This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Non-abelian extensions and Wells exact sequences of Lie-Yamaguti algebras

Qinxiu Sun Department of Mathematics, Zhejiang University of Science and Technology, Hangzhou, 310023 [email protected]  and  Zhen Li Department of Mathematics, Zhejiang University of Science and Technology, Hangzhou, 310023 [email protected]
Abstract.

The goal of the present paper is to investigate non-abelian extensions of Lie-Yamaguti algebras and explore extensibility of a pair of automorphisms about a non-abelian extension of Lie-Yamaguti algebras. First, we study non-abelian extensions of Lie-Yamaguti algebras and classify the non-abelian extensions in terms of non-abelian cohomology groups. Next, we characterize the non-abelian extensions in terms of Maurer-Cartan elements. Moreover, we discuss the equivalent conditions of the extensibility of a pair of automorphisms about a non-abelian extension of Lie-Yamaguti algebras, and derive the fundamental sequences of Wells in the context of Lie-Yamaguti algebras. Finally, we discuss the previous results in the case of abelian extensions of Lie-Yamaguti algebras.

Key words and phrases:
Lie-Yamaguti algebra, non-abelian extension, Maurer-Cartan element, extensibility, Wells exact sequence
2010 Mathematics Subject Classification:
17A30, 17A36, 17A40, 17B99

1. Introduction

A Lie-Yamaguti algebra first appeared in Nomizu’s work on the affine invariant connections on homogeneous spaces in 1950’s [23], which was a generalization of Lie algebras and Lie triple systems. In 1960’s, Yamaguti introduced an algebraic structure and named it a general Lie triple system or a Lie triple algebra [34, 33]. Later, the cohomology theory of this object was investigated in [34] by Yamaguti. In the study of Courant algebroids, Kinyon and Weinstein named general Lie triple systems by Lie–Yamaguti algebras [19]. Since then, Lie-Yamaguti algebras have attracted much attention and are widely explored. For example, the irreducible modules of Lie–Yamaguti algebras were considered in [3, 2], deformations and extensions of Lie-Yamaguti algebras were investigated in [20, 35]. The relative Rota-Bxter operators on Lie-Yamaguti algebras and their cohomologies were considered in [25, 31, 32].

Extensions are useful mathematical objects to understand the underlying structures. The non-abelian extension is a relatively general one among various extensions (e.g. central extensions, abelian extensions, non-abelian extensions etc.). Non-abelian extensions were first developed by Eilenberg and Maclane [10], which induced to the low dimensional non-abelian cohomology group. Then numerous works have been devoted to non-abelian extensions of various kinds of algebras, such as Lie (super)algebras, Leibniz algebras, Lie 2-algebras, Lie Yagamuti algebras, associative conformal algebras, Rota-Baxter groups, Rota-Baxter Lie algebras and Rota-Baxter Leibniz algebras, see [5, 7, 11, 13, 14, 17, 21, 22, 16] and their references. The abelian extensions of Lie Yagamuti algebras were considered in [13]. But little is known about the non-abelian extensions of Lie Yagamuti algebras. This is the first motivation for writing this paper.

Another interesting study related to extensions of algebraic structures is given by the extensibility or inducibility of a pair of automorphisms. When a pair of automorphisms is inducible? This problem was first considered by Wells [29] for abstract groups and further studied in [18, 24]. Since then, several authors have studied this subject further, see [16, 13, 14, 15, 22] and references therein. The extensibility problem of a pair of derivations on abelian extensions was investigated in [6, 30]. Recently, the extensibility problem of a pair of derivations and automorphisms was extended to the context of abelian extensions of Lie coalgebras [9]. As byproducts, the Wells short exact sequences were obtained for various kinds of algebras [7, 8, 13, 14, 15, 18, 22, 16], which connected the relative automorphism groups and the non-abelian second cohomology groups. Inspired by these results, we investigate extensibility of a pair of automorphisms on a non-abelian extension of Lie Yagamuti algebras. This is another motivation for writing the present paper. Moreover, we give necessary and sufficient conditions for a pair of automorphisms to be extensible, and derive the analogue of the Wells short exact sequences in the context of non-abelian extensions of Lie Yagamuti algebras.

The paper is organized as follows. In Section 2, we recall the definition of Lie-Yamaguti algebras and their representations. We also recall some basic information about the cohomology groups of Lie-Yamaguti algebras. In Section 3, we investigate non-abelian extensions and classify the non-abelian extensions using the non-abelian cohomology groups. In Section 4, we characterize equivalent non-abelian extensions using Maurer-Cartan elements. In Section 5, we study the extensibility problem of a pair of automorphisms about a non-abelian extension of Lie-Yamaguti algebras. In Section 6, we derive Wells short exact sequences in the context of non-abelian extensions of Lie-Yamaguti algebras. Finally, we discuss the previous results in the case of abelian extensions of Lie-Yamaguti algebras.

Throughout the paper, let kk be a field. Unless otherwise specified, all vector spaces and algebras are over kk.

2. Preliminaries on Lie-Yamaguti algebras

We recall the notions of Lie-Yamaguti algebras, representations and their cohomology theory. For the details see [34, 33].

Definition 2.1.

A Lie-Yamaguti algebra is a vector space 𝔤\mathfrak{g} with a bilinear map [,]:𝔤𝔤𝔤[\cdot,\cdot]:\mathfrak{g}\otimes\mathfrak{g}\longrightarrow\mathfrak{g} and a trilinear map {,,}:𝔤𝔤𝔤𝔤\{\ ,\ ,\ \}:\mathfrak{g}\otimes\mathfrak{g}\otimes\mathfrak{g}\longrightarrow\mathfrak{g}, satisfying

(1) [x1,x2]+[x2,x1]=0,{x1,x2,x3}+{x2,x1,x3}=0,[x_{1},x_{2}]+[x_{2},x_{1}]=0,~{}~{}\{x_{1},x_{2},x_{3}\}+\{x_{2},x_{1},x_{3}\}=0,
(2) [[x1,x2],x3]+[[x2,x3],x1]+[[x3,x1],x2]+{x1,x2,x3}+{x2,x3,x1}+{x3,x1,x2}=0,[[x_{1},x_{2}],x_{3}]+[[x_{2},x_{3}],x_{1}]+[[x_{3},x_{1}],x_{2}]+\{x_{1},x_{2},x_{3}\}+\{x_{2},x_{3},x_{1}\}+\{x_{3},x_{1},x_{2}\}=0,
(3) {[x1,x2],x3,y1}+{[x2,x3],x1,y1}+{[x3,x1],x2,y1}=0,\{[x_{1},x_{2}],x_{3},y_{1}\}+\{[x_{2},x_{3}],x_{1},y_{1}\}+\{[x_{3},x_{1}],x_{2},y_{1}\}=0,
(4) {x1,x2,[y1,y2]}=[{x1,x2,y1},y2]+[y1,{x1,x2,y2}],\{x_{1},x_{2},[y_{1},y_{2}]\}=[\{x_{1},x_{2},y_{1}\},y_{2}]+[y_{1},\{x_{1},x_{2},y_{2}\}],
(5) {x1,x2,{y1,y2,y3}}={{x1,x2,y1},y2,y3}+{y1,{x1,x2,y2},y3}+{y1,y2,{x1,x2,y3}},\{x_{1},x_{2},\{y_{1},y_{2},y_{3}\}\}=\{\{x_{1},x_{2},y_{1}\},y_{2},y_{3}\}+\{y_{1},\{x_{1},x_{2},y_{2}\},y_{3}\}+\{y_{1},y_{2},\{x_{1},x_{2},y_{3}\}\},

for all x1,x2,x3,y1,y2,y3𝔤x_{1},x_{2},x_{3},y_{1},y_{2},y_{3}\in\mathfrak{g}. Denote it by (𝔤,[,],{,,})(\mathfrak{g},[\ ,\ ],\{\ ,\ ,\ \}) or simply by 𝔤\mathfrak{g}.

A subspace LL of 𝔤\mathfrak{g} is an ideal of 𝔤\mathfrak{g} if [L,𝔤]L,{L,𝔤,𝔤}L[L,\mathfrak{g}]\subseteq L,\{L,\mathfrak{g},\mathfrak{g}\}\subseteq L and {𝔤,𝔤,L}L\{\mathfrak{g},\mathfrak{g},L\}\subseteq L. An ideal LL of 𝔤\mathfrak{g} is said to be an abelian ideal of 𝔤\mathfrak{g} if [L,L]=0[L,L]=0 and {L,L,𝔤}={𝔤,L,L}={L,𝔤,L}=0\{L,L,\mathfrak{g}\}=\{\mathfrak{g},L,L\}=\{L,\mathfrak{g},L\}=0.

Definition 2.2.

A representation of a Lie-Yamaguti algebra 𝔤\mathfrak{g} consists of a vector space VV together with a linear map μ:𝔤gl(V)\mu:\mathfrak{g}\longrightarrow{gl}(V) and bilinear maps θ,D:𝔤𝔤gl(V)\theta,D:\mathfrak{g}\wedge\mathfrak{g}\longrightarrow{gl}(V) satisfying

(6) θ([x1,x2],x3)=θ(x1,x3)μ(x2)θ(x2,x3)μ(x1),\theta([x_{1},x_{2}],x_{3})=\theta(x_{1},x_{3})\mu(x_{2})-\theta(x_{2},x_{3})\mu(x_{1}),
(7) [D(x1,x2),μ(y1)]=μ({x1,x2,y1}),[D(x_{1},x_{2}),\mu(y_{1})]=\mu(\{x_{1},x_{2},y_{1}\}),
(8) θ(x1,[y1,y2])=μ(y1)θ(x1,y2)μ(y2)θ(x1,y1),\theta(x_{1},[y_{1},y_{2}])=\mu(y_{1})\theta(x_{1},y_{2})-\mu(y_{2})\theta(x_{1},y_{1}),
(9) [D(x1,x2),θ(y1,y2)]=θ({x1,x2,y1},y2)+θ(y1,{x1,x2,y2}),[D(x_{1},x_{2}),\theta(y_{1},y_{2})]=\theta(\{x_{1},x_{2},y_{1}\},y_{2})+\theta(y_{1},\{x_{1},x_{2},y_{2}\}),
(10) θ(x1,{y1,y2,y3})=θ(y2,y3)θ(x1,y1)θ(y1,y3)θ(x1,y2)+D(y1,y2)θ(x1,y3),\theta(x_{1},\{y_{1},y_{2},y_{3}\})=\theta(y_{2},y_{3})\theta(x_{1},y_{1})-\theta(y_{1},y_{3})\theta(x_{1},y_{2})+D(y_{1},y_{2})\theta(x_{1},y_{3}),
(11) D(x1,x2)θ(x2,x1)+θ(x1,x2)+μ([x1,x2])[μ(x1),μ(x2)]=0,D(x_{1},x_{2})-\theta(x_{2},x_{1})+\theta(x_{1},x_{2})+\mu([x_{1},x_{2}])-[\mu(x_{1}),\mu(x_{2})]=0,

for all x1,x2,x3,y1,y2,y3𝔤x_{1},x_{2},x_{3},y_{1},y_{2},y_{3}\in\mathfrak{g}. Denote the representation of 𝔤\mathfrak{g} by (V,μ,θ,D)(V,\mu,\theta,D) or simply by VV.

When (V,μ,θ,D)(V,\mu,\theta,D) is a representation of 𝔤\mathfrak{g}, by a direct computation, the following conditions are also satisfied:

(12) D([x1,x2],x3)+D([x2,x3],x1)+D([x3,x1],x2)=0,D([x_{1},x_{2}],x_{3})+D([x_{2},x_{3}],x_{1})+D([x_{3},x_{1}],x_{2})=0,
(13) D({x1,x2,x3},x4)+D(x3,{x1,x2,x4})=[D(x1,x2),D(x3,x4)],D(\{x_{1},x_{2},x_{3}\},x_{4})+D(x_{3},\{x_{1},x_{2},x_{4}\})=[D(x_{1},x_{2}),D(x_{3},x_{4})],
(14) θ({y1,y2,y3},x1)=θ(y1,x1)θ(y3,y2)θ(y2,x1)θ(y3,y1)θ(y3,x1)D(y1,y2).\theta(\{y_{1},y_{2},y_{3}\},x_{1})=\theta(y_{1},x_{1})\theta(y_{3},y_{2})-\theta(y_{2},x_{1})\theta(y_{3},y_{1})-\theta(y_{3},x_{1})D(y_{1},y_{2}).
Proposition 2.3.

Let (𝔤,[,]𝔤,{,,}𝔤)(\mathfrak{g},[\ ,\ ]_{\mathfrak{g}},\{\ ,\ ,\ \}_{\mathfrak{g}}) be a Lie-Yamaguti algebra and VV a vector space. Assume that μ:𝔤gl(V)\mu:\mathfrak{g}\longrightarrow{gl}(V) is a linear map and θ,D:𝔤𝔤gl(V)\theta,D:\mathfrak{g}\wedge\mathfrak{g}\longrightarrow{gl}(V) are bilinear maps. Then (V,μ,θ,D)(V,\mu,\theta,D) is a representation of 𝔤\mathfrak{g} if and only if (𝔤V,[,],{,,})(\mathfrak{g}\oplus V,[\ ,\ ],\{\ ,\ ,\ \}) is a Lie-Yamaguti algebra, where

{x+u,y+v,z+w}={x,y,z}𝔤+θ(y,z)uθ(x,z)v+D(x,y)w,\{x+u,y+v,z+w\}=\{x,y,z\}_{\mathfrak{g}}+\theta(y,z)u-\theta(x,z)v+D(x,y)w,

and

[x+u,y+v]=[x,y]𝔤+μ(x)vμ(y)u,[x+u,y+v]=[x,y]_{\mathfrak{g}}+\mu(x)v-\mu(y)u,

for all x,y,zT,u,v,wVx,y,z\in T,u,v,w\in V. The Lie-Yamaguti algebra (𝔤V,[,],{,,})(\mathfrak{g}\oplus V,[\ ,\ ],\{\ ,\ ,\ \}) is called the semidirect product Lie-Yamaguti algebra. Denote it simply by 𝔤V\mathfrak{g}\ltimes V.

Example 2.4.

Let 𝔤\mathfrak{g} be a Lie-Yamaguti algebra. Define ad:𝔤gl(𝔤),R,L:𝔤𝔤gl(𝔤){ad}:\mathfrak{g}\longrightarrow{gl}(\mathfrak{g}),~{}R,L:\mathfrak{g}\wedge\mathfrak{g}\longrightarrow{gl}(\mathfrak{g}) respectively by ad(x)(y)=[x,y],R(x,y)(z)={z,x,y}{ad}(x)(y)=[x,y],R(x,y)(z)=\{z,x,y\} and L(x,y)(z)={x,y,z}L(x,y)(z)=\{x,y,z\}. Then (𝔤,ad,R,L)(\mathfrak{g},{ad},R,L) is a representation of 𝔤\mathfrak{g}, which is called the adjoint representation.

Next, we recall the cohomology of Lie-Yamaguti algebras following [33]. Let 𝔤\mathfrak{g} be a Lie-Yamaguti algebra and (V,μ,θ,D)(V,\mu,\theta,D) be its representation. The cochain complex is given as follows:

  • Set C1(𝔤,V)=Hom(𝔤,V)C^{1}(\mathfrak{g},V)=\mathrm{Hom}(\mathfrak{g},V) and C0(𝔤,V)C^{0}(\mathfrak{g},V) be the subspace spanned by the diagonal elements (f,f)C1(𝔤,V)×C1(𝔤,V)(f,f)\in C^{1}(\mathfrak{g},V)\times C^{1}(\mathfrak{g},V).

  • (For n2n\geq 2) Set Cn(𝔤,V)=Hom(n𝔤,V)C^{n}(\mathfrak{g},V)=\mathrm{Hom}(\otimes^{n}\mathfrak{g},V), where the space of all nn-linear maps fCn(𝔤,V)f\in C^{n}(\mathfrak{g},V) satisfying

    f(x1,,x2i1,x2i,,xn)=0,ifx2i1=x2i,i=1,2,,[n2].f(x_{1},\cdot\cdot\cdot,x_{2i-1},x_{2i},\cdot\cdot\cdot,x_{n})=0,~{}~{}\hbox{if}~{}x_{2i-1}=x_{2i},~{}\forall~{}i=1,2,\cdot\cdot\cdot,[\frac{n}{2}].

Then, for all n1n\geq 1, put the (2n,2n+1)(2n,2n+1)-cochain groups

C(2n,2n+1)(𝔤,V)=C2n(𝔤,V)×C2n+1(𝔤,V)C^{(2n,2n+1)}(\mathfrak{g},V)=C^{2n}(\mathfrak{g},V)\times C^{2n+1}(\mathfrak{g},V)

and

C(3,4)(𝔤,V)=C3(𝔤,V)×C4(𝔤,V).C^{(3,4)}(\mathfrak{g},V)=C^{3}(\mathfrak{g},V)\times C^{4}(\mathfrak{g},V).

Define the coboundary operator δ=(δI,δII)\delta=(\delta_{I},\delta_{II}) in the following cochain complex of 𝔤\mathfrak{g} with coefficents in VV:

C0(𝔤,V)\textstyle{C^{0}(\mathfrak{g},V)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}δ\scriptstyle{\delta}C(2,3)(𝔤,V)\textstyle{C^{(2,3)}(\mathfrak{g},V)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}δ\scriptstyle{\delta^{*}}δ\scriptstyle{\delta}C(4,5)(𝔤,V)\textstyle{C^{(4,5)}(\mathfrak{g},V)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}δ\scriptstyle{\delta}C(6,7)(𝔤,V)\textstyle{C^{(6,7)}(\mathfrak{g},V)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}δ\scriptstyle{\delta}\textstyle{\cdot\cdot\cdot}C(3,4)(𝔤,V)\textstyle{C^{(3,4)}(\mathfrak{g},V)}.

For n1n\geq 1, the coboundary operator δ=(δI,δII):C(2n,2n+1)(𝔤,V)C(2n+2,2n+3)(𝔤,V)\delta=(\delta_{I},\delta_{II}):C^{(2n,2n+1)}(\mathfrak{g},V)\longrightarrow C^{(2n+2,2n+3)}(\mathfrak{g},V) is defined by

(δIf)(x1,,x2n+2)\displaystyle(\delta_{I}f)(x_{1},\cdot\cdot\cdot,x_{2n+2})
=\displaystyle= μ(x2n+1)g(x1,,x2n,x2n+2)μ(x2n+2)g(x1,,x2n+1)g(x1,,x2n,[x2n+1,x2n+2])\displaystyle\mu(x_{2n+1})g(x_{1},\cdot\cdot\cdot,x_{2n},x_{2n+2})-\mu(x_{2n+2})g(x_{1},\cdot\cdot\cdot,x_{2n+1})-g(x_{1},\cdot\cdot\cdot,x_{2n},[x_{2n+1},x_{2n+2}])
+k=1n(1)n+k+1D(x2k1,x2k)f(x1,,x2k2,x2k+1,,x2n+2)\displaystyle+\sum_{k=1}^{n}(-1)^{n+k+1}D(x_{2k-1},x_{2k})f(x_{1},\cdot\cdot\cdot,x_{2k-2},x_{2k+1},\cdot\cdot\cdot,x_{2n+2})
+k=1nj=2k+12n+2(1)n+kf(x1,,x2k2,x2k+1,,{x2k1,x2k,xj},,x2n+2)\displaystyle+\sum_{k=1}^{n}\sum_{j=2k+1}^{2n+2}(-1)^{n+k}f(x_{1},\cdot\cdot\cdot,x_{2k-2},x_{2k+1},\cdot\cdot\cdot,\{x_{2k-1},x_{2k},x_{j}\},\cdot\cdot\cdot,x_{2n+2})

and

(δIIg)(x1,,x2n+3)\displaystyle(\delta_{II}g)(x_{1},\cdot\cdot\cdot,x_{2n+3})
=\displaystyle= θ(x2n+2,x2n+3)g(x1,,x2n+1)θ(x2n+1,x2n+3)g(x1,,x2n,x2n+2)\displaystyle\theta(x_{2n+2},x_{2n+3})g(x_{1},\cdot\cdot\cdot,x_{2n+1})-\theta(x_{2n+1},x_{2n+3})g(x_{1},\cdot\cdot\cdot,x_{2n},x_{2n+2})
+k=1n+1(1)n+k+1D(x2k1,x2k)g(x1,,x2k+1,,x2n+3)\displaystyle+\sum_{k=1}^{n+1}(-1)^{n+k+1}D(x_{2k-1},x_{2k})g(x_{1},\cdot\cdot\cdot,x_{2k+1},\cdot\cdot\cdot,x_{2n+3})
+k=1n+1j=2k+12n+3(1)n+kg(x1,,x2k+1,,{x2k1,x2k,xj},,x2n+3)\displaystyle+\sum_{k=1}^{n+1}\sum_{j=2k+1}^{2n+3}(-1)^{n+k}g(x_{1},\cdot\cdot\cdot,x_{2k+1},\cdot\cdot\cdot,\{x_{2k-1},x_{2k},x_{j}\},\cdot\cdot\cdot,x_{2n+3})

for any pair (f,g)C(2n,2n+1)(𝔤,V)(f,g)\in C^{(2n,2n+1)}(\mathfrak{g},V) and x1,,x2n+3𝔤x_{1},\cdot\cdot\cdot,x_{2n+3}\in\mathfrak{g}. And when n=0n=0, the coboundary operator

δ=(δI,δII):C0(𝔤,V)C2(𝔤,V)×C3(𝔤,V)\delta=(\delta_{I},\delta_{II}):C^{0}(\mathfrak{g},V)\longrightarrow C^{2}(\mathfrak{g},V)\times C^{3}(\mathfrak{g},V)

is defined as follows:

(δIf)(x1,x2)=μ(x1)f(x2)μ(x2)f(x1)f([x1,x2]),(\delta_{I}f)(x_{1},x_{2})=\mu(x_{1})f(x_{2})-\mu(x_{2})f(x_{1})-f([x_{1},x_{2}]),
(δIIf)(x1,x2,x3)=θ(x2,x3)f(x1)θ(x1,x3)f(x2)+D(x1,x2)f(x3)f({x1,x2,x3})(\delta_{II}f)(x_{1},x_{2},x_{3})=\theta(x_{2},x_{3})f(x_{1})-\theta(x_{1},x_{3})f(x_{2})+D(x_{1},x_{2})f(x_{3})-f(\{x_{1},x_{2},x_{3}\})

for any fC1(𝔤,V)f\in C^{1}(\mathfrak{g},V) and x1,x2,x3𝔤x_{1},x_{2},x_{3}\in\mathfrak{g}.

Define δ=(δI,δII):C(2,3)(𝔤,V)C(3,4)(𝔤,V)\delta^{*}=(\delta_{I}^{*},\delta_{II}^{*}):C^{(2,3)}(\mathfrak{g},V)\longrightarrow C^{(3,4)}(\mathfrak{g},V) by

δIf(x,y,z)=\displaystyle\delta_{I}^{*}f(x,y,z)= μ(x)f(y,z)μ(y)f(z,x)μ(z)f(x,y)+f([x,y],z)+f([y,z],x)\displaystyle-\mu(x)f(y,z)-\mu(y)f(z,x)-\mu(z)f(x,y)+f([x,y],z)+f([y,z],x)
+f([z,x],y)+g(x,y,z)+g(y,z,x)+g(z,x,y),\displaystyle+f([z,x],y)+g(x,y,z)+g(y,z,x)+g(z,x,y),
δIIf(x,y,z,w)=\displaystyle\delta_{II}^{*}f(x,y,z,w)= θ(x,w)f(y,z)+θ(y,w)f(z,x)+θ(z,w)f(x,y)+g([x,y],z,w)\displaystyle\theta(x,w)f(y,z)+\theta(y,w)f(z,x)+\theta(z,w)f(x,y)+g([x,y],z,w)
+g([y,z],x,w)+g([z,x],y,w),\displaystyle+g([y,z],x,w)+g([z,x],y,w),

for all (f,g)C(2,3)(𝔤,V)(f,g)\in C^{(2,3)}(\mathfrak{g},V) and x,y,z,w𝔤x,y,z,w\in\mathfrak{g}.

Denote the set of all the (2n,2n+1)(2n,2n+1)-cocycles and the (2n,2n+1)(2n,2n+1)-coboundaries, respectively by Z(2n,2n+1)(𝔤,V)Z^{(2n,2n+1)}(\mathfrak{g},V) and B(2n,2n+1)(𝔤,V)B^{(2n,2n+1)}(\mathfrak{g},V). In particular,

Z(2,3)(𝔤,V)={(f,g)C(2,3)(𝔤,V)|δ(f,g)=0,δ(f,g)=0},Z^{(2,3)}(\mathfrak{g},V)=\{(f,g)\in C^{(2,3)}(\mathfrak{g},V)|\delta(f,g)=0,\delta^{*}(f,g)=0\},
B(2,3)(𝔤,V)={(δI(f),δII(f))|fC1(𝔤,V)}.B^{(2,3)}(\mathfrak{g},V)=\{(\delta_{I}(f),\delta_{II}(f))|f\in C^{1}(\mathfrak{g},V)\}.

Define H1(𝔤,V)={fC1(𝔤,V)|δI(f)=0,δII(f)=0}H^{1}(\mathfrak{g},V)=\{f\in C^{1}(\mathfrak{g},V)|\delta_{I}(f)=0,\delta_{II}(f)=0\}, which is called the first cohomology group of 𝔤\mathfrak{g} with coefficients in the representation VV and define

H(2n,2n+1)(𝔤,V)=Z(2n,2n+1)(𝔤,V)/B(2n,2n+1)(𝔤,V),n1H^{(2n,2n+1)}(\mathfrak{g},V)=Z^{(2n,2n+1)}(\mathfrak{g},V)/B^{(2n,2n+1)}(\mathfrak{g},V),~{}~{}n\geq 1

which is called the (2n,2n+1)-cohomology group of 𝔤\mathfrak{g} with coefficients in the representation VV.

3. Non-abelian extensions and non-abelian (2,3)-cocycles of Lie-Yamaguti algebras

In this section, we are devoted to considering non-abelian extensions and non-abelian (2,3)-cocycles of Lie-Yamaguti algebras.

Definition 3.1.

Let 𝔤\mathfrak{g} and 𝔥\mathfrak{h} be two Lie-Yamaguti algebras. A non-abelian extension of 𝔤\mathfrak{g} by 𝔥\mathfrak{h} is a Lie-Yamaguti algebra 𝔤^\hat{\mathfrak{g}}, which fits into a short exact sequence of Lie-Yamaguti algebras

:0𝔥i𝔤^p𝔤0.\mathcal{E}:0\longrightarrow\mathfrak{h}\stackrel{{\scriptstyle i}}{{\longrightarrow}}\hat{\mathfrak{g}}\stackrel{{\scriptstyle p}}{{\longrightarrow}}\mathfrak{g}\longrightarrow 0.

When 𝔥\mathfrak{h} is an abelian ideal of 𝔤^\hat{\mathfrak{g}}, the extension \mathcal{E} is called an abelian extension of 𝔤\mathfrak{g} by 𝔥\mathfrak{h}. Denote an extension as above simply by 𝔤^\hat{\mathfrak{g}} or \mathcal{E}. A section of pp is a linear map s:𝔤𝔤^s:\mathfrak{g}\longrightarrow\hat{\mathfrak{g}} such that ps=I𝔤ps=I_{\mathfrak{g}}.

Definition 3.2.

Let 𝔤^1\hat{\mathfrak{g}}_{1} and 𝔤^2\hat{\mathfrak{g}}_{2} be two non-abelian extensions of 𝔤\mathfrak{g} by 𝔥\mathfrak{h}. They are said to be equivalent if there is a homomorphism of Lie-Yamaguti algebras f:𝔤^1𝔤^2f:\hat{\mathfrak{g}}_{1}\longrightarrow\hat{\mathfrak{g}}_{2} such that the following commutative diagram holds:

(15) 0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝔥\textstyle{\mathfrak{h}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}i1\scriptstyle{i_{1}}𝔤^1\textstyle{\hat{\mathfrak{g}}_{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}p1\scriptstyle{p_{1}}𝔤\textstyle{\mathfrak{g}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝔥\textstyle{\mathfrak{h}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}i2\scriptstyle{i_{2}}𝔤^2\textstyle{\hat{\mathfrak{g}}_{2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p2\scriptstyle{p_{2}}𝔤\textstyle{\mathfrak{g}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0.\textstyle{0.}

Denote by nab(𝔤,𝔥)\mathcal{E}_{nab}(\mathfrak{g},\mathfrak{h}) the set of all non-abelian extensions of 𝔤\mathfrak{g} by 𝔥\mathfrak{h}.

Next, we define a non-abelian cohomology group and show that the non-abelian extensions are classified by the non-abelian cohomology groups.

Definition 3.3.

Let 𝔤\mathfrak{g} and 𝔥\mathfrak{h} be two Lie-Yamaguti algebras. A non-abelian (2,3)-cocycle on 𝔤\mathfrak{g} with values in 𝔥\mathfrak{h} is a septuple (χ,ω,μ,θ,D,ρ,T)(\chi,\omega,\mu,\theta,D,\rho,T) of maps such that ω:𝔤𝔤𝔤𝔥\omega:\mathfrak{g}\otimes\mathfrak{g}\otimes\mathfrak{g}\longrightarrow\mathfrak{h} is trilinear, χ:𝔤𝔤𝔥,θ,D:𝔤𝔤𝔤𝔩(𝔥)\chi:\mathfrak{g}\otimes\mathfrak{g}\longrightarrow\mathfrak{h},~{}\theta,D:\mathfrak{g}\wedge\mathfrak{g}\longrightarrow\mathfrak{gl}(\mathfrak{h}) are bilinear and μ:𝔤𝔤𝔩(𝔥),ρ,T:𝔤Hom(𝔥𝔥,𝔥)\mu:\mathfrak{g}\longrightarrow\mathfrak{gl}(\mathfrak{h}),~{}\rho,T:\mathfrak{g}\longrightarrow\mathrm{Hom}(\mathfrak{h}\wedge\mathfrak{h},\mathfrak{h}) are linear, and the following five parts of identities are satisfied for all xi,yi,x,y,z𝔤(i=1,2,3),a,b,c𝔥x_{i},y_{i},x,y,z\in\mathfrak{g}~{}(i=1,2,3),a,b,c\in\mathfrak{h},

  • Those resembling Eq. (1):

    (16) χ([x,y]𝔤+χ(y,x)=0,ω(x,y,z)+ω(y,x,z)=0,\chi([x,y]_{\mathfrak{g}}+\chi(y,x)=0,~{}~{}\omega(x,y,z)+\omega(y,x,z)=0,
    (17) D(x,y)a+D(y,x)a=0,T(x)(a,b)+T(x)(b,a)=0.D(x,y)a+D(y,x)a=0,~{}T(x)(a,b)+T(x)(b,a)=0.
  • Those resembling Eq. (2):

    χ([x,y]𝔤,z)μ(z)χ(x,y)+ω(x,y,z)+χ([y,z]𝔤,x)μ(x)χ(y,z)+ω(y,z,x)\displaystyle\chi([x,y]_{\mathfrak{g}},z)-\mu(z)\chi(x,y)+\omega(x,y,z)+\chi([y,z]_{\mathfrak{g}},x)-\mu(x)\chi(y,z)+\omega(y,z,x)
    (18) +χ([z,x]𝔤,y)μ(y)χ(z,x)+ω(z,x,y)=0,\displaystyle+\chi([z,x]_{\mathfrak{g}},y)-\mu(y)\chi(z,x)+\omega(z,x,y)=0,
    (19) μ([x,y]𝔤)a+[χ(x,y),a]𝔥+D(x,y)aμ(x)μ(y)aθ(y,x)a+μ(y)μ(x)a+θ(x,y)a=0,\mu([x,y]_{\mathfrak{g}})a+[\chi(x,y),a]_{\mathfrak{h}}+D(x,y)a-\mu(x)\mu(y)a-\theta(y,x)a+\mu(y)\mu(x)a+\theta(x,y)a=0,
    (20) [μ(x)a,b]𝔥+ρ(x)(a,b)μ(x)[a,b]𝔥+T(x)(a,b)[μ(x)b,a]𝔥ρ(x)(b,a)=0.[\mu(x)a,b]_{\mathfrak{h}}+\rho(x)(a,b)-\mu(x)[a,b]_{\mathfrak{h}}+T(x)(a,b)-[\mu(x)b,a]_{\mathfrak{h}}-\rho(x)(b,a)=0.
  • Those resembling Eq. (3):

    (21) θ(z,w)χ(x,y)+θ(x,w)χ(y,z)+θ(y,w)χ(z,x)=0,\theta(z,w)\chi(x,y)+\theta(x,w)\chi(y,z)+\theta(y,w)\chi(z,x)=0,
    D([x,y]𝔤,z)aρ(z)(χ(x,y),a)+D([y,z]𝔤,x)aρ(x)(χ(y,z),a)\displaystyle D([x,y]_{\mathfrak{g}},z)a-\rho(z)(\chi(x,y),a)+D([y,z]_{\mathfrak{g}},x)a-\rho(x)(\chi(y,z),a)
    (22) +D([z,x]𝔤,y)aρ(y)(χ(z,x),a)=0,\displaystyle+D([z,x]_{\mathfrak{g}},y)a-\rho(y)(\chi(z,x),a)=0,
    (23) θ([x,y]𝔤,z)aT(z)(χ(x,y),a)θ(x,z)μ(y)a+θ(y,z)μ(x)a=0,\theta([x,y]_{\mathfrak{g}},z)a-T(z)(\chi(x,y),a)-\theta(x,z)\mu(y)a+\theta(y,z)\mu(x)a=0,
    (24) ρ([x,y]𝔤)(a,b)+{χ(x,y),a,b}𝔥ρ(x)(μ(y)a,b)+ρ(y)(μ(x)a,b)=0,\rho([x,y]_{\mathfrak{g}})(a,b)+\{\chi(x,y),a,b\}_{\mathfrak{h}}-\rho(x)(\mu(y)a,b)+\rho(y)(\mu(x)a,b)=0,
    (25) T(y)(μ(x)a,b)+θ(x,y)[a,b]𝔥T(y)(μ(x)b,a)=0,T(y)(\mu(x)a,b)+\theta(x,y)[a,b]_{\mathfrak{h}}-T(y)(\mu(x)b,a)=0,
    (26) {μ(x)a,b,c}𝔥ρ(x)([a,b]𝔥,c){μ(x)b,a,c}𝔥=0,\{\mu(x)a,b,c\}_{\mathfrak{h}}-\rho(x)([a,b]_{\mathfrak{h}},c)-\{\mu(x)b,a,c\}_{\mathfrak{h}}=0,
    (27) T(x)([a,b]𝔥,c)+T(x)([b,c]𝔥,a)+T(x)([c,a]𝔥,b)=0.T(x)([a,b]_{\mathfrak{h}},c)+T(x)([b,c]_{\mathfrak{h}},a)+T(x)([c,a]_{\mathfrak{h}},b)=0.
  • Those resembling Eq. (4):

    (28) D(x,y)χ(z,w)=χ({x,y,z}𝔤,w)μ(w)ω(x,y,z)+μ(z)ω(x,y,w)+χ(z,{x,y,w}𝔤),D(x,y)\chi(z,w)=\chi(\{x,y,z\}_{\mathfrak{g}},w)-\mu(w)\omega(x,y,z)+\mu(z)\omega(x,y,w)+\chi(z,\{x,y,w\}_{\mathfrak{g}}),
    (29) D(x,y)μ(z)a=μ({x,y,z}𝔤)a+[ω(x,y,z),a]𝔥+μ(z)D(x,y)a,D(x,y)\mu(z)a=\mu(\{x,y,z\}_{\mathfrak{g}})a+[\omega(x,y,z),a]_{\mathfrak{h}}+\mu(z)D(x,y)a,
    (30) θ(x,[y,z]𝔤)aρ(x)(a,χ(y,z))=μ(y)θ(x,z)aμ(z)θ(x,y)a,\theta(x,[y,z]_{\mathfrak{g}})a-\rho(x)(a,\chi(y,z))=\mu(y)\theta(x,z)a-\mu(z)\theta(x,y)a,
    (31) D(x,y)[a,b]𝔥=[D(x,y)a,b]𝔥+[a,D(x,y)b]𝔥,D(x,y)[a,b]_{\mathfrak{h}}=[D(x,y)a,b]_{\mathfrak{h}}+[a,D(x,y)b]_{\mathfrak{h}},
    (32) ρ(x)(a,μ(y)b)+[θ(x,y)a,b]𝔥μ(y)ρ(x)(a,b)=0,\rho(x)(a,\mu(y)b)+[\theta(x,y)a,b]_{\mathfrak{h}}-\mu(y)\rho(x)(a,b)=0,
    (33) T([x,y]𝔤)(a,b)+{a,b,χ(x,y)}𝔥μ(x)T(y)(a,b)+μ(y)T(x)(a,b)=0,T([x,y]_{\mathfrak{g}})(a,b)+\{a,b,\chi(x,y)\}_{\mathfrak{h}}-\mu(x)T(y)(a,b)+\mu(y)T(x)(a,b)=0,
    (34) {a,b,μ(x)c}𝔥=μ(x){a,b,c}𝔥[c,T(x)(a,b)]𝔥,\{a,b,\mu(x)c\}_{\mathfrak{h}}=\mu(x)\{a,b,c\}_{\mathfrak{h}}-[c,T(x)(a,b)]_{\mathfrak{h}},
    (35) ρ(x)(a,[b,c]𝔥)=[ρ(x)(a,b),c]𝔥+[b,ρ(x)(a,c)]𝔥.\rho(x)(a,[b,c]_{\mathfrak{h}})=[\rho(x)(a,b),c]_{\mathfrak{h}}+[b,\rho(x)(a,c)]_{\mathfrak{h}}.
  • Those resembling Eq. (5):

    D(x1,x2)ω(y1,y2,y3)+ω(x1,x2,{y1,y2,y3}𝔤)=ω({x1,x2,y1}𝔤,y2,y3)\displaystyle D(x_{1},x_{2})\omega(y_{1},y_{2},y_{3})+\omega(x_{1},x_{2},\{y_{1},y_{2},y_{3}\}_{\mathfrak{g}})=\omega(\{x_{1},x_{2},y_{1}\}_{\mathfrak{g}},y_{2},y_{3})
    +θ(y2,y3)ω(x1,x2,y1)+ω(y1,{x1,x2,y2}𝔤,y3)θ(y1,y3)ω(x1,x2,y2)\displaystyle+\theta(y_{2},y_{3})\omega(x_{1},x_{2},y_{1})+\omega(y_{1},\{x_{1},x_{2},y_{2}\}_{\mathfrak{g}},y_{3})-\theta(y_{1},y_{3})\omega(x_{1},x_{2},y_{2})
    (36) +ω(y1,y2,{x1,x2,y3}𝔤)+D(y1,y2)ω(x1,x2,y3),\displaystyle+\omega(y_{1},y_{2},\{x_{1},x_{2},y_{3}\}_{\mathfrak{g}})+D(y_{1},y_{2})\omega(x_{1},x_{2},y_{3}),
    D(x,y)θ(z,w)aθ(z,w)D(x,y)a\displaystyle D(x,y)\theta(z,w)a-\theta(z,w)D(x,y)a
    (37) =\displaystyle= θ({x,y,z}𝔤,w)a+θ(z,{x,y,w}𝔤)aT(w)(ω(x,y,z),a)ρ(z)(a,ω(x,y,w)),\displaystyle\theta(\{x,y,z\}_{\mathfrak{g}},w)a+\theta(z,\{x,y,w\}_{\mathfrak{g}})a-T(w)(\omega(x,y,z),a)-\rho(z)(a,\omega(x,y,w)),
    (38) θ(x,{y,z,w}𝔤)aρ(x)(a,ω(y,z,w))=θ(z,w)θ(x,y)aθ(y,w)θ(x,z)a+D(y,z)θ(x,w)a,\theta(x,\{y,z,w\}_{\mathfrak{g}})a-\rho(x)(a,\omega(y,z,w))=\theta(z,w)\theta(x,y)a-\theta(y,w)\theta(x,z)a+D(y,z)\theta(x,w)a,
    D(x,y)D(z,w)aD(z,w)D(x,y)a\displaystyle D(x,y)D(z,w)a-D(z,w)D(x,y)a
    (39) =\displaystyle= D({x,y,z}𝔤,w)a+D(z,{x,y,w}𝔤)aρ(w)(ω(x,y,z),a)+ρ(z)(ω(x,y,w),a),\displaystyle D(\{x,y,z\}_{\mathfrak{g}},w)a+D(z,\{x,y,w\}_{\mathfrak{g}})a-\rho(w)(\omega(x,y,z),a)+\rho(z)(\omega(x,y,w),a),
    (40) (D(x,y)ρ(z)ρ({x,y,z}𝔤))(a,b)\displaystyle(D(x,y)\rho(z)-\rho(\{x,y,z\}_{\mathfrak{g}}))(a,b) =ρ(z)((D(x,y)a,b)+(a,D(x,y)b))+{ω(x,y,z),a,b}𝔥,\displaystyle=\rho(z)((D(x,y)a,b)+(a,D(x,y)b))+\{\omega(x,y,z),a,b\}_{\mathfrak{h}},
    (41) D(y,z)(ρ(x)(a,b))=ρ(x)(a,D(y,z)b)ρ(z)(θ(x,y)a,b)+ρ(y)(θ(x,z)a,b),D(y,z)(\rho(x)(a,b))=\rho(x)(a,D(y,z)b)-\rho(z)(\theta(x,y)a,b)+\rho(y)(\theta(x,z)a,b),
    (42) θ(y,z)(ρ(x)(a,b))=ρ(x)(a,θ(y,z)b)T(z)(θ(x,y)a,b)ρ(y)(b,θ(x,z)a),\theta(y,z)(\rho(x)(a,b))=\rho(x)(a,\theta(y,z)b)-T(z)(\theta(x,y)a,b)-\rho(y)(b,\theta(x,z)a),
    (43) (D(x,y)T(z)T({x,y,z}𝔤))(a,b)=T(z)((D(x,y)a,b)+(a,D(x,y)b))+{a,b,ω(x,y,z)}𝔥,\displaystyle(D(x,y)T(z)-T(\{x,y,z\}_{\mathfrak{g}}))(a,b)=T(z)((D(x,y)a,b)+(a,D(x,y)b))+\{a,b,\omega(x,y,z)\}_{\mathfrak{h}},
    (44) (T({x,y,z}𝔤)D(x,y)T(z))(a,b)+{a,b,ω(x,y,z)}𝔥=(θ(y,z)T(x)θ(x,z)T(y))(a,b),\displaystyle(T(\{x,y,z\}_{\mathfrak{g}})-D(x,y)T(z))(a,b)+\{a,b,\omega(x,y,z)\}_{\mathfrak{h}}=(\theta(y,z)T(x)-\theta(x,z)T(y))(a,b),
    (45) D(x,y)({a,b,c}𝔥)={D(x,y)a,b,c}𝔥+{a,D(x,y)b,c}𝔥+{a,b,D(x,y)c}𝔥,D(x,y)(\{a,b,c\}_{\mathfrak{h}})=\{D(x,y)a,b,c\}_{\mathfrak{h}}+\{a,D(x,y)b,c\}_{\mathfrak{h}}+\{a,b,D(x,y)c\}_{\mathfrak{h}},
    (46) ρ(x)(a,ρ(y)(b,c))=ρ(y)(ρ(x)(a,b),c)+ρ(y)(b,ρ(x)(a,c)){θ(x,y)a,b,c}𝔥,\rho(x)(a,\rho(y)(b,c))=\rho(y)(\rho(x)(a,b),c)+\rho(y)(b,\rho(x)(a,c))-\{\theta(x,y)a,b,c\}_{\mathfrak{h}},
    (47) {a,b,θ(x,y)c}𝔥=θ(x,y){a,b,c}𝔥T(y)(T(x)(a,b),c)ρ(x)(c,T(y)(a,b)),\{a,b,\theta(x,y)c\}_{\mathfrak{h}}=\theta(x,y)\{a,b,c\}_{\mathfrak{h}}-T(y)(T(x)(a,b),c)-\rho(x)(c,T(y)(a,b)),
    (48) ρ(x)(a,T(y)(b,c))=T(y)(ρ(x)(a,b),c)+T(y)(b,ρ(x)(a,c)){a,c,θ(x,y)a}𝔥,\rho(x)(a,T(y)(b,c))=T(y)(\rho(x)(a,b),c)+T(y)(b,\rho(x)(a,c))-\{a,c,\theta(x,y)a\}_{\mathfrak{h}},
    (49) {a,b,D(x,y)c}𝔥=D(x,y){a,b,c}𝔥ρ(y)(T(x)(a,b),c),+ρ(x)(T(y)(a,b),c),\{a,b,D(x,y)c\}_{\mathfrak{h}}=D(x,y)\{a,b,c\}_{\mathfrak{h}}-\rho(y)(T(x)(a,b),c),+\rho(x)(T(y)(a,b),c),
    (50) {a,b,ρ(x)(c,d)}𝔥=ρ(x)({a,b,c}𝔥,d){c,T(x)(a,b),d}𝔥+ρ(x)(c,{a,b,d}𝔥),\{a,b,\rho(x)(c,d)\}_{\mathfrak{h}}=\rho(x)(\{a,b,c\}_{\mathfrak{h}},d)-\{c,T(x)(a,b),d\}_{\mathfrak{h}}+\rho(x)(c,\{a,b,d\}_{\mathfrak{h}}),
    (51) ρ(x)(a,{b,c,d}𝔥)={ρ(x)(a,b),c,d}𝔥+{b,ρ(x)(a,c),d}𝔥+{b,c,ρ(x)(a,d)}𝔥.\rho(x)(a,\{b,c,d\}_{\mathfrak{h}})=\{\rho(x)(a,b),c,d\}_{\mathfrak{h}}+\{b,\rho(x)(a,c),d\}_{\mathfrak{h}}+\{b,c,\rho(x)(a,d)\}_{\mathfrak{h}}.
    (52) {a,b,T(x)(c,d)}𝔥=T(x)({a,b,c}𝔥,d)+T(x)(c,{a,b,d}𝔥)+{c,d,T(x)(a,b)}𝔥.\{a,b,T(x)(c,d)\}_{\mathfrak{h}}=T(x)(\{a,b,c\}_{\mathfrak{h}},d)+T(x)(c,\{a,b,d\}_{\mathfrak{h}})+\{c,d,T(x)(a,b)\}_{\mathfrak{h}}.
Definition 3.4.

Let (χ1,ω1,μ1,θ1,D1,ρ1,T1)(\chi_{1},\omega_{1},\mu_{1},\theta_{1},D_{1},\rho_{1},T_{1}) and (χ2,ω2,μ2,θ2,D2,ρ2,T2)(\chi_{2},\omega_{2},\mu_{2},\theta_{2},D_{2},\rho_{2},T_{2}) be two non-abelian (2,3)-cocycles on 𝔤\mathfrak{g} with values in 𝔥\mathfrak{h}. They are said to be equivalent if there exists a linear map φ:𝔤𝔥\varphi:\mathfrak{g}\longrightarrow\mathfrak{h} such that for all x,y,z𝔤x,y,z\in\mathfrak{g} and a,b𝔥a,b\in\mathfrak{h}, the following equalities hold:

(53) χ1(x,y)χ2(x,y)=[φ(x),φ(y)]𝔥+φ[x,y]𝔤μ2(x)φ(y)+μ2(y)φ(x),\chi_{1}(x,y)-\chi_{2}(x,y)=[\varphi(x),\varphi(y)]_{\mathfrak{h}}+\varphi[x,y]_{\mathfrak{g}}-\mu_{2}(x)\varphi(y)+\mu_{2}(y)\varphi(x),
ω1(x,y,z)ω2(x,y,z)=θ2(x,z)φ(y)D2(x,y)φ(z)+ρ2(x)(φ(y),φ(z))θ2(y,z)φ(x)\displaystyle\omega_{1}(x,y,z)-\omega_{2}(x,y,z)=\theta_{2}(x,z)\varphi(y)-D_{2}(x,y)\varphi(z)+\rho_{2}(x)(\varphi(y),\varphi(z))-\theta_{2}(y,z)\varphi(x)
(54) +T2(z)(φ(x),φ(y))ρ2(y)(φ(x),φ(z)){φ(x),φ(y),φ(z)}𝔥+φ{x,y,z}𝔤,\displaystyle+T_{2}(z)(\varphi(x),\varphi(y))-\rho_{2}(y)(\varphi(x),\varphi(z))-\{\varphi(x),\varphi(y),\varphi(z)\}_{\mathfrak{h}}+\varphi\{x,y,z\}_{\mathfrak{g}},
(55) μ1(x)aμ2(x)a=[a,φ(x)]𝔥,\mu_{1}(x)a-\mu_{2}(x)a=[a,\varphi(x)]_{\mathfrak{h}},
(56) θ1(x,y)aθ2(x,y)a=ρ2(x)(a,φ(y))T2(y)(a,φ(x))+{a,φ(x),φ(y)}𝔥,\theta_{1}(x,y)a-\theta_{2}(x,y)a=\rho_{2}(x)(a,\varphi(y))-T_{2}(y)(a,\varphi(x))+\{a,\varphi(x),\varphi(y)\}_{\mathfrak{h}},
(57) D1(x,y)aD2(x,y)a=ρ2(y)(φ(x),a)ρ2(x)(φ(y),a)+{φ(x),φ(y),a}𝔥,D_{1}(x,y)a-D_{2}(x,y)a=\rho_{2}(y)(\varphi(x),a)-\rho_{2}(x)(\varphi(y),a)+\{\varphi(x),\varphi(y),a\}_{\mathfrak{h}},
(58) ρ1(x)(a,b)ρ2(x)(a,b)={a,φ(x),b}𝔥,T1(x)(a,b)T2(x)(a,b)={b,a,φ(x)}𝔥.\rho_{1}(x)(a,b)-\rho_{2}(x)(a,b)=\{a,\varphi(x),b\}_{\mathfrak{h}},~{}~{}T_{1}(x)(a,b)-T_{2}(x)(a,b)=\{b,a,\varphi(x)\}_{\mathfrak{h}}.

For convenience, we abbreviate a non-abelian (2,3)-cocycle (χ,ω,μ,θ,D,ρ,T)(\chi,\omega,\mu,\theta,D,\rho,T) as (χ,ω)(\chi,\omega), denote the equivalent class of a non-abelian (2,3)-cocycle (χ,ω,μ,θ,D,ρ,T)(\chi,\omega,\mu,\theta,D,\rho,T) simply by [(χ,ω)][(\chi,\omega)]. Furthermore, we denote the set of equivalent classes of non-abelian (2,3)-cocycles by Hnab(2,3)(𝔤,𝔥)H_{nab}^{(2,3)}(\mathfrak{g},\mathfrak{h}).

Using the above notations, we define multilinear maps [,]χ[\ ,\ ]_{\chi} and [,,]ω[\ ,\ ,\ ]_{\omega} on 𝔤𝔥\mathfrak{g}\oplus\mathfrak{h} by

(59) [x+a,y+b]χ\displaystyle[x+a,y+b]_{\chi} =[x,y]𝔤+χ(x,y)+μ(x)bμ(y)a+[a,b]𝔥,\displaystyle=[x,y]_{\mathfrak{g}}+\chi(x,y)+\mu(x)b-\mu(y)a+[a,b]_{\mathfrak{h}},
{x+a,y+b,z+c}ω=\displaystyle\{x+a,y+b,z+c\}_{\omega}= {x,y,z}𝔤+ω(x,y,z)+D(x,y)c+θ(y,z)aθ(x,z)b\displaystyle\{x,y,z\}_{\mathfrak{g}}+\omega(x,y,z)+D(x,y)c+\theta(y,z)a-\theta(x,z)b
(60) +T(z)(a,b)+ρ(x)(b,c)ρ(y)(a,c)+{a,b,c}𝔥\displaystyle+T(z)(a,b)+\rho(x)(b,c)-\rho(y)(a,c)+\{a,b,c\}_{\mathfrak{h}}

for all x,y,z𝔤x,y,z\in\mathfrak{g} and a,b,c𝔥a,b,c\in\mathfrak{h}.

Proposition 3.5.

With the above notions, (𝔤𝔥,[,]χ,{,,}ω)(\mathfrak{g}\oplus\mathfrak{h},[\ ,\ ]_{\chi},\{\ ,\ ,\ \}_{\omega}) is a Lie-Yamaguti algebra if and only if the septuple (χ,ω,μ,θ,D,ρ,T)(\chi,\omega,\mu,\theta,D,\rho,T) is a non-abelian (2,3)-cocycle. Denote this Lie-Yamaguti algebra (𝔤𝔥,[,]χ,{,,}ω)(\mathfrak{g}\oplus\mathfrak{h},[\ ,\ ]_{\chi},\{\ ,\ ,\ \}_{\omega}) simply by 𝔤(χ,ω)𝔥\mathfrak{g}\oplus_{(\chi,\omega)}\mathfrak{h}.

Proof.

(𝔤𝔥,[,]χ,{,,}ω)(\mathfrak{g}\oplus\mathfrak{h},[\ ,\ ]_{\chi},\{\ ,\ ,\ \}_{\omega}) is a Lie-Yamaguti algebra if and only if Eqs. (1)-(5) hold for [,]χ,{,,}ω[\ ,\ ]_{\chi},\{\ ,\ ,\ \}_{\omega}. In fact, it is easy to check that Eq. (1) holds for [,]χ,{,,}ω[\ ,\ ]_{\chi},\{\ ,\ ,\ \}_{\omega} if and only if (16)-(17) hold. In the following, we always assume that x,y,z,w𝔤x,y,z,w\in\mathfrak{g} and a,b,c,d𝔥a,b,c,d\in\mathfrak{h}.

For the Eq. (2), we discuss it for the following cases: for all x1,x2,x3𝔤𝔥x_{1},x_{2},x_{3}\in\mathfrak{g}\oplus\mathfrak{h},

  1. (I)(I)

    when all of the three elements x1,x2,x3x_{1},x_{2},x_{3} belong to 𝔤\mathfrak{g}, (2) holds if and only if (3.3) holds.

  2. (II)(II)

    when x1,x2,x3x_{1},x_{2},x_{3} equal to:

    1. (i)(i)

      x,y,ax,y,a or a,x,ya,x,y or x,a,yx,a,y respectively, (2) holds if and only if (19) holds.

    2. (ii)(ii)

      a,b,xa,b,x or a,x,ba,x,b or x,a,bx,a,b respectively, (2) holds for if and only if (20) holds.

For the Eq. (3), we discuss it for the following cases: for all x1,x2,x3,y1𝔤𝔥x_{1},x_{2},x_{3},y_{1}\in\mathfrak{g}\oplus\mathfrak{h},

  1. (I)(I)

    when all of the four elements x1,x2,x3,y1x_{1},x_{2},x_{3},y_{1} belong to 𝔤\mathfrak{g}, (3) holds if and only if (21) holds.

  2. (II)(II)

    when x1,x2,x3,y1x_{1},x_{2},x_{3},y_{1} equal to:

    1. (i)(i)

      x,y,z,ax,y,z,a, (3) holds if and only if (3.3) holds.

    2. (ii)(ii)

      x,y,a,zx,y,a,z or x,a,y,zx,a,y,z or a,x,y,za,x,y,z respectively, (3) holds if and only if (23) holds.

    3. (iii)(iii)

      x,y,a,bx,y,a,b or x,a,y,bx,a,y,b or a,x,y,ba,x,y,b respectively, (3) holds if and only if (24) holds.

    4. (iv)(iv)

      x,a,b,yx,a,b,y or a,x,b,ya,x,b,y or a,b,x,ya,b,x,y respectively, (3) holds if and only if (25) holds.

    5. (v)(v)

      x,a,b,cx,a,b,c or a,x,b,ca,x,b,c or a,b,x,y,ca,b,x,y,c respectively, (3) holds if and only if (26) holds.

    6. (vi)(vi)

      a,b,c,xa,b,c,x, (3) holds if and only if (27) holds.

For the Eq. (4), we discuss it for the following cases: for all x1,x2,y1,y2𝔤𝔥x_{1},x_{2},y_{1},y_{2}\in\mathfrak{g}\oplus\mathfrak{h},

  1. (I)(I)

    when all of the four elements x1,x2,y1,y2x_{1},x_{2},y_{1},y_{2} belong to 𝔤\mathfrak{g}, (4) holds if and only if (28) holds.

  2. (II)(II)

    when x1,x2,y1,y2x_{1},x_{2},y_{1},y_{2} equal to:

    1. (i)(i)

      x,y,z,ax,y,z,a or x,y,a,zx,y,a,z, (4) holds if and only if (29) holds.

    2. (ii)(ii)

      x,a,y,zx,a,y,z or a,x,y,za,x,y,z respectively, (4) holds if and only if (30) holds.

    3. (iii)(iii)

      x,y,a,bx,y,a,b, (4) holds if and only if (31) holds.

    4. (iv)(iv)

      x,a,y,bx,a,y,b or a,x,y,ba,x,y,b or x,a,b,yx,a,b,y or a,x,b,ya,x,b,y respectively, (4) holds if and only if (32) holds.

    5. (v)(v)

      a,b,x,ya,b,x,y, (4) holds if and only if (33) holds.

    6. (vi)(vi)

      a,b,c,xa,b,c,x or a,b,x,ca,b,x,c respectively, (4) holds if and only if (34) holds.

    7. (vii)(vii)

      a,x,b,ca,x,b,c or x,a,b,cx,a,b,c respectively, (4) holds if and only if (35) holds.

For the Eq. (5), we discuss it for the following cases: for all x1,x2,y1,y2,y3𝔤𝔥x_{1},x_{2},y_{1},y_{2},y_{3}\in\mathfrak{g}\oplus\mathfrak{h},

  1. (I)(I)

    when all of the five elements x1,x2,y1,y2,y3x_{1},x_{2},y_{1},y_{2},y_{3} belong to 𝔤\mathfrak{g}, (5) holds if and only if (3.3) holds.

  2. (II)(II)

    when x1,x2,y1,y2,y3x_{1},x_{2},y_{1},y_{2},y_{3} equal to:

    1. (i)(i)

      x,y,z,w,ax,y,z,w,a, (5) holds if and only if (3.3) holds.

    2. (ii)(ii)

      x,y,z,a,wx,y,z,a,w or x,y,a,z,wx,y,a,z,w respectively, (5) holds if and only if (3.3) holds.

    3. (iii)(iii)

      x,a,y,z,wx,a,y,z,w or a,x,y,z,wa,x,y,z,w respectively, (5) holds if and only if (38) holds.

    4. (iv)(iv)

      x,y,z,a,bx,y,z,a,b or x,y,a,y,bx,y,a,y,b, (5) holds if and only if (40) holds.

    5. (v)(v)

      x,a,y,z,bx,a,y,z,b or a,x,y,z,ba,x,y,z,b respectively, (5) holds if and only if (41) holds.

    6. (vi)(vi)

      x,y,a,b,zx,y,a,b,z, (5) holds if and only if (43) holds.

    7. (vii)(vii)

      x,a,y,b,zx,a,y,b,z or a,x,y,b,za,x,y,b,z or x,a,b,y,zx,a,b,y,z or a,x,b,y,za,x,b,y,z respectively, (4) holds if and only if (42) holds.

    8. (viii)(viii)

      a,b,x,y,za,b,x,y,z, (5) holds if and only if (44) holds.

    9. (ix)(ix)

      x,y,a,b,cx,y,a,b,c, (5) holds if and only if (45) holds.

    10. (x)(x)

      x,a,y,b,cx,a,y,b,c or a,x,y,b,ca,x,y,b,c or a,x,b,y,ca,x,b,y,c or x,a,b,y,cx,a,b,y,c respectively, (5) holds if and only if (46) holds.

    11. (xi)(xi)

      x,a,b,c,yx,a,b,c,y or a,x,b,c,ya,x,b,c,y respectively, (5) holds if and only if (48) holds.

    12. (xii)(xii)

      a,b,x,c,ya,b,x,c,y or a,b,c,x,ya,b,c,x,y respectively, (5) holds if and only if (47) holds.

    13. (xiii)(xiii)

      a,b,x,y,ca,b,x,y,c, (5) holds if and only if (49) holds.

    14. (xiv)(xiv)

      a,b,c,d,xa,b,c,d,x, (5) holds if and only if (52) holds.

    15. (xv)(xv)

      a,b,c,x,da,b,c,x,d or a,b,x,c,da,b,x,c,d respectively, (5) holds if and only if (50) holds.

    16. (xvi)(xvi)

      a,x,b,c,da,x,b,c,d or x,a,b,c,dx,a,b,c,d respectively, (5) holds if and only if (51) holds.

This completes the proof. ∎

Let :0𝔥i𝔤^p𝔤0\mathcal{E}:0\longrightarrow\mathfrak{h}\stackrel{{\scriptstyle i}}{{\longrightarrow}}\hat{\mathfrak{g}}\stackrel{{\scriptstyle p}}{{\longrightarrow}}\mathfrak{g}\longrightarrow 0 be a non-abelian extension of 𝔤\mathfrak{g} by 𝔥\mathfrak{h} with a section ss of pp. Define χs:𝔤𝔤𝔥,ωs:𝔤𝔤𝔤𝔥,μs:𝔤𝔤𝔩(𝔥),θs,Ds:𝔤𝔤𝔤𝔩(𝔥),ρs,Ts:𝔤Hom(𝔥𝔥,𝔥)\chi_{s}:\mathfrak{g}\otimes\mathfrak{g}\longrightarrow\mathfrak{h},~{}\omega_{s}:\mathfrak{g}\otimes\mathfrak{g}\otimes\mathfrak{g}\longrightarrow\mathfrak{h},~{}\mu_{s}:\mathfrak{g}\longrightarrow\mathfrak{gl}(\mathfrak{h}),~{}\theta_{s},D_{s}:\mathfrak{g}\wedge\mathfrak{g}\longrightarrow\mathfrak{gl}(\mathfrak{h}),~{}\rho_{s},T_{s}:\mathfrak{g}\longrightarrow\mathrm{Hom}(\mathfrak{h}\wedge\mathfrak{h},\mathfrak{h}) respectively by

(61) χs(x,y)=[s(x),s(y)]𝔤^s[x,y]𝔤,\chi_{s}(x,y)=[s(x),s(y)]_{\hat{\mathfrak{g}}}-s[x,y]_{\mathfrak{g}},
(62) ωs(x,y,z)={s(x),s(y),s(z)}𝔤^s{x,y,z}𝔤,\omega_{s}(x,y,z)=\{s(x),s(y),s(z)\}_{\hat{\mathfrak{g}}}-s\{x,y,z\}_{\mathfrak{g}},
(63) θs(x,y)a={a,s(x),s(y)}𝔤^,ρs(x)(a,b)={s(x),a,b}𝔤^,\theta_{s}(x,y)a=\{a,s(x),s(y)\}_{\hat{\mathfrak{g}}},~{}~{}~{}~{}\rho_{s}(x)(a,b)=\{s(x),a,b\}_{\hat{\mathfrak{g}}},
(64) Ds(x,y)a={s(x),s(y),a}𝔤^,Ts(x)(a,b)={a,b,s(x)}𝔤^D_{s}(x,y)a=\{s(x),s(y),a\}_{\hat{\mathfrak{g}}},~{}~{}~{}~{}T_{s}(x)(a,b)=\{a,b,s(x)\}_{\hat{\mathfrak{g}}}

for any x,y,z𝔤,a,b𝔥x,y,z\in\mathfrak{g},a,b\in\mathfrak{h}.

By direct computations, we have

Proposition 3.6.

With the above notions, (χs,ωs,μs,θs,Ds,ρs,Ts)(\chi_{s},\omega_{s},\mu_{s},\theta_{s},D_{s},\rho_{s},T_{s}) is a non-abelian (2,3)-cocycle on 𝔤\mathfrak{g} with values in 𝔥\mathfrak{h}. We call it the non-abelian (2,3)-cocycle corresponding to the extension \mathcal{E} induced by ss. Naturally, (𝔤𝔥,[,]χs,{,,}ωs)(\mathfrak{g}\oplus\mathfrak{h},[\ ,\ ]_{\chi_{s}},\{\ ,\ ,\ \}_{\omega_{s}}) is a Lie-Yamaguti algebra. Denote this Lie-Yamaguti algebra simply by 𝔤(χs,ωs)𝔥\mathfrak{g}\oplus_{(\chi_{s},\omega_{s})}\mathfrak{h}.

In the following, we denote (χs,ωs,μs,θs,Ds,ρs,Ts)(\chi_{s},\omega_{s},\mu_{s},\theta_{s},D_{s},\rho_{s},T_{s}) by (χ,ω,μ,θ,D,ρ,T)(\chi,\omega,\mu,\theta,D,\rho,T) without ambiguity.

Lemma 3.7.

Let (χi,ωi,μi,θi,Di,ρi,Ti)(\chi_{i},\omega_{i},\mu_{i},\theta_{i},D_{i},\rho_{i},T_{i}) be the non-abelian (2,3)-cocycle corresponding to the extension \mathcal{E} induced by sis_{i} (i=1,2). Then (χ1,ω1,μ1,θ1,D1,ρ1,T1)(\chi_{1},\omega_{1},\mu_{1},\theta_{1},D_{1},\rho_{1},T_{1}) and (χ2,ω2,μ2,θ2,D2,ρ2,T2)(\chi_{2},\omega_{2},\mu_{2},\theta_{2},D_{2},\rho_{2},T_{2}) are equivalent, that is, the equivalent classes of non-abelian (2,3)-cocycles corresponding to a non-abelian extension induced by a section are independent on the choice of sections.

Proof.

Let 𝔤^\hat{\mathfrak{g}} be a non-abelian extension of 𝔤\mathfrak{g} by 𝔥\mathfrak{h}. Assume that s1s_{1} and s2s_{2} are two different sections of pp, (χ1,ω1,μ1,θ1,D1,ρ1,T1)(\chi_{1},\omega_{1},\mu_{1},\theta_{1},D_{1},\rho_{1},T_{1}) and (χ2,ω2,μ2,θ2,D2,ρ2,T2)(\chi_{2},\omega_{2},\mu_{2},\theta_{2},D_{2},\rho_{2},T_{2}) are the corresponding non-abelian (2,3)-cocycles. Define a linear map φ:𝔤𝔥\varphi:\mathfrak{g}\longrightarrow\mathfrak{h} by φ(x)=s2(x)s1(x)\varphi(x)=s_{2}(x)-s_{1}(x). Since pφ(x)=ps2(x)ps1(x)=0p\varphi(x)=ps_{2}(x)-ps_{1}(x)=0, φ\varphi is well defined. Thanks to Eqs. (62)-(64), we get

w1(x,y,z)={s1(x),s1(y),s1(z)}𝔤^s1{x,y,z}𝔤\displaystyle w_{1}(x,y,z)=\{s_{1}(x),s_{1}(y),s_{1}(z)\}_{\hat{\mathfrak{g}}}-s_{1}\{x,y,z\}_{\mathfrak{g}}
=\displaystyle= {s2(x)φ(x),s2(y)φ(y),s2(z)φ(z)}𝔤^(s2{x,y,z}𝔤φ({x,y,z}𝔤)\displaystyle\{s_{2}(x)-\varphi(x),s_{2}(y)-\varphi(y),s_{2}(z)-\varphi(z)\}_{\hat{\mathfrak{g}}}-(s_{2}\{x,y,z\}_{\mathfrak{g}}-\varphi(\{x,y,z\}_{\mathfrak{g}})
=\displaystyle= {s2(x),s2(y),s2(z)}𝔤^{s2(x),φ(y),s2(z)}𝔤^{s2(x),s2(y),φ(z)}𝔤^+{s2(x),φ(y),φ(z)}𝔤^\displaystyle\{s_{2}(x),s_{2}(y),s_{2}(z)\}_{\hat{\mathfrak{g}}}-\{s_{2}(x),\varphi(y),s_{2}(z)\}_{\hat{\mathfrak{g}}}-\{s_{2}(x),s_{2}(y),\varphi(z)\}_{\hat{\mathfrak{g}}}+\{s_{2}(x),\varphi(y),\varphi(z)\}_{\hat{\mathfrak{g}}}
{φ(x),s2(y),s2(z)}𝔤^+{φ(x),φ(y),s2(z)}𝔤^+{φ(x),s2(y),φ(z)}𝔤^{φ(x),φ(y),φ(z)}𝔤^\displaystyle-\{\varphi(x),s_{2}(y),s_{2}(z)\}_{\hat{\mathfrak{g}}}+\{\varphi(x),\varphi(y),s_{2}(z)\}_{\hat{\mathfrak{g}}}+\{\varphi(x),s_{2}(y),\varphi(z)\}_{\hat{\mathfrak{g}}}-\{\varphi(x),\varphi(y),\varphi(z)\}_{\hat{\mathfrak{g}}}
s2{x,y,z}𝔤+φ{x,y,z}𝔤\displaystyle-s_{2}\{x,y,z\}_{\mathfrak{g}}+\varphi\{x,y,z\}_{\mathfrak{g}}
=\displaystyle= w2(x,y,z)+θ2(x,z)φ(y)D2(x,y)φ(z)+ρ2(x)(φ(y),φ(z))θ2(y,z)φ(x)+T2(z)(φ(x),φ(y))\displaystyle w_{2}(x,y,z)+\theta_{2}(x,z)\varphi(y)-D_{2}(x,y)\varphi(z)+\rho_{2}(x)(\varphi(y),\varphi(z))-\theta_{2}(y,z)\varphi(x)+T_{2}(z)(\varphi(x),\varphi(y))
ρ2(y)(φ(x),φ(z)){φ(x),φ(y),φ(z)}𝔤^+φ{x,y,z}𝔤,\displaystyle-\rho_{2}(y)(\varphi(x),\varphi(z))-\{\varphi(x),\varphi(y),\varphi(z)\}_{\hat{\mathfrak{g}}}+\varphi\{x,y,z\}_{\mathfrak{g}},

which yields that Eq. (3.4) holds. Similarly, Eqs. (53) and (55)-(58) hold. This finishes the proof. ∎

According to Proposition 3.5 and Proposition 3.6, given a non-abelian extension :0𝔥i𝔤^p𝔤0\mathcal{E}:0\longrightarrow\mathfrak{h}\stackrel{{\scriptstyle i}}{{\longrightarrow}}\hat{\mathfrak{g}}\stackrel{{\scriptstyle p}}{{\longrightarrow}}\mathfrak{g}\longrightarrow 0 of 𝔤\mathfrak{g} by 𝔥\mathfrak{h} with a section ss of pp, we have a non-abelian (2,3)-cocycle (χs,ωs,μs,θs,Ds,ρs,Ts)(\chi_{s},\omega_{s},\mu_{s},\theta_{s},D_{s},\rho_{s},T_{s}) and a Lie-Yamaguti algebra 𝔤(χs,ωs)𝔥\mathfrak{g}\oplus_{(\chi_{s},\omega_{s})}\mathfrak{h}. It follows that (χs,ωs):0𝔥i𝔤(χs,ωs)𝔥π𝔤0\mathcal{E}_{(\chi_{s},\omega_{s})}:0\longrightarrow\mathfrak{h}\stackrel{{\scriptstyle i}}{{\longrightarrow}}\mathfrak{g}\oplus_{(\chi_{s},\omega_{s})}\mathfrak{h}\stackrel{{\scriptstyle\pi}}{{\longrightarrow}}\mathfrak{g}\longrightarrow 0 is a non-abelian extension of 𝔤\mathfrak{g} by 𝔥\mathfrak{h}. Since any element w^𝔤^\hat{w}\in\hat{\mathfrak{g}} can be written as w^=a+s(x)\hat{w}=a+s(x) with a𝔥,x𝔤a\in\mathfrak{h},x\in\mathfrak{g}, define a linear map

f:𝔤^𝔤(χs,ωs)𝔥,f(w^)=f(a+s(x))=a+x.f:\hat{\mathfrak{g}}\longrightarrow\mathfrak{g}\oplus_{(\chi_{s},\omega_{s})}\mathfrak{h},~{}f(\hat{w})=f(a+s(x))=a+x.

It is easy to check that ff is an isomorphism of Lie-Yamaguti algebras such that the following commutative diagram holds:

:0\textstyle{\mathcal{E}:0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝔥\textstyle{\mathfrak{h}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}i\scriptstyle{i}𝔤^\textstyle{\hat{\mathfrak{g}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}p\scriptstyle{p}𝔤\textstyle{\mathfrak{g}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}(χs,ωs):0\textstyle{\mathcal{E}_{(\chi_{s},\omega_{s})}:0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝔥\textstyle{\mathfrak{h}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}i\scriptstyle{i}𝔤(χs,ωs)𝔥\textstyle{\mathfrak{g}\oplus_{(\chi_{s},\omega_{s})}\mathfrak{h}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}π\scriptstyle{\pi}𝔤\textstyle{\mathfrak{g}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0,\textstyle{0,}

which indicates that the non-abelian extensions \mathcal{E} and (χs,ωs)\mathcal{E}_{(\chi_{s},\omega_{s})} of 𝔤\mathfrak{g} by 𝔥\mathfrak{h} are equivalent. On the other hand, if (χ,ω,μ,θ,D,ρ,T)(\chi,\omega,\mu,\theta,D,\rho,T) is a non-abelian (2,3)-cocycle on 𝔤\mathfrak{g} with values in 𝔥\mathfrak{h}, there is a Lie-Yamaguti algebra 𝔤(χ,ω)𝔥\mathfrak{g}\oplus_{(\chi,\omega)}\mathfrak{h}, which yields the following non-abelian extension of 𝔤\mathfrak{g} by 𝔥\mathfrak{h}:

(χ,ω):0𝔥i𝔤(χ,ω)𝔥π𝔤0,\mathcal{E}_{(\chi,\omega)}:0\longrightarrow\mathfrak{h}\stackrel{{\scriptstyle i}}{{\longrightarrow}}\mathfrak{g}\oplus_{(\chi,\omega)}\mathfrak{h}\stackrel{{\scriptstyle\pi}}{{\longrightarrow}}\mathfrak{g}\longrightarrow 0,

where ii is the inclusion and π\pi is the projection.

In the following, we focus on the relationship between non-abelian (2,3)-cocycles and extensions.

Proposition 3.8.

Let 𝔤\mathfrak{g} and 𝔥\mathfrak{h} be two Lie-Yamaguti algebras. Then the equivalent classes of non-abelian extensions of 𝔤\mathfrak{g} by 𝔥\mathfrak{h} are classified by the non-abelian cohomology group, that is, nab(𝔤,𝔥)Hnab(2,3)(𝔤,𝔥)\mathcal{E}_{nab}(\mathfrak{g},\mathfrak{h})\simeq H_{nab}^{(2,3)}(\mathfrak{g},\mathfrak{h}).

Proof.

Define a linear map

Θ:nab(𝔤,𝔥)Hnab(2,3)(𝔤,𝔥),\Theta:\mathcal{E}_{nab}(\mathfrak{g},\mathfrak{h})\rightarrow H_{nab}^{(2,3)}(\mathfrak{g},\mathfrak{h}),~{}

where Θ\Theta assigns an equivalent class of non-abelian extensions to the class of corresponding non-abelian (2,3)-cocycles. First, we check that Θ\Theta is well-defined. Assume that 1\mathcal{E}_{1} and 2\mathcal{E}_{2} are two equivalent non-abelian extensions of 𝔤\mathfrak{g} by 𝔥\mathfrak{h} via the map ff, that is, the commutative diagram (15) holds. Let s1:𝔤𝔤^1s_{1}:\mathfrak{g}\rightarrow\hat{\mathfrak{g}}_{1} be a section of p1p_{1}. Then p2fs1=p1s1=I𝔤p_{2}fs_{1}=p_{1}s_{1}=I_{\mathfrak{g}}, which follows that s2=fs1s_{2}=fs_{1} is a section of p2p_{2}. Let (χ1,ω1,μ1,θ1,D1,ρ1,T1)(\chi_{1},\omega_{1},\mu_{1},\theta_{1},D_{1},\rho_{1},T_{1}) and (χ2,ω2,μ2,θ2,D2,ρ2,T2)(\chi_{2},\omega_{2},\mu_{2},\theta_{2},D_{2},\rho_{2},T_{2}) be two non-abelian (2,3)-cocycles induced by the sections s1,s2s_{1},s_{2} respectively. Then we have,

θ1(x,y)a\displaystyle\theta_{1}(x,y)a =\displaystyle= f(θ1(x,y)a)=f({a,s1(x),s1(y)}𝔤^1)\displaystyle f(\theta_{1}(x,y)a)=f(\{a,s_{1}(x),s_{1}(y)\}_{\hat{\mathfrak{g}}_{1}})
=\displaystyle= {f(a),fs1(x),fs1(y)}𝔤^2\displaystyle\{f(a),fs_{1}(x),fs_{1}(y)\}_{\hat{\mathfrak{g}}_{2}}
=\displaystyle= {a,s2(x),s2(y)}𝔤^2\displaystyle\{a,s_{2}(x),s_{2}(y)\}_{\hat{\mathfrak{g}}_{2}}
=\displaystyle= θ2(x,y)a.\displaystyle\theta_{2}(x,y)a.

By the same token, we have

D1(x,y)a=D2(x,y)a,χ1(x,y)=χ2(x,y),ω1(x,y,z)=ω2(x,y,z),D_{1}(x,y)a=D_{2}(x,y)a,\chi_{1}(x,y)=\chi_{2}(x,y),\omega_{1}(x,y,z)=\omega_{2}(x,y,z),
ρ1(x)(a,b)=ρ2(x)(a,b),T1(x)(a,b)=T2(x)(a,b).\rho_{1}(x)(a,b)=\rho_{2}(x)(a,b),T_{1}(x)(a,b)=T_{2}(x)(a,b).

Thus, (χ1,ω1,μ1,θ1,D1,ρ1,T1)=(χ2,ω2,μ2,θ2,D2,ρ2,T2)(\chi_{1},\omega_{1},\mu_{1},\theta_{1},D_{1},\rho_{1},T_{1})=(\chi_{2},\omega_{2},\mu_{2},\theta_{2},D_{2},\rho_{2},T_{2}), which means that Θ\Theta is well-defined.

Next, we verify that Θ\Theta is injective. Indeed, suppose that Θ([1])=[(χ1,ω1)]\Theta([\mathcal{E}_{1}])=[(\chi_{1},\omega_{1})] and Θ([2])=[(χ2,ω2)]\Theta([\mathcal{E}_{2}])=[(\chi_{2},\omega_{2})]. If the equivalent classes [(χ1,ω1)]=[(χ2,ω2)][(\chi_{1},\omega_{1})]=[(\chi_{2},\omega_{2})], we obtain that the non-abelian (2,3)-cocycles (χ1,ω1,μ1,θ1,D1,ρ1,T1)(\chi_{1},\omega_{1},\mu_{1},\theta_{1},D_{1},\rho_{1},T_{1}) and (χ2,ω2,μ2,θ2,D2,ρ2,T2)(\chi_{2},\omega_{2},\mu_{2},\theta_{2},D_{2},\rho_{2},T_{2}) are equivalent via the linear map φ:𝔤𝔥\varphi:\mathfrak{g}\longrightarrow\mathfrak{h}, satisfying Eqs.  (53)-(58). Define a linear map f:𝔤(χ1,ω1)𝔥𝔤(χ2,ω2)𝔥f:\mathfrak{g}\oplus_{(\chi_{1},\omega_{1})}\mathfrak{h}\longrightarrow\mathfrak{g}\oplus_{(\chi_{2},\omega_{2})}\mathfrak{h} by

f(x+a)=xφ(x)+a,x𝔤,a𝔥.f(x+a)=x-\varphi(x)+a,~{}~{}\forall~{}x\in\mathfrak{g},a\in\mathfrak{h}.

According to Eq.  (3), for all x,y,z𝔤,a,b,c𝔥x,y,z\in\mathfrak{g},a,b,c\in\mathfrak{h}, we get

f({x+a,y+b,z+c}ω1)\displaystyle f(\{x+a,y+b,z+c\}_{\omega_{1}})
=\displaystyle= f({x,y,z}𝔤+ω1(x,y,z)+D1(x,y)c+θ1(y,z)aθ1(x,z)b\displaystyle f(\{x,y,z\}_{\mathfrak{g}}+\omega_{1}(x,y,z)+D_{1}(x,y)c+\theta_{1}(y,z)a-\theta_{1}(x,z)b
+T1(z)(a,b)+ρ1(x)(b,c)ρ1(y)(a,c)+{a,b,c}𝔥)\displaystyle+T_{1}(z)(a,b)+\rho_{1}(x)(b,c)-\rho_{1}(y)(a,c)+\{a,b,c\}_{\mathfrak{h}})
=\displaystyle= {x,y,z}𝔤φ({x,y,z}𝔤)+ω1(x,y,z)+D1(x,y)c+θ1(y,z)aθ1(x,z)b\displaystyle\{x,y,z\}_{\mathfrak{g}}-\varphi(\{x,y,z\}_{\mathfrak{g}})+\omega_{1}(x,y,z)+D_{1}(x,y)c+\theta_{1}(y,z)a-\theta_{1}(x,z)b
+T1(z)(a,b)+ρ1(x)(b,c)ρ1(y)(a,c)+{a,b,c}𝔥,\displaystyle+T_{1}(z)(a,b)+\rho_{1}(x)(b,c)-\rho_{1}(y)(a,c)+\{a,b,c\}_{\mathfrak{h}},

and

{f(x+a),f(y+b),f(z+c)}ω2\displaystyle\{f(x+a),f(y+b),f(z+c)\}_{\omega_{2}}
=\displaystyle= {xφ(x)+a,yφ(y)+b,zφ(z)+c}ω2\displaystyle\{x-\varphi(x)+a,y-\varphi(y)+b,z-\varphi(z)+c\}_{\omega_{2}}
=\displaystyle= {x,y,z}𝔤+ω2(x,y,z)+D2(x,y)(cφ(z))+θ2(y,z)(aφ(x))θ2(x,z)(bφ(y))\displaystyle\{x,y,z\}_{\mathfrak{g}}+\omega_{2}(x,y,z)+D_{2}(x,y)(c-\varphi(z))+\theta_{2}(y,z)(a-\varphi(x))-\theta_{2}(x,z)(b-\varphi(y))
+T2(z)(aφ(x),bφ(y))+ρ2(x)(bφ(y),cφ(z))ρ2(y)(aφ(x),cφ(z))\displaystyle+T_{2}(z)(a-\varphi(x),b-\varphi(y))+\rho_{2}(x)(b-\varphi(y),c-\varphi(z))-\rho_{2}(y)(a-\varphi(x),c-\varphi(z))
+{aφ(x),bφ(y),cφ(z)}𝔥)\displaystyle+\{a-\varphi(x),b-\varphi(y),c-\varphi(z)\}_{\mathfrak{h}})
=\displaystyle= {x,y,z}𝔤+ω2(x,y,z)+D2(x,y)(cφ(z))+θ2(y,z)(aφ(x))θ2(x,z)(bφ(y))\displaystyle\{x,y,z\}_{\mathfrak{g}}+\omega_{2}(x,y,z)+D_{2}(x,y)(c-\varphi(z))+\theta_{2}(y,z)(a-\varphi(x))-\theta_{2}(x,z)(b-\varphi(y))
+T2(z)(φ(x),φ(y))T2(z)(a,φ(y))T2(z)(φ(x),b)+T2(z)(a,b)\displaystyle+T_{2}(z)(\varphi(x),\varphi(y))-T_{2}(z)(a,\varphi(y))-T_{2}(z)(\varphi(x),b)+T_{2}(z)(a,b)
+ρ2(x)(φ(y),φ(z))ρ2(x)(φ(y),c)ρ2(x)(b,φ(z))+ρ2(x)(b,c)ρ2(y)(φ(x),φ(z))\displaystyle+\rho_{2}(x)(\varphi(y),\varphi(z))-\rho_{2}(x)(\varphi(y),c)-\rho_{2}(x)(b,\varphi(z))+\rho_{2}(x)(b,c)-\rho_{2}(y)(\varphi(x),\varphi(z))
+ρ2(y)(φ(x),c)+ρ2(y)(a,φ(z))ρ2(y)(a,c){φ(x),φ(y),φ(z)}𝔥+{φ(x),φ(y),c}𝔥\displaystyle+\rho_{2}(y)(\varphi(x),c)+\rho_{2}(y)(a,\varphi(z))-\rho_{2}(y)(a,c)-\{\varphi(x),\varphi(y),\varphi(z)\}_{\mathfrak{h}}+\{\varphi(x),\varphi(y),c\}_{\mathfrak{h}}
+{φ(x),b,φ(z)}𝔥{φ(x),b,c}𝔥+{a,φ(y),φ(z)}𝔥{a,b,φ(z)}𝔥{a,φ(y),c}𝔥+{a,b,c}𝔥.\displaystyle+\{\varphi(x),b,\varphi(z)\}_{\mathfrak{h}}-\{\varphi(x),b,c\}_{\mathfrak{h}}+\{a,\varphi(y),\varphi(z)\}_{\mathfrak{h}}-\{a,b,\varphi(z)\}_{\mathfrak{h}}-\{a,\varphi(y),c\}_{\mathfrak{h}}+\{a,b,c\}_{\mathfrak{h}}.

In view of Eqs. (53)-(58), we have f({x+a,y+b,z+c}ω1)={f(x+a),f(y+b),f(z+c)}ω2f(\{x+a,y+b,z+c\}_{\omega_{1}})=\{f(x+a),f(y+b),f(z+c)\}_{\omega_{2}}. Similarly, f([x+a,y+b]χ1)=[f(x+a),f(y+b)]χ2f([x+a,y+b]_{\chi_{1}})=[f(x+a),f(y+b)]_{\chi_{2}}. Hence, ff is a homomorphism of Lie-Yamaguti algebras. Clearly, the following commutative diagram holds:

(65) (χ1,ω1):0\textstyle{\mathcal{E}_{(\chi_{1},\omega_{1})}:0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝔥\textstyle{\mathfrak{h}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}i\scriptstyle{i}𝔤(χ1,ω1)𝔥\textstyle{\mathfrak{g}\oplus_{(\chi_{1},\omega_{1})}\mathfrak{h}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}π\scriptstyle{\pi}𝔤\textstyle{\mathfrak{g}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}(χ2,ω2):0\textstyle{\mathcal{E}_{(\chi_{2},\omega_{2})}:0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝔥\textstyle{\mathfrak{h}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}i\scriptstyle{i}𝔤(χ2,ω2)𝔥\textstyle{\mathfrak{g}\oplus_{(\chi_{2},\omega_{2})}\mathfrak{h}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}π\scriptstyle{\pi}𝔤\textstyle{\mathfrak{g}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0.\textstyle{0.}

Thus (χ1,ω1)\mathcal{E}_{(\chi_{1},\omega_{1})} and (χ2,ω2)\mathcal{E}_{(\chi_{2},\omega_{2})} are equivalent non-abelian extensions of 𝔤\mathfrak{g} by 𝔥\mathfrak{h}, which means that [(χ1,ω1)]=[(χ2,ω2)][\mathcal{E}_{(\chi_{1},\omega_{1})}]=[\mathcal{E}_{(\chi_{2},\omega_{2})}]. Thus, Θ\Theta is injective.

Finally, we claim that Θ\Theta is surjective. For any equivalent class of non-abelian (2,3)-cocycles [(χ,ω)][(\chi,\omega)], by Proposition 3.5, there is a non-abelian extension of 𝔤\mathfrak{g} by 𝔥\mathfrak{h}:

(χ,ω):0𝔥i𝔤(χ,ω)𝔥π𝔤0.\mathcal{E}_{(\chi,\omega)}:0\longrightarrow\mathfrak{h}\stackrel{{\scriptstyle i}}{{\longrightarrow}}\mathfrak{g}\oplus_{(\chi,\omega)}\mathfrak{h}\stackrel{{\scriptstyle\pi}}{{\longrightarrow}}\mathfrak{g}\longrightarrow 0.

Therefore, Θ([(χ,ω)])=[(χ,ω)]\Theta([\mathcal{E}_{(\chi,\omega)}])=[(\chi,\omega)], which follows that Θ\Theta is surjective. In all, Θ\Theta is bijective. This finishes the proof.

4. Non-abelian extensions in terms of Maurer-Cartan elements

In this section, we classify the non-abelian extensions using Maurer-Cartan elements. We start with recalling the Maurer-Cartan elements from [12].

Let (L=iLi,[,],d)(L=\oplus_{i}L_{i},[\ ,\ ],d) be a differential graded Lie algebra. The set MC(L)\mathrm{MC}(L) of Maurer-Cartan elements of (L,[,],d)(L,[\ ,\ ],d) is defined by

MC(L)={ηL1|dη+12[η,η]=0}.\mathrm{MC}(L)=\{\eta\in L_{1}|d\eta+\frac{1}{2}[\eta,\eta]=0\}.

Moreover, η0,η1MC(L)\eta_{0},\eta_{1}\in\mathrm{MC}(L) are called gauge equivalent if and only if there exists an element φL0\varphi\in L_{0} such that

η1=eadφη0eadφ1adφdφ.\eta_{1}=e^{ad_{\varphi}}\eta_{0}-\frac{e^{ad_{\varphi}}-1}{ad_{\varphi}}d\varphi.

Let 𝔤\mathfrak{g} be a vector space. Denote by

(𝔤,𝔤)=Hom(2𝔤𝔤,𝔤)×Hom(2𝔤2𝔤,𝔤)\mathbb{C}(\mathfrak{g},\mathfrak{g})=\mathrm{Hom}(\wedge^{2}\mathfrak{g}\otimes\mathfrak{g},\mathfrak{g})\times\mathrm{Hom}(\wedge^{2}\mathfrak{g}\otimes\wedge^{2}\mathfrak{g},\mathfrak{g})

and

(66) 𝒞n(𝔤,𝔤)={Hom(𝔤,𝔤),n=0,Hom(2𝔤2𝔤n,𝔤)×Hom(2𝔤2𝔤n𝔤,𝔤),n1,\mathcal{C}^{n}(\mathfrak{g},\mathfrak{g})=\left\{\begin{aligned} &\mathrm{Hom}(\mathfrak{g},\mathfrak{g}),&n=0,\\ &\mathrm{Hom}(\underbrace{\wedge^{2}\mathfrak{g}\otimes\cdot\cdot\cdot\otimes\wedge^{2}\mathfrak{g}}_{n},\mathfrak{g})\times\mathrm{Hom}(\underbrace{\wedge^{2}\mathfrak{g}\otimes\cdot\cdot\cdot\otimes\wedge^{2}\mathfrak{g}}_{n}\otimes\mathfrak{g},\mathfrak{g}),&n\geq 1,\end{aligned}\right.

Then (𝔤,𝔤)=𝒞(𝔤,𝔤)(𝔤,𝔤)=n0𝒞n(𝔤,𝔤)(𝔤,𝔤)\mathcal{L}^{*}(\mathfrak{g},\mathfrak{g})=\mathcal{C}^{*}(\mathfrak{g},\mathfrak{g})\oplus\mathbb{C}(\mathfrak{g},\mathfrak{g})=\oplus_{n\geq 0}\mathcal{C}^{n}(\mathfrak{g},\mathfrak{g})\oplus\mathbb{C}(\mathfrak{g},\mathfrak{g}), where the degree of elements in 𝒞n(𝔤,𝔤)\mathcal{C}^{n}(\mathfrak{g},\mathfrak{g}) is nn, the degree of elements in (𝔤,𝔤)\mathbb{C}(\mathfrak{g},\mathfrak{g}) is 11 and fHom(2n+1𝔤,𝔤)f\in\mathrm{Hom}(\otimes^{2n+1}\mathfrak{g},\mathfrak{g}) satisfying

(67) f(x1,,x2i1,x2i,,xn)=0,ifx2i1=x2i,i=1,2,,[n2].\displaystyle f(x_{1},\cdot\cdot\cdot,x_{2i-1},x_{2i},\cdot\cdot\cdot,x_{n})=0,~{}~{}\hbox{if}~{}x_{2i-1}=x_{2i},~{}\forall~{}i=1,2,\cdot\cdot\cdot,[\frac{n}{2}].

For all P=(PI,PII)𝒞p(𝔤,𝔤),Q=(QI,QII)𝒞q(𝔤,𝔤)(p,q1)P=(P_{I},P_{II})\in\mathcal{C}^{p}(\mathfrak{g},\mathfrak{g}),Q=(Q_{I},Q_{II})\in\mathcal{C}^{q}(\mathfrak{g},\mathfrak{g})~{}(p,q\geq 1), denote by

PQ=((PQ)I,(PQ)II)𝒞p+q(𝔤,𝔤).P\circ Q=((P\circ Q)_{I},(P\circ Q)_{II})\in\mathcal{C}^{p+q}(\mathfrak{g},\mathfrak{g}).

The definition of PQP\circ Q is given in [31]. In detail,

(PQ)I(X1,,Xp+q)\displaystyle(P\circ Q)_{I}(X_{1},\cdot\cdot\cdot,X_{p+q})
=\displaystyle= σsh(p,q),σ(p+q)=p+q(1)pqsgn(σ)PII(Xσ(1),,Xσ(p),QI(Xσ(p+1),,Xσ(p+q))\displaystyle\sum_{\begin{subarray}{c}\sigma\in sh(p,q),\\ \sigma(p+q)=p+q\end{subarray}}(-1)^{pq}sgn(\sigma)P_{II}(X_{\sigma(1)},\cdot\cdot\cdot,X_{\sigma(p)},Q_{I}(X_{\sigma(p+1)},\cdot\cdot\cdot,X_{\sigma(p+q)})
+k=1,σsh(k1,q)p(1)q(k1)sgn(σ)PI(Xσ(1),,Xσ(k1),xq+kQII(Xσ(k),,Xσ(k+q1),yk+q),Xk+q+1,,Xp+q)\displaystyle+\sum_{\begin{subarray}{c}k=1,\\ \sigma\in sh(k-1,q)\end{subarray}}^{p}(-1)^{q(k-1)}sgn(\sigma)P_{I}(X_{\sigma(1)},\cdot\cdot\cdot,X_{\sigma(k-1)},x_{q+k}\wedge Q_{II}(X_{\sigma(k)},\cdot\cdot\cdot,X_{\sigma(k+q-1)},y_{k+q}),X_{k+q+1},\cdot\cdot\cdot,X_{p+q})
+k=1,σsh(k1,q)p(1)q(k1)sgn(σ)PI(Xσ(1),,Xσ(k1),QII(Xσ(k),,Xσ(k+q1),xk+q)yq+k,Xk+q+1,,Xp+q),\displaystyle+\sum_{\begin{subarray}{c}k=1,\\ \sigma\in sh(k-1,q)\end{subarray}}^{p}(-1)^{q(k-1)}sgn(\sigma)P_{I}(X_{\sigma(1)},\cdot\cdot\cdot,X_{\sigma(k-1)},Q_{II}(X_{\sigma(k)},\cdot\cdot\cdot,X_{\sigma(k+q-1)},x_{k+q})\wedge y_{q+k},X_{k+q+1},\cdot\cdot\cdot,X_{p+q}),

and

(PQ)II(X1,,Xp+q,z)\displaystyle(P\circ Q)_{II}(X_{1},\cdot\cdot\cdot,X_{p+q},z)
=\displaystyle= σsh(p,q)(1)pqsgn(σ)PII(Xσ(1),,Xσ(p),QII(Xσ(p+1),,Xσ(p+q),z)\displaystyle\sum_{\sigma\in sh(p,q)}(-1)^{pq}sgn(\sigma)P_{II}(X_{\sigma(1)},\cdot\cdot\cdot,X_{\sigma(p)},Q_{II}(X_{\sigma(p+1)},\cdot\cdot\cdot,X_{\sigma(p+q)},z)
+k=1,σsh(k1,q)p(1)q(k1)sgn(σ)PII(Xσ(1),,Xσ(k1),xq+kQII(Xσ(k),,Xσ(k+q1),yk+q),Xk+q+1,,Xp+q,z)\displaystyle+\sum_{\begin{subarray}{c}k=1,\\ \sigma\in sh(k-1,q)\end{subarray}}^{p}(-1)^{q(k-1)}sgn(\sigma)P_{II}(X_{\sigma(1)},\cdot\cdot\cdot,X_{\sigma(k-1)},x_{q+k}\wedge Q_{II}(X_{\sigma(k)},\cdot\cdot\cdot,X_{\sigma(k+q-1)},y_{k+q}),X_{k+q+1},\cdot\cdot\cdot,X_{p+q},z)
+k=1,σsh(k1,q)p(1)q(k1)sgn(σ)PII(Xσ(1),,Xσ(k1),QII(Xσ(k),,Xσ(k+q1),xk+q)yq+k,Xk+q+1,,Xp+q,z).\displaystyle+\sum_{\begin{subarray}{c}k=1,\\ \sigma\in sh(k-1,q)\end{subarray}}^{p}(-1)^{q(k-1)}sgn(\sigma)P_{II}(X_{\sigma(1)},\cdot\cdot\cdot,X_{\sigma(k-1)},Q_{II}(X_{\sigma(k)},\cdot\cdot\cdot,X_{\sigma(k+q-1)},x_{k+q})\wedge y_{q+k},X_{k+q+1},\cdot\cdot\cdot,X_{p+q},z).

In particular, for f𝒞0(𝔤,𝔤)=Hom(𝔤,𝔤)f\in\mathcal{C}^{0}(\mathfrak{g},\mathfrak{g})=\mathrm{Hom}(\mathfrak{g},\mathfrak{g}) and P=(PI,PII)𝒞p(𝔤,𝔤)P=(P_{I},P_{II})\in\mathcal{C}^{p}(\mathfrak{g},\mathfrak{g}), define

(Pf)I(X1,,Xp)=\displaystyle(P\circ f)_{I}(X_{1},\cdot\cdot\cdot,X_{p})= k=1pPI(X1,,Xk1,xkf(yk),Xk+1,,Xp)\displaystyle\sum_{k=1}^{p}P_{I}(X_{1},\cdot\cdot\cdot,X_{k-1},x_{k}\wedge f(y_{k}),X_{k+1},\cdot\cdot\cdot,X_{p})
(68) +k=1pPI(X1,,Xk1,f(xk)yk,Xk+1,,Xp),\displaystyle+\sum_{k=1}^{p}P_{I}(X_{1},\cdot\cdot\cdot,X_{k-1},f(x_{k})\wedge y_{k},X_{k+1},\cdot\cdot\cdot,X_{p}),
(69) (fP)I(X1,,Xp)=f(PI(X1,,Xp)),(f\circ P)_{I}(X_{1},\cdot\cdot\cdot,X_{p})=f(P_{I}(X_{1},\cdot\cdot\cdot,X_{p})),
(Pf)II(X1,,Xp,z)=\displaystyle(P\circ f)_{II}(X_{1},\cdot\cdot\cdot,X_{p},z)= k=1pPII(X1,,Xk1,xkf(yk),Xk+1,,Xp,z)\displaystyle\sum_{k=1}^{p}P_{II}(X_{1},\cdot\cdot\cdot,X_{k-1},x_{k}\wedge f(y_{k}),X_{k+1},\cdot\cdot\cdot,X_{p},z)
(70) +k=1pPI(X1,,Xk1,f(xk)yk,Xk+1,,Xp,z),\displaystyle+\sum_{k=1}^{p}P_{I}(X_{1},\cdot\cdot\cdot,X_{k-1},f(x_{k})\wedge y_{k},X_{k+1},\cdot\cdot\cdot,X_{p},z),
(71) (fP)II(X1,,Xp,z)=f(PII(X1,,Xp,z)).(f\circ P)_{II}(X_{1},\cdot\cdot\cdot,X_{p},z)=f(P_{II}(X_{1},\cdot\cdot\cdot,X_{p},z)).

In order to derive sufficient and necessary conditions of Lie-Yamaguti algebras in terms of Maurer-Cartan element of some graded Lie algebras, we define PQP\bullet Q as follows: for all P=(PI,PII)𝒞n(𝔤,𝔤),Q=(QI,QII)𝒞n(𝔤,𝔤)P=(P_{I},P_{II})\in\mathcal{C}^{n}(\mathfrak{g},\mathfrak{g}),~{}Q=(Q_{I},Q_{II})\in\mathcal{C}^{n}(\mathfrak{g},\mathfrak{g}),

(72) PQ={0,p,q1,((PQ)I,(PQ)II),p=q=1,P\bullet Q=\left\{\begin{aligned} &0,&p,q\neq 1,\\ &((P\bullet Q)_{I},(P\bullet Q)_{II}),&p=q=1,\end{aligned}\right.

where

(PQ)I(x1,x2,x3)\displaystyle(P\bullet Q)_{I}(x_{1},x_{2},x_{3})
=\displaystyle= 12σS3sgn(σ)PI(QI(xσ(1),xσ(2)),xσ(3))+12σS3sgn(σ)QII(xσ(1),xσ(2),xσ(3)),\displaystyle\frac{1}{2}\sum_{\sigma\in S_{3}}sgn(\sigma)P_{I}(Q_{I}(x_{\sigma(1)},x_{\sigma(2)}),x_{\sigma(3)})+\frac{1}{2}\sum_{\sigma\in S_{3}}sgn(\sigma)Q_{II}(x_{\sigma(1)},x_{\sigma(2)},x_{\sigma(3)}),
(PQ)II(x1,x2,x3,x4)=12σS3sgn(σ)PII(QI(xσ(1),xσ(2)),xσ(3),x4).\displaystyle(P\bullet Q)_{II}(x_{1},x_{2},x_{3},x_{4})=\frac{1}{2}\sum_{\sigma\in S_{3}}sgn(\sigma)P_{II}(Q_{I}(x_{\sigma(1)},x_{\sigma(2)}),x_{\sigma(3)},x_{4}).

Let 𝔤\mathfrak{g} and VV be vector spaces. For any (χ,ω),(χ,ω)𝒞1(𝔤,𝔤)(\chi,\omega),(\chi^{\prime},\omega^{\prime})\in\mathcal{C}^{1}(\mathfrak{g},\mathfrak{g}), put Π=(χ,ω),Π=(χ,ω)\Pi=(\chi,\omega),~{}\Pi^{\prime}=(\chi^{\prime},\omega^{\prime}) and Π+Π=(χ+χ,ω+ω)\Pi+\Pi^{\prime}=(\chi+\chi^{\prime},\omega+\omega^{\prime}).

Proposition 4.1.

With the above notations, ((𝔤,𝔤),[,]LY)(\mathcal{L}^{*}(\mathfrak{g},\mathfrak{g}),[\ ,\ ]_{LY}) is a graded Lie algebra, where

(73) [P,Q]LY={PQ+QP+PQ+QP,p=q=1,PQ(1)pqQP,otherwise,[P,Q]_{LY}=\left\{\begin{aligned} &P\bullet Q+Q\bullet P+P\circ Q+Q\circ P,&p=q=1,\\ &P\circ Q-(-1)^{pq}Q\circ P,&otherwise,\end{aligned}\right.

for all P𝒞p(𝔤,𝔤),Q𝒞q(𝔤,𝔤).P\in\mathcal{C}^{p}(\mathfrak{g},\mathfrak{g}),Q\in\mathcal{C}^{q}(\mathfrak{g},\mathfrak{g}). Furthermore, Π=(χ,ω)𝒞1(𝔤,𝔤)\Pi=(\chi,\omega)\in\mathcal{C}^{1}(\mathfrak{g},\mathfrak{g}) defines a Lie-Yamaguti algebra structure on 𝔤\mathfrak{g} if and only if [,]LY=0[\ ,\ ]_{LY}=0, that is, Π\Pi is a Maurer-Cartan element of the graded Lie algebra ((𝔤,𝔤),[,]LY)(\mathcal{L}^{*}(\mathfrak{g},\mathfrak{g}),[\ ,\ ]_{LY}). We write [P,Q]LY=([P,Q]I,[P,Q]II).[P,Q]_{LY}=([P,Q]_{I},[P,Q]_{II}).

Proof.

Take the same procedure of the proof of Proposition 4.1 [31], we can check that Eq. (67) holds. Clearly, Eq. (67) implies that Eq. (1) holds. For all Π=(χ,ω)𝒞1(𝔤,𝔤)\Pi=(\chi,\omega)\in\mathcal{C}^{1}(\mathfrak{g},\mathfrak{g}), [Π,Π]LY=2ΠΠ+2ΠΠ[\Pi,\Pi]_{LY}=2\Pi\circ\Pi+2\Pi\bullet\Pi and for all x1,x2,x3,x4𝔤x_{1},x_{2},x_{3},x_{4}\in\mathfrak{g}, we have

(ΠΠ)I(x1,x2,x3)=\displaystyle(\Pi\bullet\Pi)_{I}(x_{1},x_{2},x_{3})= χ(χ(x1,x2),x3)+χ(χ(x2,x3),x1)+χ(χ(x3,x1),x2)\displaystyle\chi(\chi(x_{1},x_{2}),x_{3})+\chi(\chi(x_{2},x_{3}),x_{1})+\chi(\chi(x_{3},x_{1}),x_{2})
+ω(x1,x2,x3)+ω(x2,x3,x1)+ω(x3,x1,x2),\displaystyle+\omega(x_{1},x_{2},x_{3})+\omega(x_{2},x_{3},x_{1})+\omega(x_{3},x_{1},x_{2}),

and

(ΠΠ)II(x1,x2,x3,x4)\displaystyle(\Pi\bullet\Pi)_{II}(x_{1},x_{2},x_{3},x_{4})
=\displaystyle= ω(χ(x1,x2),x3,x4)+ω(χ(x2,x3),x1,x4)+ω(χ(x3,x1),x2,x4).\displaystyle\omega(\chi(x_{1},x_{2}),x_{3},x_{4})+\omega(\chi(x_{2},x_{3}),x_{1},x_{4})+\omega(\chi(x_{3},x_{1}),x_{2},x_{4}).

Combining Theorem 3.1 [31], Π=(χ,ω)𝒞1(𝔤,𝔤)\Pi=(\chi,\omega)\in\mathcal{C}^{1}(\mathfrak{g},\mathfrak{g}) defines a Lie-Yamaguti algebra structure on 𝔤\mathfrak{g} if and only if Π\Pi is a Maurer-Cartan element of the graded Lie algebra ((𝔤,𝔤),[,]LY)(\mathcal{L}^{*}(\mathfrak{g},\mathfrak{g}),[\ ,\ ]_{LY}). ∎

By Proposition 4.1, we rewrite Theorem 3.3 [31] as follows:

Theorem 4.2.

Let (𝔤,χ𝔤,ω𝔤)(\mathfrak{g},\chi_{\mathfrak{g}},\omega_{\mathfrak{g}}) be a Lie-Yamaguti algebra. Then ((𝔤,𝔤),[,]LY,dΠ)(\mathcal{L}^{*}(\mathfrak{g},\mathfrak{g}),[\ ,\ ]_{LY},d_{\Pi}) is a differential graded Lie algebra, where dΠd_{\Pi} with Π=(χ𝔤,ω𝔤)\Pi=(\chi_{\mathfrak{g}},\omega_{\mathfrak{g}}) is given by

(74) dΠ(ν)=[Π,ν]LY,ν𝒞n1(𝔤,𝔤).d_{\Pi}(\nu)=[\Pi,\nu]_{LY},~{}~{}\forall~{}\nu\in\mathcal{C}^{n-1}(\mathfrak{g},\mathfrak{g}).

Moreover, Π+Π\Pi+\Pi^{\prime} with Π𝒞1(𝔤,𝔤)\Pi^{\prime}\in\mathcal{C}^{1}(\mathfrak{g},\mathfrak{g}) defines a Lie-Yamaguti algebra structure on 𝔤\mathfrak{g} if and only if Π\Pi^{\prime} is a Maurer-Cartan element of the differential graded Lie algebra ((𝔤,𝔤),[,]LY,dΠ)(\mathcal{L}^{*}(\mathfrak{g},\mathfrak{g}),[\ ,\ ]_{LY},d_{\Pi}).

Denote

μ¯(x+a,y+b)=μ(x)bμ(y)a\bar{\mu}(x+a,y+b)=\mu(x)b-\mu(y)a

and

θ¯(x+a,y+b,z+c)=D(x,y)c+θ(y,z)aθ(x,z)b\bar{\theta}(x+a,y+b,z+c)=D(x,y)c+\theta(y,z)a-\theta(x,z)b

for all x,y,z𝔤x,y,z\in\mathfrak{g} and a,b,cVa,b,c\in V.

Proposition 4.3.

With the above notations, (V,μ,θ,D)(V,\mu,\theta,D) is a representation of Lie-Yamaguti algebra (𝔤,χ𝔤,ω𝔤)(\mathfrak{g},\chi_{\mathfrak{g}},\omega_{\mathfrak{g}}) if and only if Π¯(𝔤V,𝔤V)\bar{\Pi}\in\mathcal{L}^{*}(\mathfrak{g}\ltimes V,\mathfrak{g}\ltimes V) is a Maurer-Cartan element of the differential graded Lie algebra ((𝔤V,𝔤V),[,]LY,dΠ¯)(\mathcal{L}^{*}(\mathfrak{g}\ltimes V,\mathfrak{g}\ltimes V),[\ ,\ ]_{LY},d_{\bar{\Pi}}), where Π¯=(μ¯,θ¯).\bar{\Pi}=(\bar{\mu},\bar{\theta}).

Proof.

It follows from Theorem 4.2. ∎

Let (𝔤,χ𝔤,ω𝔤)(\mathfrak{g},\chi_{\mathfrak{g}},\omega_{\mathfrak{g}}) and (𝔥,χ𝔥,ω𝔥)(\mathfrak{h},\chi_{\mathfrak{h}},\omega_{\mathfrak{h}}) be two Lie-Yamaguti algebras. Then (𝔤𝔥,χ𝔤𝔥,ω𝔤𝔥)(\mathfrak{g}\oplus\mathfrak{h},\chi_{\mathfrak{g}\oplus\mathfrak{h}},\omega_{\mathfrak{g}\oplus\mathfrak{h}}) is a Lie-Yamaguti algebra, where χ𝔤𝔥,ω𝔤𝔥\chi_{\mathfrak{g}\oplus\mathfrak{h}},\omega_{\mathfrak{g}\oplus\mathfrak{h}} are defined by

χ𝔤𝔥(x+a,y+b)=χ𝔤(x,y)+χ𝔥(a,b),ω𝔤𝔥(x+a,y+b,z+c)=ω𝔤(x,y,z)+ω𝔥(a,b,c)\chi_{\mathfrak{g}\oplus\mathfrak{h}}(x+a,y+b)=\chi_{\mathfrak{g}}(x,y)+\chi_{\mathfrak{h}}(a,b),~{}~{}\omega_{\mathfrak{g}\oplus\mathfrak{h}}(x+a,y+b,z+c)=\omega_{\mathfrak{g}}(x,y,z)+\omega_{\mathfrak{h}}(a,b,c)

for all x,y,z𝔤,a,b,c𝔥x,y,z\in\mathfrak{g},a,b,c\in\mathfrak{h}.

In view of Theorem 4.2, ((𝔤𝔥,𝔤𝔥),[,]LY,d(χ𝔤𝔥,ω𝔤𝔥))(\mathcal{L}^{*}(\mathfrak{g}\oplus\mathfrak{h},\mathfrak{g}\oplus\mathfrak{h}),[\ ,\ ]_{LY},d_{(\chi_{\mathfrak{g}\oplus\mathfrak{h}},\omega_{\mathfrak{g}\oplus\mathfrak{h}})}) is a differential graded Lie algebra. Define 𝒞>n(𝔤𝔥,𝔥)𝒞n(𝔤𝔥,𝔥),>(𝔤𝔥,𝔥)(𝔤𝔥,𝔥)\mathcal{C}_{>}^{n}(\mathfrak{g}\oplus\mathfrak{h},\mathfrak{h})\subset\mathcal{C}^{n}(\mathfrak{g}\oplus\mathfrak{h},\mathfrak{h}),~{}\mathbb{C}_{>}(\mathfrak{g}\oplus\mathfrak{h},\mathfrak{h})\subset\mathbb{C}(\mathfrak{g}\oplus\mathfrak{h},\mathfrak{h}) respectively by

𝒞n(𝔤𝔥,𝔥)=𝒞>n(𝔤𝔥,𝔥)𝒞n(𝔥,𝔥),(𝔤𝔥,𝔥)=>(𝔤𝔥,𝔥)(𝔥,𝔥).\mathcal{C}^{n}(\mathfrak{g}\oplus\mathfrak{h},\mathfrak{h})=\mathcal{C}_{>}^{n}(\mathfrak{g}\oplus\mathfrak{h},\mathfrak{h})\oplus\mathcal{C}^{n}(\mathfrak{h},\mathfrak{h}),~{}\mathbb{C}(\mathfrak{g}\oplus\mathfrak{h},\mathfrak{h})=\mathbb{C}_{>}(\mathfrak{g}\oplus\mathfrak{h},\mathfrak{h})\oplus\mathbb{C}(\mathfrak{h},\mathfrak{h}).

Denote by 𝒞>(𝔤𝔥,𝔥)=n𝒞>n(𝔤𝔥,𝔥)\mathcal{C}_{>}(\mathfrak{g}\oplus\mathfrak{h},\mathfrak{h})=\oplus_{n}\mathcal{C}_{>}^{n}(\mathfrak{g}\oplus\mathfrak{h},\mathfrak{h}) and >(𝔤𝔥,𝔥)=𝒞>(𝔤𝔥,𝔥)>(𝔤𝔥,𝔥)\mathcal{L}_{>}(\mathfrak{g}\oplus\mathfrak{h},\mathfrak{h})=\mathcal{C}_{>}(\mathfrak{g}\oplus\mathfrak{h},\mathfrak{h})\oplus\mathbb{C}_{>}(\mathfrak{g}\oplus\mathfrak{h},\mathfrak{h}).

Similar to the case of 33-Lie algebras [27], we have

Proposition 4.4.

With the above notations, (>(𝔤𝔥,𝔥),[,]LY,d(χ𝔤𝔥,ω𝔤𝔥))(\mathcal{L}_{>}(\mathfrak{g}\oplus\mathfrak{h},\mathfrak{h}),[\ ,\ ]_{LY},d_{(\chi_{\mathfrak{g}\oplus\mathfrak{h}},\omega_{\mathfrak{g}\oplus\mathfrak{h}})}) is a differential graded Lie subalgebra of ((𝔤𝔥,𝔤𝔥),[,]LY,d(χ𝔤𝔥,ω𝔤𝔥))(\mathcal{L}^{*}(\mathfrak{g}\oplus\mathfrak{h},\mathfrak{g}\oplus\mathfrak{h}),[\ ,\ ]_{LY},d_{(\chi_{\mathfrak{g}\oplus\mathfrak{h}},\omega_{\mathfrak{g}\oplus\mathfrak{h}})}).

Proposition 4.5.

The following conditions are equivalent:

  1. (i)(i)

    (𝔤𝔥,[,]χ,{,,}ω)(\mathfrak{g}\oplus\mathfrak{h},[\ ,\ ]_{\chi},\{\ ,\ ,\ \}_{\omega}) is a Lie-Yamaguti algebra, which is a non-abelian extension of 𝔤\mathfrak{g} by 𝔥\mathfrak{h}.

  2. (ii)(ii)

    Π=(χ¯,ω¯)\Pi=(\bar{\chi},\bar{\omega}) is a Maurer-Cartan element of the differential graded Lie algebra (C>(𝔤𝔥,𝔥),[,]LY,d(χ𝔤𝔥,ω𝔤𝔥))(C_{>}(\mathfrak{g}\oplus\mathfrak{h},\mathfrak{h}),[\ ,\ ]_{LY},d_{(\chi_{\mathfrak{g}\oplus\mathfrak{h}},\omega_{\mathfrak{g}\oplus\mathfrak{h}})}), where

    χ¯(x+a,y+b)=χ(x,y)+μ(x)bμ(y)a,\bar{\chi}(x+a,y+b)=\chi(x,y)+\mu(x)b-\mu(y)a,
    ω¯(x+a,y+b,z+c)=\displaystyle\bar{\omega}(x+a,y+b,z+c)= ω(x,y,z)+D(x,y)c+θ(y,z)aθ(x,z)b\displaystyle\omega(x,y,z)+D(x,y)c+\theta(y,z)a-\theta(x,z)b
    +T(z)(a,b)+ρ(x)(b,c)ρ(y)(a,c),\displaystyle+T(z)(a,b)+\rho(x)(b,c)-\rho(y)(a,c),

    for all x,y,z𝔤,a,b,c𝔥x,y,z\in\mathfrak{g},a,b,c\in\mathfrak{h}.

Proof.

In view of the definition of Maurer-Cartan element, Π=(χ¯,ω¯)\Pi=(\bar{\chi},\bar{\omega}) is a Maurer-Cartan element of the differential graded Lie algebra (>(𝔤𝔥,𝔥),[,]LY,d(χ𝔤𝔥,ω𝔤𝔥))(\mathcal{L}_{>}(\mathfrak{g}\oplus\mathfrak{h},\mathfrak{h}),[\ ,\ ]_{LY},d_{(\chi_{\mathfrak{g}\oplus\mathfrak{h}},\omega_{\mathfrak{g}\oplus\mathfrak{h}})}) if and only if

d(χ𝔤𝔥,ω𝔤𝔥)Π+12[Π,Π]LY=0,d_{(\chi_{\mathfrak{g}\oplus\mathfrak{h}},\omega_{\mathfrak{g}\oplus\mathfrak{h}})}\Pi+\frac{1}{2}[\Pi,\Pi]_{LY}=0,

that is,

(75) [(χ𝔤𝔥,ω𝔤𝔥),(χ¯,ω¯)]LY+12[(χ¯,ω¯),(χ¯,ω¯)]LY=0.[(\chi_{\mathfrak{g}\oplus\mathfrak{h}},\omega_{\mathfrak{g}\oplus\mathfrak{h}}),(\bar{\chi},\bar{\omega})]_{LY}+\frac{1}{2}[(\bar{\chi},\bar{\omega}),(\bar{\chi},\bar{\omega})]_{LY}=0.

On the other hand, by Proposition 4.1, we know that (𝔤𝔥,[,]χ,{,,}ω)(\mathfrak{g}\oplus\mathfrak{h},[\ ,\ ]_{\chi},\{\ ,\ ,\ \}_{\omega}) is a Lie-Yamaguti algebra if and only if

(76) [(χ𝔤𝔥+χ¯,ω𝔤𝔥+ω¯),(χ𝔤𝔥+χ¯,ω𝔤𝔥+ω¯)]LY=0.[(\chi_{\mathfrak{g}\oplus\mathfrak{h}}+\bar{\chi},\omega_{\mathfrak{g}\oplus\mathfrak{h}}+\bar{\omega}),(\chi_{\mathfrak{g}\oplus\mathfrak{h}}+\bar{\chi},\omega_{\mathfrak{g}\oplus\mathfrak{h}}+\bar{\omega})]_{LY}=0.

Since (𝔤𝔥,χ𝔤𝔥,ω𝔤𝔥)(\mathfrak{g}\oplus\mathfrak{h},\chi_{\mathfrak{g}\oplus\mathfrak{h}},\omega_{\mathfrak{g}\oplus\mathfrak{h}}) is a Lie-Yamaguti algebra, by computations, we have

[(χ𝔤𝔥+χ¯,ω𝔤𝔥+ω¯),(χ𝔤𝔥+χ¯,ω𝔤𝔥+ω¯)]LY\displaystyle[(\chi_{\mathfrak{g}\oplus\mathfrak{h}}+\bar{\chi},\omega_{\mathfrak{g}\oplus\mathfrak{h}}+\bar{\omega}),(\chi_{\mathfrak{g}\oplus\mathfrak{h}}+\bar{\chi},\omega_{\mathfrak{g}\oplus\mathfrak{h}}+\bar{\omega})]_{LY}
=\displaystyle= [(χ𝔤𝔥,ω𝔤𝔥),(χ𝔤𝔥,ω𝔤𝔥)]LY+[(χ¯,ω¯),(χ¯,ω¯)]LY+2[(χ𝔤𝔥,ω𝔤𝔥),(χ¯,ω¯)]LY\displaystyle[(\chi_{\mathfrak{g}\oplus\mathfrak{h}},\omega_{\mathfrak{g}\oplus\mathfrak{h}}),(\chi_{\mathfrak{g}\oplus\mathfrak{h}},\omega_{\mathfrak{g}\oplus\mathfrak{h}})]_{LY}+[(\bar{\chi},\bar{\omega}),(\bar{\chi},\bar{\omega})]_{LY}+2[(\chi_{\mathfrak{g}\oplus\mathfrak{h}},\omega_{\mathfrak{g}\oplus\mathfrak{h}}),(\bar{\chi},\bar{\omega})]_{LY}
=\displaystyle= [(χ¯,ω¯),(χ¯,ω¯)]LY+2[(χ𝔤𝔥,ω𝔤𝔥),(χ¯,ω¯)]LY,\displaystyle[(\bar{\chi},\bar{\omega}),(\bar{\chi},\bar{\omega})]_{LY}+2[(\chi_{\mathfrak{g}\oplus\mathfrak{h}},\omega_{\mathfrak{g}\oplus\mathfrak{h}}),(\bar{\chi},\bar{\omega})]_{LY},

which yields that Eq. (75) holds if and only if Eq. (76) holds. This completes the proof. ∎

Proposition 4.6.

Two non-abelian extensions (𝔤𝔥,[,]χ0,{,,}ω0)(\mathfrak{g}\oplus\mathfrak{h},[\ ,\ ]_{\chi_{0}},\{\ ,\ ,\ \}_{\omega_{0}}) and (𝔤𝔥,[,]χ,{,,}ω)(\mathfrak{g}\oplus\mathfrak{h},[\ ,\ ]_{\chi},\{\ ,\ ,\ \}_{\omega}) are equivalent if and only if the Maurer-Cartan elements Π0=(χ¯0,ω¯0)\Pi_{0}=(\bar{\chi}_{0},\bar{\omega}_{0}) and Π=(χ¯,ω¯)\Pi=(\bar{\chi},\bar{\omega}) are gauge equivalent.

Proof.

Let Π0,Π\Pi_{0},\Pi be two Maurer-Cartan elements of the differential graded Lie algebra (>(𝔤𝔥,𝔥),[,]LY,d(χ𝔤𝔥,ω𝔤𝔥))(\mathcal{L}_{>}(\mathfrak{g}\oplus\mathfrak{h},\mathfrak{h}),[\ ,\ ]_{LY},d_{(\chi_{\mathfrak{g}\oplus\mathfrak{h}},\omega_{\mathfrak{g}\oplus\mathfrak{h}})}). Π0,Π\Pi_{0},\Pi are gauge equivalent if and only if there is a linear map φHom(𝔤,𝔥)\varphi\in\mathrm{Hom}(\mathfrak{g},\mathfrak{h}) such that

Π0=\displaystyle\Pi_{0}= eadφΠeadφ1adφd(χ𝔤𝔥,ω𝔤𝔥)φ\displaystyle e^{ad_{\varphi}}\Pi-\frac{e^{ad_{\varphi}}-1}{ad_{\varphi}}d_{(\chi_{\mathfrak{g}\oplus\mathfrak{h}},\omega_{\mathfrak{g}\oplus\mathfrak{h}})}\varphi
=\displaystyle= (id+adφ+12!adφ2+++1n!adφn+)Π\displaystyle(id+ad_{\varphi}+\frac{1}{2!}ad_{\varphi}^{2}+\cdot\cdot\cdot++\frac{1}{n!}ad_{\varphi}^{n}+\cdot\cdot\cdot)\Pi
(id+12!adφ+13!adφ2++1n!adφn1+)d(χ𝔤𝔥,ω𝔤𝔥)φ.\displaystyle-(id+\frac{1}{2!}ad_{\varphi}+\frac{1}{3!}ad_{\varphi}^{2}+\cdot\cdot\cdot+\frac{1}{n!}ad_{\varphi}^{n-1}+\cdot\cdot\cdot)d_{(\chi_{\mathfrak{g}\oplus\mathfrak{h}},\omega_{\mathfrak{g}\oplus\mathfrak{h}})}\varphi.

In the following, we denote by

adφΠ=[φ,Π]LY=([φ,Π]I,[φ,Π]II),adφ2Π=[φ,[φ,Π]LY]LY=([φ,[φ,Π]LY]I,[φ,[φ,Π]LY]II),ad_{\varphi}\Pi=[\varphi,\Pi]_{LY}=([\varphi,\Pi]_{I},[\varphi,\Pi]_{II}),~{}~{}ad_{\varphi}^{2}\Pi=[\varphi,[\varphi,\Pi]_{LY}]_{LY}=([\varphi,[\varphi,\Pi]_{LY}]_{I},[\varphi,[\varphi,\Pi]_{LY}]_{II}),
d(χ𝔤𝔥,ω𝔤𝔥)φ=[(χ𝔤𝔥,ω𝔤𝔥),φ]LY=([(χ𝔤𝔥,ω𝔤𝔥),φ]I,[(χ𝔤𝔥,ω𝔤𝔥),φ]II),d_{(\chi_{\mathfrak{g}\oplus\mathfrak{h}},\omega_{\mathfrak{g}\oplus\mathfrak{h}})}\varphi=[(\chi_{\mathfrak{g}\oplus\mathfrak{h}},\omega_{\mathfrak{g}\oplus\mathfrak{h}}),\varphi]_{LY}=([(\chi_{\mathfrak{g}\oplus\mathfrak{h}},\omega_{\mathfrak{g}\oplus\mathfrak{h}}),\varphi]_{I},[(\chi_{\mathfrak{g}\oplus\mathfrak{h}},\omega_{\mathfrak{g}\oplus\mathfrak{h}}),\varphi]_{II}),

and

[φ,d(χ𝔤𝔥,ω𝔤𝔥)(φ)]LY=([φ,[(χ𝔤𝔥,ω𝔤𝔥),φ]LY]I,[φ,[(χ𝔤𝔥,ω𝔤𝔥),φ]LY]II).[\varphi,d_{(\chi_{\mathfrak{g}\oplus\mathfrak{h}},\omega_{\mathfrak{g}\oplus\mathfrak{h}})}(\varphi)]_{LY}=([\varphi,[(\chi_{\mathfrak{g}\oplus\mathfrak{h}},\omega_{\mathfrak{g}\oplus\mathfrak{h}}),\varphi]_{LY}]_{I},[\varphi,[(\chi_{\mathfrak{g}\oplus\mathfrak{h}},\omega_{\mathfrak{g}\oplus\mathfrak{h}}),\varphi]_{LY}]_{II}).

Using Eqs. (68)-(71), for all wi=xi+ai𝔤𝔥(i=1,2,3)w_{i}=x_{i}+a_{i}\in\mathfrak{g}\oplus\mathfrak{h}~{}(i=1,2,3), we get

[φ,Π]I(w1,w2)=\displaystyle[\varphi,\Pi]_{I}(w_{1},w_{2})= φχ¯(w1,w2)χ¯(w1,φ(x2))χ¯(φ(x1),w2)\displaystyle\varphi\bar{\chi}(w_{1},w_{2})-\bar{\chi}(w_{1},\varphi(x_{2}))-\bar{\chi}(\varphi(x_{1}),w_{2})
=\displaystyle= μ(x1)φ(x2)+μ(x2)φ(x1),\displaystyle-\mu(x_{1})\varphi(x_{2})+\mu(x_{2})\varphi(x_{1}),
[φ,Π]II(w1,w2,w3)=\displaystyle[\varphi,\Pi]_{II}(w_{1},w_{2},w_{3})= φω¯(w1,w2,w3)ω¯(φ(x1),w2,w3)ω¯(w1,w2,φ(x3))ω¯(w1,φ(x2),w3)\displaystyle\varphi\bar{\omega}(w_{1},w_{2},w_{3})-\bar{\omega}(\varphi(x_{1}),w_{2},w_{3})-\bar{\omega}(w_{1},w_{2},\varphi(x_{3}))-\bar{\omega}(w_{1},\varphi(x_{2}),w_{3})
=\displaystyle= θ(x1,x3)φ(x2)T(x3)(a1,φ(x2))ρ(x1)(φ(x2),a3)\displaystyle\theta(x_{1},x_{3})\varphi(x_{2})-T(x_{3})(a_{1},\varphi(x_{2}))-\rho(x_{1})(\varphi(x_{2}),a_{3})
θ(x2,x3)φ(x1)T(x3)(φ(x1),a2)+ρ(x2)(φ(x1),a3)\displaystyle-\theta(x_{2},x_{3})\varphi(x_{1})-T(x_{3})(\varphi(x_{1}),a_{2})+\rho(x_{2})(\varphi(x_{1}),a_{3})
+ρ(x2)(a1,φ(x3))D(x1,x2)φ(x3)ρ(x1)(a2,φ(x3)),\displaystyle+\rho(x_{2})(a_{1},\varphi(x_{3}))-D(x_{1},x_{2})\varphi(x_{3})-\rho(x_{1})(a_{2},\varphi(x_{3})),
[φ,[φ,Π]LY]I(w1,w2)=φ[φ,Π]I(w1,w2)[φ,χ]I(w1,φ(x2))[φ,Π]I(φ(x1),w2)=0,[\varphi,[\varphi,\Pi]_{LY}]_{I}(w_{1},w_{2})=\varphi[\varphi,\Pi]_{I}(w_{1},w_{2})-[\varphi,\chi]_{I}(w_{1},\varphi(x_{2}))-[\varphi,\Pi]_{I}(\varphi(x_{1}),w_{2})=0,
[φ,[φ,Π]LY]II(w1,w2,w3)=\displaystyle[\varphi,[\varphi,\Pi]_{LY}]_{II}(w_{1},w_{2},w_{3})= φ[φ,Π]II(w1,w2,w3)[φ,Π]II(w1,φ(x2),w3)\displaystyle\varphi[\varphi,\Pi]_{II}(w_{1},w_{2},w_{3})-[\varphi,\Pi]_{II}(w_{1},\varphi(x_{2}),w_{3})
[φ,Π]II(φ(x1),w2,w3)[φ,Π]II(w1,w2,φ(x3))\displaystyle-[\varphi,\Pi]_{II}(\varphi(x_{1}),w_{2},w_{3})-[\varphi,\Pi]_{II}(w_{1},w_{2},\varphi(x_{3}))
=\displaystyle= 2T(x3)(φ(x1),φ(x2))+2ρ(x1)(φ(x2),φ(x3))2ρ(x2)(φ(x1),φ(x3)),\displaystyle 2T(x_{3})(\varphi(x_{1}),\varphi(x_{2}))+2\rho(x_{1})(\varphi(x_{2}),\varphi(x_{3}))-2\rho(x_{2})(\varphi(x_{1}),\varphi(x_{3})),
[(χ𝔤𝔥,ω𝔤𝔥),φ]I(w1,w2)=\displaystyle[(\chi_{\mathfrak{g}\oplus\mathfrak{h}},\omega_{\mathfrak{g}\oplus\mathfrak{h}}),\varphi]_{I}(w_{1},w_{2})= χ𝔤𝔥(w1,φ(x2))+χ𝔤𝔥(φ(x1),w2)φχ𝔤𝔥(w1,w2)\displaystyle\chi_{\mathfrak{g}\oplus\mathfrak{h}}(w_{1},\varphi(x_{2}))+\chi_{\mathfrak{g}\oplus\mathfrak{h}}(\varphi(x_{1}),w_{2})-\varphi\chi_{\mathfrak{g}\oplus\mathfrak{h}}(w_{1},w_{2})
=\displaystyle= [a1,φ(x2)]𝔥+[φ(x1),a2]𝔥φ([x1,x2]𝔤),\displaystyle[a_{1},\varphi(x_{2})]_{\mathfrak{h}}+[\varphi(x_{1}),a_{2}]_{\mathfrak{h}}-\varphi([x_{1},x_{2}]_{\mathfrak{g}}),
[(χ𝔤𝔥,ω𝔤𝔥),φ]II(w1,w2,w3)\displaystyle[(\chi_{\mathfrak{g}\oplus\mathfrak{h}},\omega_{\mathfrak{g}\oplus\mathfrak{h}}),\varphi]_{II}(w_{1},w_{2},w_{3})
=\displaystyle= ω𝔤𝔥(w1,φ(x2),w3)+ω𝔤𝔥(φ(x1),w2,w3)+ω𝔤𝔥(w1,w2,φ(x3))φω𝔤𝔥(w1,w2,w3)\displaystyle\omega_{\mathfrak{g}\oplus\mathfrak{h}}(w_{1},\varphi(x_{2}),w_{3})+\omega_{\mathfrak{g}\oplus\mathfrak{h}}(\varphi(x_{1}),w_{2},w_{3})+\omega_{\mathfrak{g}\oplus\mathfrak{h}}(w_{1},w_{2},\varphi(x_{3}))-\varphi\omega_{\mathfrak{g}\oplus\mathfrak{h}}(w_{1},w_{2},w_{3})
=\displaystyle= {a1,φ(x2),a3}𝔥+{φ(x1),a2,a3}𝔥+{a1,a2,φ(x3)}𝔥φ({x1,x2,x3}𝔤),\displaystyle\{a_{1},\varphi(x_{2}),a_{3}\}_{\mathfrak{h}}+\{\varphi(x_{1}),a_{2},a_{3}\}_{\mathfrak{h}}+\{a_{1},a_{2},\varphi(x_{3})\}_{\mathfrak{h}}-\varphi(\{x_{1},x_{2},x_{3}\}_{\mathfrak{g}}),
[φ,d(χ𝔤𝔥,ω𝔤𝔥)(φ)]I(w1,w2)\displaystyle[\varphi,d_{(\chi_{\mathfrak{g}\oplus\mathfrak{h}},\omega_{\mathfrak{g}\oplus\mathfrak{h}})}(\varphi)]_{I}(w_{1},w_{2})
=\displaystyle= φ[(χ𝔤𝔥,ω𝔤𝔥),φ]I(w1,w2)[(χ𝔤𝔥,ω𝔤𝔥),φ]I(w1,φ(x2))[(χ𝔤𝔥,ω𝔤𝔥),φ]I(φ(x1),w2)\displaystyle\varphi[(\chi_{\mathfrak{g}\oplus\mathfrak{h}},\omega_{\mathfrak{g}\oplus\mathfrak{h}}),\varphi]_{I}(w_{1},w_{2})-[(\chi_{\mathfrak{g}\oplus\mathfrak{h}},\omega_{\mathfrak{g}\oplus\mathfrak{h}}),\varphi]_{I}(w_{1},\varphi(x_{2}))-[(\chi_{\mathfrak{g}\oplus\mathfrak{h}},\omega_{\mathfrak{g}\oplus\mathfrak{h}}),\varphi]_{I}(\varphi(x_{1}),w_{2})
=\displaystyle= 2[φ(x1),φ(x2)]𝔥,\displaystyle-2[\varphi(x_{1}),\varphi(x_{2})]_{\mathfrak{h}},
[φ,d(χ𝔤𝔥,ω𝔤𝔥)(φ)]II(w1,w2,w3)\displaystyle[\varphi,d_{(\chi_{\mathfrak{g}\oplus\mathfrak{h}},\omega_{\mathfrak{g}\oplus\mathfrak{h}})}(\varphi)]_{II}(w_{1},w_{2},w_{3})
=\displaystyle= φ[(χ𝔤𝔥,ω𝔤𝔥),φ]II(w1,w2,w3)[(χ𝔤𝔥,ω𝔤𝔥),φ]II(w1,φ(x2),w3)\displaystyle\varphi[(\chi_{\mathfrak{g}\oplus\mathfrak{h}},\omega_{\mathfrak{g}\oplus\mathfrak{h}}),\varphi]_{II}(w_{1},w_{2},w_{3})-[(\chi_{\mathfrak{g}\oplus\mathfrak{h}},\omega_{\mathfrak{g}\oplus\mathfrak{h}}),\varphi]_{II}(w_{1},\varphi(x_{2}),w_{3})
[(χ𝔤𝔥,ω𝔤𝔥),φ]II(φ(x1),w2,w3)[(χ𝔤𝔥,ω𝔤𝔥),φ]II(w1,w2,φ(x3))\displaystyle-[(\chi_{\mathfrak{g}\oplus\mathfrak{h}},\omega_{\mathfrak{g}\oplus\mathfrak{h}}),\varphi]_{II}(\varphi(x_{1}),w_{2},w_{3})-[(\chi_{\mathfrak{g}\oplus\mathfrak{h}},\omega_{\mathfrak{g}\oplus\mathfrak{h}}),\varphi]_{II}(w_{1},w_{2},\varphi(x_{3}))
=\displaystyle= {φ(x1),φ(x2),a3}𝔥{a1,φ(x2),φ(x3)}𝔥{φ(x1),φ(x2),a3}𝔥\displaystyle-\{\varphi(x_{1}),\varphi(x_{2}),a_{3}\}_{\mathfrak{h}}-\{a_{1},\varphi(x_{2}),\varphi(x_{3})\}_{\mathfrak{h}}-\{\varphi(x_{1}),\varphi(x_{2}),a_{3}\}_{\mathfrak{h}}
{φ(x1),a2,φ(x3)}𝔥{a1,φ(x2),φ(x3)}𝔥{φ(x1),a2,φ(x3)}𝔥\displaystyle-\{\varphi(x_{1}),a_{2},\varphi(x_{3})\}_{\mathfrak{h}}-\{a_{1},\varphi(x_{2}),\varphi(x_{3})\}_{\mathfrak{h}}-\{\varphi(x_{1}),a_{2},\varphi(x_{3})\}_{\mathfrak{h}}
=\displaystyle= 2{φ(x1),φ(x2),a3}𝔥2{a1,φ(x2),φ(x3)}𝔥2{φ(x1),a2,φ(x3)}𝔥,\displaystyle-2\{\varphi(x_{1}),\varphi(x_{2}),a_{3}\}_{\mathfrak{h}}-2\{a_{1},\varphi(x_{2}),\varphi(x_{3})\}_{\mathfrak{h}}-2\{\varphi(x_{1}),a_{2},\varphi(x_{3})\}_{\mathfrak{h}},
[φ,[φ,d(χ𝔤𝔥,ω𝔤𝔥)(φ)]LY]I(w1,w2)\displaystyle[\varphi,[\varphi,d_{(\chi_{\mathfrak{g}\oplus\mathfrak{h}},\omega_{\mathfrak{g}\oplus\mathfrak{h}})}(\varphi)]_{LY}]_{I}(w_{1},w_{2})
=\displaystyle= φ[φ,d(χ𝔤𝔥,ω𝔤𝔥)(φ)]I(w1,w2)[φ,d(χ𝔤𝔥,ω𝔤𝔥)(φ)]I(x1+a1,φ(x2))[φ,d(χ𝔤𝔥,ω𝔤𝔥)(φ)]I(φ(x1),w2)\displaystyle\varphi[\varphi,d_{(\chi_{\mathfrak{g}\oplus\mathfrak{h}},\omega_{\mathfrak{g}\oplus\mathfrak{h}})}(\varphi)]_{I}(w_{1},w_{2})-[\varphi,d_{(\chi_{\mathfrak{g}\oplus\mathfrak{h}},\omega_{\mathfrak{g}\oplus\mathfrak{h}})}(\varphi)]_{I}(x_{1}+a_{1},\varphi(x_{2}))-[\varphi,d_{(\chi_{\mathfrak{g}\oplus\mathfrak{h}},\omega_{\mathfrak{g}\oplus\mathfrak{h}})}(\varphi)]_{I}(\varphi(x_{1}),w_{2})
=\displaystyle= 0,\displaystyle 0,
[φ,[φ,d(χ𝔤𝔥,ω𝔤𝔥)(φ)]LY]II(w1,w2,w3)\displaystyle[\varphi,[\varphi,d_{(\chi_{\mathfrak{g}\oplus\mathfrak{h}},\omega_{\mathfrak{g}\oplus\mathfrak{h}})}(\varphi)]_{LY}]_{II}(w_{1},w_{2},w_{3})
=\displaystyle= [φ,d(χ𝔤𝔥,ω𝔤𝔥)(φ)]II(x1+a1,φ(x2),w3)+[φ,d(χ𝔤𝔥,ω𝔤𝔥)(φ)]II(φ(x1),w2,w3)\displaystyle[\varphi,d_{(\chi_{\mathfrak{g}\oplus\mathfrak{h}},\omega_{\mathfrak{g}\oplus\mathfrak{h}})}(\varphi)]_{II}(x_{1}+a_{1},\varphi(x_{2}),w_{3})+[\varphi,d_{(\chi_{\mathfrak{g}\oplus\mathfrak{h}},\omega_{\mathfrak{g}\oplus\mathfrak{h}})}(\varphi)]_{II}(\varphi(x_{1}),w_{2},w_{3})
+[φ,d(χ𝔤𝔥,ω𝔤𝔥)(φ)]II(w1,w2,φ(x3))φ[φ,d(χ𝔤𝔥,ω𝔤𝔥)(φ)]II(w1,w2,w3)\displaystyle+[\varphi,d_{(\chi_{\mathfrak{g}\oplus\mathfrak{h}},\omega_{\mathfrak{g}\oplus\mathfrak{h}})}(\varphi)]_{II}(w_{1},w_{2},\varphi(x_{3}))-\varphi[\varphi,d_{(\chi_{\mathfrak{g}\oplus\mathfrak{h}},\omega_{\mathfrak{g}\oplus\mathfrak{h}})}(\varphi)]_{II}(w_{1},w_{2},w_{3})
=\displaystyle= 6{φ(x1),φ(x2),φ(x3)}𝔥,\displaystyle 6\{\varphi(x_{1}),\varphi(x_{2}),\varphi(x_{3})\}_{\mathfrak{h}},

and

adφnΠ=0,adφn(d(χ𝔤𝔥,ω𝔤𝔥)Π)=0,n3.ad_{\varphi}^{n}\Pi=0,~{}~{}ad_{\varphi}^{n}(d_{(\chi_{\mathfrak{g}\oplus\mathfrak{h}},\omega_{\mathfrak{g}\oplus\mathfrak{h}})}\Pi)=0,~{}~{}\forall~{}~{}n\geq 3.

Thus, Π\Pi and Π0\Pi_{0} are gauge equivalent Maurer-Cartan elements if and only if

(77) χ0=χ+[φ,Π]Id(χ𝔤𝔥,ω𝔤𝔥)φ12![φ,d(χ𝔤𝔥,ω𝔤𝔥)φ]I,\chi_{0}=\chi+[\varphi,\Pi]_{I}-d_{(\chi_{\mathfrak{g}\oplus\mathfrak{h}},\omega_{\mathfrak{g}\oplus\mathfrak{h}})}\varphi-\frac{1}{2!}[\varphi,d_{(\chi_{\mathfrak{g}\oplus\mathfrak{h}},\omega_{\mathfrak{g}\oplus\mathfrak{h}})}\varphi]_{I},
ω0=\displaystyle\omega_{0}= ω+[φ,Π]II+12![φ,[φ,Π]LY]IId(χ𝔤𝔥,ω𝔤𝔥)φ\displaystyle\omega+[\varphi,\Pi]_{II}+\frac{1}{2!}[\varphi,[\varphi,\Pi]_{LY}]_{II}-d_{(\chi_{\mathfrak{g}\oplus\mathfrak{h}},\omega_{\mathfrak{g}\oplus\mathfrak{h}})}\varphi
(78) 12![φ,d(χ𝔤𝔥,ω𝔤𝔥)φ]II13![φ,[φ,d(χ𝔤𝔥,ω𝔤𝔥)φ]LY]II.\displaystyle-\frac{1}{2!}[\varphi,d_{(\chi_{\mathfrak{g}\oplus\mathfrak{h}},\omega_{\mathfrak{g}\oplus\mathfrak{h}})}\varphi]_{II}-\frac{1}{3!}[\varphi,[\varphi,d_{(\chi_{\mathfrak{g}\oplus\mathfrak{h}},\omega_{\mathfrak{g}\oplus\mathfrak{h}})}\varphi]_{LY}]_{II}.

Therefore, Eqs.  (77) and (78) hold if and only if Eqs. (53)-(58) hold. This finishes the proof.

5. Extensibility of a pair of Lie-Yamaguti algebra automorphisms

In this section, we study extensibility of pairs of Lie-Yamaguti algebra automorphisms and characterize them by equivalent conditions.

Let :0𝔥i𝔤^p𝔤0\mathcal{E}:0\longrightarrow\mathfrak{h}\stackrel{{\scriptstyle i}}{{\longrightarrow}}\hat{\mathfrak{g}}\stackrel{{\scriptstyle p}}{{\longrightarrow}}\mathfrak{g}\longrightarrow 0 be a non-abelian extension of 𝔤\mathfrak{g} by 𝔥\mathfrak{h} with a section ss of pp. Denote Aut𝔥(𝔤^)={γAut(𝔤^)γ(𝔥)=𝔥}.\mathrm{Aut}_{\mathfrak{h}}(\hat{\mathfrak{g}})=\{\gamma\in\mathrm{Aut}(\hat{\mathfrak{g}})\mid\gamma(\mathfrak{h})=\mathfrak{h}\}.

Definition 5.1.

A pair of automorphisms (α,β)Aut(𝔤)×Aut(𝔥)(\alpha,\beta)\in\mathrm{Aut}(\mathfrak{g})\times\mathrm{Aut}(\mathfrak{h}) is said to be extensible with respect to a non-abelian extension

:0𝔥i𝔤^p𝔤0\mathcal{E}:0\longrightarrow\mathfrak{h}\stackrel{{\scriptstyle i}}{{\longrightarrow}}\hat{\mathfrak{g}}\stackrel{{\scriptstyle p}}{{\longrightarrow}}\mathfrak{g}\longrightarrow 0

if there is an automorphism γAut𝔥(𝔤^)\gamma\in\mathrm{Aut}_{\mathfrak{h}}(\hat{\mathfrak{g}}) such that iβ=γi,pγ=αpi\beta=\gamma i,~{}p\gamma=\alpha p, that is, the following commutative diagram holds:

0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝔥\textstyle{\mathfrak{h}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β\scriptstyle{\beta}i\scriptstyle{i}𝔤^\textstyle{\hat{\mathfrak{g}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}γ\scriptstyle{\gamma}p\scriptstyle{p}𝔤\textstyle{\mathfrak{g}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}α\scriptstyle{\alpha}0\textstyle{0}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝔥\textstyle{\mathfrak{h}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}i\scriptstyle{i}𝔤^\textstyle{\hat{\mathfrak{g}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p\scriptstyle{p}𝔤\textstyle{\mathfrak{g}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0.\textstyle{0.}

It is natural to ask: when is a pair of automorphisms (α,β)Aut(𝔤)×Aut(𝔥)(\alpha,\beta)\in\mathrm{Aut}(\mathfrak{g})\times\mathrm{Aut}(\mathfrak{h}) extensible? We discuss this problem in the following.

Theorem 5.2.

Let 0𝔥i𝔤^p𝔤00\longrightarrow\mathfrak{h}\stackrel{{\scriptstyle i}}{{\longrightarrow}}\hat{\mathfrak{g}}\stackrel{{\scriptstyle p}}{{\longrightarrow}}\mathfrak{g}\longrightarrow 0 be a non-abelian extension of 𝔤\mathfrak{g} by 𝔥\mathfrak{h} with a section ss of pp and (χ,ω,μ,θ,D,ρ,T)(\chi,\omega,\mu,\theta,D,\rho,T) the corresponding non-abelian (2,3)-cocycle induced by ss. A pair (α,β)Aut(𝔤)×Aut(𝔥)(\alpha,\beta)\in\mathrm{Aut}(\mathfrak{g})\times\mathrm{Aut}(\mathfrak{h}) is extensible if and only if there is a linear map φ:𝔤𝔥\varphi:\mathfrak{g}\longrightarrow\mathfrak{h} satisfying the following conditions:

βω(x,y,z)ω(α(x),α(y),α(z))=T(α(z))(φ(x),φ(y))ρ(α(y))(φ(x),φ(z))θ(α(y),α(z))φ(x)\displaystyle\beta\omega(x,y,z)-\omega(\alpha(x),\alpha(y),\alpha(z))=T(\alpha(z))(\varphi(x),\varphi(y))-\rho(\alpha(y))(\varphi(x),\varphi(z))-\theta(\alpha(y),\alpha(z))\varphi(x)
(79) +\displaystyle+ ρ(α(x))(φ(y),φ(z))+θ(α(x),α(z))φ(y)D(α(x),α(y))φ(z)+φ({x,y,z}𝔥){φ(x),φ(y),φ(z)}𝔥,\displaystyle\rho(\alpha(x))(\varphi(y),\varphi(z))+\theta(\alpha(x),\alpha(z))\varphi(y)-D(\alpha(x),\alpha(y))\varphi(z)+\varphi(\{x,y,z\}_{\mathfrak{h}})-\{\varphi(x),\varphi(y),\varphi(z)\}_{\mathfrak{h}},
(80) βχ(x,y)χ(α(x),α(y))=[φ(x),φ(y)]𝔥+φ([x,y]𝔤)μ(α(x))φ(y)+μ(α(y))φ(x),\beta\chi(x,y)-\chi(\alpha(x),\alpha(y))=[\varphi(x),\varphi(y)]_{\mathfrak{h}}+\varphi([x,y]_{\mathfrak{g}})-\mu(\alpha(x))\varphi(y)+\mu(\alpha(y))\varphi(x),
(81) β(θ(x,y)a)θ(α(x),α(y))β(a)={β(a),φ(x),φ(y)}𝔥T(α(y))(β(a),φ(x))+ρ(α(x))(β(a),φ(y)),\beta(\theta(x,y)a)-\theta(\alpha(x),\alpha(y))\beta(a)=\{\beta(a),\varphi(x),\varphi(y)\}_{\mathfrak{h}}-T(\alpha(y))(\beta(a),\varphi(x))+\rho(\alpha(x))(\beta(a),\varphi(y)),
(82) βD(x,y)aD(α(x),α(y))β(a)={φ(x),φ(y),β(a)}𝔥ρ(α(x))(φ(y),β(a))+ρ(α(y))(φ(x),β(a)),\beta D(x,y)a-D(\alpha(x),\alpha(y))\beta(a)=\{\varphi(x),\varphi(y),\beta(a)\}_{\mathfrak{h}}-\rho(\alpha(x))(\varphi(y),\beta(a))+\rho(\alpha(y))(\varphi(x),\beta(a)),
(83) β(ρ(x)(a,b))ρ(α(x))(β(a),β(b))={β(a),φ(x),β(b)}𝔥,\beta(\rho(x)(a,b))-\rho(\alpha(x))(\beta(a),\beta(b))=\{\beta(a),\varphi(x),\beta(b)\}_{\mathfrak{h}},
(84) βT(x)(a,b)T(α(x))(β(a),β(b))={β(b),β(a),φ(x)}𝔥,\beta T(x)(a,b)-T(\alpha(x))(\beta(a),\beta(b))=\{\beta(b),\beta(a),\varphi(x)\}_{\mathfrak{h}},
(85) βμ(x)aμ(α(x))β(a)=[β(a),φ(x)]𝔥,\beta\mu(x)a-\mu(\alpha(x))\beta(a)=[\beta(a),\varphi(x)]_{\mathfrak{h}},

for all x,y,z𝔤x,y,z\in\mathfrak{g} and a𝔥a\in\mathfrak{h}.

Proof.

Assume that (α,β)Aut(𝔤)×Aut(𝔥)(\alpha,\beta)\in\mathrm{Aut}(\mathfrak{g})\times\mathrm{Aut}(\mathfrak{h}) is extensible, that is, there is an automorphism γAut𝔥(𝔤^)\gamma\in\mathrm{Aut}_{\mathfrak{h}}(\hat{\mathfrak{g}}) such that γi=iβ\gamma i=i\beta and pγ=αpp\gamma=\alpha p. Due to ss being a section of pp, for all x𝔤x\in\mathfrak{g},

p(sαγs)(x)=α(x)α(x)=0,p(s\alpha-\gamma s)(x)=\alpha(x)-\alpha(x)=0,

which implies that (sαγs)(x)kerp=𝔥(s\alpha-\gamma s)(x)\in\mathrm{ker}p=\mathfrak{h}. So we can define a linear map φ:𝔤𝔥\varphi:\mathfrak{g}\longrightarrow\mathfrak{h} by

φ(x)=(sαγs)(x),x𝔤.\varphi(x)=(s\alpha-\gamma s)(x),~{}~{}\forall~{}x\in\mathfrak{g}.

Using Eqs. (63) and (64), for x,y𝔤,a𝔥x,y\in\mathfrak{g},a\in\mathfrak{h}, we get

β(θ(x,y)a)θ(α(x),α(y))β(a)\displaystyle\beta(\theta(x,y)a)-\theta(\alpha(x),\alpha(y))\beta(a)
=\displaystyle= β{a,s(x),s(y)}𝔤^{β(a),sα(x),sα(y)}𝔤^\displaystyle\beta\{a,s(x),s(y)\}_{\hat{\mathfrak{g}}}-\{\beta(a),s\alpha(x),s\alpha(y)\}_{\hat{\mathfrak{g}}}
=\displaystyle= {β(a),βs(x),βs(y)}𝔤^{β(a),sα(x),sα(y)}𝔤^\displaystyle\{\beta(a),\beta s(x),\beta s(y)\}_{\hat{\mathfrak{g}}}-\{\beta(a),s\alpha(x),s\alpha(y)\}_{\hat{\mathfrak{g}}}
=\displaystyle= {β(a),βs(x)sα(x),βs(y)}𝔤^+{β(a),sα(x),βs(y)}𝔤^{β(a),sα(x),sα(y)}𝔤^\displaystyle\{\beta(a),\beta s(x)-s\alpha(x),\beta s(y)\}_{\hat{\mathfrak{g}}}+\{\beta(a),s\alpha(x),\beta s(y)\}_{\hat{\mathfrak{g}}}-\{\beta(a),s\alpha(x),s\alpha(y)\}_{\hat{\mathfrak{g}}}
=\displaystyle= {β(a),φ(x),βs(y)}𝔤^+{β(a),sα(x),φ(y)}𝔤^\displaystyle\{\beta(a),-\varphi(x),\beta s(y)\}_{\hat{\mathfrak{g}}}+\{\beta(a),s\alpha(x),-\varphi(y)\}_{\hat{\mathfrak{g}}}
=\displaystyle= {β(a),φ(x),βs(y)sα(y)}𝔤^{β(a),φ(x),sα(y)}𝔤^{β(a),sα(x),φ(y)}𝔤^\displaystyle-\{\beta(a),\varphi(x),\beta s(y)-s\alpha(y)\}_{\hat{\mathfrak{g}}}-\{\beta(a),\varphi(x),s\alpha(y)\}_{\hat{\mathfrak{g}}}-\{\beta(a),s\alpha(x),\varphi(y)\}_{\hat{\mathfrak{g}}}
=\displaystyle= {β(a),φ(x),φ(y)}𝔤^{β(a),φ(x),sα(y)}𝔤^+{sα(x),β(a),φ(y)}𝔤^\displaystyle\{\beta(a),\varphi(x),\varphi(y)\}_{\hat{\mathfrak{g}}}-\{\beta(a),\varphi(x),s\alpha(y)\}_{\hat{\mathfrak{g}}}+\{s\alpha(x),\beta(a),\varphi(y)\}_{\hat{\mathfrak{g}}}
=\displaystyle= {β(a),φ(x),φ(y)}𝔥T(α(y))(β(a),φ(x))+ρ(α(x))(β(a),φ(y)),\displaystyle\{\beta(a),\varphi(x),\varphi(y)\}_{\mathfrak{h}}-T(\alpha(y))(\beta(a),\varphi(x))+\rho(\alpha(x))(\beta(a),\varphi(y)),

which indicates that Eq. (81) holds. Take the same procedure, we can prove that Eqs. (5.2), (80) and (82)-(85) hold.

Conversely, suppose that (α,β)Aut(𝔤)×Aut(𝔥)(\alpha,\beta)\in\mathrm{Aut}(\mathfrak{g})\times\mathrm{Aut}(\mathfrak{h}) and there is a linear map φ:𝔤𝔥\varphi:\mathfrak{g}\longrightarrow\mathfrak{h} satisfying Eqs. (5.2)-(85). Since ss is a section of pp, all w^𝔤^\hat{w}\in\hat{\mathfrak{g}} can be written as w^=a+s(x)\hat{w}=a+s(x) for some a𝔥,x𝔤.a\in\mathfrak{h},x\in\mathfrak{g}. Define a linear map γ:𝔤^𝔤^\gamma:\hat{\mathfrak{g}}\longrightarrow\hat{\mathfrak{g}} by

γ(w^)=γ(a+s(x))=β(a)φ(x)+sα(x).\gamma(\hat{w})=\gamma(a+s(x))=\beta(a)-\varphi(x)+s\alpha(x).

It is easy to check that iβ=γi,pγ=αpi\beta=\gamma i,~{}p\gamma=\alpha p and γ(𝔥)=𝔥\gamma(\mathfrak{h})=\mathfrak{h}. In the sequel, firstly, we prove that γ\gamma is bijective. Indeed if γ(w^)=0,\gamma(\hat{w})=0, we have sα(x)=0s\alpha(x)=0 and β(a)φ(x)=0\beta(a)-\varphi(x)=0. In view of ss and α\alpha being injective, we get x=0x=0, which follows that a=0a=0. Thus, w^=a+s(x)=0\hat{w}=a+s(x)=0, that is γ\gamma is injective. For any w^=a+s(x)𝔤^\hat{w}=a+s(x)\in\hat{\mathfrak{g}},

γ(β1(a)+β1φα1(x)+sα1(x))=a+s(x)=w^,\gamma(\beta^{-1}(a)+\beta^{-1}\varphi\alpha^{-1}(x)+s\alpha^{-1}(x))=a+s(x)=\hat{w},

which yields that γ\gamma is surjective. In all, γ\gamma is bijective.

Secondly, we show that γ\gamma is a homomorphism of the Lie-Yamaguti algebra 𝔤^\hat{\mathfrak{g}}. In fact, for all w^i=ai+s(xi)𝔤^(i=1,2,3)\hat{w}_{i}=a_{i}+s(x_{i})\in\hat{\mathfrak{g}}~{}(i=1,2,3),

{γ(w^1),γ(w^2),γ(w^3)}𝔤^\displaystyle\{\gamma(\hat{w}_{1}),\gamma(\hat{w}_{2}),\gamma(\hat{w}_{3})\}_{\hat{\mathfrak{g}}}
=\displaystyle= {β(a1)φ(x1)+sα(x1),β(a2)φ(x2)+sα(x2),β(a3)φ(x3)+sα(x3)}𝔤^\displaystyle\{\beta(a_{1})-\varphi(x_{1})+s\alpha(x_{1}),\beta(a_{2})-\varphi(x_{2})+s\alpha(x_{2}),\beta(a_{3})-\varphi(x_{3})+s\alpha(x_{3})\}_{\hat{\mathfrak{g}}}
=\displaystyle= {β(a1),β(a2),β(a3)}𝔤^{β(a1),β(a2),φ(x3)}𝔤^+{β(a1),β(a2),sα(x3)}𝔤^\displaystyle\{\beta(a_{1}),\beta(a_{2}),\beta(a_{3})\}_{\hat{\mathfrak{g}}}-\{\beta(a_{1}),\beta(a_{2}),\varphi(x_{3})\}_{\hat{\mathfrak{g}}}+\{\beta(a_{1}),\beta(a_{2}),s\alpha(x_{3})\}_{\hat{\mathfrak{g}}}
{β(a1),φ(x2),β(a3)}𝔤^+{β(a1),φ(x2),φ(x3)}𝔤^{β(a1),φ(x2),sα(x3)}𝔤^\displaystyle-\{\beta(a_{1}),\varphi(x_{2}),\beta(a_{3})\}_{\hat{\mathfrak{g}}}+\{\beta(a_{1}),\varphi(x_{2}),\varphi(x_{3})\}_{\hat{\mathfrak{g}}}-\{\beta(a_{1}),\varphi(x_{2}),s\alpha(x_{3})\}_{\hat{\mathfrak{g}}}
+{β(a1),sα(x2),β(a3)}𝔤^{β(a1),sα(x2),φ(x3)}𝔤^+{β(a1),sα(x2),sα(x3)}𝔤^\displaystyle+\{\beta(a_{1}),s\alpha(x_{2}),\beta(a_{3})\}_{\hat{\mathfrak{g}}}-\{\beta(a_{1}),s\alpha(x_{2}),\varphi(x_{3})\}_{\hat{\mathfrak{g}}}+\{\beta(a_{1}),s\alpha(x_{2}),s\alpha(x_{3})\}_{\hat{\mathfrak{g}}}
{φ(x1),β(a2),β(a3)}𝔤^+{φ(x1),β(a2),φ(x3)}𝔤^{φ(x1),β(a2),sα(x3)}𝔤^\displaystyle-\{\varphi(x_{1}),\beta(a_{2}),\beta(a_{3})\}_{\hat{\mathfrak{g}}}+\{\varphi(x_{1}),\beta(a_{2}),\varphi(x_{3})\}_{\hat{\mathfrak{g}}}-\{\varphi(x_{1}),\beta(a_{2}),s\alpha(x_{3})\}_{\hat{\mathfrak{g}}}
+{φ(x1),φ(x2),β(a3)}𝔤^{φ(x1),φ(x2),φ(x3)}𝔤^+{φ(x1),φ(x2),sα(x3)}𝔤^\displaystyle+\{\varphi(x_{1}),\varphi(x_{2}),\beta(a_{3})\}_{\hat{\mathfrak{g}}}-\{\varphi(x_{1}),\varphi(x_{2}),\varphi(x_{3})\}_{\hat{\mathfrak{g}}}+\{\varphi(x_{1}),\varphi(x_{2}),s\alpha(x_{3})\}_{\hat{\mathfrak{g}}}
{φ(x1),sα(x2),β(a3)}𝔤^+{φ(x1),sα(x2),φ(x3)}𝔤^{φ(x1),sα(x2),sα(x3)}𝔤^\displaystyle-\{\varphi(x_{1}),s\alpha(x_{2}),\beta(a_{3})\}_{\hat{\mathfrak{g}}}+\{\varphi(x_{1}),s\alpha(x_{2}),\varphi(x_{3})\}_{\hat{\mathfrak{g}}}-\{\varphi(x_{1}),s\alpha(x_{2}),s\alpha(x_{3})\}_{\hat{\mathfrak{g}}}
+{sα(x1),β(a2),β(a3)}𝔤^{sα(x1),β(a2),φ(x3)}𝔤^+{sα(x1),β(a2),sα(x3)}𝔤^\displaystyle+\{s\alpha(x_{1}),\beta(a_{2}),\beta(a_{3})\}_{\hat{\mathfrak{g}}}-\{s\alpha(x_{1}),\beta(a_{2}),\varphi(x_{3})\}_{\hat{\mathfrak{g}}}+\{s\alpha(x_{1}),\beta(a_{2}),s\alpha(x_{3})\}_{\hat{\mathfrak{g}}}
{sα(x1),φ(x2),β(a3)}𝔤^+{sα(x1),φ(x2),φ(x3)}𝔤^{sα(x1),φ(x2),sα(x3)}𝔤^\displaystyle-\{s\alpha(x_{1}),\varphi(x_{2}),\beta(a_{3})\}_{\hat{\mathfrak{g}}}+\{s\alpha(x_{1}),\varphi(x_{2}),\varphi(x_{3})\}_{\hat{\mathfrak{g}}}-\{s\alpha(x_{1}),\varphi(x_{2}),s\alpha(x_{3})\}_{\hat{\mathfrak{g}}}
+{sα(x1),sα(x2),β(a3)}𝔤^{sα(x1),sα(x2),φ(x3)}𝔤^+{sα(x1),sα(x2),sα(x3)}𝔤^\displaystyle+\{s\alpha(x_{1}),s\alpha(x_{2}),\beta(a_{3})\}_{\hat{\mathfrak{g}}}-\{s\alpha(x_{1}),s\alpha(x_{2}),\varphi(x_{3})\}_{\hat{\mathfrak{g}}}+\{s\alpha(x_{1}),s\alpha(x_{2}),s\alpha(x_{3})\}_{\hat{\mathfrak{g}}}
=\displaystyle= {β(a1),β(a2),β(a3)}𝔤^{β(a1),β(a2),φ(x3)}𝔤^+T(α(x3))(β(a1),β(a2))\displaystyle\{\beta(a_{1}),\beta(a_{2}),\beta(a_{3})\}_{\hat{\mathfrak{g}}}-\{\beta(a_{1}),\beta(a_{2}),\varphi(x_{3})\}_{\hat{\mathfrak{g}}}+T(\alpha(x_{3}))(\beta(a_{1}),\beta(a_{2}))
{β(a1),φ(x2),β(a3)}𝔤^+{β(a1),φ(x2),φ(x3)}𝔤^T(α(x3))(β(a1),φ(x2))\displaystyle-\{\beta(a_{1}),\varphi(x_{2}),\beta(a_{3})\}_{\hat{\mathfrak{g}}}+\{\beta(a_{1}),\varphi(x_{2}),\varphi(x_{3})\}_{\hat{\mathfrak{g}}}-T(\alpha(x_{3}))(\beta(a_{1}),\varphi(x_{2}))
ρ(α(x2))(β(a1),β(a3))+ρ(α(x2))(β(a1),φ(x3))+θ(α(x2),α(x3))β(a1)\displaystyle-\rho(\alpha(x_{2}))(\beta(a_{1}),\beta(a_{3}))+\rho(\alpha(x_{2}))(\beta(a_{1}),\varphi(x_{3}))+\theta(\alpha(x_{2}),\alpha(x_{3}))\beta(a_{1})
{φ(x1),β(a2),β(a3)}𝔤^+{φ(x1),β(a2),φ(x3)}𝔤^T(α(x3))(φ(x1),β(a2))\displaystyle-\{\varphi(x_{1}),\beta(a_{2}),\beta(a_{3})\}_{\hat{\mathfrak{g}}}+\{\varphi(x_{1}),\beta(a_{2}),\varphi(x_{3})\}_{\hat{\mathfrak{g}}}-T(\alpha(x_{3}))(\varphi(x_{1}),\beta(a_{2}))
+{φ(x1),φ(x2),β(a3)}𝔤^{φ(x1),φ(x2),φ(x3)}𝔤^+T(α(x3))(φ(x1),φ(x2))\displaystyle+\{\varphi(x_{1}),\varphi(x_{2}),\beta(a_{3})\}_{\hat{\mathfrak{g}}}-\{\varphi(x_{1}),\varphi(x_{2}),\varphi(x_{3})\}_{\hat{\mathfrak{g}}}+T(\alpha(x_{3}))(\varphi(x_{1}),\varphi(x_{2}))
+ρ(α(x2))(φ(x1),β(a3))ρ(α(x2))(φ(x1),φ(x3))θ(α(x2),α(x3))φ(x1)\displaystyle+\rho(\alpha(x_{2}))(\varphi(x_{1}),\beta(a_{3}))-\rho(\alpha(x_{2}))(\varphi(x_{1}),\varphi(x_{3}))-\theta(\alpha(x_{2}),\alpha(x_{3}))\varphi(x_{1})
+ρ(α(x1))(β(a2),β(a3))ρ(α(x1))(β(a2),φ(x3))θ(α(x1),α(x3))β(a2)\displaystyle+\rho(\alpha(x_{1}))(\beta(a_{2}),\beta(a_{3}))-\rho(\alpha(x_{1}))(\beta(a_{2}),\varphi(x_{3}))-\theta(\alpha(x_{1}),\alpha(x_{3}))\beta(a_{2})
ρ(α(x1))(φ(x2),β(a3))+ρ(α(x1))(φ(x2),φ(x3))+θ(α(x1),α(x3))φ(x2)\displaystyle-\rho(\alpha(x_{1}))(\varphi(x_{2}),\beta(a_{3}))+\rho(\alpha(x_{1}))(\varphi(x_{2}),\varphi(x_{3}))+\theta(\alpha(x_{1}),\alpha(x_{3}))\varphi(x_{2})
+D(α(x1),α(x2))β(a3)D(α(x1),α(x2))φ(x3)+ω(α(x1),α(x2),α(x3))+sα{x1,x2,x3}𝔤\displaystyle+D(\alpha(x_{1}),\alpha(x_{2}))\beta(a_{3})-D(\alpha(x_{1}),\alpha(x_{2}))\varphi(x_{3})+\omega(\alpha(x_{1}),\alpha(x_{2}),\alpha(x_{3}))+s\alpha\{x_{1},x_{2},x_{3}\}_{\mathfrak{g}}

and

γ({w^1,w^2,w^3}𝔤^)\displaystyle\gamma(\{\hat{w}_{1},\hat{w}_{2},\hat{w}_{3}\}_{\hat{\mathfrak{g}}})
=\displaystyle= γ({a1,a2,a3}𝔤^+{a1,a2,s(x3)}𝔤^+{a1,s(x2),a3}𝔤^+{a1,s(x2),s(x3)}𝔤^\displaystyle\gamma(\{a_{1},a_{2},a_{3}\}_{\hat{\mathfrak{g}}}+\{a_{1},a_{2},s(x_{3})\}_{\hat{\mathfrak{g}}}+\{a_{1},s(x_{2}),a_{3}\}_{\hat{\mathfrak{g}}}+\{a_{1},s(x_{2}),s(x_{3})\}_{\hat{\mathfrak{g}}}
+{s(x1),a2,s(x3)}𝔤^+{s(x1),s(x2),a3}𝔤^+[s(x1),a2,a3]𝔤^+ω(x1,x2,x3)+s{x1,x2,x3}𝔤)\displaystyle+\{s(x_{1}),a_{2},s(x_{3})\}_{\hat{\mathfrak{g}}}+\{s(x_{1}),s(x_{2}),a_{3}\}_{\hat{\mathfrak{g}}}+[s(x_{1}),a_{2},a_{3}]_{\hat{\mathfrak{g}}}+\omega(x_{1},x_{2},x_{3})+s\{x_{1},x_{2},x_{3}\}_{\mathfrak{g}})
=\displaystyle= {β(a1),β(a2),β(a3)}𝔤^+β(T(x3)(a1,a2)ρ(x2)(a1,a3)+θ(x2,x3)a1θ(x1,x3)a2\displaystyle\{\beta(a_{1}),\beta(a_{2}),\beta(a_{3})\}_{\hat{\mathfrak{g}}}+\beta(T(x_{3})(a_{1},a_{2})-\rho(x_{2})(a_{1},a_{3})+\theta(x_{2},x_{3})a_{1}-\theta(x_{1},x_{3})a_{2}
+D(x1,x2)a3+ρ(x1)(a2,a3))+β({s(x1),s(x2),s(x3)}𝔤^)+βω(x1,x2,x3)\displaystyle+D(x_{1},x_{2})a_{3}+\rho(x_{1})(a_{2},a_{3}))+\beta(\{s(x_{1}),s(x_{2}),s(x_{3})\}_{\hat{\mathfrak{g}}})+\beta\omega(x_{1},x_{2},x_{3})
+sα{x1,x2,x3}𝔤φ({x1,x2,x3}𝔤).\displaystyle+s\alpha\{x_{1},x_{2},x_{3}\}_{\mathfrak{g}}-\varphi(\{x_{1},x_{2},x_{3}\}_{\mathfrak{g}}).

Thanks to Eqs.  (5.2)-(83), we have

γ({w^1,w^2,w^3}𝔤^)={γ(w^1),γ(w^2),γ(w^3)}𝔤^.\gamma(\{\hat{w}_{1},\hat{w}_{2},\hat{w}_{3}\}_{\hat{\mathfrak{g}}})=\{\gamma(\hat{w}_{1}),\gamma(\hat{w}_{2}),\gamma(\hat{w}_{3})\}_{\hat{\mathfrak{g}}}.

By the same token, γ([w^1,w^2]𝔤^)=[γ(w^1),γ(w^2)]𝔤^.\gamma([\hat{w}_{1},\hat{w}_{2}]_{\hat{\mathfrak{g}}})=[\gamma(\hat{w}_{1}),\gamma(\hat{w}_{2})]_{\hat{\mathfrak{g}}}. Hence, γAut𝔥(𝔤^)\gamma\in\mathrm{Aut}_{\mathfrak{h}}(\hat{\mathfrak{g}}). This completes the proof. ∎

Let :0𝔥i𝔤^p𝔤0\mathcal{E}:0\longrightarrow\mathfrak{h}\stackrel{{\scriptstyle i}}{{\longrightarrow}}\hat{\mathfrak{g}}\stackrel{{\scriptstyle p}}{{\longrightarrow}}\mathfrak{g}\longrightarrow 0 be a non-abelian extension of 𝔤\mathfrak{g} by 𝔥\mathfrak{h} with a section ss of pp and (χ,ω,μ,θ,D,ρ,T)(\chi,\omega,\mu,\theta,D,\rho,T) be the corresponding non-abelian (2,3)-cocycle induced by ss. For all (α,β)Aut(𝔤)×Aut(𝔥)(\alpha,\beta)\in\mathrm{Aut}(\mathfrak{g})\times\mathrm{Aut}(\mathfrak{h}), define maps χ(α,β):𝔤𝔤𝔥,ω(α,β):𝔤𝔤𝔤𝔥,μ(α,β):𝔤𝔤𝔩(𝔥),θ(α,β),D(α,β):𝔤𝔤𝔤𝔩(𝔥),ρ(α,β),T(α,β):𝔤Hom(𝔥𝔥,𝔥)\chi_{(\alpha,\beta)}:\mathfrak{g}\otimes\mathfrak{g}\longrightarrow\mathfrak{h},~{}\omega_{(\alpha,\beta)}:\mathfrak{g}\otimes\mathfrak{g}\otimes\mathfrak{g}\longrightarrow\mathfrak{h},~{}\mu_{(\alpha,\beta)}:\mathfrak{g}\longrightarrow\mathfrak{gl}(\mathfrak{h}),~{}\theta_{(\alpha,\beta)},D_{(\alpha,\beta)}:\mathfrak{g}\wedge\mathfrak{g}\longrightarrow\mathfrak{gl}(\mathfrak{h}),~{}\rho_{(\alpha,\beta)},T_{(\alpha,\beta)}:\mathfrak{g}\longrightarrow\mathrm{Hom}(\mathfrak{h}\wedge\mathfrak{h},\mathfrak{h}) respectively by

(86) ω(α,β)(x,y,z)=βω(α1(x),α1(y),α1(z)),χ(α,β)(x,y)=βχ(α1(x),α1(y)),\omega_{(\alpha,\beta)}(x,y,z)=\beta\omega(\alpha^{-1}(x),\alpha^{-1}(y),\alpha^{-1}(z)),~{}~{}\chi_{(\alpha,\beta)}(x,y)=\beta\chi(\alpha^{-1}(x),\alpha^{-1}(y)),
(87) θ(α,β)(x,y)a=β(θ(α1(x),α1(y))β1(a)),D(α,β)(x,y)a=βD(α1(x),α1(y))β1(a),\theta_{(\alpha,\beta)}(x,y)a=\beta(\theta(\alpha^{-1}(x),\alpha^{-1}(y))\beta^{-1}(a)),~{}~{}D_{(\alpha,\beta)}(x,y)a=\beta D(\alpha^{-1}(x),\alpha^{-1}(y))\beta^{-1}(a),
(88) ρ(α,β)(x)(a,b)=βρ(α1(x))(β1(a),β1(b)),T(α,β)(x)(a,b)=βT(α1(x))(β1(a),β1(b)),\rho_{(\alpha,\beta)}(x)(a,b)=\beta\rho(\alpha^{-1}(x))(\beta^{-1}(a),\beta^{-1}(b)),~{}~{}T_{(\alpha,\beta)}(x)(a,b)=\beta T(\alpha^{-1}(x))(\beta^{-1}(a),\beta^{-1}(b)),
(89) μ(α,β)(x)a=βμ(α1(x))β1(a),\mu_{(\alpha,\beta)}(x)a=\beta\mu(\alpha^{-1}(x))\beta^{-1}(a),

for all x,y,z𝔤,a,b𝔥.x,y,z\in\mathfrak{g},a,b\in\mathfrak{h}.

Proposition 5.3.

With the above notations, (χ(α,β),ω(α,β),μ(α,β),θ(α,β),D(α,β),ρ(α,β),T(α,β))(\chi_{(\alpha,\beta)},\omega_{(\alpha,\beta)},\mu_{(\alpha,\beta)},\theta_{(\alpha,\beta)},D_{(\alpha,\beta)},\rho_{(\alpha,\beta)},T_{(\alpha,\beta)}) is a non-abelian (2,3)-cocycle.

Proof.

By Eqs. (3.3), (86) and (87), for all x1,x2,y1,y2,y3𝔤x_{1},x_{2},y_{1},y_{2},y_{3}\in\mathfrak{g}, we get

D(α,β)(x1,x2)ω(α,β)(y1,y2,y3)+ω(α,β)(x1,x2,{y1,y2,y3}𝔤)\displaystyle D_{(\alpha,\beta)}(x_{1},x_{2})\omega_{(\alpha,\beta)}(y_{1},y_{2},y_{3})+\omega_{(\alpha,\beta)}(x_{1},x_{2},\{y_{1},y_{2},y_{3}\}_{\mathfrak{g}})
=\displaystyle= βD(α1(x1),α1(x2))β1βω(α,β)(α1(y1),α1(y2),α1(y3))\displaystyle\beta D(\alpha^{-1}(x_{1}),\alpha^{-1}(x_{2}))\beta^{-1}\beta\omega_{(\alpha,\beta)}(\alpha^{-1}(y_{1}),\alpha^{-1}(y_{2}),\alpha^{-1}(y_{3}))
βω(α,β)(α1(x1),α1(x2),α1({y1,y2,y3}𝔤))\displaystyle-\beta\omega_{(\alpha,\beta)}(\alpha^{-1}(x_{1}),\alpha^{-1}(x_{2}),\alpha^{-1}(\{y_{1},y_{2},y_{3}\}_{\mathfrak{g}}))
=\displaystyle= βω({α1(x1),α1(x2),α1(y1)}𝔤,α1(y2),α1(y3))\displaystyle\beta\omega(\{\alpha^{-1}(x_{1}),\alpha^{-1}(x_{2}),\alpha^{-1}(y_{1})\}_{\mathfrak{g}},\alpha^{-1}(y_{2}),\alpha^{-1}(y_{3}))
+βθ(α1(y2),α1(y3))ω(α1(x1),α1(x2),α1(y1))\displaystyle+\beta\theta(\alpha^{-1}(y_{2}),\alpha^{-1}(y_{3}))\omega(\alpha^{-1}(x_{1}),\alpha^{-1}(x_{2}),\alpha^{-1}(y_{1}))
+βω(α1(y1),{α1(x1),α1(x2),α1(y2)}𝔤,α1(y3))\displaystyle+\beta\omega(\alpha^{-1}(y_{1}),\{\alpha^{-1}(x_{1}),\alpha^{-1}(x_{2}),\alpha^{-1}(y_{2})\}_{\mathfrak{g}},\alpha^{-1}(y_{3}))
βθ(α1(y1),α1(y3))ω(α1(x1),α1(x2),α1(y2))\displaystyle-\beta\theta(\alpha^{-1}(y_{1}),\alpha^{-1}(y_{3}))\omega(\alpha^{-1}(x_{1}),\alpha^{-1}(x_{2}),\alpha^{-1}(y_{2}))
+βω(α1(y1),α1(y2),{α1(x1),α1(x2),α1(y3)}𝔤)\displaystyle+\beta\omega(\alpha^{-1}(y_{1}),\alpha^{-1}(y_{2}),\{\alpha^{-1}(x_{1}),\alpha^{-1}(x_{2}),\alpha^{-1}(y_{3})\}_{\mathfrak{g}})
+βD(α1(y1),α1(y2))ω(α1(x1),α1(x2),α1(y3))\displaystyle+\beta D(\alpha^{-1}(y_{1}),\alpha^{-1}(y_{2}))\omega(\alpha^{-1}(x_{1}),\alpha^{-1}(x_{2}),\alpha^{-1}(y_{3}))
=\displaystyle= ω(α,β)({x1,x2,y1}𝔤,y2,y3)+θ(α,β)(y2,y3)ω(α,β)(x1,x2,y1)+ω(α,β)(y1,{x1,x2,y2}𝔤,y3)\displaystyle\omega_{(\alpha,\beta)}(\{x_{1},x_{2},y_{1}\}_{\mathfrak{g}},y_{2},y_{3})+\theta_{(\alpha,\beta)}(y_{2},y_{3})\omega_{(\alpha,\beta)}(x_{1},x_{2},y_{1})+\omega_{(\alpha,\beta)}(y_{1},\{x_{1},x_{2},y_{2}\}_{\mathfrak{g}},y_{3})
θ(α,β)(y1,y3)ω(α,β)(x1,x2,y2)+ω(α,β)(y1,y2,{x1,x2,y3}𝔤)+D(α,β)(y1,y2)ω(α,β)(x1,x2,y3),\displaystyle-\theta_{(\alpha,\beta)}(y_{1},y_{3})\omega_{(\alpha,\beta)}(x_{1},x_{2},y_{2})+\omega_{(\alpha,\beta)}(y_{1},y_{2},\{x_{1},x_{2},y_{3}\}_{\mathfrak{g}})+D_{(\alpha,\beta)}(y_{1},y_{2})\omega_{(\alpha,\beta)}(x_{1},x_{2},y_{3}),

which implies that Eq. (3.3) holds for (ω(α,β),θ(α,β))(\omega_{(\alpha,\beta)},\theta_{(\alpha,\beta)}). Similarly, we can check that Eqs. (3.3)-(52) hold. This completes the proof. ∎

Theorem 5.4.

Let 0𝔥i𝔤^p𝔤00\longrightarrow\mathfrak{h}\stackrel{{\scriptstyle i}}{{\longrightarrow}}\hat{\mathfrak{g}}\stackrel{{\scriptstyle p}}{{\longrightarrow}}\mathfrak{g}\longrightarrow 0 be a non-abelian extension of a Lie-Yamaguti algebra 𝔤\mathfrak{g} by 𝔥\mathfrak{h} with a section ss of pp and (χ,ω,μ,θ,D,ρ,T)(\chi,\omega,\mu,\theta,D,\rho,T) be the corresponding non-abelian (2,3)-cocycle induced by ss. A pair (α,β)Aut(𝔤)×Aut(𝔥)(\alpha,\beta)\in\mathrm{Aut}(\mathfrak{g})\times\mathrm{Aut}(\mathfrak{h}) is extensible if and only if the non-abelian (2,3)-cocycles (χ,ω,μ,θ,D,ρ,T)(\chi,\omega,\mu,\theta,D,\rho,T) and (χ(α,β),ω(α,β),μ(α,β),θ(α,β),D(α,β),ρ(α,β),T(α,β))(\chi_{(\alpha,\beta)},\omega_{(\alpha,\beta)},\mu_{(\alpha,\beta)},\theta_{(\alpha,\beta)},D_{(\alpha,\beta)},\rho_{(\alpha,\beta)},T_{(\alpha,\beta)}) are equivalent.

Proof.

Suppose (α,β)Aut(𝔤)×Aut(𝔥)(\alpha,\beta)\in\mathrm{Aut}(\mathfrak{g})\times\mathrm{Aut}(\mathfrak{h}) is extensible, by Theorem  5.2, there is a linear map φ:𝔤𝔥\varphi:\mathfrak{g}\longrightarrow\mathfrak{h} satisfying Eqs.  (5.2)-(85). For all x,y𝔤,a𝔥x,y\in\mathfrak{g},a\in\mathfrak{h}, there exist x0,y0𝔤,a0𝔥x_{0},y_{0}\in\mathfrak{g},a_{0}\in\mathfrak{h} such that x=α(x0),y=α(y0),a=β(a0)x=\alpha(x_{0}),y=\alpha(y_{0}),a=\beta(a_{0}). Thus, by Eqs. (81), (87) and (88), we have

θ(α,β)(x,y)aθ(x,y)a\displaystyle\theta_{(\alpha,\beta)}(x,y)a-\theta(x,y)a
=\displaystyle= β(θ(α1(x),α1(y))β1(a))θ(x,y)a\displaystyle\beta(\theta(\alpha^{-1}(x),\alpha^{-1}(y))\beta^{-1}(a))-\theta(x,y)a
=\displaystyle= β(θ(x0,y0)a0)θ(α(x0),α(y0))β(a0)\displaystyle\beta(\theta(x_{0},y_{0})a_{0})-\theta(\alpha(x_{0}),\alpha(y_{0}))\beta(a_{0})
=\displaystyle= {β(a0),φ(x0),φ(y0)}𝔥T(α(y0))(β(a0),φ(x0))+ρ(α(x0))(β(a0),φ(y0))\displaystyle\{\beta(a_{0}),\varphi(x_{0}),\varphi(y_{0})\}_{\mathfrak{h}}-T(\alpha(y_{0}))(\beta(a_{0}),\varphi(x_{0}))+\rho(\alpha(x_{0}))(\beta(a_{0}),\varphi(y_{0}))
=\displaystyle= {a,φα1(x),φα1(y)}𝔥T(y)(a,φα1(x))+ρ(x)(a,φα1(y)),\displaystyle\{a,\varphi\alpha^{-1}(x),\varphi\alpha^{-1}(y)\}_{\mathfrak{h}}-T(y)(a,\varphi\alpha^{-1}(x))+\rho(x)(a,\varphi\alpha^{-1}(y)),

which indicates that Eq. (56) holds. Analogously, Eqs. (53)-(55) and (57)-(58) hold. Thus, (χ,ω,μ,θ,D,ρ,T)(\chi,\omega,\mu,\theta,D,\rho,T) and (χ(α,β),ω(α,β),μ(α,β),θ(α,β),D(α,β),ρ(α,β),T(α,β))(\chi_{(\alpha,\beta)},\omega_{(\alpha,\beta)},\mu_{(\alpha,\beta)},\theta_{(\alpha,\beta)},D_{(\alpha,\beta)},\rho_{(\alpha,\beta)},T_{(\alpha,\beta)}) are equivalent via the linear map φα1:𝔤𝔥\varphi\alpha^{-1}:\mathfrak{g}\longrightarrow\mathfrak{h}.

The converse part can be obtained analogously.

6. Wells exact sequences for Lie-Yamaguti algebras

In this section, we consider the Wells map associated with non-abelian extensions of Lie-Yamaguti algebras. Then we interpret the results gained in Section 5 in terms of the Wells map.

Let :0𝔥i𝔤^p𝔤0\mathcal{E}:0\longrightarrow\mathfrak{h}\stackrel{{\scriptstyle i}}{{\longrightarrow}}\hat{\mathfrak{g}}\stackrel{{\scriptstyle p}}{{\longrightarrow}}\mathfrak{g}\longrightarrow 0 be a non-abelian extension of 𝔤\mathfrak{g} by 𝔥\mathfrak{h} with a section ss of pp. Then there is a linear map t:𝔤^𝔥t:\hat{\mathfrak{g}}\longrightarrow\mathfrak{h}, such that

(90) it+sp=I𝔤^.it+sp=I_{\hat{\mathfrak{g}}}.

Assume that (χ,ω,μ,θ,D,ρ,T)(\chi,\omega,\mu,\theta,D,\rho,T) is the corresponding non-abelian (2,3)-cocycle induced by ss. Define a linear map W:Aut(𝔤)×Aut(𝔥)Hnab(2,3)(𝔤,𝔥)W:\mathrm{Aut}(\mathfrak{g})\times\mathrm{Aut}(\mathfrak{h})\longrightarrow H^{(2,3)}_{nab}(\mathfrak{g},\mathfrak{h}) by

(91) W(α,β)=[(χ(α,β),ω(α,β),μ(α,β),θ(α,β),D(α,β),ρ(α,β),T(α,β))(χ,ω,μ,θ,D,ρ,T)].W(\alpha,\beta)=[(\chi_{(\alpha,\beta)},\omega_{(\alpha,\beta)},\mu_{(\alpha,\beta)},\theta_{(\alpha,\beta)},D_{(\alpha,\beta)},\rho_{(\alpha,\beta)},T_{(\alpha,\beta)})-(\chi,\omega,\mu,\theta,D,\rho,T)].

The map WW is called the Wells map.

Proposition 6.1.

The Wells map WW does not depend on the choice of sections.

Proof.

For all x,y,z𝔤x,y,z\in\mathfrak{g}, there are elements x0,y0,z0𝔤x_{0},y_{0},z_{0}\in\mathfrak{g} such that x=α(x0),y=α(y0),z=α(z0)x=\alpha(x_{0}),y=\alpha(y_{0}),z=\alpha(z_{0}). Assume that (χ,ω,μ,θ,D,ρ,T)(\chi^{\prime},\omega^{\prime},\mu^{\prime},\theta^{\prime},D^{{}^{\prime}},\rho^{{}^{\prime}},T^{{}^{\prime}}) is another non-abelian (2,3)-cocycle corresponding to the non-abelian extension \mathcal{E}. By Lemma 3.7, we know that (χ,ω,μ,θ,D,ρ,T)(\chi^{\prime},\omega^{\prime},\mu^{\prime},\theta^{\prime},D^{{}^{\prime}},\rho^{{}^{\prime}},T^{{}^{\prime}}) and (χ,ω,μ,θ,D,ρ,T)(\chi,\omega,\mu,\theta,D,\rho,T) are equivalent non-abelian (2,3)-cocycles via a linear map φ:𝔤𝔥\varphi:\mathfrak{g}\longrightarrow\mathfrak{h} According to Eqs. (3.4) and (86)-(88), denote ψ=βφα1\psi=\beta\varphi\alpha^{-1}, which follows that

ω(α,β)(x,y,z)ω(α,β)(x,y,z)\displaystyle\omega^{{}^{\prime}}_{(\alpha,\beta)}(x,y,z)-\omega_{(\alpha,\beta)}(x,y,z)
=\displaystyle= βω(α1(x),α1(y),α1(z))βω(α1(x),α1(y),α1(z))\displaystyle\beta\omega^{{}^{\prime}}(\alpha^{-1}(x),\alpha^{-1}(y),\alpha^{-1}(z))-\beta\omega(\alpha^{-1}(x),\alpha^{-1}(y),\alpha^{-1}(z))
=\displaystyle= βω(x0,y0,z0)βω(x0,y0,z0)\displaystyle\beta\omega^{{}^{\prime}}(x_{0},y_{0},z_{0})-\beta\omega(x_{0},y_{0},z_{0})
=\displaystyle= β(θ(x0,z0)φ(y0)D(x0,y0)φ(z0)+ρ(x0)(φ(y0),φ(z0))θ(y0,z0)φ(x0)\displaystyle\beta\Big{(}\theta(x_{0},z_{0})\varphi(y_{0})-D(x_{0},y_{0})\varphi(z_{0})+\rho(x_{0})(\varphi(y_{0}),\varphi(z_{0}))-\theta(y_{0},z_{0})\varphi(x_{0})
+T(z0)(φ(x0),φ(y0))ρ(y0)(φ(x0),φ(z0)){φ(x0),φ(y0),φ(z0)}𝔥+φ{x0,y0,z0}𝔤)\displaystyle+T(z_{0})(\varphi(x_{0}),\varphi(y_{0}))-\rho(y_{0})(\varphi(x_{0}),\varphi(z_{0}))-\{\varphi(x_{0}),\varphi(y_{0}),\varphi(z_{0})\}_{\mathfrak{h}}+\varphi\{x_{0},y_{0},z_{0}\}_{\mathfrak{g}}\Big{)}
=\displaystyle= β(θ(α1(x),α1(z))β1ψ(y)D(α1(x),α1(y))β1ψ(z)+ρ(α1(x))(β1ψ(y),β1ψ(z))\displaystyle\beta\Big{(}\theta(\alpha^{-1}(x),\alpha^{-1}(z))\beta^{-1}\psi(y)-D(\alpha^{-1}(x),\alpha^{-1}(y))\beta^{-1}\psi(z)+\rho(\alpha^{-1}(x))(\beta^{-1}\psi(y),\beta^{-1}\psi(z))
θ(α1(y),α1(z))β1ψ(x)+T(α1(z))(β1ψ(x),β1ψ(y))ρ(α1(y))(β1ψ(x),β1ψ(z)))\displaystyle-\theta(\alpha^{-1}(y),\alpha^{-1}(z))\beta^{-1}\psi(x)+T(\alpha^{-1}(z))(\beta^{-1}\psi(x),\beta^{-1}\psi(y))-\rho(\alpha^{-1}(y))(\beta^{-1}\psi(x),\beta^{-1}\psi(z))\Big{)}
{ψ(x),ψ(y),ψ(z)}𝔥+ψ({x,y,z}𝔤)\displaystyle-\{\psi(x),\psi(y),\psi(z)\}_{\mathfrak{h}}+\psi(\{x,y,z\}_{\mathfrak{g}})
=\displaystyle= θ(α,β)(x,z)ψ(y)D(α,β)(x,y)ψ(z)+ρ(α,β)(x)(ψ(y),ψ(z))θ(α,β)(y,z)ψ(x)\displaystyle\theta_{(\alpha,\beta)}(x,z)\psi(y)-D_{(\alpha,\beta)}(x,y)\psi(z)+\rho_{(\alpha,\beta)}(x)(\psi(y),\psi(z))-\theta_{(\alpha,\beta)}(y,z)\psi(x)
+T(α,β)(z)(ψ(x),ψ(y))ρ(α,β)(y)(ψ(x),ψ(z)){ψ(x),ψ(y),ψ(z)}𝔥+ψ({x,y,z}𝔤).\displaystyle+T_{(\alpha,\beta)}(z)(\psi(x),\psi(y))-\rho_{(\alpha,\beta)}(y)(\psi(x),\psi(z))-\{\psi(x),\psi(y),\psi(z)\}_{\mathfrak{h}}+\psi(\{x,y,z\}_{\mathfrak{g}}).

By the same token,

χ(α,β)(x,y)χ(α,β)(x,y)=[ψ(x),ψ(y)]𝔥+ψ([x,y]𝔤)μ(α,β)(x)ψ(y)+μ(α,β)(y)ψ(x),\displaystyle\chi^{{}^{\prime}}_{(\alpha,\beta)}(x,y)-\chi_{(\alpha,\beta)}(x,y)=[\psi(x),\psi(y)]_{\mathfrak{h}}+\psi([x,y]_{\mathfrak{g}})-\mu_{(\alpha,\beta)}(x)\psi(y)+\mu_{(\alpha,\beta)}(y)\psi(x),
θ(α,β)(x,y)aθ(α,β)(x,y)a=ρ(α,β)(x)(a,ψ(y))T(y)(a,ψ(x))+{a,ψ(x),ψ(y)}𝔥,\displaystyle\theta^{{}^{\prime}}_{(\alpha,\beta)}(x,y)a-\theta_{(\alpha,\beta)}(x,y)a=\rho_{(\alpha,\beta)}(x)(a,\psi(y))-T(y)(a,\psi(x))+\{a,\psi(x),\psi(y)\}_{\mathfrak{h}},
D(α,β)(x,y)aD(α,β)(x,y)a=ρ(α,β)(y)(ψ(x),a)ρ(α,β)(x)(ψ(y),a)+{ψ(x),ψ(y),a}𝔥,\displaystyle D^{{}^{\prime}}_{(\alpha,\beta)}(x,y)a-D_{(\alpha,\beta)}(x,y)a=\rho_{(\alpha,\beta)}(y)(\psi(x),a)-\rho_{(\alpha,\beta)}(x)(\psi(y),a)+\{\psi(x),\psi(y),a\}_{\mathfrak{h}},
μ(α,β)(x)aμ(α,β)(x)a=[a,ψ(x)]𝔥,ρ(α,β)(x)(a,b)ρ(α,β)(x)(a,b)={a,ψ(x),b}𝔥,\displaystyle\mu^{{}^{\prime}}_{(\alpha,\beta)}(x)a-\mu_{(\alpha,\beta)}(x)a=[a,\psi(x)]_{\mathfrak{h}},~{}~{}~{}~{}\rho^{{}^{\prime}}_{(\alpha,\beta)}(x)(a,b)-\rho_{(\alpha,\beta)}(x)(a,b)=\{a,\psi(x),b\}_{\mathfrak{h}},
T(α,β)(x)(a,b)T(α,β)(x)(a,b)={b,a,ψ(x)}𝔥.\displaystyle T^{{}^{\prime}}_{(\alpha,\beta)}(x)(a,b)-T_{(\alpha,\beta)}(x)(a,b)=\{b,a,\psi(x)\}_{\mathfrak{h}}.

So, (χ(α,β),ω(α,β),μ(α,β),θ(α,β),D(α,β),ρ(α,β),T(α,β))(\chi^{\prime}_{(\alpha,\beta)},\omega^{\prime}_{(\alpha,\beta)},\mu^{\prime}_{(\alpha,\beta)},\theta^{\prime}_{(\alpha,\beta)},D^{\prime}_{(\alpha,\beta)},\rho^{\prime}_{(\alpha,\beta)},T^{\prime}_{(\alpha,\beta)}) and (χ(α,β),ω(α,β),μ(α,β),θ(α,β),D(α,β),ρ(α,β),T(α,β))(\chi_{(\alpha,\beta)},\omega_{(\alpha,\beta)},\mu_{(\alpha,\beta)},\theta_{(\alpha,\beta)},D_{(\alpha,\beta)},\rho_{(\alpha,\beta)},T_{(\alpha,\beta)}) are equivalent non-abelian (2,3)-cocycles via the linear map ψ=βφα1\psi=\beta\varphi\alpha^{-1}. Combining Lemma 3.7, we know that

(χ(α,β),ω(α,β),μ(α,β),θ(α,β),D(α,β),ρ(α,β),T(α,β))(χ,ω,μ,θ,D,ρ,T)\displaystyle(\chi^{\prime}_{(\alpha,\beta)},\omega^{\prime}_{(\alpha,\beta)},\mu^{\prime}_{(\alpha,\beta)},\theta^{\prime}_{(\alpha,\beta)},D^{\prime}_{(\alpha,\beta)},\rho^{\prime}_{(\alpha,\beta)},T^{\prime}_{(\alpha,\beta)})-(\chi^{\prime},\omega^{\prime},\mu^{\prime},\theta^{\prime},D^{{}^{\prime}},\rho^{{}^{\prime}},T^{{}^{\prime}})

and

(χ(α,β),ω(α,β),μ(α,β),θ(α,β),D(α,β),ρ(α,β),T(α,β))(χ,ω,μ,θ,D,ρ,T)\displaystyle(\chi_{(\alpha,\beta)},\omega_{(\alpha,\beta)},\mu_{(\alpha,\beta)},\theta_{(\alpha,\beta)},D_{(\alpha,\beta)},\rho_{(\alpha,\beta)},T_{(\alpha,\beta)})-(\chi,\omega,\mu,\theta,D,\rho,T)

are equivalent via the linear map βφα1φ\beta\varphi\alpha^{-1}-\varphi. ∎

Proposition 6.2.

Let :0𝔥i𝔤^p𝔤0\mathcal{E}:0\longrightarrow\mathfrak{h}\stackrel{{\scriptstyle i}}{{\longrightarrow}}\hat{\mathfrak{g}}\stackrel{{\scriptstyle p}}{{\longrightarrow}}\mathfrak{g}\longrightarrow 0 be a non-abelian extension of 𝔤\mathfrak{g} by 𝔥\mathfrak{h} with a section ss of pp. Define a map

(92) K:Aut𝔥(𝔤^)Aut(𝔤)×Aut(𝔤),K(γ)=(pγs,γ|𝔥),γAut𝔥(𝔤^).K:\mathrm{Aut}_{\mathfrak{h}}(\hat{\mathfrak{g}})\longrightarrow\mathrm{Aut}(\mathfrak{g})\times\mathrm{Aut}(\mathfrak{g}),~{}~{}K(\gamma)=(p\gamma s,\gamma|_{\mathfrak{h}}),~{}\forall~{}\gamma\in\mathrm{Aut}_{\mathfrak{h}}(\hat{\mathfrak{g}}).

Then KK is a homomorphism of groups.

Proof.

One can take the same procedure of Lie algebras, see [1]. ∎

Theorem 6.3.

Assume that :0𝔥i𝔤^p𝔤0\mathcal{E}:0\longrightarrow\mathfrak{h}\stackrel{{\scriptstyle i}}{{\longrightarrow}}\hat{\mathfrak{g}}\stackrel{{\scriptstyle p}}{{\longrightarrow}}\mathfrak{g}\longrightarrow 0 is a non-abelian extension of 𝔤\mathfrak{g} by 𝔥\mathfrak{h} with a section ss of 𝔤^\hat{\mathfrak{g}}. Then there is an exact sequence:

1Aut𝔥𝔤(𝔤^)HAut𝔥(𝔤^)KAut(𝔤)×Aut(𝔥)WHnab(2,3)(𝔤,𝔥),1\longrightarrow\mathrm{Aut}_{\mathfrak{h}}^{\mathfrak{g}}(\hat{\mathfrak{g}})\stackrel{{\scriptstyle H}}{{\longrightarrow}}\mathrm{Aut}_{\mathfrak{h}}(\hat{\mathfrak{g}})\stackrel{{\scriptstyle K}}{{\longrightarrow}}\mathrm{Aut}(\mathfrak{g})\times\mathrm{Aut}(\mathfrak{h})\stackrel{{\scriptstyle W}}{{\longrightarrow}}H^{(2,3)}_{nab}(\mathfrak{g},\mathfrak{h}),

where Aut𝔥𝔤(𝔤^)={γAut(𝔤^)|K(γ)=(I𝔤,I𝔥)}\mathrm{Aut}_{\mathfrak{h}}^{\mathfrak{g}}(\hat{\mathfrak{g}})=\{\gamma\in\mathrm{Aut}(\hat{\mathfrak{g}})|K(\gamma)=(I_{\mathfrak{g}},I_{\mathfrak{h}})\}.

Proof.

Obviously, KerK=ImH\mathrm{Ker}K=\mathrm{Im}H and HH is injective. We only need to prove that KerW=ImK\mathrm{Ker}W=\mathrm{Im}K. By Theorem 5.4, for all (α,β)KerW(\alpha,\beta)\in\mathrm{Ker}W, we get that (α,β)(\alpha,\beta) is extensible with respect to the non-abelian extension \mathcal{E}, that is, there is a γAut𝔥𝔤(𝔤^)\gamma\in\mathrm{Aut}_{\mathfrak{h}}^{\mathfrak{g}}(\hat{\mathfrak{g}}), such that iβ=γi,pγ=αpi\beta=\gamma i,~{}p\gamma=\alpha p, which follows that α=αps=pγs,β=γ|𝔥.\alpha=\alpha ps=p\gamma s,~{}\beta=\gamma|_{\mathfrak{h}}. Thus, (α,β)ImK(\alpha,\beta)\in\mathrm{Im}K. On the other hand, for any (α,β)ImK(\alpha,\beta)\in\mathrm{Im}K, there is an isomorphism γAut𝔥(𝔤^)\gamma\in\mathrm{Aut}_{\mathfrak{h}}(\hat{\mathfrak{g}}), such that Eq. (92) holds. Combining Eq. (90) and Imi=Kerp\mathrm{Im}i=\mathrm{Ker}p, we obtain αp=pγsp=pγ(I𝔤^it)=pγ\alpha p=p\gamma sp=p\gamma(I_{\hat{\mathfrak{g}}}-it)=p\gamma and iβ=γii\beta=\gamma i. Hence, (α,β)(\alpha,\beta) is extensible with respect to the non-abelian extension \mathcal{E}. According to Theorem 5.4, (α,β)KerW(\alpha,\beta)\in\mathrm{Ker}W. In all, KerW=ImK\mathrm{Ker}W=\mathrm{Im}K. ∎

Let :0𝔥i𝔤^p𝔤0\mathcal{E}:0\longrightarrow\mathfrak{h}\stackrel{{\scriptstyle i}}{{\longrightarrow}}\hat{\mathfrak{g}}\stackrel{{\scriptstyle p}}{{\longrightarrow}}\mathfrak{g}\longrightarrow 0 be a non-abelian extension of 𝔤\mathfrak{g} by 𝔥\mathfrak{h} with a section ss of pp. Suppose that (χ,ω,μ,θ,D,ρ,T)(\chi,\omega,\mu,\theta,D,\rho,T) is a non-abelian (2,3)-cocycle induced by the section ss.

Denote

(93) Znab1(𝔤,𝔥)=\displaystyle Z_{nab}^{1}(\mathfrak{g},\mathfrak{h})= {φ:𝔤𝔥|[a,φ(x)]𝔥={a,b,φ(x)}𝔥={φ(x),a,b}𝔥=0,{φ(x),φ(y),a}𝔥ρ(x)(φ(y),a)+ρ(y)(φ(x),a)=0,{a,φ(x),φ(y)}𝔥T(y)(a,φ(x))+ρ(x)(a,φ(y))=0,μ(x)φ(y)μ(y)φ(x)=φ([x,y]𝔤)+[φ(x),φ(y)]𝔥,T(z)(φ(x),φ(y))ρ(y)(φ(x),φ(z))θ(y,z)φ(x)+ρ(x)(φ(y),φ(z))+θ(x,z)φ(y)D(x,y)φ(z)={φ(x),φ(y),φ(z)}𝔥φ({x,y,z}𝔥),x,y,z𝔤,a,b𝔥}.\displaystyle\left\{\varphi:\mathfrak{g}\rightarrow\mathfrak{h}\left|\begin{aligned} &[a,\varphi(x)]_{\mathfrak{h}}=\{a,b,\varphi(x)\}_{\mathfrak{h}}=\{\varphi(x),a,b\}_{\mathfrak{h}}=0,\\ &\{\varphi(x),\varphi(y),a\}_{\mathfrak{h}}-\rho(x)(\varphi(y),a)+\rho(y)(\varphi(x),a)=0,\\ &\{a,\varphi(x),\varphi(y)\}_{\mathfrak{h}}-T(y)(a,\varphi(x))+\rho(x)(a,\varphi(y))=0,\\ &\mu(x)\varphi(y)-\mu(y)\varphi(x)=\varphi([x,y]_{\mathfrak{g}})+[\varphi(x),\varphi(y)]_{\mathfrak{h}},~{}\\ &T(z)(\varphi(x),\varphi(y))-\rho(y)(\varphi(x),\varphi(z))-\theta(y,z)\varphi(x)\\ &+\rho(x)(\varphi(y),\varphi(z))+\theta(x,z)\varphi(y)-D(x,y)\varphi(z)\\ &=\{\varphi(x),\varphi(y),\varphi(z)\}_{\mathfrak{h}}-\varphi(\{x,y,z\}_{\mathfrak{h}}),~{}\forall~{}x,y,z\in{\mathfrak{g}},a,b\in{\mathfrak{h}}\end{aligned}\right.\right\}.

It is easy to check that Znab1(𝔤,𝔥)Z_{nab}^{1}(\mathfrak{g},\mathfrak{h}) is an abelian group, which is called a non-abelian 1-cocycle on 𝔤\mathfrak{g} with values in 𝔥\mathfrak{h}.

Proposition 6.4.

With the above notations, we have

  1. (i)(i)

    The linear map S:KerKZnab1(𝔤,𝔥)S:\mathrm{Ker}K\longrightarrow Z_{nab}^{1}(\mathfrak{g},\mathfrak{h}) defined by

    (94) S(γ)(x)=φγ(x)=s(x)γs(x),γKerK,x𝔤S(\gamma)(x)=\varphi_{\gamma}(x)=s(x)-\gamma s(x),~{}\forall~{}~{}\gamma\in\mathrm{Ker}K,~{}x\in\mathfrak{g}

    is a homomorphism of groups.

  2. (ii)(ii)

    SS is an isomorphism, that is, KerKZnab1(𝔤,𝔥)\mathrm{KerK}\simeq Z_{nab}^{1}(\mathfrak{g},\mathfrak{h}).

Proof.
  1. (i)(i)

    By Eqs. (62)-(64), (92) and (94), for all x,y,z𝔤x,y,z\in\mathfrak{g}, we have,

    {φγ(x),φγ(y),φγ(z)}𝔥T(z)(φγ(x),φγ(y))+ρ(y)(φγ(x),φγ(z))+θ(y,z)φγ(x)\displaystyle\{\varphi_{\gamma}(x),\varphi_{\gamma}(y),\varphi_{\gamma}(z)\}_{\mathfrak{h}}-T(z)(\varphi_{\gamma}(x),\varphi_{\gamma}(y))+\rho(y)(\varphi_{\gamma}(x),\varphi_{\gamma}(z))+\theta(y,z)\varphi_{\gamma}(x)
    ρ(x)(φγ(y),φγ(z))θ(x,z)φγ(y)+D(x,y)φγ(z)φγ({x,y,z}𝔤)\displaystyle-\rho(x)(\varphi_{\gamma}(y),\varphi_{\gamma}(z))-\theta(x,z)\varphi_{\gamma}(y)+D(x,y)\varphi_{\gamma}(z)-\varphi_{\gamma}(\{x,y,z\}_{\mathfrak{g}})
    =\displaystyle= {s(x)γs(x),s(y)γs(y),s(z)γs(z)}𝔤^{s(x)γs(x),s(y)γs(y),s(z)}𝔤^\displaystyle\{s(x)-\gamma s(x),s(y)-\gamma s(y),s(z)-\gamma s(z)\}_{\hat{\mathfrak{g}}}-\{s(x)-\gamma s(x),s(y)-\gamma s(y),s(z)\}_{\hat{\mathfrak{g}}}
    +{s(y),s(x)γs(x),s(z)γs(z)}𝔤^+{s(x)γs(x),s(y),s(z)}𝔤^{s(x),s(y)γs(y),s(z)γs(z)}𝔤^\displaystyle+\{s(y),s(x)-\gamma s(x),s(z)-\gamma s(z)\}_{\hat{\mathfrak{g}}}+\{s(x)-\gamma s(x),s(y),s(z)\}_{\hat{\mathfrak{g}}}-\{s(x),s(y)-\gamma s(y),s(z)-\gamma s(z)\}_{\hat{\mathfrak{g}}}
    {s(y)γs(y),s(x),s(z)}𝔤^+{s(x),s(y),s(z)γs(z)}𝔤^+γs({x,y,z}𝔤)s({x,y,z}𝔤)\displaystyle-\{s(y)-\gamma s(y),s(x),s(z)\}_{\hat{\mathfrak{g}}}+\{s(x),s(y),s(z)-\gamma s(z)\}_{\hat{\mathfrak{g}}}+\gamma s(\{x,y,z\}_{\mathfrak{g}})-s(\{x,y,z\}_{\mathfrak{g}})
    =\displaystyle= γs({x,y,z}𝔤){γs(x),γs(y),γs(z)}𝔤^+{s(x),s(y),s(z)}𝔤^s({x,y,z}𝔤)\displaystyle\gamma s(\{x,y,z\}_{\mathfrak{g}})-\{\gamma s(x),\gamma s(y),\gamma s(z)\}_{\hat{\mathfrak{g}}}+\{s(x),s(y),s(z)\}_{\hat{\mathfrak{g}}}-s(\{x,y,z\}_{\mathfrak{g}})
    =\displaystyle= ω(x,y,z)γω(x,y,z)\displaystyle\omega(x,y,z)-\gamma\omega(x,y,z)
    =\displaystyle= 0.\displaystyle 0.

    Analogously, we can check that φγ\varphi_{\gamma} satisfies the other identities in Znab1(𝔤,𝔥)Z_{nab}^{1}(\mathfrak{g},\mathfrak{h}). Thus, SS is well-defined. For any γ1,γ2KerK\gamma_{1},\gamma_{2}\in\mathrm{Ker}K and x𝔤x\in\mathfrak{g}, suppose S(γ1)=φγ1S(\gamma_{1})=\varphi_{\gamma_{1}} and S(γ2)=φγ2S(\gamma_{2})=\varphi_{\gamma_{2}}. By Eqs.  (92) and (94), we have

    S(γ1γ2)(x)\displaystyle S(\gamma_{1}\gamma_{2})(x) =s(x)γ1γ2s(x)\displaystyle=s(x)-\gamma_{1}\gamma_{2}s(x)
    =s(x)γ1(s(x)φγ2(x))\displaystyle=s(x)-\gamma_{1}(s(x)-\varphi_{\gamma_{2}}(x))
    =s(x)γ1s(x)+γ1φγ2(x)\displaystyle=s(x)-\gamma_{1}s(x)+\gamma_{1}\varphi_{\gamma_{2}}(x)
    =φγ1(x)+φγ2(x)\displaystyle=\varphi_{\gamma_{1}}(x)+\varphi_{\gamma_{2}}(x)

    which means that S(γ1γ2)=S(γ1)+S(γ2)S(\gamma_{1}\gamma_{2})=S(\gamma_{1})+S(\gamma_{2}) is a homomorphism of groups.

  2. (ii)(ii)

    For all γKerK\gamma\in\mathrm{Ker}K, we obtain that K(γ)=(pγs,γ|𝔥)=(I𝔤,I𝔥)K(\gamma)=(p\gamma s,\gamma|_{\mathfrak{h}})=(I_{\mathfrak{g}},I_{\mathfrak{h}}). If S(γ)=φγ=0S(\gamma)=\varphi_{\gamma}=0, we can get φγ(x)=s(x)γs(x)=0\varphi_{\gamma}(x)=s(x)-\gamma s(x)=0, that is, γ=I𝔤^\gamma=I_{\hat{\mathfrak{g}}}, which indicates that SS is injective. Secondly, we prove that SS is surjective. Since ss is a section of pp, all x^𝔤^\hat{x}\in\hat{\mathfrak{g}} can be written as a+s(x)a+s(x) for some a𝔥,x𝔤a\in\mathfrak{h},x\in\mathfrak{g}. For any φZnab1(𝔤,𝔥)\varphi\in Z_{nab}^{1}(\mathfrak{g},\mathfrak{h}), define a linear map γ:𝔤^𝔤^\gamma:\hat{\mathfrak{g}}\rightarrow\hat{\mathfrak{g}} by

    (95) γ(x^)=γ(a+s(x))=s(x)φ(x)+a,x^𝔤^.\gamma(\hat{x})=\gamma(a+s(x))=s(x)-\varphi(x)+a,~{}\forall~{}\hat{x}\in\hat{\mathfrak{g}}.

    It is obviously that (pγs,γ|𝔥)=(I𝔤,I𝔥)(p\gamma s,\gamma|_{\mathfrak{h}})=(I_{\mathfrak{g}},I_{\mathfrak{h}}). We need to verify that γ\gamma is an automorphism of Lie-Yamaguti algebra 𝔤^\hat{\mathfrak{g}}. One can take the same procedure as the proof of the converse part of Theorem 5.2. It follows that γKerK\gamma\in\mathrm{Ker}K. Thus, SS is surjective. In all, SS is bijective. So KerKZnab1(𝔤,𝔥)\mathrm{Ker}K\simeq Z_{nab}^{1}(\mathfrak{g},\mathfrak{h}).

Combining Theorem 6.3 and Proposition 6.4, we have

Theorem 6.5.

Let :0𝔥i𝔤^p𝔤0\mathcal{E}:0\longrightarrow\mathfrak{h}\stackrel{{\scriptstyle i}}{{\longrightarrow}}\hat{\mathfrak{g}}\stackrel{{\scriptstyle p}}{{\longrightarrow}}\mathfrak{g}\longrightarrow 0 be a non-abelian extension of 𝔤\mathfrak{g} by 𝔥\mathfrak{h}. There is an exact sequence:

0Znab1(𝔤,𝔥)iAut𝔥(𝔤^)KAut(𝔤)×Aut(𝔥)WHnab(2,3)(𝔤,𝔥).0\longrightarrow Z_{nab}^{1}(\mathfrak{g},\mathfrak{h})\stackrel{{\scriptstyle i}}{{\longrightarrow}}\mathrm{Aut}_{\mathfrak{h}}(\hat{\mathfrak{g}})\stackrel{{\scriptstyle K}}{{\longrightarrow}}\mathrm{Aut}(\mathfrak{g})\times\mathrm{Aut}(\mathfrak{h})\stackrel{{\scriptstyle W}}{{\longrightarrow}}H^{(2,3)}_{nab}(\mathfrak{g},\mathfrak{h}).

7. Particular case: abelian extensions of Lie-Yamaguti algebras

In this section, we discuss the results of previous section in particular case.

We fix the abelian extension :0𝔥i𝔤^p𝔤0\mathcal{E}:0\longrightarrow\mathfrak{h}\stackrel{{\scriptstyle i}}{{\longrightarrow}}\hat{\mathfrak{g}}\stackrel{{\scriptstyle p}}{{\longrightarrow}}\mathfrak{g}\longrightarrow 0 of 𝔤\mathfrak{g} by 𝔥\mathfrak{h} with a section ss of pp. Assume that (χ,ω)(\chi,\omega) is a (2,3)-cocycle corresponding to \mathcal{E}. In the case of abelian extensions \mathcal{E}, the maps ρ,T\rho,T defined by (64) become to zero. Then the quadruple (𝔥,μ,θ,D)(\mathfrak{h},\mu,\theta,D) given by Eq. (63) is a representation of 𝔤\mathfrak{g} [35]. Moreover,

Theorem 7.1 ([35]).
  1. (i)(i)

    The triple (𝔤𝔥,[,]χ,{,,}ω)(\mathfrak{g}\oplus\mathfrak{h},[\ ,\ ]_{\chi},\{\ ,\ ,\ \}_{\omega}) is a Lie-Yamaguti algebra if and only if (χ,ω)(\chi,\omega) is a (2,3)-cocycle of 𝔤\mathfrak{g} with coefficients in the representation (𝔥,μ,θ,D)(\mathfrak{h},\mu,\theta,D).

  2. (ii)(ii)

    Abelian extensions of 𝔤\mathfrak{g} by 𝔥\mathfrak{h} are classified by the cohomology group H(2,3)(𝔤,𝔥)H^{(2,3)}(\mathfrak{g},\mathfrak{h}) of 𝔤\mathfrak{g} with coefficients in (𝔥,μ,θ,D)(\mathfrak{h},\mu,\theta,D).

Theorem 7.2.

Let :0𝔥i𝔤^p𝔤0\mathcal{E}:0\longrightarrow\mathfrak{h}\stackrel{{\scriptstyle i}}{{\longrightarrow}}\hat{\mathfrak{g}}\stackrel{{\scriptstyle p}}{{\longrightarrow}}\mathfrak{g}\longrightarrow 0 be an abelian extension of 𝔤\mathfrak{g} by 𝔥\mathfrak{h} with a section ss of pp. Assume that (χ,ω)(\chi,\omega) is a (2,3)-cocycle and (𝔥,μ,θ,D)(\mathfrak{h},\mu,\theta,D) is a representation of 𝔤\mathfrak{g} associated to \mathcal{E}. A pair (α,β)Aut(𝔤)×Aut(𝔥)(\alpha,\beta)\in\mathrm{Aut}(\mathfrak{g})\times\mathrm{Aut}(\mathfrak{h}) is extensible with respect to the abelian extension \mathcal{E} if and only if there is a linear map φ:𝔤𝔥\varphi:\mathfrak{g}\longrightarrow\mathfrak{h} satisfying the following conditions:

βω(x,y,z)ω(α(x),α(y),α(z))=\displaystyle\beta\omega(x,y,z)-\omega(\alpha(x),\alpha(y),\alpha(z))= θ(α(x),α(z))φ(y)θ(α(y),α(z))φ(x)\displaystyle\theta(\alpha(x),\alpha(z))\varphi(y)-\theta(\alpha(y),\alpha(z))\varphi(x)
(96) D(α(x),α(y))φ(z)+φ({x,y,z}𝔥),\displaystyle-D(\alpha(x),\alpha(y))\varphi(z)+\varphi(\{x,y,z\}_{\mathfrak{h}}),
(97) βχ(x,y)χ(α(x),α(y))=μ(α(y))φ(x)μ(α(x))φ(y)+φ([x,y]𝔤),\beta\chi(x,y)-\chi(\alpha(x),\alpha(y))=\mu(\alpha(y))\varphi(x)-\mu(\alpha(x))\varphi(y)+\varphi([x,y]_{\mathfrak{g}}),
(98) β(θ(x,y)a)=θ(α(x),α(y))β(a),βμ(x)a=μ(α(x))β(a).\beta(\theta(x,y)a)=\theta(\alpha(x),\alpha(y))\beta(a),~{}~{}\beta\mu(x)a=\mu(\alpha(x))\beta(a).
Proof.

It can be obtained directly from Theorem 5.2. ∎

By Eqs. (10) and (98), we obtain

βD(x,y)a=D(α(x),α(y))β(a).\beta D(x,y)a=D(\alpha(x),\alpha(y))\beta(a).

For all (α,β)Aut(𝔤)×Aut(𝔥)(\alpha,\beta)\in\mathrm{Aut}(\mathfrak{g})\times\mathrm{Aut}(\mathfrak{h}), (χ(α,β),ω(α,β))(\chi_{(\alpha,\beta)},\omega_{(\alpha,\beta)}) may not be a (2,3)-cocycle. Indeed, (χ(α,β),ω(α,β))(\chi_{(\alpha,\beta)},\omega_{(\alpha,\beta)}) is a (2,3)-cocycle if Eq. (98) holds. Thus, it is natural to introduce the space of compatible pairs of automorphisms:

C(μ,θ)=\displaystyle C_{(\mu,\theta)}= {(α,β)Aut(𝔤)×Aut(𝔥)|β(θ(x,y)a)=θ(α(x),α(y))β(a),βμ(x)a=μ(α(x))β(a),x,y𝔤,a𝔥}.\displaystyle\left\{(\alpha,\beta)\in\mathrm{Aut}(\mathfrak{g})\times\mathrm{Aut}(\mathfrak{h})\left|\begin{aligned} &\beta(\theta(x,y)a)=\theta(\alpha(x),\alpha(y))\beta(a),\\ &\beta\mu(x)a=\mu(\alpha(x))\beta(a),~{}\forall~{}x,y\in{\mathfrak{g}},a\in{\mathfrak{h}}\end{aligned}\right.\right\}.

More detail on the space of compatible pairs of automorphisms can be found in [13].

Analogous to Theorem 5.4, we get

Theorem 7.3 ([13]).

Let :0𝔥i𝔤^p𝔤0\mathcal{E}:0\longrightarrow\mathfrak{h}\stackrel{{\scriptstyle i}}{{\longrightarrow}}\hat{\mathfrak{g}}\stackrel{{\scriptstyle p}}{{\longrightarrow}}\mathfrak{g}\longrightarrow 0 be an abelian extension of 𝔤\mathfrak{g} by 𝔥\mathfrak{h} with a section ss of pp and (χ,ω)(\chi,\omega) be a (2,3)-cocycle associated to \mathcal{E}. A pair (α,β)C(μ,θ)(\alpha,\beta)\in C_{(\mu,\theta)} is extensible with respect to the abelian extension \mathcal{E} if and only if (χ,ω)(\chi,\omega) and (χ(α,β),ω(α,β))(\chi_{(\alpha,\beta)},\omega_{(\alpha,\beta)}) are in the same cohomological class.

In the case of abelian extensions, Znab1(𝔤,𝔥)Z^{1}_{nab}(\mathfrak{g},\mathfrak{h}) defined by (93) becomes to H1(𝔤,𝔥){H}^{1}(\mathfrak{g},\mathfrak{h}) given in Section 2. In the light of Theorem 6.5 and Theorem 7.3, we have the following exact sequence:

Theorem 7.4 ([13]).

Let :0𝔥i𝔤^p𝔤0\mathcal{E}:0\longrightarrow\mathfrak{h}\stackrel{{\scriptstyle i}}{{\longrightarrow}}\hat{\mathfrak{g}}\stackrel{{\scriptstyle p}}{{\longrightarrow}}\mathfrak{g}\longrightarrow 0 be an abelian extension of 𝔤\mathfrak{g} by 𝔥\mathfrak{h}. There is an exact sequence:

0H1(𝔤,𝔥)iAut𝔥(𝔤^)KC(μ,θ)WH(2,3)(𝔤,𝔥).0\longrightarrow H^{1}(\mathfrak{g},\mathfrak{h})\stackrel{{\scriptstyle i}}{{\longrightarrow}}\mathrm{Aut}_{\mathfrak{h}}(\hat{\mathfrak{g}})\stackrel{{\scriptstyle K}}{{\longrightarrow}}C_{(\mu,\theta)}\stackrel{{\scriptstyle W}}{{\longrightarrow}}H^{(2,3)}(\mathfrak{g},\mathfrak{h}).

Acknowledgments

This work was supported by the National Natural Science Foundation of China (11871421); Natural Science Foundation of Zhejiang Province of China (LY19A010001); and Science and Technology Planning Project of Zhejiang Province (2022C01118).

Statements and Declarations

All datasets underlying the conclusions of the paper are available to readers. No conflict of interest exits in the submission of this manuscript.

References

  • [1] V. G. Bardakov, M. Singh, Extensions and automorphisms of Lie algebras, J. Algebra Appl. 16 (2017), 1750162.
  • [2] P. Benito, A. Elduque, F. M. Herce, Irreducible Lie-Yamaguti algebras, J. Pure Appl. Algebra 213 (2009),795-808.
  • [3] P. Benito, A. Elduque, F. M. Herce, Irreducible Lie-Yamaguti algebras of generic type, J. Pure Appl. Algebra 215 (2011), 108-130.
  • [4] J. M. Casas, E. Khmaladze, M. Ladra, Low-dimensional non-abelian Leibniz cohomology, Forum Math. 25 (3) (2013), 443–469.
  • [5] S. Chen, Y. Sheng, Z. Zheng, Non-abelian extensions of Lie 2-algebras, Sci. China Math. 55 (8) (2012), 1655–1668.
  • [6] A. Das, A. Mandal, Extensions, deformations and categorifications of AssDer pairs, arXiv: 2002.11415.
  • [7] A. Das, N. Ratheeb, Extensions and automorphisms of Rota-Baxter groups, J. Algebra 636 (2023), 626–665.
  • [8] L. Du, Y. Tan, Wells sequences for abelian extensions of Lie coalgebras, J. Algebra Appl. 20 (8) (2021), 2150149.
  • [9] L. Du, Y. Tan, Coderivations, abelian extensions and cohomology of Lie coalgebras, Commun. Algebra 49 (10) (2021), 4519-4542.
  • [10] S. Eilenberg, S. Maclane, Cohomology theory in abstract groups. II. Group extensions with non-abelian kernel, Ann. Math. 48 (1947), 326-341.
  • [11] Y. Frégier, Non-abelian cohomology of extensions of Lie algebras as Deligne groupoid, J. Algebra 398 (2014), 243–257.
  • [12] J. M. W. Goldman, The defoemation theory of representations of fundamental groups of compact Kahler manifolds, Publ. Math. IHES 67 (1988), 43–96.
  • [13] S. Goswamia, S. K. Mishraa, G. Mukherjee, Automorphisms of extensions of Lie-Yamaguti algebras and inducibility problem, J. Algebra 641 (2024), 268–306.
  • [14] Y. Guo, B. Hou, Crossed modules and non-abelian extensions of Rota-Baxter Leibniz algebras, J. Geom. Phys. 191 (2023), 104906.
  • [15] S. K. Hazra, A. Habib, Wells exact sequence and automorphisms of extensions of Lie superalgebras, J. Lie Theory 30 (2020), 179–199.
  • [16] B. Hou, J. Zhao, Crossed modules, non-abelian extensions of associative conformal algebras and Wells exact sequences, arXiv:2211.10842v1.
  • [17] N. Inassaridze, E. Khmaladze, M. Ladra, Non-abelian cohomology and extensions of Lie algebras, J. Lie Theory 18 (2008), 413–432.
  • [18] P. Jin, H. Liu, The Wells exact sequence for the automorphism group of a group extension, J. Algebra 324 (2010), 1219–1228.
  • [19] M. K. Kinyon, A. Weinstein, Leibniz algebras, Courant algebroids and multiplications on reductive homogeneous spaces, Amer. J. Math. 123 (2001), 525-550.
  • [20] J. Lin, L. Chen, Y. Ma, On the deformation of Lie-Yamaguti algebras, Acta Math. Sin. (Engl. Ser.) 31 (6) (2015), 938-946.
  • [21] J. Liu, Y. Sheng, Q. Wang, On non-abelian extensions of Leibniz algebras, Commun. Algebra 46 (2) (2018), 574–587.
  • [22] S. K. Mishra, A. Das, S. K. Hazra, Non-abelian extensions of Rota-Baxter Lie algebras and inducibility of automorphisms, Linear. Algebra. Appl. 669 (2023), 147-174.
  • [23] K. Nomizu, Invariant affine connections on homogeneous spaces, Amer. J. Math. 76 (1954), 33-65.
  • [24] I. B. S. Passi, M. Singh, M. K. Yadav, Automorphisms of abelian group extensions, J. Algebra 324 (2010), 820–830.
  • [25] Y. Sheng, J. Zhao, Relative Rota-Baxter operators and symplectic structures on Lie-Yamaguti algebras, Commun. Algebra 50 (9) (2022), 4056-4073.
  • [26] Y. Sheng, J. Zhao, Y. Zhou, Nijnhuis operators, product structures and complex structures on Lie-Yamaguti algebras, J. Algebra Appl. (2021), 2150146.
  • [27] L. Song, A. Makhlouf, R. Tang, On non-abelian extensions of 3-Lie algebras, Commun. Theor. Phys. 69 (2018), 347-356.
  • [28] N. Takahashi, Modules over quadratic spaces and representations of Lie Yamaguti algebras, J. Lie Theory 31 (4) (2021), 897-932.
  • [29] C. Wells, Automorphisms of group extensions, Trans. Amer. Math. Soc. 155 (1971), 189-194.
  • [30] R. Tang, Y. Frégier, Y. Sheng, Cohomologies of a Lie algebra with a derivation and applications, J. Algebra. 534 (2) (2019), 65-99.
  • [31] J. Zhao, Y. Qiao, Maurer-Cartan characterizations, LL_{\infty}-algebras, and cohomology of relative Rota-Baxter operators on Lie Yamaguti algebras, arXiv:2310.05360v1.
  • [32] J. Zhao, Y. Qiao, Cohomology and deformations of relative Rota-Baxter operators on Lie-Yamaguti algebras, arXiv:2204.04872.
  • [33] K. Yamaguti, On the cohomology groups of general Lie triple system, Kumamoto J. Sci. Ser. A 8 (1969), 135-146.
  • [34] K. Yamaguti, On the Lie triple system and its generalization, J. Sci. Hiroshima Univ. Ser. A 21 (1957/58), 155-160.
  • [35] T. Zhang, J. Li, Deformations and extensions of Lie-Yamaguti algebras, Linear Multilinear Algebra 63 (11) (2015), 2212-2231.