This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

thanks: Electronic address: [email protected]

No-go result for quantum postselection measurements of rank-mm degenerate subspace

Le Bin Ho Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
Abstract

We present a no-go result for postselection measurements where the conditional expectation value of a joint system-device observable under postselection is nothing else than the conventional expectation value. Such a no-go result relies on the rank-mm degenerate of the joint observable, where mm is the dimension of the device subspace. Remarkable, we show that the error and disturbance in quantum measurements obey the no-go result, which implies that the error-disturbance uncertainty is unaffected under postselection measurements.

Introduction.— Theoretical description of quantum measurements with a postselection protocol is fundamental and of practical interest Aharonov et al. (1988); Zhu et al. (2011); Wagner et al. (2021); Monroe et al. (2021); Purves and Short (2021). It is a sequential measurements of a generalized (POVM) measurement followed by another projective measurement Aharonov et al. (1988). The postselection process alters the statistical results of the measured observable and let to an extraordinary amplification effect: the expectation value obtained by the postselection can go far beyond the conventional eigenvalues of the measured observable Aharonov et al. (1988); Torres and Salazar-Serrano (2016); Ren et al. (2020). Beyond the fundamental interest Dressel et al. (2014); Qin et al. (2016); Vaidman (2017); Kunjwal et al. (2019); Ogawa et al. (2020); Ho and Imoto (2018, 2016, 2017), postselection measurements have attracted tremendous research interest in multiple fields, including testing of quantum paradoxes and nonlocality Lundeen and Steinberg (2009); Yokota et al. (2009); Das and Sen (2021); Calderón-Losada et al. (2020); Xu et al. (2020); Aharonov et al. (2013); Denkmayr et al. (2014); Kim et al. (2021); Aharonov et al. (2016); Waegell et al. (2017), measurement uncertainty Budiyono and Dipojono (2021), weak value amplification Hosten and Kwiat (2008); Dixon et al. (2009); Modak et al. (2021); Krafczyk et al. (2021); Modak et al. (2021); Zhou et al. (2021); Fang et al. (2021); Liu et al. (2021); Huang et al. (2021), quantum-enhanced metrology Arvidsson-Shukur et al. (2020); Pati et al. (2020); Yin et al. (2021); Ho and Kondo (2021, 2019); Harris et al. (2017); Pang and Brun (2015), direct quantum state measurement Lundeen et al. (2011); Lundeen and Bamber (2012); Calderaro et al. (2018); Vallone and Dequal (2016); Maccone and Rusconi (2014); Chen et al. (2018); Pan et al. (2019); Turek (2020); Ho (2020); Tuan et al. (2021), among others.

Consider a prepared state ρ\rho and a measured observable AA represented by a self-adjoint operator 𝑨\bm{A}. Assume the spectral decomposition of 𝑨\bm{A} has purely discrete spectrum as 𝑨=krk𝑷k\bm{A}=\sum_{k}r_{k}\bm{P}_{k}, where rkr_{k} is the eigenvalues, and projection operators 𝑷k=|rkrk|\bm{P}_{k}=|r_{k}\rangle\langle r_{k}| satisfy 𝑷j𝑷k=δjk𝑷k;k𝑷k=𝑰\bm{P}_{j}\bm{P}_{k}=\delta_{jk}\bm{P}_{k};\sum_{k}\bm{P}_{k}=\bm{I}. Following the projection postulate P. Busch (2009); Nielsen and Chuang (2010), the expectation value gives 𝑨ρ=krkP(rk|ρ)\langle\bm{A}\rangle_{\rho}=\sum_{k}r_{k}P(r_{k}|\rho), where P(rk|ρ)=Tr[𝑷kρ]P(r_{k}|\rho)={\rm Tr}[\bm{P}_{k}\rho] is the probability upon obtaining outcome rkr_{k}. The state transforms to, following the Lüders rule P. Busch (2009); Lüders (2006), ρ=𝑷kρ𝑷k/Tr[𝑷kρ]\rho^{\prime}=\bm{P}_{k}\rho\bm{P}_{k}/{\rm Tr}[\bm{P}_{k}\rho]. After the 𝑨\bm{A}-measurement, a subsequent projection measurement is carried out, i.e., using 𝚷ϕ=|ϕϕ|\bm{\Pi}_{\phi}=|\phi\rangle\langle\phi|, such that we postselect the system onto a final state |ϕ|\phi\rangle. The expectation value of 𝑨\bm{A} now conditions on the postselected state |ϕ|\phi\rangle and reads 𝑨ρϕ=krkP(rk|ϕ,ρ){}_{\phi}\langle\bm{A}\rangle_{\rho}=\sum_{k}r_{k}P(r_{k}|\phi,\rho), where P(rk|ϕ,ρ)=Tr[𝚷ϕ𝑷kρ𝑷k]/kTr[𝚷ϕ𝑷kρ𝑷k]P(r_{k}|\phi,\rho)={\rm Tr}[\bm{\Pi}_{\phi}\bm{P}_{k}\rho\bm{P}_{k}]/\sum_{k^{\prime}}{\rm Tr}[\bm{\Pi}_{\phi}\bm{P}_{k^{\prime}}\rho\bm{P}_{k^{\prime}}] is the conditional probability following the Aharonov-Bergmann-Lebowitz (ABL) rule Aharonov et al. (1964). The conditional expectation value becomes the weak value when the system weakly couples to the device.

Even the effect of postsections on measurement results is significant, it is not always so. For example, with a full degenerated spectrum, i.e., rk=rkr_{k}=r\ \forall k, or with a projective observable 𝑨=|rr|\bm{A}=|r\rangle\langle r|, we have 𝑨ρ=ϕ𝑨ρ\langle\bm{A}\rangle_{\rho}=\ _{\phi}\langle\bm{A}\rangle_{\rho}. Previously, Vaidman et al. Vaidman et al. (2017) have claimed that the nature of weak values is the same as the eigenvalues for an infinitesimally small interaction strength. Besides, weak values become conventional expectation values in the enlarged Hilbert space Ho and Imoto (2018).

In this paper, we generalize these intuitive claims by presenting a “no-go” theorem, where the postselection does not affect the measurement results. We first extend the projection postulate to a composite system, such as a measured system and its apparatus (device). [A composite system also induces subsystem-subsystem and system-environment interaction models.] Whenever a joint system-device observable has rank-mm degenerate subspace, with mm is the device’s dimension, the measured observable’s results will not be affected by the postselection measurement. This is the main statement of the theorem. Afterward, we illustrate the no-go theorem in the error and disturbance of quantum measurements. Following Ozawa’s interpretation Ozawa (2003, 2004), the error is a root-mean-square of the noise operator formed by the device’s operator after the interaction and the system operator before the interaction, and the disturbance in a root-mean-square of the disturbance operator formed by the system’s observables after and before the interaction.

Conditional expectation values.— In the von Neumann mechanism von Neumann (1955), we consider a measured system 𝒮\mathcal{S} and a device \mathcal{M}, initially prepared in uncorrelated state |Ψ=|ψ|ξ|\Psi\rangle=|\psi\rangle\otimes|\xi\rangle. The interaction is given by a unitary 𝒰§𝒮\mathbfcal U={\rm exp}(-it\bm{H}_{\mathcal{S}}\otimes\bm{H}_{\mathcal{M}}), where 𝑯𝒮\bm{H}_{\mathcal{S}} and 𝑯\bm{H}_{\mathcal{M}} are Hamiltonians over the system’s and device’s complex Hilbert spaces 𝒮\mathcal{H}_{\mathcal{S}} and \mathcal{H}_{\mathcal{M}}, respectively. Given any initial joint observable 𝒪𝒮\mathbfcal O_{0}=\bm{S}_{0}\otimes\bm{M}_{0} in the joint 𝒮\mathcal{SM} Hilbert space, following the Heisenberg picture, it evolves to 𝒪𝒰𝒪𝒰\mathbfcal O_{t}=\mathbfcal U^{\dagger}\mathbfcal O_{0}\mathbfcal U after interaction. Let 𝒪\mathbfcal O be a joint measured operator after interaction, which is a function of 𝒪\mathbfcal O_{t} and satiflies 𝒪{𝒪𝒮\mathbfcal{O}\equiv f(\mathbfcal{O}_{t})=\sum_{k}\bm{S}_{k}\otimes\bm{M}_{k} 111 Using the Baker-Campbell-Hausdorff formula Hall (2015), we expand 𝒰𝒪𝒰𝒪𝒮𝒪𝒮𝒮𝒪\mathbfcal U^{\dagger}\mathbfcal O_{0}\ \mathbfcal U=\mathbfcal O_{0}+it\big{[}\bm{H}_{\mathcal{S}}\otimes\bm{H}_{\mathcal{M}},\mathbfcal O_{0}\big{]}+\frac{(it)^{2}}{2!}\Big{[}\bm{H}_{\mathcal{S}}\otimes\bm{H}_{\mathcal{M}},\big{[}\bm{H}_{\mathcal{S}}\otimes\bm{H}_{\mathcal{M}},\mathbfcal O_{0}\big{]}\Big{]}+\cdots. For small tt (or weak interaction), it yields 𝒰𝒪𝒰𝒪𝒮𝒪𝒮\mathbfcal U^{\dagger}\mathbfcal O_{0}\ \mathbfcal U\approx\mathbfcal O_{0}+it\big{[}\bm{H}_{\mathcal{S}}\otimes\bm{H}_{\mathcal{M}},\mathbfcal O_{0}\big{]}=\sum_{k}\bm{S}_{k}\otimes\bm{M}_{k}. (e.g., 𝒪𝒪𝒪\mathbfcal{O}=\mathbfcal{O}_{t}-\mathbfcal{O}_{0}, which pertains to the error and disturbance operators discussed later.) To calculate the expectation value of 𝒪\mathbfcal O, we start with an element 𝒪𝒮\mathbfcal O_{k}\equiv\bm{S}_{k}\otimes\bm{M}_{k} which is an (n.m×n.m)(n.m\times n.m)-matrix, where n(m)n(m) is the system(device) dimension. Let |ui,|vj|u_{i}\rangle,|v_{j}\rangle with ini\leq n and jmj\leq m are eigenvectors associated to the eigenvalues uiu_{i} and vjv_{j} of 𝑺k\bm{S}_{k} and 𝑴k\bm{M}_{k}, respectively, then 𝒪\mathbfcal O_{k} can be expressed in the spectral representation as 𝒪\||𝒫|\mathbfcal O_{k}=\sum_{i=1}^{n}\sum_{j=1}^{m}r_{ij}^{(k)}\bm{P}_{ij}, where rij(k)=uivjr_{ij}^{(k)}=u_{i}v_{j} are eigenvalues, and 𝑷ij=|uivjuivj|\bm{P}_{ij}=|u_{i}v_{j}\rangle\langle u_{i}v_{j}| satisfies the orthonormality relations 𝑷ij𝑷ij=δi,iδj,j𝑷ij\bm{P}_{ij}\bm{P}_{i^{\prime}j^{\prime}}=\delta_{i,i^{\prime}}\delta_{j,j^{\prime}}\bm{P}_{i^{\prime}j^{\prime}} and a completeness relation 𝑷ij=𝑰\sum\bm{P}_{ij}=\bm{I}. Following von Neumann, the probability to obtain the outcome rij(k)r_{ij}^{(k)} is given by Lüders (2006)

P(rij(k)|ρ)=Tr[𝑷ijρ],\displaystyle P(r_{ij}^{(k)}|\rho)={\rm Tr}[\bm{P}_{ij}\rho], (1)

where we set ρ=|ΨΨ|\rho=|\Psi\rangle\langle\Psi|. The expectation value of 𝒪\mathbfcal O_{k} is given by

𝒪ρ||𝒫|ρ||𝒯𝒫|ρ\displaystyle\langle\mathbfcal O_{k}\rangle_{\rho}=\sum_{i,j}r_{ij}^{(k)}P(r_{ij}^{(k)}|\rho)=\sum_{i,j}r_{ij}^{(k)}{\rm Tr}[\bm{P}_{ij}\rho]. (2)

After the projection measurement 𝑷ij\bm{P}_{ij}, the joint state transforms to a conditional (not normalized) ρij=𝑷ijρ𝑷ij\rho^{\prime}_{ij}=\bm{P}_{ij}\rho\bm{P}_{ij}. We then postselect system 𝒮\mathcal{S} onto a final state |ϕ|\phi\rangle, represented by a projection operator 𝚷ϕ=|ϕϕ|𝑰\bm{\Pi}_{\phi}=|\phi\rangle\langle\phi|\otimes\bm{I}. The joint probability to obtain rij(k)r_{ij}^{(k)} and postselection is

P(rij(k),ϕ|ρ)=Tr[𝚷ϕρij]=Tr[𝚷ϕ𝑷ijρ𝑷ij].\displaystyle P(r_{ij}^{(k)},\phi|\rho)={\rm Tr}[\bm{\Pi}_{\phi}\rho^{\prime}_{ij}]={\rm Tr}[\bm{\Pi}_{\phi}\bm{P}_{ij}\rho\bm{P}_{ij}]. (3)

Using the Bayesian theorem, the conditional probability to obtain rij(k)r_{ij}^{(k)} for given pre and postselected states is

P(rij(k)|ϕ,ρ)\displaystyle P(r_{ij}^{(k)}|\phi,\rho) =P(rij(k),ϕ|ρ)i,jP(rij(k),ϕ|ρ)\displaystyle=\dfrac{P(r_{ij}^{(k)},\phi|\rho)}{\sum_{i^{\prime},j^{\prime}}P(r_{i^{\prime}j^{\prime}}^{(k)},\phi|\rho)}
=Tr[𝚷ϕ𝑷ijρ𝑷ij]i,jTr[𝚷ϕ𝑷ijρ𝑷ij].\displaystyle=\dfrac{{\rm Tr}[\bm{\Pi}_{\phi}\bm{P}_{ij}\rho\bm{P}_{ij}]}{\sum_{i^{\prime},j^{\prime}}{\rm Tr}[\bm{\Pi}_{\phi}\bm{P}_{i^{\prime}j^{\prime}}\rho\bm{P}_{i^{\prime}j^{\prime}}]}. (4)

Then, the conditional expectation value of 𝒪\mathbfcal O_{k} yields

ϕ𝒪ρ||𝒫|ϕρ||𝒯Πϕ𝒫|ρ𝒫||𝒯Πϕ𝒫|ρ𝒫|\displaystyle_{\phi}\langle\mathbfcal O_{k}\rangle_{\rho}=\sum_{i,j}r_{ij}^{(k)}P(r_{ij}|\phi,\rho)=\dfrac{\sum_{i,j}r_{ij}^{(k)}{\rm Tr}[\bm{\Pi}_{\phi}\bm{P}_{ij}\rho\bm{P}_{ij}]}{\sum_{i^{\prime},j^{\prime}}{\rm Tr}[\bm{\Pi}_{\phi}\bm{P}_{i^{\prime}j^{\prime}}\rho\bm{P}_{i^{\prime}j^{\prime}}]}. (5)

We present the following theorem:
Theorem (no-go postselection theorem).— For any given joint state ρ=|ΨΨ|\rho=|\Psi\rangle\langle\Psi| and post-selected state |ϕ|\phi\rangle, the following rank-mm degenerate for every joint operator 𝒪\mathbfcal{O}_{k}

rij(k)=rij(k)r~j(k), 1i,in, and 1jm,\displaystyle r_{ij}^{(k)}=r_{i^{\prime}j}^{(k)}\equiv\widetilde{r}_{j}^{(k)},\forall\ 1\leq i,i^{\prime}\leq n,\text{ and }1\leq j\leq m, (6)

must lead to a “no-go” for postselection measurement

ϕ𝒪ρ𝒪ρ and ϕ𝒪ρ𝒪ρ\displaystyle_{\phi}\langle\mathbfcal O_{k}\rangle_{\rho}=\langle\mathbfcal O_{k}\rangle_{\rho}\text{ and }_{\phi}\langle\mathbfcal O\rangle_{\rho}=\langle\mathbfcal O\rangle_{\rho}, (7)

where 𝒪𝒪\langle\mathbfcal O\rangle=\sum_{k}\langle\mathbfcal O_{k}\rangle.

Proof of Theorem.— Let {|ei|gj}\{|e_{i}\rangle\otimes|g_{j}\rangle\} be the canonical basis of the joint space, in which the joint state |Ψ|\Psi\rangle can be expressed as

|Ψ=(ψ1ψ2ψn)(ξ1ξ2ξm)=i=1nj=1mψiξj|eigj,\displaystyle|\Psi\rangle=\begin{pmatrix}\psi_{1}\\ \psi_{2}\\ \vdots\\ \psi_{n}\end{pmatrix}\otimes\begin{pmatrix}\xi_{1}\\ \xi_{2}\\ \vdots\\ \xi_{m}\end{pmatrix}=\sum_{i=1}^{n}\sum_{j=1}^{m}\psi_{i}\xi_{j}|e_{i}g_{j}\rangle, (8)

where ψi=ei|ψ\psi_{i}=\langle e_{i}|\psi\rangle and ξj=gj|ξ\xi_{j}=\langle g_{j}|\xi\rangle. Let the eigenvalues |rij(k)|uivj=i,jaij,ij|eigj|r_{ij}^{(k)}\rangle\equiv|u_{i}v_{j}\rangle=\sum_{i^{\prime},j^{\prime}}a_{i^{\prime}j^{\prime},ij}|e_{i^{\prime}}g_{j^{\prime}}\rangle is the eigenbasis, and 𝑻=(|r11(k),,|rnm(k))\bm{T}=(|r_{11}^{(k)}\rangle,\cdots,|r_{nm}^{(k)}\rangle) is the transformation matrix that formed by the ket vector of all eigenvalues. In the eigenbases, the joint state is expressed as |Ψ=i,jψiξj|uivj|\Psi\rangle=\sum_{i,j}\psi^{\prime}_{i}\xi^{\prime}_{j}|u_{i}v_{j}\rangle, where ψi=ui|ψ\psi^{\prime}_{i}=\langle u_{i}|\psi\rangle and ξj=vj|ξ\xi^{\prime}_{j}=\langle v_{j}|\xi\rangle, whose obey i|ψi|2=1\sum_{i}|\psi^{\prime}_{i}|^{2}=1 and j|ξj|2=1\sum_{j}|\xi^{\prime}_{j}|^{2}=1. We then obtain rij(k)|Ψ=ψiξj\langle r_{ij}^{(k)}|\Psi\rangle=\psi_{i}^{\prime}\xi_{j}^{\prime}.

In the postseleted projection operator 𝚷ϕ=|ϕϕ|𝑰\bm{\Pi}_{\phi}=|\phi\rangle\langle\phi|\otimes\bm{I}, let |ϕ=iϕi|ei|\phi\rangle=\sum_{i}\phi_{i}|e_{i}\rangle, where ϕi=ei|ϕ\phi_{i}=\langle e_{i}|\phi\rangle a complex amplitude, then we obtain (n.m×n.m)(n.m\times n.m)-matrix:

𝚷ϕ=(|ϕ1|2|ϕ1|2|ϕn|2|ϕn|2),\displaystyle\bm{\Pi}_{\phi}=\begin{pmatrix}\;\begin{array}[]{@{}*{10}{c}@{}}\cline{1-3}\cr\vrule\lx@intercol\hfil|\phi_{1}|^{2}\hfil\lx@intercol&&\lx@intercol\hfil\hfil\lx@intercol\vrule\lx@intercol\\ \vrule\lx@intercol\hfil\hfil\lx@intercol&\ddots&\lx@intercol\hfil\hfil\lx@intercol\vrule\lx@intercol\\ \vrule\lx@intercol\hfil\hfil\lx@intercol&&\lx@intercol\hfil|\phi_{1}|^{2}\hfil\lx@intercol\vrule\lx@intercol\\ \cline{1-3}\cr&&&\ddots\\ \cline{6-8}\cr&&&&&\vrule\lx@intercol\hfil|\phi_{n}|^{2}\hfil\lx@intercol&&\lx@intercol\hfil\hfil\lx@intercol\vrule\lx@intercol\\ &&&&&\vrule\lx@intercol\hfil\hfil\lx@intercol&\ddots&\lx@intercol\hfil\hfil\lx@intercol\vrule\lx@intercol\\ &&&&&\vrule\lx@intercol\hfil\hfil\lx@intercol&&\lx@intercol\hfil|\phi_{n}|^{2}\hfil\lx@intercol\vrule\lx@intercol\\ \cline{6-8}\cr\end{array}\end{pmatrix}, (9)

where the off-diagonal elements are omitted as they do not include in the canonical basis, see more details in App. A. Here, each box is an (m×m)(m\times m)-matrix, with totally nn boxes. In the eigenbasis, the postselected state is expressed as 𝚷ϕ=𝑻𝚷ϕ𝑻\bm{\Pi}^{\prime}_{\phi}=\bm{T}^{\dagger}\bm{\Pi}_{\phi}\bm{T}. An extra requirement (for the transformation matrix) that the diagonal elements of 𝚷ϕ\bm{\Pi}^{\prime}_{\phi} admit the rank-mm degenerated subspace similar as 𝚷ϕ\bm{\Pi}_{\phi}, i.e., diag(𝚷ϕ)=(|ϕ1|2,,|ϕ1|2,,|ϕn|2,,|ϕn|2){\rm diag}(\bm{\Pi}^{\prime}_{\phi})=(|\phi^{\prime}_{1}|^{2},\cdots,|\phi^{\prime}_{1}|^{2},\cdots,|\phi^{\prime}_{n}|^{2},\cdots,|\phi^{\prime}_{n}|^{2}). We emphasize that this requirement always satisfies when the eigenbasis is the canonical basis as given in Eq. (9).

Now, from Eq. (5), we have the denominator

i,j=1n,mTr[𝚷ϕ𝑷ijρ𝑷ij]=i=1n|ϕi|2ψi|2,\displaystyle\sum_{i,j=1}^{n,m}{\rm Tr}[\bm{\Pi}_{\phi}\bm{P}_{ij}\rho\bm{P}_{ij}]=\sum_{i=1}^{n}|\phi^{\prime}_{i}|^{2}\psi^{\prime}_{i}|^{2}, (10)

and the numerator

i,jrij(k)Tr[𝚷ϕ𝑷ijρ𝑷ij]=j=1mr~j(k)|ξj|2i=1n|ϕi|2ψi|2,\displaystyle\sum_{i,j}r_{ij}^{(k)}{\rm Tr}[\bm{\Pi}_{\phi}\bm{P}_{ij}\rho\bm{P}_{ij}]=\sum_{j=1}^{m}{\widetilde{r}}_{j}^{(k)}|\xi^{\prime}_{j}|^{2}\cdot\sum_{i=1}^{n}|\phi^{\prime}_{i}|^{2}\psi^{\prime}_{i}|^{2}, (11)

where we applied condition (6). Equation (5) is recast as

ϕ𝒪ρ|~|ξ|\displaystyle_{\phi}\langle\mathbfcal O_{k}\rangle_{\rho}=\sum_{j=1}^{m}{\widetilde{r}}_{j}^{(k)}|\xi^{\prime}_{j}|^{2}. (12)

Similarly, we have 𝒪ρ|~|ξ|\langle\mathbfcal O_{k}\rangle_{\rho}=\sum_{j=1}^{m}{\widetilde{r}}_{j}^{(k)}|\xi^{\prime}_{j}|^{2}, then 𝒪ρϕ𝒪ρ{}_{\phi}\langle\mathbfcal O_{k}\rangle_{\rho}=\langle\mathbfcal O_{k}\rangle_{\rho} (See detailed proof in App. A .) The proof for second term in (7) is straightforward since all 𝒪\mathbfcal{O}_{k} satisfy condition (6) \;\;\Box

Corollary 1.— For any eigenbasis {|rij}\{|r_{ij}\rangle\} is the canonical basis, the no-go theorem states

ϕ𝒪ρ𝒪ρ|~|ξ|\displaystyle_{\phi}\langle\mathbfcal O\rangle_{\rho}=\langle\mathbfcal O\rangle_{\rho}=\sum_{j=1}^{m}{\widetilde{r}}_{j}|\xi_{j}|^{2}. (13)

The proof for this Corollary is the same as above.

Remark.— Different from conditional expectation values we are considering here, the weak value of an observable 𝑨\bm{A} in system 𝒮\mathcal{S} generally depends on the postselected state, as it is 𝑨w=ϕ|𝑨|ψ/ϕ|ψ\langle\bm{A}\rangle_{\rm w}={\langle\phi|\bm{A}|\psi\rangle}/{\langle\phi|\psi\rangle}, except for some certain conditions wherein it can be an expectation value Ho and Imoto (2018) or an eigenvalue Vaidman et al. (2017). However, this is not a consequential result from our theorem here. Instead, a consequence from the no-go theorem can state as follows:

Corollary 2.— Weak values can reduce to eigenvalues if the measured observable 𝑨\bm{A} has full-rank degenerate subspace. To proof this Corollary, let’s say 𝑨=kak|kk|\bm{A}=\sum_{k}a_{k}|k\rangle\langle k| with ak=aa_{k}=a for all k=1,,nk=1,\cdots,n, then, 𝑨w=𝑨=a\langle\bm{A}\rangle_{\rm w}=\langle\bm{A}\rangle=a.

Observation.— Any joint observable, i.e., 𝒪𝒮\mathbfcal O=\bm{S}\otimes\bm{M} with 𝑺=𝑰\bm{S}=\bm{I} always satisfies the no-go theorem. The proof for this Observation is given directly by noting that the eigenvalues of 𝑰\bm{I} are all one. Thus eigenvalues of 𝒪\mathbfcal O satisfies (6), and thus satisfies the theorem.

No-go theorem in the error and disturbance.— Error and disturbance are essential quantities for determining measurements’ uncertainties Ozawa (2003, 2004, 2005). We consider the error of an 𝑨\bm{A}-measurement in system 𝒮\mathcal{S} through an 𝑴\bm{M}-measurement in device \mathcal{M} and the disturbance of a 𝑩\bm{B}-measurement in system 𝒮\mathcal{S}. In the joint 𝒮\mathcal{SM} system, we denote 𝒜𝒜 and \mathbfcal A_{0}=\bm{A}\otimes\bm{I},\text{ and }\mathbfcal B_{0}=\bm{B}\otimes\bm{I}, where 𝑨\bm{A} and 𝑩\bm{B} are the observables to be measured in system 𝒮\mathcal{S}. We also define a device observable 𝑴\bm{M} in the device space, such that it becomes \mathbfcal M_{0}=\bm{I}\otimes\bm{M} in the joint 𝒮\mathcal{SM} space Ozawa (2003, 2004, 2005). The interaction is switched on during a short time tt, where the joint 𝒮\mathcal{SM} system evolves under the unitary transformation 𝒰\mathbfcal U. These operators transform to 𝒰𝒰\mathbfcal M_{t}=\mathbfcal U^{\dagger}\mathbfcal M_{0}\mathbfcal U and 𝒰𝒰\mathbfcal B_{t}=\mathbfcal U^{\dagger}\mathbfcal B_{0}\mathbfcal U. According to Ozawa Ozawa (2003, 2004, 2005), the error and disturbance operators are defined by 𝒩𝒜𝒜\mathbfcal N_{\bm{A}}=\mathbfcal M_{t}-\mathbfcal A_{0}, and 𝒟\mathbfcal D_{\bm{B}}=\mathbfcal B_{t}-\mathbfcal B_{0}, respectively. Then, the mean square error and the disturbance are given by

ϵ𝑨2=𝒩𝒜Ψ and η𝒟Ψ\displaystyle\epsilon^{2}_{\bm{A}}=\langle\mathbfcal N_{\bm{A}}^{2}\rangle_{\Psi},\text{ and }\eta_{\bm{B}}^{2}=\langle\mathbfcal D^{2}_{\bm{B}}\rangle_{\Psi}, (14)

where the bra-ket symbol Ψ\langle...\rangle_{\Psi} means Ψ||Ψ\langle\Psi|...|\Psi\rangle throughout this paper.

In the following, we illustrate that such the error and disturbance satisfy condition (6) in the Theorem, and thus it makes no sence for postselection measurements of the error and disturbance. In other words, the error and disturbance will not be affected under the postselection.

Concretely, let us consider a CNOT-type measurement, where both system 𝒮\mathcal{S} and device \mathcal{M} are qubits, initially prepared in |ψ=|i+|\psi\rangle=|i^{+}\rangle and |ξ=1+s2|0+1s2|1|\xi\rangle=\sqrt{\frac{1+s}{2}}|0\rangle+\sqrt{\frac{1-s}{2}}|1\rangle, where |0|0\rangle and |1|1\rangle are two eigenstates of Pauli matrix 𝒁\bm{Z}, and |i+=12(|0+i|1)|i^{+}\rangle=\frac{1}{\sqrt{2}}(|0\rangle+i|1\rangle); ss is the measurement strength ranging from 0 (weak measurement) to 1 (strong measurement). The measured observables 𝑨\bm{A} and 𝑩\bm{B} in system 𝒮\mathcal{S} are chosen t o be Pauli matrices 𝒁\bm{Z} and 𝑿\bm{X}, respectively, and the device observable 𝑴\bm{M} is also 𝒁\bm{Z}. The interaction is CNOT-gate, i.e., 𝒰𝒳\mathbfcal U=|0\rangle\langle 0|\otimes\bm{I}+|1\rangle\langle 1|\otimes\bm{X}. The square error and disturbance operators give

𝒩𝒵 and 𝒟𝒳𝒳\displaystyle\mathbfcal N^{2}_{\bm{Z}}=4\bm{I}\otimes|1\rangle\langle 1|,\text{ and }\mathbfcal D^{2}_{\bm{X}}=2\bm{I}\otimes(\bm{I}-\bm{X}). (15)

Fortunately, CNOT is a typical interaction, which leads to simplify measured operators (square error and disturbance). The eigenvalues of the square error are (0, 4, 0, 4), and the same for the square disturbance, which all satisfy the rank-2 degenerate. As a result, 𝒩𝒵Ψϕ𝒩𝒵Ψ{}_{\phi}\langle\mathbfcal N^{2}_{\bm{Z}}\rangle_{\Psi}=\langle\mathbfcal N^{2}_{\bm{Z}}\rangle_{\Psi}=2(1-s), and 𝒟𝒳Ψϕ𝒟𝒳Ψ{}_{\phi}\langle\mathbfcal D^{2}_{\bm{X}}\rangle_{\Psi}=\langle\mathbfcal D^{2}_{\bm{X}}\rangle_{\Psi}=2(1-\sqrt{1-s^{2}}), for any postselected state |ϕ=cosθ|0+eiφsinθ|1|\phi\rangle=\cos\theta|0\rangle+e^{-i\varphi}\sin\theta|1\rangle. These results imply that postselection measurements affect neither the error nor the disturbance. (See detailed calculation in App. B.)

The observations in the example can be explained as follows. The error is determined via the device after the first measurement, and thus, it is not affected by postselection measurements as long as the rank-mm degenerate in the device holds. For the same reason, the disturbance is affected by the backaction caused by the device while unpolluted with postselection measurements.

Conclusion.— We introduced a no-go theorem for postselection measurements, where the obtained conditional expectation value is not affected by postselection measurements and is equal to a conventional expectation value. This can happen when the joint observable has a rank-mm degenerate subspace, where mm is the dimension of the device space. As a consequence, the error and disturbance in quantum measurements immune with postselection measurements.

Acknowledgments.— We thanks H.C. Nguyen for the fruitful discussion.

Appendix A Detailed proof for the no-go theorem

In this proof, we omit the indicator kk for short. We first derive Tr[𝚷ϕ𝑷ijρ𝑷ij]{\rm Tr}[\bm{\Pi}_{\phi}\bm{P}_{ij}\rho\bm{P}_{ij}] in Eq. (10) in the main text. We have

Tr[𝚷ϕ𝑷ijρ𝑷ij]\displaystyle{\rm Tr}[\bm{\Pi}_{\phi}\bm{P}_{ij}\rho\bm{P}_{ij}] =Ψ|𝑷ij𝚷ϕ𝑷ij|Ψ\displaystyle=\langle\Psi|\bm{P}_{ij}\bm{\Pi}_{\phi}\bm{P}_{ij}|\Psi\rangle
=Ψ|rijrij|𝚷ϕ|rijrij|Ψ,\displaystyle=\langle\Psi|r_{ij}\rangle\langle r_{ij}|\bm{\Pi}_{\phi}|r_{ij}\rangle\langle r_{ij}|\Psi\rangle, (A.1)

where we used 𝑷ij=|rijrij|\bm{P}_{ij}=|r_{ij}\rangle\langle r_{ij}|. Concretely, we derive

rij|Ψ=uivj|ψξ=ψiξj,\displaystyle\langle r_{ij}|\Psi\rangle=\langle u_{i}v_{j}|\psi\xi\rangle=\psi_{i}^{\prime}\xi_{j}^{\prime}, (A.2)

where we set ψi=ui|ψ,ξj=vj|ξ\psi_{i}^{\prime}=\langle u_{i}|\psi\rangle,\xi_{j}^{\prime}=\langle v_{j}|\xi\rangle, and

rij|𝚷ϕ|rij=eigj|𝑻𝚷ϕ𝑻|eigj=(𝚷ϕ)ij×ij,\displaystyle\langle r_{ij}|\bm{\Pi}_{\phi}|r_{ij}\rangle=\langle e_{i}g_{j}|\bm{T}^{\dagger}\bm{\Pi}_{\phi}\bm{T}|e_{i}g_{j}\rangle=(\bm{\Pi}^{\prime}_{\phi})_{ij\times ij}, (A.3)

where we applied the bases transformation rule |rij=𝑻|eigj|r_{ij}\rangle=\bm{T}|e_{i}g_{j}\rangle, and set 𝚷ϕ=𝑻𝚷ϕ𝑻\bm{\Pi}^{\prime}_{\phi}=\bm{T}^{\dagger}\bm{\Pi}_{\phi}\bm{T}. We also consider the case diag(𝚷ϕ)=(|ϕ1|2,,|ϕ1|2,,|ϕn|2,,|ϕn|2){\rm diag}(\bm{\Pi}^{\prime}_{\phi})=(|\phi^{\prime}_{1}|^{2},\cdots,|\phi^{\prime}_{1}|^{2},\cdots,|\phi^{\prime}_{n}|^{2},\cdots,|\phi^{\prime}_{n}|^{2}). Then, substituting Eqs. (A.2, A.3) into Eq. (A), we obtain Eq. (10)

i,j=1n,mTr[𝚷ϕ𝑷ijρ𝑷ij]\displaystyle\sum_{i,j=1}^{n,m}{\rm Tr}[\bm{\Pi}_{\phi}\bm{P}_{ij}\rho\bm{P}_{ij}] =i,j=1n,mΨ|rijrij|𝚷ϕ|rijrij|Ψ\displaystyle=\sum_{i,j=1}^{n,m}\langle\Psi|r_{ij}\rangle\langle r_{ij}|\bm{\Pi}_{\phi}|r_{ij}\rangle\langle r_{ij}|\Psi\rangle
=i,j=1n,m|ψi|2|ξj|2|ϕi|2\displaystyle=\sum_{i,j=1}^{n,m}|\psi^{\prime}_{i}|^{2}\ |\xi_{j}^{\prime}|^{2}\ |\phi_{i}^{\prime}|^{2}
=i=1n|ψi|2|ϕi|2.\displaystyle=\sum_{i=1}^{n}|\psi^{\prime}_{i}|^{2}\ |\phi^{\prime}_{i}|^{2}. (A.4)

Next, we derive Eq. (11) in the main text

i,jrijTr[𝚷ϕ𝑷ijρ𝑷ij]\displaystyle\sum_{i,j}r_{ij}{\rm Tr}[\bm{\Pi}_{\phi}\bm{P}_{ij}\rho\bm{P}_{ij}] =i,j=1n,mrij|ψi|2|ξj|2|ϕi|2\displaystyle=\sum_{i,j=1}^{n,m}r_{ij}\ |\psi^{\prime}_{i}|^{2}\ |\xi^{\prime}_{j}|^{2}\ |\phi^{\prime}_{i}|^{2}
=i=1n|ψi|2|ϕi|2j=1mr~j|ξj|2.\displaystyle=\sum_{i=1}^{n}|\psi^{\prime}_{i}|^{2}\ |\phi^{\prime}_{i}|^{2}\cdot\sum_{j=1}^{m}{\widetilde{r}}_{j}\ |\xi^{\prime}_{j}|^{2}. (A.5)

Finally, the conditional expectation value of the observable 𝒪\mathbfcal O is given by

ϕ𝒪ρ||𝒯Πϕ𝒫|ρ𝒫||𝒯Πϕ𝒫|ρ𝒫||~|ξ|\displaystyle_{\phi}\langle\mathbfcal O\rangle_{\rho}=\dfrac{\sum_{i,j}r_{ij}{\rm Tr}[\bm{\Pi}_{\phi}\bm{P}_{ij}\rho\bm{P}_{ij}]}{\sum_{i^{\prime},j^{\prime}}{\rm Tr}[\bm{\Pi}_{\phi}\bm{P}_{i^{\prime}j^{\prime}}\rho\bm{P}_{i^{\prime}j^{\prime}}]}=\sum_{j=1}^{m}{\widetilde{r}}_{j}\ |\xi^{\prime}_{j}|^{2}. (A.6)

We compare the conditional expectation value with the conventional expectation value in Eq. (A) in the main text:

𝒪ρ\displaystyle\langle\mathbfcal O\rangle_{\rho} =i,jrijTr[𝑷ijρ]\displaystyle=\sum_{i,j}r_{ij}{\rm Tr}[\bm{P}_{ij}\rho]
=i,jr~jΨ|rijrij|Ψ\displaystyle=\sum_{i,j}\widetilde{r}_{j}\langle\Psi|r_{ij}\rangle\langle r_{ij}|\Psi\rangle
=i,jr~j|ψi|2|ξj|2\displaystyle=\sum_{i,j}\widetilde{r}_{j}\ |\psi^{\prime}_{i}|^{2}\ |\xi^{\prime}_{j}|^{2}
=jr~j|ξj|2,\displaystyle=\sum_{j}\widetilde{r}_{j}\ |\xi^{\prime}_{j}|^{2}, (A.7)

and obtain 𝒪ρϕ𝒪ρ{}_{\phi}\langle\mathbfcal O\rangle_{\rho}=\langle\mathbfcal O\rangle_{\rho}, which completes the proof.

Appendix B Error and disturbance in CNOT-type measurement

In this section, we give a detailed calculation of square error and square disturbance. First, we explicitly derive the initial joint state as

|Ψ=|ψ|ξ=12(1+s1si1+si1s),\displaystyle|\Psi\rangle=|\psi\rangle\otimes|\xi\rangle=\dfrac{1}{2}\begin{pmatrix}\sqrt{1+s}\\ \sqrt{1-s}\\ i\sqrt{1+s}\\ i\sqrt{1-s}\end{pmatrix}, (B.1)

here, ψ1=ψ2=1/2\psi_{1}=\psi_{2}=1/\sqrt{2}, and ξ1=1+s2,ξ2=1s2\xi_{1}=\sqrt{\frac{1+s}{2}},\xi_{2}=\sqrt{\frac{1-s}{2}}. The square error operator in Eq. (15) is decomposed into its eigenvalue and eigenstate as

𝒩𝒵\displaystyle\mathbfcal N^{2}_{\bm{Z}} =4𝑰|11|\displaystyle=4\bm{I}\otimes|1\rangle\langle 1|
=0|0000|+4|0101|+0|1010|+4|1111|\displaystyle=0|00\rangle\langle 00|+4|01\rangle\langle 01|+0|10\rangle\langle 10|+4|11\rangle\langle 11|
i,jrij𝑷ij.\displaystyle\equiv\sum_{i,j}r_{ij}\bm{P}_{ij}. (B.2)

Here, obviously, we have r11=r21=0(r~1)r_{11}=r_{21}=0\ (\equiv\widetilde{r}_{1}) and r12=r22=4(r~2)r_{12}=r_{22}=4\ (\equiv\widetilde{r}_{2}), which satisfy condition (6). The projectors are 𝑷11=diag(1,0,0,0);𝑷12=diag(0,1,0,0);𝑷21=diag(0,0,1,0);\bm{P}_{11}={\rm diag}(1,0,0,0);\bm{P}_{12}={\rm diag}(0,1,0,0);\bm{P}_{21}={\rm diag}(0,0,1,0); and 𝑷22=diag(0,0,0,1)\bm{P}_{22}={\rm diag}(0,0,0,1). The post-selected state explicitly reads

𝚷ϕ=(cos2θcos2θsin2θsin2θ),\displaystyle\bm{\Pi}_{\phi}=\begin{pmatrix}\cos^{2}\theta&&&\\ &\cos^{2}\theta&&\\ &&\sin^{2}\theta&\\ &&&\sin^{2}\theta\end{pmatrix}, (B.3)

while we ignore the off-diagonal terms, hence ϕ1=cosθ\phi_{1}=\cos\theta, ϕ2=eiφsinθ\phi_{2}=e^{-i\varphi}\sin\theta. We emphasize that in this case, the eigenbasis is also the canonical basis, such that 𝑻=𝑰\bm{T}=\bm{I}. Now, we calculate (10)

i,j=12,2Tr[𝚷ϕ𝑷ijρ𝑷ij]=i=12|ϕi|2|ψi|2=12.\displaystyle\sum_{i,j=1}^{2,2}{\rm Tr}[\bm{\Pi}_{\phi}\bm{P}_{ij}\rho\bm{P}_{ij}]=\sum_{i=1}^{2}|\phi_{i}|^{2}\ |\psi_{i}|^{2}=\dfrac{1}{2}. (B.4)

Noting that direct calculating the L.H.S gives us exactly the same result. Next, we evaluate (11)

i,jrijTr[𝚷ϕ𝑷ijρ𝑷ij]\displaystyle\sum_{i,j}r_{ij}{\rm Tr}[\bm{\Pi}_{\phi}\bm{P}_{ij}\rho\bm{P}_{ij}] =j=12r~j|ξj|2i=12|ϕi|2|ψi|2\displaystyle=\sum_{j=1}^{2}{\widetilde{r}}_{j}\ |\xi_{j}|^{2}\cdot\sum_{i=1}^{2}|\phi_{i}|^{2}\ |\psi_{i}|^{2}
=1s.\displaystyle=1-s. (B.5)

Again, direct calculating the L.H.S gives us exactly the same result. Now, Eq. (5) explicitly reads

ϕ𝒩𝒵ρ\displaystyle_{\phi}\langle\mathbfcal N^{2}_{\bm{Z}}\rangle_{\rho}=2(1-s), (B.6)

which is the square error under the pre- and postselection measurement scheme. Furthermore, in the usual case without postselection, the square error also reads 𝒩𝒵ρ\langle\mathbfcal N^{2}_{\bm{Z}}\rangle_{\rho}=2(1-s), which implies no-go for postselection as shown in Eq. (13) of Corollary 1.

Now, we evaluate the square disturbance. The square disturbance operator states in Eq. (15) is decomposed into its eigenvalue and eigenstate as

𝒟𝒳\displaystyle\mathbfcal D^{2}_{\bm{X}} =2𝑰(𝑰𝑿)\displaystyle=2\bm{I}\otimes(\bm{I}-\bm{X})
=0|0+0+|+4|00|\displaystyle=0|0+\rangle\langle 0\!+\!|+4|0-\rangle\langle 0\!-\!|
+0|1+1+|+4|11|.\displaystyle\hskip 56.9055pt+0|1+\rangle\langle 1\!+\!|+4|1-\rangle\langle 1\!-\!|. (B.7)

Here, |0+=|0|+|0+\rangle=|0\rangle\otimes|+\rangle and likewise for the others, and |±=(|0±|1)/2.|\pm\rangle=(|0\rangle\pm|1\rangle)/\sqrt{2}. Similar as the square-error case, we have r11=r21=0(r~1)r_{11}=r_{21}=0\ (\equiv\widetilde{r}_{1}) and r12=r22=4(r~2)r_{12}=r_{22}=4\ (\equiv\widetilde{r}_{2}), which satisfy condition (6). The projectors in this case are 𝑷11=|0+0+|;𝑷12=|00|;𝑷21=|1+1+|;\bm{P}_{11}=|0+\rangle\langle 0\!+\!|;\bm{P}_{12}=|0-\rangle\langle 0\!-\!|;\bm{P}_{21}=|1+\rangle\langle 1\!+\!|; and 𝑷22=|11|\bm{P}_{22}=|1-\rangle\langle 1\!-\!|.

We next introduce the transformation matrix

𝑻\displaystyle\bm{T} =(|0+,|0,|1+,|1)\displaystyle=\begin{pmatrix}|0+\rangle,&|0-\rangle,&|1+\rangle,&|1-\rangle\end{pmatrix}
=12(1100110000110011).\displaystyle=\dfrac{1}{\sqrt{2}}\begin{pmatrix}1&-1&0&0\\ 1&1&0&0\\ 0&0&1&-1\\ 0&0&1&1\end{pmatrix}. (B.8)

The postselected state in the eigenbasis reads

𝚷ϕ=𝑻𝚷ϕ𝑻=diag(cos2θ,cos2θ,sin2θ,sin2θ),\displaystyle\bm{\Pi}^{\prime}_{\phi}=\bm{T}^{\dagger}\bm{\Pi}_{\phi}\bm{T}={\rm diag}\bigl{(}\cos^{2}\theta,\cos^{2}\theta,\sin^{2}\theta,\sin^{2}\theta\bigr{)}, (B.9)

where we have ignored the off-diagonal terms as it will not affect under the eigenbasis. Now, we calculate (10) by inserting 𝑻𝑻\bm{T}\bm{T}^{\dagger} between operators inside the trade:

i,j=12,2Tr[𝚷ϕ𝑷ijρ𝑷ij]=i=12|ϕi|2|ψi|2=12.\displaystyle\sum_{i,j=1}^{2,2}{\rm Tr}[\bm{\Pi}^{\prime}_{\phi}\bm{P}^{\prime}_{ij}\rho^{\prime}\bm{P}^{\prime}_{ij}]=\sum_{i=1}^{2}|\phi^{\prime}_{i}|^{2}\ |\psi^{\prime}_{i}|^{2}=\dfrac{1}{2}. (B.10)

Noting that direct calculating the L.H.S gives us exactly the same result. Next, we evaluate (11)

i,jrijTr[𝚷ϕ𝑷ijρ𝑷ij]\displaystyle\sum_{i,j}r_{ij}{\rm Tr}[\bm{\Pi}_{\phi}\bm{P}_{ij}\rho\bm{P}_{ij}] =j=12r~j|ξj|2i=12|ϕi|2|ψi|2\displaystyle=\sum_{j=1}^{2}{\widetilde{r}}_{j}\ |\xi^{\prime}_{j}|^{2}\cdot\sum_{i=1}^{2}|\phi^{\prime}_{i}|^{2}\ |\psi^{\prime}_{i}|^{2}
=11s2.\displaystyle=1-\sqrt{1-s^{2}}. (B.11)

Now, Eq. (5) explicitly reads

ϕ𝒟𝒳ρ\displaystyle_{\phi}\langle\mathbfcal D^{2}_{\bm{X}}\rangle_{\rho}=2(1-\sqrt{1-s^{2}}), (B.12)

which is the square disturbance under the pre- and postselection measurement scheme. Furthermore, in the usual case without postselection, the square error also reads 𝒟𝒳ρ\langle\mathbfcal D^{2}_{\bm{X}}\rangle_{\rho}=2(1-\sqrt{1-s^{2}}), which again implies no-go for postselection.

References