This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Non-crossing permutations for the KP solitons under the Gel’fand-Dickey reductions and the vertex operators

Shilong Huanga, Yuji Kodamaa,b, and Chuanzhong Lia a College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, 266590, China [email protected], [email protected] bDepartment of Mathematics, The Ohio State University, Columbus, OH 43210 [email protected]
Abstract.

We give a classification of the regular soliton solutions of the KP hierarchy, referred to as the KP solitons, under the Gel’fand-Dickey \ell-reductions in terms of the permutation of the symmetric group. As an example, we show that the regular soliton solutions of the (good) Boussinesq equation as the 3-reduction can have at most one resonant soliton in addition to two sets of solitons propagating in opposite directions. We also give a systematic construction of these soliton solutions for the \ell-reductions using the vertex operators. In particular, we show that the non-crossing permutation gives the regularity condition for the soliton solutions.

1. Introduction

The Kadomtsev-Petviashvili (KP) equation is a two-dimensional nonlinear dispersive wave equation given in the form,

(1.1) x(4ut+6uux+3ux3)+32uy2=0.\frac{\partial}{\partial x}\left(-4\frac{\partial u}{\partial t}+6u\frac{\partial u}{\partial x}+\frac{\partial^{3}u}{\partial x^{3}}\right)+3\frac{\partial^{2}u}{\partial y^{2}}=0.

The KP equation is integrable, and has infinitely many symmetries represented by the commuting flows. The parameters of the flows are expressed by {tj:j=1,2,}\{t_{j}:j=1,2,\ldots\}, in particular, we denote t1=x,t2=y,t3=tt_{1}=x,t_{2}=y,t_{3}=t for the KP equation. The set of all the flows defines the KP hierarchy, whose first member is the KP equation, and the variable uu is now considered as a function of 𝐭=(t1,t2,)\mathbf{t}=(t_{1},t_{2},\ldots). The real regular soliton solutions of the KP equation, referred to as the KP solitons, has been recently classified in [2, 9] (see the book [7] for the review of these results). Each KP soliton can be determined by a pair of two real data (κ,A)(\kappa,A), referred to as soliton parameters, where κ=(κ1,,κM)M\kappa=(\kappa_{1},\ldots,\kappa_{M})\in\mathbb{R}^{M} and an N×MN\times M matrix AGr(N,M)0A\in\text{Gr}(N,M)_{\geq 0}, the totally nonnegative (tnn) Grassmannain defined by the set of NN-dimensional subspaces in M\mathbb{R}^{M} with all nonnegative maximal minors of AA. We also recall that the element AGr(N,M)0A\in\text{Gr}(N,M)_{\geq 0} can be uniquely parameterized by the derangement (permutation without fixed point, i.e. no 1-cycle) of symmetric group SMS_{M}, denoted by π(A)SM\pi(A)\in S_{M}. Then the soliton solution u(x,y,t)u(x,y,t) is given in terms of the τ\tau-function (see e.g. [7]),

(1.2) u(x,y,t)=22x2lnτ(x,y,t),u(x,y,t)=2\frac{\partial^{2}}{\partial x^{2}}\ln\tau(x,y,t),

where the τ\tau-function is given by

(1.3) τ(x,y,t)=det(AET(x,y,t)).\tau(x,y,t)=\text{det}\left(AE^{T}(x,y,t)\right).

The N×MN\times M matrix function E(x,y,t)E(x,y,t) is defined by

E(x,y,t)=(E1E2EMκ1E1κ2E2κMEMκ1N1E1κ2N1E2κMN1EM)withEj=eκjx+κj2y+κj3t.E(x,y,t)=\begin{pmatrix}E_{1}&E_{2}&\cdots&E_{M}\\ \kappa_{1}E_{1}&\kappa_{2}E_{2}&\cdots&\kappa_{M}E_{M}\\ \vdots&\vdots&\ddots&\vdots\\ \kappa_{1}^{N-1}E_{1}&\kappa_{2}^{N-1}E_{2}&\cdots&\kappa_{M}^{N-1}E_{M}\end{pmatrix}\qquad\text{with}\quad E_{j}=e^{\kappa_{j}x+\kappa_{j}^{2}y+\kappa_{j}^{3}t}.

In this paper, we classify the KP soliton solutions under the Gel’fand-Dickey \ell-reductions (hereafter simply \ell-reductions) of the KP hierarchy. For example, the 22-reduction implies u/t2=0(t2=y)\partial u/\partial t_{2}=0~{}(t_{2}=y), and the KP equation with the boundary condition u0u\to 0 as xx\to\infty gives

4ut+6uux+uxxx=0,-4u_{t}+6uu_{x}+u_{xxx}=0,

where ux=u/xu_{x}=\partial u/\partial x etc. The KdV equation admits NN-soliton solution, whose soliton parameters (κ,A)(\kappa,A) are given by

κ\displaystyle\kappa =(κ1,,κN,κN,,κ1)2N,\displaystyle=(\kappa_{1},\ldots,\kappa_{N},-\kappa_{N},\ldots,-\kappa_{1})\in\mathbb{R}^{2N},
A\displaystyle A =(100aN01aN10001a100)Gr(N,2N)0,\displaystyle=\begin{pmatrix}1&0&\cdots&\cdots&\cdots&\cdots&0&a_{N}\\ 0&1&\cdots&\cdots&\cdots&\cdots&a_{N-1}&0\\ \vdots&\ddots&\ddots&&&\iddots&\iddots&\vdots\\ 0&\cdots&0&1&a_{1}&0&\cdots&0\end{pmatrix}\in\text{Gr}(N,2N)_{\geq 0},

where κ1<<κN<0(κj=κ2Nj+1)\kappa_{1}<\cdots<\kappa_{N}<0~{}(\kappa_{j}=-\kappa_{2N-j+1}) and ak=(1)k1|ak|a_{k}=(-1)^{k-1}|a_{k}|. For example, one (N=1)(N=1) soliton is determined by κ=(κ1,κ1)\kappa=(\kappa_{1},-\kappa_{1}) and A=(1,a)Gr(1,2)A=(1,a)\in\text{Gr}(1,2), and it has the form,

u(x,t)=2κ12sech2κ1(x+κ12t+x0),u(x,t)=2\kappa_{1}^{2}\mathop{\rm sech}\nolimits^{2}\kappa_{1}(x+\kappa_{1}^{2}t+x_{0}),

where x0=12κ1lnax_{0}=\frac{1}{2\kappa_{1}}\ln a. The derangement corresponding to the matrix AA of the NN-soliton solution is given by the product of 2-cycles,

(1.4) π(A)=k=1N(k,2Nk+1),\pi(A)=\prod_{k=1}^{N}(k,2N-k+1),

where 2-cycle (i,j)(i,j) implies the transposition iji\leftrightarrow j. Note here that all the 2-cycles in (1.4) form a nesting (see below, also [3] for the definition). Each soliton with the parameter κ=(κk,κk)\kappa=(\kappa_{k},-\kappa_{k}) in the NN-soliton solution is represented by the transposition (k,2Nk+1)(k,2N-k+1), which is considered as the derangement associated to AkGr(1,2)0A_{k}\in\text{Gr}(1,2)_{\geq 0}, i.e. π(Ak)=(k,2Nk+1)\pi(A_{k})=(k,2N-k+1) and π(A)=kπ(Ak)\pi(A)=\prod_{k}\pi(A_{k}).

One should also note that the κ\kappa-parameters are the roots of the second order polynomials of κ\kappa,

(1.5) Φ2(κ,α):=κ2α=0,withα=κk2,k=1,,N,\Phi_{2}(\kappa,\alpha):=\kappa^{2}-\alpha=0,\quad\text{with}\quad\alpha=\kappa_{k}^{2},~{}\,\,k=1,\ldots,N,

which is a direct consequence of the 2-reduction of the KP hierarchy. We refer to the polynomial Φ2(κ,α)=0\Phi_{2}(\kappa,\alpha)=0 as the spectral curve of the soliton solution for the 2-reduction, and will extend (1.5) to the general case of \ell-reductions.

The (good) Boussinesq equation is given by the 3-reduction u/t3=0\partial u/\partial t_{3}=0, i.e.

(1.6) (6uux+uxxx)x+3uyy=0.(6uu_{x}+u_{xxx})_{x}+3u_{yy}=0.

In the physical coordinates, the variable yy should be considered as the time variable. One should note that under the boundary condition u0u\to 0 as xx\to\infty, this equation does not have a regular soliton solution as the steady propagating wave u(x,y)=ϕ(x+ay)u(x,y)=\phi(x+ay) with any constant aa. In order to obtain a regular soliton solution, one needs to have a nonzero boundary condition uu00u\to u_{0}\neq 0 as xx\to\infty. With the change uu+u0u\to u+u_{0}, Eq. (1.6) becomes

(1.7) 6u0uxx+(6uux+uxxx)x+3uyy=0.6u_{0}u_{xx}+(6uu_{x}+u_{xxx})_{x}+3u_{yy}=0.

One can easily check that this equation admits a regular soliton solution when u0<0u_{0}<0. Note that (1.7) can be also obtained by change of coordinates in the KP equation with xx+ctx\to x+ct, i.e.

(4ut4cux+6uux+uxxx)x+3uyy=0.(-4u_{t}-4cu_{x}+6uu_{x}+u_{xxx})_{x}+3u_{yy}=0.

Considering the 3-reduction for new coordinate, i.e. ut=0u_{t}=0, and identifying c=32u0c=-\frac{3}{2}u_{0}, this equation gives (1.7). As we will show, this change of coordinates is a crucial step to classify the regular soliton solutions under the \ell-reductions for 3\ell\geq 3. We then choose the κ\kappa-parameters as the roots of the cubic polynomial of κ\kappa for given constant α\alpha,

Φ3(κ,α)=κ3cκα=0,\Phi_{3}(\kappa,\alpha)=\kappa^{3}-c\kappa-\alpha=0,

which is the spectral curve of solitons for the 3-reduction. As one of the main results (Theorem 4.2), we give the regular soliton solutions of the Boussinesq equation in (1.7), whose the soliton matrix AA is parametrized by the derangement in the cycle notation either

π(A)\displaystyle\pi(A) =(a1,a2)k=1n1(bk,b2n1k+1)l=1n2(cl,c2n2l+1)or\displaystyle=(a_{1},a_{2})\prod_{k=1}^{n_{1}}(b_{k},b_{2n_{1}-k+1})\prod_{l=1}^{n_{2}}(c_{l},c_{2n_{2}-l+1})\qquad\text{or}
π(A)\displaystyle\pi(A) =(a1,a2,a3)k=1n1(bk,b2n1k+1)l=1n2(cl,c2n2l+1),\displaystyle=(a_{1},a_{2},a_{3})\prod_{k=1}^{n_{1}}(b_{k},b_{2n_{1}-k+1})\prod_{l=1}^{n_{2}}(c_{l},c_{2n_{2}-l+1}),

where the cycles are all non-crossing, e.g. there is no case like a1<bi<a2<bja_{1}<b_{i}<a_{2}<b_{j} or bi<cj<bk<clb_{i}<c_{j}<b_{k}<c_{l} etc (see Definition 3.3 below for the details). One should note that the regular soliton solution can include at most one 3-cycle, which represents a resonant soliton solution with Y-shape, sometimes called Y-soliton (see e.g. [7]). This result implies that there are two sets of line solitons showing in 2-cycles propagating opposite directions, and each soliton gets positive (repulsive) phase shift by interacting with solitons from the same set, and negative (attractive) phase shift from the other set. Thus, the set of those solitons may provide a bidirectional model of soliton gas as recently discussed in [1].

Remark 1.1.

As far as we know, there was no classification of “regular” soliton solutions of the (good) Boussinesq equation (see e.g. [13]). Our result is then gives the first classification of regular soliton solutions of the Boussinesq equation, which states that there is no regular soliton solutions including more than one resonant solution. Also note that singular solutions are easily obtained.

We extend these results to the general \ell-reduction as follows. First define a monic polynomial of degree \ell of κ\kappa, referred to as a spectral curve of \ell-reduction, given by

(1.8) Φ(κ,α):=φ(κ)α=j=1(κκj[α])=0.\Phi_{\ell}(\kappa,\alpha):=\varphi_{\ell}(\kappa)-\alpha=\prod_{j=1}^{\ell}(\kappa-\kappa_{j}[\alpha])=0.

Here the polynomial φ(κ)\varphi_{\ell}(\kappa) can be also obtained by the change of coordinates in the KP hierarchy as in the case of 3-reduction, φ3(κ)=κ3cκ\varphi_{3}(\kappa)=\kappa^{3}-c\kappa. The main purpose of the spectral curve in the form (1.8) is to find the real roots for the soliton parameter κM\kappa\in\mathbb{R}^{M} i.e. κj[α]\kappa_{j}[\alpha]\in\mathbb{R} and κj[α]κl[α]\kappa_{j}[\alpha]\neq\kappa_{l}[\alpha] if jlj\neq l.

Then our main theorem (Theorem 3.8) can be stated as follows.


Theorem 3.8 Define the soliton parameter κM\kappa\in\mathbb{R}^{M} as the ordered set of

𝒦:=i=1K{κj[αi]:j[αi]},\mathcal{K}_{\ell}:=\bigcup_{i=1}^{K}\{\kappa_{j}[\alpha_{i}]:j\in\mathcal{I}[\alpha_{i}]\},

where each κj[αi]\kappa_{j}[\alpha_{i}] is a root of Φ(κ,αi)=0\Phi_{\ell}(\kappa,\alpha_{i})=0, and [αi]\mathcal{I}[\alpha_{i}] is a subset of []:={1,,}[\ell]:=\{1,\ldots,\ell\} with |[αi]|=mi|\mathcal{I}[\alpha_{i}]|=m_{i}. Here M=m1++mKM=m_{1}+\cdots+m_{K}. For each mim_{i}, take 1nimi11\leq n_{i}\leq m_{i}-1, and set N=n1++nKN=n_{1}+\cdots+n_{K}. Then for each pair (ni,mi)(n_{i},m_{i}), construct the matrix element A[αi]Gr(ni,mi)0A[\alpha_{i}]\in\text{Gr}(n_{i},m_{i})_{\geq 0}, so that the corresponding derangements π(A[αi])\pi(A[\alpha_{i}]) are mutually non-crossing for i=1,,Ki=1,\ldots,K. Then the regular soliton solution of the \ell-reduction is given by the soliton parameters κM\kappa\in\mathbb{R}^{M} and A[α1,,αK]Gr(N,M)0A[\alpha_{1},\ldots,\alpha_{K}]\in\text{Gr}(N,M)_{\geq 0} associated with a (κ\kappa-)direct sum of the matrices A[αi]A[\alpha_{i}],

^i=1KA[αi],{\widehat{\bigoplus}}_{i=1}^{K}A[\alpha_{i}],

where ^\widehat{\oplus} implies that the columns in the matrices are ordered according to the ordered set 𝒦\mathcal{K}_{\ell} of the κ\kappa-parameters. Also the derangement π(A[α1,,αK])\pi(A[\alpha_{1},\ldots,\alpha_{K}]) is given by

π(A[α1,,αK])=i=1Kπ(A[αi]),\pi(A[\alpha_{1},\ldots,\alpha_{K}])=\prod_{i=1}^{K}\pi(A[\alpha_{i}]),

that is, the soliton solution generated by the τ\tau-function with (κ,A[α1,,αK])(\kappa,A[\alpha_{1},\ldots,\alpha_{K}]) consists of these soliton solutions associated with (κ[αi],A[αi])(\kappa[\alpha_{i}],A[\alpha_{i}]), where κ[αi]={κj[αi]:j[αi]}\kappa[\alpha_{i}]=\{\kappa_{j}[\alpha_{i}]:j\in\mathcal{I}[\alpha_{i}]\}.

Here what we mean by the non-crossing in the derangements π(A[αi])\pi(A[\alpha_{i}]) is that any cycle in π(A[αi])\pi(A[\alpha_{i}]) has no crossing with all the cycles in other derangemants π(A[αj])\pi(A[\alpha_{j}]) (ij)(i\neq j) (Definition 3.3).


The paper is organized as follow. In Section 2, we provide the background information on the KP hierarchy and the Gel’fand-Dickey \ell-reductions. We also give the determinant formula of the KP solitons in terms of the τ\tau-functions (see also e.g. [7]). In Section 3, we define a modified form of the \ell-reduction for real regular solitons of the \ell-reduction. This is the main section of the paper. We introduce an \ell-th polynomial Φ(κ,α)=φ(κ)α=0\Phi_{\ell}(\kappa,\alpha)=\varphi_{\ell}(\kappa)-\alpha=0, referred to as the spectral curve of the \ell-reduction, whose roots give real soliton κ\kappa-parameters. We show that the polynomial φ(κ)\varphi_{\ell}(\kappa) is a versal deformation of the degenerate polynomial κ\kappa^{\ell}, and the deformation parameters are obtained by the change of coordinates. We then consider a matrix A[α]Gr(n,m)0A[\alpha]\in\text{Gr}(n,m)_{\geq 0} together with the roots of the spectral curve for a soliton solution. A general solution is then constructed by several parameters αj\alpha_{j}, which give the roots κ[αj]mj\kappa[\alpha_{j}]\in\mathbb{R}^{m_{j}} and the matrix A[αj]Gr(nj,mj)0A[\alpha_{j}]\in\text{Gr}(n_{j},m_{j})_{\geq 0}. We then define a κ\kappa-direct sum of the matrices (Definition 3.1), and introduce the notion of non-crossing matrices (Definition 3.3). Then we show that the matrices A[αj]Gr(nj,mj)0A[\alpha_{j}]\in\text{Gr}(n_{j},m_{j})_{\geq 0} are mutually non-crossing, then the the direct sum of these matrices can be totally nonnegative, that is, the soliton generated by the κ\kappa-direct sum is regular (Theorem 3.8). In Section 4, we give the detailed study of the Boussinesq case, the 3-reduction. The main result is explained above (Theorem 4.2). We also discuss a possible application of the result to a bidirectional model of soliton gas (see e.g. [1]). In the final section, Section 5, we give a systematic method to construct the KP solitons under the \ell-reductions using the vertex operators. We show that the non-crossing property of the matrices associated with vertex operator gives the regularity of the solitons generated by applying several vertex operators (Proposition 5.5). We also remark that the regularity of the soliton solutions generated by the vertex operators has not been discussed before.

2. Background

Here we give a brief review of the KP hierarchy and the Gel’fand-Dickey \ell-reductions of the KP hierarchy. We also give the Wronskian formula of the τ\tau-function for the KP solitons, in which we provide the notions of the totally nonnegative Grassmannians and the permutations to label their elements. Most of the materials in this section can be also found in [7].

2.1. The KP hierarchy

The KP hierarchy is formulated on the basis with a pseudo-differential operator,

(2.1) L=+u21+u32+,L=\partial+u_{2}\partial^{-1}+u_{3}\partial^{-2}+\cdots,

where \partial is a derivative satisfying 1=1=1\partial\partial^{-1}=\partial^{-1}\partial=1 and the generalized Leibniz rule for a smooth function ff,

νf=k=0(νk)(1kf)νk,ν.\partial^{\nu}f=\mathop{\textstyle\sum}\limits_{k=0}^{\infty}\binom{\nu}{k}(\partial_{1}^{k}f)\partial^{\nu-k},\qquad\nu\in\mathbb{Z}.

Note that the series terminates if and only if ν\nu is a nonnegative integer. The functions uku_{k}’s in LL depend on an infinite number of variables 𝐭=(t1,t2,)\mathbf{t}=(t_{1},t_{2},\ldots). Each variable tnt_{n} in LL gives a parameter of the flow in the hierarchy, which is defined in the Lax form,

(2.2) Ltn=[Bn,L]withBn=(Ln)0(n=1,2,),\frac{\partial L}{\partial t_{n}}=[B_{n},\,L]\qquad\text{with}\qquad B_{n}=(L^{n})_{\geq 0}\quad(n=1,2,\ldots),

where (Ln)0(L^{n})_{\geq 0} represents the polynomial (differential) part of LnL^{n} in \partial. The solution of the KP equation (1.1) is given by u=2u2u=2u_{2}. The compatibility among the equations in (2.2), gives

BntmBmtn+[Bn,Bm]=0,\frac{\partial B_{n}}{\partial t_{m}}-\frac{\partial B_{m}}{\partial t_{n}}+[B_{n},\,B_{m}]=0,

which is called the Zakharov-Shabat equations.

The Lax operator (2.1) can be expressed in the form,

L=WW1,L=W\partial W^{-1},

where WW is called the dressing operator given in the form,

W=1w11w22.W=1-w_{1}\partial^{-1}-w_{2}\partial^{-2}-\cdots.

Then the functions uiu_{i}’s in LL can be expressed by wjw_{j}’s in WW. For example, we have

u2=w1x,u3=w2x+w1w1x,.u_{2}=\frac{\partial w_{1}}{\partial x},\qquad u_{3}=\frac{\partial w_{2}}{\partial x}+w_{1}\frac{\partial w_{1}}{\partial x},\quad\ldots.

Then, from the Lax equation, the dressing operator WW satisfies

(2.3) Wtn=BnWWnforn=1,2,,\frac{\partial W}{\partial t_{n}}=B_{n}W-W\partial^{n}\qquad\text{for}\quad n=1,2,\cdots,

which is sometimes called the Sato equation. The KP soliton can be obtained as a special solution of the Sato equation as explained below.

2.2. NN truncation and the τ\tau-function

Here we explain the Wronskian formula of the τ\tau-function, which is obtained by truncating WW. A finite truncation of WW with some positive integer NN is given by

W=1w11w22wNN.W=1-w_{1}\partial^{-1}-w_{2}\partial^{-2}-\cdots-w_{N}\partial^{-N}.

The invariance of the truncation under (2.3) leads to the NN-th order differential equation for some function f=f(𝐭)f=f(\mathbf{t}),

WNf=f(N)w1f(N1)w2f(N2)wNf=0,W\partial^{N}f=f^{(N)}-w_{1}f^{(N-1)}-w_{2}f^{(N-2)}-\cdots-w_{N}f=0,

where f(n)=nxnff^{(n)}=\frac{\partial^{n}}{\partial x^{n}}f. Let {fi:i=1,,N}\{f_{i}:i=1,\ldots,N\} be a fundamental set of solutions of the equation WNf=0W\partial^{N}f=0. Then the coefficients wi(𝐭)w_{i}(\mathbf{t})’s are given by

(2.4) wi(𝐭)=1τ(𝐭)pi(~)τ(𝐭)fori=1,,N,w_{i}(\mathbf{t})=-\frac{1}{\tau(\mathbf{t})}p_{i}(-\tilde{\partial})\tau(\mathbf{t})\qquad\text{for}\quad i=1,\ldots,N,

where pi(𝐱)p_{i}({\bf x}) is the elementary Schur polynomial of degree ii and ~=(1,122,133,)\tilde{\partial}=(\partial_{1},\frac{1}{2}\partial_{2},\frac{1}{3}\partial_{3},\ldots), which is defined by

(2.5) eξ(𝐭,k)=n=0pn(𝐭)kn,ξ(𝐭,k):=n=1kntn.e^{\xi(\mathbf{t},k)}=\mathop{\textstyle\sum}\limits_{n=0}^{\infty}p_{n}(\mathbf{t})k^{n},\qquad\xi(\mathbf{t},k):=\mathop{\textstyle\sum}\limits_{n=1}^{\infty}k^{n}t_{n}.

And τ(𝐭)\tau(\mathbf{t}) is called the τ\tau-function, which is expressed by the Wronskian form (Cramer’s rule),

(2.6) τ(𝐭)=Wr(f1,f2,,fN)=|f1f2fNf1(1)f2(1)fN(1)f1(N1)f2(N1)fN(N1)|.\tau(\mathbf{t})=\text{Wr}(f_{1},f_{2},\ldots,f_{N})=\left|\begin{matrix}f_{1}&f_{2}&\cdots&f_{N}\\ f_{1}^{(1)}&f_{2}^{(1)}&\cdots&f_{N}^{(1)}\\ \vdots&\vdots&\ddots&\vdots\\ f_{1}^{(N-1)}&f_{2}^{(N-1)}&\cdots&f_{N}^{(N-1)}\end{matrix}\right|.

For the time-evolution of the functions fi(𝐭)f_{i}(\mathbf{t}), we consider the following (heat) hierarchy,

(2.7) fitn=nfixnfor1iN,n=1,2,,\frac{\partial f_{i}}{\partial t_{n}}=\frac{\partial^{n}f_{i}}{\partial x^{n}}\qquad\text{for}\quad 1\leq i\leq N,\quad n=1,2,\ldots,

which gives the solution of the Sato equation (2.3). Then the solution of the KP hierarchy can be expressed in terms of the τ\tau-function by (1.2), i.e.

u(𝐭)=2u2(𝐭)=2w1(𝐭)x=22x2lnτ(𝐭).u(\mathbf{t})=2u_{2}(\mathbf{t})=2\frac{\partial w_{1}(\mathbf{t})}{\partial x}=2\frac{\partial^{2}}{\partial x^{2}}\ln\tau(\mathbf{t}).

2.3. KP solitons

The soliton solutions are defined by a finite set of exponential solutions of (2.7). Let {fi(𝐭):i=1,,N}\{f_{i}(\mathbf{t}):i=1,\ldots,N\} be the set of solutions given by

fi(𝐭)=j=1Mai,jEj(𝐭),withEj(𝐭)=eξj(𝐭)andξj(𝐭)=ξ(𝐭,κj),f_{i}(\mathbf{t})=\mathop{\textstyle\sum}\limits_{j=1}^{M}a_{i,j}E_{j}(\mathbf{t}),\qquad\text{with}\qquad E_{j}(\mathbf{t})=e^{\xi_{j}(\mathbf{t})}\quad\text{and}\quad\xi_{j}(\mathbf{t})=\xi(\mathbf{t},\kappa_{j}),

where κM\kappa\in\mathbb{R}^{M} whose elements are ordered as (κ1<<κM)(\kappa_{1}<\cdots<\kappa_{M}), and A=(ai,j)A=(a_{i,j}) is an N×MN\times M real matrix with full rank. Let I={i1<i2<<iN}I=\{i_{1}<i_{2}<\cdots<i_{N}\} be an NN ordered subset of the index set [M]:={1,2,,M}[M]:=\{1,2,\ldots,M\}. Then the τ\tau-function (2.6) becomes (1.3), and using the Binet-Cauchy lemma, the τ\tau-function can be expressed by

(2.8) τ(𝐭)=I(A)ΔI(A)EI(𝐭),withEI(𝐭)=k>l(κikκil)Ei1EiN,\tau(\mathbf{t})=\mathop{\textstyle\sum}\limits_{I\in\mathcal{M}(A)}\Delta_{I}(A)E_{I}(\mathbf{t}),\quad\text{with}\quad E_{I}(\mathbf{t})=\prod_{k>l}(\kappa_{i_{k}}-\kappa_{i_{l}})E_{i_{1}}\cdots E_{i_{N}},

where ΔI(A)\Delta_{I}(A) is the N×NN\times N minor of AA associated with the ordered subset II, and (A)\mathcal{M}(A) is the matroid defined by

(A):={I([M]N):ΔI(A)0}.\mathcal{M}(A):=\left\{I\in\binom{[M]}{N}:\Delta_{I}(A)\neq 0\right\}.

Note here that the ordering in the parameters κ=(κ1,,κM)\kappa=(\kappa_{1},\ldots,\kappa_{M}) implies EI(𝐭)>0E_{I}(\mathbf{t})>0 for all I([M]N)I\in\binom{[M]}{N} and 𝐭M\mathbf{t}\in\mathbb{R}^{M}. Then it was shown in [10] that the regular soliton solutions, referred to as KP solitons, are obtained if and only if A=(ai,j)Gr(N,M)0A=(a_{i,j})\in\text{Gr}(N,M)_{\geq 0} is an element of the totally nonnegative Grassmannian, which is defined as

Gr(N,M)0:={AGr(N,M):ΔI(A)>0for allI(A)}.\text{Gr}(N,M)_{\geq 0}:=\left\{A\in\text{Gr}(N,M):\Delta_{I}(A)>0~{}\text{for all}~{}I\in\mathcal{M}(A)\right\}.

For example, one line-soliton solution is determined by κ=(κi,κj)\kappa=(\kappa_{i},\kappa_{j}) and A=(1,a)Gr(1,2)0A=(1,a)\in\text{Gr}(1,2)_{\geq 0} for a>0a>0, i.e. τ(𝐭)=Ei(𝐭)+aEj(𝐭)\tau(\mathbf{t})=E_{i}(\mathbf{t})+aE_{j}(\mathbf{t}) and

u(𝐭)=22t12lnτ(𝐭)=(κiκj)22sech212(ξi(𝐭)ξj(𝐭)+lna),u(\mathbf{t})=2\frac{\partial^{2}}{\partial t_{1}^{2}}\ln\tau(\mathbf{t})=\frac{(\kappa_{i}-\kappa_{j})^{2}}{2}\mathop{\rm sech}\nolimits^{2}\frac{1}{2}(\xi_{i}(\mathbf{t})-\xi_{j}(\mathbf{t})+\ln a),

which is referred to as a line-soliton solution of [i,j][i,j] type, or simply [i,j][i,j]-soliton.

Then we have the following theorem [2, 4].

Theorem 2.1.

Let {i1,,iN}\{i_{1},\ldots,i_{N}\} be the pivot set and {j1,,jMN}\{j_{1},\ldots,j_{M-N}\} be the nonpivot set of AGr(N,M)0A\in\text{Gr}(N,M)_{\geq 0}. Then there exists a unique derangement π\pi of the symmetric group SMS_{M} associated with the matrix AA, denoted by π(A)SM\pi(A)\in S_{M}, so that the KP soliton has the following asymptotic structure.

  • (a)

    For y0y\gg 0, there are [in,π(in)][i_{n},\pi(i_{n})]-solitons with π(in)>in\pi(i_{n})>i_{n} for n=1,,Nn=1,\ldots,N.

  • (b)

    For y0y\ll 0, there are [π(jm),jm][\pi(j_{m}),j_{m}]-solitons with π(jm)<jm\pi(j_{m})<j_{m} for m=1,,MNm=1,\ldots,M-N.

It would be useful to express the derangements in the chord diagrams defined as follows (see e.g. [7]).

Definition 2.2.

Consider a line segment with MM marked points labeled by the κ\kappa-parameter (κ1,,κM)(\kappa_{1},\ldots,\kappa_{M}). Then the chord diagram associated with a derangement π\pi in the symmetric group SMS_{M} is defined by

  • (a)

    if i<π(i)i<\pi(i) (exceedance), then draw a chord joining κi\kappa_{i} and κπ(i)\kappa_{\pi(i)} on the upper part of the line, and

  • (b)

    if j>π(j)j>\pi(j) (deficiency), then draw a chord joining κj\kappa_{j} and κπ(j)\kappa_{\pi(j)} on the lower part of the line.

Note that if the derangement is given by a single kk-cycle, π=(j1,,jk)\pi=(j_{1},\ldots,j_{k}), then all the points {κji;i=1,,k}\{\kappa_{j_{i}};~{}i=1,\ldots,k\} are joined in the chord diagram.

Example 2.3.

Let π=(1,3,2,7,5)(4,6,8)S8\pi=(1,3,2,7,5)(4,6,8)\in S_{8} be a permutation in the cycle notation, whose chord diagram is given by

[Uncaptioned image]

Then following the method given in [9, 7], we have AGr(4,8)0A\in\text{Gr}(4,8)_{\geq 0},

A=(1a3a6a8a1a3a4a6a8b11a5a3a5a6a1a3a4a5a6b21a3a1a3a4a1a2a3a41a1a1a2)A=\begin{pmatrix}1&&&&a_{3}a_{6}a_{8}&&-a_{1}a_{3}a_{4}a_{6}a_{8}&-b_{1}\\ &1&a_{5}&&-a_{3}a_{5}a_{6}&&a_{1}a_{3}a_{4}a_{5}a_{6}&b_{2}\\ &&&1&a_{3}&&-a_{1}a_{3}a_{4}&-a_{1}a_{2}a_{3}a_{4}\\ &&&&&1&a_{1}&a_{1}a_{2}\end{pmatrix}

with b1=a2a6a8(a7+a1a3a4),b2=a2a5a6(a7+a1a3a4)b_{1}=a_{2}a_{6}a_{8}(a_{7}+a_{1}a_{3}a_{4}),~{}b_{2}=a_{2}a_{5}a_{6}(a_{7}+a_{1}a_{3}a_{4}), where the blank elements are zero, and all ai>0a_{i}>0 for i=1,,8i=1,\ldots,8.

It was also shown in [5, 14] that the number of free parameters in AGr(N,M)0A\in\text{Gr}(N,M)_{\geq 0} can be found from the chord diagram, and it is given by

(2.9) N+{# of crossings}+{# of cusps in the lower part},N+\{\text{\# of crossings}\}+\{\text{\# of cusps in the lower part}\},

which is the dimension of the positroid cell parametrized by the derangement π(A)\pi(A) [14, 9]. The positroid cell decomposition of the irreducible totally nonnegative Grassmannian is given by

Gr(N,M)0irr=πDMXπ,\text{Gr}(N,M)_{\geq 0}^{\text{irr}}=\bigsqcup_{\pi\in D_{M}}X_{\pi},

where DMSMD_{M}\subset S_{M} is the set of derangements, and the irreducibility implies that for each element AGr(N,M)0A\in\text{Gr}(N,M)_{\geq 0}, the matrix AA satisfies

  • (a)

    there is no zero column,

  • (b)

    there exists at least one nonzero elements in each row besides the pivot.

In the example 2.3, the dimension XπX_{\pi} is given by

dim(Xπ)=4+3+1=8,\text{dim}(X_{\pi})=4+3+1=8,

which is the total number of positive parameters a1,,a8a_{1},\ldots,a_{8}.

2.4. The Gel’fand-Dickey \ell-reductions

Then the Gel’fand-Dickey \ell-reduction (sometime called the \ell-th generalized KdV hierarchy, see e.g. [11]) is defined by

L=B:=(L)0,L^{\ell}=B_{\ell}:=(L^{\ell})_{\geq 0},

that is, the \ell-th power of LL becomes a differential operator. This means that the functions uiu_{i}’s are determined by 1\ell-1 variables in LL^{\ell} in the form,

(2.10) L=+r22+r33++r,L^{\ell}=\partial^{\ell}+r_{2}\partial^{\ell-2}+r_{3}\partial^{\ell-3}+\cdots+r_{\ell},

where the functions rir_{i} is given by the differential polynomial of {u2,,ui}\{u_{2},\cdots,u_{i}\} and their derivatives with respect to t1t_{1}. For example, when =4\ell=4, we have

r2=4u2,r3=6u2,t1+4u3,r4=4u2,t1t1+6u22+6u3,t1+4u4.\displaystyle r_{2}=4u_{2},\quad\quad\quad r_{3}=6u_{2,t_{1}}+4u_{3},\quad\quad\quad r_{4}=4u_{2,t_{1}t_{1}}+6u_{2}^{2}+6u_{3,t_{1}}+4u_{4}.

We can also see from L=(WW1)0L^{\ell}=(W\partial^{\ell}W^{-1})_{\geq 0} that these functions rnr_{n} have the following form,

(2.11) rn+1=nt1tnlnτ+Rn(r2,,rn)with1n1,r_{n+1}=\frac{\ell}{n}\partial_{t_{1}}\partial_{t_{n}}\ln\tau+R_{n}(r_{2},\cdots,r_{n})\quad\quad\text{with}\quad\quad 1\leq n\leq\ell-1,

where Rn(r2,,rn)R_{n}(r_{2},\ldots,r_{n}) is the differential polynomial of {r2,,rn}\{r_{2},\ldots,r_{n}\} with R1=0R_{1}=0. For example, when =4\ell=4, we have

r2=4t12lnτ,r3=2t1t2lnτ+t1r2,r4=43t1t3lnτ+12t1r3112t12r2+18r22.\displaystyle r_{2}=4\partial_{t_{1}}^{2}\ln\tau,\quad\quad r_{3}=2\partial_{t_{1}}\partial_{t_{2}}\ln\tau+\partial_{t_{1}}r_{2},\quad\quad r_{4}=\frac{4}{3}\partial_{t_{1}}\partial_{t_{3}}\ln\tau+\frac{1}{2}\partial_{t_{1}}r_{3}-\frac{1}{12}\partial_{t_{1}}^{2}r_{2}+\frac{1}{8}r_{2}^{2}.

From (2.2) with (2.10), the \ell-reduction gives the constraints,

Ltn=0forn=1,2,,\frac{\partial L}{\partial t_{n\ell}}=0\qquad\text{for}\quad n=1,2,\ldots,

that is, all the variables {ri:1i1}\{r_{i}:1\leq i\leq\ell-1\} do not depend on the times tnt_{n\ell}. Following [11], we define the \ell-reduction as follows. Let {n1,,nK}\{n_{1},\ldots,n_{K}\} be a partition of NN with 1nk<1\leq n_{k}<\ell, i.e. N=n1++nKN=n_{1}+\cdots+n_{K}, and define Nk=n1++nkN_{k}=n_{1}+\cdots+n_{k} (i.e.N=NK)(\text{i.e.}~{}N=N_{K}). Then the \ell-reduction is defined by a condition for the functions {fi:1iN}\{f_{i}:1\leq i\leq N\} in (2.7) given by

(2.12) fit=αkfi,forNk1+1iNk,1kK,\frac{\partial f_{i}}{\partial t_{\ell}}=\alpha_{k}f_{i},\qquad\text{for}\quad N_{k-1}+1\leq i\leq N_{k},\quad 1\leq k\leq K,

for some constant αk\alpha_{k}\in\mathbb{R} and N0=0N_{0}=0. Using (2.7), this leads to

fit=fit1=αkfi.\frac{\partial f_{i}}{\partial t_{\ell}}=\frac{\partial^{\ell}f_{i}}{\partial t_{1}^{\ell}}=\alpha_{k}f_{i}.

Looking for an exponential solution to this equation, we have the degenerate polynomial of κ\kappa, i.e.

(2.13) κ=αk,\kappa^{\ell}=\alpha_{k},

which has the complex roots, the \ell-th roots of αk\alpha_{k} (see [11], where the complex solitons associated with thses roots were discussed).

One should note that the reduction equation (2.12) implies that we have fi(𝐭)=enαkntng(𝐭)f_{i}(\mathbf{t})=e^{\mathop{\textstyle\sum}\limits_{n}\alpha_{k}^{n}t_{n\ell}}g(\mathbf{t}^{\prime}) with 𝐭=(tj:j0(mod))\mathbf{t}^{\prime}=(t_{j}:j\neq 0~{}(\text{mod}~{}\ell)), which shows that the τ\tau-function is given by τ(𝐭)=Wr(f1,fN)(𝐭)=eknαkntnWr(g1,,gN)(𝐭)\tau(\mathbf{t})=\text{Wr}(f_{1},\ldots f_{N})(\mathbf{t})=e^{\mathop{\textstyle\sum}\limits_{k}\mathop{\textstyle\sum}\limits_{n}\alpha_{k}^{n}t_{n\ell}}\text{Wr}(g_{1},\ldots,g_{N})(\mathbf{t}^{\prime}). Then the variables rn(𝐭)r_{n}(\mathbf{t}) in (2.11) has no dependency on the flow parameters tnt_{n\ell}.

In the next section, we define a versal deformation of the degenerate polynomial (2.13) to find the real and regular solutions.

3. Spectral curves and the τ\tau-functions for the KP solitons under the \ell-reductions

Here we first introduce the spectral curve defined as a versal deformation of the degenerated polynomial (2.13) in order to obtain a set of exponential functions for the basis of real solitons. Then we construct the τ\tau-function for a particular basis of exponential functions and describe the corresponding soliton solution in terms of the permutation.

3.1. The spectral curve and the τ\tau-function

We consider a versal deformation of the \ell-th degree polynomial (2.13) given by

(3.1) Φ(κ,α):=φ(κ)α=0withφ(κ):=κj=11cjκj,\Phi_{\ell}(\kappa,\alpha):=\varphi_{\ell}(\kappa)-\alpha=0\qquad\text{with}\qquad\varphi_{\ell}(\kappa):=\kappa^{\ell}-\mathop{\textstyle\sum}\limits_{j=1}^{\ell-1}c_{j}\kappa^{j},

where cjc_{j} are real constants (deformation parameters). We particularly choose cjc_{j}’s , so that (3.1) has \ell distinct real roots κj[α]\kappa_{j}[\alpha], which is (1.8), i.e. the versality implies that

Φ(κ,α)=j=1(κκj[α])=0.\Phi_{\ell}(\kappa,\alpha)=\prod_{j=1}^{\ell}(\kappa-\kappa_{j}[\alpha])=0.

We call this spectral curve for the KP soliton under the \ell-reduction.

We note that the versal deformation (3.1) can be realized by the change of coordinates,

(3.2) tn{tn+cnt,if1n1,t,ifn=.t_{n}~{}\rightarrow~{}\left\{\begin{array}[]{lll}t_{n}+c_{n}t_{\ell},&\quad\text{if}~{}1\leq n\leq\ell-1,\\ t_{\ell},&\quad\text{if}~{}n=\ell.\end{array}\right.

In the new coordinates, the derivatives are

tn{tn,if1n1,t+i=11citiifn=.\frac{\partial}{\partial t_{n}}~{}\rightarrow~{}\left\{\begin{array}[]{lll}\frac{\partial}{\partial t_{n}},&\quad\text{if}~{}1\leq n\leq\ell-1,\\ \frac{\partial}{\partial t_{\ell}}+\mathop{\textstyle\sum}\limits_{i=1}^{\ell-1}c_{i}\frac{\partial}{\partial t_{i}}&\quad\text{if}~{}n=\ell.\end{array}\right.

Then we impose that the condition for the \ell-reduction in the new coordinates becomes

fit1n=11cnnfit1n=αfi.\frac{\partial^{\ell}f_{i}}{\partial t_{1}^{\ell}}-\mathop{\textstyle\sum}\limits_{n=1}^{\ell-1}c_{n}\frac{\partial^{n}f_{i}}{\partial t_{1}^{n}}=\alpha f_{i}.

As a particular solution of this equation, we consider an exponential function f(𝐭)=exp(κt1)f(\mathbf{t})=\exp(\kappa t_{1}). Then the parameter κ\kappa satisfies Φ(κ,α)=0\Phi_{\ell}(\kappa,\alpha)=0, hence we have \ell independent exponential solutions,

Ej(𝐭,α):=exp(n=1κj[α]ntn),forj=1,,.E_{j}(\mathbf{t},\alpha):=\exp\left(\mathop{\textstyle\sum}\limits_{n=1}^{\ell}\kappa_{j}[\alpha]^{n}t_{n}\right),\qquad\text{for}\quad j=1,\ldots,\ell.

Notice that in the original coordinates in (3.2), we have

(3.3) Ej(𝐭,α)=eαtexp(n=11κj[α]ntn)=:eαtEj(𝐭^,α),E_{j}(\mathbf{t},\alpha)=e^{\alpha t_{\ell}}\exp\left(\mathop{\textstyle\sum}\limits_{n=1}^{\ell-1}\kappa_{j}[\alpha]^{n}t_{n}\right)=:e^{\alpha t_{\ell}}E_{j}(\hat{\mathbf{t}},\alpha),

i.e. Ej(𝐭,α)E_{j}(\mathbf{t},\alpha) is a solution of the \ell-reduction (2.12), and 𝐭^=(t1,,t1)\hat{\mathbf{t}}=(t_{1},\ldots,t_{\ell-1}).

Then the τ\tau-function in (2.8) is given by

(3.4) τ(𝐭^,α)=I(A[α])ΔI(A[α])EI(𝐭^,α),\tau(\hat{\mathbf{t}},\alpha)=\mathop{\textstyle\sum}\limits_{I\in\mathcal{M}(A[\alpha])}\Delta_{I}(A[\alpha])E_{I}(\hat{\mathbf{t}},\alpha),

where

EI(𝐭^,α)=Wr(Ei1,,EiN)=j>k(κij[α]κik[α]))j=1NEij(𝐭^,α).E_{I}(\hat{\mathbf{t}},\alpha)=\text{Wr}(E_{i_{1}},\ldots,E_{i_{N}})=\prod_{j>k}\left(\kappa_{i_{j}}[\alpha]-\kappa_{i_{k}}[\alpha])\right)\cdot\prod_{j=1}^{N}E_{i_{j}}(\hat{\mathbf{t}},\alpha).

3.2. Non-crossing permutations and the main theorem

Here we consider several values of α\alpha\in\mathbb{R}, say αk\alpha_{k} for k=1,,Kk=1,\ldots,K. For each α=αk\alpha=\alpha_{k}, let [αk]\mathcal{I}[\alpha_{k}] be a subset of []={1,,}[\ell]=\{1,\ldots,\ell\} with |[αk]|=mk|\mathcal{I}[\alpha_{k}]|=m_{k}\leq\ell. We then consider Φ(κ,αk)=0\Phi_{\ell}(\kappa,\alpha_{k})=0 in (3.1) for k=1,,Kk=1,\ldots,K, and define the soliton parameter κM\kappa\in\mathbb{R}^{M}, which is the ordered set of the roots of Φ(κ,αk)=0\Phi_{\ell}(\kappa,\alpha_{k})=0,

κ:=ord(k=1K{κj[αk]:j[αk]})=:(κ1<κ2<<κM),\kappa:=\text{ord}\left(\bigcup_{k=1}^{K}\left\{\kappa_{j}[\alpha_{k}]:j\in\mathcal{I}[\alpha_{k}]\,\right\}\right)=:(\kappa_{1}<\kappa_{2}<\cdots<\kappa_{M}),

where M=m1++mKM=m_{1}+\cdots+m_{K}. Since all κj[αk]\kappa_{j}[\alpha_{k}] are distinct, this gives that for each m[M]:={1,,M}m\in[M]:=\{1,\ldots,M\}, there exists a unique pair (j,k)(j,k) so that κm=κj[αk]\kappa_{m}=\kappa_{j}[\alpha_{k}], which gives a bijection m=ϕ(j,k)m=\phi(j,k) for each j[αk]j\in\mathcal{I}[\alpha_{k}]. We also write

(3.5) ^[αk]:=ϕ([αk]):={m=ϕ(j,k):j[αk]}.\hat{\mathcal{I}}[\alpha_{k}]:=\phi(\mathcal{I}[\alpha_{k}]):=\{\,m=\phi(j,k):j\in\mathcal{I}[\alpha_{k}]\,\}.

With this ordering, we define

fi(𝐭,αk)=j^[αk]ai,j(αk)Ej(𝐭),forNk1+1iNk,f_{i}(\mathbf{t},\alpha_{k})=\mathop{\textstyle\sum}\limits_{j\in{\hat{\mathcal{I}}}[\alpha_{k}]}a_{i,j}(\alpha_{k})E_{j}(\mathbf{t}),\quad\text{for}\quad N_{k-1}+1\leq i\leq N_{k},

where Nk=n1++nkN_{k}=n_{1}+\cdots+n_{k} with 1nkmk11\leq n_{k}\leq m_{k}-1. Note that Ej(𝐭)=exp(n=1κjntn)E_{j}(\mathbf{t})=\exp(\mathop{\textstyle\sum}\limits_{n=1}^{\infty}\kappa_{j}^{n}t_{n}). Here we also take A[αk]:=(ai,j(αk))Gr(nk,mk)0A[\alpha_{k}]:=(a_{i,j}(\alpha_{k}))\in\text{Gr}(n_{k},m_{k})_{\geq 0}, and let π(A[αk])\pi(A[\alpha_{k}]) be the corresponding permutation in the cycle notation,

π(A[αk])=p=1Pk(j1(p),,jkp(p)),\pi(A[\alpha_{k}])=\prod_{p=1}^{P_{k}}(j^{(p)}_{1},\ldots,j^{(p)}_{k_{p}}),

where PkP_{k} is the number of cycles, and (j1(p),,jkp(p))(j^{(p)}_{1},\ldots,j^{(p)}_{k_{p}}) is a kpk_{p}-cycle for ji(p)^[αk]j^{(p)}_{i}\in\hat{\mathcal{I}}[\alpha_{k}].

Let N=NK=n1++nKN=N_{K}=n_{1}+\cdots+n_{K}. Then we define an N×MN\times M matrix combining all the matrices A[αk]A[\alpha_{k}] for k=1,,Kk=1,\ldots,K, which we call a κ\kappa-direct sum.

Definition 3.1.

A κ\kappa-direct sum of the matrices A[αk]A[\alpha_{k}] for k=1,,Kk=1,\ldots,K is defined by

^k=1KA[αk]:=(ai,m)1iN,1mM,\widehat{\bigoplus}_{k=1}^{K}A[\alpha_{k}]:=\left(a_{i,m}\right)_{1\leq i\leq N,~{}1\leq m\leq M},

where m=ϕ(j,k)m=\phi(j,k) with j[αk]j\in\mathcal{I}[\alpha_{k}] for 1kK1\leq k\leq K. In particular, the row index ii is assigned so that the direct sum is an element of Gr(N,M)\text{Gr}(N,M), i.e. it is in the reduced row echelon form (RREF). Notice that in general, it is not totally nonnegative.

Example 3.2.

Consider a case with =7\ell=7, and two different α\alpha’s in the order α1<α2\alpha_{1}<\alpha_{2}. Take

[α1]={1,4,5,7},[α2]={1,2,4,5,6}.\mathcal{I}[\alpha_{1}]=\{1,4,5,7\},\qquad\mathcal{I}[\alpha_{2}]=\{1,2,4,5,6\}.

The spectral curve can be expressed as in Figure 1.

Refer to caption
Figure 1. The spectral curve Φ7(κ,α)=0\Phi_{7}(\kappa,\alpha)=0 with the roots κj[αi]\kappa_{j}[\alpha_{i}] for i=1,2i=1,2.

These roots satisfy the following order, giving the bijection ϕ:κj[αk]κm\phi:\kappa_{j}[\alpha_{k}]\to\kappa_{m},

κ1=κ1[α1]<κ1[α2]<κ2[α2]<κ4[α2]<κ4[α1]<κ5[α1]<κ5[α2]<κ6[α2]<κ7[α1]=κ9,\kappa_{1}=\kappa_{1}[\alpha_{1}]<\kappa_{1}[\alpha_{2}]<\kappa_{2}[\alpha_{2}]<\kappa_{4}[\alpha_{2}]<\kappa_{4}[\alpha_{1}]<\kappa_{5}[\alpha_{1}]<\kappa_{5}[\alpha_{2}]<\kappa_{6}[\alpha_{2}]<\kappa_{7}[\alpha_{1}]=\kappa_{9},

which gives

^[α1]={1,5,6,9},^[α2]={2,3,4,7,8}.\hat{\mathcal{I}}[\alpha_{1}]=\{1,5,6,9\},\qquad\hat{\mathcal{I}}[\alpha_{2}]=\{2,3,4,7,8\}.

As an example, consider the following permutations,

π(A[α1])=(1,6,9,5),π(A[α2])=(2,3,4)(7,8),\displaystyle\pi(A[\alpha_{1}])=(1,6,9,5),\qquad\pi(A[\alpha_{2}])=(2,3,4)(7,8),

whose chord diagram is

[Uncaptioned image]

The corresponding matrices A[α1]Gr(2,4)0A[\alpha_{1}]\in\text{Gr}(2,4)_{\geq 0} and A[α2]Gr(3,5)0A[\alpha_{2}]\in\text{Gr}(3,5)_{\geq 0} are given by

A[α1]=(1ab1c),andA[α2]=(1d1e1f),A[\alpha_{1}]=\begin{pmatrix}1&a&&-b\\ &&1&c\end{pmatrix},\qquad\text{and}\qquad A[\alpha_{2}]=\begin{pmatrix}1&&-d&&\\ &1&e&&\\ &&&1&f\end{pmatrix},

where a,b,,fa,b,\ldots,f are positive constants, (see e.g. [7] for the method to construct AGr(N,M)0A\in\text{Gr}(N,M)_{\geq 0} from permutation π(A)SM\pi(A)\in S_{M}). The κ\kappa-direct sum A[α1]^A[α2]A[\alpha_{1}]\hat{\oplus}A[\alpha_{2}] is then given by

A[α1]^A[α2]=(1ab1d1e1c1f)Gr(5,9).A[\alpha_{1}]\hat{\oplus}A[\alpha_{2}]=\begin{pmatrix}1&&&&a&&&&-b\\ &1&&-d&&&&&\\ &&1&e&&&&&\\ &&&&&1&&&c\\ &&&&&&1&f&\\ \end{pmatrix}\in\text{Gr}(5,9).

Note that this is not totally nonnegative, e.g. Δ2,3,6,7,9=b<0\Delta_{2,3,6,7,9}=-b<0. This is due to the relocation of the column vectors.

We now define the notion of non-crossing of the permutations.

Definition 3.3.

Let π(p)=(j1(p),,jkp(p))\pi^{(p)}=(j^{(p)}_{1},\ldots,j^{(p)}_{k_{p}}) and π(q)=(j1(q),,jkq(q))\pi^{(q)}=(j^{(q)}_{1},\ldots,j^{(q)}_{k_{q}}) be two permutations in cycle notation. Then we define

  • (a)

    Two cycles π(p)\pi^{(p)} and π(q)\pi^{(q)} are non-crossing, if the corresponding chord diagrams have no crossing chords between two permutations.

  • (b)

    Two matrices A[αi]A[\alpha_{i}] and A[αj]A[\alpha_{j}] for iji\neq j are non-crossing, if the corresponding permutations π(A[αi])\pi(A[\alpha_{i}]) and π(A[αj])\pi(A[\alpha_{j}]) are noncrossing.

Note that the matrices A[α1]A[\alpha_{1}] and A[α2]A[\alpha_{2}] in Example 3.2 are non-crossing.

An immediate consequence of this definition is the following.

Proposition 3.4.

If A[αi]Gr(ni,mi)0A[\alpha_{i}]\in\text{Gr}(n_{i},m_{i})_{\geq 0} and A[αj]Gr(nj,mj)0A[\alpha_{j}]\in\text{Gr}(n_{j},m_{j})_{\geq 0} for αiαj\alpha_{i}\neq\alpha_{j} are not non-crossing, then the κ\kappa-direct sum A[αi]^A[αj]A[\alpha_{i}]\hat{\oplus}A[\alpha_{j}] is not totally nonnegative.

Proof. Recall that the dimension of the totally nonnegative cell can be computed from the formula (2.9). Note that the κ\kappa-direct sum A[αi]^A[αj]A[\alpha_{i}]\hat{\oplus}A[\alpha_{j}] has an extra crossing. If A[αi]^A[αj]A[\alpha_{i}]\hat{\oplus}A[\alpha_{j}] is totally nonnegative, then the number of free parameter (or dimension) in the κ\kappa-direct sum should be more that the sum of the free parameters in A[αi]A[\alpha_{i}] and A[αj]A[\alpha_{j}].       

In order to characterize the non-crossing matrices, let us first define the following set 𝖯(A[αi])\mathsf{P}(A[\alpha_{i}]) for the matrix A[αi]Gr(ni,mi)A[\alpha_{i}]\in\text{Gr}(n_{i},m_{i}),

𝖯(A[αi]):={ΔI(A[αi])0:I(A[αi])},\mathsf{P}(A[\alpha_{i}]):=\left\{\Delta_{I}(A[\alpha_{i}])\neq 0:I\in\mathcal{M}(A[\alpha_{i}])\right\},

where (A[αi])\mathcal{M}(A[\alpha_{i}]) is the matroid of A[αi]A[\alpha_{i}], i.e.

(A[αi]):={I([mi]ni):ΔI(A[αi])0}.\mathcal{M}(A[\alpha_{i}]):=\left\{I\in\binom{[m_{i}]}{n_{i}}:\Delta_{I}(A[\alpha_{i}])\neq 0\right\}.

Then the following lemma is immediate by the definition of the κ\kappa-direct sum A[αi]^A[αj]A[\alpha_{i}]\hat{\oplus}A[\alpha_{j}] and using the Laplace expansion for the minors.

Lemma 3.5.
𝖯(A[αi]^A[αj])={ΔI(A[αi])ΔJ(A[αj]):I(A[αi]),J(A[αj])}.\mathsf{P}\left(A[\alpha_{i}]\hat{\oplus}A[\alpha_{j}]\right)=\left\{\Delta_{I}(A[\alpha_{i}])\Delta_{J}(A[\alpha_{j}]):I\in\mathcal{M}(A[\alpha_{i}]),~{}J\in\mathcal{M}(A[\alpha_{j}])\right\}.

Let A[αi,αj]A[\alpha_{i},\alpha_{j}] be the totally non-negative matrix, i.e. A[αi,αj]Gr(ni+nj,mi+mj)0A[\alpha_{i},\alpha_{j}]\in\text{Gr}(n_{i}+n_{j},m_{i}+m_{j})_{\geq 0}, whose permutation is given by

π(A[αi,αj])=π(A[αi])π(A[αj]).\pi(A[\alpha_{i},\alpha_{j}])=\pi(A[\alpha_{i}])\cdot\pi(A[\alpha_{j}]).

This implies that the set of the asymptotic solitons in |y|0|y|\gg 0 generated by A[αi,αj]A[\alpha_{i},\alpha_{j}] is the sum of these solitons generated by A[αi]A[\alpha_{i}] and A[αj]A[\alpha_{j}]. Then we can show that Lemma 3.5 implies the following.

Corollary 3.6.

The set of the dominant exponentials in the soliton solution generated by the totally nonnegative matrix A[αi,αj]A[\alpha_{i},\alpha_{j}] is the same as that of the solution generated by the matrix A[αi]^A[αj]A[\alpha_{i}]\hat{\oplus}A[\alpha_{j}].

Proof. From Lemma 3.5, one can assume that there exists a minor ΔI(A[αi])ΔJ(A[αj])\Delta_{I}(A[\alpha_{i}])\Delta_{J}(A[\alpha_{j}]) such that the corresponding exponential EI^J^E_{\hat{I}\cup\hat{J}} with (I^=ϕ(I),J^=ϕ(J))(\hat{I}=\phi(I),\hat{J}=\phi(J)) by ϕ\phi in(3.5) is dominant in some asymptotic region of xyxy-plane with large x2+y2x^{2}+y^{2}. Then moving xx-coordinate, the following two cases are possible,

  • (a)

    there exists I(A[αi])I^{\prime}\in\mathcal{M}(A[\alpha_{i}]) with |II|=1|I\setminus I^{\prime}|=1, so that EI^J^E_{\hat{I}^{\prime}\cup\hat{J}} dominates over EI^J^E_{\hat{I}\cup\hat{J}},

  • (b)

    there exists J(A[αj])J^{\prime}\in\mathcal{M}(A[\alpha_{j}]) with |JJ|=1|J\setminus J^{\prime}|=1, so that EI^J^E_{\hat{I}\cup\hat{J}^{\prime}} dominates over EI^J^E_{\hat{I}\cup\hat{J}},

where we have used the fact that there is only one index change in the minor at the boundary of two dominant regions (more precisely, if κk+κlκk+κl\kappa_{k}+\kappa_{l}\neq\kappa_{k^{\prime}}+\kappa_{l^{\prime}} for (k,l)(k,l)(k,l)\neq(k^{\prime},l^{\prime}), see [2] for the details). The case (a) implies that there is an asymptotic soliton given in π(A[αi])\pi(A[\alpha_{i}]), and the case (b) shows the existence of the soliton in π(A[αj])\pi(A[\alpha_{j}]).       

Note that these solitons generated by the κ\kappa-direct sum A[αi]^A[αj]A[\alpha_{i}]\hat{\oplus}A[\alpha_{j}] are singular in general. Now we can show the following proposition.

Proposition 3.7.

Let A[αi]Gr(ni,mj)0A[\alpha_{i}]\in\text{Gr}(n_{i},m_{j})_{\geq 0} and A[αj]Gr(nj,mj)0A[\alpha_{j}]\in\text{Gr}(n_{j},m_{j})_{\geq 0} are non-crossing. Then the κ\kappa-direct sum A[αi]^A[αj]A[\alpha_{i}]\hat{\oplus}A[\alpha_{j}] becomes totally nonnegative by adjusting the signs in the nonzero entries in A[αi]A[\alpha_{i}] and A[αj]A[\alpha_{j}].

Proof. Since A[αi]A[\alpha_{i}] and A[αj]A[\alpha_{j}] are non-crossing, we have from Lemma 3.5 that the number of free parameters of A[αi]^A[αj]A[\alpha_{i}]\hat{\oplus}A[\alpha_{j}] is just the sum of those in A[αi]A[\alpha_{i}] and A[αj]A[\alpha_{j}], and the number of free parameters in the totally nonnegative matrix A[αi,αj]A[\alpha_{i},\alpha_{j}] is the same as that of A[αi]^A[αj]A[\alpha_{i}]\hat{\oplus}A[\alpha_{j}]. These free parameters are given by the nonzero entires of the matrices A[αi]A[\alpha_{i}] and A[αj]A[\alpha_{j}]. Let ak,la_{k,l} be a nonzero entry corresponding to that in A[αi]A[\alpha_{i}] or A[αj]A[\alpha_{j}], where {k,l}\{{k},{l}\} is either in ^[αi]\hat{\mathcal{I}}[\alpha_{i}] or ^[αj]\hat{\mathcal{I}}[\alpha_{j}]. Then there exists a unique pair (I,J)(A[αi])×(A[αj])(I,J)\in\mathcal{M}(A[\alpha_{i}])\times\mathcal{M}(A[\alpha_{j}]), so that ΔI^J^(A[αi]^A[αj])=±ΔI(A[αi])ΔJ(A[αj])=±ak,l\Delta_{\hat{I}\cup\hat{J}}(A[\alpha_{i}]\hat{\oplus}A[\alpha_{j}])=\pm\Delta_{I}(A[\alpha_{i}])\Delta_{J}(A[\alpha_{j}])=\pm a_{k,l}, where I^=ϕ(I)\hat{I}=\phi(I) and J^=ϕ(J)\hat{J}=\phi(J). Note also that ΔI^J^(A[αi,αj])=±ak,l\Delta_{\hat{I}\cup\hat{J}}(A[\alpha_{i},\alpha_{j}])=\pm a_{k,l}. This determines the signs of all nonzero entries ak,la_{{k},{l}} in A[αi]^A[αj]A[\alpha_{i}]\hat{\oplus}A[\alpha_{j}]. Since A[αi,αj]A[\alpha_{i},\alpha_{j}] is unique and have the same sets of minors as A[αi]^A[αj]A[\alpha_{i}]\hat{\oplus}A[\alpha_{j}], we have that ΔI^J^(A[αi]^A[αj])>0\Delta_{\hat{I}\cup\hat{J}}(A[\alpha_{i}]\hat{\oplus}A[\alpha_{j}])>0 for all I(A[αi])I\in\mathcal{M}(A[\alpha_{i}]) and J(A[αj])J\in\mathcal{M}(A[\alpha_{j}])     

As the summary of the results in this section, we have the main theorem.

Theorem 3.8.

Suppose that A[αi]A[\alpha_{i}] and A[αj]A[\alpha_{j}] are non-crossing for any 1ijK1\leq i\neq j\leq K. Then we can make the combined matrix ^k=1KA[αk]\hat{\oplus}_{k=1}^{K}A[\alpha_{k}] totally nonnegative, and we have

π(A[α1,,αK])=k=1Kπ(A[αk]),\pi(A[\alpha_{1},\ldots,\alpha_{K}])=\prod_{k=1}^{K}\pi(A[\alpha_{k}]),

where A[α1,,αK]A[\alpha_{1},\ldots,\alpha_{K}] denotes the totally nonnegative matrix associated to ^k=1KA[αk]\hat{\oplus}_{k=1}^{K}A[\alpha_{k}], i.e. A[α1,,αK]Gr(N,M)0A[\alpha_{1},\ldots,\alpha_{K}]\in\text{Gr}(N,M)_{\geq 0} with N=n1++nKN=n_{1}+\cdots+n_{K} and M=m1++mKM=m_{1}+\cdots+m_{K}.

This theorem implies that the soliton solution generated by the soliton parameters κ=(κ1,,κM)\kappa=(\kappa_{1},\ldots,\kappa_{M}) with the sorted coordinates κm=κj[αk]\kappa_{m}=\kappa_{j}[\alpha_{k}] (m=ϕ(j,k)m=\phi(j,k)) and A[α1,,αK]Gr(N,M)0A[\alpha_{1},\ldots,\alpha_{K}]\in\text{Gr}(N,M)_{\geq 0} is regular, that is, it is a KP soliton.

4. Regular solitons for the Boussinesq equation

Based on the previous section, we give the detailed study of the real regular soliton solutions of the Boussinesq equation.

4.1. The Boussinesq equation from the KP theory

It is well known that the Boussinesq equation is given by the 3-reduction of the KP hierarchy, i.e. L3=(L3)0=B3L^{3}=(L^{3})_{\geq 0}=B_{3}. We write

L3=B3:=3+32u+34ux+w,L^{3}=B_{3}:=\partial^{3}+\frac{3}{2}u\partial+\frac{3}{4}u_{x}+w,

where u=2u2u=2u_{2} and w=3u3+32u2,xw=3u_{3}+\frac{3}{2}u_{2,x} with the Lax operator (2.1). Then the Boussinesq equation is obtained by the Lax equation,

L3t2=B3t2=[B2,B3],\frac{\partial L^{3}}{\partial t_{2}}=\frac{\partial B_{3}}{\partial t_{2}}=[B_{2},B_{3}],

where B2=(L2)0=2+uB_{2}=(L^{2})_{\geq 0}=\partial^{2}+u. This gives

(4.2) {ut2=43wx,wt2=14uxxx32uux.\displaystyle\left\{\begin{array}[]{ll}\vspace{1ex}\begin{aligned} &\frac{\partial u}{\partial t_{2}}=\frac{4}{3}w_{x},\\ &\frac{\partial w}{\partial t_{2}}=-\frac{1}{4}u_{xxx}-\frac{3}{2}uu_{x}.\end{aligned}\end{array}\right.

The functions uu and ww can be represented by the τ\tau-function,

(4.3) u=22x2lnτ,andw=322xt2lnτ.u=2\frac{\partial^{2}}{\partial x^{2}}\ln\tau,\qquad\text{and}\qquad w=\frac{3}{2}\frac{\partial^{2}}{\partial x\partial t_{2}}\ln\tau.

Eliminating ww in (4.2), we have

(4.4) 3ut2t2+(3u2+uxx)xx=0.3u_{t_{2}t_{2}}+(3u^{2}+u_{xx})_{xx}=0.

Notice that this is not a standard form of the Boussinesq equation. Also note that this equation does not have a soliton solution with the vanishing boundary condition, i.e. u0u\to 0 as |x||x|\to\infty. In order to obtain a regular soliton (exponential) solution, we need to impose a non-vanishing boundary condition. Assuming uu+u0u\to u+u_{0}, (4.4) becomes

(4.5) 3ut2t2+6u0uxx+(3u2+uxx)xx=0.\displaystyle 3{u}_{t_{2}t_{2}}+6u_{0}{u}_{xx}+(3{u}^{2}+{u}_{xx})_{xx}=0.

In terms of the τ\tau-function in (4.3), this shift of uu implies

τe14u0x2τ.\tau\quad\longrightarrow\quad e^{\frac{1}{4}u_{0}x^{2}}\tau.

One can easily check that (4.5) admits a soliton solution when u0<0u_{0}<0. This shifted form of the Boussinesq equation can be also obtained by the coordinate change in the KP equation,

(4.8) {xx+c1t3,t2t2+c2t3,t3t3,which gives{xx,t2t2,t3t3+c1x+c2t2,\displaystyle\left\{\begin{array}[]{ll}\vspace{1ex}\begin{aligned} &x~{}\to~{}x+c_{1}t_{3},\\ &t_{2}~{}\to~{}t_{2}+c_{2}t_{3},\\ &t_{3}~{}\to~{}{t_{3}},\end{aligned}\end{array}\right.\qquad\text{which gives}\qquad\left\{\begin{array}[]{ll}\vspace{1ex}\begin{aligned} &\frac{\partial}{\partial x}~{}\to~{}\frac{\partial}{\partial{x}},\quad\quad\frac{\partial}{\partial t_{2}}~{}\to~{}\frac{\partial}{\partial{t_{2}}},\\ &\frac{\partial}{\partial t_{3}}~{}\to~{}\frac{\partial}{\partial t_{3}}+c_{1}\frac{\partial}{\partial{x}}+c_{2}\frac{\partial}{\partial{t_{2}}},\end{aligned}\end{array}\right.

where c1,c2c_{1},c_{2} are arbitrary constants. After the change of coordinates (4.8), the KP equation (1.1) can be expressed by

(4.9) 4uxt4c1uxx4c2uxt2+(3u2+uxx)xx+3ut2t2=0.-4u_{xt}-4c_{1}u_{xx}-4c_{2}u_{xt_{2}}+(3u^{2}+u_{xx})_{xx}+3u_{t_{2}t_{2}}=0.

Then we consider a stationary solution in t3t_{3} (the 3-reduction), that is, ut3=0u_{t_{3}}=0. By choosing c2=0c_{2}=0 and c1=32u0c_{1}=-\frac{3}{2}u_{0}, the equation (4.9) becomes (4.5). As was shown in the previous section, the change of coordinates now leads to the versal deformation of the spectral curve, i.e.

(4.10) Φ3(κ,α)=κ3c1κα=0.\Phi_{3}(\kappa,\alpha)=\kappa^{3}-c_{1}\kappa-\alpha=0.

Note here if c1>0c_{1}>0, we have three real roots for some α\alpha\in\mathbb{R}, which gives a real exponential basis for the soliton solution. Then the soliton solutions of the Boussinesq equation,

(4.11) 3ut2t24c1uxx+(3u2+uxx)xx=0,3u_{t_{2}t_{2}}-4c_{1}u_{xx}+(3u^{2}+u_{xx})_{xx}=0,

are generated by the τ\tau-function in the following form,

(4.12) τ(𝐭)=Wr(f1,,fN)(𝐭),\tau(\mathbf{t})=\text{Wr}(f_{1},\ldots,f_{N})(\mathbf{t}),

where fj(𝐭)f_{j}(\mathbf{t}) is given by a linear combination of the exponential functions (3.3). In this section, we consider the Boussinesq equation in the following standard form,

(4.13) ut2t2c02uxx+13(3u2+uxx)xx=0,u_{t_{2}t_{2}}-c_{0}^{2}u_{xx}+\frac{1}{3}\left(3u^{2}+u_{xx}\right)_{xx}=0,

where we have taken c1=3c02/4c_{1}=3c_{0}^{2}/4 (we assumec0>0)(\text{we assume}~{}c_{0}>0).

4.2. One soliton solution of the Boussinesq equation

A soliton solution of the Boussinesq equation (4.13) as one soliton solution of the KP equation with =3\ell=3 is given by

(4.14) u(x,t2)=(κiκj)22sech2κiκj2(x+(κi+κj)t2+x0),u(x,t_{2})=\frac{(\kappa_{i}-\kappa_{j})^{2}}{2}\mathop{\rm sech}\nolimits^{2}\frac{\kappa_{i}-\kappa_{j}}{2}\left(x+(\kappa_{i}+\kappa_{j})t_{2}+x_{0}\right),

where (κi,κj)(\kappa_{i},\kappa_{j}) is a pair of roots of the curve (4.10). The amplitude and the velocity of the [i,j][i,j]-soliton is then given by

a[i,j]=12(κiκj)2,v[i,j]=(κi+κj).a_{[i,j]}=\frac{1}{2}(\kappa_{i}-\kappa_{j})^{2},\qquad v_{[i,j]}=-(\kappa_{i}+\kappa_{j}).

Since the parameters (κi,κj)(\kappa_{i},\kappa_{j}) satisfy the curve (4.10), the amplitude and the velocity have the relations. Note first that the roots {κ1,κ2,κ3}\{\kappa_{1},\kappa_{2},\kappa_{3}\} of the spectral curve (4.10) satisfy the symmetric polynomials,

j=13κj=0,j<kκjκk=c1,j=13κj=α.\mathop{\textstyle\sum}\limits_{j=1}^{3}\kappa_{j}=0,\qquad\mathop{\textstyle\sum}\limits_{j<k}\kappa_{j}\kappa_{k}=-c_{1},\qquad\prod_{j=1}^{3}\kappa_{j}=\alpha.

Then from the first two equations, we see that any pair of two roots (κi,κj)(\kappa_{i},\kappa_{j}) of (4.10) satisfies the elliptic curve,

(4.15) (κi+κj)2+13(κiκj)2=43c1=c02,that is,v[i,j]2+23a[i,j]=c02.\left(\kappa_{i}+\kappa_{j}\right)^{2}+\frac{1}{3}\left(\kappa_{i}-\kappa_{j}\right)^{2}=\frac{4}{3}c_{1}=c_{0}^{2},\quad\text{that is,}\quad v_{[i,j]}^{2}+\frac{2}{3}a_{[i,j]}=c_{0}^{2}.

We note here that there are two groups of solitons having opposite propagating directions. The details can be computed as follows. The elliptic curve (4.15) and the cubic curve (4.10) are illustrated in Figure 2.

Refer to caption

Refer to caption

Figure 2. The left figure is the elliptic curve given by (4.15), and the right one is the spectral curve κ3c1κ=α\kappa^{3}-c_{1}\kappa=\alpha.

The three roots (κ1<κ2<κ3)(\kappa_{1}<\kappa_{2}<\kappa_{3}) at the points D1,D2D_{1},D_{2} and D3D_{3} in Figure 2 are

D1:(12c0,12c0,c0),D2:(c0,12c0,12c0),D3:(32c0,0,32c0).D_{1}:\quad\left(-\frac{1}{2}c_{0},-\frac{1}{2}c_{0},c_{0}\right),\qquad D_{2}:\quad\left(-c_{0},\frac{1}{2}c_{0},\frac{1}{2}c_{0}\right),\qquad D_{3}:\quad\left(-\frac{\sqrt{3}}{2}c_{0},0,\frac{\sqrt{3}}{2}c_{0}\right).

Then we note that there are three types of solitons:

  • (a)

    the right propagating solitons with

    12c0<v[1,2]<c0,0<a[1,2]<98c02,\frac{1}{2}c_{0}<v_{[1,2]}<c_{0},\qquad 0<a_{[1,2]}<\frac{9}{8}c_{0}^{2},
  • (b)

    the slow propagating solitons with

    12c0<v[1,3]<12c0,98c02<a[1,3]32c02,-\frac{1}{2}c_{0}<v_{[1,3]}<\frac{1}{2}c_{0},\qquad\frac{9}{8}c_{0}^{2}<a_{[1,3]}\leq\frac{3}{2}c_{0}^{2},
  • (c)

    the left propagating solitons with

    c0<v[2,3]<12c0,0<a[2,3]<98c02.-c_{0}<v_{[2,3]}<-\frac{1}{2}c_{0},\qquad 0<a_{[2,3]}<\frac{9}{8}c_{0}^{2}.

Note that the amplitude a[i,j]a_{[i,j]} of the soliton is limited by 3c02/23c_{0}^{2}/2.

Remark 4.1.

We remark that the linear wave of the Boussinesq equation satisfies the dispersion relation,

ω2=c02k2+13k4,which givesv=ωk=±c01+13c02k2.\omega^{2}=c_{0}^{2}k^{2}+\frac{1}{3}k^{4},\qquad\text{which gives}\quad v=\frac{\omega}{k}=\pm c_{0}\sqrt{1+\frac{1}{3c_{0}^{2}}k^{2}}.

This is derived from the linear part of (4.13) with u=eikxiωt2u=e^{ikx-i\omega t_{2}}. Note here that |v|>c0|v|>c_{0}, that is, the linear waves propagate faster than the solitons (soliton resolution).

4.3. Multi-soliton solutions

We now construct a general soliton solution of the Boussinesq equation (4.13) by taking several different values of α\alpha in the spectral curve (4.10). For a proper choice of α\alpha, we have three real distinct roots as shown below.

Refer to caption
Figure 3. For each α=αj\alpha=\alpha_{j}, there are three roots labeled as (κ1[αj]<κ2[αj]<κ3[αj])(\kappa_{1}[\alpha_{j}]<\kappa_{2}[\alpha_{j}]<\kappa_{3}[\alpha_{j}]).

We have the following two cases for the index set [α][3]\mathcal{I}[\alpha]\subset[3], [α][3]={1,2,3}\mathcal{I}[\alpha]\subset[3]=\{1,2,3\} can be chosen in the following two cases:

  • (a)

    [α]=2\mathcal{I}[\alpha]=2, i.e. we take two roots (κi[α]<κj[α])(\kappa_{i}[\alpha]<\kappa_{j}[\alpha]). There are three different choices, and the soliton solution is given by (4.14) with A=(1,a)Gr(1,2)0A=(1,a)\in\text{Gr}(1,2)_{\geq 0} (these are the solitons discuss above).

  • (b)

    [α]=3\mathcal{I}[\alpha]=3, i.e. we take all three roots. The soliton solution in this case has a resonant interaction with three solitons [1,2][1,2]-, [1,3][1,3]- and [2,3][2,3]-types. There are two types of resonant solution with A[α]=(1,a1,a2)Gr(1,3)0A[\alpha]=(1,a_{1},a_{2})\in\text{Gr}(1,3)_{\geq 0} or A[α]=(10a101a2)Gr(2,3)0A[\alpha]=\begin{pmatrix}1&0&-a_{1}\\ 0&1&a_{2}\end{pmatrix}\in\text{Gr}(2,3)_{\geq 0}. These soliton solutions form a YY-shape resonant structure as shown in the figure below.

The permutation diagrams corresponding to these solutions are given by

Refer to caption
Refer to caption
Refer to caption
Figure 4. The chord diagrams π(A[α])\pi(A[\alpha]) for 1-soliton and Y-solitons.

A general soliton solutions of the Boussinesq equation can be constructed by a κ\kappa-direct sum of non-crossing matrices A[αk]A[\alpha_{k}] for k=1,,Kk=1,\ldots,K with some KK. Then from Theorem 3.8, we have the following theorem.

Theorem 4.2.

The τ\tau-function of any real regular soliton solution of the Boussinesq equation (4.5) can be generated by one of the following three cases with the soliton parameters κM\kappa\in\mathbb{R}^{M} and AGr(N,M)0A\in\text{Gr}(N,M)_{\geq 0}.

  • (I)

    We take the following sets of the roots for αk\alpha_{k} (1kK=1+γ1+γ2(1\leq k\leq K=1+\gamma_{1}+\gamma_{2}) with {κi[α1]:i=1,2,3}\{\kappa_{i}[\alpha_{1}]:i=1,2,3\} and

    {κ1[α1+j],κ2[α1+j]:j=1,,γ1}{κ2[αγ1+1+l],κ3[αγ1+1+l]:l=1,,γ2}.\{\kappa_{1}[\alpha_{1+j}],\kappa_{2}[\alpha_{1+j}]:j=1,\ldots,\gamma_{1}\}\cup\{\kappa_{2}[\alpha_{\gamma_{1}+1+l}],\kappa_{3}[\alpha_{\gamma_{1}+1+l}]:l=1,\ldots,\gamma_{2}\}.

    Then, we have the sorted soliton parameter κ=(κ1,,κM)\kappa=(\kappa_{1},\ldots,\kappa_{M}) with M=2K+1=3+2(γ1+γ2)M=2K+1=3+2(\gamma_{1}+\gamma_{2}),

    κ1\displaystyle\kappa_{1} =κ1[α1]<κ1[α2]<<κ1[αγ1+1]<κ2[αγ1+1]<<κ2[α2]<\displaystyle=\kappa_{1}[\alpha_{1}]<\kappa_{1}[\alpha_{2}]<\cdots<\kappa_{1}[\alpha_{\gamma_{1}+1}]<\kappa_{2}[\alpha_{\gamma_{1}+1}]<\cdots<\kappa_{2}[\alpha_{2}]<
    <κ2[α1]<κ2[αγ1+2]<<κ2[αK]<κ3[αK]<<κ3[αγ1+2]<κ3[α1]=κM.\displaystyle<\kappa_{2}[\alpha_{1}]<\kappa_{2}[\alpha_{\gamma_{1}+2}]<\cdots<\kappa_{2}[\alpha_{K}]<\kappa_{3}[\alpha_{K}]<\cdots<\kappa_{3}[\alpha_{\gamma_{1}+2}]<\kappa_{3}[\alpha_{1}]=\kappa_{M}.
    Refer to caption
    Figure 5. The choices of roots in the case (I), and the permutations of the soliton solutions having one YY-soliton.

    Then, there are two cases in the choice of κ\kappa-direct sum A:=^k=1KA[αk]A:=\hat{\oplus}_{k=1}^{K}A[\alpha_{k}], where A[α1]Gr(1,3)A[\alpha_{1}]\in\text{Gr}(1,3) or A[α1]Gr(2,3)A[\alpha_{1}]\in\text{Gr}(2,3) while A[αj]Gr(1,2)A[\alpha_{j}]\in\text{Gr}(1,2) for j=2,,Kj=2,\ldots,K.

    • (a)

      The chord diagram shown in the top right shows A[α1]Gr(1,3)A[\alpha_{1}]\in\text{Gr}(1,3), and the corresponding derangement is

      π(A)=(1,M,2γ1+2)k=1γ1(k+1,2γ1+2k)l=1γ2(2γ1+2+l,Ml).\pi(A)=(1,M,2\gamma_{1}+2)\prod_{k=1}^{\gamma_{1}}(k+1,2\gamma_{1}+2-k)\prod_{l=1}^{\gamma_{2}}(2\gamma_{1}+2+l,M-l).

      In this case, we have AGr(N,M)0A\in\text{Gr}(N,M)_{\geq 0} with N=KN=K and M=2K+1M=2K+1.

    • (b)

      The π(A)\pi(A) for the bottom right is the same except the identification of π(A[α1]))\pi(A[\alpha_{1}])),

      π(A[α1])=(1,2γ1+2,M).\pi(A[\alpha_{1}])=(1,2\gamma_{1}+2,M).

      In this case, we have AGr(N,M)A\in\text{Gr}(N,M) with N=K+1N=K+1 and M=2K+1M=2K+1.

  • (II)

    We take just two roots of Φ3(κ,αi)=0\Phi_{3}(\kappa,\alpha_{i})=0 for each ii, and take i=1,,Ni=1,\ldots,N, N=1+γ1+γ2N=1+\gamma_{1}+\gamma_{2}, i.e. the soliton parameter κ=(κ1,,κM)\kappa=(\kappa_{1},\ldots,\kappa_{M}) with M=2N=2(1+γ1+γ2)M=2N=2(1+\gamma_{1}+\gamma_{2}). There are two cases as shown in the figures below.

    Refer to caption
    Figure 6. The choice of the roots for the case (II) and the permutation of soliton solution consisting of two groups propagating opposite directions.
    Refer to caption
    Figure 7. The soliton solution of the type in Figure 7 with a slow moving large amplitude soliton.

4.4. Discussions

In this section, we studied the (good) Boussinesq equation and classified the general solutions of the equation. We hope that our results provide a model of bidirectional soliton gas as discussed recently in [1]. We also found that there exists at most one resonant solution (Y-shape soliton) or one slow propagating soliton with large amplitude for the regular solitons (see [13]). It might be interesting to discuss the effect of those special solitons among two groups of counter propagating solitons. However, it may not be so physical if the (good) Boussinesq equation is used for a shallow water wave model. This is because that a larger soliton has a slower velocity, and even that the largest soliton has the zero velocity.

Although we did not discuss the details of the higher reductions in this paper, one can have 1\ell-1 different groups having the distinct velocities for the \ell-reduction. Their interaction properties such as the phase shifts are different when they interact with other solitons from different groups. It is also interesting to note that one can give additional characters, like amplitudes and velocities, by a spectral curve with different deformation parameters. We will report the details on physical applications of the \ell-reductions of the KP equation in a future communication.

5. Vertex operator construction of the KP solitons under the \ell-reductions

It is well known that applying the vertex operator [6, 12], one can construct the soliton solutions of the KP hierarchy. However, as far as we know, the regularity of those solutions have not been discussed. In this section, we determine the conditions to the vertex operators, so that these operators generate the regular soliton solutions under the \ell-reductions.

The vertex operator is defined by the following form with arbitrary parameters {pi,qj:1iP,1jQ}\{p_{i},q_{j}:1\leq i\leq P,~{}1\leq j\leq Q\} for some positive integers PP and QQ,

X(pi,qj)=eφ(𝐭,pi,qj)eφ(~,pi1,qj1),whereφ(𝐭,pi,qj):=n=1(qjnpin)tn.X(p_{i},q_{j})=e^{\varphi(\mathbf{t},p_{i},q_{j})}e^{-\varphi(\tilde{\partial},p_{i}^{-1},q_{j}^{-1})},\quad\text{where}\quad\varphi(\mathbf{t},p_{i},q_{j}):=\mathop{\textstyle\sum}\limits_{n=1}^{\infty}(q_{j}^{n}-p_{i}^{n})t_{n}.

The following lemma is well-known and easy to show.

Lemma 5.1.

The vertex operator X(pi,qj)X(p_{i},q_{j}) satisfies

X(p1,q1)X(p2,q2)=(p1p2)(q1q2)(p1q2)(q1p2):X(p1,q1)X(p2,q2):,X(p_{1},q_{1})X(p_{2},q_{2})=\frac{(p_{1}-p_{2})(q_{1}-q_{2})}{(p_{1}-q_{2})(q_{1}-p_{2})}:X(p_{1},q_{1})X(p_{2},q_{2}):,

where the normal ordering symbol :::\cdot: implies to move differential operators n\partial_{n} to the right. It then follows the following properties

X(p1,q1)X(p2,q2)=X(p2,q2)X(p1,q1),if(p1q2)(q1p2)0,\displaystyle X(p_{1},q_{1})X(p_{2},q_{2})=X(p_{2},q_{2})X(p_{1},q_{1}),\qquad\text{if}\quad(p_{1}-q_{2})(q_{1}-p_{2})\neq 0,
X(p1,q1)X(p2,q2)=0,if p1=p2 or q1=q2.\displaystyle X(p_{1},q_{1})X(p_{2},q_{2})=0,\quad\quad\quad\text{if $p_{1}=p_{2}$ or $q_{1}=q_{2}$}.

5.1. The vertex operators on Gr(n,m)0\text{Gr}(n,m)_{\geq 0}

In the present paper, the parameters {pi,qj}\{p_{i},q_{j}\} are determined by the roots of the spectral curve Φ(κ,α)=0\Phi_{\ell}(\kappa,\alpha)=0 for each α\alpha, i.e. pi=κi[α]p_{i}=\kappa_{i^{\prime}}[\alpha] and qj=κj[α]q_{j}=\kappa_{j^{\prime}}[\alpha] for some i,j[α]i^{\prime},j^{\prime}\in\mathcal{I}[\alpha]. As in the previous section, we take 2|[α]|=m2\leq|\mathcal{I}[\alpha]|=m\leq\ell, and consider 1nm11\leq n\leq m-1. We take an (irreducible) element A[α]Gr(n,m)0A[\alpha]\in\text{Gr}(n,m)_{\geq 0}. Let P[α]\mathcal{I}_{P}[\alpha] and Q[α]\mathcal{I}_{Q}[\alpha] be the sets of pivots and non-pivots of the matrix A[α]A[\alpha], i.e. [α]=P[α]Q[α]\mathcal{I}[\alpha]=\mathcal{I}_{P}[\alpha]\sqcup\mathcal{I}_{Q}[\alpha]. We use the following labels for the nonzero elements in A[α]A[\alpha],

P[α]\displaystyle\mathcal{I}_{P}[\alpha] ={i1<i2<<in},\displaystyle=\{i_{1}<i_{2}<\cdots<i_{n}\},
Q[α]\displaystyle\mathcal{I}_{Q}[\alpha] =k=1n{j1(k)<j2(k)<<jqk(k)},\displaystyle=\bigcup_{k=1}^{n}\{j_{1}^{(k)}<j_{2}^{(k)}<\cdots<j_{q_{k}}^{(k)}\},

where jl(k)j_{l}^{(k)} is the column index of the nonzero element in the kk-th row and jlj_{l}-th column. That is, the nonzero elements except the pivots in the matrix A[α]A[\alpha] are

{ak,jl(k): 1lqk,1kn}.\left\{\,a_{k,j^{(k)}_{l}}:\,1\leq l\leq q_{k},~{}1\leq k\leq n\,\right\}.

Following [8], we give the following order for the indices jl(k)j_{l}^{(k)},

(5.1) jl(k)g~k1+l,(1lqk, 1kn),j^{(k)}_{l}\quad\longleftrightarrow\quad\tilde{g}_{k-1}+l,\qquad(1\leq l\leq q_{k},~{}\,1\leq k\leq n),

where g~k:=q1++qk\tilde{g}_{k}:=q_{1}+\cdots+q_{k} with g~0=0\tilde{g}_{0}=0 and g~n:=g~\tilde{g}_{n}:=\tilde{g}. That is, the total number of the nonzero elements in A[α]A[\alpha] is g~\tilde{g}.

Let us define a positive n×(mn)n\times(m-n) matrix B[α]=(bk,jl(k))B[\alpha]=(b_{k,j^{(k)}_{l}}) as

bk,jl(k)=ak,jl(k)pkκipκjl(k)κipκik>0.b_{k,j^{(k)}_{l}}=a_{k,j^{(k)}_{l}}\prod_{p\neq k}\frac{\kappa_{i_{p}}-\kappa_{j^{(k)}_{l}}}{\kappa_{i_{p}}-\kappa_{i_{k}}}>0.

Then we have the following lemma.

Lemma 5.2.

The signs of nonzero entries ak,jl(k)a_{k,j^{(k)}_{l}} in A[α]Gr(n,m)0A[\alpha]\in\text{Gr}(n,m)_{\geq 0} is determined by the positivity conditions bk,jl(k)>0b_{k,j^{(k)}_{l}}>0, i.e.

sgn(ak,jl(k))=sgn(pkκipκjl(k)κipκik).\text{sgn}(a_{k,j^{(k)}_{l}})=\text{sgn}\left(\prod_{p\neq k}\frac{\kappa_{i_{p}}-\kappa_{j^{(k)}_{l}}}{\kappa_{i_{p}}-\kappa_{i_{k}}}\right).

Proof. For the pair (ik,jl(k))(i_{k},j^{(k)}_{l}) of the pivot and the non-pivot indices, let (μ,ν)(\mu,\nu) be the numbers given by

μ:=|{p:ip>ik}|,ν:=|{p:ip>jl(k)}|.\mu:=\left|\{p:i_{p}>i_{k}\}\right|,\qquad\nu:=\left|\{p:i_{p}>j^{(k)}_{l}\}\right|.

Then we have

sgn(pkκipκjl(k)κipκik)=(1)μ+ν.\text{sgn}\left(\prod_{p\neq k}\frac{\kappa_{i_{p}}-\kappa_{j^{(k)}_{l}}}{\kappa_{i_{p}}-\kappa_{i_{k}}}\right)=(-1)^{\mu+\nu}.

That is, we claim that bk,jl(k)>0b_{k,j^{(k)}_{l}}>0 implies sgn(ak,jl(k))=(1)μ+ν\text{sgn}(a_{k,j^{(k)}_{l}})=(-1)^{\mu+\nu}. This is shown by noting that there is a unique index set J(A[α])J\in\mathcal{M}(A[\alpha]) such that

ΔJ(A[α])=|In1μak,jl(k)IμνIν|=(1)μνak,jl(k),\Delta_{J}(A[{\alpha}])=\left|\begin{array}[]{cccc}I_{n-1-\mu}&&&\\ &&a_{k,j^{(k)}_{l}}&\\ &I_{\mu-\nu}&&\\ &&&I_{\nu}\\ \end{array}\right|=(-1)^{\mu-\nu}a_{k,j^{(k)}_{l}},

where IrI_{r} denotes the identity matrix of r×rr\times r. Since A[α]Gr(n,m)0A[\alpha]\in\text{Gr}(n,m)_{\geq 0}, ΔJ(A[α])>0\Delta_{J}(A[\alpha])>0. This proves the lemma.       

With the positive matrix B[α]B[\alpha], we define our vertex operator in the following form similar to that given in [12],

(5.2) V[α]:=exp(k=1nl=1qkbk,jl(k)X(κik,κjl(k)))=k=1nl=1qk(1+bk,jl(k)X(κik,κjl(k))).V[\alpha]:=\exp\left(\mathop{\textstyle\sum}\limits_{k=1}^{n}\mathop{\textstyle\sum}\limits_{l=1}^{q_{k}}b_{k,j^{(k)}_{l}}X(\kappa_{i_{k}},\kappa_{j^{(k)}_{l}})\right)=\prod_{k=1}^{n}\prod_{l=1}^{q_{k}}\left(1+b_{k,j^{(k)}_{l}}X(\kappa_{i_{k}},\kappa_{j^{(k)}_{l}})\right).

Note here that the parameters (pi,qj)(p_{i},q_{j}) in X(pi,qj)X(p_{i},q_{j}) are from (iP[α],jQ[α])(i\in\mathcal{I}_{P}[\alpha],j\in\mathcal{I}_{Q}[\alpha]), so that these X(pi,qj)X(p_{i},q_{j}) satisfy the condition in Lemma 5.1. Then we have the following proposition.

Proposition 5.3.

The τ\tau-function in (3.4) with the soliton parameters (κ[α]m,A[α]Gr(n,m)0)(\kappa[\alpha]\in\mathbb{R}^{m},A[\alpha]\in\text{Gr}(n,m)_{\geq 0}) can be expressed by

τ(𝐭,α)EI0(𝐭,α)=V[α]1,\displaystyle\frac{\tau(\mathbf{t},\alpha)}{E_{I_{0}}(\mathbf{t},\alpha)}=V[\alpha]\cdot 1,

where I0I_{0} is the pivot index set of A[α]A[\alpha].

Proof. We first note (Theorem 3.10 in [8]) that we have τ(𝐭)/EI0(𝐭)=ϑ~g~(z;Ω~)\tau(\mathbf{t})/E_{I_{0}}(\mathbf{t})=\tilde{\vartheta}_{\tilde{g}}(z;\tilde{\Omega}), called the MM-theta function defined by

ϑ~g~(z;Ω~)\displaystyle\tilde{\vartheta}_{\tilde{g}}(z;\tilde{\Omega}) =𝐦{0,1}g~exp2πi(j<kg~mjmkΩ~j,k+j=1g~mjzj)\displaystyle=\mathop{\textstyle\sum}\limits_{{\bf m}\in\{0,1\}^{\tilde{g}}}\exp 2\pi i\left(\mathop{\textstyle\sum}\limits_{j<k}^{\tilde{g}}m_{j}m_{k}\tilde{\Omega}_{j,k}+\mathop{\textstyle\sum}\limits_{j=1}^{\tilde{g}}m_{j}z_{j}\right)
=1+j=1g~e2πizj+k<lg~e2πiΩ~k,le2πi(zk+zl)++e2πik<lΩ~k,le2πij=1g~zj,\displaystyle=1+\mathop{\textstyle\sum}\limits_{j=1}^{\tilde{g}}e^{2\pi iz_{j}}+\mathop{\textstyle\sum}\limits_{k<l}^{\tilde{g}}e^{2\pi i\tilde{\Omega}_{k,l}}e^{2\pi i(z_{k}+z_{l})}+\cdots+e^{2\pi i\mathop{\textstyle\sum}\limits_{k<l}\tilde{\Omega}_{k,l}}e^{2\pi i\mathop{\textstyle\sum}\limits_{j=1}^{\tilde{g}}z_{j}},

where 2πizj=ϕj(𝐭)+ϕj0,(1jg~)2\pi iz_{j}=\phi_{j}(\mathbf{t})+\phi^{0}_{j},~{}(1\leq j\leq\tilde{g}) with

ϕg~k1+l(𝐭)=φ(𝐭,κik,κjl(k)),ϕg~k1+l0=ln(bk,jl(k)),(1lqk, 1kn),\phi_{\tilde{g}_{k-1}+l}(\mathbf{t})=\varphi(\mathbf{t},\kappa_{i_{k}},\kappa_{j_{l}^{(k)}}),\quad\phi^{0}_{\tilde{g}_{k-1}+l}=\ln\left(b_{k,j_{l}^{(k)}}\right),\qquad(1\leq l\leq q_{k},~{}\,1\leq k\leq n),

and

exp(2πiΩ~g~k1+l,g~k1+r)=(κikκik)(κjl(k)κjr(k))(κikκjr(k))(κjl(k)κik),\exp(2\pi i\tilde{\Omega}_{\tilde{g}_{k-1}+l,\tilde{g}_{k^{\prime}-1}+r})=\frac{(\kappa_{i_{k}}-\kappa_{i_{k^{\prime}}})(\kappa_{j_{l}^{(k)}}-\kappa_{j_{r}^{(k^{\prime})}})}{(\kappa_{i_{k}}-\kappa_{j_{r}^{(k^{\prime})}})(\kappa_{j_{l}^{(k)}}-\kappa_{i_{k^{\prime}}})},

where we have used the order (5.1). Then for zjz_{j} with j=g~k1+lj=\tilde{g}_{k-1}+l, the e2πizje^{2\pi iz_{j}} in ϑ~g~(z,Ω~)\tilde{\vartheta}_{\tilde{g}}(z,\tilde{\Omega}) becomes

e2πizj=bk,jl(k)eφ(𝐭,κik,κjl(k))=bk,jl(k)X(κik,κjl(k))1.e^{2\pi iz_{j}}=b_{k,j_{l}^{(k)}}e^{\varphi(\mathbf{t},\kappa_{i_{k}},\kappa_{j^{(k)}_{l}})}=b_{k,j_{l}^{(k)}}X(\kappa_{i_{k}},\kappa_{j_{l}^{(k)}})\cdot 1.

The product term e2πiΩ~j,le2πi(zj+zl)e^{2\pi i\tilde{\Omega}_{j,l}}e^{2\pi i(z_{j}+z_{l})} with j=g~k1+rj=\tilde{g}_{k-1}+r and l=g~k1+rl=\tilde{g}_{k^{\prime}-1}+r^{\prime} gives

e2πiΩ~j,le2πi(zj+zl)\displaystyle e^{2\pi i\tilde{\Omega}_{j,l}}e^{2\pi i(z_{j}+z_{l})} =(κikκik)(κjr(k)κjr(k))(κikκjr(k))(κjr(k)κik)bk,jr(k)bk,jr(k)eφ(𝐭,κik,κjr(k))+φ(𝐭,κik,κjr(k))\displaystyle=\frac{(\kappa_{i_{k}}-\kappa_{i_{k^{\prime}}})(\kappa_{j_{r}^{(k)}}-\kappa_{j_{r^{\prime}}^{(k^{\prime})}})}{(\kappa_{i_{k}}-\kappa_{j_{r^{\prime}}^{(k^{\prime})}})(\kappa_{j_{r}^{(k)}}-\kappa_{i_{k^{\prime}}})}b_{k,j^{(k)}_{r}}b_{k^{\prime},j_{r^{\prime}}^{(k^{\prime})}}e^{\varphi(\mathbf{t},\kappa_{i_{k}},\kappa_{j_{r}^{(k)}})+\varphi(\mathbf{t},\kappa_{i_{k^{\prime}}},\kappa_{j_{r^{\prime}}^{(k^{\prime})}})}
=bk,jr(k)bk,jr(k)X(κik,κjr(k))X(κik,κjr(k))1,\displaystyle=b_{k,j^{(k)}_{r}}b_{k^{\prime},j_{r^{\prime}}^{(k^{\prime})}}X(\kappa_{i_{k}},\kappa_{j_{r}^{(k)}})X(\kappa_{i_{k^{\prime}}},\kappa_{j_{r^{\prime}}^{(k^{\prime})}})\cdot 1,

where we have used Lemma 5.1.

The higher products can be calculated in the similar way. One should note that some of the terms e2πiΩ~j,le^{2\pi i\tilde{\Omega}_{j,l}} vanish, when ik=iki_{k}=i_{k^{\prime}} or jr(k)=jr(k)j_{r}^{(k)}=j_{r^{\prime}}^{(k^{\prime})} (see Lemma 5.1).       

Since the solution of the KP equation is given by (1.2), i.e. u(𝐭)=2(lnτ(𝐭))xxu(\mathbf{t})=2(\ln\tau(\mathbf{t}))_{xx}, we consider the τ\tau-function as in the form τ(𝐭,α)/EI0(𝐭,α)\tau(\mathbf{t},\alpha)/E_{I_{0}}(\mathbf{t},\alpha), and we write

(5.3) τ(𝐭,α)=V[α]1.\tau(\mathbf{t},\alpha)=V[\alpha]\cdot 1.

5.2. The vertex operator construction of the KP solitons under the \ell-reduction

Here we consider a τ\tau-function generated by several different α\alpha’s, that is, for some K>1K>1,

(5.4) τ(𝐭;α1,,αK):=V[α1]V[α2]V[αK]1,\tau(\mathbf{t};\alpha_{1},\ldots,\alpha_{K}):=V[\alpha_{1}]\cdot V[\alpha_{2}]\cdots V[\alpha_{K}]\cdot 1,

where V[αj]V[\alpha_{j}] are given by (5.2) with the positive matrices B[αj]B[\alpha_{j}] determined by non-crossing matrices A[αj]Gr(nj,mj)0A[\alpha_{j}]\in\text{Gr}(n_{j},m_{j})_{\geq 0}, respectively.

Let (k[αr],jl(k)[αr])(k[\alpha_{r}],j^{(k)}_{l}[\alpha_{r}]) be the indices of the pivot and non-pivot columns in the kk-th row of the nonzero entries in A[αr]A[\alpha_{r}]. Then we have

X(κk[αr],κjl(k)[αr])X(κk[αs],κjl(k)[αs])\displaystyle X(\kappa_{k[\alpha_{r}]},\kappa_{j^{(k)}_{l}[\alpha_{r}]})\cdot X(\kappa_{k^{\prime}[\alpha_{s}]},\kappa_{j^{(k^{\prime})}_{l^{\prime}}[\alpha_{s}]})
=\displaystyle= (κk[αr]κk[αs])(κjl(k)[αr]κjl(k)[αs])(κk[αr]κjl(k)[αs])(κjl(k)[αr]κk[αs]):X(κk[αr],κjl(k)[αr])X(κk[αs],κjl(k)[αs]):.\displaystyle\frac{(\kappa_{k[\alpha_{r}]}-\kappa_{k^{\prime}[\alpha_{s}]})(\kappa_{j^{(k)}_{l}[\alpha_{r}]}-\kappa_{j^{(k^{\prime})}_{l^{\prime}}[\alpha_{s}]})}{(\kappa_{k[\alpha_{r}]}-\kappa_{j^{(k^{\prime})}_{l^{\prime}}[\alpha_{s}]})(\kappa_{j^{(k)}_{l}[\alpha_{r}]}-\kappa_{k^{\prime}[\alpha_{s}]})}\,:X(\kappa_{k[\alpha_{r}]},\kappa_{j^{(k)}_{l}[\alpha_{r}]})\cdot X(\kappa_{k^{\prime}[\alpha_{s}]},\kappa_{j^{(k^{\prime})}_{l^{\prime}}[\alpha_{s}]}):\,.

Then we have the following lemma.

Lemma 5.4.

If the matrices A[αr]A[\alpha_{r}] and A[αs]A[\alpha_{s}] are non-crossing, then we have

(κk[αr]κk[αs])(κjl(k)[αr]κjl(k)[αs])(κk[αr]κjl(k)[αs])(κjl(k)[αr]κk[αs])>0.\frac{(\kappa_{k[\alpha_{r}]}-\kappa_{k^{\prime}[\alpha_{s}]})(\kappa_{j^{(k)}_{l}[\alpha_{r}]}-\kappa_{j^{(k^{\prime})}_{l^{\prime}}[\alpha_{s}]})}{(\kappa_{k[\alpha_{r}]}-\kappa_{j^{(k^{\prime})}_{l^{\prime}}[\alpha_{s}]})(\kappa_{j^{(k)}_{l}[\alpha_{r}]}-\kappa_{k^{\prime}[\alpha_{s}]})}>0.

Proof. Since the permutation A[αr]A[\alpha_{r}] and A[αs]A[\alpha_{s}] are non-crossing, we have either

κk[αr]<κk[αs]<κjl(k)[αs]<κjl(k)[αr]orκk[αr]<κjl(k)[αr]<κk[αs]<κjl(k)[αs].\displaystyle\kappa_{k[\alpha_{r}]}<\kappa_{k^{\prime}[\alpha_{s}]}<\kappa_{j^{(k^{\prime})}_{l^{\prime}}[\alpha_{s}]}<\kappa_{j^{(k)}_{l}[\alpha_{r}]}\quad\quad\text{or}\quad\quad\kappa_{k[\alpha_{r}]}<\kappa_{j^{(k)}_{l}[\alpha_{r}]}<\kappa_{k^{\prime}[\alpha_{s}]}<\kappa_{j^{(k^{\prime})}_{l^{\prime}}[\alpha_{s}]}.

These orderings implies the assertion.       

Then it is immediate to have the following proposition.

Proposition 5.5.

Suppose that A[αk]Gr(nk,mk)0A[\alpha_{k}]\in\text{Gr}(n_{k},m_{k})_{\geq 0} for k=1,,Kk=1,\ldots,K are mutually non-crossing. Let V[αk]V[\alpha_{k}] be the vertex operators associated with these matrices. Then the τ\tau-function (5.4) generated by these vertex operators gives a KP soliton (regular) associated with a matrix in Gr(N,M)0\text{Gr}(N,M)_{\geq 0}, where N=n1++nKN=n_{1}+\cdots+n_{K} and M=m1++mKM=m_{1}+\cdots+m_{K}.

One should remark that the τ\tau-function (5.4) is different from that associated with the totally nonnegative matrix given by the κ\kappa-direct sum of these matrices. However, those solutions have the same permutation, that is, their corresponding matrices are different but they are in the same cell in Gr(N,M)0\text{Gr}(N,M)_{\geq 0}. We give the following example to illustrate the remark.

Example 5.6.

We continue Example 3.2 (=7\ell=7) with

π(A[α1])=(1,6,9,5),π(A[α2])=(2,3,4)(7,8).\pi(A[\alpha_{1}])=(1,6,9,5),\qquad\pi(A[\alpha_{2}])=(2,3,4)(7,8).

where the numbers are in the sorted coordinates. The corresponding totally nonnegative matrices are

A[α1]=(1a1,50a1,9001a4,9),A[α2]=(10a2,40001a3,4000001a5,8),\displaystyle A[\alpha_{1}]=\left(\begin{array}[]{cccc}1&a_{1,5}&0&a_{1,9}\\ 0&0&1&a_{4,9}\\ \end{array}\right),\qquad A[\alpha_{2}]=\begin{pmatrix}1&0&a_{2,4}&0&0\\ 0&1&a_{3,4}&0&0\\ 0&0&0&1&a_{5,8}\end{pmatrix},

where the signs of the nonzero elements ai,ja_{i,j} can be determined by Lemma 5.2 (see below).

From the nonzero elements in the matrices A[α1]A[\alpha_{1}] and A[α2]A[\alpha_{2}], the vertex operators for these matrices are given by

V[α1]\displaystyle V[\alpha_{1}] =exp(b1,5X(κ1,κ5)+b1,9X(κ1,κ9)+b4,9X(κ6,κ9)),\displaystyle=\exp\left(b_{1,5}X(\kappa_{1},\kappa_{5})+b_{1,9}X(\kappa_{1},\kappa_{9})+b_{4,9}X(\kappa_{6},\kappa_{9})\right),
V[α2]\displaystyle V[\alpha_{2}] =exp(b2,4X(κ2,κ4)+b3,4X(κ3,κ4)+b5,8X(κ7,κ8)).\displaystyle=\exp\left(b_{2,4}X(\kappa_{2},\kappa_{4})+b_{3,4}X(\kappa_{3},\kappa_{4})+b_{5,8}X(\kappa_{7},\kappa_{8})\right).

Here the positive matrices B[α1]B[\alpha_{1}] and B[α2]B[\alpha_{2}] are given by

B[α1]=(b1,5b1,90b4,9),B[α2]=(b2,40b3,400b5,8),B[\alpha_{1}]=\begin{pmatrix}b_{1,5}&b_{1,9}\\ 0&b_{4,9}\end{pmatrix},\qquad B[\alpha_{2}]=\begin{pmatrix}b_{2,4}&0\\ b_{3,4}&0\\ 0&b_{5,8}\end{pmatrix},

where

b1,5=a1,5κ6κ5κ6κ1,b1,9=a1,9κ6κ9κ6κ1,b4,9=a4,9κ1κ9κ1κ6,\displaystyle b_{1,5}=a_{1,5}\frac{\kappa_{6}-\kappa_{5}}{\kappa_{6}-\kappa_{1}},\quad b_{1,9}=a_{1,9}\frac{\kappa_{6}-\kappa_{9}}{\kappa_{6}-\kappa_{1}},\quad b_{4,9}=a_{4,9}\frac{\kappa_{1}-\kappa_{9}}{\kappa_{1}-\kappa_{6}},

and

b2,4\displaystyle b_{2,4} =a2,4(κ3κ4)(κ7κ4)(κ3κ2)(κ7κ2),b3,4=a3,4(κ2κ4)(κ7κ4)(κ2κ3)(κ7κ3),\displaystyle=a_{2,4}\frac{(\kappa_{3}-\kappa_{4})(\kappa_{7}-\kappa_{4})}{(\kappa_{3}-\kappa_{2})(\kappa_{7}-\kappa_{2})},\quad b_{3,4}=a_{3,4}\frac{(\kappa_{2}-\kappa_{4})(\kappa_{7}-\kappa_{4})}{(\kappa_{2}-\kappa_{3})(\kappa_{7}-\kappa_{3})},
b5,8\displaystyle b_{5,8} =a5,8(κ2κ8)(κ3κ8)(κ2κ7)(κ3κ7).\displaystyle=a_{5,8}\frac{(\kappa_{2}-\kappa_{8})(\kappa_{3}-\kappa_{8})}{(\kappa_{2}-\kappa_{7})(\kappa_{3}-\kappa_{7})}.

Note here that Lemma 5.2 shows that the sign a1,9,a2,4<0a_{1,9},a_{2,4}<0 and others are positive.

From these vertex operators, we have the τ\tau-functions given by τ(𝐭,αj)=V[αj]1\tau(\mathbf{t},\alpha_{j})=V[\alpha_{j}]\cdot 1, i.e.

τ(𝐭,α1)=\displaystyle\tau(\mathbf{t},\alpha_{1})= 1+b1,5eϕ1,5+b1,9eϕ1,9+b4,9eϕ6,9+b1,5b4,9(κ1κ5)(κ6κ9)(κ1κ9)(κ5κ6)eϕ1,5+ϕ6,9,\displaystyle 1+b_{1,5}e^{\phi_{1,5}}+b_{1,9}e^{\phi_{1,9}}+b_{4,9}e^{\phi_{6,9}}+b_{1,5}b_{4,9}\frac{(\kappa_{1}-\kappa_{5})(\kappa_{6}-\kappa_{9})}{(\kappa_{1}-\kappa_{9})(\kappa_{5}-\kappa_{6})}e^{\phi_{1,5}+\phi_{6,9}},
τ(𝐭,α2)=\displaystyle\tau(\mathbf{t},\alpha_{2})= 1+b2,4eϕ2,4+b3,4eϕ3,4+b5,8eϕ7,8+b2,4b5,8(κ2κ7)(κ4κ8)(κ2κ8)(κ4κ7)eϕ2,4+ϕ7,8+\displaystyle 1+b_{2,4}e^{\phi_{2,4}}+b_{3,4}e^{\phi_{3,4}}+b_{5,8}e^{\phi_{7,8}}+b_{2,4}b_{5,8}\frac{(\kappa_{2}-\kappa_{7})(\kappa_{4}-\kappa_{8})}{(\kappa_{2}-\kappa_{8})(\kappa_{4}-\kappa_{7})}e^{\phi_{2,4}+\phi_{7,8}}+
+b3,4b5,8(κ3κ7)(κ4κ8)(κ3κ8)(κ4κ7)eϕ3,4+ϕ7,8,\displaystyle+b_{3,4}b_{5,8}\frac{(\kappa_{3}-\kappa_{7})(\kappa_{4}-\kappa_{8})}{(\kappa_{3}-\kappa_{8})(\kappa_{4}-\kappa_{7})}e^{\phi_{3,4}+\phi_{7,8}},

where ϕi,j=ξj(𝐭)ξi(𝐭)\phi_{i,j}=\xi_{j}(\mathbf{t})-\xi_{i}(\mathbf{t}).

The τ\tau-function generated by those vertex operators are given by

τ(𝐭,α1,α2)=V[α1]V[α2]1.\tau(\mathbf{t},\alpha_{1},\alpha_{2})=V[\alpha_{1}]\cdot V[\alpha_{2}]\cdot 1.

Since all the operators X(κi,κj)X(\kappa_{i},\kappa_{j}) commute, we have

V[α1]V[α2]=exp(b1,5X(κ1,κ5)+b1,9X(κ1,κ9)+b4,9X(κ6,κ9)\displaystyle V[\alpha_{1}]\cdot V[\alpha_{2}]=\exp\left(b_{1,5}X(\kappa_{1},\kappa_{5})+b_{1,9}X(\kappa_{1},\kappa_{9})+b_{4,9}X(\kappa_{6},\kappa_{9})\right.
+b2,4X(κ2,κ4)+b3,4X(κ3,κ4)+b5,8X(κ7,κ8)).\displaystyle\left.+b_{2,4}X(\kappa_{2},\kappa_{4})+b_{3,4}X(\kappa_{3},\kappa_{4})+b_{5,8}X(\kappa_{7},\kappa_{8})\right).

Now we give the vertex operator associated with the totally nonnegative matrix A[α1,α2]A[\alpha_{1},\alpha_{2}] from the κ\kappa-direct sum A[α1]^A[α2]A[\alpha_{1}]\hat{\oplus}A[\alpha_{2}], which is given by

A[α1,α2]=(1000a1,5000a1,9010a2,400000001a3,40000000000100a4,90000001a5,80).\displaystyle A[\alpha_{1},\alpha_{2}]=\left(\begin{array}[]{ccccccccc}1&0&0&0&a_{1,5}&0&0&0&a_{1,9}\\ 0&1&0&a_{2,4}&0&0&0&0&0\\ 0&0&1&a_{3,4}&0&0&0&0&0\\ 0&0&0&0&0&1&0&0&a_{4,9}\\ 0&0&0&0&0&0&1&a_{5,8}&0\\ \end{array}\right).

Then the corresponding positive matrix B[α1,α2]B[\alpha_{1},\alpha_{2}] is

B[α1,α2]=(0c1,50c1,9c2,4000c3,4000000c4,900c5,80),B[\alpha_{1},\alpha_{2}]=\begin{pmatrix}0&c_{1,5}&0&c_{1,9}\\ c_{2,4}&0&0&0\\ c_{3,4}&0&0&0\\ 0&0&0&c_{4,9}\\ 0&0&c_{5,8}&0\end{pmatrix},

where the positive elements ci,jc_{i,j} are given by, for example,

c1,5=a1,5(κ2κ5)(κ3κ5)(κ6κ5)(κ7κ5)(κ2κ1)(κ3κ1)(κ6κ1)(κ7κ1),\displaystyle c_{1,5}=a_{1,5}\frac{(\kappa_{2}-\kappa_{5})(\kappa_{3}-\kappa_{5})(\kappa_{6}-\kappa_{5})(\kappa_{7}-\kappa_{5})}{(\kappa_{2}-\kappa_{1})(\kappa_{3}-\kappa_{1})(\kappa_{6}-\kappa_{1})(\kappa_{7}-\kappa_{1})},
c2,4=a2,4(κ1κ4)(κ3κ4)(κ6κ4)(κ7κ4)(κ1κ2)(κ3κ2)(κ6κ2)(κ7κ2).\displaystyle c_{2,4}=a_{2,4}\frac{(\kappa_{1}-\kappa_{4})(\kappa_{3}-\kappa_{4})(\kappa_{6}-\kappa_{4})(\kappa_{7}-\kappa_{4})}{(\kappa_{1}-\kappa_{2})(\kappa_{3}-\kappa_{2})(\kappa_{6}-\kappa_{2})(\kappa_{7}-\kappa_{2})}.

Note that we have a2,4,a4,9<0a_{2,4},a_{4,9}<0 and others are positive (i.e. they have the different signs in the cases V[α1]V[\alpha_{1}] and V[α2]V[\alpha_{2}]).

Then the τ\tau-function associated with A[α1,α2]A[\alpha_{1},\alpha_{2}] is given by

τA[α1,α2](𝐭)=V[α1,α2]1,\tau_{A[\alpha_{1},\alpha_{2}]}(\mathbf{t})=V[\alpha_{1},\alpha_{2}]\cdot 1,

where the vertex operator V[α1,α2]V[\alpha_{1},\alpha_{2}] associated with A[α1,α2]A[\alpha_{1},\alpha_{2}] is given by

V[α1,α2]=\displaystyle V[\alpha_{1},\alpha_{2}]= exp(c1,5X(κ1,κ5)+c1,9X(κ1,κ9)+c4,9X(κ6,κ9)+\displaystyle\exp\left(c_{1,5}X(\kappa_{1},\kappa_{5})+c_{1,9}X(\kappa_{1},\kappa_{9})+c_{4,9}X(\kappa_{6},\kappa_{9})+\right.
+c2,4X(κ2,κ4)+c3,4X(κ3,κ4)+c5,8X(κ7,κ8)).\displaystyle\left.+c_{2,4}X(\kappa_{2},\kappa_{4})+c_{3,4}X(\kappa_{3},\kappa_{4})+c_{5,8}X(\kappa_{7},\kappa_{8})\right).

One should note that this vertex operator is not the same as V[α1]V[α2]V[\alpha_{1}]\cdot V[\alpha_{2}]. We have the following relations, e.g.

c1,5=b1,5(κ2κ5)(κ3κ5)(κ7κ5)(κ2κ1)(κ3κ1)(κ7κ1),c2,4=b2,4(κ1κ4)(κ6κ4)(κ1κ2)(κ6κ2).\displaystyle c_{1,5}=b_{1,5}\frac{(\kappa_{2}-\kappa_{5})(\kappa_{3}-\kappa_{5})(\kappa_{7}-\kappa_{5})}{(\kappa_{2}-\kappa_{1})(\kappa_{3}-\kappa_{1})(\kappa_{7}-\kappa_{1})},\qquad c_{2,4}=b_{2,4}\frac{(\kappa_{1}-\kappa_{4})(\kappa_{6}-\kappa_{4})}{(\kappa_{1}-\kappa_{2})(\kappa_{6}-\kappa_{2})}.

Notice that both bi,jb_{i,j} and ci,jc_{i,j} are positive. This difference implies that they have different phase shifts for solitons contained in the solutions due to the different values of the free parameters. We might say that they are topologically the same, and we say V[α1,α2]V[α1]V[α2]V[\alpha_{1},\alpha_{2}]\equiv V[\alpha_{1}]\cdot V[\alpha_{2}].


Acknowledgements. The authors appreciate a research fund from Shandong University of Science and Technology. One of the authors (C.L) is supported by National Natural Science Foundation of China (Grant No. 12071237).


Declarations.

  • Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

  • The authors declare no conflicts of interest associated with this manuscript.

References

  • [1] T. Bonnemain and B. Doyon, Soliton gas of the integrable Boussinesq equation and its generalised hydrodynamics. (arXiv:2402.08669).
  • [2] S. Chakravarty and Y. Kodama, Classification of the line-solitons of KPII. J. Phys. A: Math. Theor. 41 (2008) 275209.
  • [3] S. Chakravarty and Y. Kodama, A generating function for the NN-soliton solutions of the Kadomtsev-Petviashvil II equation. Comtemp. Math. 471 (2008) 47–67.
  • [4] S. Chakravarty and Y. Kodama, Soliton solutions of the KP equation and applications to shallow water waves. Stud. Appl. Math. 123 (2009) 83–151.
  • [5] S. Corteel, Crossing and alignments of permutations. Adv. Appl. Math. 38 (2007) 149–163.
  • [6] E. Date, M. Kashiwara, M. Jimbo, and T. Miwa, Transformation groups for soliton equations. Nonlinear Integrable Systems Classical Theory and Quantum Theory by M. Jimbo and T. Miwa (eds), World Sci, Singapore. (1983) 39-119.
  • [7] Y. Kodama, KP solitons and the Grassmannians: Combinatorics and Geometry of Two-Dimensional Wave Patterns, Springer Briefs in Mathematical Physics 22, (Springer, Singapore 2017).
  • [8] Y. Kodama, KP solitons and the Riemann theta functions. Lett. Math. Phys. 114 (2024), (https://doi.org/10.1007/s11005-024-01773-4).
  • [9] Y. Kodama and L. Williams, KP solitons and total positivity for the Grassmannian. Invent. Math. 198, (2014) 637-699.
  • [10] Y. Kodama and L. Williams, The Deodhar decomposition of the Grassmannian and the regularity of KP solitons. Adv. Math. 244 (2013) 979-1032.
  • [11] Y. Kodama and Y. Xie, Space curves and solitons of the KP hierarchy. I. The ll-th generalized KdV hierarchy. SIGMA 17 (2021), 024.
  • [12] A. Nakayashiki, Vertex operator of the KP hierarchy and singular algebraic curves. (arXiv:2309.08850).
  • [13] A. G. Rasin and J. Schiff, Bäcklund transformations for the Boussinesq equation and merging solitons. J. Phys. A: Math. Theor. 50 (2017) 325202.
  • [14] L. Williams, Enumeration of totally positive Grassmann cells. Adv. Math. 190 (2005) 319–342.