This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Non-Drude behaviour of optical conductivity in Kondo-lattice systems

Komal KumariiiiVisiting Physical Research Laboratory, Ahmedabad
Department of Physics, Himachal Pradesh University,
 Shimla, India, Pin:171005
Abstract

The optical conductivity in a Kondo lattice system is presented in terms of the memory function formalism. I use Kondo-lattice Hamiltonian for explicit calculations. I compute the frequency dependent imaginary part of the memory function (M′′(ω)M^{\prime\prime}(\omega)), and the real part of the memory function M(ω)M^{\prime}(\omega) by using the Kramers-Kronig transformation. Optical conductivity is computed using the generalized Drude formula. I find that high frequency tail of the optical conductivity scales as σ(ω)1ω\sigma(\omega)\sim\frac{1}{\omega} instead of the Drude 1ω2\frac{1}{\omega^{2}} law. Such a behaviour is seen in strange metals. My work points out that it may be the magnetic scattering mechanisms that are important for the anomalous behaviour of strange metals.

1 Introduction

In the Drude model, optical conductivity is given by [1]

σ(ω)=ne2m1iω+1τD.\displaystyle\sigma(\omega)=\frac{ne^{2}}{m}\frac{1}{i\omega+\frac{1}{\tau_{D}}}. (1)

here τD\tau_{D} is the Drude scattering rate. The real and imaginary parts of the conductivity are given by

σ(ω)=ne2m1τDω2+(1τD)2.\sigma^{\prime}(\omega)=\frac{ne^{2}}{m}\frac{\frac{1}{\tau_{D}}}{\omega^{2}+(\frac{1}{\tau_{D}})^{2}}. (2)
σ′′(ω)=ne2mωω2+(1τD)2.\sigma^{\prime\prime}(\omega)=\frac{ne^{2}}{m}\frac{\omega}{\omega^{2}+(\frac{1}{\tau_{D}})^{2}}. (3)

In the high frequency limit ω1τD\omega\gg\frac{1}{\tau_{D}}, the real part of conductivity scales σ(ω)1ω2\sigma^{\prime}(\omega)\sim\frac{1}{\omega^{2}}. This is a typical signature of "good" metals [1, 2]. But it has been experimentally observed that σ(ω)\sigma^{\prime}(\omega) scales as 1ω\frac{1}{\omega} or some fractional power of 1ω\frac{1}{\omega} in many situations (such as in the "normal" state of high temperature superconductors).The metallic states which show such a behaviour are called strange metals [3]

The aim of the present work is to show that the behaviour σ(ω)1ω\sigma^{\prime}(\omega)\sim\frac{1}{\omega} can arise in a situation where electron scattering happens via magnetic spin fluctuations, whereas the standard electron-impurity and electron-phonon scaterring lead to the Drude behaviour (σ(ω)1ω2\sigma^{\prime}(\omega)\sim\frac{1}{\omega^{2}}).

2 Drude Theory and its Generalizations

In simple Drude model a frequency independent time τD\tau_{D} governs the relaxation of current and 1τD\frac{1}{\tau_{D}} is identified as the Drude scattering rate. The simple Langevin equation leads to [2, 3, 4]

σ(ω)=ne2m1iω+1τD\sigma(\omega)=\frac{ne^{2}}{m}\frac{1}{i\omega+\frac{1}{\tau_{D}}} (4)

Here nn and mm are the number density and mass of the free electrons. The standard Drude formula has many limitations [4]. The Generalized Drude Formula (GDF) writes the dynamical conductivity in terms of the memory function[2, 3, 4]

σ(ω)=ne2m1iω+M(ω).\sigma(\omega)=\frac{ne^{2}}{m}\frac{1}{i\omega+M(\omega)}. (5)

where M(ω)M(\omega) is the complex frequency dependent memory function. In some situations when M(ω)M(\omega) becomes the frequency independent, the generalized Drude formula (5) reduces to simple Drude formula(4) [2, 3, 4].

2.1 A.C.A.C. Conductivity

In this section I write the dynamical conductivity by introducing σ(z)\sigma(z) in terms of memory function M(z)M(z) by introducing complex frequency zz [3].

σ(z)=ine2m1z+M(z),\displaystyle\sigma(z)=i\frac{ne^{2}}{m}\frac{1}{z+M(z)}, (6)

here complex function M(z=ω±i0)M(z=\omega\pm i0) can be written as M(ω)±iM′′(ω)M^{\prime}(\omega)\pm iM^{\prime\prime}(\omega). Therefore σ(z)\sigma(z) can be separated into real σ(ω±i0)\sigma(\omega\pm i0) and imaginary σ′′(ω)\sigma^{\prime\prime}(\omega) parts:

σ(ω)=ne2mM′′(ω)(ω+M(ω))2+(M′′(ω))2,\displaystyle\sigma^{\prime}(\omega)=\frac{ne^{2}}{m}\frac{M^{\prime\prime}(\omega)}{(\omega+M^{\prime}(\omega))^{2}+(M^{\prime\prime}(\omega))^{2}}, (7)
σ′′(ω)=ne2m(ω+M(ω))(ω+M(ω))2+(M′′(ω))2.\displaystyle\sigma^{\prime\prime}(\omega)=\frac{ne^{2}}{m}\frac{(\omega+M^{\prime}(\omega))}{(\omega+M^{\prime}(\omega))^{2}+(M^{\prime\prime}(\omega))^{2}}. (8)

My next task is to compute the frequency dependent real and imaginary parts of the memory function and then dynamical conductivity can be computed.

3 The memory function for ss -dd Hamiltonian

I take the ss-dd Hamiltonian (known as Kondo-lattice Hamiltonian) for explicit calculations, and compute the imaginary part of the memory function. The Kondo-lattice Hamiltonian is given by

Hsd\displaystyle H_{sd} =\displaystyle= JNkk{ckckS(kk)+ckckS+(kk)+(ckckckck)Sz(kk)}\displaystyle\frac{J}{N}\sum_{k^{\prime}k}\bigg{\{}c^{\dagger}_{k^{\prime}\uparrow}c_{k\downarrow}S^{-}(k^{\prime}-k)+c^{\dagger}_{k^{\prime}\downarrow}c_{k\uparrow}S^{+}(k^{\prime}-k)+(c^{\dagger}_{k^{\prime}\uparrow}c_{k\uparrow}-c^{\dagger}_{k^{\prime}\downarrow}c_{k\downarrow})S^{z}(k^{\prime}-k)\bigg{\}} (9)

here JJ is coupling constant between ss-electron and dd electrons [5]. cc^{\dagger} and cc are the creation and annihilation operators for ss-electrons. S(kk)S^{-}(k^{\prime}-k) and S+(kk)S^{+}(k^{\prime}-k) are the spin lowering and spin raising operator of dd or ff electrons and these are given as

S(q)=kak+qak,S+(q)=kak+qak.\displaystyle S^{-}(q)=\sum_{k}a^{*}_{k+q\downarrow}a_{k\uparrow},~{}~{}~{}~{}~{}~{}~{}~{}~{}S^{+}(q)=\sum_{k}a^{*}_{k+q\uparrow}a_{k\downarrow}. (10)

Under the assumption of weak coupling (electron K.E.J\gg J) between the ss and dd electrons the Wölfle-Götze equation of motion method defines the memeory function as [5, 6, 7, 8]

M(z)1z(mne2)[J1˙;J1˙zJ1˙;J1˙0].\displaystyle M(z)\simeq\frac{1}{z}(\frac{m}{ne^{2}})[\langle\langle\dot{J_{1}};\dot{J_{1}}\rangle\rangle_{z}-\langle\langle\dot{J_{1}};\dot{J_{1}}\rangle\rangle_{0}]. (11)

where J1˙=i[J1,Hsd]\dot{J_{1}}=-\frac{i}{\hbar}[J_{1},H_{sd}]. J1=1VkσevkckσckσJ_{1}=\frac{1}{V}\sum_{k\sigma}ev_{k}c^{\dagger}_{k\sigma}c_{k\sigma} is the current density operator and VV is volume of the sample. I define the current-current correlator as ϕ(z)=J1˙;J1˙\phi(z)=\langle\langle\dot{J_{1}};\dot{J_{1}}\rangle\rangle and compute the correlator in terms of fermi functions of electrons(for more details refer to [5]), we get

ϕ(z)\displaystyle\phi(z) =\displaystyle= e2J2N23Vkk(v1(k)v1(k))2{fks(1fks)kd,kd(fkddfkdd)(fksfks)\displaystyle-\frac{e^{2}J^{2}}{N^{2}\hbar^{3}V}\sum_{k^{\prime}k}(v_{1}(k^{\prime})-v_{1}(k))^{2}\bigg{\{}f^{s}_{k^{\prime}}(1-f^{s}_{k})\sum_{k_{d},k^{\prime}_{d}}(f^{d}_{k_{d}}-f^{d}_{k^{\prime}_{d}})-(f^{s}_{k}-f^{s}_{k^{\prime}}) (12)
kd,kdfkdd(1fkdd)}[1ϵkϵkωkk+z+1ϵkϵkωkkz].\displaystyle\sum_{k_{d},k^{\prime}_{d}}f^{d}_{k_{d}}(1-f^{d}_{k^{\prime}_{d}})\bigg{\}}~{}\bigg{[}\frac{1}{\frac{\epsilon_{k^{\prime}}}{\hbar}-\frac{\epsilon_{k}}{\hbar}-\omega_{k^{\prime}-k}+z}+\frac{1}{\frac{\epsilon_{k^{\prime}}}{\hbar}-\frac{\epsilon_{k}}{\hbar}-\omega_{k^{\prime}-k}-z}\bigg{]}.

On substituting the expression (12) in (11) the frequency depedent memory function can be expressed as

M(z)\displaystyle M(z) =\displaystyle= J2mN23nVωkk(v1(k)v1(k))2{fks(1fks)kd,kd(fkddfkdd)(fksfks)\displaystyle-\frac{J^{2}m}{N^{2}\hbar^{3}nV\omega}\sum_{k^{\prime}k}(v_{1}(k^{\prime})-v_{1}(k))^{2}\bigg{\{}f^{s}_{k^{\prime}}(1-f^{s}_{k})\sum_{k_{d},k^{\prime}_{d}}(f^{d}_{k_{d}}-f^{d}_{k^{\prime}_{d}})-(f^{s}_{k}-f^{s}_{k^{\prime}}) (13)
kd,kdfkdd(1fkdd)}[1ϵkϵkωkk+z+1ϵkϵkωkkz\displaystyle\sum_{k_{d},k^{\prime}_{d}}f^{d}_{k_{d}}(1-f^{d}_{k^{\prime}_{d}})\bigg{\}}\bigg{[}\frac{1}{\frac{\epsilon_{k^{\prime}}}{\hbar}-\frac{\epsilon_{k}}{\hbar}-\omega_{k^{\prime}-k}+z}+\frac{1}{\frac{\epsilon_{k^{\prime}}}{\hbar}-\frac{\epsilon_{k}}{\hbar}-\omega_{k^{\prime}-k}-z}
1ϵkϵkωkk1ϵkϵkωkk],\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}-\frac{1}{\frac{\epsilon_{k^{\prime}}}{\hbar}-\frac{\epsilon_{k}}{\hbar}-\omega_{k^{\prime}-k}}-\frac{1}{\frac{\epsilon_{k^{\prime}}}{\hbar}-\frac{\epsilon_{k}}{\hbar}-\omega_{k^{\prime}-k}}\bigg{]},

here we write the short notation for fd1(q)=kd,kd(fkddfkdd)f^{1}_{d}(q)=\sum_{k_{d},k^{\prime}_{d}}(f^{d}_{k_{d}}-f^{d}_{k^{\prime}_{d}}) and fd1(q)=kd,kdfkdd(1fkdd)f^{1}_{d}(q)=\sum_{k_{d},k^{\prime}_{d}}f^{d}_{k_{d}}(1-f^{d}_{k^{\prime}_{d}}). From the above expression the imginary part of the memory function can be written as (for more details refer to ref. [5])

M′′(ω)=112π3J2Vm2N26nqs20qDdqq3[0dϵϵ×(ϵ+ωqωfs(ϵ+ωqω)ϵ+ωq+ωfs(ϵ+ωq+ω)ω𝔗1)×(1fs(ϵ))fd1(q)+0dϵϵ(ϵ+ωq+ωϵ+ωqωω𝔗2)×fs(ϵ)fd2(q)+0dϵϵω(ϵ+ωqωfs(ϵ+ωqω)ϵ+ωq+ωfs(ϵ+ωq+ω))fd2(q)].M^{\prime\prime}(\omega)=\frac{1}{12\pi^{3}}\frac{J^{2}Vm^{2}}{N^{2}\hbar^{6}nq^{2}_{s}}\int_{0}^{q_{D}}dqq^{3}\bigg{[}\int_{0}^{\infty}d\epsilon\sqrt{\epsilon}\times\\ \bigg{(}\underbrace{\frac{\sqrt{\epsilon+\hbar\omega_{q}-\hbar\omega}f^{s}(\epsilon+\hbar\omega_{q}-\hbar\omega)-\sqrt{\epsilon+\hbar\omega_{q}+\hbar\omega}f^{s}(\epsilon+\hbar\omega_{q}+\hbar\omega)}{\omega}}_{\mathfrak{T}_{1}}\bigg{)}\\ ~{}\times(1-f^{s}(\epsilon))f^{1}_{d}(q)+\int_{0}^{\infty}d\epsilon\sqrt{\epsilon}\bigg{(}\underbrace{\frac{\sqrt{\epsilon+\hbar\omega_{q}+\hbar\omega}-\sqrt{\epsilon+\hbar\omega_{q}-\hbar\omega}}{\omega}}_{\mathfrak{T}_{2}}\bigg{)}\times\\ f^{s}(\epsilon)f^{2}_{d}(q)+\int_{0}^{\infty}\frac{d\epsilon\sqrt{\epsilon}}{\omega}\bigg{(}\sqrt{\epsilon+\hbar\omega_{q}-\hbar\omega}f^{s}(\epsilon+\hbar\omega_{q}-\hbar\omega)-~{}~{}~{}~{}~{}~{}\\ ~{}\sqrt{\epsilon+\hbar\omega_{q}+\hbar\omega}f^{s}(\epsilon+\hbar\omega_{q}+\hbar\omega)\bigg{)}f^{2}_{d}(q)\bigg{]}.~{}~{}~{}~{}~{} (14)

In the next section I compute the frequency dependent part of the memory function under the assumption of the long wavelength limit.

4 Computation of frequency dependent Memory Function

I assume that momentum randomization of ss-electrons happens via the creation of magnetic spin waves in the sub-system of dd-electrons. This is the mechanism of resistivity in the considered setting. In equation (14) ωq\hbar\omega_{q} is the energy of the magnetic spin waves. One takes ωq=cmq2\hbar\omega_{q}=c_{m}q^{2}, where cmc_{m} is a constant. I further assumes that (ωqDμs\hbar\omega_{q_{D}}\ll\mu_{s}). That is the maximum energy of magnetic spin waves is much less than the chemical potential of ss-electrons. Under these assumptions terms 𝔗1\mathfrak{T}_{1} and 𝔗2\mathfrak{T}_{2} in equation (14) can be approximated as :

𝔗1ϵωeβ(ϵωμs)+1ϵ+ωeβ(ϵ+ωμs)+1+q2cm2(1ϵω(1+eβ(ϵωμs))1ϵ+ω(1+eβ(ϵ+ωμs))2βϵωeβ(ϵωμs)(1+eβ(ϵωμs))2+2βϵ+ωeβ(ϵ+ωμs)(1+eβ(ϵ+ωμs))2)+O(q4).\mathfrak{T}_{1}\simeq\frac{\sqrt{\epsilon-\hbar\omega}}{e^{\beta(\epsilon-\hbar\omega-\mu_{s})}+1}-\frac{\sqrt{\epsilon+\hbar\omega}}{e^{\beta(\epsilon+\hbar\omega-\mu_{s})}+1}+\frac{q^{2}c_{m}}{2}\bigg{(}\frac{1}{\sqrt{\epsilon-\hbar\omega}(1+e^{\beta(\epsilon-\hbar\omega-\mu_{s})})}\\ ~{}~{}~{}~{}-\frac{1}{\sqrt{\epsilon+\hbar\omega}(1+e^{\beta(\epsilon+\hbar\omega-\mu_{s})})}-2\beta\frac{\sqrt{\epsilon-\hbar\omega}e^{\beta(\epsilon-\hbar\omega-\mu_{s})}}{(1+e^{\beta(\epsilon-\hbar\omega-\mu_{s})})^{2}}+2\beta\frac{\sqrt{\epsilon+\hbar\omega}e^{\beta(\epsilon+\hbar\omega-\mu_{s})}}{(1+e^{\beta(\epsilon+\hbar\omega-\mu_{s})})^{2}}\bigg{)}+O(q^{4}).~{}~{}~{}~{}~{}~{} (15)
𝔗2\displaystyle\mathfrak{T}_{2} \displaystyle\simeq ϵ+ωϵω+q2cm2(1ϵ+ω1ϵω)+O(q4).\displaystyle\sqrt{\epsilon+\hbar\omega}-\sqrt{\epsilon-\hbar\omega}+\frac{q^{2}c_{m}}{2}\bigg{(}\frac{1}{\sqrt{\epsilon+\hbar\omega}}-\frac{1}{\sqrt{\epsilon-\hbar\omega}}\bigg{)}+O(q^{4}).

On Substituting expanded form of the terms 𝔗1\mathfrak{T}_{1} and 𝔗2\mathfrak{T}_{2} in expression (14), we obtain

M′′(ω)=J2Vm212π3N26nqs20qDdqq3[0dϵϵω{ϵω(1+eβ(ϵωμs))ϵ+ω(1+eβ(ϵ+ωμs))+q2cm2((ϵω)1(1+eβ(ϵωμs))(ϵ+ω)1(1+eβ(ϵ+ωμs))2βϵωeβ(ϵωμs)(1+eβ(ϵωμs))2+2βϵ+ωeβ(ϵ+ωμs)(1+eβ(ϵ+ωμs))2)+O(q4)}(1fs(ϵ))f1d(q)+0dϵϵω{ϵ+ωϵω+q2cm2(1ϵ+ω1ϵω)}fs(ϵ)fd2(q)+0dϵϵω{ϵω(1+eβ(ϵωμs))ϵ+ω(1+eβ(ϵ+ωμs))+q2cm2((ϵω)1(1+eβ(ϵωμs))(ϵ+ω)1(1+eβ(ϵ+ωμs))2βϵωeβ(ϵωμs)(1+eβ(ϵωμs))2+2βϵ+ωeβ(ϵ+ωμs)(1+eβ(ϵ+ωμs))2)+O(q4)}fd2(q,ϵd)],M^{\prime\prime}(\omega)=\frac{J^{2}Vm^{2}}{12\pi^{3}N^{2}\hbar^{6}nq^{2}_{s}}\int_{0}^{q_{D}}dqq^{3}\bigg{[}\int_{0}^{\infty}\frac{d\epsilon\sqrt{\epsilon}}{\omega}\bigg{\{}\frac{\sqrt{\epsilon-\hbar\omega}}{(1+e^{\beta(\epsilon-\hbar\omega-\mu_{s})})}-\frac{\sqrt{\epsilon+\hbar\omega}}{(1+e^{\beta(\epsilon+\hbar\omega-\mu_{s})})}+\\ ~{}\frac{q^{2}c_{m}}{2}\bigg{(}\frac{(\sqrt{\epsilon-\hbar\omega})^{-1}}{(1+e^{\beta(\epsilon-\hbar\omega-\mu_{s})})}-\frac{(\sqrt{\epsilon+\hbar\omega})^{-1}}{(1+e^{\beta(\epsilon+\hbar\omega-\mu_{s})})}-2\beta\frac{\sqrt{\epsilon-\hbar\omega}e^{\beta(\epsilon-\hbar\omega-\mu_{s})}}{(1+e^{\beta(\epsilon-\hbar\omega-\mu_{s})})^{2}}+2\beta\frac{\sqrt{\epsilon+\hbar\omega}e^{\beta(\epsilon+\hbar\omega-\mu_{s})}}{(1+e^{\beta(\epsilon+\hbar\omega-\mu_{s})})^{2}}\bigg{)}+~{}\\ ~{}~{}O(q^{4})\bigg{\}}(1-f^{s}(\epsilon))f^{1}_{d}(q)+\int_{0}^{\infty}\frac{d\epsilon\sqrt{\epsilon}}{\omega}\bigg{\{}\sqrt{\epsilon+\hbar\omega}-\sqrt{\epsilon-\hbar\omega}+\frac{q^{2}c_{m}}{2}\bigg{(}\frac{1}{\sqrt{\epsilon+\hbar\omega}}-\frac{1}{\sqrt{\epsilon-\hbar\omega}}\bigg{)}\bigg{\}}~{}\\ ~{}f^{s}(\epsilon)f^{2}_{d}(q)+\int_{0}^{\infty}\frac{d\epsilon\sqrt{\epsilon}}{\omega}\bigg{\{}\frac{\sqrt{\epsilon-\hbar\omega}}{(1+e^{\beta(\epsilon-\hbar\omega-\mu_{s})})}-\frac{\sqrt{\epsilon+\hbar\omega}}{(1+e^{\beta(\epsilon+\hbar\omega-\mu_{s})})}+\frac{q^{2}c_{m}}{2}\bigg{(}\frac{(\sqrt{\epsilon-\hbar\omega})^{-1}}{(1+e^{\beta(\epsilon-\hbar\omega-\mu_{s})})}-~{}\\ ~{}\frac{(\sqrt{\epsilon+\hbar\omega})^{-1}}{(1+e^{\beta(\epsilon+\hbar\omega-\mu_{s})})}-2\beta\frac{\sqrt{\epsilon-\hbar\omega}e^{\beta(\epsilon-\hbar\omega-\mu_{s})}}{(1+e^{\beta(\epsilon-\hbar\omega-\mu_{s})})^{2}}+2\beta\frac{\sqrt{\epsilon+\hbar\omega}e^{\beta(\epsilon+\hbar\omega-\mu_{s})}}{(1+e^{\beta(\epsilon+\hbar\omega-\mu_{s})})^{2}}\bigg{)}+O(q^{4})\bigg{\}}f^{2}_{d}(q,\epsilon_{d})\bigg{]},~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{} (17)

my next task is to perform qq integration in the expression (17). The terms fd1(q)f^{1}_{d}(q) and fd2(q)f^{2}_{d}(q) also contribute qq terms in the integrals. The expansion of fd1(q)=kd[fd(ϵkd)fd(ϵkd)]f^{1}_{d}(q)=\sum_{k_{d}}[f^{d}(\epsilon_{k_{d}})-f^{d}(\epsilon_{k^{\prime}_{d}})] in long wavelength limit (q0q\rightarrow 0) gives

fd1(q)\displaystyle f^{1}_{d}(q) =\displaystyle= kd[fd(ϵkd)fd(ϵkd)qfd(ϵkd)q|q=0q22!2fd(ϵkd)q2|q=0q33!3fd(ϵkd)q3|q=0..].\displaystyle\sum_{k_{d}}[f^{d}(\epsilon_{k_{d}})-f^{d}(\epsilon_{k_{d}})-q\frac{\partial f^{d}(\epsilon_{k^{\prime}_{d}})}{\partial q}|_{q=0}-\frac{q^{2}}{2!}\frac{\partial^{2}f^{d}(\epsilon_{k^{\prime}_{d}})}{\partial q^{2}}|_{q=0}-\frac{q^{3}}{3!}\frac{\partial^{3}f^{d}(\epsilon_{k^{\prime}_{d}})}{\partial q^{3}}|_{q=0}..].

On converting summation into integrals (kd=V(2π)3d3kd\sum_{k_{d}}=\frac{V}{(2\pi)^{3}}\int d^{3}k_{d}), we get

fd1(q)\displaystyle f^{1}_{d}(q) =\displaystyle= V(2π)20kd2dkd0πsinθdθ[qfd(ϵkd)q|q=0+q22!2fd(ϵkd)q2|q=0\displaystyle-\frac{V}{(2\pi)^{2}}\int_{0}^{\infty}k^{2}_{d}dk_{d}\int_{0}^{\pi}\sin\theta d\theta\bigg{[}q\frac{\partial f^{d}(\epsilon_{k^{\prime}_{d}})}{\partial q}|_{q=0}+\frac{q^{2}}{2!}\frac{\partial^{2}f^{d}(\epsilon_{k^{\prime}_{d}})}{\partial q^{2}}|_{q=0} (19)
+q33!3fd(ϵkd)q3|q=0.].\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}+\frac{q^{3}}{3!}\frac{\partial^{3}f^{d}(\epsilon_{k^{\prime}_{d}})}{\partial q^{3}}|_{q=0}.......\bigg{]}.

Further simplification of fd1(q)f^{1}_{d}(q), we obtain (for more details refer to [5])

fd1(ϵd,q)=Vq24π22md[β0dϵdϵdeβ(ϵdμd)(eβ(ϵdμd)+1)2+23β20dϵdϵd32eβ(ϵdμd)(eβ(ϵdμd)+1)243β20dϵϵ32e2β(ϵdμd)(eβ(ϵdμd)+1)3].f^{1}_{d}(\epsilon_{d},q)=V\frac{q^{2}}{4\pi^{2}}\frac{\sqrt{2m_{d}}}{\hbar}\bigg{[}\beta\int_{0}^{\infty}\frac{d\epsilon_{d}\sqrt{\epsilon_{d}}e^{\beta(\epsilon_{d}-\mu_{d})}}{(e^{\beta(\epsilon_{d}-\mu_{d})}+1)^{2}}+\frac{2}{3}\beta^{2}\int_{0}^{\infty}\frac{d\epsilon_{d}\epsilon_{d}^{\frac{3}{2}}e^{\beta(\epsilon_{d}-\mu_{d})}}{(e^{\beta(\epsilon_{d}-\mu_{d})}+1)^{2}}-\\ ~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\frac{4}{3}\beta^{2}\int_{0}^{\infty}\frac{d\epsilon\epsilon^{\frac{3}{2}}e^{2\beta(\epsilon_{d}-\mu_{d})}}{(e^{\beta(\epsilon_{d}-\mu_{d})}+1)^{3}}\bigg{]}. (20)

Let mdm_{d} be the mass of the dd-electrons and m is the mass of ss-electrons, introduces md=mλm_{d}=m\lambda and set 2mμs=qs\sqrt{2m\mu_{s}}=\hbar q_{s} The expression fd1(ϵd)f^{1}_{d}(\epsilon_{d}) can be written as

fd1(ϵd,q)=Vqsq24π2λβμs(βμddxx+βμdex(ex+1)2+23βμddx(x+βμd)32ex(ex+1)243βμddx(x+βμd)32e2x(ex+1)3),f^{1}_{d}(\epsilon_{d},q)=Vq_{s}\frac{q^{2}}{4\pi^{2}}\sqrt{\frac{\lambda}{\beta\mu_{s}}}\bigg{(}\int_{-\beta\mu_{d}}^{\infty}\frac{dx\sqrt{x+\beta\mu_{d}}e^{x}}{(e^{x}+1)^{2}}+\frac{2}{3}\int_{-\beta\mu_{d}}^{\infty}\frac{dx(x+\beta\mu_{d})^{\frac{3}{2}}e^{x}}{(e^{x}+1)^{2}}-\\ ~{}~{}\frac{4}{3}\int_{-\beta\mu_{d}}^{\infty}\frac{dx(x+\beta\mu_{d})^{\frac{3}{2}}e^{2x}}{(e^{x}+1)^{3}}\bigg{)},~{}~{}~{}~{}~{}~{}~{} (21)

and on the similiar lines the fd2(ϵd,q)f^{2}_{d}(\epsilon_{d},q) expression gives

fd2(ϵd,q)=Vqs34π2(λβμs)32βμddxx+βμdex(ex+1)2+Vqsq24π2λβμs(βμddxx+βμdex(ex+1)3+23βμddx(x+βμd)32ex(ex+1)343βμddx(x+βμd)32e2x(ex+1)4).f^{2}_{d}(\epsilon_{d},q)=\frac{Vq^{3}_{s}~{}}{4\pi^{2}}(\frac{\lambda}{\beta\mu_{s}})^{\frac{3}{2}}\int_{-\beta\mu_{d}}^{\infty}\frac{dx\sqrt{x+\beta\mu_{d}}e^{x}}{(e^{x}+1)^{2}}+\frac{Vq_{s}q^{2}}{4\pi^{2}}\sqrt{\frac{\lambda}{\beta\mu_{s}}}\\ ~{}\bigg{(}\int_{-\beta\mu_{d}}^{\infty}\frac{dx\sqrt{x+\beta\mu_{d}}e^{x}}{(e^{x}+1)^{3}}+\frac{2}{3}\int_{-\beta\mu_{d}}^{\infty}\frac{dx(x+\beta\mu_{d})^{\frac{3}{2}}e^{x}}{(e^{x}+1)^{3}}-\frac{4}{3}\int_{-\beta\mu_{d}}^{\infty}\frac{dx(x+\beta\mu_{d})^{\frac{3}{2}}e^{2x}}{(e^{x}+1)^{4}}\bigg{)}.~{}~{}~{}~{}~{} (22)

On substitution the simplified form of the expressions fd1(ϵd,q)f^{1}_{d}(\epsilon_{d},q) and fd2(ϵd,q)f^{2}_{d}(\epsilon_{d},q) from equation (21) and (22) in the expression (17) and computing qq integral, we get

M′′(ω)=J2Vm212π3N28n[λβμs0dϵϵω((qDqs)6qs56h1(ϵ,ω)+(qDqs)8cmqs716h2(ϵ,ω))×(1fs(ϵ))Ξ(βμd)+(λβμs)320dϵϵω((qDqs)4qs54h3(ϵ,ω)+(qDqs)6cmqs712h4(ϵ,ω))fs(ϵ)Ξ1(βμd)+λβμs0dϵϵω((qDqs)6qs56h3(ϵ,ω)+(qDqs)8cmqs716h4(ϵ,ω))fs(ϵ)Ξ2(βμd)+(λβμs)32×0dϵϵω((qDqs)4qs54h1(ϵ,ω)+(qDqs)6cmqs512h2(ϵ,ω))Ξ1(βμd)+λβμs×0dϵϵω((qDqs)6qs56h1(ϵ,ω)+(qDqs)8cmqs716h2(ϵ,ω))Ξ2(βμd)].M^{\prime\prime}(\omega)=\frac{J^{2}Vm^{2}}{12\pi^{3}N^{2}\hbar^{8}n}\bigg{[}\sqrt{\frac{\lambda}{\beta\mu_{s}}}\int_{0}^{\infty}\frac{d\epsilon\sqrt{\epsilon}}{\omega}\bigg{(}(\frac{q_{D}}{q_{s}})^{6}\frac{q^{5}_{s}}{6}h_{1}(\epsilon,\hbar\omega)+(\frac{q_{D}}{q_{s}})^{8}\frac{c_{m}q^{7}_{s}}{16}h_{2}(\epsilon,\hbar\omega)\bigg{)}\\ \times(1-f^{s}(\epsilon))\Xi(\beta\mu_{d})+(\frac{\lambda}{\beta\mu_{s}})^{\frac{3}{2}}\int_{0}^{\infty}\frac{d\epsilon\sqrt{\epsilon}}{\omega}\bigg{(}(\frac{q_{D}}{q_{s}})^{4}\frac{q^{5}_{s}}{4}h_{3}(\epsilon,\hbar\omega)+(\frac{q_{D}}{q_{s}})^{6}\frac{c_{m}q^{7}_{s}}{12}h_{4}(\epsilon,\hbar\omega)\bigg{)}f^{s}(\epsilon)\\ ~{}\Xi_{1}(\beta\mu_{d})+~{}\sqrt{\frac{\lambda}{\beta\mu_{s}}}\int_{0}^{\infty}\frac{d\epsilon\sqrt{\epsilon}}{\omega}\bigg{(}(\frac{q_{D}}{q_{s}})^{6}\frac{q^{5}_{s}}{6}h_{3}(\epsilon,\hbar\omega)+(\frac{q_{D}}{q_{s}})^{8}\frac{c_{m}q^{7}_{s}}{16}h_{4}(\epsilon,\hbar\omega)\bigg{)}f^{s}(\epsilon)\Xi_{2}(\beta\mu_{d})+\\ ~{}(\frac{\lambda}{\beta\mu_{s}})^{\frac{3}{2}}\times\int_{0}^{\infty}\frac{d\epsilon\sqrt{\epsilon}}{\omega}\bigg{(}(\frac{q_{D}}{q_{s}})^{4}\frac{q^{5}_{s}}{4}h_{1}(\epsilon,\hbar\omega)+(\frac{q_{D}}{q_{s}})^{6}\frac{c_{m}q^{5}_{s}}{12}h_{2}(\epsilon,\hbar\omega)\bigg{)}\Xi_{1}(\beta\mu_{d})+~{}~{}\\ ~{}\sqrt{\frac{\lambda}{\beta\mu_{s}}}\times\int_{0}^{\infty}\frac{d\epsilon\sqrt{\epsilon}}{\omega}\bigg{(}(\frac{q_{D}}{q_{s}})^{6}\frac{q^{5}_{s}}{6}h_{1}(\epsilon,\hbar\omega)+(\frac{q_{D}}{q_{s}})^{8}\frac{c_{m}q^{7}_{s}}{16}h_{2}(\epsilon,\hbar\omega)\bigg{)}\Xi_{2}(\beta\mu_{d})\bigg{]}.~{}~{}~{}~{}~{}~{} (23)

Here the terms h1(ϵ,ω)h_{1}(\epsilon,\hbar\omega), h2(ϵ,ω)h_{2}(\epsilon,\hbar\omega), h3(ϵ,ω)h_{3}(\epsilon,\hbar\omega), h4(ϵ,ω)h_{4}(\epsilon,\hbar\omega), Ξ\Xi, Ξ1\Xi_{1}, and Ξ2\Xi_{2} are defined in Appendix. The above obtained result is the final expression of the frequency dependent imaginary part of the memory function. I will numerically compute M′′(ω)M^{\prime\prime}(\omega) for certain values of parameters μd\mu_{d}, μs\mu_{s},(chemical potential of dd and ss electrons) qDq_{D} , qsq_{s} and λ\lambda. To find A.C.A.C. conductivity one also needs the real part of memory function, which is computed by employing the Kramers–Kronig relation [9, 10, 11, 12, 13]:

M(ω)=2π𝑑ωωM′′(ω)ω2ω2.\displaystyle M^{\prime}(\omega)=-\frac{2}{\pi}\int d\omega^{\prime}\frac{\omega^{\prime}M^{\prime\prime}(\omega^{\prime})}{\omega^{\prime 2}-\omega^{2}}. (24)

In figure 1 I plot the M′′(ω)M^{\prime\prime}(\omega) and M(ω)M^{\prime}(\omega) for the values of the fitting parameters which are writtem in the head caption of the figure.

Refer to caption      Refer to caption
(a) (b)
Figure 1: (a,b) Present the real and imaginary parts of the memory function.

Next, I numerically calculate the A.C.A.C. conductivity using equations (7 and 8).

Refer to caption      Refer to caption
(a) (b)
Figure 2: (a,b) Present the real and imaginary parts of A.C.A.C. conductivity.

Figure 2 presents the A.C.A.C. conductivity behaviour of the Kondo-lattice system. Figure 2 (a) presents the real part of the A.C.A.C. conductivity for the values of the fitting parameters μd=0.05eV,μs=1.5eV,λ=1.1\mu_{d}=0.05eV,\mu_{s}=1.5eV,\lambda=1.1 and qD=2.0×108m1q_{D}=2.0\times 10^{8}m^{-1}. In high frequency regime 1ω\frac{1}{\omega} fitting for the real part of conductivity is performed using the the least square fitting method. Figure 3 shows least square fitting in high frequency regime (tail part of figure 3). Red dashed line shows 1ω\frac{1}{\omega} comparison. Thus, it is found that the tail part of the real conductivity scales to 1ω\frac{1}{\omega}. In real σ(ω)\sigma(\omega) at lower frequencies we observe the Drude peak and at higher ω\omega we observe that σ(ω)1ω\sigma(\omega)\sim\frac{1}{\omega} (instead of 1ω2\frac{1}{\omega^{2}} Drude law) [3, 9]. Figure 3 shows least square fitting in high frequency regime (tail part of figure 3). Red dashed line shows 1ω\frac{1}{\omega} comparison.

Refer to caption
Figure 3: Represents the least square fit for tail part of the real part of conductivity. Red dashed curve corresponds to the least square fit: σ=0.03795+0.2111ω\sigma=-0.03795+\frac{0.2111}{\omega}. Thus we conclude that at higher frequencies σ(ω)1ω\sigma(\omega)\sim\frac{1}{\omega}.

5 Conclusion

The calculations of A.C.A.C. conductivity using the memory function formalism for the Kondo-lattice Hamiltonian is presented. Using the Wölfle-Götze equation of motion method the frequency dependent memory function is computed. The general memory function is expanded under the long wavelength limit and frequency dependent imaginary part of the memory function is calculated. The numerical computation of the real part of the memory function is performed using the Krammers-Kronig transformation. I found that real part conductivity shows the Drude peak at lower frequency and at higher frequency conductivity deviates from the Drude law and scales as 1ω\frac{1}{\omega}.

Appendix

The terms for expression (23) are

h1(ϵ,ω)=ϵω(1+eβ(ϵωμs))ϵ+ω(1+eβ(ϵ+ωμs))\displaystyle h_{1}(\epsilon,\hbar\omega)=\frac{\sqrt{\epsilon-\hbar\omega}}{(1+e^{\beta(\epsilon-\hbar\omega-\mu_{s})})}-\frac{\sqrt{\epsilon+\hbar\omega}}{(1+e^{\beta(\epsilon+\hbar\omega-\mu_{s})})} (25)
h2(ϵ,ω)=1ϵω(1+eβ(ϵωμs))1ϵ+ω(1+eβ(ϵ+ωμs))\displaystyle h_{2}(\epsilon,\hbar\omega)=\frac{1}{\sqrt{\epsilon-\hbar\omega}(1+e^{\beta(\epsilon-\hbar\omega-\mu_{s})})}-\frac{1}{\sqrt{\epsilon+\hbar\omega}(1+e^{\beta(\epsilon+\hbar\omega-\mu_{s})})} (26)
2βϵωeβ(ϵωμs)(1+eβ(ϵωμs))+2βϵ+ωeβ(ϵ+ωμs)(1+eβ(ϵ+ωμs))\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}-2\beta\frac{\sqrt{\epsilon-\hbar\omega}e^{\beta(\epsilon-\hbar\omega-\mu_{s})}}{(1+e^{\beta(\epsilon-\hbar\omega-\mu_{s})})}+2\beta\frac{\sqrt{\epsilon+\hbar\omega}e^{\beta(\epsilon+\hbar\omega-\mu_{s})}}{(1+e^{\beta(\epsilon+\hbar\omega-\mu_{s})})} (27)
h3(ϵ,ω)=ϵ+ωϵω,h4(ϵ,ω)=1ϵ+ω1ϵω,\displaystyle h_{3}(\epsilon,\hbar\omega)=\sqrt{\epsilon+\hbar\omega}-\sqrt{\epsilon-\hbar\omega},~{}~{}~{}~{}~{}~{}~{}h_{4}(\epsilon,\hbar\omega)=\frac{1}{\sqrt{\epsilon+\hbar\omega}}-\frac{1}{\sqrt{\epsilon-\hbar\omega}}, (28)

and Ξ\Xi function are

Ξ(βμd)\displaystyle\Xi(\beta\mu_{d}) =βμddxx+βμdex(ex+1)2+23βμddx(x+βμd)32ex(ex+1)243βμddx(x+βμd)32e2x(ex+1)3\displaystyle=\int_{-\beta\mu_{d}}^{\infty}\frac{dx\sqrt{x+\beta\mu_{d}}e^{x}}{(e^{x}+1)^{2}}+\frac{2}{3}\int_{-\beta\mu_{d}}^{\infty}\frac{dx(x+\beta\mu_{d})^{\frac{3}{2}}e^{x}}{(e^{x}+1)^{2}}-~{}\frac{4}{3}\int_{-\beta\mu_{d}}^{\infty}\frac{dx(x+\beta\mu_{d})^{\frac{3}{2}}e^{2x}}{(e^{x}+1)^{3}} (29)
Ξ1(βμd)\displaystyle\Xi^{1}(\beta\mu_{d}) =βμddxx+βμdex(ex+1)2\displaystyle=\int_{-\beta\mu_{d}}^{\infty}\frac{dx\sqrt{x+\beta\mu_{d}}e^{x}}{(e^{x}+1)^{2}} (30)
Ξ2(βμd)\displaystyle\Xi^{2}(\beta\mu_{d}) =βμddxx+βμdex(ex+1)3+23βμddx(x+βμd)32ex(ex+1)343βμddx(x+βμd)32e2x(ex+1)4.\displaystyle=\int_{-\beta\mu_{d}}^{\infty}\frac{dx\sqrt{x+\beta\mu_{d}}e^{x}}{(e^{x}+1)^{3}}+\frac{2}{3}\int_{-\beta\mu_{d}}^{\infty}\frac{dx(x+\beta\mu_{d})^{\frac{3}{2}}e^{x}}{(e^{x}+1)^{3}}-\frac{4}{3}\int_{-\beta\mu_{d}}^{\infty}\frac{dx(x+\beta\mu_{d})^{\frac{3}{2}}e^{2x}}{(e^{x}+1)^{4}}. (31)

Acknowlegement

I thank Dr. Navinder Singh for encouragement and important comments.

References

  • [1] Neil W Ashcroft, and N David Mermin, and others, Solid state physics, Holt, Rinehart and Winston, New York London, 2005 1976.
  • [2] W. Götze and P. Wölfle, Homogeneous dynamical conductivity of simple metals, Physical Review B, 6: 1226–1238, 1972.
  • [3] Navinder singh, Electronic transport theories: From weakly to strongly correlated materials, CRC Press, 2017.
  • [4] Komal Kumari and Navinder Singh, The memory function formalism: an overview, Eur. J. Phys. 41, 053001, pp 20, 2020.
  • [5] Komal Kumari, Raman Sharma and Navinder Singh, J. Phys.:, Condens. Matter, 32, 042603, pp 11, 2020.
  • [6] Luxmi Rani and Navinder Singh, Dynamical electrical conductivity of graphene, J. Phys.: Condens. Matter 29, 2555602, 2017.
  • [7] Pankaj Bhalla, Nabyendu Das and Navinder Singh,Moment expansion to the memory function for generalized Drude scattering rate, Physics Letters, A 380, 2016.
  • [8] Pankaj Bhalla, Pradeep Kumar, Nabyendu Das, and Navinder Singh, Theory of the dynamical thermal conductivity of metals, Phys. Rev. B, 94, pp 115114, 2016.
  • [9] Saeed H. Abedinpour, G. Vignale, A. Principi, Marco Polini, Wang-Kong Tse and A. H. MacDonald, Drude weight, plasmon dispersion, and ac conductivity in doped graphene sheets, Phys. Rev. B, American Physical Society 84, 045429, 14, 2011.
  • [10] R. Freytag and J. Keller, Dynamical conductivity of heavy fermion systems: effect of impurity scattering, Zeitschrift für Physik B Condensed Matter, 80, 241-247, https://doi.org/10.1007/BF01357509, 1990.
  • [11] P. A. Marchetti, G. Orso, Z. B. Su, and L. Yu , In-plane conductivity anisotropy in the underdoped cuprates using the spin-charge gauge approach, American Physical Society, Phys. Rev. B, 69, 21, 214514, 2004.
  • [12] Valerio Lucarini, Kai-Erik Peiponen, Jarkko J. Saarinen and Erik M. Vartiainen, Kramers-Kronig relations in optical materials research, Springer Science & Business Media, 110, 2005.
  • [13] Christophe Berthod, Jernej Mravlje, Xiaoyu Deng, Rok Zˇ\check{Z}{}itko, Dirk van der Marel, and Antoine Georges, Non-Drude universal scaling laws for the optical response of local Fermi liquids, American Physical Society,Phys. Rev. B, 87, 115109, 2013.