~0𝑑ρe(γ+αS~)ρ\omega\left(\gamma\right)\,\,=\,\,\widetilde{\alpha_{S}}\frac{1}{\gamma\,+\,\widetilde{\alpha_{S}}}\,\,=\,\,\widetilde{\alpha_{S}}\int^{\infty}_{0}d\,\rho\,\,e^{-\left(\gamma\,+\,\widetilde{\alpha_{S}}\right)\,\rho} (112)

where αS~=α¯S/(1+α¯S)\widetilde{\alpha_{S}}\,=\,\bar{\alpha}_{S}/(1+\bar{\alpha}_{S}) and ρ=ξξ=ln(x012Qs2(Y))ln(x022Qs2(Y))\rho\,=\,\xi\,-\xi^{\prime}\,=\ln\left(x^{2}_{01}\,Q^{2}_{s}(Y)\right)\,\,-\,\,\ln\left(x^{2}_{02}\,Q^{2}_{s}(Y)\right) (see Eq. (34)).

Therefore, the general solution for linear equation takes the form:

N(Y,ξ)=ϵiϵ+idγ2πieαS~1γ+αS~Y+γξnin(γ)ϵiϵ+idγ"2πieαS~1γ"Y+γ"ξαS~ξnin(γ")N\left(Y,\xi\right)\,\,=\,\,\int^{\epsilon+i\infty}_{\epsilon-i\infty}\frac{d\gamma}{2\pi\,i}e^{\widetilde{\alpha_{S}}\frac{1}{\gamma\,+\,\widetilde{\alpha_{S}}}\,Y\,\,+\,\,\gamma\,\xi}\,n_{\rm in}\left(\gamma\right)\,\,\equiv\,\,\int^{\epsilon+i\infty}_{\epsilon-i\infty}\frac{d\gamma"}{2\pi\,i}e^{\widetilde{\alpha_{S}}\frac{1}{\gamma"}\,Y\,\,+\,\,\gamma"\,\xi\,\,-\,\,\widetilde{\alpha_{S}}\,\xi}\,n_{\rm in}\left(\gamma"\right) (113)

One can see that for eαS~ξN(Y,ξ)=N¯(Y,ξ)e^{\widetilde{\alpha_{S}}\,\xi}\,N\left(Y,\xi\right)\,\,=\,\,\bar{N}\left(Y,\xi\right) we have:

2N¯(Y,ξ)Yξ=αS~N¯(Y,ξ)or in the integral form:N(Y,ξ)Y=αS~ξ𝑑ξ𝒦(ξ,ξ)N(Y,ξ)\frac{\partial^{2}\,\bar{N}\left(Y,\xi\right)}{\partial\,Y\,\,\partial\,\xi}\,\,=\,\,\,\widetilde{\alpha_{S}}\,\bar{N}\left(Y,\xi\right)~{}~{}~{}\mbox{or in the integral form:}~{}~{}\,\,\frac{\partial\,N\left(Y,\xi\right)}{\partial\,Y}\,\,=\,\,\widetilde{\alpha_{S}}\int^{\xi}d\xi^{\prime}\,{\cal K}\left(\xi,\xi^{\prime}\right)N\left(Y,\xi^{\prime}\right) (114)

with 𝒦(ξ,ξ)=eαS~(ξξ){\cal K}\left(\xi,\xi^{\prime}\right)\,\,=\,\,e^{-\,\widetilde{\alpha_{S}}\left(\xi\,-\,\xi^{\prime}\right)}.

We assume that the main contributions stem from the region x02x01x_{02}\,\ll\,x_{01} and/or x12x01x_{12}\,\ll\,x_{01} Bearing this in mind we can use Eq. (97) for the kernel , which can be re-written in the form:

α¯S2πK(𝒙01;𝒙02,𝒙12)d2x02\displaystyle\frac{\bar{\alpha}_{S}}{2\pi}\int\,\displaystyle{K\left(\boldsymbol{x}_{01};\boldsymbol{x}_{02},\boldsymbol{x}_{12}\right)}\,d^{2}x_{02}\, \displaystyle\rightarrow α¯S21/Qs2(Y,b)x012dx022x022𝒦(x10;x02)+α¯S21/Qs2(Y,b)x012d|𝒙01𝒙02|2|𝒙01𝒙02|2𝒦(x10;|𝒙01𝒙02|)\displaystyle\,\frac{\bar{\alpha}_{S}}{2}\,\int^{x^{2}_{01}}_{1/Q^{2}_{s}(Y,b)}\frac{dx^{2}_{02}}{x_{02}^{2}}\,{\cal K}\left(x_{10};x_{02}\right)\,\,+\,\,\frac{\bar{\alpha}_{S}}{2}\,\int^{x^{2}_{01}}_{1/Q^{2}_{s}(Y,b)}\frac{d|\boldsymbol{x}_{01}-\boldsymbol{x}_{02}|^{2}}{|\boldsymbol{x}_{01}-\boldsymbol{x}_{02}|^{2}}\,{\cal K}\left(x_{10};|\boldsymbol{x}_{01}-\boldsymbol{x}_{02}|\right)\, (115)
=\displaystyle= α¯S20ξ𝑑ξ02𝒦(ξ,ξ02)+α¯S20ξ𝑑ξ12𝒦(ξ,ξ12)\displaystyle\,\,\frac{\bar{\alpha}_{S}}{2}\,\int^{\xi}_{0}d\xi_{02}{\cal K}\left(\xi,\xi_{02}\right)\,\,+\,\,\frac{\bar{\alpha}_{S}}{2}\,\int^{\xi}_{0}d\xi_{12}{\cal K}\left(\xi,\xi_{12}\right)

where ξik=ln(xik2Qs2(Y))\xi_{ik}\,\,=\,\,\ln\left(x^{2}_{ik}\,Q^{2}_{s}(Y)\right).

Using Eq. (115) we can re-write the general BK equation (see Eq. (II)) in the form:

N(Y,ξ)Y=α¯Sξ𝑑ξK(ξ,ξ)N(Y,ξ)(1N(Y,ξ))\frac{\partial N\left(Y,\xi\right)}{\partial Y\,}\,\,=\,\,\bar{\alpha}_{S}\int^{\xi}d\xi^{\prime}\,K\left(\xi,\xi^{\prime}\right)\,N\left(Y,\xi^{\prime}\right)\Bigg{(}1\,\,-\,\,N\left(Y,\xi\right)\Bigg{)} (116)

Using Eq. (114) we can re-write Eq. (116) in the form:

N(Y,ξ)Y=α¯Sξ𝑑ξeαS~(ξξ)N(Y,ξ)(1N(Y,ξ))\frac{\partial N\left(Y,\xi\right)}{\partial Y\,}\,\,=\,\,\bar{\alpha}_{S}\int^{\xi}\,d\xi^{\prime}e^{-\widetilde{\alpha_{S}}\,\left(\xi\,-\,\xi^{\prime}\right)}\,N\left(Y,\xi^{\prime}\right)\Bigg{(}1\,\,-\,\,N\left(Y,\xi\right)\Bigg{)} (117)

Introducing N(Y,ξ)= 1exp(Ω(Y,ξ))N\left(Y,\xi\right)\,=\,1\,\,-\,\,\exp\left(-\Omega\left(Y,\xi\right)\right) we reduce Eq. (117) to the following expression:

Ω(Y,ξ)Y=αS~ξ𝑑ξeαS~(ξξ)(1eΩ(Y,ξ))\frac{\partial\Omega\left(Y,\xi\right)}{\partial Y\,}\,\,=\,\,\widetilde{\alpha_{S}}\int^{\xi}\,d\xi^{\prime}e^{-\widetilde{\alpha_{S}}\,\left(\xi\,-\,\xi^{\prime}\right)}\,\left(1\,\,-\,\,e^{-\Omega\left(Y,\xi^{\prime}\right)}\right) (118)

Differentiating Eq. (118) with respect to ξ\xi we obtain:

2Ω(Y,ξ)Yξ=αS~(1eΩ(Y,ξ))αS~2ξ𝑑ξeαS~(ξξ)(1eΩ(Y,ξ))\frac{\partial^{2}\Omega\left(Y,\xi\right)}{\partial Y\,\partial\xi}\,\,=\,\,\widetilde{\alpha_{S}}\Bigg{(}1\,\,-\,\,e^{-\Omega\left(Y,\xi\right)}\Bigg{)}\,\,-\,\,\widetilde{\alpha_{S}}^{2}\int^{\xi}\,d\xi^{\prime}e^{-\widetilde{\alpha_{S}}\,\left(\xi\,-\,\xi^{\prime}\right)}\,\left(1\,\,-\,\,e^{-\Omega\left(Y,\xi^{\prime}\right)}\right) (119)

Plugging the last term in Eq. (119) from Eq. (118) we have:

2Ω(Y,ξ)Yξ+αS~Ω(Y,ξ)Y=αS~(1eΩ(Y,ξ))\frac{\partial^{2}\Omega\left(Y,\xi\right)}{\partial Y\,\partial\xi}\,\,+\,\widetilde{\alpha_{S}}\,\frac{\partial\Omega\left(Y,\xi\right)}{\partial Y}\,\,=\,\,\widetilde{\alpha_{S}}\Bigg{(}1\,\,-\,\,e^{-\Omega\left(Y,\xi\right)}\Bigg{)} (120)

Looking for the solution which has the geometric scaling behaviour, we re-write Eq. (120) in new variable z=ξs+ξz\,\,=\,\,\xi_{s}\,\,+\,\,\xi and it takes the form

2Ω(Y,ξ)z2+αS~Ω(Y,ξ)z=σ(1eΩ(z))\frac{\partial^{2}\Omega\left(Y,\xi\right)}{\partial z^{2}}\,\,+\,\,\widetilde{\alpha_{S}}\,\frac{\partial\Omega\left(Y,\xi\right)}{\partial z}\,\,=\,\,\sigma\Bigg{(}1\,\,-\,\,e^{-\Omega\left(z\right)}\Bigg{)} (121)

One can see that deep in the saturation region, where Ω  1\Omega\,\,\gg\,\,1, Ω(z)=1λz\Omega\left(z\right)\,\,=\,\,\frac{1}{\lambda}\,z. However, for z< 1/λz\,<\,1/\lambda we reproduce the solution of Eq. (110). Therefore, we can infer that the energy conservation crucially changed the behaviour of the scattering amplitude deep in the saturation region. In Fig. 8 we plot the solution to Eq. (101b) and to Eq. (121). One can see that the difference is large for z>6z>6. At z 5z\,\leq\,5, which corresponds the kinematic region of HERA, this difference is not so large and can be neglected.

Refer to caption
Figure 8: Comparisons solutions to Eq. (101b) and to Eq. (121) .

However, accounting of energy conservation is beyond the NLOBK, which is the subject of this paper. We believe, that it is necessary to find the corrections of next-to-next-to leading order to treat the energy conservation on a theoretical footing.

V Conclusions

Concluding, we wish to formulate clearly the three stages of our approach:

  1. 1.

    For Qs2r2<  1Q^{2}_{s}\,r^{2}\,\,\,<\,\,1 (perturbative QCD region) we suggest to use the linear evolution equation(see Eq. (56):

    2ηξN(ξ,η;b)+ηN(ξ,η;b)=12α¯SN(ξ,η;b)12α¯SξN(ξ,η;b)\frac{\partial^{2}}{\partial\,\eta\,\partial\,\xi^{\prime}}\,N\left(\xi^{\prime},\eta;b\right)\,\,+\,\,\frac{\partial}{\partial\,\eta}\,N\left(\xi^{\prime},\eta;b\right)=\,\,\frac{1}{2}\,\bar{\alpha}_{S}\,N\left(\xi^{\prime},\eta;b\right)\,\,-\,\,\frac{1}{2}\,\bar{\alpha}_{S}\frac{\partial}{\partial\,\xi^{\prime}}\,N\left(\xi^{\prime},\eta;b\right) (122)

    We have discussed this equation in the section III-D-4. Recalling that in the derivation of this equation we use the DLA in which both η=Yξ\eta\,\,=\,\,Y\,-\,\xi^{\prime} and ξ\xi^{\prime} are considered to be large: α¯Sηξ  1\bar{\alpha}_{S}\,\eta\,\xi\,\gg\,\,1. For η> 0\eta\,>\,0 (Y>ξY\,>\,\xi) we can use the experimental data as the initial condition for Eq. (122). The value of the saturation momentum is given by Eq. (III.4.5). Since its value turns out to be much less than QmaxQ_{\rm max}, which stems from the condition ξmax=ln(Qmax2/Q02)\xi_{max}=\ln\left(Q^{2}_{\rm max}/Q^{2}_{0}\right)  =  η\eta, we can use the DGLAP evolution equation in the next-to-leading order for Q2>Qmax2Q^{2}\,>\,Q^{2}_{\rm max}.

  2. 2.

    For Qs2r2  1Q^{2}_{s}\,r^{2}\,\,\,\sim\,\,1 (vicinity of the saturation scale) we use the scattering amplitude in the form MUT

    N(r,η;b)=N0(Qs2(Y,b)r2)γ¯N\left(r,\eta;b\right)\,\,=\,\,N_{0}\,\,\left(Q^{2}_{s}\left(Y,b\right)\,r^{2}\right)^{\bar{\gamma}} (123)

    with γ¯\bar{\gamma} from Eq. (III.4.5).

  3. 3.

    For Qs2r2  1Q^{2}_{s}\,r^{2}\,\,\,\gg\,\,1 (saturation region), we propose to use the solution to the non-linear equation which has the following form:

    Ω0ΩdΩΩ02(1σγ¯2)+2σγ¯2(1+Ω+eΩ)=γ¯z\int^{\Omega}_{\Omega_{0}}\frac{d\Omega^{\prime}}{\sqrt{\Omega^{2}_{0}\,\left(1\,\,-\,\,\frac{\sigma}{\bar{\gamma}^{2}}\right)\,\,+\,\,\frac{2\,\sigma}{\bar{\gamma}^{2}}\left(-1\,\,+\,\,\Omega^{\prime}\,\,+\,\,\,e^{-\,\Omega^{\prime}}\right)}}\,\,=\,\,\bar{\gamma}\,z (124)

    This equation does not take into account the corrections relating to energy conservation, but it is simple, and for large region of zz the solution to the non-linear equation of section IV-D-1, is described quite well by Eq. (124).

In general, we developed the approach based on the DLA approximation of perturbative QCD, and on the non-linear evolution for the leading twist approximation. We considered the non-linear equations, which arise in different kinematic regions , and discussed solutions to them.

We believe that our suggested approach which takes into account the main features of the NLO corrections to the BFKL kernel, and which is likely to describe the experimental data for DIS processes. Indeed, Fig. 5-b shows that the energy dependence of the saturation scale, as well as the value of γ¯\bar{\gamma}, are very close to the values that stem from saturation models, that describe the data quite well (see Ref.RESH for example).

VI Acknowledgements

We thank our colleagues at Tel Aviv university and UTFSM for encouraging discussions. Our special thanks go to E. Gotsman for all his remarks and suggestions on this paper. This research was supported by ANID PIA/APOYO AFB180002 (Chile), Fondecyt (Chile) grants 1180118 and 1191434, Conicyt Becas (Chile) and PIIC 20/2020, DPP, Universidad Técnica Federico Santa María.

References

  • (1) Yuri V Kovchegov and Eugene Levin, “ Quantum Choromodynamics at High Energies", Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology, Cambridge University Press, 2012 .
  • (2) J. Jalilian-Marian, A. Kovner, A. Leonidov, and H. Weigert, “The BFKL equation from the Wilson renormalization group" , Nucl. Phys. B504 (1997) 415–431, [ arXiv:hep-ph/9701284].
  • (3) J. Jalilian-Marian, A. Kovner, A. Leonidov, and H. Weigert, “The Wilson renormalization group for low x physics: Towards the high density regime" , Phys.Rev. D59 (1998) 014014, [arXiv:hep-ph/9706377 [hep-ph]].
  • (4) A. Kovner, J. G. Milhano, and H. Weigert, “Relating different approaches to nonlinear QCD evolution at finite gluon density" , Phys. Rev. D62 (2000) 114005, [ arXiv:hep-ph/0004014].
  • (5) E. Iancu, A. Leonidov, and L. D. McLerran, Nonlinear gluon evolution in the color glass condensate. I" ,Nucl. Phys. A692 (2001) 583–645, [ arXiv:hep-ph/0011241].
  • (6) E. Iancu, A. Leonidov, and L. D. McLerran, “The renormalization group equation for the color glass condensate" , Phys. Lett. B510 (2001) 133–144, [ arXiv:hep-ph/0102009].
  • (7) I. Balitsky, “Operator expansion for high-energy scattering", [arXiv:hep-ph/9509348];   “Factorization and high-energy effective action", Phys. Rev. D60, 014020 (1999) [arXiv:hep-ph/9812311];     Y. V. Kovchegov, “ Small-x F2F_{2} structure function of a nucleus including multiple Pomeron exchanges"’ Phys. Rev. D60, 034008 (1999), [arXiv:hep-ph/9901281].
  • (8) E. Ferreiro, E. Iancu, A. Leonidov, and L. McLerran, “Nonlinear gluon evolution in the color glass condensate. II" , Nucl. Phys. A703 (2002) 489–538, [ arXiv:hep-ph/0109115].
  • (9) V. S. Fadin, E. A. Kuraev and L. N. Lipatov, “On the pomeranchuk singularity in asymptotically free theories", Phys. Lett. B60, 50 (1975);    E. A. Kuraev, L. N. Lipatov and V. S. Fadin, “The Pomeranchuk Singularity in Nonabelian Gauge Theories" Sov. Phys. JETP 45, 199 (1977), [Zh. Eksp. Teor. Fiz.72,377(1977)];    I. I. Balitsky and L. N. Lipatov,“The Pomeranchuk Singularity in Quantum Chromodynamics,” Sov. J. Nucl. Phys. 28, 822 (1978), [Yad. Fiz.28,1597(1978)].
  • (10) L. N. Lipatov, “Small x physics in perturbative QCD,” Phys. Rept.  286, 131 (1997) [hep-ph/9610276];   “The Bare Pomeron in Quantum Chromodynamics,” Sov. Phys. JETP 63, 904 (1986) [Zh. Eksp. Teor. Fiz.  90, 1536 (1986)].
  • (11) I. Balitsky, “Quark contribution to the small-x evolution of color dipole,” Phys. Rev. D 75 (2007) 014001, [hep-ph/0609105].
  • (12) Y. V. Kovchegov and H. Weigert, “Triumvirate of Running Couplings in Small-x Evolution,” Nucl. Phys. A 784 (2007) 188, [hep-ph/0609090].
  • (13) I. Balitsky and G. A. Chirilli, “Next-to-leading order evolution of color dipoles", Phys.Rev. D77 (2008) 014019, [arXiv:0710.4330 [hep-ph]].
  • (14) I. Balitsky and G. A. Chirilli, “Rapidity evolution of Wilson lines at the next-to-leading order", Phys.Rev. D88 (2013) 111501, [ arXiv:1309.7644 [hep-ph]].
  • (15) A. Kovner, M. Lublinsky, and Y. Mulian, “Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner evolution at next to leading order", Phys.Rev. D89 (2014) no. 6, 061704, [ arXiv:1310.0378 [hep-ph]].
  • (16) A. Kovner, M. Lublinsky, and Y. Mulian, “NLO JIMWLK evolution unabridged", JHEP 08 (2014) 114, [ arXiv:1405.0418 [hep-ph]].
  • (17) M. Lublinsky and Y. Mulian, “High Energy QCD at NLO: from light-cone wave function to JIMWLK evolution", JHEP 05 (2017) 097, [arXiv:1610.03453 [hep-ph]].
  • (18) B. Ducloue´\acute{e}, E. Iancu, A. H. Mueller, G. Soyez and D. N. Triantafyllopoulos, “Non-linear evolution in QCD at high-energy beyond leading order,” JHEP 1904 (2019) 081 doi:10.1007/JHEP04(2019)081 [arXiv:1902.06637 [hep-ph]] and references therein.
  • (19) V. S. Fadin and L. N. Lipatov, “BFKL pomeron in the next-to-leading approximation,” Phys. Lett. B 429 (1998) 127 [hep-ph/9802290].
  • (20)  M. Ciafaloni and G. Camici, “Energy scale(s) and next-to-leading BFKL equation,” Phys. Lett. B 430 (1998) 349 [hep-ph/9803389].
  • (21) G. P. Salam, “A Resummation of large subleading corrections at small x,” JHEP 9807 (1998) 019 doi:10.1088/1126-6708/1998/07/019 [hep-ph/9806482];
  • (22) M. Ciafaloni, D. Colferai and G. P. Salam, “Renormalization group improved small xx equation,” Phys. Rev. D 60 (1999) 114036 doi:10.1103/PhysRevD.60.114036 [hep-ph/9905566].
  • (23) M. Ciafaloni, D. Colferai, G. P. Salam and A. M. Stasto, “Renormalization group improved small xx Green’s function,” Phys. Rev. D 68 (2003) 114003, [hep-ph/0307188].
  • (24) E. Levin and K. Tuchin, “Solution to the evolution equation for high parton density QCD,” Nucl. Phys. B 573, 833 (2000) [hep-ph/9908317];    “New scaling at high-energy DIS,” Nucl. Phys. A 691, 779 (2001) [hep-ph/0012167]; “Nonlinear evolution and saturation for heavy nuclei in DIS,” 693, 787 (2001) [hep-ph/0101275].
  • (25) L. V. Gribov, E. M. Levin and M. G. Ryskin, “Semihard Processes in QCD,” Phys. Rept.  100 (1983) 1.
  • (26) A. H. Mueller and J. Qiu, “Gluon recombination and shadowing at small values of xx", Nucl. Phys. B268 (1986) 427
  • (27) L. McLerran and R. Venugopalan, “Computing quark and gluon distribution functions for very large nuclei", Phys. Rev. D49 (1994) 2233, “Gluon distribution functions for very large nuclei at small transverse momentum", Phys. Rev. D49 (1994), 3352; ‘Green?s function in the color field of a large nucleus", D50 (1994) 2225; “ Fock space distributions, structure functions, higher twists, and small xx" , D59 (1999) 09400.
  • (28) V. A. Khoze, A. D. Martin, M. G. Ryskin and W. J. Stirling, “The spread of the gluon ktk_{t}-distribution and the determination of the saturation scale at hadron colliders in resummed NLL BFKL,” Phys. Rev. D 70 (2004) 074013 [hep-ph/0406135].
  • (29) A. Sabio Vera, “An ’All-poles’ approximation to collinear resummations in the Regge limit of perturbative QCD,” Nucl. Phys. B 722, 65-80 (2005) doi:10.1016/j.nuclphysb.2005.06.003 [arXiv:hep-ph/0505128 [hep-ph]].
  • (30) J. Bartels, E. Levin, “Solutions to the Gribov-Levin-Ryskin equation in the nonperturbative region,” Nucl. Phys.  B387 (1992) 617-637;
  • (31) A. H. Mueller and D. N. Triantafyllopoulos, “The Energy dependence of the saturation momentum,” Nucl. Phys. B 640 (2002) 331 [hep-ph/0205167]
  • (32) E. Iancu, K. Itakura and L. McLerran, “Geometric scaling above the saturation scale,” Nucl. Phys. A 708 (2002) 327 [hep-ph/0203137].
  • (33) A. M. Stasto, K. J. Golec-Biernat, J. Kwiecinski, “Geometric scaling for the total gamma* p cross-section in the low x region,” Phys. Rev. Lett.  86 (2001) 596-599, [hep-ph/0007192].
  • (34) C. Contreras, E. Levin and R. Meneses, “BFKL equation in the next-to-leading order: solution at large impact parameters,” Eur. Phys. J. C 79 (2019) no.10, 842 [arXiv:1906.09603 [hep-ph]].
  • (35) I. Gradstein and I. Ryzhik, Table of Integrals, Series, and Products, Fifth Edition, Academic Press, London, 1994.
  • (36) Morris W. Hirsch, Stephen Smale and Robert L. Devaney,“Differential Equations, Dynamical Systems, and an Introduction to Chaos", 3rd Edition,Academic Press, 2013.
  • (37) A.D. Polyanin and V.F. Zaitsev “Handbook of nonlinear partial differential equations", Chapman and Hall/CRC Press, 2004, Raca Baton, New York, London, Tokyo.
  • (38) C. Contreras, E. Levin, R. Meneses and I. Potashnikova, “CGC/saturation approach: a new impact-parameter dependent model in the next-to-leading order of perturbative QCD,” Phys. Rev. D 94 (2016) no.11, 114028 doi:10.1103/PhysRevD.94.114028 [arXiv:1607.00832 [hep-ph]].
  • (39) W. Xiang, Y. Cai, M. Wang and D. Zhou, “Rare fluctuations of the SS-matrix at NLO in QCD,” Phys. Rev. D 99 (2019) no.9, 096026 doi:10.1103/PhysRevD.99.096026 [arXiv:1812.10739 [hep-ph]].
  • (40) A. H. Rezaeian and I. Schmidt, “Impact-parameter dependent Color Glass Condensate dipole model and new combined HERA data,” Phys. Rev. D 88 (2013) 074016 [arXiv:1307.0825 [hep-ph]].