This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Non-Eulerian Dehn–Sommerville relations

Connor Sawaske, Lei Xue
[email protected], [email protected]
The second author’s research was partially supported by a graduate fellowship from NSF grant DMS-1664865.
Abstract

The classical Dehn–Sommerville relations assert that the hh-vector of an Eulerian simplicial complex is symmetric. We establish three generalizations of the Dehn–Sommerville relations: one for the hh-vectors of pure simplicial complexes, another one for the flag hh-vectors of balanced simplicial complexes and graded posets, and yet another one for the toric hh-vectors of graded posets with restricted singularities. In all of these cases, we express any failure of symmetry in terms of “errors coming from the links.” For simplicial complexes, this further extends Klee’s semi-Eulerian relations.

1 Introduction

In this paper we generalize Dehn–Sommerville relations in three ways: the first one relates to the hh-vectors of all pure simplicial complexes, the second one deals with the flag hh-vectors of balanced simplicial complexes and graded posets, and the third one concerns the toric hh-vectors.

In 1964, Klee defined Eulerian and Semi-Eulerian simplicial complexes and proved that their hh-vectors are almost symmetric, see [Kle64a]. More precisely, the hh-vector of a (d1)(d-1)-dimensional Eulerian simplicial complex Δ\Delta (for example, a simplicial sphere) satisfies hi(Δ)=hdi(Δ)h_{i}(\Delta)=h_{d-i}(\Delta) for all ii, while the hh-vector of a (d1)(d-1)-dimensional semi-Eulerian complex Γ\Gamma (such as the boundary of a simplicial manifold) satisfies hdi(Γ)=hi(Γ)+(1)i(di)[χ~(Γ)(1)d1]h_{d-i}(\Gamma)=h_{i}(\Gamma)+(-1)^{i}\binom{d}{i}\left[\tilde{\chi}(\Gamma)-(-1)^{d-1}\right], where χ~\tilde{\chi} is the reduced Euler characteristic of Γ\Gamma. Since then these relations have played a very important role in the ff-vector theory, e.g., in the proof of the Upper Bound Theorem, see [Kle64b], [Sta75], and [Nov98]. In 2012, Novik and Swartz derived similar results for psuedo-manifolds with isolated singularities as defined in [NS12].

A (d1)(d-1)-dimensional simplicial complex Δ\Delta is balanced if it has a vertex coloring in dd colors such that no two vertices in the same face are colored with the same color. (It is standard to label the colors by elements of [d][d].) A refinement of the usual ff- and hh- vectors for balanced complexes are called flag ff- and flag hh-vectors. The flag ff-vector of a (d1)(d-1)-dimensional balanced simplicial complex Δ\Delta, denoted {fS(Δ)}S[d]\{f_{S}(\Delta)\}_{S\subseteq[d]}, counts the number of faces of Δ\Delta according to the color sets of their vertices. The flag hh-vector of Δ\Delta, denoted {hS(Δ)}S[d]\{h_{S}(\Delta)\}_{S\subseteq[d]}, is the image of the flag ff-vector under a certain invertible linear transformation. Bayer and Billera proved the Dehn–Sommerville relations on flag ff-vectors of Eulerian balanced simplicial complexes, see [BB85] (also see [Sta12, Thm. 3.16.6] for the proof of the flag hh-vector version). The Bayer–Billera relations played an instrumental role in Fine’s definition of the cd-index (see [BK91], [Sta94]).

Stanley [Sta87] (see also [Sta94]) extended Klee’s definition of Eulerian and semi-Eulerian complexes to (finite) graded partially ordered sets (posets for short). He also introduced a notion of toric hh- and gg-vectors of posets and proved that the toric hh-vector of any Eulerian poset is symmetric. This result was extended by Swartz [Swa09] to semi-Eulerian posets.

Here we provide generalizations of these three types of Dehn–Sommerville relations. Our results can be summarized as follows; for all undefined terminology and notations, see Section 2.

  • For an arbitrary (d1)(d-1)-dimensional pure simplicial complex Δ\Delta, we express hdi(Δ)hi(Δ)h_{d-i}(\Delta)-h_{i}(\Delta) in terms of the Euler characteristics of links of faces, see Theorem 3.1. The result is also generalized to simplicial posets, see Corollary 3.6.

  • For an arbitrary (d1)(d-1)-dimensional balanced simplicial complex Δ\Delta and S[d]S\subseteq[d], we express hS(Δ)h[d]S(Δ)h_{S}(\Delta)-h_{[d]-S}(\Delta) in terms of the Euler characteristics of links of faces whose color sets are contained in SS, see Theorem 4.1.

  • For finite posets, we define the notion of jj-Singular posets (see Section 6) such that

    j=1j=-1 recovers Eulerian posets;

    j=0j=0 recovers semi-Eulerian posets;

    j=1j=1 is analogous to complexes with isolated singularities (see the definition in Section 5).

  • Extending the results of Stanley and Swartz, for a 1-Singular poset PP of rank d+1d+1, we express h^(P,x)xdh^(P,1x)\hat{h}(P,x)-x^{d}\hat{h}(P,\frac{1}{x}) in terms of the Möbius functions of intervals [s,t][s,t] in PP of length greater than or equal to d1d-1, see Theorem 5.6. Here h^\hat{h} denotes the toric hh-polynomial.

  • We extend this result further and obtain a similar formula for a jj-Singular poset PP with j<d2j<\lfloor\frac{d}{2}\rfloor (see Thereoms 6.9 and 6.14).

The structure of this paper is as follows: Section 2 introduces some basic results and definitions pertaining to simplicial complexes and posets. Section 3 is devoted to establishing the generalization of Dehn–Sommerville relations for pure simplicial complexes and simplicial posets. Section 4 proves the flag Dehn–Sommerville relations for balanced simplicial complexes and graded posets. Sections 5 and 6 establish the toric generalizations of Dehn–Sommerville formulas. Our proofs build on methods used by Klee, Stanley, and Swartz.

2 Preliminaries

2.1 Simplicial complexes

In this section we review some definitions pertaining to simplicial complexes. Let VV be a finite set. A simplicial complex Δ\Delta with vertex set VV is a collection of subsets of VV that is closed under inclusion. We call each element of Δ\Delta a face of Δ\Delta, and each face FΔF\in\Delta has a dimension defined by dim(F)=|F|1\dim(F)=|F|-1. Similarly, the dimension of Δ\Delta is defined by dim(Δ)=max{dimF:FΔ}\dim(\Delta)=\max\{\dim F:F\in\Delta\}. If all maximal faces of Δ\Delta (with respect to inclusion) have the same dimension, then Δ\Delta is called pure. We denote the collection of faces of Δ\Delta of a specific dimension ii by

Δi:={FΔ:dim(F)=i}.\Delta_{i}:=\{F\in\Delta:\dim(F)=i\}.

Lastly, the link of a face FF of Δ\Delta, denoted lkΔF\operatorname{\mathrm{lk}}_{\Delta}F, is defined by

lkΔF:={GΔ:FGΔ and FG=}.\operatorname{\mathrm{lk}}_{\Delta}F:=\{G\in\Delta:F\cup G\in\Delta\text{ and }F\cap G=\emptyset\}.

Let Δ\Delta be a simplicial complex of dimension d1d-1. The ff-vector of Δ\Delta is defined by f(Δ):=(f1(Δ),f0(Δ),f1(Δ),,fd1(Δ))f(\Delta):=(f_{-1}(\Delta),f_{0}(\Delta),f_{1}(\Delta),\dots,f_{d-1}(\Delta)), where fi(Δ)=|Δi|f_{i}(\Delta)=|\Delta_{i}|. We further define the hh-vector of Δ\Delta by h(Δ):=(h0(Δ),h1(Δ),,hd(Δ))h(\Delta):=(h_{0}(\Delta),h_{1}(\Delta),\dots,h_{d}(\Delta)), with entries determined by the equation

i=0dhi(Δ)xdi=i=0dfi1(Δ)(x1)di.\sum_{i=0}^{d}h_{i}(\Delta)x^{d-i}=\sum_{i=0}^{d}f_{i-1}(\Delta)(x-1)^{d-i}.

For the remainder of this section, we will assume that Δ\Delta is a pure simplicial complex of dimension d1d-1.

Each simplicial complex Δ\Delta admits a geometric realization Δ\|\Delta\| that contains a geometric ii-simplex for each ii-face of Δ\Delta. We say that Δ\Delta is a simplicial sphere (manifold, respectively) if Δ\|\Delta\| is homeomorphic to a sphere (manifold, respectively).

The (reduced) Euler characteristic of Δ\Delta is

χ~(Δ):=i=1d1(1)ifi(Δ),\tilde{\chi}(\Delta):=\sum_{i=-1}^{d-1}(-1)^{i}f_{i}(\Delta),

and by the Euler-Poincaré formula, χ~(Δ)\tilde{\chi}(\Delta) is a topological invariant of Δ\Delta, or more precisely, of its geometric realization Δ\|\Delta\|. For instance, if Γ\Gamma is an (i1)(i-1)-dimensional simplicial sphere, then χ~(Γ)=(1)i1\tilde{\chi}(\Gamma)=(-1)^{i-1}.

Given two simplicial complexes Δ1\Delta_{1} and Δ2\Delta_{2} on disjoint vertex sets, their simplicial join, Δ1Δ2\Delta_{1}\ast\Delta_{2}, is defined as

Δ1Δ2:={FG:FΔ1,GΔ2}.\Delta_{1}\ast\Delta_{2}:=\{F\cup G:\;F\in\Delta_{1},\;G\in\Delta_{2}\}.

In particular, Δ1Δ2\Delta_{1}\ast\Delta_{2} is a simplicial complex of dimension dimΔ1+dimΔ2+1\dim\Delta_{1}+\dim\Delta_{2}+1.

Central to many classifications of simplicial complexes is the notion of the link of a face having the same Euler characteristic as that of a sphere of the appropriate dimension. To that end, we measure potential failures of this condition by defining an error function εΔ(F)\varepsilon_{\Delta}(F) on faces FF of a pure (d1)(d-1)-dimensional simplicial complex Δ\Delta as

εΔ(F):=χ~(lkΔF)(1)d1|F|\varepsilon_{\Delta}(F):=\tilde{\chi}\left(\operatorname{\mathrm{lk}}_{\Delta}F\right)-(-1)^{d-1-|F|}

(note that dim(lkΔF)=d1|F|\dim(\operatorname{\mathrm{lk}}_{\Delta}F)=d-1-|F|, so (1)d1|F|(-1)^{d-1-|F|} is the same as the reduced Euler characteristic of a sphere of dimension dim(lkΔF)\dim(\operatorname{\mathrm{lk}}_{\Delta}F)). In addition, we form the set of faces with non-trivial error as

𝔈(Δ):={FΔ:ε(F)0}.{\mathfrak{E}}(\Delta):=\{F\in\Delta:\varepsilon(F)\not=0\}.

We say that Δ\Delta is Eulerian if 𝔈(Δ)={\mathfrak{E}}(\Delta)=\emptyset, and that it is semi-Eulerian if 𝔈(Δ)={}{\mathfrak{E}}(\Delta)=\{\emptyset\}. In line with these definitions, we refer to 𝔈(Δ){\mathfrak{E}}(\Delta) as the non-Eulerian part of Δ\Delta.

Example 2.1.

If Δ\Delta is a simplicial sphere, then 𝔈(Δ)={\mathfrak{E}}(\Delta)=\emptyset. More generally, if Δ\Delta is a simplicial manifold, then 𝔈(Δ){}{\mathfrak{E}}(\Delta)\subseteq\{\emptyset\}.

2.2 Graded posets

The notions of being Eulerian and semi-Eulerian can also be defined in the graded poset settings. Throughout this paper, we let every finite graded poset PP have unique bottom and top elements 0^\hat{0} and 1^\hat{1}. Let ρ:P\rho:P\to\mathbb{N} be the rank function. The rank of PP, ρ(P)\rho(P), is defined as ρ(1^)\rho(\hat{1}).

Let μP\mu_{P} denote the Möbius function of poset PP. If for all proper intervals [s,t]P[s,t]\subsetneq P, μP(s,t)=(1)ρ(t)ρ(s)\mu_{P}(s,t)=(-1)^{\rho(t)-\rho(s)}, then PP is called semi-Eulerian. If in addition, μP(0^,1^)=(1)ρ(P)\mu_{P}(\hat{0},\hat{1})=(-1)^{\rho(P)}, then PP is Eulerian.

For each poset PP, there is a simplicial complex associated with P; it is called the (reduced) order complex of PP and denoted by O(P)O(P), see for instance [Bjö95]. The complex O(P)O(P) has the set P{0^,1^}P\setminus\{\hat{0},\hat{1}\} as its vertex set, and the (finite) chains in the open interval (0^,1^)(\hat{0},\hat{1}) as its faces. A chain C={t1<t2<<tk}C=\{t_{1}<t_{2}<\cdots<t_{k}\} in P{0^,1^}P\setminus\{\hat{0},\hat{1}\} of size kk corresponds to a face in O(P)O(P) of dimension k1k-1; this face is sometimes denoted by FCF_{C}. In particular, if ρ(P)=d+1\rho(P)=d+1, then dimO(P)=d1\dim O(P)=d-1.

Remark 2.2 (Relations between μ\mu and χ~\tilde{\chi}).

For a poset PP and a chain CC in it, the following formulas hold:

χ~(O(P))=μP(0^,1^);\displaystyle\tilde{\chi}(O(P))=\mu_{P}(\hat{0},\hat{1}); (2.1)
χ~(lkO(P)FC)=(1)|F|μP(0^,t1)μP(t1,t2)μP(tk1,tk)μP(tk,1^).\displaystyle\tilde{\chi}(\operatorname{\mathrm{lk}}_{O(P)}F_{C})=(-1)^{|F|}\mu_{P}(\hat{0},t_{1})\cdot\mu_{P}(t_{1},t_{2})\dots\cdot\mu_{P}(t_{k-1},t_{k})\mu_{P}(t_{k},\hat{1}). (2.2)

The first formula is well known, see, for instance, [Sta12]. To prove the second equality, note that

lkO(P)F=O(0^,t1)O(t1,t2)O(tk1,tk)O(tk,1^),\operatorname{\mathrm{lk}}_{O(P)}F=O(\hat{0},t_{1})\ast O(t_{1},t_{2})\dots\ast O(t_{k-1},t_{k})\ast O(t_{k},\hat{1}),

where O(s,t)O(s,t) is the order complex of the open interval (s,t)={x:s<x<t}(s,t)=\{x:\;s<x<t\}. Using this and the fact that χ~(Δ1Δ2)=(1)χ~(Δ1)χ~(Δ2)\tilde{\chi}(\Delta_{1}\ast\Delta_{2})=(-1)\tilde{\chi}(\Delta_{1})\tilde{\chi}(\Delta_{2}), we obtain

χ~(lkO(P)F)=(1)|F|χ~(O(0^,t1))χ~(O(t1,t2))χ~(O(tk1,tk))χ~(O(tk,1^)).\displaystyle\tilde{\chi}(\operatorname{\mathrm{lk}}_{O(P)}F)=(-1)^{|F|}\tilde{\chi}(O(\hat{0},t_{1}))\cdot\tilde{\chi}(O(t_{1},t_{2}))\dots\cdot\tilde{\chi}(O(t_{k-1},t_{k}))\tilde{\chi}(O(t_{k},\hat{1})).

This together with (2.1) implies (2.2).

Since each face FCO(P)F_{C}\in O(P) corresponds to a chain CP\{0^,1^}C\in P\backslash\{\hat{0},\hat{1}\}, we can define a chain error in PP that corresponds to the face error in O(P)O(P): Let C={t1<<ti}C=\{t_{1}<\dots<t_{i}\} be a chain in P\{0^,1^}P\backslash\{\hat{0},\hat{1}\}. Define

μP(C):=μP(0^,t1)μP(t1,t2)μP(ti,1^),\mu_{P}(C):=\mu_{P}(\hat{0},t_{1})\mu_{P}(t_{1},t_{2})\dots\mu_{P}(t_{i},\hat{1}),

and

εP(C):=(1)|C|[μP(C)(1)d+1].\varepsilon_{P}(C):=(-1)^{|C|}[\mu_{P}(C)-(-1)^{d+1}].

We call CεP(C)C\mapsto\varepsilon_{P}(C) the error function for chains in a poset PP. However this is not a “new” error function: comparing it with εO(P)()\varepsilon_{O(P)}(-) and using (2.2), we obtain:

Remark 2.3.

εP(C)=εO(P)(FC)\varepsilon_{P}(C)=\varepsilon_{O(P)}(F_{C}).

2.3 Balanced simplicial complexes and flag vectors

For a specific type of simplicial complexes, called the balanced simplicial complexes, there exists a certain refinement of ff- and hh-vectors. A (d1)(d-1)-dimensional pure simplicial complex Δ\Delta is balanced if it is equipped with a vertex coloring κ:V[d]\kappa:V\to[d] such that no two vertices in the same face have the same color. These complexes were introduced by Stanley in [Sta79].

For any subset S[d]S\subseteq[d], the SS-rank selected subcomplex of Δ\Delta is

ΔS={FΔ:κ(F)S}.\Delta_{S}=\{F\in\Delta:\;\kappa(F)\subseteq S\}.

Define fS(Δ)f_{S}(\Delta) as the number of faces in Δ\Delta with κ(F)=S\kappa(F)=S. The numbers fS(Δ)f_{S}(\Delta) are called the flag ff-numbers of Δ\Delta and the collection (fS(Δ))S[d](f_{S}(\Delta))_{S\subseteq[d]} is called the flag ff-vector of Δ\Delta. Similarly, the flag hh-numbers of Δ\Delta are defined as

hT(Δ)=ST(1)|T||S|fS(Δ)for T[d].h_{T}(\Delta)=\sum_{S\subseteq T}(-1)^{|T|-|S|}f_{S}(\Delta)\quad\text{for }T\subseteq[d].

Note that the flag ff- and hh-numbers refine the ordinary ff- and hh-numbers:

fi1(Δ)=S[d],|S|=ifS(Δ) and hj(Δ)=T[d],|T|=jhT(Δ).f_{i-1}(\Delta)=\sum_{S\subseteq[d],\;|S|=i}f_{S}(\Delta)\quad\text{ and }\quad h_{j}(\Delta)=\sum_{T\subseteq[d],\;|T|=j}h_{T}(\Delta).

One common example of a balanced complex is the order complex of a graded poset: let P be a graded poset of rank d+1d+1, then O(P)O(P) is balanced w.r.t. the coloring given by the rank function of PP. Moreover, the flag vectors can also be defined in the setting of graded posets. For S[d]S\subseteq[d], we define

PS={xP:ρ(x)S{0,d+1}}P_{S}=\left\{x\in P:\rho(x)\in S\cup\{0,d+1\}\right\}

considered as a subposet of PP. The poset PSP_{S} is called the S-rank selected subposet of PP and if Δ=O(P)\Delta=O(P), then ΔS=O(PS)\Delta_{S}=O(P_{S}). We let αP(S)\alpha_{P}(S) be the number of maximal (w.r.t. inclusion) chains in PSP_{S}. The function SαP(S)S\mapsto\alpha_{P}(S) is the flag ff-vector of P. We also consider the function

SβP(S),βP(S)=TS(1)|S||T|αP(T)S\mapsto\beta_{P}(S),\quad\beta_{P}(S)=\sum_{T\subseteq S}(-1)^{|S|-|T|}\alpha_{P}(T)

and call it the flag hh-vector of P. It is easy to see that

αP(S)=fS(O(P))and βP(S)=hS(O(P)).\displaystyle\alpha_{P}(S)=f_{S}(O(P))\quad\text{and }\quad\beta_{P}(S)=h_{S}(O(P)). (2.3)

2.4 The Stanley-Reisner ring

An equivalent way to define the hh- and flag hh-vectors is through the Stanley-Reisner ring (for more details see [Sta96, Ch. II.1]). Let Δ\Delta be a (d1)(d-1)-dimensional simplicial complex with vertex set V=[n]V=[n]. Let 𝕜\mathbbm{k} be a field and let R=𝕜[x1,,xn]R=\mathbbm{k}[x_{1},\dots,x_{n}]. The Stanley-Reisner ring of Δ\Delta is 𝕜[Δ]=R/IΔ\mathbbm{k}[\Delta]=R/I_{\Delta}, where

IΔ=xi1xi2xik:{i1,,ik}Δ.I_{\Delta}=\langle x_{i_{1}}x_{i_{2}}\dots\cdot x_{i_{k}}:\;\{i_{1},\dots,i_{k}\}\notin\Delta\rangle.

Let 𝕜[Δ]i\mathbbm{k}[\Delta]_{i} be the ii-th homogeneous component of 𝕜[Δ]\mathbbm{k}[\Delta]. The Hilbert series of 𝕜[Δ]\mathbbm{k}[\Delta] is

F(Δ,λ)=i=0dim𝕜𝕜[Δ]iλi.\displaystyle F(\Delta,\lambda)=\sum_{i=0}^{\infty}\dim_{\mathbbm{k}}\mathbbm{k}[\Delta]_{i}\;\lambda^{i}.

The hh-vector of Δ\Delta can be easily obtained from the Hilbert series of 𝕜[Δ]\mathbbm{k}[\Delta] using the following relation (see, for example, [Sta96, Ch. II.2]):

F(Δ,λ)=i=0dhi(Δ)λi(1λ)d.\displaystyle F(\Delta,\lambda)=\frac{\sum_{i=0}^{d}h_{i}(\Delta)\lambda^{i}}{(1-\lambda)^{d}}. (2.4)

If Δ\Delta is balanced with vertex coloring κ:[n][d]\kappa:[n]\to[d], then 𝕜[Δ]\mathbbm{k}[\Delta] has a natural d{\mathbb{Z}}^{d}-grading which is induced by this coloring. For i=1,2,,di=1,2,\dots,d, let ei{0,1}de_{i}\in\{0,1\}^{d} be the ii-th coordinate unit vector, and for j[n]j\in[n], define deg(xj)=eκ(j)\deg(x_{j})=e_{\kappa(j)}. This gives a d{\mathbb{Z}}^{d} grading of 𝕜[x1,,xn]\mathbbm{k}[x_{1},\dots,x_{n}]. Let λ=(λ1,,λd)\lambda=(\lambda_{1},\dots,\lambda_{d}) be a dd-tuple of variables. For a0da\in{\mathbb{Z}}^{d}_{\geq 0}, we let λa=λ1a1λ2a2λdad\lambda^{a}=\lambda_{1}^{a_{1}}\lambda_{2}^{a_{2}}\dots\lambda_{d}^{a_{d}}. The fine Hilbert series of 𝕜[Δ]\mathbbm{k}[\Delta] with respect to this d{\mathbb{Z}}^{d} grading is

F(Δ,λ)=a0d(dim𝕜𝕜[Δ]a)λa.F(\Delta,\lambda)=\sum_{a\in{\mathbb{Z}}^{d}_{\geq 0}}(\dim_{\mathbbm{k}}\mathbbm{k}[\Delta]_{a})\cdot\lambda^{a}.

The flag hh-vectors can be obtained from this fine Hilbert series (see [Sta79]):

F(Δ,λ)=1i=1d(1λi)S[d]hSλS\displaystyle F(\Delta,\lambda)=\frac{1}{\prod_{i=1}^{d}(1-\lambda_{i})}\sum_{S\subseteq[d]}h_{S}\lambda^{S} (2.5)

where λS=jSλj\lambda^{S}=\prod_{j\in S}\lambda_{j}.

2.5 Toric vectors of graded posets

We will encounter toric vectors only in Sections 5 and 6, so the reader may skip this subsection for now and come to it later.

As in Subsection 2.2, we let PP be a finite graded poset with unique bottom and top elements 0^\hat{0} and 1^\hat{1}. If PP has only one element, i.e., when 0^=1^\hat{0}=\hat{1}, then we call PP the trivial poset and denote it as P=𝟙P=\mathbbm{1}. Let ρ:P\rho:P\to\mathbb{N} be the rank function. Let P~={[0^,t]:tP}\widetilde{P}=\{[\hat{0},t]:\;t\in P\} be the poset of lower intervals of PP ordered by inclusion. Define two polynomials h^(P,x)\hat{h}(P,x) and g^(P,x)\hat{g}(P,x) recursively as follows.

  • h^(𝟙,x)=g^(𝟙,x)=1\hat{h}(\mathbbm{1},x)=\hat{g}(\mathbbm{1},x)=1.

  • If PP has rank d+1d+1, then degh^(P,x)=d\deg\hat{h}(P,x)=d. We first write

    h^(P,x)=h^d+h^d1x+h^d2x2++h^0xd.\hat{h}(P,x)=\hat{h}_{d}+\hat{h}_{d-1}x+\hat{h}_{d-2}x^{2}+\dots+\hat{h}_{0}x^{d}.

    We then define g^(P,x)\hat{g}(P,x) as

    g^(P,x):=h^d+(h^d1h^d)x+(h^d2h^d1)x2++(h^dmh^dm+1)xm,\hat{g}(P,x):=\hat{h}_{d}+(\hat{h}_{d-1}-\hat{h}_{d})x+(\hat{h}_{d-2}-\hat{h}_{d-1})x^{2}+\dots+(\hat{h}_{d-m}-\hat{h}_{d-m+1})x^{m},

    where m=degg^(P,x)=d2m=\deg\hat{g}(P,x)=\lfloor\frac{d}{2}\rfloor.

  • Finally, for a poset PP of rank d+1d+1, define

    h^(P,x):=QP~,QPg^(Q,x)(x1)dρ(Q).\hat{h}(P,x):=\sum_{Q\in\widetilde{P},Q\neq P}\hat{g}(Q,x)(x-1)^{d-\rho(Q)}.

The coefficients of these polynomials, arranged as vectors, are called the toric hh-vector and the toric gg-vector, respectively.

Remark 2.4.

We follow the convention of Swartz [Swa09], and so our h^i\hat{h}_{i} is h^di\hat{h}_{d-i} in Stanley’s paper [Sta87].

3 Dehn–Sommerville relations

3.1 Pure Simplicial Complexes

The main result of this section is the following generalization of Dehn–Sommerville relations (see [Kle64b]) to all pure simplicial complexes. We will discuss two proofs of this result; the third one is sketched in Section 4 (see Remark 4.4).

Theorem 3.1.

Let Δ\Delta be a pure (d1)(d-1)-dimensional simplicial complex. Then

hdj(Δ)hj(Δ)=(1)jFΔ(d|F|j)εΔ(F)for j=0,,d.\displaystyle h_{d-j}(\Delta)-h_{j}(\Delta)=(-1)^{j}\sum_{F\in\Delta}\binom{d-|F|}{j}\varepsilon_{\Delta}(F)\qquad\text{for }j=0,\ldots,d. (3.1)
Proof.

Note that (1)d1ifi1(Δ)FΔi1(1)d1|F|=0(-1)^{d-1-i}f_{i-1}(\Delta)-\sum_{F\in\Delta_{i-1}}(-1)^{d-1-|F|}=0, and hence

FΔi1χ~(lkΔF)=(1)d1ifi1(Δ)+FΔi1[χ~(lkΔF)(1)d1|F|].\sum_{F\in\Delta_{i-1}}\tilde{\chi}(\operatorname{\mathrm{lk}}_{\Delta}F)=(-1)^{d-1-i}f_{i-1}(\Delta)+\sum_{F\in\Delta_{i-1}}\left[\tilde{\chi}(\operatorname{\mathrm{lk}}_{\Delta}F)-(-1)^{d-1-|F|}\right]. (3.2)

On the other hand, since each (j1)(j-1)-dimensional face of Δ\Delta contains exactly (ji)\binom{j}{i} faces of dimension i1i-1,

FΔi1χ~(lkΔF)=j=id(1)ji1(ji)fj1(Δ).\sum_{F\in\Delta_{i-1}}\tilde{\chi}(\operatorname{\mathrm{lk}}_{\Delta}F)=\sum_{j=i}^{d}(-1)^{j-i-1}\binom{j}{i}f_{j-1}(\Delta). (3.3)

Setting the right-hand sides of (3.2) and (3.3) equal to each other and multiplying throughout by (1)d1i(-1)^{d-1-i} yields

j=id(1)dj(ji)fj1(Δ)=fi1(Δ)+(1)d1iFΔi1εΔ(F).\sum_{j=i}^{d}(-1)^{d-j}\binom{j}{i}f_{j-1}(\Delta)=f_{i-1}(\Delta)+(-1)^{d-1-i}\sum_{F\in\Delta_{i-1}}\varepsilon_{\Delta}(F). (3.4)

Now we multiply both sides of (3.4) by (λ1)di(\lambda-1)^{d-i} and sum the result over ii:

i=0d[j=id(1)dj(ji)fj1(Δ)](λ1)di=i=0d[fi1(Δ)+(1)d1iFΔi1εΔ(F)](λ1)di.\sum_{i=0}^{d}\left[\sum_{j=i}^{d}(-1)^{d-j}\binom{j}{i}f_{j-1}(\Delta)\right](\lambda-1)^{d-i}=\sum_{i=0}^{d}\left[f_{i-1}(\Delta)+(-1)^{d-1-i}\sum_{\mathclap{F\in\Delta_{i-1}}}\varepsilon_{\Delta}(F)\right](\lambda-1)^{d-i}. (3.5)

The left hand-side of equation (3.5) may be rewritten as

j=0d(1)dj(λ1)djfj1(Δ)(i=0d(ji)(λ1)ji)\displaystyle\sum_{j=0}^{d}(-1)^{d-j}(\lambda-1)^{d-j}f_{j-1}(\Delta)\left(\sum_{i=0}^{d}\binom{j}{i}(\lambda-1)^{j-i}\right) =j=0dfj1(Δ)(1λ)djλj\displaystyle=\sum_{j=0}^{d}f_{j-1}(\Delta)(1-\lambda)^{d-j}\lambda^{j}
=j=0dhj(Δ)λj.\displaystyle=\sum_{j=0}^{d}h_{j}(\Delta)\lambda^{j}.

The right hand-side of equation (3.5) can be broken up as

i=0d[fi1(Δ)+(1)d1iFΔi1εΔ(F)](λ1)di\displaystyle\sum_{i=0}^{d}\left[f_{i-1}(\Delta)+(-1)^{d-1-i}\sum_{\mathclap{F\in\Delta_{i-1}}}\varepsilon_{\Delta}(F)\right](\lambda-1)^{d-i} =i=0dfi1(Δ)(λ1)di\displaystyle=\sum_{i=0}^{d}f_{i-1}(\Delta)(\lambda-1)^{d-i}
+i=0d(1)d1i(FΔi1εΔ(F))(λ1)di.\displaystyle+\sum_{i=0}^{d}(-1)^{d-1-i}\left(\sum_{F\in\Delta_{i-1}}\varepsilon_{\Delta}(F)\right)(\lambda-1)^{d-i}.

We will analyze each of these terms on the right independently. Firstly,

i=0dfi1(Δ)(λ1)di=i=0dhi(Δ)λdi.\sum_{i=0}^{d}f_{i-1}(\Delta)(\lambda-1)^{d-i}=\sum_{i=0}^{d}h_{i}(\Delta)\lambda^{d-i}.

For the second term,

i=0d(1)d1i\displaystyle\sum_{i=0}^{d}(-1)^{d-1-i} (FΔi1εΔ(F))(λ1)di\displaystyle\left(\sum_{F\in\Delta_{i-1}}\varepsilon_{\Delta}(F)\right)(\lambda-1)^{d-i}
=i=0d(1)d1i(FΔi1εΔ(F))(j=0di(1)dij(dij)λj)\displaystyle=\sum_{i=0}^{d}(-1)^{d-1-i}\left(\sum_{F\in\Delta_{i-1}}\varepsilon_{\Delta}(F)\right)\left(\sum_{j=0}^{d-i}(-1)^{d-i-j}\binom{d-i}{j}\lambda^{j}\right)
=i=0d(FΔi1εΔ(F))(j=0di(1)j1(dij)λj)\displaystyle=\sum_{i=0}^{d}\left(\sum_{F\in\Delta_{i-1}}\varepsilon_{\Delta}(F)\right)\left(\sum_{j=0}^{d-i}(-1)^{j-1}\binom{d-i}{j}\lambda^{j}\right)
=j=0d(1)j1(i=0d(dij)(FΔi1εΔ(F)))λj.\displaystyle=\sum_{j=0}^{d}(-1)^{j-1}\left(\sum_{i=0}^{d}\binom{d-i}{j}\left(\sum_{F\in\Delta_{i-1}}\varepsilon_{\Delta}(F)\right)\right)\lambda^{j}.

By equating coefficients in equation (3.5) we obtain

hdj(Δ)hj(Δ)=(1)j(i=0d(dij)FΔi1εΔ(F)),h_{d-j}(\Delta)-h_{j}(\Delta)=(-1)^{j}\left(\sum_{i=0}^{d}\binom{d-i}{j}\sum_{F\in\Delta_{i-1}}\varepsilon_{\Delta}(F)\right),

and the summations on the right may be re-written as in the statement of the theorem. ∎

Since εΔ(F)=0\varepsilon_{\Delta}(F)=0 unless F𝔈(Δ)F\in{\mathfrak{E}}(\Delta), we have the following corollary that phrases the relationship between hj(Δ)h_{j}(\Delta) and hdj(Δ)h_{d-j}(\Delta) in terms of the non-Eulerian part of Δ.\Delta.

Corollary 3.2.

Let Δ\Delta be a pure (d1)(d-1)-dimensional simplicial complex. Then

hdj(Δ)hj(Δ)=(1)jF𝔈(Δ)(d|F|j)εΔ(F).h_{d-j}(\Delta)-h_{j}(\Delta)=(-1)^{j}\sum_{F\in{\mathfrak{E}}(\Delta)}\binom{d-|F|}{j}\varepsilon_{\Delta}(F).
Example 3.3.

When Δ\Delta is semi-Eulerian (so that 𝔈(Δ)={}{\mathfrak{E}}(\Delta)=\{\emptyset\}),

F𝔈(Δ)(d|F|j)εΔ(F)=(dj)[χ~(Δ)(1)d1]\sum_{F\in{\mathfrak{E}}(\Delta)}\binom{d-|F|}{j}\varepsilon_{\Delta}(F)=\binom{d}{j}\left[\tilde{\chi}(\Delta)-(-1)^{d-1}\right]

and

hdj(Δ)hj(Δ)=(1)j(dj)[χ~(Δ)(1)d1].h_{d-j}(\Delta)-h_{j}(\Delta)=(-1)^{j}\binom{d}{j}\left[\tilde{\chi}(\Delta)-(-1)^{d-1}\right].

Thus, in this case Theorem 3.1 reduces to Klee’s Dehn–Sommerville equations in [Kle64b].

Example 3.4.

As for hh-vectors of complexes with 𝔈(Δ){\mathfrak{E}}(\Delta) containing faces of dimension larger than 1-1, consider the case in which Δ=𝕊1M\lVert\Delta\rVert=\mathbb{S}^{1}*\lVert M\rVert, where 𝕊1\mathbb{S}^{1} denotes the 11-dimensional sphere and MM is some (d3)(d-3)-dimensional simplicial manifold with εΔ()=χ~(Δ)(1)d10\varepsilon_{\Delta}(\emptyset)=\tilde{\chi}(\Delta)-(-1)^{d-1}\not=0. Then 𝔈(Δ){\mathfrak{E}}(\Delta) forms a cycle (in the graph theory sense), say of length nn, and

i=0d\displaystyle\sum_{i=0}^{d} (dij)(F𝔈(Δ)i1εΔ(F))\displaystyle\binom{d-i}{j}\left(\sum_{F\in{\mathfrak{E}}(\Delta)_{i-1}}\varepsilon_{\Delta}(F)\right)
=(dj)[χ~(M)(1)d1]+n(d1j)[χ~(M)(1)d2]+n(d2j)[χ~(M)(1)d3]\displaystyle=\binom{d}{j}\left[\tilde{\chi}(M)-(-1)^{d-1}\right]+n\binom{d-1}{j}\left[-\tilde{\chi}(M)-(-1)^{d-2}\right]+n\binom{d-2}{j}\left[\tilde{\chi}(M)-(-1)^{d-3}\right]
=(χ~(M)+(1)d)[(dj)n(d2j1)],\displaystyle=\left(\tilde{\chi}(M)+(-1)^{d}\right)\left[\binom{d}{j}-n\binom{d-2}{j-1}\right],

and so

hdj(Δ)hj(Δ)=(1)j(χ~(M)+(1)d)[(dj)n(d2j1)]\displaystyle h_{d-j}(\Delta)-h_{j}(\Delta)=(-1)^{j}\left(\tilde{\chi}(M)+(-1)^{d}\right)\left[\binom{d}{j}-n\binom{d-2}{j-1}\right] (3.6)

for j=0,,dj=0,\ldots,d. In particular, if MM is a triangulation of the torus, then d=5d=5 and χ~(M)=1\tilde{\chi}(M)=-1, and so

h5j(Δ)hj(Δ)=(1)j(2)[(5j)n(3j1)].h_{5-j}(\Delta)-h_{j}(\Delta)=(-1)^{j}(-2)\left[\binom{5}{j}-n\binom{3}{j-1}\right].
Remark 3.5.

One consequence of (3.6) is that, with χ~(M)\tilde{\chi}(M) known, the exact number of non-Eulerian edges in any triangulation Δ\Delta of 𝕊1M\mathbb{S}^{1}*M is determined by just the face numbers fi(Δ)f_{i}(\Delta) up to a dimension about d2\frac{d}{2}.

The following is an alternative proof of Theorem 3.1. This proof uses short hh-numbers, and we define them as follows.

For 0id10\leq i\leq d-1, the ii-th short hh-number (defined by Hersh and Novik) is

hi(Δ)=vV(Δ)hi(lkΔv).h^{*}_{i}(\Delta)=\sum_{v\in V(\Delta)}h_{i}(\operatorname{\mathrm{lk}}_{\Delta}v).

These numbers go back to McMullen’s proof of the Upper Bound Theorem (see [McM70]), but were formalized by Hersh and Novik in [HN02]. The following formula that connects the short hh-numbers to the usual ones was verified by McMullen for simplicial polytopes (see [McM70, pg. 183]) and by Swartz for pure simplicial complexes (see [Swa05, Prop. 2.3]):

hi1=ihi+(di+1)hi1 for all 1id.\displaystyle h^{*}_{i-1}=ih_{i}+(d-i+1)h_{i-1}\quad\text{ for all }1\leq i\leq d. (3.7)
Another Proof of Theorem 3.1.

We will prove (3.1) by double induction: first we induct on the dimension of Δ\Delta, and for each (d1)(d-1)-dimensional simplicial complex we induct on i0i\geq 0 (using the validity of the statement for hdi+1hi1h_{d-i+1}-h_{i-1} to derive its validity for hdihih_{d-i}-h_{i}).

If dim(Δ)=0\dim(\Delta)=0, it is easy to check that (3.1) holds.

If dim(Δ)=d1\dim(\Delta)=d-1 for d>1d>1 and Δ\Delta is pure, then lkΔv\operatorname{\mathrm{lk}}_{\Delta}v is a pure (d2)(d-2)-dimensional simplicial complex (for any vertex vv). By the inductive hypothesis,

hdi1(lkΔv)hi(lkΔv)=(1)iFlk(v)(d1|F|i)ϵlk(v)(F),\displaystyle h_{d-i-1}(\operatorname{\mathrm{lk}}_{\Delta}v)-h_{i}(\operatorname{\mathrm{lk}}_{\Delta}v)=(-1)^{i}\sum_{F\in\operatorname{\mathrm{lk}}(v)}{d-1-|F|\choose i}\epsilon_{\operatorname{\mathrm{lk}}(v)}(F), (3.8)

and by summing over vV(Δ)v\in V(\Delta) on both sides, we obtain that

hdi1(Δ)hi(Δ)=(1)ivV(Δ)Flk(v)(d1|F|i)εlk(v)(F).\displaystyle h^{*}_{d-i-1}(\Delta)-h^{*}_{i}(\Delta)=(-1)^{i}\sum_{v\in V(\Delta)}\sum_{F\in\operatorname{\mathrm{lk}}(v)}{d-1-|F|\choose i}\varepsilon_{\operatorname{\mathrm{lk}}(v)}(F). (3.9)

Assume that (3.1) of Theorem 3.1 holds for all d<dd^{\prime}<d. The base case of the induction on ii is when i=0i=0. By the definition of hh-vectors and Euler’s formula,

hd(Δ)h0(Δ)=(1)d1χ~(Δ)1.\displaystyle h_{d}(\Delta)-h_{0}(\Delta)=(-1)^{d-1}\tilde{\chi}(\Delta)-1. (3.10)

On the other hand, the expression on the right-hand side of (3.1) can be rewritten as

(1)0FΔ(d1|F|0)[χ~(lkΔF)(1)d1|F|]\displaystyle(-1)^{0}\sum_{F\in\Delta}{d-1-|F|\choose 0}\left[\tilde{\chi}(\operatorname{\mathrm{lk}}_{\Delta}F)-(-1)^{d-1-|F|}\right]
=\displaystyle= i=0dFΔi1χ~(lkΔF)i=0dFΔi1(1)d1i\displaystyle\sum_{i=0}^{d}\sum_{F\in\Delta_{i-1}}\tilde{\chi}(\operatorname{\mathrm{lk}}_{\Delta}F)-\sum_{i=0}^{d}\sum_{F\in\Delta_{i-1}}(-1)^{d-1-i}
=\displaystyle= i=0dj=id(1)ji1(ji)fj1(Δ)i=0d(1)d1ifi1(Δ)\displaystyle\sum_{i=0}^{d}\sum_{j=i}^{d}(-1)^{j-i-1}{j\choose i}f_{j-1}(\Delta)-\sum_{i=0}^{d}(-1)^{d-1-i}f_{i-1}(\Delta)
=\displaystyle= j=0dfj1(Δ)[i=0j(1)ji(ji)]i=0d(1)d1ifi1(Δ)\displaystyle-\sum_{j=0}^{d}f_{j-1}(\Delta)\left[\sum_{i=0}^{j}(-1)^{j-i}{j\choose i}\right]-\sum_{i=0}^{d}(-1)^{d-1-i}f_{i-1}(\Delta)
=()\displaystyle\overset{(\bowtie)}{=} 1+(1)d1i=0d(1)i1fi1(Δ)\displaystyle-1+(-1)^{d-1}\sum_{i=0}^{d}(-1)^{i-1}f_{i-1}(\Delta)
=\displaystyle= 1+(1)d1χ~(Δ),\displaystyle-1+(-1)^{d-1}\tilde{\chi}(\Delta),
=(3.10)\displaystyle\overset{(\ref{eqn: LHS of mormula})}{=} hd(Δ)h0(Δ)\displaystyle h_{d}(\Delta)-h_{0}(\Delta)

where the equality (\bowtie) follows from the following (well-known) binomial identity.

i=0j(1)ji(ji)={1,if j=0,0,if j>0.\sum_{i=0}^{j}(-1)^{j-i}{j\choose i}=\begin{cases}1,&\text{if }j=0,\\ 0,&\text{if }j>0.\end{cases}

This completes the proof of the i=0i=0 case.

Let i>0i>0 and assume hdi+1(Δ)hi1(Δ)h_{d-i+1}(\Delta)-h_{i-1}(\Delta) satisfies the formula in the statement of the theorem. Then by (3.9) and (3.7), we have

i(hdihi)\displaystyle i(h_{d-i}-h_{i}) =(3.7)(1)(di+1)[hdi+1hi1]+(hdihi1)\displaystyle\stackrel{{\scriptstyle(\ref{eq: short h and h})}}{{=}}(-1)(d-i+1)[h_{d-i+1}-h_{i-1}]+(h^{*}_{d-i}-h^{*}_{i-1})
=ind. hyp.(1)(di+1)[(1)i1FΔ(d|F|i1)εΔ(F)]+(hdihi1)\displaystyle\stackrel{{\scriptstyle\text{ind. hyp.}}}{{=}}(-1)(d-i+1)\left[(-1)^{i-1}\sum_{F\in\Delta}{d-|F|\choose i-1}\varepsilon_{\Delta}(F)\right]+(h^{*}_{d-i}-h^{*}_{i-1})
=(3.9)(1)(di+1)[(1)i1FΔ(d|F|i1)εΔ(F)]\displaystyle\stackrel{{\scriptstyle(\ref{eq: short h DS})}}{{=}}(-1)(d-i+1)\left[(-1)^{i-1}\sum_{F\in\Delta}{d-|F|\choose i-1}\varepsilon_{\Delta}(F)\right]
+(1)i1(vV(Δ)FlkΔv(d1|F|i1)εlk(v)(F)).\displaystyle\quad\quad+(-1)^{i-1}\bigg{(}\sum_{v\in V(\Delta)}\sum_{F\in\operatorname{\mathrm{lk}}_{\Delta}v}{d-1-|F|\choose i-1}\varepsilon_{\operatorname{\mathrm{lk}}(v)}(F)\bigg{)}.

Therefore

hdi(Δ)hi(Δ)\displaystyle h_{d-i}(\Delta)-h_{i}(\Delta) =(1)idi+1iFΔ(d|F|i1)εΔ(F)\displaystyle=(-1)^{i}\frac{d-i+1}{i}\sum_{F\in\Delta}{d-|F|\choose i-1}\varepsilon_{\Delta}(F)
+(1)i1ivV(Δ)FlkΔv(d1|F|i1)εlk(v)(F).\displaystyle\quad+\frac{(-1)^{i-1}}{i}\sum_{v\in V(\Delta)}\sum_{F\in\operatorname{\mathrm{lk}}_{\Delta}v}{d-1-|F|\choose i-1}\varepsilon_{\operatorname{\mathrm{lk}}(v)}(F). (3.11)

To show (3.1) equals the right-hand side of (3.1), we need to show:

di+1iFΔ(d|F|i1)εΔ(F)vV(Δ)FlkΔv1i(d1|F|i1)εlk(v)(F)=FΔ(d|F|i)εΔ(F).\displaystyle\frac{d-i+1}{i}\sum_{F\in\Delta}{d-|F|\choose i-1}\varepsilon_{\Delta}(F)-\sum_{v\in V(\Delta)}\sum_{F\in\operatorname{\mathrm{lk}}_{\Delta}v}\frac{1}{i}{d-1-|F|\choose i-1}\varepsilon_{\operatorname{\mathrm{lk}}(v)}(F)=\sum_{F\in\Delta}{d-|F|\choose i}\varepsilon_{\Delta}(F). (3.12)

Notice that for each vV(Δ)v\in V(\Delta) and FlkΔ(v)F\in\operatorname{\mathrm{lk}}_{\Delta}(v), lklk(v)(F)=lkΔ(Fv)\operatorname{\mathrm{lk}}_{\operatorname{\mathrm{lk}}(v)}(F)=\operatorname{\mathrm{lk}}_{\Delta}(F\cup v), therefore εlk(v)F=εΔ(Fv)\varepsilon_{\operatorname{\mathrm{lk}}(v)}F=\varepsilon_{\Delta}(F\cup v), and so

vV(Δ)FlkΔv1i(d1|F|i1)εlk(v)(F)=GΔ|G|1i(d|G|i1)εΔ(G).\sum_{v\in V(\Delta)}\sum_{F\in\operatorname{\mathrm{lk}}_{\Delta}v}\frac{1}{i}{d-1-|F|\choose i-1}\varepsilon_{\operatorname{\mathrm{lk}}(v)}(F)=\sum_{G\in\Delta}|G|\cdot\frac{1}{i}{d-|G|\choose i-1}\varepsilon_{\Delta}(G).

Pluging this expression into the left-hand side of (3.12), we obtain that the left-hand side of (3.12) can be rewritten as

di+1iFΔ(d|F|i1)εΔ(F)FΔ|F|1i(d|F|i1)εΔ(F)\displaystyle\frac{d-i+1}{i}\sum_{F\in\Delta}{d-|F|\choose i-1}\varepsilon_{\Delta}(F)-\sum_{F\in\Delta}|F|\cdot\frac{1}{i}{d-|F|\choose i-1}\varepsilon_{\Delta}(F)
=\displaystyle= FΔ[di+1i|F|i](d|F|i1)εΔ(F)\displaystyle\sum_{F\in\Delta}\left[\frac{d-i+1}{i}-\frac{|F|}{i}\right]{d-|F|\choose i-1}\varepsilon_{\Delta}(F)
=\displaystyle= FΔ(d|F|i)εΔ(F),\displaystyle\sum_{F\in\Delta}{d-|F|\choose i}\varepsilon_{\Delta}(F),

and so (3.12) does hold. This completes the proof of the theorem.∎

3.2 Simplicial posets

In this subsection we will show that Theorem 3.1 can be generalized to simplicial posets (for more details see [Sta91]). A graded poset PP (with the unique bottom and top elements 0^\hat{0} and 1^\hat{1}) is simplicial if every proper lower interval [0^,t][\hat{0},t] is a Boolean lattice. Given a simplicial complex Δ\Delta, the poset of faces of Δ\Delta ordered by inclusion is a simplicial poset. (It is called the face lattice of Δ\Delta.) Therefore simplicial posets are generalizations of simplicial complexes. Many notions and structures on simplicial complexes can be generalized to simplicial posets.

Given a simplicial poset PP of rank d+1d+1, for 1id1-1\leq i\leq d-1, define fi=fi(P)f_{i}=f_{i}(P) as the number of elements in PP with rank i+1i+1. The vector f(P)=(f1,f0,f1,,fd1)f(P)=(f_{-1},f_{0},f_{1},\dots,f_{d-1}) is called the ff-vector of PP. Similar to the definition of hh-vectors in Subsection 2.1, we can define h0,h1,,hdh_{0},h_{1},\dots,h_{d} by

i=0dhixdi=i=0dfi1(x1)di.\sum_{i=0}^{d}h_{i}x^{d-i}=\sum_{i=0}^{d}f_{i-1}(x-1)^{d-i}.

The vector h(P)=(h0,h1,,hd)h(P)=(h_{0},h_{1},\dots,h_{d}) is the hh-vector of PP. When PP is the face lattice of a simplicial complex Δ\Delta, then f(P)=f(Δ)f(P)=f(\Delta) and h(P)=h(Δ)h(P)=h(\Delta).

The notion of links can also be generalized from simplicial complexes to simplicial posets. Let PP be a simplicial poset and tPt\in P, the link of tt in PP is simply the upper interval [t,1^][t,\hat{1}]. It is easy to see that [t,1^][t,\hat{1}] is also a simplicial poset.

With these notions in hand, both proofs of Theorem 3.1 can be easily adapted to the more general setting of simplicial posets and result in the following corollary:

Corollary 3.6.

Let PP be a graded simplicial poset of rank d+1d+1. Then

hdj(P)hj(P)=(1)jtP(dρ(t)j)[μP(t,1^)(1)d1ρ(t)]for j=0,,d.h_{d-j}(P)-h_{j}(P)=(-1)^{j}\sum_{t\in P}{d-\rho(t)\choose j}\bigg{[}\mu_{P}(t,\hat{1})-(-1)^{d-1-\rho(t)}\bigg{]}\quad\text{for }j=0,\dots,d.

4 Flag Dehn–Sommerville relations

The goal of this section is to generalize the Bayer–Billera theorem [BB85] on flag hh-vectors of Eulerian balanced simplicial complexes (see also [Sta12, Cor. 3.16.6] for the poset version). This result states that if Δ\Delta is an Eulerian balanced simplicial complex of dimension d1d-1, then for all S[d]S\subseteq[d], hS(Δ)=h[d]S(Δ)h_{S}(\Delta)=h_{[d]-S}(\Delta). Recall that the error at face FΔF\in\Delta is defined as

εΔ(F)=χ~(lkΔF)(1)d1|F|.\varepsilon_{\Delta}(F)=\tilde{\chi}(\operatorname{\mathrm{lk}}_{\Delta}F)-(-1)^{d-1-|F|}.

The main result of this section is the following. We will provide two proofs.

Theorem 4.1.

Let Δ\Delta be a (d1)(d-1)-dimensional balanced simplicial complex with the coloring map κ:V(Δ)[d]\kappa:V(\Delta)\to[d]. Let S[d]S\subseteq[d]. Then

hS(Δ)hSc(Δ)=(1)d|S|FΔSεΔ(F).\displaystyle h_{S}(\Delta)-h_{S^{c}}(\Delta)=(-1)^{d-|S|}\sum_{F\in\Delta_{S}}\varepsilon_{\Delta}(F). (4.1)

Our first proof will rely on the following proposition.

Proposition 4.2.

Let Δ\Delta be a (d1)(d-1)-dimensional balanced simplicial complex with the coloring map κ:V(Δ)[d]\kappa:V(\Delta)\to[d]. Let SS be a subset of [d][d] and iSi\notin S, then

v:κ(v)=ihS(lkΔ(v))=hS{i}(Δ)+hS(Δ).\displaystyle\sum_{v:\;\kappa(v)=i}h_{S}(\operatorname{\mathrm{lk}}_{\Delta}(v))=h_{S\cup\{i\}}(\Delta)+h_{S}(\Delta). (4.2)

We delay the proof of Proposition 4.2 until after the proof of Theorem 4.1.

Proof of Theorem 4.1.

Similar to the second proof of Theorem 3.1, we will verify (4.1) by double induction: first on the dimension of Δ\Delta, and then on the size of SS. If dimΔ=0\dim\Delta=0, it is easy to check that (4.1) holds.

Assume dimΔ=d1>0.\dim\Delta=d-1>0. The base case when S=S=\emptyset follows from Theorem 3.1:

h(Δ)h[d](Δ)=h0(Δ)hd(Δ)=Thm. 3.1(1)dεΔ().h_{\emptyset}(\Delta)-h_{[d]}(\Delta)=h_{0}(\Delta)-h_{d}(\Delta)\stackrel{{\scriptstyle\text{Thm.~{}3.1}}}{{=}}(-1)^{d}\varepsilon_{\Delta}(\emptyset).

For the inductive step, fix j[d1]j\in[d-1] and assume that for all k>jk>j and |S|=dk|S|=d-k, the equality (4.1) holds. Up to reordering of the colors, it suffices to show that

h[j+1,d](Δ)h[j](Δ)=(1)jFΔ:k(F)[j+1,d]εΔ(F).\displaystyle h_{[j+1,d]}(\Delta)-h_{[j]}(\Delta)=(-1)^{j}\sum_{F\in\Delta:\;k(F)\subseteq[j+1,d]}\varepsilon_{\Delta}(F). (4.3)

By Proposition 4.2,

κ(v)=j+1[h[j+1,d]{j+1}(lkΔ(v))h[j](lkΔ(v))]\displaystyle\quad\sum\limits_{\kappa(v)=j+1}\bigg{[}h_{[j+1,d]-\{j+1\}}\bigg{(}\operatorname{\mathrm{lk}}_{\Delta}(v)\bigg{)}-h_{[j]}\bigg{(}\operatorname{\mathrm{lk}}_{\Delta}(v)\bigg{)}\bigg{]}
=[h[j+1,d](Δ)+h[j+1,d]{j+1}(Δ)][h[j+1](Δ)+h[j](Δ)]\displaystyle=\bigg{[}h_{[j+1,d]}\bigg{(}\Delta\bigg{)}+h_{[j+1,d]-\{j+1\}}\bigg{(}\Delta\bigg{)}\bigg{]}-\bigg{[}h_{[j+1]}\bigg{(}\Delta\bigg{)}+h_{[j]}\bigg{(}\Delta\bigg{)}\bigg{]}
=[h[j+1,d](Δ)h[j](Δ)]+[h[j+1,d]{j+1}(Δ)h[j+1](Δ)]\displaystyle=\bigg{[}h_{[j+1,d]}\bigg{(}\Delta\bigg{)}-h_{[j]}\bigg{(}\Delta\bigg{)}\bigg{]}+\bigg{[}h_{[j+1,d]-\{j+1\}}\bigg{(}\Delta\bigg{)}-h_{[j+1]}\bigg{(}\Delta\bigg{)}\bigg{]} (4.4)
=Ind. Hyp.[h[j+1,d](Δ)h[j](Δ)]+[(1)j+1FΔ,κ(F)[j+1,d]{j+1}εΔ(F)].\displaystyle\stackrel{{\scriptstyle\text{Ind.~{}Hyp.}}}{{=}}\bigg{[}h_{[j+1,d]}\bigg{(}\Delta\bigg{)}-h_{[j]}\bigg{(}\Delta\bigg{)}\bigg{]}+\bigg{[}(-1)^{j+1}\sum\limits_{\begin{subarray}{c}F\in\Delta,\;\\ \kappa(F)\subseteq[j+1,d]-\{j+1\}\end{subarray}}\varepsilon_{\Delta}(F)\bigg{]}.

On the other hand, for each vertex vv such that κ(v)=j+1\kappa(v)=j+1, lkΔ(v)\operatorname{\mathrm{lk}}_{\Delta}(v) is a (d2)(d-2)-dimensional balanced simplicial complex with κ:V(lkΔ(v))[d]{j+1}\kappa:V\big{(}\operatorname{\mathrm{lk}}_{\Delta}(v)\big{)}\to[d]-\{j+1\}. By the inductive hypothesis on lkΔ(v)\operatorname{\mathrm{lk}}_{\Delta}(v), we have

h[j+1,d]{j+1}(lkΔ(v))h[j](lkΔ(v))=(1)jFlkΔv,k(F)[j+1,d]{j+1}εlkΔ(v)(F).\displaystyle h_{[j+1,d]-\{j+1\}}\bigg{(}\operatorname{\mathrm{lk}}_{\Delta}(v)\bigg{)}-h_{[j]}\bigg{(}\operatorname{\mathrm{lk}}_{\Delta}(v)\bigg{)}=(-1)^{j}\sum_{\begin{subarray}{c}F\in\operatorname{\mathrm{lk}}_{\Delta}v,\\ k(F)\subseteq[j+1,d]-\{j+1\}\end{subarray}}\varepsilon_{\operatorname{\mathrm{lk}}_{\Delta}(v)}(F). (4.5)

Therefore,

κ(v)=j+1[h[j+1,d]{j+1}(lkΔ(v))h[j](lkΔ(v))]\displaystyle\sum\limits_{\kappa(v)=j+1}\bigg{[}h_{[j+1,d]-\{j+1\}}\bigg{(}\operatorname{\mathrm{lk}}_{\Delta}(v)\bigg{)}-h_{[j]}\bigg{(}\operatorname{\mathrm{lk}}_{\Delta}(v)\bigg{)}\bigg{]} =(4.5)κ(v)=j+1(1)jFlkΔv,κ(F)[j+1,d]{j+1}εlkΔ(v)(F)\displaystyle\stackrel{{\scriptstyle(\ref{eq: link})}}{{=}}\sum\limits_{\kappa(v)=j+1}(-1)^{j}\sum\limits_{\begin{subarray}{c}F\in\operatorname{\mathrm{lk}}_{\Delta}v,\\ \kappa(F)\subseteq[j+1,d]-\{j+1\}\end{subarray}}\varepsilon_{\operatorname{\mathrm{lk}}_{\Delta}(v)}(F)
=()(1)jκ(v)=j+1;FlkΔv;k(Fv)[j+1,d]εΔ(Fv).\displaystyle\stackrel{{\scriptstyle(\star)}}{{=}}(-1)^{j}\sum\limits_{\begin{subarray}{c}\kappa(v)=j+1;\;F\in\operatorname{\mathrm{lk}}_{\Delta}v;\\ k(F\cup v)\subseteq[j+1,d]\end{subarray}}\varepsilon_{\Delta}(F\cup v). (4.6)

where (\star) holds since for any vV(Δ)v\in V(\Delta) and FlkΔ(v)F\in\operatorname{\mathrm{lk}}_{\Delta}(v), lklkΔ(v)(F)=lkΔ(Fv)\operatorname{\mathrm{lk}}_{\operatorname{\mathrm{lk}}_{\Delta}(v)}(F)=\operatorname{\mathrm{lk}}_{\Delta}(F\cup v).

Comparing (4) and (4), we obtain

h[j+1,d](Δ)h[j](Δ)\displaystyle h_{[j+1,d]}\bigg{(}\Delta\bigg{)}-h_{[j]}\bigg{(}\Delta\bigg{)} =(1)j[FΔ,κ(F)[j+1,d]{j+1}εΔ(F)+κ(v)=j+1;FlkΔv;k(Fv)[j+1,d]εΔ(Fv)]\displaystyle=(-1)^{j}\bigg{[}\sum\limits_{\begin{subarray}{c}F\in\Delta,\;\\ \kappa(F)\subseteq[j+1,d]-\{j+1\}\end{subarray}}\varepsilon_{\Delta}(F)+\sum\limits_{\begin{subarray}{c}\kappa(v)=j+1;\;F\in\operatorname{\mathrm{lk}}_{\Delta}v;\\ k(F\cup v)\subseteq[j+1,d]\end{subarray}}\varepsilon_{\Delta}(F\cup v)\bigg{]}
=(1)jFΔ,κ(F)[j+1,d]εΔ(F),\displaystyle=(-1)^{j}\sum\limits_{\begin{subarray}{c}F\in\Delta,\\ \kappa(F)\subseteq[j+1,d]\end{subarray}}\varepsilon_{\Delta}(F),

Therefore (4.3) holds. ∎

Proof of Proposition 4.2.

Recall that ii and SS are fixed and that iSi\notin S. The proof is a routine computation that relies on the definition of flag hh-numbers in terms of flag ff-numbers:

v:κ(v)=ihS(lkΔv)\displaystyle\sum_{v:\kappa(v)=i}h_{S}(\operatorname{\mathrm{lk}}_{\Delta}v) =v:κ(v)=iRS(1)|SR|fR(lkΔv)\displaystyle=\sum_{v:\kappa(v)=i}\sum_{R\subseteq S}(-1)^{|S-R|}f_{R}(\operatorname{\mathrm{lk}}_{\Delta}v)
=RS(1)|SR|v:κ(v)=ifR(lkΔv)\displaystyle=\sum_{R\subseteq S}(-1)^{|S-R|}\sum_{v:\kappa(v)=i}f_{R}(\operatorname{\mathrm{lk}}_{\Delta}v)
=RS(1)|S{i}||R{i}|fR{i}(Δ)\displaystyle=\sum_{R\subseteq S}(-1)^{|S\cup\{i\}|-|R\cup\{i\}|}f_{R\cup\{i\}}(\Delta)
=hS{i}(Δ)TS(1)|S{i}||T|fT(Δ)\displaystyle=h_{S\cup\{i\}}(\Delta)-\sum_{T\subseteq S}(-1)^{|S\cup\{i\}|-|T|}f_{T}(\Delta) (4.7)
=hS{i}(Δ)+TS(1)|S||T|fT(Δ)\displaystyle=h_{S\cup\{i\}}(\Delta)+\sum_{\begin{subarray}{c}T\subseteq S\end{subarray}}(-1)^{|S|-|T|}f_{T}(\Delta)
=hS{i}(Δ)+hS(Δ).\displaystyle=h_{S\cup\{i\}}(\Delta)+h_{S}(\Delta).

Our second proof of Theorem 4.1 uses the Hilbert series. The idea of this proof is similar to that of [Swa09, Theorem 3.8], which uses the following theorem by Stanley. Recall that F(Δ,λ)F(\Delta,\lambda) is the Hilbert series of 𝕜[Δ]\mathbbm{k}[\Delta] (w.r.t. the d{\mathbb{Z}}^{d}-grading), that for FΔF\in\Delta, κ(F)\kappa(F) is the set of colors of vertices of FF, and that for any subset S[d]S\subseteq[d], λS\lambda^{S} denotes iSλi\prod_{i\in S}\lambda_{i}. The following theorem is a corollary of [Sta96, II, Thm. 7.1].

Theorem 4.3.

Let Δ\Delta be a (d1)(d-1)-dimensional balanced simplicial complex and let F(k[Δ], 1/λ)F(k[\Delta],\;1/\lambda) be the Hilbert series. Then

(1)dF(k[Δ], 1/λ)=(1)d1χ~(Δ)+FΔ,F(1)d|F|1χ~(lkF)λκ(F)vF11λκ(v).(-1)^{d}F(k[\Delta],\;1/\lambda)=(-1)^{d-1}\tilde{\chi}(\Delta)+\sum_{F\in\Delta,\;F\neq\emptyset}(-1)^{d-|F|-1}\tilde{\chi}(\operatorname{\mathrm{lk}}F)\cdot\lambda^{\kappa(F)}\cdot\prod\limits_{v\in F}\frac{1}{1-\lambda_{\kappa(v)}}.

We will also use the following relation that follows easily from the definition of the flag hh-numbers, see, the proof of [Swa09, Theorem 3.8]:

FΔ,Fλκ(F)i[d]κ(F)(1λi)=S[d][hS(Δ)(1)|S|]λS.\sum_{F\in\Delta,\;F\neq\emptyset}\lambda^{\kappa(F)}\prod_{i\in[d]-\kappa(F)}(1-\lambda_{i})=\sum_{S\subseteq[d]}\bigg{[}h_{S}(\Delta)-(-1)^{|S|}\bigg{]}\cdot\lambda^{S}. (4.8)
Second proof of Theorem 4.1 .
(1)dF(k[Δ], 1/λ)\displaystyle(-1)^{d}F(k[\Delta],\;1/\lambda)
=Thm. 4.3\displaystyle\stackrel{{\scriptstyle\text{Thm.~{}\ref{thm: Hilbert series} }}}{{=}} (1)d1χ~(Δ)+FΔ,F(1)d|F|1χ~(lkF)λκ(F)vF11λκ(v)\displaystyle(-1)^{d-1}\tilde{\chi}(\Delta)+\sum_{F\in\Delta,\;F\neq\emptyset}(-1)^{d-|F|-1}\tilde{\chi}(\operatorname{\mathrm{lk}}F)\cdot\lambda^{\kappa(F)}\cdot\prod\limits_{v\in F}\frac{1}{1-\lambda_{\kappa(v)}}
=\displaystyle=\quad (1)d1χ~(Δ)+(j=1d11λj)FΔ,F(1)d|F|1χ~(lkF)=(1)d1|F|+εΔ(F)λκ(F)i[d]κ(F)(1λi)\displaystyle(-1)^{d-1}\tilde{\chi}(\Delta)+\bigg{(}\prod_{j=1}^{d}\frac{1}{1-\lambda_{j}}\bigg{)}\cdot\sum_{F\in\Delta,\;F\neq\emptyset}(-1)^{d-|F|-1}\underbrace{\tilde{\chi}(\operatorname{\mathrm{lk}}F)}_{=(-1)^{d-1-|F|}+\varepsilon_{\Delta}(F)}\lambda^{\kappa(F)}\prod_{i\in[d]-\kappa(F)}(1-\lambda_{i})
=\displaystyle=\quad (1)d1χ~(Δ)+(j=1d11λj)FΔ,Fλκ(F)i[d]κ(F)(1λi)\displaystyle(-1)^{d-1}\tilde{\chi}(\Delta)+\bigg{(}\prod_{j=1}^{d}\frac{1}{1-\lambda_{j}}\bigg{)}\cdot\sum_{F\in\Delta,\;F\neq\emptyset}\lambda^{\kappa(F)}\prod_{i\in[d]-\kappa(F)}(1-\lambda_{i})
+(j=1d11λj)FΔ,F(1)d|F|1εΔ(F)λκ(F)i[d]κ(F)(1λi)\displaystyle\quad\quad\quad\quad\quad\;\;+\bigg{(}\prod_{j=1}^{d}\frac{1}{1-\lambda_{j}}\bigg{)}\cdot\sum_{F\in\Delta,\;F\neq\emptyset}(-1)^{d-|F|-1}\cdot\varepsilon_{\Delta}(F)\lambda^{\kappa(F)}\prod_{i\in[d]-\kappa(F)}(1-\lambda_{i})
=(4.8)\displaystyle\stackrel{{\scriptstyle(\ref{eq:Sw})}}{{=}}\quad (1)d1χ~(Δ)+(j=1d11λj)S[d][hS(Δ)(1)|S|]λS\displaystyle(-1)^{d-1}\tilde{\chi}(\Delta)+\bigg{(}\prod_{j=1}^{d}\frac{1}{1-\lambda_{j}}\bigg{)}\cdot\sum_{S\subseteq[d]}\bigg{[}h_{S}(\Delta)-(-1)^{|S|}\bigg{]}\cdot\lambda^{S} (4.9)
+(j=1d11λj)FΔ,F(1)d|F|1εΔ(F)λκ(F)i[d]κ(F)(1λi).\displaystyle\quad\quad\quad\quad\quad\;\;+\bigg{(}\prod_{j=1}^{d}\frac{1}{1-\lambda_{j}}\bigg{)}\cdot\sum_{F\in\Delta,\;F\neq\emptyset}(-1)^{d-|F|-1}\cdot\varepsilon_{\Delta}(F)\lambda^{\kappa(F)}\prod_{i\in[d]-\kappa(F)}(1-\lambda_{i}).

On the other hand,

(1)dF(k[Δ], 1/λ)=(j=1d11λj)S[d]hS(Δ)λ[d]S.\displaystyle(-1)^{d}F(k[\Delta],\;1/\lambda)=\bigg{(}\prod_{j=1}^{d}\frac{1}{1-\lambda_{j}}\bigg{)}\cdot\sum\limits_{S\subset[d]}h_{S}(\Delta)\lambda^{[d]-S}. (4.10)

Comparing (4) with (4.10) and multiplying both sides by j=1d(1λi)\prod_{j=1}^{d}(1-\lambda_{i}), we obtain

(1)d1χ~(Δ)j=1d(1λi)\displaystyle(-1)^{d-1}\tilde{\chi}(\Delta)\cdot\prod_{j=1}^{d}(1-\lambda_{i}) +S[d][hS(Δ)(1)|S|]λS\displaystyle+\sum_{S\subseteq[d]}\bigg{[}h_{S}(\Delta)-(-1)^{|S|}\bigg{]}\cdot\lambda^{S}
+FΔ,F(1)d|F|1εΔ(F)λκ(F)i[d]κ(F)(1λi)=S[d]hS(Δ)λ[d]S.\displaystyle+\sum_{F\in\Delta,\;F\neq\emptyset}(-1)^{d-|F|-1}\cdot\varepsilon_{\Delta}(F)\lambda^{\kappa(F)}\cdot\prod_{i\in[d]-\kappa(F)}(1-\lambda_{i})=\sum\limits_{S\subset[d]}h_{S}(\Delta)\lambda^{[d]-S}.

Therefore

(1)d1χ~(Δ)j=1d(1λi)+S[d](1)|S|1λS+FΔ,F(1)d|F|1εΔ(F)λκ(F)i[d]κ(F)(1λi)\displaystyle(-1)^{d-1}\tilde{\chi}(\Delta)\cdot\prod_{j=1}^{d}(1-\lambda_{i})+\sum_{S\subseteq[d]}(-1)^{|S|-1}\cdot\lambda^{S}+\sum_{F\in\Delta,\;F\neq\emptyset}(-1)^{d-|F|-1}\cdot\varepsilon_{\Delta}(F)\lambda^{\kappa(F)}\cdot\prod_{i\in[d]-\kappa(F)}(1-\lambda_{i})
=\displaystyle= S[d][hS(Δ)λ[d]ShS(Δ)λS].\displaystyle\sum\limits_{S\subset[d]}\bigg{[}h_{S}(\Delta)\lambda^{[d]-S}-h_{S}(\Delta)\lambda^{S}\bigg{]}.

The coefficient of λS\lambda^{S} on the RHS is h[d]ShSh_{[d]-S}-h_{S}. The coefficient of λS\lambda^{S} on the LHS is:

(1)d|S|1χ~(Δ)+(1)|S|1+FΔS,F(1)d|F|1εΔ(F)(1)|S||F|\displaystyle(-1)^{d-|S|-1}\tilde{\chi}(\Delta)+(-1)^{|S|-1}+\sum_{F\in\Delta_{S},\;F\neq\emptyset}(-1)^{d-|F|-1}\cdot\varepsilon_{\Delta}(F)\cdot(-1)^{|S|-|F|}
=\displaystyle= (1)d|S|1FΔSεΔ(F).\displaystyle(-1)^{d-|S|-1}\sum_{F\in\Delta_{S}}\varepsilon_{\Delta}(F).

Together we obtain

h[d]ShS=(1)d|S|1FΔSεΔ(F).h_{[d]-S}-h_{S}=(-1)^{d-|S|-1}\sum_{F\in\Delta_{S}}\varepsilon_{\Delta}(F).

Remark 4.4.

A similar argument, but using the coarse Hilbert series, provides yet another proof of Theorem 3.1.

Observe that Theorem 4.1 refines Theorem 3.1: summing eq. (4.1) over all subsets S[d]S\subseteq[d] of size ii, we obtain

|S|=ihS(Δ)|S|=ihSc(Δ)=(1)i1FΔ(d|F|i)εΔ(F),\displaystyle\sum_{|S|=i}h_{S}(\Delta)-\sum_{|S|=i}h_{S^{c}}(\Delta)=(-1)^{i-1}\sum_{F\in\Delta}{d-|F|\choose i}\varepsilon_{\Delta}(F),

which is equivalent to eq. (3.1).

Recall from Section 2 that for a graded poset PP, the complex O(P)O(P) is always balanced w.r.t. the coloring given by the rank function, and that for S[d]S\subseteq[d], βP(S)=hS(O(P))\beta_{P}(S)=h_{S}(O(P)). Moreover, by Remark 2.3, the chain error of a poset (εP()\varepsilon_{P}(-)) is the same as the link error of its order complex (εO(P)()\varepsilon_{O(P)}(-)). The following corollary now follows directly from Theorem 4.1:

Corollary 4.5.

Let PP be a graded poset with rank d+1d+1 and let S[d]S\subseteq[d]. Then

βP(S)βP(Sc)=(1)d|S|C𝒞(PS)εP(C).\beta_{P}(S)-\beta_{P}(S^{c})=(-1)^{d-|S|}\sum_{C\in\mathcal{C}(P_{S})}\varepsilon_{P}(C).

where PSP_{S} is the SS-selected subposet of PP, and 𝒞(PS)\mathcal{C}(P_{S}) denotes the set of all chains in PS\{0^,1^}P_{S}\backslash\{\hat{0},\hat{1}\}.

5 Posets with isolated singularities

Stanley extended the Dehn–Sommerville relations for Eulerian simplicial complexes to the generality of toric hh-vectors of Eulerian posets. The goal of this and the following sections is to further generalize these relations to more general posets.

We start by defining the error function for intervals in posets. Let PP be a graded poset of rank (d+1)(d+1) and let [s,t][s,t] be an interval in PP. The error of [s,t][s,t] is defined as

eP([s,t]):=μP(s,t)(1)ρ(t)ρ(s).e_{P}([s,t]):=\mu_{P}(s,t)-(-1)^{\rho(t)-\rho(s)}.

From now on we will use eP(s,t)e_{P}(s,t) as the abbreviation for eP([s,t])e_{P}([s,t]).111We have already defined the error function for chains εP(C)\varepsilon_{P}(C), but to study toric hh-vectors it is easier to use interval errors rather than link errors. The connection between the two will be discussed later in the proof of Corollary 6.12.

Definition 5.1.

A graded poset PP with ρ(P)=d+1\rho(P)=d+1 has singularities of rank 1 or is 11-Sing if all intervals [s,t][s,t] in PP of length ρ(t)ρ(s)d1\rho(t)-\rho(s)\leq d-1 are Eulerian.

Proposition 5.2.

A poset PP of rank ρ(P)=d+1\rho(P)=d+1 is 11-Sing if and only if its reduced order complex O(P)O(P) satisfies the following condition: for all faces FO(P)F\in O(P) with dim(F)1dim(F)\geq 1, χ~(lkO(P)F)=(1)d1|F|\tilde{\chi}(\operatorname{\mathrm{lk}}_{O(P)}F)=(-1)^{d-1-|F|}.

We omit the proof as we will prove a generalization of this result in Proposition 6.5. Our work in the rest of this section is motivated by the following theorem of Stanley [Sta87] and its generalization due to Swartz (see [Swa09, Theorem 3.15]).

Theorem 5.3 (Stanley).

Let PP be an Eulerian poset of rank d+1d+1. Then h^i(P)=h^di(P)\hat{h}_{i}(P)=\hat{h}_{d-i}(P) for all 0id0\leq i\leq d.

Theorem 5.4 (Swartz).

Let PP be a semi-Eulerian poset PP of rank d+1d+1 and let O(P)O(P) be its reduced order complex. Then for all 0id0\leq i\leq d,

h^di(P)h^i(P)=(1)di+1(di)[χ~(O(P))(1)d1]=(1)di+1(di)eP(0^,1^).\hat{h}_{d-i}(P)-\hat{h}_{i}(P)=(-1)^{d-i+1}{d\choose i}[\tilde{\chi}(O(P))-(-1)^{d-1}]=(-1)^{d-i+1}{d\choose i}\cdot e_{P}(\hat{0},\hat{1}).
Remark 5.5.

The formula given by Swartz in [Swa09, Theorem 3.15] is equivalent to the statement above. Indeed, when dd is even, PP is Eulerian, and so the right hand-side is zero. If dd is odd, then di+1d-i+1 and ii have the same parity and the formula above agrees with the one in Swartz’s Theorem 3.15.

Using ideas from Swartz’s and Stanley’s proofs, we establish the following generalization of Theorems 5.3 and 5.4 for 11-Sing posets. For the rest of this section, we let y=x1y=x-1.

Theorem 5.6.

Let PP be a graded 11-Sing poset, and let ρ(P)=d+1\rho(P)=d+1. Then for i>d2i>\lfloor\frac{d}{2}\rfloor,

h^di(P)h^i(P)=(1)di+1[(di)eP(0^,1^)+(di)ρ(t)=deP(0^,t)+(d1i1)ρ(s)=1eP(s,1^)].\displaystyle\hat{h}_{d-i}(P)-\hat{h}_{i}(P)=(-1)^{d-i+1}\bigg{[}{{d}\choose{i}}e_{P}(\hat{0},\hat{1})+{{d}\choose{i}}\sum_{\rho(t)=d}e_{P}(\hat{0},t)+{{d-1}\choose{i-1}}\sum_{\rho(s)=1}e_{P}(s,\hat{1})\bigg{]}.
Proof.

The left hand-side is the coefficient of xix^{i} in the polynomial h^(P)xdh^(P,1/x)\hat{h}(P)-x^{d}\cdot\hat{h}(P,1/x). We first prove the following lemma related to this polynomial. From now on we use h^(P)\hat{h}(P) to abbreviate h^(P,x)\hat{h}(P,x) and g^(P)\hat{g}(P) to abbreviate g^(P,x)\hat{g}(P,x).

Lemma 5.7.

Let PP be a graded poset with ρ(P)=d+1\rho(P)=d+1 and let y=x1y=x-1. Then

h^(P)xdh^(P,1/x)=[μP(0^,1^)(1)d+1]yd+Q=[0,q]P~1ρ(Q)d([ydρ(Q)(g^(Q)+yh^(Q))μP(q,1^)][(y)dρ(Q)g^(Q,1/x)xρ(Q)]).\hat{h}(P)-x^{d}\cdot\hat{h}(P,1/x)=-\big{[}\mu_{P}(\hat{0},\hat{1})-(-1)^{d+1}\big{]}y^{d}\\ +\sum_{\begin{subarray}{c}Q=[0,q]\in\tilde{P}\\ 1\leq\rho(Q)\leq d\end{subarray}}\bigg{(}\bigg{[}-y^{d-\rho(Q)}\left(\hat{g}(Q)+y\hat{h}(Q)\right)\cdot\mu_{P}(q,\hat{1})\bigg{]}-\bigg{[}(-y)^{d-\rho(Q)}\hat{g}(Q,1/x)\cdot x^{\rho(Q)}\bigg{]}\bigg{)}. (5.1)
Proof.

By definitions, for P𝟙P\neq\mathbbm{1},

xdh^(P,1/x)=QP~,QP(y)dρ(Q)g^(Q,1/x)xρ(Q),x^{d}\cdot\hat{h}(P,1/x)=\sum_{Q\in\tilde{P},\;Q\neq P}(-y)^{d-\rho(Q)}\hat{g}(Q,1/x)\cdot x^{\rho(Q)}, (5.2)

and equivalently,

h^(P)=QP~,QPg^(Q)ydρ(Q).\hat{h}(P)=\sum_{Q\in\tilde{P},\;Q\neq P}\hat{g}(Q)y^{d-\rho(Q)}. (5.3)

Multiplying equation (5.3) by yy and adding g^(P)\hat{g}(P) to both sides, we obtain that for P𝟙P\neq\mathbbm{1},

g^(P)+yh^(P)=QP~g^(Q)yρ(P)ρ(Q).\hat{g}(P)+y\hat{h}(P)=\sum_{Q\in\tilde{P}}\hat{g}(Q)y^{\rho(P)-\rho(Q)}.

Therefore for P𝟙P\neq\mathbbm{1},

yρ(P)(g^(P)+yh^(P))=QP~g^(Q)yρ(Q).y^{-\rho(P)}\cdot\big{(}\hat{g}(P)+y\hat{h}(P)\big{)}=\sum_{Q\in\tilde{P}}\hat{g}(Q)y^{-\rho(Q)}.

By Möbius inversion,

g^(P)yρ(P)=μP(0^,1^)+Q=[0,q]P~1ρ(q)d+1yρ(q)(g^(Q)+yh^(Q))μP(q,1^).\hat{g}(P)y^{-\rho(P)}=\mu_{P}(\hat{0},\hat{1})+\sum_{\begin{subarray}{c}Q=[0,q]\in\tilde{P}\\ 1\leq\rho(q)\leq d+1\end{subarray}}y^{-\rho(q)}\cdot\left(\hat{g}(Q)+y\hat{h}(Q)\right)\cdot\mu_{P}(q,\hat{1}). (5.4)

Multiplying (5.4) by yρ(P)y^{\rho(P)} and then subtracting g^(P)+yh^(P)\hat{g}(P)+y\hat{h}(P) yields

yh^(P)=μP(0^,1^)yρ(P)+Q=[0,q]P~1ρ(q)dyρ(P)ρ(q)(g^(Q)+yh^(Q))μP(q,1^),-y\hat{h}(P)=\mu_{P}(\hat{0},\hat{1})y^{\rho(P)}+\sum_{\begin{subarray}{c}Q=[0,q]\in\tilde{P}\\ 1\leq\rho(q)\leq d\end{subarray}}y^{{\rho(P)}-\rho(q)}\left(\hat{g}(Q)+y\hat{h}(Q)\right)\cdot\mu_{P}(q,\hat{1}),

and so

h^(P)=μP(0^,1^)ydQ=[0,q]P~1ρ(q)dydρ(q)(g^(Q)+yh^(Q))μP(q,1^).\hat{h}(P)=-\mu_{P}(\hat{0},\hat{1})y^{d}-\sum_{\begin{subarray}{c}Q=[0,q]\in\tilde{P}\\ 1\leq\rho(q)\leq d\end{subarray}}y^{d-\rho(q)}\left(\hat{g}(Q)+y\hat{h}(Q)\right)\cdot\mu_{P}(q,\hat{1}).

This, together with equation (5.2), proves the lemma. ∎

Next we prove the following lemma, which helps us further simplify equation (5.1) for semi-Eulerian posets.

Lemma 5.8.

Let QQ be a semi-Eulerian poset with ρ(Q)=r+1\rho(Q)=r+1, let s=r2s=\left\lfloor\frac{r}{2}\right\rfloor, and let y=x1y=x-1. Then

g^(Q)+yh^(Q)=xρ(Q)g^(Q,1/x)+k=rs+1r+1(1)rk(r+1k)eQ(Q)γkxk,\hat{g}(Q)+y\hat{h}(Q)=x^{\rho(Q)}\hat{g}(Q,1/x)+\sideset{}{{}^{*}}{\sum}_{k=r-s+1}^{r+1}\underbrace{(-1)^{r-k}{{r+1}\choose{k}}e_{Q}(Q)}_{\gamma_{k}}\cdot x^{k},

where \sideset{}{{}^{*}}{\sum} means that, if r is odd, then there is an extra summand, 12γkxk\frac{1}{2}\gamma_{k}x^{k}, for k=rsk=r-s.

Proof.

Recall that h^(Q)=h^r+h^r1x++h^0xr\hat{h}(Q)=\hat{h}_{r}+\hat{h}_{r-1}x+\dots+\hat{h}_{0}x^{r}. This together with the definition of g^(Q)\hat{g}(Q) implies

g^(Q)+yh^(Q)=(h^rsh^rs1)xs+1+(h^rs1h^rs2)xs+2++(h^1h^0)xr+h^0xr+1,\hat{g}(Q)+y\hat{h}(Q)=(\hat{h}_{r-s}-\hat{h}_{r-s-1})x^{s+1}+(\hat{h}_{r-s-1}-\hat{h}_{r-s-2})x^{s+2}+\dots+(\hat{h}_{1}-\hat{h}_{0})x^{r}+\hat{h}_{0}x^{r+1},

while

xρ(Q)g^(Q,1/x)=(h^rsh^rs+1)xrs+1+(h^rs+1h^rs+2)xrs+2++(h^r1h^r)xr+h^rxr+1.x^{\rho(Q)}\hat{g}(Q,1/x)=(\hat{h}_{r-s}-\hat{h}_{r-s+1})x^{r-s+1}+(\hat{h}_{r-s+1}-\hat{h}_{r-s+2})x^{r-s+2}+\dots+(\hat{h}_{r-1}-\hat{h}_{r})x^{r}+\hat{h}_{r}x^{r+1}.

By Theorem 5.4, if QQ is semi-Eulerian, then h^rk=h^k+(1)rk+1(rk)eQ(0^,1^)\hat{h}_{r-k}=\hat{h}_{k}+(-1)^{r-k+1}{{r}\choose{k}}e_{Q}(\hat{0},\hat{1}). Hence for k<rk<r,

h^rkh^rk1=(h^kh^k+1)+(1)rk+1[(rk)+(rk+1)]eQ(0^,1^),\hat{h}_{r-k}-\hat{h}_{r-k-1}=(\hat{h}_{k}-\hat{h}_{k+1})+(-1)^{r-k+1}\cdot\bigg{[}{{r}\choose{k}}+{{r}\choose{k+1}}\bigg{]}e_{Q}(\hat{0},\hat{1}),

and since (rk)+(rk+1)=(r+1k+1){{r}\choose{k}}+{{r}\choose{k+1}}={{r+1}\choose{k+1}}, we infer that

h^rkh^rk1=(h^kh^k+1)+(1)rk+1(r+1k+1)eQ(0^,1^)γk+1(Q).\hat{h}_{r-k}-\hat{h}_{r-k-1}=(\hat{h}_{k}-\hat{h}_{k+1})+\underbrace{(-1)^{r-k+1}{{r+1}\choose{k+1}}\cdot e_{Q}(\hat{0},\hat{1})}_{\gamma_{k+1}(Q)}.

Comparing the coefficients of xk+1x^{k+1} in g^(Q)+yh^(Q)\hat{g}(Q)+y\hat{h}(Q) and xρ(Q)g^(Q,1/x)x^{\rho(Q)}\hat{g}(Q,1/x), yields the lemma. ∎

Now we resume the proof of Theorem 5.6. For any lower interval Q=[0^,q]Q=[\hat{0},q] in PP, if 1<ρ(q)<d1<\rho(q)<d, then QQ is Eulerian. If ρ(q)=d\rho(q)=d, then QQ is semi-Eulerian. By Swartz’s result and the lemma above,

g^(Q)+yh^(Q)={xρ(q)g^(Q,1/x) if 1ρ(q)<dxρ(q)g^(Q,1/x)+i=d2+1dγi(Q)xi if ρ(q)=d.\hat{g}(Q)+y\hat{h}(Q)=\begin{cases}x^{\rho(q)}\hat{g}(Q,1/x)&\text{ if }1\leq\rho(q)<d\\ x^{\rho(q)}\hat{g}(Q,1/x)+\sideset{}{{}^{*}}{\sum}\limits_{i=\left\lfloor\frac{d}{2}\right\rfloor+1}^{d}\gamma_{i}(Q)\cdot x^{i}&\text{ if }\rho(q)=d.\end{cases}

We can now simplify equation (5.1):

h^(P)xdh^(P,1/x)=eP(0^,1^)ydρ(Q)=1yd1x[μP(q,1^)(1)d]+ρ(Q)=di=d2+1dγi(Q)xi,\hat{h}(P)-x^{d}\cdot\hat{h}(P,1/x)=-e_{P}(\hat{0},\hat{1})y^{d}\\ -\sum_{\rho(Q)=1}y^{d-1}x\big{[}\mu_{P}(q,\hat{1})-(-1)^{d}\big{]}+\sum_{\rho(Q)=d}\;\;\sideset{}{{}^{*}}{\sum}\limits_{i=\lfloor\frac{d}{2}\rfloor+1}^{d}\gamma_{i}(Q)\cdot x^{i}, (5.5)

and when dd is even, the last summation \sideset{}{{}^{*}}{\sum} on the right hand-side has an extra summand 12γixi\frac{1}{2}\gamma_{i}x^{i} for i=d2i=\lfloor\frac{d}{2}\rfloor. Comparing like-terms from both sides: for i>d2i>\left\lfloor\frac{d}{2}\right\rfloor,

h^dih^i=(1)di+1[(di)eP(0^,1^)+(d1i1)ρ(q)=1eP(q,1^)+(di)ρ(q)=deP(0^,q)]\displaystyle\begin{split}\hat{h}_{d-i}&-\hat{h}_{i}=(-1)^{d-i+1}\bigg{[}{{d}\choose{i}}e_{P}(\hat{0},\hat{1})+{{d-1}\choose{i-1}}\sum_{\rho(q)=1}e_{P}(q,\hat{1})+{{d}\choose{i}}\sum_{\rho(q)=d}e_{P}(\hat{0},q)\bigg{]}\end{split} (5.6)

as desired. ∎

The following special case is worth mentioning: if dd is even and i=d2=d2=dii=\left\lfloor\frac{d}{2}\right\rfloor=\frac{d}{2}=d-i, the left-hand side of (5.6) is simply zero, and hence so is the right-hand side. This observation leads to the following Corollary. We will generalize it later in Corollaries 6.11 and 6.12.

Corollary 5.9.

Let PP be a 11-Sing poset with odd rank ρ(P)=d+1\rho(P)=d+1, and let O(P)O(P) be the reduced order complex of PP. Then

2(χ~(O(P))+1)=ρ(q)=1 or d1ρ(q)=1 or dχ~(lkO(P)vq)2(\tilde{\chi}(O(P))+1)=\sum_{\rho(q)=1\text{ or }d}1-\sum_{\rho(q)=1\text{ or }d}\tilde{\chi}\big{(}\operatorname{\mathrm{lk}}_{O(P)}v_{q}\big{)}

where vqv_{q} is the vertex in O(P)O(P) that corresponds to the element qPq\in P.

Proof.

If dd is even, and i=d2i=\lfloor\frac{d}{2}\rfloor, then di=id-i=i. Equation (5.6) gives:

0=h^d2h^d2=(1)d2+1(dd2)[μP(0^,1^)(1)]+ρ(q)=1(1)d2+1(d1d21)[μP(q,1^)1]+12ρ(q)=d(1)d21(dd2)[μP(0^,q)1].0=\hat{h}_{\frac{d}{2}}-\hat{h}_{\frac{d}{2}}=(-1)^{\frac{d}{2}+1}{d\choose\frac{d}{2}}\big{[}\mu_{P}(\hat{0},\hat{1})-(-1)\big{]}\\ +\sum_{\rho(q)=1}(-1)^{\frac{d}{2}+1}{d-1\choose\frac{d}{2}-1}\big{[}\mu_{P}(q,\hat{1})-1\big{]}+\frac{1}{2}\sum_{\rho(q)=d}(-1)^{\frac{d}{2}-1}{d\choose\frac{d}{2}}\big{[}\mu_{P}(\hat{0},q)-1\big{]}. (5.7)

Since (d1d21)=12(dd2){d-1\choose\frac{d}{2}-1}=\frac{1}{2}{d\choose\frac{d}{2}}, this can be simplified to

0=[μP(0^,1^)+1]+12ρ(q)=1[μP(q,1^)1]+12ρ(q)=d[μP(0^,q)1].0=\big{[}\mu_{P}(\hat{0},\hat{1})+1\big{]}+\frac{1}{2}\sum_{\rho(q)=1}\big{[}\mu_{P}(q,\hat{1})-1\big{]}+\frac{1}{2}\sum_{\rho(q)=d}\big{[}\mu_{P}(\hat{0},q)-1\big{]}.

Hence

2(μP(0^,1^)+1)=ρ(q)=1[1μP(q,1^)]+ρ(q)=d[1μP(0^,q)]=ρ(q)=1,d1+ρ(q)=1,dμP(0^,q)μP(q,1^)=ρ(q)=1,d1ρ(q)=1,dχ~(lkO(P)F{q}).2(\mu_{P}(\hat{0},\hat{1})+1)=\sum_{\rho(q)=1}\big{[}1-\mu_{P}(q,\hat{1})\big{]}+\sum_{\rho(q)=d}\big{[}1-\mu_{P}(\hat{0},q)\big{]}\\ =\sum_{\rho(q)=1,d}1+\sum_{\rho(q)=1,d}\mu_{P}(\hat{0},q)\cdot\mu_{P}(q,\hat{1})=\sum_{\rho(q)=1,d}1-\sum_{\rho(q)=1,d}\tilde{\chi}\big{(}\operatorname{\mathrm{lk}}_{O(P)}F_{\{q\}}\big{)}. (5.8)

Remark 5.10.

The above corollary is a generalization of a result from [NS12] asserting that for a (d1)(d-1)-dimensional simplicial psuedomanifold Δ\Delta with isolated singularities,

2(χ~(Δ)+1)=|V|vVχ~(lkΔv).2(\tilde{\chi}(\Delta)+1)=|V|-\sum_{v\in V}\tilde{\chi}(\operatorname{\mathrm{lk}}_{\Delta}v).

6 Posets with singularities of higher degrees

This section generalizes several results from Section 5, most notably Theorem 5.6.

6.1 jj-Sing Posets

We start with a definition of posets with singularities of degree at most jj. A similar notion was introduced in [Ehr01].

Definition 6.1.

For a finite graded poset PP of rank ρ(P)=d+1\rho(P)=d+1, we recursively define the notion of jj-Sing:

  • PP is (1)(-1)-Sing if PP is Eulerian.

    PP is 0-Sing if PP is semi-Eulerian.

    PP is jj-Sing if every interval of length d\leq d in PP is (j1)(j-1)-Sing.

A few remarks are in order.

Remark 6.2.

A poset PP is jj-Sing if and only if for all sj+1s\leq j+1, every interval of length d+1s\leq d+1-s in PP is (js)(j-s)-Sing. Also, PP is jj-Sing if and only if every interval of length dj\leq d-j in PP is Eulerian, i.e., every such interval [s,t][s,t] has eP(s,t)=0e_{P}(s,t)=0.

Remark 6.3.

When jj is odd (even, resp.), all jj-Sing posets P with even (odd, resp.) rank are in fact (j1)(j-1)-Sing. This follows from Definition 6.1 and the fact that every semi-Eulerian poset of odd rank is actually Eulerian.

Definition 6.4.

A (d1)(d-1)-dimensional pure simplicial complex Δ\Delta is called a jj-singular complex if εΔ(F)=0\varepsilon_{\Delta}(F)=0 for every face FΔF\in\Delta of dim(F)j\dim(F)\geq j, i.e., χ~(lkΔF)=(1)d1|F|\tilde{\chi}(\operatorname{\mathrm{lk}}_{\Delta}F)=(-1)^{d-1-|F|}.

Proposition 6.5.

The following are equivalent:

  1. (1).

    A poset PP is jj-Sing.

  2. (2).

    The order complex of PP, O(P)O(P), is a jj-singular complex.

  3. (3).

    For every chain C={0^=t0<t1<<ti1<ti=1^}C=\{\hat{0}=t_{0}<t_{1}<\dots<t_{i-1}<t_{i}=\hat{1}\} in PP such that i>j+1i>j+1, the (chain) error εP(C)=0\varepsilon_{P}(C)=0.

Proof.

Assume PP has rank d+1d+1, and so dimO(P)=d1\dim O(P)=d-1.

  1. (2)\Longleftrightarrow(3)

    This is clear since by definitions, εP(C)=εO(P)(FC)\varepsilon_{P}(C)=\varepsilon_{O(P)}(F_{C}), and every chain CC in (3) corresponds to a face FCO(P)F_{C}\in O(P) of dimension j\geq j.

  2. (1)\Longrightarrow(3)

    PP is jj-Sing if and only if every interval of length dj\leq d-j in PP is Eulerian. Therefore, for any interval [s,t][s,t] in PP with ρ(t)ρ(s)dj\rho(t)-\rho(s)\leq d-j, μP(s,t)=(1)ρ(t)ρ(s)\mu_{P}(s,t)=(-1)^{\rho(t)-\rho(s)}. For any chain CC as in (3),

    ρ(tk)ρ(tk1)dj for all 1ki,\rho(t_{k})-\rho(t_{k-1})\leq d-j\quad\text{ for all }1\leq k\leq i,

    therefore every interval [tk1,tk][t_{k-1},\;t_{k}] is Eulerian. This implies μP(C)=(1)d+1\mu_{P}(C)=(-1)^{d+1} and so εP(C)=0\varepsilon_{P}(C)=0.

  3. (3)\Longrightarrow(1)

    Pick any interval [s,t][s,t] in P with ρ(t)ρ(s)dj\rho(t)-\rho(s)\leq d-j. Consider a maximal chain (0^=t0<t1<<tρ(s)=s)(\hat{0}=t_{0}<t_{1}<\cdots<t_{\rho(s)}=s) in [0^,s][\hat{0},s] and a maximal chain (t=tρ(s)+1<tρ(s)+2<<tk=1^)(t=t_{\rho(s)+1}<t_{\rho(s)+2}<\cdots<t_{k}=\hat{1}) in [t,1^][t,\hat{1}], and let C be the union of these two chains:

    C=(0^=t0<t1<<s<t<tk1<tk=1^).C=(\hat{0}=t_{0}<t_{1}<\dots<s<t<\dots t_{k-1}<t_{k}=\hat{1}).

    In particular, ρ(ti)ρ(ti1)=1\rho(t_{i})-\rho(t_{i-1})=1 unless i=ρ(s)+1i=\rho(s)+1. Then C has length kjk\geq j, and so by (3),

    μP(0^,t1)μP(t1,t2)μP(s,t)μP(ti1,1^)=(1)d+1.\mu_{P}(\hat{0},t_{1})\mu_{P}(t_{1},t_{2})\dots\mu_{P}(s,t)\dots\mu_{P}(t_{i-1},\hat{1})=(-1)^{d+1}.

    Since intervals of length 11 always have the Möbius value 1-1, this forces μP(s,t)=(1)ρ(t)ρ(s)\mu_{P}(s,t)=(-1)^{\rho(t)-\rho(s)}. All intervals of length dj\leq d-j are Eulerian, therefore PP is jj-Sing.

To make the exposition cleaner, we introduce the following notation:

Definition 6.6.

For any jj-Sing poset PP of rank ρ(P)=d+1\rho(P)=d+1, define

Ak(j)(P):=h^dk(P)h^k(P).A^{(j)}_{k}(P):=\hat{h}_{d-k}(P)-\hat{h}_{k}(P).

Note that any graded poset of rank d+1d+1 is automatically (d1)(d-1)-Sing. The following claim on A0(j)(P)A^{(j)}_{0}(P) can be shown by an easy induction on jj.

Proposition 6.7.

For any graded poset PP of rank d+1d+1,

A0(j)(P)=(1)deP(0^,1^).A^{(j)}_{0}(P)=(-1)^{d}\cdot e_{P}(\hat{0},\hat{1}).

6.2 Dehn–Sommerville relations

We are now in a position to generalize Theorem 5.6. First, by comparing the polynomials g^(Q)+(x1)h^(Q)\hat{g}(Q)+(x-1)\hat{h}(Q) and xρ(Q)g^(Q,1x)x^{\rho(Q)}\hat{g}(Q,\frac{1}{x}) (as in the proof of Lemma 5.8), we obtain the following extension of Lemma 5.8. We omit the proof.

Lemma 6.8.

Let QQ be a jj-Sing poset with rank r+1r+1, and let y=x1y=x-1. Then

g^(Q)+yh^(Q)=xρ(Q)g^(Q,1x)+k=r+12+1r+1[Ak1(j)(Q)Ak(j)(Q)]xk,\hat{g}(Q)+y\hat{h}(Q)=x^{\rho(Q)}\hat{g}(Q,\frac{1}{x})+\sideset{}{{}^{*}}{\sum}_{k=\left\lfloor\frac{r+1}{2}\right\rfloor+1}^{r+1}\bigg{[}A^{(j)}_{k-1}(Q)-A^{(j)}_{k}(Q)\bigg{]}x^{k},

where \sideset{}{{}^{*}}{\sum} means that, if r is odd, then there is an extra summand, 12[Ak1(j)(Q)Ak(j)(Q)]xk\frac{1}{2}[A^{(j)}_{k-1}(Q)-A^{(j)}_{k}(Q)]x^{k} for k=r+12k=\left\lfloor\frac{r+1}{2}\right\rfloor, which equals Ar+12(j)(Q)xr+12-A^{(j)}_{\left\lfloor\frac{r+1}{2}\right\rfloor}(Q)\cdot x^{\left\lfloor\frac{r+1}{2}\right\rfloor}.

The first main result of this section is the following generalization of Theorem 5.6:

Theorem 6.9.

Let PP be a jj-Sing poset with rank d+1d+1, where 1jd-1\leq j\leq d. For qPq\in P, denote by QQ the interval [0^,q][\hat{0},q]. Then

h^(P)xdh^(P,1x)=ρ(q)jg^(Q,1x)eP(q,1^)ydρ(q)xρ(q)dj<ρ(q)dk=ρ(q)2+1ρ(q)(Ak1(j+ρ(q)d1)(Q)Ak(j+ρ(q)d1)(Q))μ(q,1^)ydρ(q)xk.\hat{h}(P)-x^{d}\hat{h}(P,\frac{1}{x})=-\sum_{\rho(q)\leq j}\hat{g}(Q,\frac{1}{x})\cdot e_{P}(q,\hat{1})\cdot y^{d-\rho(q)}\cdot x^{\rho(q)}\\ -\sum_{d-j<\rho(q)\leq d}\quad\sideset{}{{}^{*}}{\sum}\limits_{k=\lfloor\frac{\rho(q)}{2}\rfloor+1}^{\rho(q)}\bigg{(}A^{(j+\rho(q)-d-1)}_{k-1}(Q)-A^{(j+\rho(q)-d-1)}_{k}(Q)\bigg{)}\cdot\mu(q,\hat{1})\cdot y^{d-\rho(q)}x^{k}. (6.1)

Before proving this formula, we first show that for small jj’s, equation (6.1) reduces to previous results.

Example 6.10.
  1. 1.

    If PP is (1)(-1)-Sing, then PP is Eulerian. Hence by [Sta87], Ak(1)(P)=0A^{(-1)}_{k}(P)=0 for every kk. This matches equation (6.1) as both sums on the right hand-side of (6.1) are empty.

  2. 2.

    If PP is 0-Sing, then PP is semi-Eulerian, so that all proper intervals QP~Q\in\tilde{P} are (1)(-1)-Sing (i.e., Eulerian). In this case, by [Swa09],

    Ak(0)(P)=(1)dk+1(dk)eP(0^,1^).A^{(0)}_{k}(P)=(-1)^{d-k+1}{d\choose k}e_{P}(\hat{0},\hat{1}).

    This coincides with equation (6.1) as the summand corresponding to QQ of rank 0 is the only term showing up on the right hand-side of (6.1) for j=0j=0.

  3. 3.

    If PP is 11-Sing, then equation (6.1) implies that

    Ak(1)(P)=(1)dk+1(dk)eP(0^,1^)+ρ(Q)=1(1)dk+1(d1k1)eP(q,1^)+ρ(Q)=d(Ak1(0)(Q)Ak(0)(Q))=(1)dk+1(dk)eP(0^,1^)+ρ(q)=1(1)dk+1(d1k1)eP(q,1^)+ρ(q)=d(1)dk+1(dk)eP(0^,q),\displaystyle\begin{split}A^{(1)}_{k}(P)=(-1)^{d-k+1}{d\choose k}e_{P}(\hat{0},\hat{1})+\sum_{\rho(Q)=1}(-1)^{d-k+1}{d-1\choose k-1}e_{P}(q,\hat{1})+\sum_{\rho(Q)=d}\bigg{(}A^{(0)}_{k-1}(Q)-A^{(0)}_{k}(Q)\bigg{)}\\ =(-1)^{d-k+1}{d\choose k}e_{P}(\hat{0},\hat{1})+\sum_{\rho(q)=1}(-1)^{d-k+1}{d-1\choose k-1}e_{P}(q,\hat{1})+\sum_{\rho(q)=d}(-1)^{d-k+1}{{d}\choose{k}}e_{P}(\hat{0},q),\end{split} (6.2)

    where for the last step we used that, if ρ(q)=d\rho(q)=d, then the interval [0^,q][\hat{0},q] is semi-Eulerian. This agrees with our formula in Theorem 5.6.

Proof of Theorem 6.9.

By Lemma 5.7, the following equation holds for an arbitrary graded poset PP of rank d+1d+1.

h^(P,x)xdh^(P,1x)=ydeP(0^,1^)+Q=[0^,q]P~1ρ(Q)d([ydρ(Q)(g^(Q)+yh^(Q))μP(q,1^)][(y)dρ(Q)g^(Q,1x)xρ(Q)])C(Q).\hat{h}(P,x)-x^{d}\hat{h}(P,\frac{1}{x})=-y^{d}e_{P}(\hat{0},\hat{1})\\ +\sum_{\begin{subarray}{c}Q=[\hat{0},q]\in\tilde{P}\\ 1\leq\rho(Q)\leq d\end{subarray}}\underbrace{\bigg{(}\bigg{[}-y^{d-\rho(Q)}(\hat{g}(Q)+y\hat{h}(Q))\mu_{P}(q,\hat{1})\bigg{]}-\bigg{[}(-y)^{d-\rho(Q)}\hat{g}(Q,\frac{1}{x})x^{\rho(Q)}\bigg{]}\bigg{)}}_{C(Q)}. (6.3)

From now on we assume PP to be jj-Sing of rank d+1d+1. We are interested in Ak(j)(P)A^{(j)}_{k}(P), which is the coefficient of xkx^{k} in h^(P,x)xdh^(P,1x)\hat{h}(P,x)-x^{d}\hat{h}(P,\frac{1}{x}). Since PP is jj-Sing, Remark 6.2 implies that each interval Q=[0^,q]PQ=[\hat{0},q]\subseteq P of rank r+1r+1 is (j+rd)(j+r-d)-Sing. In particular,

μ(q,1^)=(1)dρ(q)+1 for ρ(q)>j.\mu(q,\hat{1})=(-1)^{d-\rho(q)+1}\quad\quad\text{ for }\rho(q)>j.

Using this observation together with Lemma 6.8, we conclude that the following holds for any interval QQ of rank r+1r+1:
Case 1: j<d2djj<\lfloor\frac{d}{2}\rfloor\leq d-j.

C(Q)={g^(Q,1x)eP(q,1^)ydρ(Q)xρ(Q) for ρ(Q)j0 for ρ(Q)(j,dj]k=r+12+1r+1(Ak1(j+rd)(Q)Ak(j+rd)(Q))xk(y)dρ(Q) for ρ(Q)>dj.C(Q)=\begin{cases}-\hat{g}(Q,\frac{1}{x})\cdot e_{P}(q,\hat{1})\cdot y^{d-\rho(Q)}x^{\rho(Q)}&\text{ for }\rho(Q)\leq j\\ \\ 0&\text{ for }\rho(Q)\in(j,d-j]\\ \\ \sideset{}{{}^{*}}{\sum}\limits_{k=\lfloor\frac{r+1}{2}\rfloor+1}^{r+1}\bigg{(}A^{(j+r-d)}_{k-1}(Q)-A^{(j+r-d)}_{k}(Q)\bigg{)}x^{k}\cdot(-y)^{d-\rho(Q)}&\text{ for }\rho(Q)>d-j.\end{cases}

Case 2: jd2j\geq\lfloor\frac{d}{2}\rfloor.

C(Q)={g^(Q,1x)eP(q,1^)ydρ(Q)xρ(Q), for ρ(Q)djg^(Q,1x)eP(q,1^)ydρ(Q)xρ(Q)k=r+12+1r+1(Ak1(j+rd)(Q)Ak(j+rd)(Q))μ(q,1^)ydρ(Q)xk, for ρ(Q)(dj,j]k=r+12+1r+1(Ak1(j+rd)(Q)Ak(j+rd)(Q))μ(q,1^)=(1)drydρ(Q)xk, for ρ(Q)j+1.C(Q)=\begin{cases}-\hat{g}(Q,\frac{1}{x})\cdot e_{P}(q,\hat{1})\cdot y^{d-\rho(Q)}x^{\rho(Q)},&\text{ for }\rho(Q)\leq d-j\\ \\ \\ -\hat{g}(Q,\frac{1}{x})\cdot e_{P}(q,\hat{1})\cdot y^{d-\rho(Q)}x^{\rho(Q)}\\ \quad\quad\quad-\sideset{}{{}^{*}}{\sum}\limits_{k=\lfloor\frac{r+1}{2}\rfloor+1}^{r+1}\bigg{(}A^{(j+r-d)}_{k-1}(Q)-A^{(j+r-d)}_{k}(Q)\bigg{)}\cdot\mu(q,\hat{1})y^{d-\rho(Q)}x^{k},&\text{ for }\rho(Q)\in(d-j,j]\\ \\ \\ -\sideset{}{{}^{*}}{\sum}\limits_{k=\lfloor\frac{r+1}{2}\rfloor+1}^{r+1}\bigg{(}A^{(j+r-d)}_{k-1}(Q)-A^{(j+r-d)}_{k}(Q)\bigg{)}\cdot\underbrace{\mu(q,\hat{1})}_{\quad=(-1)^{d-r}}\cdot y^{d-\rho(Q)}x^{k},&\text{ for }\rho(Q)\geq j+1.\end{cases}

In both cases, comparing the coefficients on both sides, yields the statement. ∎

This shows that the difference between h^dk(P)\hat{h}_{d-k}(P) and h^k(P)\hat{h}_{k}(P) is a “weighted” sum of the error functions of the intervals in PP. Unfortunately, as jj gets larger, the length of our formula expands very quickly. In the rest of this section, we will simplify this formula for j>d2j>\frac{d}{2} and k>d+j2k>\frac{d+j}{2}, in Theorem 6.14. Our main tool is the following result, that might be of interest on its own.

Corollary 6.11.

Let PP be a jj-Sing poset of rank d+1d+1.

\bullet If dd is even, then

2eP(0^,1^)=1ρ(t)jeP(t,1^)dj+1ρ(t)deP(0^,t).2e_{P}(\hat{0},\hat{1})=-\sum_{1\leq\rho(t)\leq j}e_{P}(t,\hat{1})-\sum_{d-j+1\leq\rho(t)\leq d}e_{P}(\hat{0},t).

\bullet If dd is odd, then

1ρ(t)jeP(t,1^)=dj+1ρ(t)deP(0^,t).\sum_{1\leq\rho(t)\leq j}e_{P}(t,\hat{1})=\sum_{d-j+1\leq\rho(t)\leq d}e_{P}(\hat{0},t).
Proof.

We will only treat the case of jd2j\geq\lfloor\frac{d}{2}\rfloor since the case of j<d2j<\lfloor\frac{d}{2}\rfloor is very similar.

By Theorem 6.9,

h^0(P)h^d(P)=0ρ(t)j(1)ρ(t)+1μ(0^,t)eP(t,1^)+dj+1ρ(t)d(1)dρ(t)[h^0([0^,t])h^ρ(t)1([0^,t])]=0ρ(t)j(1)ρ(t)+1μ(0^,t)eP(t,1^)+dj+1ρ(t)d(1)dρ(t)(1)ρ(t)+1eP(0^,t)=0ρ(t)djeP(t,1^)+dj+1ρ(t)j[(1)d+1μ(0^,t)μ(t,1^)]+j+1ρ(t)d(1)d+1eP(0^,t)=0ρ(t)jeP(t,1^)+dj+1ρ(t)d(1)d+1eP(0^,t)\displaystyle\begin{split}\hat{h}_{0}(P)&-\hat{h}_{d}(P)\\ &=\sum_{0\leq\rho(t)\leq j}(-1)^{\rho(t)+1}\cdot\mu(\hat{0},t)\cdot e_{P}(t,\hat{1})+\sum_{d-j+1\leq\rho(t)\leq d}(-1)^{d-\rho(t)}\cdot\big{[}\hat{h}_{0}([\hat{0},t])-\hat{h}_{\rho(t)-1}([\hat{0},t])\big{]}\\ &\stackrel{{\scriptstyle\star}}{{=}}\sum_{0\leq\rho(t)\leq j}(-1)^{\rho(t)+1}\cdot\mu(\hat{0},t)\cdot e_{P}(t,\hat{1})+\sum_{d-j+1\leq\rho(t)\leq d}(-1)^{d-\rho(t)}\cdot(-1)^{\rho(t)+1}e_{P}(\hat{0},t)\\ &=-\sum_{0\leq\rho(t)\leq d-j}e_{P}(t,\hat{1})+\sum_{d-j+1\leq\rho(t)\leq j}[(-1)^{d+1}\mu(\hat{0},t)-\mu(t,\hat{1})]+\sum_{j+1\leq\rho(t)\leq d}(-1)^{d+1}e_{P}(\hat{0},t)\\ &=-\sum_{0\leq\rho(t)\leq j}e_{P}(t,\hat{1})+\sum_{d-j+1\leq\rho(t)\leq d}(-1)^{d+1}\cdot e_{P}(\hat{0},t)\end{split} (6.4)

where the equality “=\stackrel{{\scriptstyle\star}}{{=}}” follows from Proposition 6.7. However by Proposition 6.7, the left hand-side should also equal (1)deP(0^,1^)(-1)^{d}e_{P}(\hat{0},\hat{1}). Comparing it with the last line of (6.4) yields the result. ∎

If j<d/2j<\lfloor d/2\rfloor, Corollary 6.11 is equivalent to the following geometric interpretation that generalizes Corollary 5.9.

Corollary 6.12.

Let PP be a jj-Sing poset of rank d+1d+1 with j<d/2j<\lfloor d/2\rfloor. Let εO(P)\varepsilon_{O(P)} be the error function associated to O(P)O(P).

\bullet If dd is even, then

2εO(P)()=FO(P),|F|jεO(P)(F).2\varepsilon_{O(P)}(\emptyset)=-\sum_{F\in O(P),|F|\leq j}\varepsilon_{O(P)}(F).

\bullet If dd is odd, and for every face FO(P)F\in O(P) we let FtopF^{top} and FbotF_{bot} denote the top and the bottom element of FF (viewing FF as a chain in P{0^,1^}P\setminus\{\hat{0},\;\hat{1}\}), then

FO(P)ρ(Ftop)jεO(P)(F)=FO(P)ρ(Fbot)dj+1εO(P)(F).\sum_{\begin{subarray}{c}F\in O(P)\\ \rho(F^{top})\leq j\end{subarray}}\varepsilon_{O(P)}(F)=\sum_{\begin{subarray}{c}F\in O(P)\\ \rho(F_{bot})\geq d-j+1\end{subarray}}\varepsilon_{O(P)}(F).
Proof.

First notice that when j<d/2djj<\lfloor d/2\rfloor\leq d-j, any face FF with ρ(Ftop)>j\rho(F^{top})>j or ρ(Fbot)<dj+1\rho(F_{bot})<d-j+1 will have εO(P)(F)=0\varepsilon_{O(P)}(F)=0 since all the intervals defined by this chain are Eulerian. This means

FO(P),|F|jεO(P)(F)=FO(P)ρ(Ftop)jεO(P)(F)+FO(P)ρ(Fbot)dj+1εO(P)(F).\sum_{F\in O(P),|F|\leq j}\varepsilon_{O(P)}(F)=\sum_{\begin{subarray}{c}F\in O(P)\\ \rho(F^{top})\leq j\end{subarray}}\varepsilon_{O(P)}(F)+\sum_{\begin{subarray}{c}F\in O(P)\\ \rho(F_{bot})\geq d-j+1\end{subarray}}\varepsilon_{O(P)}(F).

Now it suffices to show the following claim: for q,tPq,\;t\in P, ρ(q)j\rho(q)\leq j and ρ(t)dj+1\rho(t)\geq d-j+1,

FO(P)Ftop=qεO(P)(F)=eP(q,1^)andFO(P)Fbot=tεO(P)(F)=eP(0^,t).\sum_{\begin{subarray}{c}F\in O(P)\\ F^{top}=q\end{subarray}}\varepsilon_{O(P)}(F)=e_{P}(q,\hat{1})\quad\quad\quad\text{and}\quad\quad\quad\sum_{\begin{subarray}{c}F\in O(P)\\ F_{bot}=t\end{subarray}}\varepsilon_{O(P)}(F)=e_{P}(\hat{0},t).

Recall that every face FF in O(P)O(P) corresponds to a chain in P{0^,1^}P\setminus\{\hat{0},\hat{1}\}, therefore by abusing notation, we can write F={t1<t2<<tk=q}F=\{t_{1}<t_{2}<\dots<t_{k}=q\}. If ρ(q)j\rho(q)\leq j, then all intervals [ti,ti+1][t_{i},t_{i+1}] are Eulerian, and so

χ~(lkO(P)F)=(1)|F|μ(0^,t1)μ(t1,t2)μ(q,1^)=(1)|F|+ρ(q)μ(q,1^).\tilde{\chi}(\operatorname{\mathrm{lk}}_{O(P)}F)=(-1)^{|F|}\cdot\mu(\hat{0},t_{1})\mu(t_{1},t_{2})\dots\mu(q,\hat{1})=(-1)^{|F|+\rho(q)}\cdot\mu(q,\hat{1}).

Hence εO(P)(F)=(1)|F|+ρ(q)eP(q,1^)\varepsilon_{O(P)}(F)=(-1)^{|F|+\rho(q)}e_{P}(q,\hat{1}). In particular, if FF is a facet in O([0^,q])O([\hat{0},q]), i.e., a saturated chain in [0^,q][\hat{0},q], then ρ(q)=|F|\rho(q)=|F| and εO(P)(F)=eP(q,1^)\varepsilon_{O(P)}(F)=e_{P}(q,\hat{1}). If FF a ridge in O([0^,q])O([\hat{0},q]), then εO(P)(F)=eP(q,1^)\varepsilon_{O(P)}(F)=-e_{P}(q,\hat{1}), etc. This, together with the fact that O([0^,q])O([\hat{0},q]) is Eulerian, implies

FO(P)Ftop=qεO(P)(F)=(1)ρ(q)χ~(O([0^,q]))eP(q,1^)=eP(q,1^).\sum_{\begin{subarray}{c}F\in O(P)\\ F^{top}=q\end{subarray}}\varepsilon_{O(P)}(F)=(-1)^{\rho(q)}\cdot\tilde{\chi}(O\left([\hat{0},q])\right)\cdot e_{P}(q,\hat{1})=e_{P}(q,\hat{1}).

A symmetric argument takes care of the other half of the claim. Our statement now follows from Corollary 6.11

Remark 6.13.

The polynomial in (6.1) is a symmetric polynomial with half of its coefficients negated. In particular, it is the following (here AkA_{k} stands for Ak(P)A_{k}(P)):

Adxd+Ad1xd1++Akxk+AkxdkAd1xAd.A_{d}x^{d}+A_{d-1}x^{d-1}+\dots+A_{k}x^{k}+\dots-A_{k}x^{d-k}-\dots-A_{d-1}x-A_{d}.

Therefore the coefficients of xkx^{k} and xdkx^{d-k} add up to zero for every kd2k\neq\frac{d}{2}. The case of k=dk=d was used to obtain Corollaries 6.11 and 6.12. A natural open problem is the following: can we make use of other equalities arising from comparing the coefficients of xkx^{k} and xdkx^{d-k} for kdk\neq d of this polynomial?

The next main theorem in this section will give an explicit formula for Ak(j)(P)A_{k}^{(j)}(P). Before stating the theorem, we first introduce some notation. Given a poset T=[0^,t]T=[\hat{0},t] and integers uu and vv, we define the following function.

C(T,u,v):=(uρ(t)v)g^ρ(t)2(T)(uρ(t)v1)++(1)mg^ρ(t)1m(T)(uρ(t)vm)C(T,u,v):={u-\rho(t)\choose v}-\hat{g}_{\rho(t)-2}(T)\cdot{u-\rho(t)\choose v-1}+\dots+(-1)^{m}\hat{g}_{\rho(t)-1-m}(T)\cdot{u-\rho(t)\choose v-m}

where m=(ρ(t)1)/2m=\lfloor(\rho(t)-1)/2\rfloor.

Note that by Pascal’s rule on binomial coefficients, for each u,vu,v, we have

C(T,u,v)+C(T,u,v+1)=C(T,u+1,v+1).\displaystyle C(T,u,v)+C(T,u,v+1)=C(T,u+1,v+1). (6.5)
Theorem 6.14.

Let PP be a jj-Sing poset of rank d+1d+1 (with d>2jd>2j), and let k>(d+j)/2k>(d+j)/2. For each element tPt\in P, let T:=[0^,t]T:=[\hat{0},t], then

Ak(j)(P)=(1)kρ(t)jeP(t,1^)C(T,d,k)for k>(d+j)/2.\displaystyle A^{(j)}_{k}(P)=(-1)^{k}\sum_{\begin{subarray}{c}\rho(t)\leq j\end{subarray}}e_{P}(t,\hat{1})\cdot C(T,d,k)\quad\quad\text{for }k>(d+j)/2. (6.6)
Proof.

The proof is by induction on j. The base cases of j=1j=-1 and 0 are immediate from Stanley’s and Swartz’s results, see Theorems 5.3 and 5.4. The j=1j=1 case can be easily checked using (6.2) and Corollary 6.11. The inductive hypothesis is that for all j<jj^{\prime}<j, all jj^{\prime}-Sing posets QQ of rank d+1d^{\prime}+1, and all k>d+j2k>\frac{d^{\prime}+j^{\prime}}{2},

Ak(j)(Q)=(1)kρ(t)jeP(t,1^)C(T,d,k).\displaystyle A_{k}^{(j^{\prime})}(Q)=(-1)^{k}\sum_{\begin{subarray}{c}\rho(t)\leq j^{\prime}\end{subarray}}e_{P}(t,\hat{1})\cdot C(T,d^{\prime},k). (6.7)

If PP is a jj-Sing poset and k>d+j2k>\frac{d+j}{2}, then since Ak(j)(P)A^{(j)}_{k}(P) is the coefficient of xkx^{k} in Equation (6.1),

Ak(j)(P)=(1)dk+1ρ(t)je(t,1^)C(T,d,dk)ρ(q)=dj+b0<bjk(dρ(q))1ak1(1)ka(dρ(q)k(a+1))(Aa(b1)(Q)Aa+1(b1)(Q)).\displaystyle\begin{split}A^{(j)}_{k}(P)&=(-1)^{d-k+1}\sum_{\begin{subarray}{c}\rho(t)\leq j\end{subarray}}e(t,\hat{1})\cdot C(T,d,d-k)\\ &-\sum_{\begin{subarray}{c}\rho(q)=d-j+b\\ 0<b\leq j\\ k-(d-\rho(q))-1\leq a\leq k-1\end{subarray}}(-1)^{k-a}\cdot{d-\rho(q)\choose{k-(a+1)}}\cdot\bigg{(}A^{(b-1)}_{a}(Q)-A^{(b-1)}_{a+1}(Q)\bigg{)}.\end{split} (6.8)

We now check that the inductive hypothesis applies to all of the summands in the second summation in (6.8). For each qq with ρ(q)=dj+b\rho(q)=d-j+b, Q=[0^,q]Q=[\hat{0},q] is a (b1)(b-1)-Sing poset. By (6.7), for all a>(dj+b1)+(b1)2=dj2+b1a>\frac{(d-j+b-1)+(b-1)}{2}=\frac{d-j}{2}+b-1,

Aa(b1)(Q)=(1)aρ(t)b1eQ(t,1^)C(T,ρ(Q)1,a).\displaystyle A^{(b-1)}_{a}(Q)=(-1)^{a}\sum_{\rho(t)\leq b-1}e_{Q}(t,\hat{1})\cdot C(T,\rho(Q)-1,a). (6.9)

In (6.8), the second summation is a sum over qPq\in P such that ρ(q)=dj+b\rho(q)=d-j+b and

akd+ρ(q)1=kj+b1>d+j2j+b1=dj2+b1.a\geq k-d+\rho(q)-1=k-j+b-1>\frac{d+j}{2}-j+b-1=\frac{d-j}{2}+b-1.

Therefore (6.9) holds for all Aa(b1)(Q)A^{(b-1)}_{a}(Q)’s in (6.8), and so

Ak(j)\displaystyle A^{(j)}_{k} (P)=(1)dk+1ρ(t)=r+1jm=r/2e(t,1^)C(T,d,dk)\displaystyle(P)=(-1)^{d-k+1}\sum_{\begin{subarray}{c}\rho(t)=r+1\leq j\\ m=\lfloor r/2\rfloor\end{subarray}}e(t,\hat{1})\cdot C(T,d,d-k)
(1)kρ(q)=dj+b0<bja[k(dρ(q))1,k1](dρ(Q)k(a+1))ρ(t)b1eQ(t,1^)[C(T,ρ(Q)1,a)+C(T,ρ(Q)1,a+1)].\displaystyle-(-1)^{k}\sum_{\begin{subarray}{c}\rho(q)=d-j+b\\ 0<b\leq j\\ a\in[k-(d-\rho(q))-1,\;k-1]\end{subarray}}{d-\rho(Q)\choose{k-(a+1)}}\sum_{\rho(t)\leq b-1}e_{Q}(t,\hat{1})\bigg{[}C(T,\rho(Q)-1,a)+C(T,\rho(Q)-1,a+1)\bigg{]}.

Note that eQ(t,1^)=eP(t,q)e_{Q}(t,\hat{1})=e_{P}(t,q), and by recurence relation (6.5), we obtain:

Ak(j)(P)\displaystyle A^{(j)}_{k}(P) =(1)dk+1ρ(t)=r+1jm=r/2eP(t,1^)C(T,d,dk)\displaystyle=(-1)^{d-k+1}\sum_{\begin{subarray}{c}\rho(t)=r+1\leq j\\ m=\lfloor r/2\rfloor\end{subarray}}e_{P}(t,\hat{1})\cdot C(T,d,d-k)
(1)kρ(q)=dj+b0<bjk(dρ(q))1ak1ρ(t)b1eP(t,q)(dρ(Q)k(a+1))C(T,ρ(Q),a+1).\displaystyle-(-1)^{k}\sum_{\begin{subarray}{c}\rho(q)=d-j+b\\ 0<b\leq j\\ k-(d-\rho(q))-1\leq a\leq k-1\end{subarray}}\sum_{\rho(t)\leq b-1}e_{P}(t,q){d-\rho(Q)\choose{k-(a+1)}}\cdot C(T,\rho(Q),a+1).

Since each C(T,ρ(Q),a+1)C(T,\rho(Q),a+1) is an alternating sum of multiples of the binomial coefficients (ρ(Q)ρ(T)(a+1)c){\rho(Q)-\rho(T)\choose(a+1)-c} (for some cc’s), we can use the Chu-Vandermonde identity to conclude that:

a=k(dρ(q))1k1(dρ(Q)k(a+1))(ρ(Q)ρ(T)(a+1)c)=(dρ(T)kc).\sum_{a=k-(d-\rho(q))-1}^{k-1}{d-\rho(Q)\choose k-(a+1)}\cdot{\rho(Q)-\rho(T)\choose(a+1)-c}={d-\rho(T)\choose k-c}.

This shows that (for k>d+j2k>\frac{d+j}{2}),

Ak(j)(P)=(1)dk+1ρ(t)jeP(t,1^)C(T,d,dk)(1)kρ(q)=dj+b0<bjρ(t)b1eP(t,q)C(T,d,k).=(1)dk+1ρ(t)jeP(t,1^)C(T,d,dk)+(1)k+1ρ(t)[0,ρ(q)(dj+1)]ρ(q)[dj+1,d]eP(t,q)C(T,d,k).\displaystyle\begin{split}A^{(j)}_{k}&(P)=(-1)^{d-k+1}\sum_{\begin{subarray}{c}\rho(t)\leq j\end{subarray}}e_{P}(t,\hat{1})C(T,d,d-k)-(-1)^{k}\sum_{\begin{subarray}{c}\rho(q)=d-j+b\\ 0<b\leq j\end{subarray}}\;\sum_{\rho(t)\leq b-1}e_{P}(t,q)\cdot C(T,d,k).\\ &=(-1)^{d-k+1}\sum_{\begin{subarray}{c}\rho(t)\leq j\end{subarray}}e_{P}(t,\hat{1})\cdot C(T,d,d-k)\quad+\quad(-1)^{k+1}\sum_{\begin{subarray}{c}\rho(t)\in[0,\;\rho(q)-(d-j+1)]\\ \rho(q)\in[d-j+1,\;d]\end{subarray}}e_{P}(t,q)\cdot C(T,d,k).\end{split} (6.10)

The second equality holds because in the second summation, eP(t,q)=0e_{P}(t,q)=0 for all intervals [t,q][t,q] of length dj\leq d-j.

The next step is to apply Corollary 6.11 to all intervals [t,1^][t,\hat{1}] with 0ρ(t)j10\leq\rho(t)\leq j-1 to replace the summands in (6.10) that involve eP(t,q)e_{P}(t,q) with with sums of multiples of eP(t,1^)e_{P}(t^{\prime},\hat{1}) where 0ρ(t)j0\leq\rho(t^{\prime})\leq j.

The cases of even and odd jj’s are slightly different because of the two cases in Corollary 6.11. Here we assume jj is odd (and hence dd is assumed to be even, see Remark 6.3). The proof for the case of even jj is similar; we omit it.

As jj is odd and dd is even, Corollary 6.11 implies that

(\displaystyle(- 1)k+1ρ(u)=idj+1ρ(q)deP(u,q)C(U,d,k)\displaystyle 1)^{k+1}\sum_{\begin{subarray}{c}\rho(u)=i\\ d-j+1\leq\rho(q)\leq d\end{subarray}}e_{P}(u,q)C(U,d,k)
={(1)kρ(t)=i2eP(t,1^)C(T,d,k)+(1)kρ(u)=ii+1ρ(t)ju<teP(t,1^)C(U,d,k)if i is even(1)k+1ρ(u)=ii+1ρ(t)ju<teP(t,1^)C(U,d,k)if i is odd.\displaystyle=\begin{cases}(-1)^{k}\sum\limits_{\rho(t)=i}2e_{P}(t,\hat{1})\cdot C(T,d,k)+(-1)^{k}\sum\limits_{\begin{subarray}{c}\rho(u)=i\\ i+1\leq\rho(t)\leq j\\ u<t\end{subarray}}e_{P}(t,\hat{1})\cdot C(U,d,k)\quad\text{if }i\text{ is even}\\ (-1)^{k+1}\sum\limits_{\begin{subarray}{c}\rho(u)=i\\ i+1\leq\rho(t)\leq j\\ u<t\end{subarray}}e_{P}(t,\hat{1})\cdot C(U,d,k)\qquad\qquad\qquad\qquad\qquad\qquad\quad\qquad\text{if }i\text{ is odd}.\end{cases}

After these substitutions, all of the summands in equation (6.10) that involve eP(u,q)e_{P}(u,q) with q1^q\neq\hat{1} are replaced with sums of multiples of eP(t,1^)e_{P}(t,\hat{1}) for some tut\geq u. Now we have:

(1)k+10ρ(t)j1dj+1ρ(q)de(t,q)C(T,d,k)\displaystyle(-1)^{k+1}\sum_{\begin{subarray}{c}0\leq\rho(t)\leq j-1\\ d-j+1\leq\rho(q)\leq d\end{subarray}}e(t,q)C(T,d,k)
=\displaystyle= (1)ki even[ρ(t)=i2eP(t,1^)C(T,d,k)+ρ(u)=ii+1ρ(t)ju<teP(t,1^)C(U,d,k)]+(1)k+1i oddρ(u)=ii+1ρ(t)ju<teP(t,1^)C(U,d,k)\displaystyle(-1)^{k}\sum_{i\text{ even}}\left[\sum\limits_{\rho(t)=i}2e_{P}(t,\hat{1})C(T,d,k)+\sum\limits_{\begin{subarray}{c}\rho(u)=i\\ i+1\leq\rho(t)\leq j\\ u<t\end{subarray}}e_{P}(t,\hat{1})C(U,d,k)\right]+(-1)^{k+1}\sum_{i\text{ odd}}\sum\limits_{\begin{subarray}{c}\rho(u)=i\\ i+1\leq\rho(t)\leq j\\ u<t\end{subarray}}e_{P}(t,\hat{1})C(U,d,k)
=\displaystyle= (1)kρ(t)jeP(t,1^)[u<tC(U,d,k)(1)ρ(u)]+(1)kρ(t) is eveneP(t,1^)2C(T,d,k).\displaystyle(-1)^{k}\sum_{\rho(t)\leq j}e_{P}(t,\hat{1})\left[\sum\limits_{u<t}C(U,d,k)\cdot(-1)^{\rho(u)}\right]+(-1)^{k}\sum_{\rho(t)\text{ is even}}e_{P}(t,\hat{1})2C(T,d,k).

Together with (6.10) and the assumption that dd is even, this shows

Ak(j)(P)=ρ(t)j(1)keP(t,1^)[C(T,d,dk)+u<t(1)ρ(u)C(U,d,k)]+(1)kρ(t)jρ(t) eveneP(t,1^)2C(T,d,k).A_{k}^{(j)}(P)=\sum_{\rho(t)\leq j}(-1)^{k}e_{P}(t,\hat{1})\cdot\left[-C(T,d,d-k)+\sum_{u<t}(-1)^{\rho(u)}C(U,d,k)\right]+(-1)^{k}\sum_{\begin{subarray}{c}\rho(t)\leq j\\ \rho(t)\text{ even}\end{subarray}}e_{P}(t,\hat{1})2C(T,d,k).

Comparing this with (6.6), it suffices to show that for each tPt\in P with ρ(t)j\rho(t)\leq j and T=[0^,t]T=[\hat{0},t],

(1)k+1C(T,d,dk)+(1)ku<t(1)ρ(u)C(U,d,k)={(1)kC(T,d,k) if ρ(t) is odd,(1)k+1C(T,d,k) if ρ(t) is even.\displaystyle(-1)^{k+1}C(T,d,d-k)+(-1)^{k}\sum_{u<t}(-1)^{\rho(u)}C(U,d,k)=\begin{cases}(-1)^{k}C(T,d,k)\;&\text{ if }\rho(t)\text{ is odd},\\ (-1)^{k+1}C(T,d,k)\;&\text{ if }\rho(t)\text{ is even}.\end{cases} (6.11)

Observe that since d is even,

  • (1)k+1C(T,d,dk)= the coefficient of xk in (x1)dρ(t)xρ(t)g^(T,1x),(-1)^{k+1}C(T,d,d-k)=\text{ the coefficient of }x^{k}\text{ in }-(x-1)^{d-\rho(t)}\cdot x^{\rho(t)}\cdot\hat{g}(T,\frac{1}{x}),

  • (1)ku<t(1)ρ(u)C(U,d,k)= the coefficient of xk in u<t(x1)dρ(u)g^(U,x),(-1)^{k}\sum\limits_{\begin{subarray}{c}u<t\end{subarray}}(-1)^{\rho(u)}C(U,d,k)=\text{ the coefficient of }x^{k}\text{ in }\sum\limits_{\begin{subarray}{c}u<t\end{subarray}}(x-1)^{d-\rho(u)}\cdot\hat{g}(U,x),

  • (1)kC(T,d,k)= the coefficient of xk in (1)ρ(t)(x1)dρ(t)g^(T,x).(-1)^{k}C(T,d,k)=\text{ the coefficient of }x^{k}\text{ in }(-1)^{\rho(t)}(x-1)^{d-\rho(t)}\cdot\hat{g}(T,x).

Therefore, (6.11) is equivalent to:

(x1)dρ(t)xρ(t)g^(T,1x)+u<t(x1)dρ(u)g^(U,x)=(x1)dρ(t)g^(T,x).\displaystyle-(x-1)^{d-\rho(t)}\cdot x^{\rho(t)}\cdot\hat{g}(T,\frac{1}{x})+\sum\limits_{\begin{subarray}{c}u<t\end{subarray}}(x-1)^{d-\rho(u)}\cdot\hat{g}(U,x)=-(x-1)^{d-\rho(t)}\cdot\hat{g}(T,x). (6.12)

This equality holds since by the definition of h^(T,x)\hat{h}(T,x), the left hand-side is

(x1)dρ(t)xρ(t)g^(T,1x)+(x1)dρ(t)+1h^(T,x)\displaystyle-(x-1)^{d-\rho(t)}\cdot x^{\rho(t)}\cdot\hat{g}(T,\frac{1}{x})+(x-1)^{d-\rho(t)+1}\cdot\hat{h}(T,x)
=(x1)dρ(t)[xρ(t)g^(T,1x)+(x1)h^(T,x)]\displaystyle=(x-1)^{d-\rho(t)}\left[-x^{\rho(t)}\cdot\hat{g}(T,\frac{1}{x})+(x-1)\cdot\hat{h}(T,x)\right]
=(x1)dρ(t)g^(T,x).\displaystyle=-(x-1)^{d-\rho(t)}\cdot\hat{g}(T,x).

where the last equality holds since TT is Eulerian.

This completes the proof that Akj=(1)k0ρ(t)je(t,1^)C(t)A_{k}^{j}=(-1)^{k}\sum\limits_{0\leq\rho(t)\leq j}e(t,\hat{1})C(t) when jj is odd. When jj is even, the proof is very similar; we omit it. ∎

6.3 The lower Eulerian case

In this subsection we assume that PP is lower Eulerian, i.e., all intervals [0,t][0,t] are Eulerian for t1^t\neq\hat{1}. This is an important subclass of graded posets. For instance, the face posets of all regular CW complexes are lower Eulerian. If PP is jj-Sing and lower Eulerian, the formula of Theorem 6.9 takes on the following simpler form:

Ak(j)(P)=0ρ(q)=r+1jl=0r/2(1)dkl+1(dρ(q)kρ(q)l)eP(q,1^)g^rl([0^,q]).A^{(j)}_{k}(P)=\sum_{0\leq\rho(q)=r+1\leq j}\sum\limits_{l=0}^{\lfloor r/2\rfloor}(-1)^{d-k-l+1}{d-\rho(q)\choose k-\rho(q)-l}\cdot e_{P}(q,\hat{1})\cdot\hat{g}_{r-l}([\hat{0},q]).
Example 6.15.

Let PP be a jj-Sing poset of rank d+1d+1, where j2j\leq 2. If PP is also lower Eulerian, then

h^dk(P)h^k(P)=(1)dk+1ρ(q)2(dρ(q)kρ(q))eP(q,1^).\hat{h}_{d-k}(P)-\hat{h}_{k}(P)=(-1)^{d-k+1}\sum\limits_{\rho(q)\leq 2}{d-\rho(q)\choose k-\rho(q)}e_{P}(q,\hat{1}).
Remark 6.16.

Unfortunately for larger jj the situation becomes more complicated. For instance if j=3j=3, then using the fact (easy to check) that

g^(Q)=μ(Q)+[f1(Q)+μ(Q)2]x for any poset Q with ρ(Q)=3\hat{g}(Q)=-\mu(Q)+[f_{1}(Q)+\mu(Q)-2]x\quad\quad\text{ for any poset }Q\text{ with }\rho(Q)=3

and the assumption that the poset PP is lower Eulerian, one can show that

Ak(3)(P)=(1)dk+1ρ(q)2(dρ(q)kρ(q))e(q,1^)+(1)dk+1ρ(q)=3[(d3k3)(d3k4)(f1([0,q])3))]eP(q,1^).A^{(3)}_{k}(P)=(-1)^{d-k+1}\sum\limits_{\rho(q)\leq 2}{d-\rho(q)\choose k-\rho(q)}e(q,\hat{1})\\ +(-1)^{d-k+1}\sum_{\rho(q)=3}\underbrace{\bigg{[}{d-3\choose k-3}-{d-3\choose k-4}\cdot\bigg{(}f_{1}([0,q])-3)\bigg{)}\bigg{]}}_{\heartsuit}\cdot e_{P}(q,\hat{1}). (6.13)

Observe that “\heartsuit” equals (d3k3){d-3\choose k-3} if and only if f1(Q)=3f_{1}(Q)=3, which is the case when QQ is the face poset of a simplex.

Definition 6.17.

A pure graded poset PP is kk-lower simplicial if for all tPt\in P with ρ(t)k\rho(t)\leq k, the interval [0,t][0,t] is a Boolean lattice.

Corollary 6.18.

Let PP be a jj-Sing lower Eulerian poset PP of rank d+1d+1. If PP is also jj-lower simplicial, then for k>d2k>\lfloor\frac{d}{2}\rfloor,

h^dk(P)h^k(P)=(1)dk+1ρ(q)j(dρ(q)kρ(q))eP(q,1^).\hat{h}_{d-k}(P)-\hat{h}_{k}(P)=(-1)^{d-k+1}\sum\limits_{\rho(q)\leq j}{d-\rho(q)\choose k-\rho(q)}\cdot e_{P}(q,\hat{1}).
Remark 6.19.

In the case that PP is the face poset of a simplicial complex Δ\Delta and PP is jj-Sing, Corollary 6.18 agrees with the formula in Theorem 3.1.

6.4 Open problems

The most natural open problem is to find a “nice” formula for Ak(j)(P)A^{(j)}_{k}(P) when jd2j\geq\frac{d}{2}. Here ρ(P)=d+1\rho(P)=d+1 and d2kd+j2\frac{d}{2}\leq k\leq\frac{d+j}{2}.

To state the next problem, let PP be a jj-Sing poset, and let PP^{*} be the dual poset of PP. By definition, PP^{*} is also a jj-Sing poset. Recall that

  • When j=1j=-1, Ak(1)(P)=Ak(1)(P)=0.A^{(-1)}_{k}(P)=A^{(-1)}_{k}(P^{*})=0.

  • When j=0j=0,

    Ak(0)(P)=(1)dk+1(dk)eP(0^,1^)=Ak(0)(P).A^{(0)}_{k}(P)=(-1)^{d-k+1}{d\choose k}e_{P}(\hat{0},\hat{1})=A^{(0)}_{k}(P^{*}).

    When dd is odd and k=d2k=\lfloor\frac{d}{2}\rfloor, this means

    g^d2(P)=g^d2(P).\hat{g}_{\lfloor\frac{d}{2}\rfloor}(P)=\hat{g}_{\lfloor\frac{d}{2}\rfloor}(P^{*}).
  • When j=1j=1 (and assuming dd is even), after cancellations, we obtain

    Ak(1)(P)Ak(1)(P)=(1)dk(d1k)[ρ(q)=1eP(q,1^)ρ(Q)=deP(0^,q)].A^{(1)}_{k}(P)-A^{(1)}_{k}(P^{*})=(-1)^{d-k}{d-1\choose k}\bigg{[}\sum_{\rho(q)=1}e_{P}(q,\hat{1})-\sum_{\rho(Q)=d}e_{P}(\hat{0},q)\bigg{]}.

This leads to the following question:

Question 6.20.

How do the numbers Ak(j)(P)A^{(j)}_{k}(P) compare with Ak(j)(P)A^{(j)}_{k}(P^{*})?

Acknowledgments

The authors would like to thank Ed Swartz for bringing up the problem on Dehn–Sommerville relations of toric hh-vectors and also for the suggestion on using the short hh-vectors for the second proof of Theorem 3.1. We also thank Isabella Novik for having posed the problem to us and having taken many hours to discuss and to help revise the first few drafts of this paper, and Bennet Goeckner for numerous comments on the draft. The second author is also grateful to Margaret Bayer for valuable questions at the AMS meeting in Florida. We are also thankful to the referee for providing helpful suggestions on how to strengthen our results, which led to a significant improvement of Section 4.

References

  • [BB85] Margaret M. Bayer and Louis J. Billera. Generalized Dehn-Sommerville relations for polytopes, spheres and Eulerian partially ordered sets. Invent. Math., 79(1):143–157, 1985.
  • [Bjö95] Anders Björner. Topological methods. In Handbook of combinatorics, Vol. 1, 2, pages 1819–1872. Elsevier Sci. B. V., Amsterdam, 1995.
  • [BK91] Margaret M. Bayer and Andrew Klapper. A new index for polytopes. Discrete Comput. Geom., 6(1):33–47, 1991.
  • [Ehr01] Richard Ehrenborg. kk-Eulerian posets. Order, 18(3):227–236, 2001.
  • [HN02] Patricia Hersh and Isabella Novik. A short simplicial hh-vector and the upper bound theorem. Discrete Comput. Geom., 28(3):283–289, 2002.
  • [Kle64a] Victor Klee. A combinatorial analogue of Poincaré’s duality theorem. Canadian J. Math., 16:517–531, 1964.
  • [Kle64b] Victor Klee. On the number of vertices of a convex polytope. Canadian J. Math., 16:701–720, 1964.
  • [McM70] P. McMullen. The maximum numbers of faces of a convex polytope. Mathematika, 17:179–184, 1970.
  • [Nov98] Isabella Novik. Upper bound theorems for homology manifolds. Israel J. Math., 108:45–82, 1998.
  • [NS12] Isabella Novik and Ed Swartz. Face numbers of pseudomanifolds with isolated singularities. Math. Scand., 110(2):198–222, 2012.
  • [Sta75] Richard P. Stanley. The upper bound conjecture and Cohen-Macaulay rings. Studies in Appl. Math., 54(2):135–142, 1975.
  • [Sta79] Richard P. Stanley. Balanced Cohen-Macaulay complexes. Trans. Amer. Math. Soc., 249(1):139–157, 1979.
  • [Sta87] Richard P. Stanley. Generalized HH-vectors, intersection cohomology of toric varieties, and related results. In Commutative algebra and combinatorics (Kyoto, 1985), volume 11 of Adv. Stud. Pure Math., pages 187–213. North-Holland, Amsterdam, 1987.
  • [Sta91] Richard P. Stanley. ff-vectors and hh-vectors of simplicial posets. J. Pure Appl. Algebra, 71(2-3):319–331, 1991.
  • [Sta94] Richard P. Stanley. A survey of Eulerian posets. In Polytopes: abstract, convex and computational (Scarborough, ON, 1993), volume 440 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pages 301–333. Kluwer Acad. Publ., Dordrecht, 1994.
  • [Sta96] Richard P. Stanley. Combinatorics and commutative algebra, volume 41 of Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA, second edition, 1996.
  • [Sta12] Richard P. Stanley. Enumerative combinatorics. Volume 1, volume 49 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, second edition, 2012.
  • [Swa05] E. Swartz. Lower bounds for hh-vectors of kk-CM, independence, and broken circuit complexes. SIAM J. Discrete Math., 18(3):647–661, 2004/05.
  • [Swa09] Ed Swartz. Face enumeration—from spheres to manifolds. J. Eur. Math. Soc. (JEMS), 11(3):449–485, 2009.