This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

No-Go Theorems for Data Privacy

Thomas Studer supported by the Swiss National Science Foundation grant 200020_184625.
(Institute of Computer Science
University of Bern
Bern
Switzerland
[email protected])
Abstract

Controlled query evaluation (CQE) is an approach to guarantee data privacy for database and knowledge base systems. CQE-systems feature a censor function that may distort the answer to a query in order to hide sensitive information. We introduce a high-level formalization of controlled query evaluation and define several desirable properties of CQE-systems. Finally we establish two no-go theorems, which show that certain combinations of these properties cannot be obtained.

1 Introduction

Controlled query evaluation (CQE) refers to a data privacy mechanism where the database (or knowledge base) is equipped with a censor function. This censor checks for each query whether the answer to the query would reveal sensitive information to a user. If this is the case, then the censor will distort the answer. Essentially, there are two possibilities how an answer may be distorted:

  1. 1.

    the CQE-system may refuse to answer the query [18] or

  2. 2.

    the CQE-system may give an incorrect answer, i.e. it lies [10].

This censor based approach has the advantage that the task of maintaining privacy is separated from the task of keeping the data. This gives more flexibility than an integrated approach (like hiding rows in a database) and guarantees than no information is leaked through otherwise unidentified inference channels. Controlled query evaluation has been applied to a variety of data models and control mechansims, see, e.g. [5, 6, 7, 8, 9, 21].

No-go theorems are well-known in theoretical physics where they describe particular situations that are not physically possible. Often the term is used for results in quantum mechanics like Bell’s theorem [4], the Kochen–Specker theorem [15], or, for a more recent example, the Frauchiger–Renner paradox [12]. Nurgalieva and del Rio  [16] provide a modal logic analysis of the latter paradox. Arrow’s theorem [2] in social choice theory also is a no-go theorem stating that no voting system can be designed that meets certain given fairness conditions. Pacuit and Yang  [17] present a version of independence logic in which Arrow’s theorem is derivable.

In the present paper we develop a highly abstract model for dynamic query evaluation systems like CQE. We formulate several desirable properties of CQE-systems in our framework and establish two no-go theorems saying that certain combinations of those properties are impossible. The main contribution of this paper is the presentation of the abstract logical framework as well as the high-level formulation of the no-go theorems. Note that some particular instances of our results have already been known [5, 21].

There are many different notions of privacy available in the literature. For our results, we rely on provable privacy [19, 20], which is a rather weak notion of data privacy. Note that using a weak definition of privacy makes our impossibility theorems actually stronger since they state that under certain conditions not even this weak form of privacy can be achieved.

Clearly our work is also connected to the issues of lying and deception. Logics dealing with these notions are introduced and studied, e.g., in [1, 22, 13].

2 Logical Preliminaries

Let XX be a set. We use 𝒫(X)\mathcal{P}(X) to denote the power set of XX. For sets Γ\Gamma and Δ\Delta we use Γ,Δ\Gamma,\Delta for ΓΔ\Gamma\cup\Delta. Moreover, in such a context we write AA for the singleton set {A}\{A\}. Hence Γ,A\Gamma,A stands for Γ{A}\Gamma\cup\{A\}.

Definition 1.

A logic 𝖫\mathsf{L} is given by

  1. 1.

    a set of formulas 𝖥𝗆𝗅𝖫\mathsf{Fml}_{\mathsf{L}} and

  2. 2.

    a consequence relation 𝖫\vdash_{\mathsf{L}} for 𝖫\mathsf{L} that is a relation between sets of formulas and formulas, i.e. 𝖫𝒫(𝖥𝗆𝗅𝖫)×𝖥𝗆𝗅𝖫\vdash_{\mathsf{L}}\ \subseteq\ \mathcal{P}(\mathsf{Fml}_{\mathsf{L}})\times\mathsf{Fml}_{\mathsf{L}} satisfying for all A,C𝖥𝗆𝗅𝖫A,C\in\mathsf{Fml}_{\mathsf{L}} and Γ,Δ𝒫(𝖥𝗆𝗅𝖫)\Gamma,\Delta\in\mathcal{P}(\mathsf{Fml}_{\mathsf{L}}):

    1. (a)

      reflexivity: {A}𝖫A\{A\}\vdash_{\mathsf{L}}A;

    2. (b)

      weakening: Γ𝖫AΓ,Δ𝖫A\Gamma\vdash_{\mathsf{L}}A\ \Longrightarrow\ \Gamma,\Delta\vdash_{\mathsf{L}}A;

    3. (c)

      transitivity: Γ𝖫C and Δ,C𝖫AΓ,Δ𝖫A\Gamma\vdash_{\mathsf{L}}C\text{ and }\Delta,C\vdash_{\mathsf{L}}A\ \Longrightarrow\ \Gamma,\Delta\vdash_{\mathsf{L}}A.

Transitivity is sometimes called cut. The previous definition gives us single conclusion consequence relations, which is sufficient for the purpose of this paper. For other notions of consequence relations see, e.g., [3] and [14].

As usual, we write 𝖫A\vdash_{\mathsf{L}}A for 𝖫A\emptyset\vdash_{\mathsf{L}}A. A formula AA is called a theorem of 𝖫\mathsf{L} if 𝖫A\vdash_{\mathsf{L}}A.

We do not specify the logic 𝖫\mathsf{L} any further. The only thing we need is a consequence relation as given above. For instance, 𝖫\mathsf{L} may be classical propositional logic with 𝖫\vdash_{\mathsf{L}} being the usual derivation relation (see Section 4) or 𝖫\mathsf{L} may be a description logic with 𝖫\vdash_{\mathsf{L}} being its semantic consequence relation [21].

Definition 2.
  1. 1.

    A logic 𝖫\mathsf{L} is called consistent if there exists a formula A𝖥𝗆𝗅𝖫A\in\mathsf{Fml}_{\mathsf{L}} such that ⊬𝖫A\not{\vdash_{\mathsf{L}}}A.

  2. 2.

    A set Γ\Gamma of 𝖥𝗆𝗅𝖫\mathsf{Fml}_{\mathsf{L}}-formulas is called 𝖫\mathsf{L}-consistent if there exists a formula A𝖥𝗆𝗅𝖫A\in\mathsf{Fml}_{\mathsf{L}} such that Γ⊬𝖫A\Gamma\not{\vdash_{\mathsf{L}}}A.

We need a simple modal logic 𝖬\mathsf{M} over 𝖫\mathsf{L}.

Definition 3.

The set of formulas 𝖥𝗆𝗅𝖬\mathsf{Fml}_{\mathsf{M}} is given inductively by:

  1. 1.

    if AA is a formula of 𝖥𝗆𝗅𝖫\mathsf{Fml}_{\mathsf{L}}, then A\Box A is a formula of 𝖥𝗆𝗅𝖬\mathsf{Fml}_{\mathsf{M}};

  2. 2.

    \bot is a formula of 𝖥𝗆𝗅𝖬\mathsf{Fml}_{\mathsf{M}};

  3. 3.

    if AA and BB are formulas of 𝖥𝗆𝗅𝖬\mathsf{Fml}_{\mathsf{M}}, so is ABA\to B, too.

We define the remaining classical connectives \top, \land, \lor, and ¬\lnot as usual. Note that 𝖬\mathsf{M} is not a fully-fledged modal logic. For instance, it does not include nested modalities.

We give semantics to 𝖥𝗆𝗅𝖬\mathsf{Fml}_{\mathsf{M}}-formulas as follows.

Definition 4.

An 𝖬\mathsf{M}-model \mathcal{M} is a set of sets of 𝖥𝗆𝗅𝖫\mathsf{Fml}_{\mathsf{L}}-formulas, that is

𝒫(𝖥𝗆𝗅𝖫).\mathcal{M}\subseteq\mathcal{P}(\mathsf{Fml}_{\mathsf{L}}).
Definition 5.

Let \mathcal{M} be an 𝖬\mathsf{M}-model. Truth of an 𝖥𝗆𝗅𝖬\mathsf{Fml}_{\mathsf{M}}-formula in \mathcal{M} is inductively defined by:

  1. 1.

    A\mathcal{M}\Vdash\Box A iff w𝖫Aw\vdash_{\mathsf{L}}A for all ww\in\mathcal{M};

  2. 2.

    ⊮\mathcal{M}\not\Vdash\bot;

  3. 3.

    AB\mathcal{M}\Vdash A\to B iff ⊮A\mathcal{M}\not\Vdash A or B\mathcal{M}\Vdash B.

We use the following standard definition.

Definition 6.

Let Γ\Gamma be a set of 𝖥𝗆𝗅𝖬\mathsf{Fml}_{\mathsf{M}}-formulas.

  1. 1.

    We write Γ\mathcal{M}\Vdash\Gamma iff A\mathcal{M}\Vdash A for each AΓA\in\Gamma.

  2. 2.

    Γ\Gamma is called satisfiable iff there exists an 𝖬\mathsf{M}-model \mathcal{M} with Γ\mathcal{M}\Vdash\Gamma.

  3. 3.

    Γ\Gamma entails a formula AA, in symbols ΓA\Gamma\models A, iff for each model \mathcal{M} we have that

    ΓimpliesA.\mathcal{M}\Vdash\Gamma\quad\text{implies}\quad\mathcal{M}\Vdash A.

3 Privacy

Definition 7.

A privacy configuration is a triple (𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)(\mathsf{KB},\mathsf{AK},\mathsf{Sec}) that consists of:

  1. 1.

    the knowledge base 𝖪𝖡𝖥𝗆𝗅𝖫\mathsf{KB}\subseteq\mathsf{Fml}_{\mathsf{L}}, which is only accessible via the censor;

  2. 2.

    the set of a priori knowledge 𝖠𝖪𝖥𝗆𝗅𝖬\mathsf{AK}\subseteq\mathsf{Fml}_{\mathsf{M}}, which formalizes general background knowledge known to the attacker and the censor;

  3. 3.

    the set of secrets 𝖲𝖾𝖼𝖥𝗆𝗅𝖫\mathsf{Sec}\subseteq\mathsf{Fml}_{\mathsf{L}}, which should be protected by the censor.

A privacy configuration (𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)(\mathsf{KB},\mathsf{AK},\mathsf{Sec}) satisfies the following conditions:

  1. 1.

    𝖪𝖡\mathsf{KB} is 𝖫\mathsf{L}-consistent (consistency);

  2. 2.

    {𝖪𝖡}𝖠𝖪\{\mathsf{KB}\}\Vdash\mathsf{AK} (truthful start);

  3. 3.

    𝖠𝖪⊧̸s\mathsf{AK}\not\models\Box s for each s𝖲𝖾𝖼s\in\mathsf{Sec} (hidden secrets).

Note that in the above definition, 𝖪𝖡\mathsf{KB} and 𝖲𝖾𝖼\mathsf{Sec} are sets of 𝖥𝗆𝗅𝖫\mathsf{Fml}_{\mathsf{L}}-formulas while 𝖠𝖪\mathsf{AK} is a set of 𝖥𝗆𝗅𝖬\mathsf{Fml}_{\mathsf{M}}-formulas. Thus 𝖠𝖪\mathsf{AK} may not only contain domain knowledge but also knowledge about the structure of 𝖪𝖡\mathsf{KB}. This is further explained in Section 4.

A query to a knowledge base 𝖪𝖡\mathsf{KB} is simply a formula of 𝖥𝗆𝗅𝖫\mathsf{Fml}_{\mathsf{L}}.

Given a logic 𝖫\mathsf{L}, we can evaluate a query qq over a knowledge base 𝖪𝖡\mathsf{KB}. There are two possible answers: tt (true) and uu (unknown).

Definition 8.

The evaluation function 𝖾𝗏𝖺𝗅\mathsf{eval} is defined by:

𝖾𝗏𝖺𝗅(𝖪𝖡,q):={tif𝖪𝖡𝖫quotherwise\mathsf{eval}(\mathsf{KB},q):=\begin{cases}t&\text{if}\quad\mathsf{KB}\vdash_{\mathsf{L}}q\\ u&\text{otherwise}\end{cases}

If the language of the logic 𝖫\mathsf{L} includes negation, then one may also consider an evaluation function that can return the value ff (false), i.e. one defines 𝖾𝗏𝖺𝗅(𝖪𝖡,q):=f\mathsf{eval}(\mathsf{KB},q):=f if 𝖪𝖡𝖫¬q\mathsf{KB}\vdash_{\mathsf{L}}\lnot q. However, in the general setting of this paper, we cannot include this case.

A censor has to hide the secrets. In order to achieve this, it can not only answer tt and uu to a query but also rr (refuse to answer). We denote the set of possible answers of a censor by

𝔸:={t,u,r}.\mathbb{A}:=\{t,u,r\}.

Let XX be a set. Then XωX^{\omega} denotes the set of infinite sequences of elements of XX.

Definition 9.

A censor is a mapping that assigns an answering function

𝖢𝖾𝗇𝗌(𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼):𝖥𝗆𝗅𝖫ω𝔸ω\mathsf{Cens}_{(\mathsf{KB},\mathsf{AK},\mathsf{Sec})}:\mathsf{Fml}_{\mathsf{L}}^{\omega}\longrightarrow\mathbb{A}^{\omega}

to each privacy configuration (𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)(\mathsf{KB},\mathsf{AK},\mathsf{Sec}). By abuse of notation, we also call the answering function 𝖢𝖾𝗇𝗌(𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)\mathsf{Cens}_{(\mathsf{KB},\mathsf{AK},\mathsf{Sec})} a censor. A sequence q𝖥𝗆𝗅𝖫ωq\in\mathsf{Fml}_{\mathsf{L}}^{\omega} is called query sequence.

Usually, the privacy configuration will be clear from the context. In that case we simply use 𝖢𝖾𝗇𝗌\mathsf{Cens} instead of 𝖢𝖾𝗇𝗌(𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)\mathsf{Cens}_{(\mathsf{KB},\mathsf{AK},\mathsf{Sec})}.

Given a sequence ss, we use sis_{i} to denote its ii-th element. That is for a query sequence q𝖥𝗆𝗅𝖫ωq\in\mathsf{Fml}_{\mathsf{L}}^{\omega}, we use qiq_{i} to denote the ii-th query and 𝖢𝖾𝗇𝗌(q)i\mathsf{Cens}(q)_{i} to denote the ii-th answer of the censor.

Example 10.

Let A,B,C𝖥𝗆𝗅𝖫A,B,C\in\mathsf{Fml}_{\mathsf{L}}. We define a privacy configuration with 𝖪𝖡={A,C}\mathsf{KB}=\{A,C\}, 𝖠𝖪=\mathsf{AK}=\emptyset, and 𝖲𝖾𝖼={C}\mathsf{Sec}=\{C\}. A censor 𝖢𝖾𝗇𝗌\mathsf{Cens} yields an answering function 𝖢𝖾𝗇𝗌(𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)\mathsf{Cens}_{(\mathsf{KB},\mathsf{AK},\mathsf{Sec})}, which applied to a query sequence q=(A,B,C,)q=(A,B,C,\ldots) yields a sequence of answers, e.g.,

𝖢𝖾𝗇𝗌(𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)(q)=t,u,r,.\mathsf{Cens}_{(\mathsf{KB},\mathsf{AK},\mathsf{Sec})}(q)={t,u,r,\ldots}.

In this case, 𝖢𝖾𝗇𝗌(𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)\mathsf{Cens}_{(\mathsf{KB},\mathsf{AK},\mathsf{Sec})} gives true answers since 𝖾𝗏𝖺𝗅(𝖪𝖡,A)=t\mathsf{eval}(\mathsf{KB},A)=t and 𝖾𝗏𝖺𝗅(𝖪𝖡,B)=u\mathsf{eval}(\mathsf{KB},B)=u and it protects the secret be refusing to answer the query CC.

Another option for the answering function would be to answer the third query with uu, i.e., it would lie (instead of refuse to answer) in order to protect the secret.

A further option would be to always refuse the answer, i.e.

𝖢𝖾𝗇𝗌(𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)(q)=r,r,r,.\mathsf{Cens}_{(\mathsf{KB},\mathsf{AK},\mathsf{Sec})}(q)={r,r,r,\ldots}.

This, of course, would be a trivial (and useless) answering function that would, however, preserve all secrets.

In this paper, we will consider continuous censors only, which are given as follows.

Definition 11.

A censor 𝖢𝖾𝗇𝗌\mathsf{Cens} is continuous iff for each privacy configuration (𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)(\mathsf{KB},\mathsf{AK},\mathsf{Sec}) and for all query sequences q,q𝖥𝗆𝗅𝖫ωq,q^{\prime}\in\mathsf{Fml}_{\mathsf{L}}^{\omega} and all nωn\in\omega we have that

q|n=q|n𝖢𝖾𝗇𝗌(𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)(q)|n=𝖢𝖾𝗇𝗌(𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)(q)|nq|_{n}=q^{\prime}|_{n}\quad\Longrightarrow\quad\mathsf{Cens}_{(\mathsf{KB},\mathsf{AK},\mathsf{Sec})}(q)|_{n}=\mathsf{Cens}_{(\mathsf{KB},\mathsf{AK},\mathsf{Sec})}(q^{\prime})|_{n}

where for an infinite sequence s=(s1,s2,)s=(s_{1},s_{2},\ldots), we use s|ns|_{n} to denote the initial segment of ss of length nn, i.e. s|n=(s1,,sn)s|_{n}=(s_{1},\ldots,s_{n}).

Continuity means that the answer of a censor to a query does not depend on future queries, see also Lemma 14.

A censor is called truthful if it does not lie.

Definition 12.

A censor 𝖢𝖾𝗇𝗌\mathsf{Cens} is called truthful iff for each privacy configuration (𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)(\mathsf{KB},\mathsf{AK},\mathsf{Sec}), all query sequences q=(q1,q2,)q=(q_{1},q_{2},\ldots), and all sequences

(a1,a2,)=𝖢𝖾𝗇𝗌(𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)(q)(a_{1},a_{2},\ldots)=\mathsf{Cens}_{(\mathsf{KB},\mathsf{AK},\mathsf{Sec})}(q)

we have that for all iωi\in\omega

ai=𝖾𝗏𝖺𝗅(𝖪𝖡,qi)orai=r.a_{i}=\mathsf{eval}(\mathsf{KB},q_{i})\quad\text{or}\quad a_{i}=r.

Hence a truthful censor may refuse to answer a query in order to protect a secret but it will not give an incorrect answer.

In the modal logic 𝖬\mathsf{M} over 𝖫\mathsf{L}, we can express what knowledge one can gain from the answers of a censor to a query. This is called the content of the answer.

Definition 13.

Given an answer a𝔸a\in\mathbb{A} to a query q𝖥𝗆𝗅𝖫q\in\mathsf{Fml}_{\mathsf{L}}, we define its content as follows:

𝖼𝗈𝗇𝗍(q,t)\displaystyle\mathsf{cont}(q,t) :=q\displaystyle:=\Box q
𝖼𝗈𝗇𝗍(q,u)\displaystyle\mathsf{cont}(q,u) :=¬q\displaystyle:=\lnot\Box q
𝖼𝗈𝗇𝗍(q,r)\displaystyle\mathsf{cont}(q,r) :=\displaystyle:=\top

Assume that we are given a privacy configuration (𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)(\mathsf{KB},\mathsf{AK},\mathsf{Sec}) and a censor 𝖢𝖾𝗇𝗌\mathsf{Cens}. We define the content of the answers of the censor to a query sequence q𝖥𝗆𝗅𝖫ωq\in\mathsf{Fml}_{\mathsf{L}}^{\omega} up to nωn\in\omega by

𝖼𝗈𝗇𝗍(𝖢𝖾𝗇𝗌(𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)(q),n):=1in{𝖼𝗈𝗇𝗍(qi,ai)}𝖠𝖪\mathsf{cont}(\mathsf{Cens}_{(\mathsf{KB},\mathsf{AK},\mathsf{Sec})}(q),n):=\bigcup_{1\leq i\leq n}\!\{\mathsf{cont}(q_{i},a_{i})\}\cup\mathsf{AK}

where a=𝖢𝖾𝗇𝗌(𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)(q)a=\mathsf{Cens}_{(\mathsf{KB},\mathsf{AK},\mathsf{Sec})}(q). Note that here we have also included the a priori knowledge.

The following is a trivial observation showing the role of continuity.

Lemma 14.

Let 𝖢𝖾𝗇𝗌\mathsf{Cens} be a continuous censor. The content function is monotone in the second argument: for mnm\leq n we have

𝖼𝗈𝗇𝗍(𝖢𝖾𝗇𝗌(q),m)𝖼𝗈𝗇𝗍(𝖢𝖾𝗇𝗌(q),n).\mathsf{cont}(\mathsf{Cens}(q),m)\subseteq\mathsf{cont}(\mathsf{Cens}(q),n).

We call a censor credible if it does not return contradicting answers.

Definition 15.

A censor 𝖢𝖾𝗇𝗌\mathsf{Cens} is called credible iff for each privacy configuration (𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)(\mathsf{KB},\mathsf{AK},\mathsf{Sec}) and for every query sequence qq and every nωn\in\omega, the set 𝖼𝗈𝗇𝗍(𝖢𝖾𝗇𝗌(𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)(q),n)\mathsf{cont}(\mathsf{Cens}_{(\mathsf{KB},\mathsf{AK},\mathsf{Sec})}(q),n) is satisfiable.

Definition 16.

The full content of a knowledge base 𝖪𝖡\mathsf{KB} is given by

𝖿𝗎𝗅𝗅(𝖪𝖡):=A𝖥𝗆𝗅𝖫𝖼𝗈𝗇𝗍(A,𝖾𝗏𝖺𝗅(𝖪𝖡,A)).\mathsf{full}(\mathsf{KB}):=\bigcup_{A\in\mathsf{Fml}_{\mathsf{L}}}\mathsf{cont}(A,\mathsf{eval}(\mathsf{KB},A)).
Lemma 17.

For any knowledge base 𝖪𝖡\mathsf{KB}, we have that

{𝖪𝖡}𝖿𝗎𝗅𝗅(𝖪𝖡).\{\mathsf{KB}\}\Vdash\mathsf{full}(\mathsf{KB}).
Proof.

Let AA be an 𝖥𝗆𝗅𝖫\mathsf{Fml}_{\mathsf{L}}-formula. We dinstinguish:

  1. 1.

    𝖪𝖡𝖫A\mathsf{KB}\vdash_{\mathsf{L}}A. Then A𝖿𝗎𝗅𝗅(𝖪𝖡)\Box A\in\mathsf{full}(\mathsf{KB}) and further {𝖪𝖡}A\{\mathsf{KB}\}\Vdash\Box A.

  2. 2.

    𝖪𝖡⊬𝖫A\mathsf{KB}\not\vdash_{\mathsf{L}}A. Then ¬A𝖿𝗎𝗅𝗅(𝖪𝖡)\lnot\Box A\in\mathsf{full}(\mathsf{KB}) and further {𝖪𝖡}¬A\{\mathsf{KB}\}\Vdash\lnot\Box A.

Lemma 18.

We let (𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)(\mathsf{KB},\mathsf{AK},\mathsf{Sec}) be a privacy configuration. Further we let 𝖢𝖾𝗇𝗌(𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)\mathsf{Cens}_{(\mathsf{KB},\mathsf{AK},\mathsf{Sec})} be a truthful censor. For every query sequence qq and nωn\in\omega, we have that

𝖼𝗈𝗇𝗍(𝖢𝖾𝗇𝗌(𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)(q),n)𝖿𝗎𝗅𝗅(𝖪𝖡){}𝖠𝖪.\mathsf{cont}(\mathsf{Cens}_{(\mathsf{KB},\mathsf{AK},\mathsf{Sec})}(q),n)\subseteq\mathsf{full}(\mathsf{KB})\cup\{\top\}\cup\mathsf{AK}.
Proof.

By induction on nn. The base case n=0n=0 is trivial since

𝖼𝗈𝗇𝗍(𝖢𝖾𝗇𝗌(𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)(q),0)=𝖠𝖪.\mathsf{cont}(\mathsf{Cens}_{(\mathsf{KB},\mathsf{AK},\mathsf{Sec})}(q),0)=\mathsf{AK}.

Induction step. Since 𝖢𝖾𝗇𝗌\mathsf{Cens} is truthful, we have

an+1{r,𝖾𝗏𝖺𝗅(𝖪𝖡,qn+1)}.a_{n+1}\in\{r,\mathsf{eval}(\mathsf{KB},q_{n+1})\}.

We distinguish:

  1. 1.

    an+1=ra_{n+1}=r. Then 𝖼𝗈𝗇𝗍(𝖢𝖾𝗇𝗌(q),n+1)=𝖼𝗈𝗇𝗍(𝖢𝖾𝗇𝗌(q),n){}\mathsf{cont}(\mathsf{Cens}(q),n+1)=\mathsf{cont}(\mathsf{Cens}(q),n)\cup\{\top\} and the claim follows immediately from the induction hypothesis.

  2. 2.

    an+1=𝖾𝗏𝖺𝗅(𝖪𝖡,qn+1)a_{n+1}=\mathsf{eval}(\mathsf{KB},q_{n+1}). Then

    𝖼𝗈𝗇𝗍(𝖢𝖾𝗇𝗌(q),n+1)=𝖼𝗈𝗇𝗍(𝖢𝖾𝗇𝗌(q),n)𝖼𝗈𝗇𝗍(qn+1,𝖾𝗏𝖺𝗅(𝖪𝖡,qn+1)).\begin{split}\mathsf{cont}(\mathsf{Cens}(q),n+1)=\ &\mathsf{cont}(\mathsf{Cens}(q),n)\ \cup\\ &\mathsf{cont}(q_{n+1},\mathsf{eval}(\mathsf{KB},q_{n+1})).\end{split}

    The claim follows from the induction hypothesis and

    𝖼𝗈𝗇𝗍(qn+1,𝖾𝗏𝖺𝗅(𝖪𝖡,qn+1))𝖿𝗎𝗅𝗅(𝖪𝖡),\mathsf{cont}(q_{n+1},\mathsf{eval}(\mathsf{KB},q_{n+1}))\in\mathsf{full}(\mathsf{KB}),

    which holds by Definition 16.

The following corollary is a generalization of Cor. 30 in [21].

Corollary 19.

Every truthful censor is credible.

Proof.

Let (𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)(\mathsf{KB},\mathsf{AK},\mathsf{Sec}) be a privacy configuration and 𝖢𝖾𝗇𝗌\mathsf{Cens} be a truthful censor for it. By Definition 7, we have {𝖪𝖡}𝖠𝖪\{\mathsf{KB}\}\Vdash\mathsf{AK}. Thus by the two previous lemmas, we find that for each nωn\in\omega,

{𝖪𝖡}\displaystyle\{\mathsf{KB}\}\Vdash\ 𝖿𝗎𝗅𝗅(𝖪𝖡){}𝖠𝖪\displaystyle\mathsf{full}(\mathsf{KB})\cup\{\top\}\cup\mathsf{AK}
and
𝖿𝗎𝗅𝗅(𝖪𝖡){}𝖠𝖪𝖼𝗈𝗇𝗍(𝖢𝖾𝗇𝗌(q),n),\displaystyle\mathsf{full}(\mathsf{KB})\cup\{\top\}\cup\mathsf{AK}\supseteq\mathsf{cont}(\mathsf{Cens}(q),n),

that means 𝖼𝗈𝗇𝗍(𝖢𝖾𝗇𝗌(q),n)\mathsf{cont}(\mathsf{Cens}(q),n) is satisfiable for each nωn\in\omega and thus 𝖢𝖾𝗇𝗌\mathsf{Cens} is credible. ∎

There are several properties that a ‘good’ censor should fulfil. We call a censor effective if it protects all secrets.

Definition 20.

A censor 𝖢𝖾𝗇𝗌\mathsf{Cens} is called effective iff for each privacy configuration (𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)(\mathsf{KB},\mathsf{AK},\mathsf{Sec}) and for every query sequence q𝖥𝗆𝗅𝖫ωq\in\mathsf{Fml}_{\mathsf{L}}^{\omega} and every nωn\in\omega, we have

𝖼𝗈𝗇𝗍(𝖢𝖾𝗇𝗌(𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)(q),n)⊧̸sfor each s𝖲𝖾𝖼\mathsf{cont}(\mathsf{Cens}_{(\mathsf{KB},\mathsf{AK},\mathsf{Sec})}(q),n)\not\models\Box s\quad\text{for each $s\in\mathsf{Sec}$}

A ‘good’ censor should only distort an answer to a query when it is absolutely necessary, i.e. when giving the correct answer would leak a secret. We call such a censor minimally invasive.

Definition 21.

Let 𝖢𝖾𝗇𝗌\mathsf{Cens} be an effective and credible censor. This censor is called minimally invasive iff for each privacy configuration (𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)(\mathsf{KB},\mathsf{AK},\mathsf{Sec}) and for each query sequence q𝖥𝗆𝗅𝖫ωq\in\mathsf{Fml}_{\mathsf{L}}^{\omega}, we have that whenever

𝖢𝖾𝗇𝗌(𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)(q)i𝖾𝗏𝖺𝗅(𝖪𝖡,qi),\mathsf{Cens}_{(\mathsf{KB},\mathsf{AK},\mathsf{Sec})}(q)_{i}\neq\mathsf{eval}(\mathsf{KB},q_{i}),

replacing

𝖢𝖾𝗇𝗌(𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)(q)iwith𝖾𝗏𝖺𝗅(𝖪𝖡,qi)\mathsf{Cens}_{(\mathsf{KB},\mathsf{AK},\mathsf{Sec})}(q)_{i}\quad\text{with}\quad\mathsf{eval}(\mathsf{KB},q_{i})

would lead to a violation of effectiveness or credibility, that is for any censor 𝖢𝖾𝗇𝗌(𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)\mathsf{Cens}_{(\mathsf{KB},\mathsf{AK},\mathsf{Sec})}^{\prime} such that

𝖢𝖾𝗇𝗌(𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)(q)|i1=𝖢𝖾𝗇𝗌(𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)(q)|i1\mathsf{Cens}_{(\mathsf{KB},\mathsf{AK},\mathsf{Sec})}^{\prime}(q)|_{i-1}=\mathsf{Cens}_{(\mathsf{KB},\mathsf{AK},\mathsf{Sec})}(q)|_{i-1}

and

𝖢𝖾𝗇𝗌(𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)(q)i=𝖾𝗏𝖺𝗅(𝖪𝖡,qi)\mathsf{Cens}_{(\mathsf{KB},\mathsf{AK},\mathsf{Sec})}^{\prime}(q)_{i}=\mathsf{eval}(\mathsf{KB},q_{i})

we have that for some nn

𝖼𝗈𝗇𝗍(𝖢𝖾𝗇𝗌(𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)(q),n)sfor some s𝖲𝖾𝖼\mathsf{cont}(\mathsf{Cens}_{(\mathsf{KB},\mathsf{AK},\mathsf{Sec})}^{\prime}(q),n)\models\Box s\quad\text{for some $s\in\mathsf{Sec}$}

or

𝖼𝗈𝗇𝗍(𝖢𝖾𝗇𝗌(𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)(q),n) is not satisfiable.\mathsf{cont}(\mathsf{Cens}_{(\mathsf{KB},\mathsf{AK},\mathsf{Sec})}^{\prime}(q),n)\text{ is not satisfiable}.

It is a trivial observation that a truthful, effective and minimally invasive censor has to answer the same query always in the same way.

Lemma 22.

Let 𝖢𝖾𝗇𝗌\mathsf{Cens} be a truthful, effective and minimally invasive censor. Further let (𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)(\mathsf{KB},\mathsf{AK},\mathsf{Sec}) be a privacy configuration and qq be a query sequence with qi=qjq_{i}=q_{j} for some i,ji,j. Then

𝖢𝖾𝗇𝗌(𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)(q)i=𝖢𝖾𝗇𝗌(𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)(q)j.\mathsf{Cens}_{(\mathsf{KB},\mathsf{AK},\mathsf{Sec})}(q)_{i}=\mathsf{Cens}_{(\mathsf{KB},\mathsf{AK},\mathsf{Sec})}(q)_{j}.

Consider a truthful, effective, continuous and minimally invasive censor and a given query sequence. If the censor lies to answer some query, then giving the correct answer would immediately reveal a secret.

Lemma 23.

Let 𝖢𝖾𝗇𝗌\mathsf{Cens} be a truthful, effective, continuous and minimally invasive censor. Further let (𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)(\mathsf{KB},\mathsf{AK},\mathsf{Sec}) be a privacy configuration and qq be a query sequence. Let ii be the least natural number such that

𝖢𝖾𝗇𝗌(𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)(q)i𝖾𝗏𝖺𝗅(𝖪𝖡,qi).\mathsf{Cens}_{(\mathsf{KB},\mathsf{AK},\mathsf{Sec})}(q)_{i}\neq\mathsf{eval}(\mathsf{KB},q_{i}).

Let 𝖢𝖾𝗇𝗌(𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)\mathsf{Cens}_{(\mathsf{KB},\mathsf{AK},\mathsf{Sec})}^{\prime} be such that

𝖢𝖾𝗇𝗌(𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)(q)|i1=𝖢𝖾𝗇𝗌(𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)(q)|i1\mathsf{Cens}_{(\mathsf{KB},\mathsf{AK},\mathsf{Sec})}^{\prime}(q)|_{i-1}=\mathsf{Cens}_{(\mathsf{KB},\mathsf{AK},\mathsf{Sec})}(q)|_{i-1}

and

𝖢𝖾𝗇𝗌(𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)(q)i=𝖾𝗏𝖺𝗅(𝖪𝖡,qi).\mathsf{Cens}_{(\mathsf{KB},\mathsf{AK},\mathsf{Sec})}^{\prime}(q)_{i}=\mathsf{eval}(\mathsf{KB},q_{i}).

Then it holds that

𝖼𝗈𝗇𝗍(𝖢𝖾𝗇𝗌(𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)(q),i)sfor some s𝖲𝖾𝖼.\mathsf{cont}(\mathsf{Cens}_{(\mathsf{KB},\mathsf{AK},\mathsf{Sec})}^{\prime}(q),i)\models\Box s\quad\text{for some $s\in\mathsf{Sec}$}.
Proof.

Consider the query sequence qq^{\prime} given by qj:=qjq^{\prime}_{j}:=q_{j} for j<ij<i and qj:=qiq^{\prime}_{j}:=q_{i} for jij\geq i, i.e. qq^{\prime} has the form (q1,q2,,qi1,qi,qi,qi,)(q_{1},q_{2},\ldots,q_{i-1},q_{i},q_{i},q_{i},\ldots). In particular, we have q|i=q|iq|_{i}=q^{\prime}|_{i}. Thus by continuity of the censor we find

𝖢𝖾𝗇𝗌(𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)(q)|i=𝖢𝖾𝗇𝗌(𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)(q)|i.\mathsf{Cens}_{(\mathsf{KB},\mathsf{AK},\mathsf{Sec})}(q)|_{i}=\mathsf{Cens}_{(\mathsf{KB},\mathsf{AK},\mathsf{Sec})}(q^{\prime})|_{i}.

Thus 𝖢𝖾𝗇𝗌(𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)(q)i𝖾𝗏𝖺𝗅(𝖪𝖡,qi)\mathsf{Cens}_{(\mathsf{KB},\mathsf{AK},\mathsf{Sec})}(q^{\prime})_{i}\neq\mathsf{eval}(\mathsf{KB},q_{i}). By the definition of minimally invasive we find that for some nn

𝖼𝗈𝗇𝗍(𝖢𝖾𝗇𝗌(𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)(q),n)sfor some s𝖲𝖾𝖼\mathsf{cont}(\mathsf{Cens}_{(\mathsf{KB},\mathsf{AK},\mathsf{Sec})}^{\prime}(q^{\prime}),n)\models\Box s\quad\text{for some $s\in\mathsf{Sec}$} (1)

or

𝖼𝗈𝗇𝗍(𝖢𝖾𝗇𝗌(𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)(q),n) is not satisfiable.\mathsf{cont}(\mathsf{Cens}_{(\mathsf{KB},\mathsf{AK},\mathsf{Sec})}^{\prime}(q^{\prime}),n)\text{ is not satisfiable}. (2)

Since the censor is truthful and by Corollary 19, we find that (2) is not possible. Thus (1) holds for some nn.

By the definition of qq^{\prime} and the previous lemma we find

𝖼𝗈𝗇𝗍(𝖢𝖾𝗇𝗌(𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)(q),n)=𝖼𝗈𝗇𝗍(𝖢𝖾𝗇𝗌(𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)(q),i)\mathsf{cont}(\mathsf{Cens}_{(\mathsf{KB},\mathsf{AK},\mathsf{Sec})}^{\prime}(q^{\prime}),n)=\mathsf{cont}(\mathsf{Cens}_{(\mathsf{KB},\mathsf{AK},\mathsf{Sec})}^{\prime}(q^{\prime}),i)

if ini\leq n. Thus, in case ini\leq n, (1) implies

𝖼𝗈𝗇𝗍(𝖢𝖾𝗇𝗌(𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)(q),i)sfor some s𝖲𝖾𝖼.\mathsf{cont}(\mathsf{Cens}_{(\mathsf{KB},\mathsf{AK},\mathsf{Sec})}^{\prime}(q),i)\models\Box s\quad\text{for some $s\in\mathsf{Sec}$}. (3)

In case i>ni>n, we find by Lemma 14 that

𝖼𝗈𝗇𝗍(𝖢𝖾𝗇𝗌(𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)(q),n)𝖼𝗈𝗇𝗍(𝖢𝖾𝗇𝗌(𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)(q),i).\mathsf{cont}(\mathsf{Cens}_{(\mathsf{KB},\mathsf{AK},\mathsf{Sec})}^{\prime}(q),n)\subseteq\mathsf{cont}(\mathsf{Cens}_{(\mathsf{KB},\mathsf{AK},\mathsf{Sec})}^{\prime}(q),i).

Thus again (1) implies (3), which finishes the proof. ∎

Next we define the notion of a repudiating censor, which garantees that there is always a knowledge base in which no secret holds and which, given as input to the answering function, produces the same results as the actual knowledge base. Hence this definition provides a version of plausible deniability for all secrets.

Definition 24.

A censor 𝖢𝖾𝗇𝗌\mathsf{Cens} is called repudiating iff for each privacy configuration (𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)(\mathsf{KB},\mathsf{AK},\mathsf{Sec}) and each query sequence qq, there are knowledge bases 𝖪𝖡i\mathsf{KB}_{i} (iωi\in\omega) such that

  1. 1.

    (𝖪𝖡i,𝖠𝖪,𝖲𝖾𝖼)(\mathsf{KB}_{i},\mathsf{AK},\mathsf{Sec}) is a privacy configuration for each iωi\in\omega;

  2. 2.

    𝖢𝖾𝗇𝗌(𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)(q)|n=𝖢𝖾𝗇𝗌(𝖪𝖡n,𝖠𝖪,𝖲𝖾𝖼)|n\mathsf{Cens}_{(\mathsf{KB},\mathsf{AK},\mathsf{Sec})}(q)|_{n}=\mathsf{Cens}_{(\mathsf{KB}_{n},\mathsf{AK},\mathsf{Sec})}|_{n}, for each nωn\in\omega;

  3. 3.

    𝖪𝖡i⊬𝖫s\mathsf{KB}_{i}\not\vdash_{\mathsf{L}}s for each s𝖲𝖾𝖼s\in\mathsf{Sec} and each iωi\in\omega.

Now we can establish our first no-go theorem, which is a generalization of Th. 50 in [21].

Theorem 25 (First No-Go Theorem).

A continuous and truthful censor satisfies at most two of the properties effectiveness, minimal invasion, and repudiation.

Proof.

Let the censor 𝖢𝖾𝗇𝗌\mathsf{Cens} be continuous, truthful, effective, and minimally invasive. We show that 𝖢𝖾𝗇𝗌\mathsf{Cens} cannot be repudiating. We let SS be an 𝖥𝗆𝗅𝖫\mathsf{Fml}_{\mathsf{L}}-formula and consider the privacy configuration (𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)(\mathsf{KB},\mathsf{AK},\mathsf{Sec}) given by

𝖪𝖡:={S}𝖠𝖪:=𝖲𝖾𝖼:={S}\mathsf{KB}:=\{S\}\qquad\mathsf{AK}:=\emptyset\qquad\mathsf{Sec}:=\{S\}

and the query sequence q:=(S,S,)q:=(S,S,\ldots). We set

a:=𝖢𝖾𝗇𝗌(𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)(q).a:=\mathsf{Cens}_{(\mathsf{KB},\mathsf{AK},\mathsf{Sec})}(q).

Obviously, we have a=(r,r,)a=(r,r,\ldots) since otherwise 𝖢𝖾𝗇𝗌\mathsf{Cens} would either be lying (i.e. not be truthful) or revealing a secret (i.e. not be effective).

Now asssume that 𝖢𝖾𝗇𝗌\mathsf{Cens} is repudiating. Then there exists a knowledge base 𝖪𝖡1\mathsf{KB}_{1} such that

  1. 1.

    (𝖪𝖡1,𝖠𝖪,𝖲𝖾𝖼)(\mathsf{KB}_{1},\mathsf{AK},\mathsf{Sec}) is a privacy configuration;

  2. 2.

    𝖢𝖾𝗇𝗌(𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)(q)|1=𝖢𝖾𝗇𝗌(𝖪𝖡1,𝖠𝖪,𝖲𝖾𝖼)(q)|1\mathsf{Cens}_{(\mathsf{KB},\mathsf{AK},\mathsf{Sec})}(q)|_{1}=\mathsf{Cens}_{(\mathsf{KB}_{1},\mathsf{AK},\mathsf{Sec})}(q)|_{1};

  3. 3.

    𝖪𝖡1⊬𝖫S\mathsf{KB}_{1}\not\vdash_{\mathsf{L}}S.

Let (a1):=𝖢𝖾𝗇𝗌(𝖪𝖡1,𝖠𝖪,𝖲𝖾𝖼)(q)|1(a^{\prime}_{1}):=\mathsf{Cens}_{(\mathsf{KB}_{1},\mathsf{AK},\mathsf{Sec})}(q)|_{1}. Because of 𝖪𝖡1⊬𝖫S\mathsf{KB}_{1}\not\vdash_{\mathsf{L}}S and 𝖢𝖾𝗇𝗌\mathsf{Cens} being truthful, we find that a1=ua^{\prime}_{1}=u or a1=ra^{\prime}_{1}=r.

Suppose towards a contradiction that

a1=r.a^{\prime}_{1}=r. (4)

Now let 𝖢𝖾𝗇𝗌\mathsf{Cens}^{\prime} be a censor as in Lemma 23, i.e. such that

𝖢𝖾𝗇𝗌(𝖪𝖡1,𝖠𝖪,𝖲𝖾𝖼)(q)1=u=𝖾𝗏𝖺𝗅(𝖪𝖡1,S).\mathsf{Cens}^{\prime}_{(\mathsf{KB}_{1},\mathsf{AK},\mathsf{Sec})}(q)_{1}=u=\mathsf{eval}(\mathsf{KB}_{1},S). (5)

By Lemma 23 we get

𝖼𝗈𝗇𝗍(𝖢𝖾𝗇𝗌(𝖪𝖡1,𝖠𝖪,𝖲𝖾𝖼)(q),1)S.\mathsf{cont}(\mathsf{Cens}^{\prime}_{(\mathsf{KB}_{1},\mathsf{AK},\mathsf{Sec})}(q),1)\models\Box S. (6)

However, by (5) we also have 𝖼𝗈𝗇𝗍(𝖢𝖾𝗇𝗌(𝖪𝖡1,𝖠𝖪,𝖲𝖾𝖼)(q),1)={¬S}\mathsf{cont}(\mathsf{Cens}^{\prime}_{(\mathsf{KB}_{1},\mathsf{AK},\mathsf{Sec})}(q),1)=\{\lnot\Box S\}, which contradicts (6).

Hence (4) is not possible and thus we have a1=ua^{\prime}_{1}=u. This, however, contradicts 𝖢𝖾𝗇𝗌(𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)(q)|1=𝖢𝖾𝗇𝗌(𝖪𝖡1,𝖠𝖪,𝖲𝖾𝖼)(q)|1\mathsf{Cens}_{(\mathsf{KB},\mathsf{AK},\mathsf{Sec})}(q)|_{1}=\mathsf{Cens}_{(\mathsf{KB}_{1},\mathsf{AK},\mathsf{Sec})}(q)|_{1}. We conclude that 𝖢𝖾𝗇𝗌\mathsf{Cens} cannot be repudiating. ∎

4 Non-refusing censors

In this section we study censors that do not refuse to answer a query.

Definition 26.

A censor is non-refusing if it never assigns the answer rr to a query.

Of course, a non-refusing censor has to lie in order to keep the secrets. That means if a censors of this kind shall be effective, then it cannot be truthful.

Even if we consider lying censors, we work with the assumption that

an attacker believes every answer of the censor. (7)

Otherwise, we are in a situation where an attacker cannot believe any answer because the attacker does not know which answers are correct and which are wrong, which means that any answer could be a lie. In that case, querying a knowledge base would not make any sense at all.111This is, of course, not completely true. It is possible to distort knowledge bases in such a way that privacy is preserved but statistical inferences are still informative, see, e.g. [11].

Because of the assumption (7), we can use our notions of effectiveness (Definition 20) and credibility (Definition 15) also in the context of lying censors: an attacker should not believe any secret and the beliefs should be satisfiable.

Theorem 25 about truthful censors did not make any assumptions on the underlying logic 𝖫\mathsf{L}. The next theorem about non-refusing censors is less general as it is based on classical logic. We will use a,b,c,a,b,c,\ldots for atomic propositions and A,B,C,A,B,C,\ldots for arbitrary formulas.

Moreover, we assume that the knowledge base 𝖪𝖡\mathsf{KB} only contains atomic facts (we say 𝖪𝖡\mathsf{KB} is atomic). That is if F𝖪𝖡F\in\mathsf{KB}, then FF is either of the form pp or of the form ¬p\lnot p where pp is an atomic proposition. Hence we find that if 𝖪𝖡𝖫ab\mathsf{KB}\vdash_{\mathsf{L}}a\to b for two distinct atomic propositions aa and bb, then 𝖪𝖡𝖫¬a\mathsf{KB}\vdash_{\mathsf{L}}\lnot a or 𝖪𝖡𝖫b\mathsf{KB}\vdash_{\mathsf{L}}b. We can formalize this using the set of a priori knowledge by letting

(ab)(¬ab)𝖠𝖪.\Box(a\to b)\to(\Box\lnot a\lor\Box b)\in\mathsf{AK}.

Now we can establish our second no-go theorem, which is a generalization of the results of [5].

Theorem 27 (Second No-Go Theorem).

Let 𝖫\mathsf{L} be based on classical logic. A continuous and non-refusing censor cannot be at the same time effective and minimally invasive.

Proof.

Let the censor 𝖢𝖾𝗇𝗌\mathsf{Cens} be continuous, non-refusing, and minimally invasive. We show that 𝖢𝖾𝗇𝗌\mathsf{Cens} cannot be effective. Let 𝖫\mathsf{L} be classical propositional logic. We consider the knowledge base

𝖪𝖡:={a,b}\mathsf{KB}:=\{a,b\}

where both aa and bb shall be kept secret, i.e.

𝖲𝖾𝖼:={a,b}.\mathsf{Sec}:=\{a,b\}.

Further we assume that it is a priori knowledge that 𝖪𝖡\mathsf{KB} is atomic. Thus, in particular,

(ca)(¬ca)\displaystyle\Box(c\to a)\to(\Box\lnot c\lor\Box a) 𝖠𝖪\displaystyle\in\mathsf{AK}
(¬cb)(cb)\displaystyle\Box(\lnot c\to b)\to(\Box c\lor\Box b) 𝖠𝖪\displaystyle\in\mathsf{AK}

We consider the query sequence q:=(ca,¬cb,c,)q:=(c\to a,\lnot c\to b,c,\ldots) and set a:=𝖢𝖾𝗇𝗌(𝖪𝖡,𝖠𝖪,𝖲𝖾𝖼)(q)a:=\mathsf{Cens}_{(\mathsf{KB},\mathsf{AK},\mathsf{Sec})}(q).

We find 𝖢𝖾𝗇𝗌(ca)=t\mathsf{Cens}(c\to a)=t since 𝖢𝖾𝗇𝗌\mathsf{Cens} is minimally invasive and 𝖪𝖡\mathsf{KB} might contain ¬c\lnot c. Further, we find 𝖢𝖾𝗇𝗌(¬cb)=t\mathsf{Cens}(\lnot c\to b)=t since 𝖢𝖾𝗇𝗌\mathsf{Cens} is minimally invasive and 𝖪𝖡\mathsf{KB} might contain cc.

Note that after issuing the first two queries of the sequence qq, an attacker knows that aa or bb must be entailed by 𝖪𝖡\mathsf{KB}. But since the attacker does not know which one is the case, no secret is leaked. Formally we have

𝖼𝗈𝗇𝗍(𝖢𝖾𝗇𝗌(q),2)\displaystyle\mathsf{cont}(\mathsf{Cens}(q),2) 𝖬(ca)\displaystyle\vdash_{\mathsf{M}}\Box(c\to a) (8)
and
𝖼𝗈𝗇𝗍(𝖢𝖾𝗇𝗌(q),2)\displaystyle\mathsf{cont}(\mathsf{Cens}(q),2) 𝖬(¬cb).\displaystyle\vdash_{\mathsf{M}}\Box(\lnot c\to b). (9)

By basic modal logic, (8) and (9) yield

𝖼𝗈𝗇𝗍(𝖢𝖾𝗇𝗌(q),2)\displaystyle\mathsf{cont}(\mathsf{Cens}(q),2) 𝖬ca\displaystyle\vdash_{\mathsf{M}}\Box c\to\Box a (10)
and
𝖼𝗈𝗇𝗍(𝖢𝖾𝗇𝗌(q),2)\displaystyle\mathsf{cont}(\mathsf{Cens}(q),2) 𝖬¬cb,\displaystyle\vdash_{\mathsf{M}}\Box\lnot c\to\Box b, (11)

respectively. Using the a priori knowledge 𝖠𝖪\mathsf{AK}, we obtain from (8) and (9)

𝖼𝗈𝗇𝗍(𝖢𝖾𝗇𝗌(q),2)\displaystyle\mathsf{cont}(\mathsf{Cens}(q),2) 𝖬¬ca\displaystyle\vdash_{\mathsf{M}}\Box\lnot c\lor\Box a (12)
and
𝖼𝗈𝗇𝗍(𝖢𝖾𝗇𝗌(q),2)\displaystyle\mathsf{cont}(\mathsf{Cens}(q),2) 𝖬cb.\displaystyle\vdash_{\mathsf{M}}\Box c\lor\Box b. (13)

Because of c¬c\Box c\lor\lnot\Box c, we get by (10) and (13) that

𝖼𝗈𝗇𝗍(𝖢𝖾𝗇𝗌(q),2)𝖬ab.\mathsf{cont}(\mathsf{Cens}(q),2)\vdash_{\mathsf{M}}\Box a\lor\Box b.

Thus, at this stage, it is known that a secret holds, but an attacker does not know which one and hence privacy is still preserved.

Now comes the third query, which is cc. There are two possibilities for a non-refusing censor to choose from:

  1. 1.

    (a)3=u(a)_{3}=u (which is true). We find 𝖼𝗈𝗇𝗍(𝖢𝖾𝗇𝗌(q),3)𝖬¬c\mathsf{cont}(\mathsf{Cens}(q),3)\vdash_{\mathsf{M}}\lnot\Box c. By (13) we get 𝖼𝗈𝗇𝗍(𝖢𝖾𝗇𝗌(q),3)𝖬b\mathsf{cont}(\mathsf{Cens}(q),3)\vdash_{\mathsf{M}}\Box b and a secret is leaked.

  2. 2.

    (a)3=t(a)_{3}=t (which is a lie). We find 𝖼𝗈𝗇𝗍(𝖢𝖾𝗇𝗌(q),3)𝖬c\mathsf{cont}(\mathsf{Cens}(q),3)\vdash_{\mathsf{M}}\Box c. By (10) we get 𝖼𝗈𝗇𝗍(𝖢𝖾𝗇𝗌(q),3)𝖬a\mathsf{cont}(\mathsf{Cens}(q),3)\vdash_{\mathsf{M}}\Box a and a secret is leaked.

In both cases, a secret is leaked. Thus the censor cannot be effective. ∎

To avoid this problem, a censor must not only protect the single elements of 𝖲𝖾𝖼\mathsf{Sec} but also their disjunction [5]. For the privacy configuration of the previous proof that means 𝖢𝖾𝗇𝗌\mathsf{Cens} must also protect aba\lor b. Then, already the second query, ¬cb\lnot c\to b would be answered with uu because the answer tt, as shown above, reveals aba\lor b.

Note that protecting the disjunction of all secrets is not as simple as it sounds. Consider, for instance, a hospital information system that should protect the disease a patient is diagnosed with. In this case, protecting the disjunction of all secrets means protecting the information that the patient has some disease. This, however, is not feasible as it is general background knowledge that everybody who is a patient in a hospital has some disease. Worse than that, sometimes the disjunction of all secrets may even be a logical tautology, which cannot be protected.

5 Conclusion

In this paper, we have established two no-go theorems for data privacy using tools from modal logic. We are confident that logical methods will play an important role for finding new impossibility theorems or for better understanding already known ones, see, e.g., the logical analyses carried out in [16] and [17].

Another line of future research relates to the fact that refusing to answer a query can give away the information that there exists a secret that could be infered from some other answer. Similar phenomena may occur in multi-agent systems when one of the agents refuses to communicate. For example, imagine the situation of an oral exam where the examiner asks a question and the student keeps silent. In this case the examiner learns that the student does not know the answer to the question for otherwise the student would have answered.

It is also possible that refusing an answer can lead to knowing that someone else knows a certain fact. Consider the following scenario. A father enters a room where his daughter is playing and he notices that one of the toys is in pieces. So he asks who has broken the toy. The daughter does not want to betray her brother (who actually broke it) and she also does not want to lie. Therefore, she refuses to answer her father’s question. Of course, then the father knows that his daughter knows who broke the toy for otherwise the daughter could have said that she does not know.

We believe that it is worthwhile to study the above situations using general communication protocols that include the possibility of refusing an answer and to investigate the implications of refusing in terms of higher-order knowledge.

References

  • [1] T. Ågotnes, H. van Ditmarsch, and Y. Wang. True lies. Synthese, 195(10):4581–4615, 2018.
  • [2] K. J. Arrow. A difficulty in the concept of social welfare. Journal of Political Economy, 58(4):328–346, 1950.
  • [3] A. Avron. Simple consequence relations. Inf. Comput., 92(1):105–139, 1991.
  • [4] J. S. Bell. On the einstein podolsky rosen paradox. Physics Physique Fizika, 1:195–200, 1964.
  • [5] J. Biskup. For unknown secrecies refusal is better than lying. Data and Knowledge Engineering, 33(1):1–23, 2000.
  • [6] J. Biskup and P. A. Bonatti. Lying versus refusal for known potential secrets. Data and Knowledge Engineering, 38(2):199–222, 2001.
  • [7] J. Biskup and P. A. Bonatti. Controlled query evaluation for enforcing confidentiality in complete information systems. International Journal of Information Security, 3(1):14–27, 2004.
  • [8] J. Biskup and P. A. Bonatti. Controlled query evaluation for known policies by combining lying and refusal. Annals of Mathematics and Artificial Intelligence, 40(1):37–62, 2004.
  • [9] J. Biskup and T. Weibert. Keeping secrets in incomplete databases. International Journal of Information Security, 7(3):199–217, 2008.
  • [10] P. A. Bonatti, S. Kraus, and V. S. Subrahmanian. Foundations of secure deductive databases. Transactions on Knowledge and Data Engineering, 7(3):406–422, 1995.
  • [11] F. du Pin Calmon and N. Fawaz. Privacy against statistical inference. In 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages 1401–1408. IEEE, 2012.
  • [12] D. Frauchiger and R. Renner. Quantum theory cannot consistently describe the use of itself. Nature Communications, 9, 2018.
  • [13] B. Icard. Lying, deception and strategic omission : definition et evaluation. PhD thesis, Université Paris Sciences et Lettres, 2019.
  • [14] R. Iemhoff. Consequence relations and admissible rules. Journal of Philosophical Logic, 45(3):327–348, 2016.
  • [15] S. Kochen and E. Specker. The problem of hidden variables in quantum mechanics. Indiana Univ. Math. J., 17:59–87, 1968.
  • [16] N. Nurgalieva and L. del Rio. Inadequacy of modal logic in quantum settings. In P. Selinger and G. Chiribella, editors, Proceedings 15th International Conference on Quantum Physics and Logic, QPL 2018, Halifax, Canada, 3-7th June 2018., volume 287 of EPTCS, pages 267–297, 2019.
  • [17] E. Pacuit and F. Yang. Dependence and independence in social choice: Arrow’s theorem. In S. Abramsky, J. Kontinen, J. Väänänen, and H. Vollmer, editors, Dependence Logic: Theory and Applications, pages 235–260. Springer, 2016.
  • [18] G. L. Sicherman, W. De Jonge, and R. P. Van de Riet. Answering queries without revealing secrets. ACM Trans. Database Syst., 8(1):41–59, Mar. 1983.
  • [19] K. Stoffel and T. Studer. Provable data privacy. In K. V. Andersen, J. Debenham, and R. Wagner, editors, Database and Expert Systems Applications, pages 324–332. Springer, 2005.
  • [20] P. Stouppa and T. Studer. A formal model of data privacy. In I. Virbitskaite and A. Voronkov, editors, Perspectives of Systems Informatics, pages 400–408. Springer, 2007.
  • [21] T. Studer and J. Werner. Censors for boolean description logic. Transactions on Data Privacy, 7:223–252, 2014.
  • [22] H. van Ditmarsch. Dynamics of lying. Synthese, 191(5):745–777, 2014.