This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Non-Affine Displacements Below Jamming under Athermal Quasi-Static Compression

Harukuni Ikeda [email protected] Graduate School of Arts and Sciences, The University of Tokyo 153-8902, Japan    Koji Hukushima [email protected] Graduate School of Arts and Sciences, The University of Tokyo 153-8902, Japan Komaba Institute for Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
Abstract

Critical properties of frictionless spherical particles below jamming are studied using extensive numerical simulations, paying particular attention to the non-affine part of the displacements during the athermal quasi-static compression. It is shown that the squared norm of the non-affine displacement exhibits a power-law divergence toward the jamming transition point. A possible connection between this critical exponent and that of the shear viscosity is discussed. The participation ratio of the displacements vanishes in the thermodynamic limit at the transition point, meaning that the non-affine displacements are localized marginally with a fractal dimension. Furthermore, the distribution of the displacement is shown to have a power-law tail, the exponent of which is related to the fractal dimension.

preprint: APS/123-Qed

I Introduction

Considering the process of increasing the density of particle system at zero temperature, if the density is low enough, the particles do not overlap. At a certain density, the particles begin to come into contact, and as a result, the system suddenly gains finite energy, mechanical pressure, and stiffness without any apparent structural changes Van Hecke (2009). This phenomenon called jamming has been actively studied in recent years, and the onset is defined as the jamming transition point φJ\varphi_{J}. The jamming transition is ubiquitously observed for very diverse athermal systems such as metallic bolls Bernal and Mason (1960), forms Durian (1995); Katgert and van Hecke (2010), colloids Zhang et al. (2009), polymers Karayiannis et al. (2009), candies Donev et al. (2004), dices Jaoshvili et al. (2010), biological tissues Bi et al. (2015), growing microbes Delarue et al. (2016), and some neural networks Franz and Parisi (2016); Franz et al. (2019).

A famous and popular numerical protocol to generate a jamming configuration is the athermal quasi-static compression (AQC), which combines the affine transformation with successive energy minimization O’Hern et al. (2003). An advantage of this protocol is that one can unambiguously define the jamming transition point φJ\varphi_{J} as the packing fraction φ\varphi at which the energy after the minimization has a non-zero finite value. With the AQC, extensive work has been done for frictionless, spherical, and purely repulsive particles above jamming φ>φJ\varphi>\varphi_{J}. Systematic numerical studies including finite size scaling analyses determine the precise values of the critical exponents in two and three spatial dimensions O’Hern et al. (2003); Goodrich et al. (2012); Charbonneau et al. (2015), and quasi-one dimension Ikeda (2020). The numerical results of the critical exponents well agree with the mean-field predictions in two and three dimensions Wyart et al. (2005); Charbonneau et al. (2014).

Contrarily and somewhat surprisingly, the critical properties of the jamming transition below φJ\varphi_{J} during the AQC have not yet been fully investigated even for frictionless spherical particles. One of the reasons is that the quantities showing the criticality above φJ\varphi_{J}, such as the mechanical pressure, energy, and bulk/shear modulus, are trivially zero below φJ\varphi_{J}, and other appropriate quantities are not necessarily clear below φJ\varphi_{J} O’Hern et al. (2003). The criticality below φJ\varphi_{J} has been mainly investigated by adding thermal fluctuation Ikeda et al. (2013); Charbonneau et al. (2014), introducing a moving tracer Drocco et al. (2005), considering self-propelled particles Liao and Xu (2018), or quenching from random initial configurations Ikeda et al. (2020); Nishikawa et al. (2020). In particular, extensive work has been conducted on shear-driven systems Marty and Dauchot (2005a); Olsson and Teitel (2007); Hatano (2008); Heussinger and Barrat (2009); Lerner et al. (2012); Kawasaki et al. (2015); Olsson (2019). However, it would be more desirable if one can directly extract the criticality from the configurations during the AQC. A promising study in this direction has been done by Shen et al. Shen et al. (2012). They observed a rapid increase of several physical quantities, such as the displacements of the particle positions, just below φJ\varphi_{J}. However, the critical exponent below φJ\varphi_{J} under the AQC has not been calculated yet.

In this work, we characterize the criticality below φJ\varphi_{J} during the AQC by investigating the statistical properties of the non-affine displacements for frictionless spherical particles in three dimensions. We show that the mean square of the non-affine displacements diverges toward φJ\varphi_{J} with the critical exponent very close to that of the shear viscosity. By observing the participation ratio, it is shown that the displacements become more localized as the system approaches φJ\varphi_{J}. Furthermore, by using the finite size scaling of the participation ratio, we calculate the fractal dimension of the displacements at φJ\varphi_{J}. Finally, we show that the distribution of the non-affine displacements has a power-law tail at φJ\varphi_{J}, and prove that there is a scaling relation between the power-law tail and fractal dimension.

II Model

We consider NN frictionless spherical particles in three dimensions. The interaction potential between NN particles is given as

V=i<j1,Nhij22θ(hij),hij=|𝒓i𝒓j|RiRj,\displaystyle V=\sum_{i<j}^{1,N}\frac{h_{ij}^{2}}{2}\theta(-h_{ij}),h_{ij}=\left|\bm{r}_{i}-\bm{r}_{j}\right|-R_{i}-R_{j}, (1)

where 𝒓i={xi,yi,zi}\bm{r}_{i}=\{x_{i},y_{i},z_{i}\} and RiR_{i} respectively denote the position and radius of the ii-th particle. The particles are confined in a cubic box 𝒓i[0,L]3\bm{r}_{i}\in[0,L]^{3} with the periodic boundary conditions in all directions. To avoid crystallization, we use a binary mixture consisting of NS=N/2{N_{\rm S}=N/2} small particles and NL=N/2{N_{L}=N/2} large particles. The radii of large and small particles are RS=0.5R_{\rm S}=0.5 and RL=0.7R_{\rm L}=0.7, respectively. With those notations, the volume fraction φ\varphi is written as

φ=2πN(RS3+RL3)3L3.\displaystyle\varphi=\frac{2\pi N(R_{\rm S}^{3}+R_{\rm L}^{3})}{3L^{3}}. (2)

The settings of this model are standard ones that have been studied in the context of the jamming transition O’Hern et al. (2003).

III Numerical simulations

Here we describe the AQC originally proposed by O’Hern et al. O’Hern et al. (2003). Starting from a random initial configuration at a small packing fraction, for example φ=0.1\varphi=0.1, compression and energy minimization are performed successively in sequence. For each step of the compression, the packing fraction is slightly increased as φφ+ε\varphi\to\varphi+\varepsilon with ε=105\varepsilon=10^{-5}, by performing the affine transformation 𝒓i𝒓iL(φ+ε)/L(φ)\bm{r}_{i}\to\bm{r}_{i}L(\varphi+\varepsilon)/L(\varphi), where L(φ)=[2πN(RS3+RL3)/3φ]1/3L(\varphi)=\left[2\pi N(R_{\rm S}^{3}+R_{\rm L}^{3})/3\varphi\right]^{1/3}. Then, the energy is minimized by using the FIRE algorithm, for details see Ref. Bitzek et al. (2006), until the energy or squared force becomes sufficiently small: VN/N<1016V_{N}/N<10^{-16} or i=1N(iVN)2/N<1025\sum_{i=1}^{N}(\nabla_{i}V_{N})^{2}/N<10^{-25}. The procedure is repeated up to the jamming transition point φJ\varphi_{J} at which VN/N>1016V_{N}/N>10^{-16} after the minimization O’Hern et al. (2003).

We perform the numerical simulations for various system sizes N=256N=256, 512512, 10241024, 20482048, and 40964096. To improve the statistics, we average over 10001000 samples for N=256N=256 and 100100 samples for the other system sizes. We confirmed that the results do not depend on ε\varepsilon, see Appendix A.

IV Mean squared displacement

When the system is compressed from φ\varphi to φ+ε\varphi+\varepsilon, the displacement of the ii-th particle can be written as

𝒓i(φ+ε)𝒓i(φ)=δ𝒓iA+δ𝒓iNA\displaystyle\bm{r}_{i}(\varphi+\varepsilon)-\bm{r}_{i}(\varphi)=\delta\bm{r}_{i}^{\rm A}+\delta\bm{r}_{i}^{\rm NA} (3)

where δ𝒓iA=[L(φ+ε)/L(φ)1]𝒓i(φ)\delta\bm{r}_{i}^{\rm A}=\left[L(\varphi+\varepsilon)/L(\varphi)-1\right]\bm{r}_{i}(\varphi) and δ𝒓iNA\delta\bm{r}_{i}^{\rm NA} respectively denote the affine and non-affine parts of the displacement. In this work, we only focus on the non-trivial part of the displacement δ𝒓iNA\delta\bm{r}_{i}^{\rm NA}.

Refer to caption
Figure 1: (a) Mean squared non-affine displacement Δ\left\langle\Delta\right\rangle. Markers denote numerical results, while the solid line denotes the power law Δδφ2.7{\Delta\propto\delta\varphi^{-2.7}}. (b) Scaling plot of the same data as in (a).

To characterize the criticality of the non-affine displacements, we first observe the mean squared displacement

Δ=1Ni=1NΔi,\displaystyle\left\langle\Delta\right\rangle=\frac{1}{N}\sum_{i=1}^{N}\Delta_{i}, (4)

with

Δi=(δ𝒓iNA)23δl2,\displaystyle\Delta_{i}=\frac{\left(\delta\bm{r}_{i}^{\rm NA}\right)^{2}}{3\delta l^{2}}, (5)

where δl=L(φ+ε)/L(φ)1\delta l=L(\varphi+\varepsilon)/L(\varphi)-1 accounts for the change of the linear distance LL of the system. In Fig. 1 (a), we show Δ\left\langle\Delta\right\rangle as a function of δφ=φJφ\delta\varphi=\varphi_{J}-\varphi. For large NN and intermediate δφ\delta\varphi, Δ\left\langle\Delta\right\rangle shows the power law

Δδφβ.\displaystyle\left\langle\Delta\right\rangle\propto\delta\varphi^{-\beta}. (6)

The power-law fitting of the data for N=4096N=4096 in the range δφ(0.01,0.1)\delta\varphi\in(0.01,0.1) leads to

β=2.7,\displaystyle\beta=2.7, (7)

see the solid line in Fig. 1 (a). Interestingly, Eq. (7) is close to the theoretical prediction for the critical exponent of the shear viscosity β=2.8\beta^{\prime}=2.8 DeGiuli et al. (2015). We shall discuss a possible connection between Δ\left\langle\Delta\right\rangle and shear viscosity later in this paper.

To further investigate the scaling of Δ\left\langle\Delta\right\rangle, we perform a finite-size scaling analysis assuming the following scaling function:

Δ=Nα𝒟(Nα/βδφ),\displaystyle\left\langle\Delta\right\rangle=N^{\alpha}\mathcal{D}(N^{\alpha/\beta}\delta\varphi), (8)

where 𝒟(x)=O(1)\mathcal{D}(x)=O(1) for x1x\ll 1, and 𝒟(x)xβ\mathcal{D}(x)\sim x^{-\beta} for x1x\gg 1. As shown in Fig. 1 (b), a good scaling collapse is obtained with α=1.35\alpha=1.35. This result implies that the number of the correlated particles diverges as Ncorδφβ/αδφ2N_{\rm cor}\sim\delta\varphi^{-\beta/\alpha}\sim\delta\varphi^{-2}, and the correlation length LcorNcor1/3δφνL_{\rm cor}\sim N_{\rm cor}^{1/3}\sim\delta\varphi^{-\nu} with ν=2/30.67\nu=2/3\approx 0.67 under the assumption that the correlated volume is compact. This is close to a previous result ν=0.71\nu=0.71 obtained by the finite-size scaling analysis of the transition point O’Hern et al. (2003).

V Participation ratio

To see the spatial structure of the displacements, we observe the normalized vector Yamamoto and Onuki (1998):

𝒆i=δ𝒓iNAi=1N(δ𝒓iNA)2,\displaystyle\bm{e}_{i}=\frac{\delta\bm{r}_{i}^{\rm NA}}{\sqrt{\sum_{i=1}^{N}\left(\delta\bm{r}_{i}^{\rm NA}\right)^{2}}}, (9)

which satisfies i=1N𝒆i𝒆i=1\sum_{i=1}^{N}\bm{e}_{i}\cdot\bm{e}_{i}=1.

Refer to caption
Figure 2: Spatial distribution of non-affine displacements for N=4092N=4092 particles. Diameters of spheres represent the amplitude of the (normalized) non-affine displacements |𝒆i|\left|\bm{e}_{i}\right|.

In Fig. 2, we visualize 𝒆i\bm{e}_{i} by drawing spheres such that their radii are proportional to |𝒆i|\left|\bm{e}_{i}\right|. Far from jamming, the spatial distribution of 𝒆i\bm{e}_{i} is homogeneous and featureless, see Fig. 2 (a). On the contrary, near jamming, a few particles have very large displacements, and thus the displacement is spatially heterogeneous and localized, see Fig. 2 (d).

Refer to caption
Figure 3: (a) Participation ratio PP. Markers denote numerical results. (b) Scaling plot of the same data.

We quantify the degree of the localization by using the participation ratio:

P=1N(i=1N𝒆i𝒆i)2i=1N(𝒆i𝒆i)2,\displaystyle P=\frac{1}{N}\frac{\left(\sum_{i=1}^{N}\bm{e}_{i}\cdot\bm{e}_{i}\right)^{2}}{\sum_{i=1}^{N}\left(\bm{e}_{i}\cdot\bm{e}_{i}\right)^{2}}, (10)

which (or inverse of which) is widely used in the study of condensed matter physics Kramer and MacKinnon (1993), including amorphous solids Lerner et al. (2016); Mizuno et al. (2017). If 𝒆i\bm{e}_{i} is spatially localized to a single particle, say 𝒆i𝒆i=δi1{\bm{e}_{i}\cdot\bm{e}_{i}=\delta_{i1}}, the participation ratio PP is proportional to N1N^{-1}. On the contrary, if 𝒆i\bm{e}_{i} is extended such that 𝒆i𝒆iN1{\bm{e}_{i}\cdot\bm{e}_{i}\sim N^{-1}} for all ii, PP is constant independent of NN. In Fig. 3 (a), we show the δφ\delta\varphi dependence of PP. One can see that PP decreases with approaching φJ\varphi_{J} and increasing NN. To investigate the NN dependence of PP, we use the following scaling form:

P=Nγ𝒫(Nα/βδφ),\displaystyle P=N^{-\gamma}\mathcal{P}(N^{\alpha/\beta}\delta\varphi), (11)

assuming the same correlated volume as in Eq. (8). We find a good collapse with

γ=0.32\displaystyle\gamma=0.32 (12)

near the jamming point, see Fig. 3 (b). At φJ\varphi_{J}, PP vanishes in the thermodynamic limit as PNγP\sim N^{-\gamma}. This exponent relates to the fractal dimension dfd_{f} of 𝒆i\bm{e}_{i}, namely, if 𝒆i𝒆iLdf\bm{e}_{i}\cdot\bm{e}_{i}\sim L^{-d_{f}} for i=1,,Ldfi=1,\dots,L^{d_{f}}, this yields that PN1+df/dP\sim N^{-1+d_{f}/d} Kramer and MacKinnon (1993), leading to

df=3(1γ)=2.04.\displaystyle d_{f}=3(1-\gamma)=2.04. (13)

Therefore, 𝒆i\bm{e}_{i} has a more compact structure than the bulk d=3d=3. A mean-field theory of the jamming transition predicts that the correlated volume vcolv_{\rm col} and correlation length lcorl_{\rm cor} have the following relation vcollcor2v_{\rm col}\sim l_{\rm cor}^{2} Yan et al. (2016); Düring et al. (2016). This may imply that the fractal dimension is df=2d_{f}=2, which is close to our estimation Eq. (13).

Interestingly, the similar spatially heterogeneous structures are observed for super-cooled liquids near the glass transition point Ediger (2000). For the studies of the glass transition, the degree of spatial heterogeneity is characterized by the so-called non-gaussian parameter Rahman (1964); Kob and Andersen (1995). In our setting, an analogous quantity may be written as

α2=3(δ𝒓NA)45(δ𝒓NA)221=35P1.\displaystyle\alpha_{2}=\frac{3\left\langle(\delta\bm{r}^{\rm NA})^{4}\right\rangle}{5\left\langle(\delta\bm{r}^{\rm NA})^{2}\right\rangle^{2}}-1=\frac{3}{5P}-1. (14)

If the displacements follow the featureless gaussian distribution, one obtains α2=0\alpha_{2}=0. For the supercooled liquids, α2\alpha_{2} of the displacements rapidly increases on decreasing the temperature Kob and Andersen (1995); Weeks et al. (2000). Similarly, α2\alpha_{2} of our model increases on approaching φJ\varphi_{J}, because P0P\to 0 and α2P1\alpha_{2}\propto P^{-1}. Furthermore, an experimental study for the supercooled colloidal suspensions, which approximately behave as hard spheres Pusey and Van Megen (1986); van Megen and Underwood (1994) and may have the same interaction as our model below jamming, showed that the dynamically correlated regions form a compact cluster of the fractal dimension df=1.9±0.4d_{f}=1.9\pm 0.4 Weeks et al. (2000), reasonably close to our result of Eq. (13). Also, the inhomogeneous mode-coupling theory, which is a mean-field theory of the glass transition, predicts df=2d_{f}=2 in the early stage of the relaxation process Biroli et al. (2006). Those results suggest the existence of the underlying universality between the dynamics of the athermal system near φJ\varphi_{J} and thermal systems near the glass transition point Marty and Dauchot (2005b); Chaudhuri et al. (2007).

VI Distribution function

Refer to caption
Figure 4: (a) Distribution of Δ\Delta for N=4096N=4096. Markers are numerical results, while the solid line denotes the power law f(Δ)Δ2.5{f(\Delta)\sim\Delta^{-2.5}}. (b) Distribution of x=Δ/Δx=\Delta/\left\langle\Delta\right\rangle for the same data. The solid line denotes (x)x2.5{\mathcal{F}(x)\sim x^{-2.5}}.

Here, we discuss the behavior of PP from the perspective of the distribution of Δ\Delta. First, we note that PP can be written as

P=[0𝑑Δf(Δ)Δ]20𝑑Δf(Δ)Δ2,\displaystyle P=\frac{\left[\int_{0}^{\infty}d\Delta f(\Delta)\Delta\right]^{2}}{\int_{0}^{\infty}d\Delta f(\Delta)\Delta^{2}}, (15)

where the distribution f(Δ)f(\Delta) of Δ\Delta is defined as

f(Δ)=1Ni=1Nδ(ΔΔi).\displaystyle f(\Delta)=\frac{1}{N}\sum_{i=1}^{N}\delta(\Delta-\Delta_{i}). (16)

Fig. 4 (a) presents f(Δ)f(\Delta) for several δφ\delta\varphi. f(Δ)f(\Delta) has a broader distribution for smaller δφ\delta\varphi. For the later convenience, we define a scaled variable x=Δ/Δx=\Delta/\left\langle\Delta\right\rangle, and distribution function

(x)=f(Δ)dΔdx=Δf(Δx).\displaystyle\mathcal{F}(x)=f(\Delta)\frac{d\Delta}{dx}=\left\langle\Delta\right\rangle f(\left\langle\Delta\right\rangle x). (17)

By definition, 𝑑x(x)=𝑑x(x)x=1\int dx\mathcal{F}(x)=\int dx\mathcal{F}(x)x=1. As shown in Fig. 4 (b), with decreasing δφ\delta\varphi, (x)\mathcal{F}(x) develops the power-law tail

limδφ0(x)xζforx1.\displaystyle\lim_{\delta\varphi\to 0}\mathcal{F}(x)\sim x^{-\zeta}\ {\rm for}\ x\gg 1. (18)

A similar fat-tail was previously reported for the velocity distribution of sheared driven systems in the quasi-static limit near φJ\varphi_{J} Tighe et al. (2010); Andreotti et al. (2012); Olsson (2016). Now, we show that the exponent ζ\zeta relates to γ\gamma in Eq. (11). Using Eq. (15) and (17), we get

P=(0𝑑xx2(x))1.\displaystyle P=\left(\int_{0}^{\infty}dxx^{2}\mathcal{F}(x)\right)^{-1}. (19)

If ζ<3\zeta<3, the denominator diverges, leading to P=0P=0 at φJ\varphi_{J}. For finite NN, however, the divergence does not occur as the power law of (x)\mathcal{F}(x) is truncated at finite xmaxx_{\rm max}. Using the extreme value statistics, we can calculate xmaxx_{\rm max} as

xmax(x)𝑑x1NxmaxN1ζ1.\displaystyle\int_{x_{\rm max}}^{\infty}\mathcal{F}(x)dx\sim\frac{1}{N}\to x_{\rm max}\sim N^{\frac{1}{\zeta-1}}. (20)

Then, PP for finite NN is expressed as

P(0xmax𝑑xx2(x))1N3ζζ1.\displaystyle P\sim\left(\int_{0}^{x_{\rm max}}dxx^{2}\mathcal{F}(x)\right)^{-1}\sim N^{-\frac{3-\zeta}{\zeta-1}}. (21)

Comparing this with Eq. (11) for δφ=0\delta\varphi=0, we finally get

ζ=3+γ1+γ=2.5.\displaystyle\zeta=\frac{3+\gamma}{1+\gamma}=2.5. (22)

This is consistent with the assumption ζ<3\zeta<3 and well agrees with the numerical result, see Fig. 4.

VII Summary and discussions

In summary, we investigated the statistical properties of the non-affine displacements under the AQC below the jamming transition point. We showed that the mean square of the non-affine displacement diverges toward the jamming transition point. At the jamming transition point, the distribution of the non-affine displacements has a power-law tail, the exponent of which relates to the fractal dimension.

An interesting question is how the present work relates to the previous works for the shear driven systems. As the shear viscosity η\eta diverges with the same critical exponent as the bulk viscosity ηp\eta_{p} near φJ\varphi_{J}, namely, ηηpδφβ\eta\sim\eta_{p}\sim\delta\varphi^{-\beta^{\prime}} Olsson and Teitel (2012); Vågberg et al. (2014), we consider a system compressed with a finite compression rate l˙=L˙/L\dot{l}=\dot{L}/L, instead of the shear driven system. The work done by the imposed compression per time is pl˙L3=ηpl˙2L3p\dot{l}L^{3}=\eta_{p}\dot{l}^{2}L^{3}, where pp denotes the pressure, and ηp=p/l˙\eta_{p}=p/\dot{l} denotes the bulk viscosity. In the quasi-static limit l˙0\dot{l}\to 0, this should be balanced with the dissipation i=1N(𝒓˙iNA)2\sum_{i=1}^{N}\left(\dot{\bm{r}}_{i}^{\rm NA}\right)^{2}, leading to Lerner et al. (2012); Katgert et al. (2013)

ηp1L3i=1N(𝒓˙iNAl˙)21L3i=1N(δ𝒓iNAδl)2Δ.\displaystyle\eta_{p}\sim\frac{1}{L^{3}}\sum_{i=1}^{N}\left(\frac{\dot{\bm{r}}_{i}^{\rm NA}}{\dot{l}}\right)^{2}\sim\frac{1}{L^{3}}\sum_{i=1}^{N}\left(\frac{\delta\bm{r}_{i}^{\rm NA}}{\delta l}\right)^{2}\sim\left\langle\Delta\right\rangle. (23)

A mean-field theory of sheared suspensions predicts ηδφβ\eta\sim\delta\varphi^{-\beta^{\prime}} with β=2.8\beta^{\prime}=2.8 DeGiuli et al. (2015), which is close to our result Δδφβ{\left\langle\Delta\right\rangle\sim\delta\varphi^{-\beta}} with β=2.7\beta=2.7 and thus supports the above conjecture. However, the numerical result of β\beta^{\prime} varies widely from one literature to another. For instance, Ref. Kawasaki et al. (2015) reported β=2.55\beta^{\prime}=2.55, while Ref. Olsson (2019) reported β=3.82\beta^{\prime}=3.82. Further study is necessary to elucidate this point.

From a practical point of view, the AQC has several advantages over other dynamical methods such as implying shear to characterize the criticality below jamming. First of all, our method is much efficient, as we do not need to wait that the system reaches the steady state. Furthermore, the method allows us to reduce the fitting parameters because the jamming transition point φJ\varphi_{J} is determined during the procedure. Therefore, we believe that the AQC facilitates the investigation of the criticality below jamming for frictionless spherical particles, and hopefully for other models such as non-spherical particles and frictional particles. For frictional particles, it is reported that the waiting time and its distribution show the power-law behaviors near the (shear) jamming transition point Pastore et al. (2011); Srivastava et al. (2019). It is an interesting future work to see if such critical behaviors of the dynamical quantities appear under the AQC protocol.

The mean-field theory predicts that the correlated volume has the fractal dimension df=2d_{f}=2, irrespective of the spatial dimension dd Yan et al. (2016); Düring et al. (2016). If this is the case, the similar argument above Eq. (13) leads to

γ=d2d,\displaystyle\gamma=\frac{d-2}{d}, (24)

and that of Eq. (22) leads to

ζ=2d1d1.\displaystyle\zeta=\frac{2d-1}{d-1}. (25)

We obtained numerical results consistent with Eqs. (24) and (25) in three dimension d=3d=3. It is tempting to test if Eqs. (24) and (25) hold in other dd. In particular, γ=0\gamma=0 in d=2d=2, suggesting that the participation ratio PP at φJ\varphi_{J} may exhibit the logarithmic dependence on NN, instead of a power law. This deserves further study.

Acknowledgements.
We warmly thank A. Ikeda for discussions related to this work. We also thank S. Teitel and anonymous referees for useful comments. This project has received funding from the JSPS KAKENHI Grant Number JP20J00289.

Appendix A ε\varepsilon dependence

Here we show numerical results of examining the ϵ\epsilon dependence in our simulation protocol. Fig. 5 presents the ε\varepsilon dependence of Δ\left\langle\Delta\right\rangle for N=512N=512 and N=1024N=1024. One can see that the results do not depend on ε\varepsilon for ε105\varepsilon\leq 10^{-5}. The similar ε\varepsilon dependencies of the physical quantities have been previously reported by the numerical study of the quasi-static shear Vågberg et al. (2011). Therefore, in this study, our simulation was performed with ϵ=105\epsilon=10^{-5}.

Refer to caption
Figure 5: δφ\delta\varphi dependence of Δ\left\langle\Delta\right\rangle with varying ε\varepsilon for N=512N=512 (a) and N=1024N=1024 (b).

References

  • Van Hecke (2009) M. Van Hecke, J. Phys. Condens. Matter 22, 033101 (2009).
  • Bernal and Mason (1960) J. Bernal and J. Mason, Nature 188, 910 (1960).
  • Durian (1995) D. J. Durian, Phys. Rev. Lett. 75, 4780 (1995).
  • Katgert and van Hecke (2010) G. Katgert and M. van Hecke, EPL 92, 34002 (2010).
  • Zhang et al. (2009) Z. Zhang, N. Xu, D. T. Chen, P. Yunker, A. M. Alsayed, K. B. Aptowicz, P. Habdas, A. J. Liu, S. R. Nagel,  and A. G. Yodh, Nature 459, 230 (2009).
  • Karayiannis et al. (2009) N. C. Karayiannis, K. Foteinopoulou,  and M. Laso, J. Chem. Phys. 130, 164908 (2009).
  • Donev et al. (2004) A. Donev, I. Cisse, D. Sachs, E. A. Variano, F. H. Stillinger, R. Connelly, S. Torquato,  and P. M. Chaikin, Science 303, 990 (2004).
  • Jaoshvili et al. (2010) A. Jaoshvili, A. Esakia, M. Porrati,  and P. M. Chaikin, Phys. Rev. Lett. 104, 185501 (2010).
  • Bi et al. (2015) D. Bi, J. Lopez, J. Schwarz,  and M. L. Manning, Nat. Phys. 11, 1074 (2015).
  • Delarue et al. (2016) M. Delarue, J. Hartung, C. Schreck, P. Gniewek, L. Hu, S. Herminghaus,  and O. Hallatschek, Nat. Phys. 12, 762 (2016).
  • Franz and Parisi (2016) S. Franz and G. Parisi, J. Phys. A 49, 145001 (2016).
  • Franz et al. (2019) S. Franz, S. Hwang,  and P. Urbani, Phys. Rev. Lett. 123, 160602 (2019).
  • O’Hern et al. (2003) C. S. O’Hern, L. E. Silbert, A. J. Liu,  and S. R. Nagel, Phys. Rev. E 68, 011306 (2003).
  • Goodrich et al. (2012) C. P. Goodrich, A. J. Liu,  and S. R. Nagel, Phys. Rev. Lett. 109, 095704 (2012).
  • Charbonneau et al. (2015) P. Charbonneau, E. I. Corwin, G. Parisi,  and F. Zamponi, Phys. Rev. Lett. 114, 125504 (2015).
  • Ikeda (2020) H. Ikeda, Phys. Rev. Lett. 125, 038001 (2020).
  • Wyart et al. (2005) M. Wyart, L. E. Silbert, S. R. Nagel,  and T. A. Witten, Phys. Rev. E 72, 051306 (2005).
  • Charbonneau et al. (2014) P. Charbonneau, J. Kurchan, G. Parisi, P. Urbani,  and F. Zamponi, Nat. Commun. 5, 1 (2014).
  • Ikeda et al. (2013) A. Ikeda, L. Berthier,  and G. Biroli, J. Chem. Phys. 138, 12A507 (2013).
  • Drocco et al. (2005) J. A. Drocco, M. B. Hastings, C. J. O. Reichhardt,  and C. Reichhardt, Phys. Rev. Lett. 95, 088001 (2005).
  • Liao and Xu (2018) Q. Liao and N. Xu, Soft Matter 14, 853 (2018).
  • Ikeda et al. (2020) A. Ikeda, T. Kawasaki, L. Berthier, K. Saitoh,  and T. Hatano, Phys. Rev. Lett. 124, 058001 (2020).
  • Nishikawa et al. (2020) Y. Nishikawa, A. Ikeda,  and L. Berthier, arXiv preprint arXiv:2007.09418  (2020).
  • Marty and Dauchot (2005a) G. Marty and O. Dauchot, Phys. Rev. Lett. 94, 015701 (2005a).
  • Olsson and Teitel (2007) P. Olsson and S. Teitel, Phys. Rev. Lett. 99, 178001 (2007).
  • Hatano (2008) T. Hatano, J. Phys. Soc. Jpn. 77, 123002 (2008).
  • Heussinger and Barrat (2009) C. Heussinger and J.-L. Barrat, Phys. Rev. Lett. 102, 218303 (2009).
  • Lerner et al. (2012) E. Lerner, G. Düring,  and M. Wyart, PNAS 109, 4798 (2012).
  • Kawasaki et al. (2015) T. Kawasaki, D. Coslovich, A. Ikeda,  and L. Berthier, Phys. Rev. E 91, 012203 (2015).
  • Olsson (2019) P. Olsson, Phys. Rev. Lett. 122, 108003 (2019).
  • Shen et al. (2012) T. Shen, C. S. O’Hern,  and M. D. Shattuck, Phys. Rev. E 85, 011308 (2012).
  • Bitzek et al. (2006) E. Bitzek, P. Koskinen, F. Gähler, M. Moseler,  and P. Gumbsch, Phys. Rev. Lett. 97, 170201 (2006).
  • DeGiuli et al. (2015) E. DeGiuli, G. Düring, E. Lerner,  and M. Wyart, Phys. Rev. E 91, 062206 (2015).
  • Yamamoto and Onuki (1998) R. Yamamoto and A. Onuki, Phys. Rev. Lett. 81, 4915 (1998).
  • Kramer and MacKinnon (1993) B. Kramer and A. MacKinnon, Rep. Prog. Phys. 56, 1469 (1993).
  • Lerner et al. (2016) E. Lerner, G. Düring,  and E. Bouchbinder, Phys. Rev. Lett. 117, 035501 (2016).
  • Mizuno et al. (2017) H. Mizuno, H. Shiba,  and A. Ikeda, PNAS 114, E9767 (2017).
  • Yan et al. (2016) L. Yan, E. DeGiuli,  and M. Wyart, EPL 114, 26003 (2016).
  • Düring et al. (2016) G. Düring, E. Lerner,  and M. Wyart, Phys. Rev. E 94, 022601 (2016).
  • Ediger (2000) M. D. Ediger, Annu. Rev. Phys. Chem. 51, 99 (2000).
  • Rahman (1964) A. Rahman, Phys. Rev. 136, A405 (1964).
  • Kob and Andersen (1995) W. Kob and H. C. Andersen, Phys. Rev. E 51, 4626 (1995).
  • Weeks et al. (2000) E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield,  and D. A. Weitz, Science 287, 627 (2000).
  • Pusey and Van Megen (1986) P. N. Pusey and W. Van Megen, Nature 320, 340 (1986).
  • van Megen and Underwood (1994) W. van Megen and S. M. Underwood, Phys. Rev. E 49, 4206 (1994).
  • Biroli et al. (2006) G. Biroli, J.-P. Bouchaud, K. Miyazaki,  and D. R. Reichman, Phys. Rev. Lett. 97, 195701 (2006).
  • Marty and Dauchot (2005b) G. Marty and O. Dauchot, Phys. Rev. Lett. 94, 015701 (2005b).
  • Chaudhuri et al. (2007) P. Chaudhuri, L. Berthier,  and W. Kob, Phys. Rev. Lett. 99, 060604 (2007).
  • Tighe et al. (2010) B. P. Tighe, E. Woldhuis, J. J. C. Remmers, W. van Saarloos,  and M. van Hecke, Phys. Rev. Lett. 105, 088303 (2010).
  • Andreotti et al. (2012) B. Andreotti, J.-L. Barrat,  and C. Heussinger, Phys. Rev. Lett. 109, 105901 (2012).
  • Olsson (2016) P. Olsson, Phys. Rev. E 93, 042614 (2016).
  • Olsson and Teitel (2012) P. Olsson and S. Teitel, Phys. Rev. Lett. 109, 108001 (2012).
  • Vågberg et al. (2014) D. Vågberg, P. Olsson,  and S. Teitel, Phys. Rev. Lett. 113, 148002 (2014).
  • Katgert et al. (2013) G. Katgert, B. P. Tighe,  and M. van Hecke, Soft Matter 9, 9739 (2013).
  • Pastore et al. (2011) R. Pastore, M. P. Ciamarra,  and A. Coniglio, Philosophical Magazine 91, 2006 (2011).
  • Srivastava et al. (2019) I. Srivastava, L. E. Silbert, G. S. Grest,  and J. B. Lechman, Phys. Rev. Lett. 122, 048003 (2019).
  • Vågberg et al. (2011) D. Vågberg, P. Olsson,  and S. Teitel, Phys. Rev. E 83, 031307 (2011).