This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Nilpotent symplectic alternating algebras II

Layla Sorkatti
Gunnar Traustason
Department of Mathematical Sciences
University of Bath, UK

In this paper and its sequel we continue our study of nilpotent symplectic alternating algebras. In particular we give a full classification of such algebras of dimension 1010 over any field. It is known that symplectic alternating algebras over GF​(3)\mbox{GF}(3) correspond to a special rich class π’ž\mathcal{C} of 22-Engel 33-groups of exponent 2727 and under this correspondence we will see that the nilpotent algebras correspond to a subclass of π’ž\mathcal{C} that are those groups in π’ž\mathcal{C} that have an extra group theoretical property that we refer to as being powerfully nilpotent and can be described also in the context of pp-groups where pp is an arbitrary prime.

Keywords: Nonassociative, Symplectic, Alternating, Engel, Nilpotent, Powerful, p-group.

1 Introduction

A symplectic alternating algebra (SAA) is a symplectic vector space L, whose associated alternating form is non-degenerate, that is furthermore equipped with a binary alternating product β‹…\cdot :LΓ—L↦L:L\times L\mapsto L with the extra requirement that

(xβ‹…y,z)=(yβ‹…z,x)(x\cdot y,z)=(y\cdot z,x)

for all x,y,z∈Lx,y,z\in L. This condition can be expressed equivalently by saying that (uβ‹…x,v)=(u,vβ‹…x)(u\cdot x,v)=(u,v\cdot x) for all u,v,x∈Lu,v,x\in L or in other words that multiplication from the right is self-adjoint with respect to the alternating form.

Symplectic alternating algebras originate from a study of powerful 22-Engel groupsΒ [1, 5] and there is in a 1-1 correspondence between a certain rich class of powerful 22-Engel 33-groups of exponent 2727 and SAAs over the field GF​(3)\mbox{GF}(3). We will consider this in more details later in the introduction.

Let 2​n2n be a given even integer and 𝔽\mathbb{F} a fixed field. Let VV be the symplectic vector space over the field 𝔽\mathbb{F} with a non-degenerate alternating form. Fix some basis u1,u2,…,u2​nu_{1},u_{2},\ldots,u_{2n} for VV. An alternating product β‹…\cdot that turns VV into a symplectic alternating algebra is uniquely determined by the values

𝒫:(uiβ‹…uj,uk),1≀i<j<k≀2n.\mathcal{P}:\quad(u_{i}\cdot u_{j},u_{k}),\quad 1\leq i<j<k\leq 2n.

Let LL be the resulting symplectic alternating algebra. We refer to the data above as a presentation for LL with respect to the basis u1,…,u2​nu_{1},\ldots,u_{2n}.

If m​(n)m(n) is the number of symplectic alternating algebras over a finite field 𝔽\mathbb{F} then m​(n)=|𝔽|4​n33+O​(n2)m(n)=|\mathbb{F}|^{\frac{4n^{3}}{3}+O(n^{2})} [22]. Because of the sheer growth, a general classification does not seem to be within reach although this has been done for small values of nn. Thus it is not difficult to see that m​(0)=m​(1)=1m(0)=m(1)=1 and ​m​(2)=2\mbox{and }m(2)=2. For higher dimensions the classification is already difficult. It is though known that when 𝔽=GF​(3)\mathbb{F}=\mbox{GF}(3) we have m​(3)=31m(3)=31Β [2]. Some general structure theory is developed in Β [6, 4, 2, 3]. In particular there is dichotomy result that is an analog to a corresponding theorem for Lie algebras, namely that LL either contains a non-trivial abelian ideal or is a direct sum of simple symplectic alternating algebrasΒ [6]. We also have that any symplectic algebra that is abelian-by-nilpotent must be nilpotent while this is not the case in general for solvable algebrasΒ [4].

Here we focus on the subclass of nilpotent symplectic alternating algebras (NSAAs) and this paper is a sequel toΒ [2] where a rich general structure theory was developed for NSAAs with a number of beautiful properties. Before discussing these we need to introduce some notation. Firstly we can always pick a basis x1,y1,…,xn,ynx_{1},y_{1},\ldots,x_{n},y_{n} with the property that (xi,xj)=(yi,yj)=0(x_{i},x_{j})=(y_{i},y_{j})=0 and (xi,yj)=Ξ΄i​j(x_{i},y_{j})=\delta_{ij} for 1≀i≀j≀k≀n1\leq i\leq j\leq k\leq n. We refer to a basis of this type as a standard basis. It turns out that for any nilpotent symplectic alternating algebra one can always choose a suitable standard basis such that the chain of subspaces

0=I0<I1<…<In<Inβˆ’1βŸ‚<β‹―<I0βŸ‚=L,0=I_{0}<I_{1}<\ldots<I_{n}<I_{n-1}^{\perp}<\cdots<I_{0}^{\perp}=L,

with Ik=𝔽​xn+β‹―+𝔽​xnβˆ’k+1I_{k}=\mathbb{F}x_{n}+\cdots+\mathbb{F}x_{n-k+1} for k>0k>0, is a central chain of ideals. One can furthermore see from this that xi​yj=0x_{i}y_{j}=0 if j≀ij\leq i and that Inβˆ’1βŸ‚I^{\perp}_{n-1} is abelian. It follows that a number of the triple values (u​v,w)(uv,w) are trivial. Listing only the values that are possibly non-zero it suffices to consider

𝒫:(xiyj,yk)=Ξ±i​j​k,(yiyj,yk)=Ξ²i​j​k\mathcal{P}:\quad(x_{i}y_{j},y_{k})=\alpha_{ijk},\ \ (y_{i}y_{j},y_{k})=\beta_{ijk}

for some Ξ±i​j​k,Ξ²i​j​kβˆˆπ”½\alpha_{ijk},\beta_{ijk}\in\mathbb{F} where 1≀i<j<k≀n1\leq i<j<k\leq n. Such a presentation is called a nilpotent presentation. Conversely any such presentation describes a nilpotent SAA. The algebras that are of maximal class turn out to have a rigid ideal structure. In particular when 2​nβ‰₯102n\geq 10 we can choose our chain of ideals above such that they are all characteristic and it turns out that I0,I2,I3,…,Inβˆ’1,Inβˆ’1βŸ‚,Inβˆ’2βŸ‚,…,I0βŸ‚I_{0},I_{2},I_{3},\ldots,I_{n-1},I^{\perp}_{n-1},I^{\perp}_{n-2},\ldots,I^{\perp}_{0} are unique and equal to both the terms of the lower and upper central series (seeΒ [2] Theorem 3.1 and 3.2). The algebras of maximal class can be identified easily from their nilpotent presentations. In fact, if 𝒫\mathcal{P} is any nilpotent presentation of L with respect to a standard basis {x1,y1,…,xn,yn}\{x_{1},y_{1},\ldots,x_{n},y_{n}\}, and 2​nβ‰₯82n\geq 8, we have that L is of maximal class if and only if xi​yi+1β‰ 0x_{i}y_{i+1}\neq 0 for all i=2,…,nβˆ’2i=2,\ldots,n-2, and x1​y2,y1​y2x_{1}y_{2},y_{1}y_{2} are linearly independent (seeΒ [2] Theorem 3.4).

From the general theory of nilpotent SAAs one can also determine their growth. Thus if k​(n)k(n) is the number of nilpotent SAAs of dimension 2​n2n over a finite field 𝔽{\mathbb{F}} then k​(n)=|𝔽|n3/3+O​(n2)k(n)=|{\mathbb{F}}|^{n^{3}/3+O(n^{2})}Β [2] Again the growth is too large for a general classification to be feasable. The algebras of dimension 2​n2n for n≀4n\leq 4 are classified inΒ [2] over any field. In this paper and its sequel we deal with the challenging classification of algebras of dimension 1010 over any field. As we will see the classification depends very much on the underlying field. It turns out that the classification of nilpotent symplectic alternating algebras of dimension 10 with a centre that is not isotropic can be easily reduced to the known classification of algebras of dimension 88. The main bulk of the work is thus about algebras with isotropic centre that must lie between 22 and 55. In this paper we consider the situation when the isotropic centre is of dimension 33 or 55 leaving the remaining cases to the sequel. As we said above, the classification depends on the underlying field. We can read in particular from the classification that over a field that is algebraically closed there are 2222 NSAAs of dimension 1010.

2 The correspondence between SAAs and groups

Before starting the work on the classification we consider here in more detail the correspondence between SAAs and 22-Engel groups, mentioned in the introduction. The study in [4][4] reveals that there is one-one correspondence between symplectic alternating algebras over the field GF​(3)\mbox{GF}(3) and a certain class π’ž\mathcal{C} of powerful 22-Engel 33-groups of exponent 2727. These groups form a class that consists of all powerful 22-Engel 33-groups GG with the following extra properties:

(1) G=⟨x,H⟩G=\langle x,H\rangle where H={g∈G:g9=1}H=\{g\in G:g^{9}=1\} and Z​(G)=⟨x⟩Z(G)=\langle x\rangle with O​(x)=27O(x)=27.
(2) GG is of rank 2​r+12r+1 and has order 33+4​r3^{3+4r}.

The associated symplectic alternating algebra L​(G)L(G) is constructed as follows. First we consider L​(G)=H/G3L(G)=H/G^{3} as a vector space over GF(33). To this we associate a bilinear alternating form (,) and an alternating binary multiplication as follows: for any aΒ―=a​G3,bΒ―=b​G3\bar{a}=aG^{3},\bar{b}=bG^{3} and cΒ―=c​G3\bar{c}=cG^{3} in L​(G)L(G),

[a,b]3=x9​(aΒ―,bΒ―)[a,b]^{3}=x^{9(\bar{a},\bar{b})}
aΒ―β‹…bΒ―=c¯​ where ​[a,b]​Z​(G)=c3​Z​(G).\bar{a}\cdot\bar{b}=\bar{c}\mbox{ where }[a,b]Z(G)=c^{3}Z(G).

One can show that these are well defined and turn L​(G)L(G) into a SAA. Furthermore L​(G)β‰…L​(K)L(G)\cong L(K) if and only if Gβ‰…KG\cong KΒ [5] .

In order to indentify the groups in π’ž\mathcal{C} that correspond to the SAAs that are nilpotent, we introduce some new terms.

Definition. A finite p-group GG is powerfully nilpotent if there exist an ascending chain

{1}=H0≀H1≀⋯≀Hn=G\{1\}=H_{0}\leq H_{1}\leq\cdots\leq H_{n}=G

such that [Hi,G]≀Hiβˆ’1p[H_{i},G]\leq H_{i-1}^{p} for i=1,β‹―,ni=1,\cdots,n. We refer to such a chain as a powerfully central chain and nn is the length of the chain. If GG is powerfully nilpotent then the smallest possible length of a powerfully central chain for GG is called its powerful nilpotence class.

Let us now turn to our special class π’ž\mathcal{C} of powerful 22-Engel 33-groups. Let Gβˆˆπ’žG\in\mathcal{C}. For any KK such that G3≀K≀GG^{3}\leq K\leq G we let KΒ―=K/G3\bar{K}=K/G^{3}. Notice that

AΒ―β‹…L​(G)≀B¯​ if and only if ​[⟨A,x⟩,G]β‰€βŸ¨B,x⟩3.\bar{A}\cdot L(G)\leq\bar{B}\mbox{ if and only if }[\langle A,x\rangle,G]\leq\langle B,x\rangle^{3}.

Thus if G3≀HiG^{3}\leq H_{i} for i=1,β‹―,ni=1,\cdots,n, then

{0}=H0¯≀H1¯≀⋯≀HnΒ―=L​(G)\{0\}=\bar{H_{0}}\leq\bar{H_{1}}\leq\cdots\leq\bar{H_{n}}=L(G)

is a central chain of ideals in L​(G)L(G) if and only if

{1}β‰€βŸ¨xβŸ©β‰€βŸ¨H0,xβŸ©β‰€β‹―β‰€βŸ¨Hn,x⟩=G\{1\}\leq\langle x\rangle\leq\langle H_{0},x\rangle\leq\cdots\leq\langle H_{n},x\rangle=G

is a powerfully central chain. The classification of the NSAAs of dimension 1010 over GF​(3)\mbox{GF}(3) gives us thus the classification for the powerfully nilpotent groups in π’ž\mathcal{C} that are of rank 1111. The classification reveals that there are 2525 such groups.

3 Algebras with a non-isotropic centre and algebras with an isotropic centre of dimension 55

We consider first the algebras with a non-isotropic centre. Let LL be such an algebra. In this case we can assume that we have a standard basis where x5,y5∈Z​(L)x_{5},y_{5}\in Z(L). We then have that LL is a direct sum of the abelian algebra 𝔽​x5+𝔽​y5\mathbb{F}x_{5}+\mathbb{F}y_{5} and a NSAA of dimension 88. The algebras of dimension 88 were however classified in [2][2] and according to this classification there are, apart from the abelian algebra, two algebras and one family of algebras. From this we can read that there are the following non-abelian NSAAs of dimension 1010 with a non-isotropic centre.

𝒬10(7,1):\displaystyle{\mathcal{Q}}_{10}^{(7,1)}:\ \ (y1​y2,y3)=1.\displaystyle(y_{1}y_{2},y_{3})=1.
𝒬10(5,1):\displaystyle{\mathcal{Q}}_{10}^{(5,1)}:\ \ (y1​y2,y3)=1,(x1​y3,y4)=1.\displaystyle(y_{1}y_{2},y_{3})=1,\ (x_{1}y_{3},y_{4})=1.
𝒬10(4,1)​(r):\displaystyle{\mathcal{Q}}_{10}^{(4,1)}(r):\ \ (x2​y3,y4)=r,(x1​y2,y4)=1,(y1​y2,y3)=1,\displaystyle(x_{2}y_{3},y_{4})=r,\ (x_{1}y_{2},y_{4})=1,\ (y_{1}y_{2},y_{3})=1,

where rβˆˆπ”½βˆ–{0}r\in\mathbb{F}\setminus\{0\} and 𝒬10(4,1)​(s)≅𝒬10(4,1)​(r){{\mathcal{Q}}_{10}}^{(4,1)}(s)\cong{{\mathcal{Q}}_{10}}^{(4,1)}(r) if and only if r/s∈(π”½βˆ—)3r/s\in(\mathbb{F}^{*})^{3}. Here the notation 𝒬10(m,1){{\mathcal{Q}}_{10}}^{(m,1)} indicates that the algebra has dimension 1010 with centre of dimension mm. From now on we can thus assume that all our algebras have an isotropic centre and we start considering the case when the centre has dimension 55. Let LL be a nilpotent SAA of dimension 1010 with an isotropic centre of dimension 55. We can then choose a standard basis x1,y1,x2,y2,x3,y3,x4,y4,x5,y5x_{1},y_{1},x_{2},y_{2},x_{3},y_{3},x_{4},y_{4},x_{5},y_{5} such that

Z​(L)=𝔽​x5+𝔽​x4+𝔽​x3+𝔽​x2+𝔽​x1.Z(L)={\mathbb{F}}x_{5}+{\mathbb{F}}x_{4}+{\mathbb{F}}x_{3}+{\mathbb{F}}x_{2}+{\mathbb{F}}x_{1}.

Here x1,y1,x2,y2,x3,y3,x4,y4,x5,y5x_{1},y_{1},x_{2},y_{2},x_{3},y_{3},x_{4},y_{4},x_{5},y_{5} will be determined later such that some further conditions hold. The elements y1,…,y5y_{1},\ldots,y_{5} are not in Z​(L)Z(L) and without loss of generality we can assume that (y1​y2,y3)=1(y_{1}y_{2},y_{3})=1. Now suppose that (yi​yj,y4)=Ξ±i​j(y_{i}y_{j},y_{4})=\alpha_{ij} and (yi​yj,y5)=Ξ²i​j(y_{i}y_{j},y_{5})=\beta_{ij} for 1≀i,j≀31\leq i,j\leq 3. Replacing x1,x2,x3,y4,y5x_{1},x_{2},x_{3},y_{4},y_{5} by

x~1=x1+Ξ±23​x4+Ξ²23​x5,y~4=y4βˆ’Ξ±12​y3βˆ’Ξ±23​y1βˆ’Ξ±31​y2,x~2=x2+Ξ±31​x4+Ξ²31​x5,y~5=y5βˆ’Ξ²12​y3βˆ’Ξ²23​y1βˆ’Ξ²31​y2,x~3=x3+Ξ±12​x4+Ξ²12​x5,\begin{array}[]{ll}\tilde{x}_{1}=x_{1}+\alpha_{23}x_{4}+\beta_{23}x_{5},&\tilde{y}_{4}=y_{4}-\alpha_{12}y_{3}-\alpha_{23}y_{1}-\alpha_{31}y_{2},\\ \tilde{x}_{2}=x_{2}+\alpha_{31}x_{4}+\beta_{31}x_{5},&\tilde{y}_{5}=y_{5}-\beta_{12}y_{3}-\beta_{23}y_{1}-\beta_{31}y_{2},\\ \tilde{x}_{3}=x_{3}+\alpha_{12}x_{4}+\beta_{12}x_{5},&\mbox{}\end{array}

we can assume that our standard basis has the further property that (yi​yj,y4)=(yi​yj,y5)=0(y_{i}y_{j},y_{4})=(y_{i}y_{j},y_{5})=0 for 1≀i<j≀31\leq i<j\leq 3. As y4βˆ‰Z​(L)y_{4}\not\in Z(L), we know that one of (y1​y4,y5),(y2​y4,y5),(y3​y4,y5)(y_{1}y_{4},y_{5}),(y_{2}y_{4},y_{5}),(y_{3}y_{4},y_{5}) is nonzero. Without loss of generality we can assume that (y1​y4,y5)=1(y_{1}y_{4},y_{5})=1. The only triples whose values are not known are then Ξ±=(y2​y4,y5)\alpha=(y_{2}y_{4},y_{5}) and Ξ²=(y3​y4,y5)\beta=(y_{3}y_{4},y_{5}). Replacing x1,y2,y3x_{1},y_{2},y_{3} by x~1=x1+α​x2+β​x3\tilde{x}_{1}=x_{1}+\alpha x_{2}+\beta x_{3}, y~2=y2βˆ’Ξ±β€‹y1,y~3=y3βˆ’Ξ²β€‹y1\tilde{y}_{2}=y_{2}-\alpha y_{1},\tilde{y}_{3}=y_{3}-\beta y_{1}, we get a new standard basis where the only nonzero triple values are (y1​y2,y3)=1(y_{1}y_{2},y_{3})=1 and (y1​y4,y5)=1(y_{1}y_{4},y_{5})=1. We have thus proved the following result.

Proposition 3.1

There is a unique nilpotent SAA of dimension 1010 that has isotropic centre of dimension 55. This algebra can be described by the nilpotent presentation

𝒫10(5,1):(y1​y2,y3)=1,(y1​y4,y5)=1.{\mathcal{P}}_{10}^{(5,1)}:\ (y_{1}y_{2},y_{3})=1,\ \ (y_{1}y_{4},y_{5})=1.

4 Algebras with an isotropic centre of dimension 33

In this section we will be assuming that Z​(L)Z(L) is isotropic of dimension 33. First we derive some properties that hold for these algebras. Here throughout

Z​(L)\displaystyle Z(L) =\displaystyle= 𝔽​x5+𝔽​x4+𝔽​x3\displaystyle{\mathbb{F}}x_{5}+{\mathbb{F}}x_{4}+{\mathbb{F}}x_{3}
L2\displaystyle L^{2} =\displaystyle= Z​(L)+𝔽​x2+𝔽​x1+𝔽​y1+𝔽​y2.\displaystyle Z(L)+{\mathbb{F}}x_{2}+{\mathbb{F}}x_{1}+{\mathbb{F}}y_{1}+{\mathbb{F}}y_{2}.
Lemma 4.1

Z​(L)≀L3Z(L)\leq L^{3}.

ProofΒ Β Otherwise Z2​(L)=(L3)βŸ‚β‰°Z​(L)βŸ‚=L2Z_{2}(L)=(L^{3})^{\perp}\nleq Z(L)^{\perp}=L^{2}. Without loss of generality we can suppose that y3∈Z2​(L)βˆ–L2y_{3}\in Z_{2}(L)\setminus L^{2}. As Z2​(L)β‹…L2={0}Z_{2}(L)\cdot L^{2}=\{0\}, we then have y3β‹…L2={0}y_{3}\cdot L^{2}=\{0\}. Now also x2β‹…L2={0}x_{2}\cdot L^{2}=\{0\}. Let Ξ±=(x2​y4,y5)\alpha=(x_{2}y_{4},y_{5}) and Ξ²=(y3​y4,y5)\beta=(y_{3}y_{4},y_{5}). Notice that Ξ±,Ξ²β‰ 0\alpha,\beta\not=0 as x2,y3βˆ‰Z​(L)x_{2},y_{3}\not\in Z(L). But then

((β​x2βˆ’Ξ±β€‹y3)​y4,y5)=0((\beta x_{2}-\alpha y_{3})y_{4},y_{5})=0

that implies that β​x2βˆ’Ξ±β€‹y3∈Z​(L)\beta x_{2}-\alpha y_{3}\in Z(L). This is absurd. β–‘\Box

Lemma 4.2

dim ​L3β‰₯5\mbox{dim\,}L^{3}\geq 5.

ProofΒ Β Otherwise dim ​L3≀4\mbox{dim\,}L^{3}\leq 4 and as Z​(L)≀L3≀L2=Z​(L)βŸ‚Z(L)\leq L^{3}\leq L^{2}=Z(L)^{\perp} we can choose our standard basis such that Z​(L)=𝔽​x5+𝔽​x4+𝔽​x3Z(L)={\mathbb{F}}x_{5}+{\mathbb{F}}x_{4}+{\mathbb{F}}x_{3} and

L3≀𝔽​x5+𝔽​x4+𝔽​x3+𝔽​x2.L^{3}\leq{\mathbb{F}}x_{5}+{\mathbb{F}}x_{4}+{\mathbb{F}}x_{3}+{\mathbb{F}}x_{2}.

This implies that 𝔽​x5+𝔽​x4+𝔽​x3+𝔽​x2+𝔽​x1+𝔽​y1≀(L3)βŸ‚=Z2​(L){\mathbb{F}}x_{5}+{\mathbb{F}}x_{4}+{\mathbb{F}}x_{3}+{\mathbb{F}}x_{2}+{\mathbb{F}}x_{1}+{\mathbb{F}}y_{1}\leq(L^{3})^{\perp}=Z_{2}(L) and (notice that Z2​(L)≀L2Z_{2}(L)\leq L^{2} as Z​(L)≀L3Z(L)\leq L^{3}) L2=Z2​(L)+F​y2L^{2}=Z_{2}(L)+Fy_{2} that implies that L2L^{2} is abelian. Then for any x∈L2x\in L^{2} and a,b,c∈La,b,c\in L, we have

(x,a​b​c)=βˆ’(x​(a​b),c)=βˆ’(0,c)=0(x,abc)=-(x(ab),c)=-(0,c)=0

and L3≀(L2)βŸ‚=Z​(L)L^{3}\leq(L^{2})^{\perp}=Z(L). Hence L3=Z​(L)L^{3}=Z(L) and Z2​(L)=L2Z_{2}(L)=L^{2}. Suppose L=Z2​(L)+𝔽​u1+𝔽​u2+𝔽​u3L=Z_{2}(L)+{\mathbb{F}}u_{1}+{\mathbb{F}}u_{2}+{\mathbb{F}}u_{3}. Then L2=Z​(L)+𝔽​u1​u2+𝔽​u1​u3+𝔽​u2​u3L^{2}=Z(L)+{\mathbb{F}}u_{1}u_{2}+{\mathbb{F}}u_{1}u_{3}+{\mathbb{F}}u_{2}u_{3} and we get the contradiction that 4=dim ​L2βˆ’dim ​Z​(L)≀34=\mbox{dim\,}L^{2}-\mbox{dim\,}Z(L)\leq 3. β–‘\Box

Lemma 4.3

If dim ​L3=5\mbox{dim\,}L^{3}=5, then L3L^{3} is isotropic.

ProofΒ Β Otherwise we can choose our basis such that L3=𝔽​x5+𝔽​x4+𝔽​x3+𝔽​x1+𝔽​y1L^{3}={\mathbb{F}}x_{5}+{\mathbb{F}}x_{4}+{\mathbb{F}}x_{3}+{\mathbb{F}}x_{1}+{\mathbb{F}}y_{1} and then Z2​(L)=(L3)βŸ‚=𝔽​x5+𝔽​x4+𝔽​x3+𝔽​x2+𝔽​y2Z_{2}(L)=(L^{3})^{\perp}={\mathbb{F}}x_{5}+{\mathbb{F}}x_{4}+{\mathbb{F}}x_{3}+{\mathbb{F}}x_{2}+{\mathbb{F}}y_{2} and as L2β‹…Z2​(L)={0}L^{2}\cdot Z_{2}(L)=\{0\}, it follows that x1​y2=y1​y2=0x_{1}y_{2}=y_{1}y_{2}=0. Then L2L^{2} is abelian and thus we get the contradiction that L3≀Z​(L)L^{3}\leq Z(L). β–‘\Box

Lemma 4.4

Z​(L)≀L4Z(L)\leq L^{4}.

ProofΒ Β We have seen that dim ​L3β‰₯5\mbox{dim\,}L^{3}\geq 5. So we can choose our standard nilpotent basis such that either

L3=𝔽​x5+𝔽​x4+𝔽​x3+𝔽​x2+𝔽​x1L^{3}={\mathbb{F}}x_{5}+{\mathbb{F}}x_{4}+{\mathbb{F}}x_{3}+{\mathbb{F}}x_{2}+{\mathbb{F}}x_{1}

or

L3=𝔽​x5+𝔽​x4+𝔽​x3+𝔽​x2+𝔽​x1+𝔽​y1.L^{3}={\mathbb{F}}x_{5}+{\mathbb{F}}x_{4}+{\mathbb{F}}x_{3}+{\mathbb{F}}x_{2}+{\mathbb{F}}x_{1}+{\mathbb{F}}y_{1}.

We consider the two cases in turn beginning with the first case. If Z​(L)β‰°L4Z(L)\not\leq L^{4}, then dim ​Z​(L)∩L4≀2\mbox{dim\,}Z(L)\cap L^{4}\leq 2 and thus dim ​L2+Z3​(L)=dim ​(Z​(L)∩L4)βŸ‚β‰₯8\mbox{dim\,}L^{2}+Z_{3}(L)=\mbox{dim\,}(Z(L)\cap L^{4})^{\perp}\geq 8. Suppose L=L2+Z3​(L)+𝔽​u+𝔽​vL=L^{2}+Z_{3}(L)+{\mathbb{F}}u+{\mathbb{F}}v. Then L2=L3+Z2​(L)+𝔽​u​v=L3+𝔽​u​vL^{2}=L^{3}+Z_{2}(L)+{\mathbb{F}}uv=L^{3}+{\mathbb{F}}uv and we get the contradiction that dim ​L2≀5+1=6\mbox{dim\,}L^{2}\leq 5+1=6. We now turn to the second case where L3=𝔽​x5+𝔽​x4+𝔽​x3+𝔽​x2+𝔽​x1+𝔽​y1L^{3}={\mathbb{F}}x_{5}+{\mathbb{F}}x_{4}+{\mathbb{F}}x_{3}+{\mathbb{F}}x_{2}+{\mathbb{F}}x_{1}+{\mathbb{F}}y_{1}. We argue by contradiction and suppose that Z​(L)∩L4<Z​(L)Z(L)\cap L^{4}<Z(L). Then we can choose our basis such that

L4≀𝔽​x5+𝔽​x4+𝔽​x2L^{4}\leq{\mathbb{F}}x_{5}+{\mathbb{F}}x_{4}+{\mathbb{F}}x_{2}

and Z​(L)∩L4≀𝔽​x5+𝔽​x4Z(L)\cap L^{4}\leq{\mathbb{F}}x_{5}+{\mathbb{F}}x_{4}. Now y3∈(L4)βŸ‚=Z3​(L)y_{3}\in(L^{4})^{\perp}=Z_{3}(L) and as Z3​(L)β‹…L3={0}Z_{3}(L)\cdot L^{3}=\{0\}, it follows that

x1​y3=x2​y3=y1​y3=0.x_{1}y_{3}=x_{2}y_{3}=y_{1}y_{3}=0.

It follows from this that x1​y2,y1​y2,y3​y2βˆˆπ”½β€‹x5+𝔽​x4x_{1}y_{2},y_{1}y_{2},y_{3}y_{2}\in{\mathbb{F}}x_{5}+{\mathbb{F}}x_{4}. Thus in particular these three elements are linearly dependent and we have (α​x1+β​y1+γ​y3)​y2=0(\alpha x_{1}+\beta y_{1}+\gamma y_{3})y_{2}=0 where not all of Ξ±,Ξ²,Ξ³\alpha,\beta,\gamma are zero. Then x2,α​x1+β​y1+γ​y3x_{2},\alpha x_{1}+\beta y_{1}+\gamma y_{3} commute with all the basis elements except possibly y4y_{4} and y5y_{5}. Suppose

(x2​y4,y5)\displaystyle(x_{2}y_{4},y_{5}) =\displaystyle= r\displaystyle r
((α​x1+β​y1+γ​y3)​y4,y5)\displaystyle((\alpha x_{1}+\beta y_{1}+\gamma y_{3})y_{4},y_{5}) =\displaystyle= s.\displaystyle s.

If r=0r=0 then we get the contradiction that x2∈Z​(L)x_{2}\in Z(L) and if rβ‰ 0r\not=0, we get the contradiction that βˆ’s​x2+r​α​x1+r​β​y1+r​γ​y3∈Z​(L)-sx_{2}+r\alpha x_{1}+r\beta y_{1}+r\gamma y_{3}\in Z(L). β–‘\Box

After these more general results we classify all the algebras where Z​(L)Z(L) is isotropic of dimension 33. We consider the two subcases dim ​L3=5\mbox{dim\,}L^{3}=5 and dim ​L3=6\mbox{dim\,}L^{3}=6 separately.

4.1 The algebras where dim ​L3=5\mbox{dim\,}L^{3}=5

We have seen that L3L^{3} must be isotropic and thus in particular we have that L3=(L3)βŸ‚=Z2​(L)L^{3}=(L^{3})^{\perp}=Z_{2}(L) that implies that L4≀Z​(L)L^{4}\leq Z(L). By Lemma 4.4 we thus have L4=Z​(L)L^{4}=Z(L). We have thus determined the terms of the lower and the upper central series

x4y4(L2β‹…L2)βŸ‚Z(L)=L4x3y3x2y2Z3(L)=L2Z2(L)=L3Β x1y1​Z​(L)=L4=𝔽​x5+𝔽​x4+𝔽​x3Z2​(L)=L3=Z​(L)+𝔽​x2+𝔽​x1Z3​(L)=L2=Z2​(L)+𝔽​y1+𝔽​y2​\begin{array}[]{ll}\begin{tabular}[]{c|c|c|c}\cline{2-3}\cr$L^{2}\cdot L^{2}$&$x_{5}$&$y_{5}$&\mbox{}\\ \cline{2-3}\cr\mbox{}&$x_{4}$&$y_{4}$&$(L^{2}\cdot L^{2})^{\perp}$\\ \mbox{}$Z(L)=L^{4}$&$x_{3}$&$y_{3}$&\mbox{}\\ \cline{2-3}\cr\mbox{}&$x_{2}$&$y_{2}$&$Z_{3}(L)=L^{2}$\\ \mbox{}$Z_{2}(L)=L^{3}$ \mbox{}&$x_{1}$&$y_{1}$&\mbox{}\\ \cline{2-3}\cr\end{tabular}&$$\begin{array}[]{l}Z(L)=L^{4}={\mathbb{F}}x_{5}+{\mathbb{F}}x_{4}+{\mathbb{F}}x_{3}\\ Z_{2}(L)=L^{3}=Z(L)+{\mathbb{F}}x_{2}+{\mathbb{F}}x_{1}\\ Z_{3}(L)=L^{2}=Z_{2}(L)+{\mathbb{F}}y_{1}+{\mathbb{F}}y_{2}\end{array}$$\end{array}
β‹…L2L2x5y5

Remark. As L2β‹…Z2​(L)={0}L^{2}\cdot Z_{2}(L)=\{0\} we see that x1​y2=0x_{1}y_{2}=0. Now L2L^{2} is not abelian as this would imply that L3≀Z​(L)L^{3}\leq Z(L). It follows that y1​y2β‰ 0y_{1}y_{2}\not=0 and we get a one dimensional characteristic subspace

L2β‹…L2=𝔽​y1​y2.L^{2}\cdot L^{2}={\mathbb{F}}y_{1}y_{2}.

Notice that y1​y2∈Z​(L)y_{1}y_{2}\in Z(L). We choose our basis such that y1​y2=x5y_{1}y_{2}=x_{5}. We will also work with the 99 dimensional characteristic subspace

V=(L2β‹…L2)βŸ‚=𝔽​x5+𝔽​x4+𝔽​x3+𝔽​x2+𝔽​x1+𝔽​y1+𝔽​y2+𝔽​y3+𝔽​y4.V=(L^{2}\cdot L^{2})^{\perp}={\mathbb{F}}x_{5}+{\mathbb{F}}x_{4}+{\mathbb{F}}x_{3}+{\mathbb{F}}x_{2}+{\mathbb{F}}x_{1}+{\mathbb{F}}y_{1}+{\mathbb{F}}y_{2}+{\mathbb{F}}y_{3}+{\mathbb{F}}y_{4}.

As x1​y2=0x_{1}y_{2}=0 we have that x1​y3,x1​y4βŸ‚y2x_{1}y_{3},x_{1}y_{4}\perp y_{2}. As y1​y2=x5y_{1}y_{2}=x_{5} we also have that y1​y3,y1​y4βŸ‚y1,y2y_{1}y_{3},y_{1}y_{4}\perp y_{1},y_{2} and y2​y3,y2​y4βŸ‚y1,y2y_{2}y_{3},y_{2}y_{4}\perp y_{1},y_{2}. It follows that

V2+L4=(L2+𝔽​y3+𝔽​y4)​(L2+𝔽​y3+𝔽​y4)+L4=𝔽​y3​y4+L4.V^{2}+L^{4}=(L^{2}+{\mathbb{F}}y_{3}+{\mathbb{F}}y_{4})(L^{2}+{\mathbb{F}}y_{3}+{\mathbb{F}}y_{4})+L^{4}={\mathbb{F}}y_{3}y_{4}+L^{4}.

We consider few subcases.

4.1.1 Algebras where V2≀L4V^{2}\leq L^{4}

Notice then that y3​y4βˆˆπ”½β€‹x5y_{3}y_{4}\in{\mathbb{F}}x_{5} and thus x1​y3,x2​y3,x1​y4,x2​y4βˆˆπ”½β€‹x5x_{1}y_{3},x_{2}y_{3},x_{1}y_{4},x_{2}y_{4}\in{\mathbb{F}}x_{5}. As L3=L4+𝔽​x2+𝔽​x1L^{3}=L^{4}+{\mathbb{F}}x_{2}+{\mathbb{F}}x_{1}, we have

L4=(𝔽​x2+𝔽​x1)​(𝔽​y3+𝔽​y4+𝔽​y5)=𝔽​x5+𝔽​x2​y5+𝔽​x1​y5.L^{4}=({\mathbb{F}}x_{2}+{\mathbb{F}}x_{1})({\mathbb{F}}y_{3}+{\mathbb{F}}y_{4}+{\mathbb{F}}y_{5})={\mathbb{F}}x_{5}+{\mathbb{F}}x_{2}y_{5}+{\mathbb{F}}x_{1}y_{5}.

Pick x5,y5,x2,x1,y1x_{5},y_{5},x_{2},x_{1},y_{1} satisfying the conditions above and let

x4=βˆ’x2​y5,x3=βˆ’x1​y5x_{4}=-x_{2}y_{5},\ x_{3}=-x_{1}y_{5}

We can then extend x5,x4,x3,y1,x_{5},x_{4},x_{3},y_{1}, y2,y5y_{2},y_{5} to a standard basis x5,x4,x3,x2,x1,y1,x_{5},x_{4},x_{3},x_{2},x_{1},y_{1}, y2,y3,y4,y5y_{2},y_{3},y_{4},y_{5} satisfying the conditions above. All triples involving both x1x_{1} and y2y_{2} are 0. The remaining ones are

(x1​y3,y5)=1(x1​y3,y4)=0(x1​y4,y5)=0(x2​y3,y4)=0(x2​y3,y5)=0(x2​y4,y5)=1(y1​y2,y3)=0(y1​y2,y4)=0(y1​y2,y5)=1(y2​y3,y4)=0(y2​y3,y5)=Ξ±(y2​y4,y5)=Ξ²(y1​y3,y4)=0(y1​y3,y5)=Ξ³(y1​y4,y5)=Ξ΄(y3​y4,y5)=r\begin{array}[]{lll}(x_{1}y_{3},y_{5})=1&(x_{1}y_{3},y_{4})=0&(x_{1}y_{4},y_{5})=0\\ (x_{2}y_{3},y_{4})=0&(x_{2}y_{3},y_{5})=0&(x_{2}y_{4},y_{5})=1\\ (y_{1}y_{2},y_{3})=0&(y_{1}y_{2},y_{4})=0&(y_{1}y_{2},y_{5})=1\\ (y_{2}y_{3},y_{4})=0&(y_{2}y_{3},y_{5})=\alpha&(y_{2}y_{4},y_{5})=\beta\\ (y_{1}y_{3},y_{4})=0&(y_{1}y_{3},y_{5})=\gamma&(y_{1}y_{4},y_{5})=\delta\\ (y_{3}y_{4},y_{5})=r&\mbox{}&\mbox{}\end{array}

Now let

y~3=y3+α​y1βˆ’Ξ³β€‹y2βˆ’s​x2βˆ’s​γ​x3βˆ’s​δ​x4y~2=y2βˆ’s​x3x~1=x1βˆ’Ξ±β€‹x3βˆ’Ξ²β€‹x4y~4=y4+β​y1βˆ’Ξ΄β€‹y2x~2=x2+γ​x3+δ​x4\begin{array}[]{lll}\tilde{y}_{3}=y_{3}+\alpha y_{1}-\gamma y_{2}-sx_{2}-s\gamma x_{3}-s\delta x_{4}&&\tilde{y}_{2}=y_{2}-sx_{3}\\ \tilde{x}_{1}=x_{1}-\alpha x_{3}-\beta x_{4}&&\tilde{y}_{4}=y_{4}+\beta y_{1}-\delta y_{2}\\ \tilde{x}_{2}=x_{2}+\gamma x_{3}+\delta x_{4}&&\end{array}

where s=r+Ξ±β€‹Ξ΄βˆ’Ξ²β€‹Ξ³s=r+\alpha\delta-\beta\gamma. One checks readily that we get a new standard basis with a presentation like the one above where Ξ±~=Ξ²~=Ξ³~=Ξ΄~=r~=0\tilde{\alpha}=\tilde{\beta}=\tilde{\gamma}=\tilde{\delta}=\tilde{r}=0.

So we arrive at a unique algebra with presentation

𝒫10(3,1):(x1y3,y5)=1,(x2y4,y5)=1,(y1y2,y5)=1.{\mathcal{P}}_{10}^{(3,1)}:\ \ (x_{1}y_{3},y_{5})=1,\ (x_{2}y_{4},y_{5})=1,\ (y_{1}y_{2},y_{5})=1.

One can check that the centre has dimension 33 and that L3L^{3} has dimension 55. Also ((L2β‹…L2)βŸ‚)2=𝔽​x5≀L4((L^{2}\cdot L^{2})^{\perp})^{2}={\mathbb{F}}x_{5}\leq L^{4}.

4.1.2 Algebras where V2β‰°L4V^{2}\nleq L^{4} but V2≀L3V^{2}\leq L^{3}

Here we can pick our basis such that

V2+L4=𝔽​x5+𝔽​x4+𝔽​x3+𝔽​x2.V^{2}+L^{4}={\mathbb{F}}x_{5}+{\mathbb{F}}x_{4}+{\mathbb{F}}x_{3}+{\mathbb{F}}x_{2}.

Notice that V3=𝔽​x2​y3+𝔽​x2​y4V^{3}={\mathbb{F}}x_{2}y_{3}+{\mathbb{F}}x_{2}y_{4} and as (y3​y4,x2)=0(y_{3}y_{4},x_{2})=0 we have that V3≀𝔽​x5V^{3}\leq{\mathbb{F}}x_{5}. As x2βˆ‰Z​(L)x_{2}\not\in Z(L), we furthermore must have that dim ​V3=1\mbox{dim\,}V^{3}=1. This means that there is a characteristic ideal WW of codimension 11 in VV such that x2​W=V2​W={0}x_{2}W=V^{2}W=\{0\}. We choose our basis such that

W=𝔽​x5+𝔽​x4+𝔽​x3+𝔽​x2+𝔽​x1+𝔽​y1+𝔽​y2+𝔽​y3.W={\mathbb{F}}x_{5}+{\mathbb{F}}x_{4}+{\mathbb{F}}x_{3}+{\mathbb{F}}x_{2}+{\mathbb{F}}x_{1}+{\mathbb{F}}y_{1}+{\mathbb{F}}y_{2}+{\mathbb{F}}y_{3}.

It follows that we have a chain of characteristic ideals:

L2β‹…L2x5y5WβŸ‚x4y4VZ(L)=L4x3y3WV2+L4x2y2Z3(L)=L2Z2(L)=L3Β x1y1(V2)βŸ‚βˆ©L2L2β‹…L2=𝔽​x5WβŸ‚=𝔽​x5+𝔽​x4Z​(L)=L4=𝔽​x5+𝔽​x4+𝔽​x3V2+L4=𝔽​x5+𝔽​x4+𝔽​x3+𝔽​x2Z2​(L)=L3=Z​(L)+𝔽​x2+𝔽​x1(V2)βŸ‚βˆ©L2=L3+𝔽​y1Z3​(L)=L2=Z2​(L)+𝔽​y1+𝔽​y2W=L3+𝔽​y1+𝔽​y2+𝔽​y3V=L3+𝔽​y1+𝔽​y2+𝔽​y3+𝔽​y4\begin{array}[]{ll}\begin{tabular}[]{c|c|c|c}\cline{2-3}\cr$L^{2}\cdot L^{2}$&$x_{5}$&$y_{5}$&\mbox{}\\ \cline{2-3}\cr$W^{\perp}$&$x_{4}$&$y_{4}$&$V$\\ \mbox{}$Z(L)=L^{4}$&$x_{3}$&$y_{3}$&$W$\\ \cline{2-3}\cr\mbox{}$V^{2}+L^{4}$&$x_{2}$&$y_{2}$&$Z_{3}(L)=L^{2}$\\ \mbox{}$Z_{2}(L)=L^{3}$ \mbox{}&$x_{1}$&$y_{1}$&$(V^{2})^{\perp}\cap L^{2}$\\ \cline{2-3}\cr\end{tabular}&\begin{array}[]{l}L^{2}\cdot L^{2}={\mathbb{F}}x_{5}\\ W^{\perp}={\mathbb{F}}x_{5}+{\mathbb{F}}x_{4}\\ Z(L)=L^{4}={\mathbb{F}}x_{5}+{\mathbb{F}}x_{4}+{\mathbb{F}}x_{3}\\ V^{2}+L^{4}={\mathbb{F}}x_{5}+{\mathbb{F}}x_{4}+{\mathbb{F}}x_{3}+{\mathbb{F}}x_{2}\\ Z_{2}(L)=L^{3}=Z(L)+{\mathbb{F}}x_{2}+{\mathbb{F}}x_{1}\\ (V^{2})^{\perp}\cap L^{2}=L^{3}+{\mathbb{F}}y_{1}\\ Z_{3}(L)=L^{2}=Z_{2}(L)+{\mathbb{F}}y_{1}+{\mathbb{F}}y_{2}\\ W=L^{3}+{\mathbb{F}}y_{1}+{\mathbb{F}}y_{2}+{\mathbb{F}}y_{3}\\ V=L^{3}+{\mathbb{F}}y_{1}+{\mathbb{F}}y_{2}+{\mathbb{F}}y_{3}+{\mathbb{F}}y_{4}\end{array}\end{array}

We want to show that there is again a unique algebra satisfying these conditions. We modify the basis and reach a unique presentation. Notice that V2​W={0}V^{2}W=\{0\} and L2β‹…Z2​(L)={0}L^{2}\cdot Z_{2}(L)=\{0\} imply that

x1​y2=x2​y3=0.x_{1}y_{2}=x_{2}y_{3}=0.

We have also chosen our basis such that

y1​y2=x5.y_{1}y_{2}=x_{5}. (1)

Notice next that x2​y3=0x_{2}y_{3}=0 implies that x2​y4x_{2}y_{4} is orthogonal to y3y_{3} and y4y_{4} and thus x2​y4=r​y5x_{2}y_{4}=ry_{5} where rr must be nonzero as x2βˆ‰Z​(L)x_{2}\not\in Z(L). By replacing y4y_{4} and x4x_{4} by r​y4ry_{4} and 1r​x4\frac{1}{r}x_{4}, we can assume that

x2​y4=x5.x_{2}y_{4}=x_{5}. (2)

As y3​y4∈V2≀L3y_{3}y_{4}\in V^{2}\leq L^{3} and as x1​y2=0x_{1}y_{2}=0 we have that x1​y4x_{1}y_{4} is orthogonal to y2,y3,y4y_{2},y_{3},y_{4}. Thus x1​y4=α​x5x_{1}y_{4}=\alpha x_{5} for some Ξ±βˆˆπ”½\alpha\in{\mathbb{F}}. Replacing x1,y2x_{1},y_{2} by x1βˆ’Ξ±β€‹x2x_{1}-\alpha x_{2} and y2+α​y1y_{2}+\alpha y_{1} we get a new standard basis where

x1​y4=0.x_{1}y_{4}=0. (3)

Notice that the change in y2y_{2} does not affect (1). We next turn our attention to x1​y3x_{1}y_{3}. As x1​y2=0x_{1}y_{2}=0 and x1​y4=0x_{1}y_{4}=0, we have that x1​y3x_{1}y_{3} is orthogonal to y1,y2,y3,y4y_{1},y_{2},y_{3},y_{4} and thus x1​y3=r​x5x_{1}y_{3}=rx_{5} where rr is nonzero since x1βˆ‰Z​(L)x_{1}\not\in Z(L). By replacing y3y_{3} and x3x_{3} by r​y3ry_{3} and 1r​x3\frac{1}{r}x_{3} we get

x1​y3=x5.x_{1}y_{3}=x_{5}. (4)

Now we see, as y1​y2=x5y_{1}y_{2}=x_{5} and y3​y4∈L4+V2y_{3}y_{4}\in L^{4}+V^{2}, that y1​y3y_{1}y_{3} is orthogonal to y1,y2,y3y_{1},y_{2},y_{3} and y4y_{4}. Thus y1​y3=a​x5y_{1}y_{3}=ax_{5} for some aβˆˆπ”½a\in{\mathbb{F}}. Replacing y1y_{1} by y1βˆ’a​x1y_{1}-ax_{1} we can assume that

y1​y3=0.y_{1}y_{3}=0. (5)

As x1​y2=0x_{1}y_{2}=0 the change in y1y_{1} does not affect (1). From the discussion above we know that y1​y4y_{1}y_{4} is orthogonal to y1,y2,y3y_{1},y_{2},y_{3} and y4y_{4} and thus y1​y4=a​x5y_{1}y_{4}=ax_{5} for some aβˆˆπ”½a\in{\mathbb{F}}. Replacing y4,x2y_{4},x_{2} by y4βˆ’a​y2y_{4}-ay_{2} and x2+a​x4x_{2}+ax_{4}, we get a new standard basis where

y1​y4=0.y_{1}y_{4}=0. (6)

These changes do not affect (2) and (3). As y3​y4∈V2+L4y_{3}y_{4}\in V^{2}+L^{4} but not in L4L^{4} we know that (y2​y3,y4)=r(y_{2}y_{3},y_{4})=r for some nonzero rβˆˆπ”½r\in{\mathbb{F}}. Suppose also that (y3​y4,y5)=Ξ±(y_{3}y_{4},y_{5})=\alpha. Then y3​y4=r​x2+α​x5y_{3}y_{4}=rx_{2}+\alpha x_{5}. Replace x2x_{2} and y5y_{5} by x2+Ξ±r​x5x_{2}+\frac{\alpha}{r}x_{5} and y5βˆ’Ξ±r​y2y_{5}-\frac{\alpha}{r}y_{2}. Then

y3​y4=r​x2.y_{3}y_{4}=rx_{2}. (7)

The changes do not affect (2). Then consider the triples

(y2​y3,y5)=a,(y2​y4,y5)=b.(y_{2}y_{3},y_{5})=a,\ \ (y_{2}y_{4},y_{5})=b.

Replacing y5,x4,x3y_{5},x_{4},x_{3} by y5βˆ’ar​y4+br​y3y_{5}-\frac{a}{r}y_{4}+\frac{b}{r}y_{3}, x4+ar​x5x_{4}+\frac{a}{r}x_{5} and x3βˆ’br​x5x_{3}-\frac{b}{r}x_{5} we can assume that

(y2​y3,y5)=(y2​y4,y5)=0.(y_{2}y_{3},y_{5})=(y_{2}y_{4},y_{5})=0. (8)

We have then arrived at a presentation where the only nonzero triples are

(x2​y4,y5)=1,(x1​y3,y5)=1,(y1​y2,y5)=1,(y2​y3,y4)=r.(x_{2}y_{4},y_{5})=1,\ (x_{1}y_{3},y_{5})=1,\ (y_{1}y_{2},y_{5})=1,\ (y_{2}y_{3},y_{4})=r.

Replacing x1,y1,x2,y2,x3,y3,x4,y4x_{1},y_{1},x_{2},y_{2},x_{3},y_{3},x_{4},y_{4}, by 1r​x1,r​y1,r​x2,1r​y2,1r​x3,r​y3,r​x4,1r​y4\frac{1}{r}x_{1},ry_{1},rx_{2},\frac{1}{r}y_{2},\frac{1}{r}x_{3},ry_{3},rx_{4},\frac{1}{r}y_{4}, we get a unique algebra with presentation:

𝒫10(3,2):(x2​y4,y5)=1,(x1​y3,y5)=1,(y1​y2,y5)=1,(y2​y3,y4)=1.{\mathcal{P}}_{10}^{(3,2)}:\ (x_{2}y_{4},y_{5})=1,\ (x_{1}y_{3},y_{5})=1,\ (y_{1}y_{2},y_{5})=1,\ (y_{2}y_{3},y_{4})=1.

One can easily check that conversely this algebra belongs to the category that we have been studying.

4.1.3 Algebras where V2≀L2V^{2}\leq L^{2} but V2β‰°L3V^{2}\nleq L^{3}

Pick our basis such that

V2+L4=𝔽​x5+𝔽​x4+𝔽​x3+𝔽​y1V^{2}+L^{4}={\mathbb{F}}x_{5}+{\mathbb{F}}x_{4}+{\mathbb{F}}x_{3}+{\mathbb{F}}y_{1}

Notice then that

𝔽​x5+𝔽​x4+𝔽​x3+𝔽​x2=(V2+L4)βŸ‚βˆ©L3=(V2)βŸ‚βˆ©L3{\mathbb{F}}x_{5}+{\mathbb{F}}x_{4}+{\mathbb{F}}x_{3}+{\mathbb{F}}x_{2}=(V^{2}+L^{4})^{\perp}\cap L^{3}=(V^{2})^{\perp}\cap L^{3}

is a characteristic ideal of LL. As y3​y4∈V2+L4y_{3}y_{4}\in V^{2}+L^{4} we have that x2​y3βŸ‚y4x_{2}y_{3}\perp y_{4} and x2​y4βŸ‚y3x_{2}y_{4}\perp y_{3}. Thus x2​V≀𝔽​x5x_{2}V\leq{\mathbb{F}}x_{5}. As x2βˆ‰Z​(L)x_{2}\not\in Z(L) , we must furthermore have that x2​V=((V2)βŸ‚βˆ©L3)​V=𝔽​x5x_{2}V=((V^{2})^{\perp}\cap L^{3})V={\mathbb{F}}x_{5}. This implies that the centraliser of (V2)βŸ‚βˆ©L3(V^{2})^{\perp}\cap L^{3} in VV is a characteristic ideal WW of codimension 11. We can choose our basis such that

W=𝔽​x5+𝔽​x4+𝔽​x3+𝔽​x2+𝔽​x1+𝔽​y1+𝔽​y2+𝔽​y3.W={\mathbb{F}}x_{5}+{\mathbb{F}}x_{4}+{\mathbb{F}}x_{3}+{\mathbb{F}}x_{2}+{\mathbb{F}}x_{1}+{\mathbb{F}}y_{1}+{\mathbb{F}}y_{2}+{\mathbb{F}}y_{3}.

We now get a chain of characteristic ideals as before

L2β‹…L2x5y5WβŸ‚x4y4VZ(L)=L4x3y3W(V2)βŸ‚βˆ©L3x2y2Z3(L)=L2Z2(L)=L3Β x1y1V2+L3L2β‹…L2=𝔽​x5WβŸ‚=𝔽​x5+𝔽​x4Z​(L)=L4=𝔽​x5+𝔽​x4+𝔽​x3(V2)βŸ‚βˆ©L3=𝔽​x5+𝔽​x4+𝔽​x3+𝔽​x2Z2​(L)=L3=Z​(L)+𝔽​x2+𝔽​x1V2+L3=L3+𝔽​y1Z3​(L)=L2=Z2​(L)+𝔽​y1+𝔽​y2W=L3+𝔽​y1+𝔽​y2+𝔽​y3V=L3+𝔽​y1+𝔽​y2+𝔽​y3+𝔽​y4\begin{array}[]{ll}\begin{tabular}[]{c|c|c|c}\cline{2-3}\cr$L^{2}\cdot L^{2}$&$x_{5}$&$y_{5}$&\mbox{}\\ \cline{2-3}\cr$W^{\perp}$&$x_{4}$&$y_{4}$&$V$\\ \mbox{}$Z(L)=L^{4}$&$x_{3}$&$y_{3}$&$W$\\ \cline{2-3}\cr\mbox{}$(V^{2})^{\perp}\cap L^{3}$&$x_{2}$&$y_{2}$&$Z_{3}(L)=L^{2}$\\ \mbox{}$Z_{2}(L)=L^{3}$ \mbox{}&$x_{1}$&$y_{1}$&$V^{2}+L^{3}$\\ \cline{2-3}\cr\end{tabular}&\begin{array}[]{l}L^{2}\cdot L^{2}={\mathbb{F}}x_{5}\\ W^{\perp}={\mathbb{F}}x_{5}+{\mathbb{F}}x_{4}\\ Z(L)=L^{4}={\mathbb{F}}x_{5}+{\mathbb{F}}x_{4}+{\mathbb{F}}x_{3}\\ (V^{2})^{\perp}\cap L^{3}={\mathbb{F}}x_{5}+{\mathbb{F}}x_{4}+{\mathbb{F}}x_{3}+{\mathbb{F}}x_{2}\\ Z_{2}(L)=L^{3}=Z(L)+{\mathbb{F}}x_{2}+{\mathbb{F}}x_{1}\\ V^{2}+L^{3}=L^{3}+{\mathbb{F}}y_{1}\\ Z_{3}(L)=L^{2}=Z_{2}(L)+{\mathbb{F}}y_{1}+{\mathbb{F}}y_{2}\\ W=L^{3}+{\mathbb{F}}y_{1}+{\mathbb{F}}y_{2}+{\mathbb{F}}y_{3}\\ V=L^{3}+{\mathbb{F}}y_{1}+{\mathbb{F}}y_{2}+{\mathbb{F}}y_{3}+{\mathbb{F}}y_{4}\end{array}\end{array}

As ((V2)βŸ‚βˆ©L3)​W={0}((V^{2})^{\perp}\cap L^{3})W=\{0\} and L2β‹…Z2​(L)={0}L^{2}\cdot Z_{2}(L)=\{0\}, we see that

x1​y2=x2​y3=0.x_{1}y_{2}=x_{2}y_{3}=0.

We have also chosen our basis such that

y1​y2=x5.y_{1}y_{2}=x_{5}. (9)

Notice next that x2​y3=0x_{2}y_{3}=0 implies that x2​y4x_{2}y_{4} is orthogonal to y3y_{3} and y4y_{4} and thus x2​y4=r​y5x_{2}y_{4}=ry_{5} where rr must be nonzero as x2βˆ‰Z​(L)x_{2}\not\in Z(L). By replacing y4y_{4} and x4x_{4} by r​y4ry_{4} and 1r​x4\frac{1}{r}x_{4}, we can assume that

x2​y4=x5.x_{2}y_{4}=x_{5}. (10)

As y3​y4∈V2+L4y_{3}y_{4}\in V^{2}+L^{4} and y1​y2=x5y_{1}y_{2}=x_{5}, we have that y1​y4y_{1}y_{4} is orthogonal to y2,y3,y4y_{2},y_{3},y_{4}. Thus y1​y4=a​y5y_{1}y_{4}=ay_{5} for some aβˆˆπ”½a\in{\mathbb{F}}. Replacing y4,x2y_{4},x_{2} by y4βˆ’a​y2y_{4}-ay_{2} and x2+a​x4x_{2}+ax_{4} we get

y1​y4=0.y_{1}y_{4}=0. (11)

Notice that the change does not affect (10). Next notice similarly that y1​y3y_{1}y_{3} is orthogonal to y2,y3,y4y_{2},y_{3},y_{4} and thus y1​y3=a​y5y_{1}y_{3}=ay_{5} for some aβˆˆπ”½a\in{\mathbb{F}}. Replacing y3y_{3} and x2x_{2} by y3βˆ’a​y2y_{3}-ay_{2} and x2+a​x3x_{2}+ax_{3} we get

y1​y3=0.y_{1}y_{3}=0. (12)

Notice that (11) is not affected by this change. We know that x1​y2=0x_{1}y_{2}=0. The possible nonzero triples involving x1x_{1} are then

(x1​y3,y4)=r,(x1​y3,y5)=a,(x1​y4,y5)=b.(x_{1}y_{3},y_{4})=r,\ (x_{1}y_{3},y_{5})=a,\ (x_{1}y_{4},y_{5})=b.

Notice that as y3​y4∈(Z​(L)+𝔽​y1)βˆ–Z​(L)y_{3}y_{4}\in(Z(L)+{\mathbb{F}}y_{1})\setminus Z(L) we must have that rβ‰ 0r\not=0. Replace y5,x4,x3y_{5},x_{4},x_{3} by y5βˆ’ar​y4+br​y3y_{5}-\frac{a}{r}y_{4}+\frac{b}{r}y_{3}, x4+ar​x5x_{4}+\frac{a}{r}x_{5} and x3βˆ’br​x5x_{3}-\frac{b}{r}x_{5} and we get a new standard basis where

x1​y3=r​x4,x1​y4=βˆ’r​x3.x_{1}y_{3}=rx_{4},\ \ x_{1}y_{4}=-rx_{3}.

Replacing y3,x3y_{3},x_{3} by r​y3,1r​x3ry_{3},\frac{1}{r}x_{3} gives

x1​y3=x4,x1​y4=βˆ’x3.x_{1}y_{3}=x_{4},\ \ x_{1}y_{4}=-x_{3}. (13)

It follows that (y2​y3,y4)=(y3​y4,y5)=0(y_{2}y_{3},y_{4})=(y_{3}y_{4},y_{5})=0. Suppose (y2​y3,y5)=a,(y2​y4,y5)=b(y_{2}y_{3},y_{5})=a,\ (y_{2}y_{4},y_{5})=b. Replace y3,y4,x1y_{3},y_{4},x_{1} by y3+a​y1,y4+b​y1y_{3}+ay_{1},\ y_{4}+by_{1} and x1βˆ’a​x3βˆ’b​x4x_{1}-ax_{3}-bx_{4}. Notice that these changes do not affect the equations above and we now arrive at a unique algebra with presentation:

𝒫10(3,3):(x2​y4,y5)=1,(x1​y3,y4)=1,(y1​y2,y5)=1.{\mathcal{P}}_{10}^{(3,3)}:\ (x_{2}y_{4},y_{5})=1,\ (x_{1}y_{3},y_{4})=1,\ (y_{1}y_{2},y_{5})=1.

Calculations show that conversely this algebra belongs to the relevant category. There are thus exactly three algebras where Z​(L)Z(L) is isotropic of dimension 33 and where the dimension of L3L^{3} is 55.

Proposition 4.5

There are exactly three NSAAs of dimension 1010 that have an isotropic centre of dimension 33 and where dim ​L3=5\mbox{dim\,}L^{3}=5. These are given by the presentations:

𝒫10(3,1):(x1y3,y5)=1,(x2y4,y5)=1,(y1y2,y5)=1.{\mathcal{P}}_{10}^{(3,1)}:\ \ (x_{1}y_{3},y_{5})=1,\ (x_{2}y_{4},y_{5})=1,\ (y_{1}y_{2},y_{5})=1.

𝒫10(3,2):(x2​y4,y5)=1,(x1​y3,y5)=1,(y1​y2,y5)=1,(y2​y3,y4)=1.{\mathcal{P}}_{10}^{(3,2)}:\ (x_{2}y_{4},y_{5})=1,\ (x_{1}y_{3},y_{5})=1,\ (y_{1}y_{2},y_{5})=1,\ (y_{2}y_{3},y_{4})=1.

𝒫10(3,3):(x2​y4,y5)=1,(x1​y3,y4)=1,(y1​y2,y5)=1.{\mathcal{P}}_{10}^{(3,3)}:\ (x_{2}y_{4},y_{5})=1,\ (x_{1}y_{3},y_{4})=1,\ (y_{1}y_{2},y_{5})=1.

4.2 The algebras where dim ​L3=6\mbox{dim\,}L^{3}=6

Here we are thus assuming that

L3=𝔽​x5+𝔽​x4+𝔽​x3+𝔽​x2+𝔽​x1+𝔽​y1.L^{3}={\mathbb{F}}x_{5}+{\mathbb{F}}x_{4}+{\mathbb{F}}x_{3}+{\mathbb{F}}x_{2}+{\mathbb{F}}x_{1}+{\mathbb{F}}y_{1}.
Lemma 4.6

We have dim ​L4=4\mbox{dim\,}L^{4}=4.

Proof. By Lemma 4.4, we know that Z​(L)≀L4Z(L)\leq L^{4} and we also L4≀𝔽​x5+𝔽​x4+𝔽​x3+𝔽​x2L^{4}\leq{\mathbb{F}}x_{5}+{\mathbb{F}}x_{4}+{\mathbb{F}}x_{3}+{\mathbb{F}}x_{2}. Thus if the dimension of L4L^{4} is not 44, then L4=Z​(L)=𝔽​x5+𝔽​x4+𝔽​x3L^{4}=Z(L)={\mathbb{F}}x_{5}+{\mathbb{F}}x_{4}+{\mathbb{F}}x_{3} and Z3​(L)=(L4)βŸ‚=L3+𝔽​y2Z_{3}(L)=(L^{4})^{\perp}=L^{3}+{\mathbb{F}}y_{2}. As Z3​(L)β‹…L3={0}Z_{3}(L)\cdot L^{3}=\{0\}, it follows that x1​y2=y1​y2=0x_{1}y_{2}=y_{1}y_{2}=0 and L2L^{2} is abelian. Hence we get the contradiction that L3≀Z​(L)L^{3}\leq Z(L). β–‘\Box

It follows that we have L4=𝔽​x5+𝔽​x4+𝔽​x3+𝔽​x2L^{4}={\mathbb{F}}x_{5}+{\mathbb{F}}x_{4}+{\mathbb{F}}x_{3}+{\mathbb{F}}x_{2}.

Lemma 4.7

We have dim ​L5=2\mbox{dim\,}L^{5}=2.

ProofΒ Β We have an alternating form

Ο•:L/L2Γ—L/L2→𝔽\phi:L/L^{2}\times L/L^{2}\rightarrow{\mathbb{F}}

given by ϕ​(yΒ―,zΒ―)=(x2​y,z)\phi(\bar{y},\bar{z})=(x_{2}y,z). As L/L2L/L^{2} has odd dimension we know that the isotropic part must be non-trivial. Thus we can then choose our standard basis such that (x2​y3,y4)=(x2​y3,y5)=0(x_{2}y_{3},y_{4})=(x_{2}y_{3},y_{5})=0 and thus x2​y3=0x_{2}y_{3}=0. It follows that L5=𝔽​x2​(y3+y4+y5)=𝔽​x2​y4+𝔽​x2​y5L^{5}={\mathbb{F}}x_{2}(y_{3}+y_{4}+y_{5})={\mathbb{F}}x_{2}y_{4}+{\mathbb{F}}x_{2}y_{5} and thus it is of dimension at most 22. As L4β‰°Z​(L)L^{4}\not\leq Z(L) we have dim ​L5>0\mbox{dim\,}L^{5}>0 and as we know [3, proposition 3.10] that dim ​L5β‰ 1\mbox{dim\,}L^{5}\not=1 we must that dim ​L5=2\mbox{dim\,}L^{5}=2. β–‘\Box.

We thus have determined the lower and upper central series of LL. We have

x5y5L5x4x4Z(L)x3y3Z4(L)L4=Z2(L)x2y2L2x1y1L3=Z3(L)​L5=𝔽​x5+𝔽​x4Z​(L)=𝔽​x5+𝔽​x4+𝔽​x3Z2​(L)=L4=𝔽​x5+𝔽​x4+𝔽​x3+𝔽​x2Z3​(L)=L3=Z​(L)+𝔽​x2+𝔽​x1+𝔽​y1L2=L3+𝔽​y2Z4​(L)=L3+𝔽​y2+𝔽​y3​\begin{array}[]{ll}\begin{tabular}[]{c|c|c|c}\cline{2-3}\cr\mbox{}&$x_{5}$&$y_{5}$&\mbox{}\\ $L^{5}$&$x_{4}$&$x_{4}$&\mbox{}\\ \cline{2-3}\cr\mbox{}$Z(L)$&$x_{3}$&$y_{3}$&$Z_{4}(L)$\\ \cline{2-3}\cr\mbox{}$L^{4}=Z_{2}(L)$&$x_{2}$&$y_{2}$&$L^{2}$\\ \cline{2-3}\cr\mbox{}&$x_{1}$&$y_{1}$&$L^{3}=Z_{3}(L)$\\ \cline{2-3}\cr\end{tabular}&$$\begin{array}[]{l}L^{5}={\mathbb{F}}x_{5}+{\mathbb{F}}x_{4}\\ Z(L)={\mathbb{F}}x_{5}+{\mathbb{F}}x_{4}+{\mathbb{F}}x_{3}\\ Z_{2}(L)=L^{4}={\mathbb{F}}x_{5}+{\mathbb{F}}x_{4}+{\mathbb{F}}x_{3}+{\mathbb{F}}x_{2}\\ Z_{3}(L)=L^{3}=Z(L)+{\mathbb{F}}x_{2}+{\mathbb{F}}x_{1}+{\mathbb{F}}y_{1}\\ L^{2}=L^{3}+{\mathbb{F}}y_{2}\\ Z_{4}(L)=L^{3}+{\mathbb{F}}y_{2}+{\mathbb{F}}y_{3}\end{array}$$\end{array}

Notice that x2∈L4x_{2}\in L^{4} and y3∈Z4​(L)y_{3}\in Z_{4}(L) and thus x2​y3=0x_{2}y_{3}=0. Also

L3​L2=𝔽​x1​y2+𝔽​y1​y2≀Z​(L).L^{3}L^{2}={\mathbb{F}}x_{1}y_{2}+{\mathbb{F}}y_{1}y_{2}\leq Z(L).

Furthermore x1​y2x_{1}y_{2} and y1​y2y_{1}y_{2} are linearly independent. To see this we argue by contradiction and suppose that 0=a​x1​y2+b​y1​y20=ax_{1}y_{2}+by_{1}y_{2} for some a,bβˆˆπ”½a,b\in{\mathbb{F}} where not both a,ba,b are zero. Then (a​x1+b​y1)​L≀Z​(L)(ax_{1}+by_{1})L\leq Z(L) that would give us the contradiction that a​x1+b​y1∈Z2​(L)ax_{1}+by_{1}\in Z_{2}(L).

We thus have that L3​L2L^{3}L^{2} is a 22-dimensional subspace of Z​(L)Z(L) and we consider two possible cases namely L3​L2=L5L^{3}L^{2}=L^{5} and L3​L2β‰ L5L^{3}L^{2}\not=L^{5}. We consider the latter first.

4.2.1 Algebras where L3β‹…L2β‰ L5L^{3}\cdot L^{2}\neq L^{5}

Here L3​L2∩L5L^{3}L^{2}\cap L^{5} is one dimensional and we can choose our standard basis such that L3​L2=L3​y2=𝔽​x5L^{3}L^{2}=L^{3}y_{2}={\mathbb{F}}x_{5}. In order to clarify the structure further we introduce the following isotropic characteristic ideal of dimension 55:

U={x∈L3:x​L2≀L3​L2∩L5}.U=\{x\in L^{3}:\,xL^{2}\leq L^{3}L^{2}\cap L^{5}\}.

Now L3​L2L^{3}L^{2} is of dimension 22 and L4​L2=0L^{4}L^{2}=0 and thus UU is of codimension 11 in L3L^{3} and contains L4L^{4}. We can thus choose our standard basis such that U=𝔽​x5+𝔽​x4+𝔽​x3+𝔽​x2+𝔽​x1U={\mathbb{F}}x_{5}+{\mathbb{F}}x_{4}+{\mathbb{F}}x_{3}+{\mathbb{F}}x_{2}+{\mathbb{F}}x_{1}. We thus have the following picture

L5∩L3​L2L^{5}\cap L^{3}L^{2} x5x_{5} y5y_{5} L5L^{5} x4x_{4} x4x_{4} (L3​L2∩L5)βŸ‚(L^{3}L^{2}\cap L^{5})^{\perp} Z​(L)Z(L) x3x_{3} y3y_{3} Z4​(L)Z_{4}(L) L4=Z2​(L)L^{4}=Z_{2}(L) x2x_{2} y2y_{2} L2L^{2} UU x1x_{1} y1y_{1} L3=Z3​(L)L^{3}=Z_{3}(L)


Notice that U​Z4​(L)=𝔽​x1​y2+𝔽​x1​y3=𝔽​x5+𝔽​x1​y3UZ_{4}(L)={\mathbb{F}}x_{1}y_{2}+{\mathbb{F}}x_{1}y_{3}={\mathbb{F}}x_{5}+{\mathbb{F}}x_{1}y_{3}, where x1​y3∈L5x_{1}y_{3}\in L^{5}. Again we consider two possible cases.

I. Algebras where U​Z4​(L)UZ_{4}(L) is 11-dimensional

Here U​Z4​(L)=x1​Z4​(L)=𝔽​x5UZ_{4}(L)=x_{1}Z_{4}(L)={\mathbb{F}}x_{5} and there is a characteristic subspace VV of codimension 11 in Z4​(L)Z_{4}(L) that contains L3L^{3} given by the formula

V={x∈Z4​(L):U​x=0}.V=\{x\in Z_{4}(L):\,Ux=0\}.

We can then choose our standard basis such that

V=L3+𝔽​y3=U+𝔽​y1+𝔽​y3.V=L^{3}+{\mathbb{F}}y_{3}=U+{\mathbb{F}}y_{1}+{\mathbb{F}}y_{3}.

Notice that in particular x1​y3=0x_{1}y_{3}=0. From this we also get a 11-dimensional characteristic subspace V2=𝔽​y1​y3V^{2}={\mathbb{F}}y_{1}y_{3}. Notice that (y1​y3,y2)β‰ 0(y_{1}y_{3},y_{2})\not=0 as otherwise y1​y2∈L5∩L3​L2y_{1}y_{2}\in L^{5}\cap L^{3}L^{2} that contradicts our assumption that L3​L2β‰ L5L^{3}L^{2}\not=L^{5}. Thus y1​y3∈L4βˆ–Z​(L)y_{1}y_{3}\in L^{4}\setminus Z(L) and we can choose our standard basis such that 𝔽​y1​y3=𝔽​x2{\mathbb{F}}y_{1}y_{3}={\mathbb{F}}x_{2}. In fact it is not difficult to see that with the data we have acquired so far we can choose our standard basis such that

x1​y2=x5,y1​y2=x3,x1​y3=0,y1​y3=βˆ’x2.x_{1}y_{2}=x_{5},\ y_{1}y_{2}=x_{3},\ x_{1}y_{3}=0,\ y_{1}y_{3}=-x_{2}. (14)

This deals with all triple values apart from

(x1​y4,y5)=a,(y2​y3,y4)=c,(y2​y4,y5)=e,(x2​y4,y5)=r,(y1​y4,y5)=b,(y2​y3,y5)=d,(y3​y4,y5)=f,\begin{array}[]{llll}(x_{1}y_{4},y_{5})=a,&(y_{2}y_{3},y_{4})=c,&(y_{2}y_{4},y_{5})=e,&(x_{2}y_{4},y_{5})=r,\\ (y_{1}y_{4},y_{5})=b,&(y_{2}y_{3},y_{5})=d,&(y_{3}y_{4},y_{5})=f,&\mbox{}\end{array}

Notice that rβ‰ 0r\not=0 as x2​y3=0x_{2}y_{3}=0 but x2βˆ‰Z​(L)x_{2}\not\in Z(L). We will show that we can choose a new standard basis so that the values of a=b=c=d=e=f=0a=b=c=d=e=f=0 and r=1r=1. Replace x1,x4,y1,y2,y3,y4,y5x_{1},x_{4},y_{1},y_{2},y_{3},y_{4},y_{5} by x1βˆ’(a/r)​x2+c​x4+d​x5,r​x4,y1βˆ’(b/r)​x2,y2βˆ’(b/r)​x1βˆ’(e/r)​x2βˆ’(f/r)​x3βˆ’(b​c/r)​x4+(a/r)​y1,y3βˆ’(f/r)​x2,(1/r)​y4βˆ’(c/r)​y1,y5βˆ’d​y1+(b​d/r)​x2x_{1}-(a/r)x_{2}+cx_{4}+dx_{5},rx_{4},y_{1}-(b/r)x_{2},y_{2}-(b/r)x_{1}-(e/r)x_{2}-(f/r)x_{3}-(bc/r)x_{4}+(a/r)y_{1},y_{3}-(f/r)x_{2},(1/r)y_{4}-(c/r)y_{1},y_{5}-dy_{1}+(bd/r)x_{2}. Thus we have that we get a unique algebra.

Proposition 4.8

There is a unique nilpotent SAA LL with an isotropic centre of dimension 33 and where dim ​L3=6\mbox{dim\,}L^{3}=6 that has the further properties that L3​L2β‰ L5L^{3}L^{2}\not=L^{5} and dim ​U​Z4​(L)=1\mbox{dim\,}UZ_{4}(L)=1. This algebra is given by the presentation

𝒫10(3,4):(x1​y2,y5)=1,(y1​y2,y3)=1,(x2​y4,y5)=1.{\mathcal{P}}_{10}^{(3,4)}:\ (x_{1}y_{2},y_{5})=1,\ (y_{1}y_{2},y_{3})=1,\ (x_{2}y_{4},y_{5})=1.

Remark. As before, inspection shows that the algebra with the presentation above satisfies all the properties listed.

II. Algebras where U​Z4​(L)UZ_{4}(L) is 22-dimensional

Here we can pick our standard basis such that U​Z4​(L)=𝔽​x5+𝔽​x4UZ_{4}(L)={\mathbb{F}}x_{5}+{\mathbb{F}}x_{4}. As L3​L2β‰ L5L^{3}L^{2}\not=L^{5} we know that (y1​y2,y3)β‰ 0(y_{1}y_{2},y_{3})\neq 0 and from this one sees that L3​Z4​(L)=L4L^{3}Z_{4}(L)=L^{4}. Furthermore it is not difficult to see that we can choose our standard basis such that

x1​y2=x5,x1​y3=x4,y1​y2=x3,y1​y3=βˆ’x2.x_{1}y_{2}=x_{5},\ x_{1}y_{3}=x_{4},\ y_{1}y_{2}=x_{3},\ y_{1}y_{3}=-x_{2}. (15)

In order to clarify the structure further we are only left with the triple values

(x1​y4,y5)=a,(y2​y3,y4)=c,(y2​y4,y5)=e,(x2​y4,y5)=r,(y1​y4,y5)=b,(y2​y3,y5)=d,(y3​y4,y5)=f.\begin{array}[]{llll}(x_{1}y_{4},y_{5})=a,&(y_{2}y_{3},y_{4})=c,&(y_{2}y_{4},y_{5})=e,&(x_{2}y_{4},y_{5})=r,\\ (y_{1}y_{4},y_{5})=b,&(y_{2}y_{3},y_{5})=d,&(y_{3}y_{4},y_{5})=f.&\mbox{}\end{array}

Let Ξ±=bβˆ’c​r\alpha=b-cr and replace x1,x2,x3,x4,x5,y1,y2,y3,y4,y5x_{1},x_{2},x_{3},x_{4},x_{5},y_{1},y_{2},y_{3},y_{4},y_{5} by x1βˆ’(a/r)​x2+(Ξ±/r)​x4+d​x5x_{1}-(a/r)x_{2}+(\alpha/r)x_{4}+dx_{5}, (1/r)​x2(1/r)x_{2}, r​x3rx_{3}, (1/r)​x4(1/r)x_{4}, r​x5rx_{5}, y1βˆ’(b/r)​x2y_{1}-(b/r)x_{2}, r​y2βˆ’b​x1βˆ’e​x2βˆ’f​x3+a​y1ry_{2}-bx_{1}-ex_{2}-fx_{3}+ay_{1}, (1/r)​y3βˆ’(f/r2)​x2(1/r)y_{3}-(f/r^{2})x_{2}, r​y4βˆ’Ξ±β€‹(b/r)​x2βˆ’Ξ±β€‹y1ry_{4}-\alpha(b/r)x_{2}-\alpha y_{1}, (1/r)​y5+d​(b/r2)​x2βˆ’(d/r)​y1(1/r)y_{5}+d(b/r^{2})x_{2}-(d/r)y_{1}. One checks readily that we get a new standard basis such that a=b=c=d=e=f=0a=b=c=d=e=f=0 and r=1r=1. Thus we see again that we have a unique algebra.

Proposition 4.9

There is a unique nilpotent SAA LL with an isotropic centre of dimension 33 and where dim ​L3=6\mbox{dim\,}L^{3}=6 that has the further properties that L3​L2β‰ L5L^{3}L^{2}\not=L^{5} and dim ​U​Z4​(L)=2\mbox{dim\,}UZ_{4}(L)=2. This algebra is given by the presentation

𝒫10(3,5):(x1​y2,y5)=1,(y1​y2,y3)=1,(x1​y3,y4)=1,(x2​y4,y5)=1.{\mathcal{P}}_{10}^{(3,5)}:\ (x_{1}y_{2},y_{5})=1,\ (y_{1}y_{2},y_{3})=1,\ (x_{1}y_{3},y_{4})=1,\ (x_{2}y_{4},y_{5})=1.

4.2.2 The algebras where L3​L2=L5L^{3}L^{2}=L^{5}

x5y5L5x4x4Z(L)x3y3Z4(L)L4=Z2(L)x2y2L2x1y1L3=Z3(L)L5=𝔽​x5+𝔽​x4Z​(L)=𝔽​x5+𝔽​x4+𝔽​x3Z2​(L)=L4=𝔽​x5+𝔽​x4+𝔽​x3+𝔽​x2Z3​(L)=L3=Z​(L)+𝔽​x2+𝔽​x1+𝔽​y1L2=L3+𝔽​y2Z4​(L)=L3+𝔽​y2+𝔽​y3\begin{array}[]{ll}\begin{tabular}[]{c|c|c|c}\cline{2-3}\cr\mbox{}&$x_{5}$&$y_{5}$&\mbox{}\\ $L^{5}$&$x_{4}$&$x_{4}$&\mbox{}\\ \cline{2-3}\cr\mbox{}$Z(L)$&$x_{3}$&$y_{3}$&$Z_{4}(L)$\\ \cline{2-3}\cr\mbox{}$L^{4}=Z_{2}(L)$&$x_{2}$&$y_{2}$&$L^{2}$\\ \cline{2-3}\cr\mbox{}&$x_{1}$&$y_{1}$&$L^{3}=Z_{3}(L)$\\ \cline{2-3}\cr\end{tabular}&\begin{array}[]{l}L^{5}={\mathbb{F}}x_{5}+{\mathbb{F}}x_{4}\\ Z(L)={\mathbb{F}}x_{5}+{\mathbb{F}}x_{4}+{\mathbb{F}}x_{3}\\ Z_{2}(L)=L^{4}={\mathbb{F}}x_{5}+{\mathbb{F}}x_{4}+{\mathbb{F}}x_{3}+{\mathbb{F}}x_{2}\\ Z_{3}(L)=L^{3}=Z(L)+{\mathbb{F}}x_{2}+{\mathbb{F}}x_{1}+{\mathbb{F}}y_{1}\\ L^{2}=L^{3}+{\mathbb{F}}y_{2}\\ Z_{4}(L)=L^{3}+{\mathbb{F}}y_{2}+{\mathbb{F}}y_{3}\end{array}\end{array}

Here we are assuming that L5=L3​L2=𝔽​x1​y2+𝔽​y1​y2L^{5}=L^{3}L^{2}={\mathbb{F}}x_{1}y_{2}+{\mathbb{F}}y_{1}y_{2} and thus in particular we know that x1​y2,y1​y2x_{1}y_{2},y_{1}y_{2} is a basis for L5L^{5}. We will now introduce some linear maps that will help us in understanding the structure. Consider first the linear maps

Ο•:L3/L4β†’L5,uΒ―=u+L4↦uβ‹…y2ψ:L3/L4β†’L5,uΒ―=u+L4↦uβ‹…y3.\begin{array}[]{ll}\phi:\,L^{3}/L^{4}\rightarrow L^{5},\ \bar{u}=u+L^{4}\mapsto u\cdot y_{2}\\ \psi:\,L^{3}/L^{4}\rightarrow L^{5},\ \bar{u}=u+L^{4}\mapsto u\cdot y_{3}.\end{array}

As L4​Z4​(L)={0}L^{4}Z_{4}(L)=\{0\}, these maps are well defined. As L3​L2=L5L^{3}L^{2}=L^{5} we also know that Ο•\phi is bijective. We thus have the linear map

Ο„=Οˆβ€‹Ο•βˆ’1:L5β†’L5.\tau=\psi\phi^{-1}:\,L^{5}\rightarrow L^{5}.

It is the map Ο„\tau that will be our key towards understanding the structure of the algebra.

Lemma 4.10

The minimal polynomial of Ο„=Οˆβ€‹Ο•βˆ’1\tau=\psi\phi^{-1} must be of degree 22.

ProofΒ Β We argue by contradiction and suppose that Ο„=λ​id\tau=\lambda\mbox{id}. Replacing y3,x2y_{3},x_{2} by y3βˆ’Ξ»β€‹y2,x2+λ​x3y_{3}-\lambda y_{2},x_{2}+\lambda x_{3} gives us a new standard basis where Ο„=0\tau=0. Pick our standard basis such that xΒ―1=x1+L4=Ο•βˆ’1​(x4)\bar{x}_{1}=x_{1}+L^{4}=\phi^{-1}(x_{4}) and yΒ―1=y1+L4=Ο•βˆ’1​(x5)\bar{y}_{1}=y_{1}+L^{4}=\phi^{-1}(x_{5}). We then have

x1​y2=x4,y1​y2=x5,x1​y3=0,y1​y3=0.x_{1}y_{2}=x_{4},\ y_{1}y_{2}=x_{5},\ x_{1}y_{3}=0,\ y_{1}y_{3}=0.

Now y2​y3βŸ‚x1,y1,y2,y3y_{2}y_{3}\perp x_{1},y_{1},y_{2},y_{3} and thus

y2​y3=a​x4+b​x5y_{2}y_{3}=ax_{4}+bx_{5}

for some a,bβˆˆπ”½a,b\in{\mathbb{F}}. Replacing y3y_{3} by y3+a​x1+b​y1y_{3}+ax_{1}+by_{1}, x1x_{1} by x1βˆ’b​x3x_{1}-bx_{3} and y1y_{1} by y1+a​x3y_{1}+ax_{3}, we can assume that y2​y3=0y_{2}y_{3}=0.

Now suppose that (y3​y4,y5)=a(y_{3}y_{4},y_{5})=a and (x2​y4,y5)=b(x_{2}y_{4},y_{5})=b. Notice that bβ‰ 0b\not=0 as x2βˆ‰Z​(L)x_{2}\not\in Z(L) and x2​y3=0x_{2}y_{3}=0. Replace y3,y2y_{3},y_{2} by y3βˆ’(a/b)​x2,y2βˆ’(a/b)​x3y_{3}-(a/b)x_{2},\ y_{2}-(a/b)x_{3} and we get a new standard basis where all the previous identities hold but also (y3​y4,y5)=0(y_{3}y_{4},y_{5})=0. We thus get the contradiction that y3∈Z​(L)y_{3}\in Z(L). β–‘\Box

Notice next that if we have an alternative standard basis x~1,x~2,…,y~5\tilde{x}_{1},\tilde{x}_{2},\ldots,\tilde{y}_{5}, then y~2=c​y2+u\tilde{y}_{2}=cy_{2}+u and y~3=a​y3+b​y2+v\tilde{y}_{3}=ay_{3}+by_{2}+v where a,cβ‰ 0a,c\not=0 and where u,v∈L3u,v\in L^{3}. If the minimal polynomial of Ο„\tau with respect to the old basis is f​(t)f(t) then the minimal polynomial with respect to the new basis is a multiple of f((c/a)(tβˆ’(b/c))f((c/a)(t-(b/c)). In particular we have the following possible distinct scenarios that do not depend on what standard basis we choose.

A. The minimal polynomial of Ο„\tau has two distinct roots in 𝔽{\mathbb{F}}.
B. The minimal polynomial of Ο„\tau has a double root in 𝔽{\mathbb{F}}
C. The minimal polynomial of Ο„\tau is irreducible in 𝔽​[t]{\mathbb{F}}[t].

I. Algebras of type A.

Suppose the two distinct roots of the minimal polynomial of Ο„=Οˆβ€‹Ο•βˆ’1\tau=\psi\phi^{-1} are Ξ»\lambda and ΞΌ\mu. Pick some eigenvectors x4x_{4} and x5x_{5} with respect to the eigenvalues Ξ»\lambda and ΞΌ\mu respectively. Thus

Οˆβ€‹Ο•βˆ’1​(x4)\displaystyle\psi\phi^{-1}(x_{4}) =\displaystyle= λ​x4,\displaystyle\lambda x_{4},
Οˆβ€‹Ο•βˆ’1​(x5)\displaystyle\psi\phi^{-1}(x_{5}) =\displaystyle= μ​x5.\displaystyle\mu x_{5}.

Replacing y3,x2y_{3},x_{2} by y3βˆ’Ξ»β€‹y2,x2+λ​x3y_{3}-\lambda y_{2},x_{2}+\lambda x_{3} we see that Οˆβ€‹Ο•βˆ’1​(x4)=0\psi\phi^{-1}(x_{4})=0 and we can thus assume that Ξ»=0\lambda=0. Then replace y3,x3y_{3},x_{3} by (1/ΞΌ)​y3,μ​x3(1/\mu)y_{3},\mu x_{3} and we get that Οˆβ€‹Ο•βˆ’1​(x5)=x5\psi\phi^{-1}(x_{5})=x_{5} and we can now assume that ΞΌ=1\mu=1.

We would like to pick our standard basis such that xΒ―1=x1+L4=Ο•βˆ’1​(x4)\bar{x}_{1}=x_{1}+L^{4}=\phi^{-1}(x_{4}) and yΒ―1=y1+L4=Ο•βˆ’1​(x5)\bar{y}_{1}=y_{1}+L^{4}=\phi^{-1}(x_{5}). The only problem here is that we need (x1,y1)=1(x_{1},y_{1})=1 but this can be easily arranged. If (x1,y1)=Οƒ(x_{1},y_{1})=\sigma then we just need to replace y1,x5,y5y_{1},x_{5},y_{5} by (1/Οƒ)​y1,(1/Οƒ)​x5,σ​y5(1/\sigma)y_{1},(1/\sigma)x_{5},\sigma y_{5}. We have thus seen that we can choose our standard basis such that

x1​y2=x4,y1​y2=x5,x1​y3=0,y1​y3=x5.x_{1}y_{2}=x_{4},\ y_{1}y_{2}=x_{5},\ x_{1}y_{3}=0,\ y_{1}y_{3}=x_{5}. (16)

Recall also that x2​y3=0x_{2}y_{3}=0 since L4​Z4​(L)={0}L^{4}Z_{4}(L)=\{0\}. In order to fully determine the structure of the algebra we are only left with the following triple values

(x1​y4,y5)=a,(y2​y3,y4)=c,(y2​y4,y5)=e,(x2​y4,y5)=r,(y1​y4,y5)=b,(y2​y3,y5)=d,(y3​y4,y5)=f.\begin{array}[]{llll}(x_{1}y_{4},y_{5})=a,&(y_{2}y_{3},y_{4})=c,&(y_{2}y_{4},y_{5})=e,&(x_{2}y_{4},y_{5})=r,\\ (y_{1}y_{4},y_{5})=b,&(y_{2}y_{3},y_{5})=d,&(y_{3}y_{4},y_{5})=f.&\end{array}

Notice that rβ‰ 0r\not=0 as x2​y3=0x_{2}y_{3}=0 but x2βˆ‰Z​(L)x_{2}\not\in Z(L). Let Ξ±=(1/r)​(eβˆ’fβˆ’b​d+a​b/rβˆ’a​c)\alpha=(1/r)(e-f-bd+ab/r-ac) and replace y4,y3,y2,y1,x1y_{4},y_{3},y_{2},y_{1},x_{1} by y4+e​y1βˆ’e​(b/r)​x2+c​e​x3,y3+c​x1βˆ’Ξ±β€‹x2+(d+a/r)​y1,y2+(a/r)​y1βˆ’(b/r)​x1+((eβˆ’f)/r)​x3,y1βˆ’(b/r)​x2+c​x3,x1βˆ’(a/r)​x2βˆ’(d+a/r)​x3βˆ’e​x4y_{4}+ey_{1}-e(b/r)x_{2}+cex_{3},y_{3}+cx_{1}-\alpha x_{2}+(d+a/r)y_{1},y_{2}+(a/r)y_{1}-(b/r)x_{1}+((e-f)/r)x_{3},y_{1}-(b/r)x_{2}+cx_{3},x_{1}-(a/r)x_{2}-(d+a/r)x_{3}-ex_{4} One checks readily that we get a new standard basis such that a=b=c=d=e=f=0a=b=c=d=e=f=0. We have thus seen that LL has a presentation of the form 𝒫10(3,6)​(r){\mathcal{P}}_{10}^{(3,6)}(r) as described in the next proposition.

Proposition 4.11

Let LL be a nilpotent SAA of dimension 1010 with an isotropic centre of dimension 33 that has the further properties that dim ​L3=6\mbox{dim\,}L^{3}=6, L3​L2=L5L^{3}L^{2}=L^{5} and LL is of type A. Then LL has a presentation of the form

𝒫10(3,6)​(r):(x2​y4,y5)=r,(x1​y2,y4)=1,(y1​y2,y5)=1,(y1​y3,y5)=1{\mathcal{P}}_{10}^{(3,6)}(r):\ (x_{2}y_{4},y_{5})=r,\ (x_{1}y_{2},y_{4})=1,\ (y_{1}y_{2},y_{5})=1,\ (y_{1}y_{3},y_{5})=1

where rβ‰ 0r\not=0. Furthermore the presentations 𝒫10(3,6)​(r){\mathcal{P}}_{10}^{(3,6)}(r) and 𝒫10(3,6)​(s){\mathcal{P}}_{10}^{(3,6)}(s) describe the same algebra if and only if s/r∈(π”½βˆ—)3s/r\in({\mathbb{F}}^{*})^{3}.

ProofΒ Β We have already seen that all such algebras have a presentation of the form 𝒫10(3,6)​(r){\mathcal{P}}_{10}^{(3,6)}(r) for some 0β‰ rβˆˆπ”½0\not=r\in{\mathbb{F}}. Straightforward calculations show that conversely any algebra with such a presentation has the properties stated in the Proposition. It remains to prove the isomorphism property. To see that the property is sufficient, suppose we have an algebra LL with presentation 𝒫10(3,6)​(r){\mathcal{P}}_{10}^{(3,6)}(r) with respect to some given standard basis. Let ss be any element in π”½βˆ—{\mathbb{F}}^{*} such that s/r=b3∈(π”½βˆ—)3s/r=b^{3}\in({\mathbb{F}}^{*})^{3}. Replace the basis with a new standard basis x~1,…,y~5\tilde{x}_{1},\ldots,\tilde{y}_{5} where x~1=x1\tilde{x}_{1}=x_{1}, y~1=y1\tilde{y}_{1}=y_{1}, x~2=b​x2\tilde{x}_{2}=bx_{2}, y~2=(1/b)​y2\tilde{y}_{2}=(1/b)y_{2}, x~3=b​x3\tilde{x}_{3}=bx_{3}, y~3=(1/b)​y3\tilde{y}_{3}=(1/b)y_{3}, x~4=(1/b)​x4\tilde{x}_{4}=(1/b)x_{4}, y~4=b​y4\tilde{y}_{4}=by_{4}, x~5=(1/b)​x5\tilde{x}_{5}=(1/b)x_{5}, y~5=b​y5\tilde{y}_{5}=by_{5}. Direct calculations show that LL has presentation 𝒫10(3,6)​(s){\mathcal{P}}_{10}^{(3,6)}(s) with respect to the new basis.

It remains to see that the property is necessary. Consider again an algebra LL with presentation 𝒫10(3,6)​(r){\mathcal{P}}_{10}^{(3,6)}(r) and suppose that LL has also a presentation 𝒫10(3,6)​(s){\mathcal{P}}_{10}^{(3,6)}(s) with respect to some other standard basis x~1,…,y~5\tilde{x}_{1},\ldots,\tilde{y}_{5}. We want to show that s/r∈(π”½βˆ—)3s/r\in({\mathbb{F}}^{*})^{3}. We know that L=𝔽​y~5+𝔽​y~4+Z4​(L)=𝔽​y5+𝔽​y4+Z4​(L)L={\mathbb{F}}\tilde{y}_{5}+{\mathbb{F}}\tilde{y}_{4}+Z_{4}(L)={\mathbb{F}}y_{5}+{\mathbb{F}}y_{4}+Z_{4}(L). Thus

y~4\displaystyle\tilde{y}_{4} =\displaystyle= a​y4+b​y5+u\displaystyle ay_{4}+by_{5}+u
y~5\displaystyle\tilde{y}_{5} =\displaystyle= c​y4+d​y5+v\displaystyle cy_{4}+dy_{5}+v

for some u,v∈Z4​(L)u,v\in Z_{4}(L) and a,b,c,dβˆˆπ”½a,b,c,d\in{\mathbb{F}} where a​dβˆ’b​cβ‰ 0ad-bc\not=0. As L3​L2=L5βŸ‚Z4​(L)L^{3}L^{2}=L^{5}\perp Z_{4}(L) and as Z4​(L)​L4=0Z_{4}(L)L^{4}=0 we have (Z4​(L)​L2,L3)=(Z4​(L)​L,L4)=0(Z_{4}(L)L^{2},L^{3})=(Z_{4}(L)L,L^{4})=0 and thus Z4​(L)​L2≀(L3)βŸ‚=L4Z_{4}(L)L^{2}\leq(L^{3})^{\perp}=L^{4} and Z4​(L)​L≀(L4)βŸ‚=L3Z_{4}(L)L\leq(L^{4})^{\perp}=L^{3}. It follows that

y~4​y~5​y~5\displaystyle\tilde{y}_{4}\tilde{y}_{5}\tilde{y}_{5} =\displaystyle= (a​y4+b​y5)​(c​y4+d​y5)​(c​y4+d​y5)+w\displaystyle(ay_{4}+by_{5})(cy_{4}+dy_{5})(cy_{4}+dy_{5})+w
y~5​y~4​y~4\displaystyle\tilde{y}_{5}\tilde{y}_{4}\tilde{y}_{4} =\displaystyle= (c​y4+d​y5)​(a​y4+b​y5)​(a​y4+b​y5)+z\displaystyle(cy_{4}+dy_{5})(ay_{4}+by_{5})(ay_{4}+by_{5})+z

for some w,z∈L4w,z\in L^{4}. Using the fact that (L4,L3)=0(L^{4},L^{3})=0, as L6=0L^{6}=0, we then see that

s2=(y~4​y~5​y~5,y~5​y~4​y~4)=r2​(a​dβˆ’b​c)3.s^{2}=(\tilde{y}_{4}\tilde{y}_{5}\tilde{y}_{5},\tilde{y}_{5}\tilde{y}_{4}\tilde{y}_{4})=r^{2}(ad-bc)^{3}.

Hence s/r∈(π”½βˆ—)3s/r\in({\mathbb{F}}^{*})^{3}. β–‘\Box

Remark. Notice that it follows that we have only one algebra if (π”½βˆ—)3=π”½βˆ—({\mathbb{F}}^{*})^{3}={\mathbb{F}}^{*}. This includes all fields that are algebraically closed as well as ℝ{\mathbb{R}}. For a finite field of order pnp^{n} there are 33 algebras if 3|pnβˆ’13|p^{n}-1 but otherwise one. For β„š{\mathbb{Q}} there are infinitely many algebras.

II. Algebras of type B.

Suppose that the double root of the minimal polynomial of Ο„=Οˆβ€‹Ο•βˆ’1\tau=\psi\phi^{-1} is Ξ»\lambda. We can then have a basis x4,x5x_{4},x_{5} for L5L^{5} such that

Οˆβ€‹Ο•βˆ’1​(x4)\displaystyle\psi\phi^{-1}(x_{4}) =\displaystyle= λ​x4\displaystyle\lambda x_{4}
Οˆβ€‹Ο•βˆ’1​(x5)\displaystyle\psi\phi^{-1}(x_{5}) =\displaystyle= λ​x5+x4.\displaystyle\lambda x_{5}+x_{4}.

If we replace y3,x2y_{3},x_{2} by y3βˆ’Ξ»β€‹y2,x2+λ​x3y_{3}-\lambda y_{2},x_{2}+\lambda x_{3} then we can furthermore assume that Ξ»=0\lambda=0. We want to pick our standard basis such that xΒ―1=x1+L4=Ο•βˆ’1​(x4)\bar{x}_{1}=x_{1}+L^{4}=\phi^{-1}(x_{4}) and yΒ―1=y1+L4\bar{y}_{1}=y_{1}+L^{4}. Again the only problem is to arrange for (x1,y1)=1(x_{1},y_{1})=1. But if (x1,y1)=Οƒ(x_{1},y_{1})=\sigma then we replace x5,x3,y1,y3,y5x_{5},x_{3},y_{1},y_{3},y_{5} by (1/Οƒ)​x5,(1/Οƒ)​x3,(1/Οƒ)​y1,σ​y3,σ​y5(1/\sigma)x_{5},(1/\sigma)x_{3},(1/\sigma)y_{1},\sigma y_{3},\sigma y_{5} and that gives (x1,y1)=1(x_{1},y_{1})=1. We have thus seen that we can choose our standard basis such that

x1​y2=x4,y1​y2=x5,x1​y3=0,y1​y3=x4.x_{1}y_{2}=x_{4},\ y_{1}y_{2}=x_{5},\ x_{1}y_{3}=0,\ y_{1}y_{3}=x_{4}. (17)

As before we have furthermore x2​y3=0x_{2}y_{3}=0 and we are only left with the following triple values

(x1​y4,y5)=a,(y2​y3,y4)=c,(y2​y4,y5)=e,(x2​y4,y5)=r,(y1​y4,y5)=b,(y2​y3,y5)=d,(y3​y4,y5)=f.\begin{array}[]{llll}(x_{1}y_{4},y_{5})=a,&(y_{2}y_{3},y_{4})=c,&(y_{2}y_{4},y_{5})=e,&(x_{2}y_{4},y_{5})=r,\\ (y_{1}y_{4},y_{5})=b,&(y_{2}y_{3},y_{5})=d,&(y_{3}y_{4},y_{5})=f.\end{array}

Notice that rβ‰ 0r\not=0 as x2​y3=0x_{2}y_{3}=0 but x2βˆ‰Z​(L)x_{2}\not\in Z(L). Let Ξ±=(a2+a​c​r+b​d​r)/r\alpha=(a^{2}+acr+bdr)/r, Ξ²=c​r+a\beta=cr+a and replace x1,y3,y1,y4,y2,y5x_{1},y_{3},y_{1},y_{4},y_{2},y_{5} by x1βˆ’(a/r)​x2βˆ’d​x3βˆ’e​x4+f​x5,y3βˆ’x_{1}-(a/r)x_{2}-dx_{3}-ex_{4}+fx_{5},y_{3}- (Ξ±/r)​x2+(Ξ²/r)​x1+d​y1,y1βˆ’(b/r)​x2+(Ξ²/r)​x3,y4βˆ’e​(b/r)​x2+e​(Ξ²/r)​x3+e​y1,y2+(a/r)​y1βˆ’(b/r)​x1,y5+f​(b/r)​x2βˆ’f​(Ξ²/r)​x3βˆ’f​y1(\alpha/r)x_{2}+(\beta/r)x_{1}+dy_{1},y_{1}-(b/r)x_{2}+(\beta/r)x_{3},y_{4}-e(b/r)x_{2}+e(\beta/r)x_{3}+ey_{1},y_{2}+(a/r)y_{1}-(b/r)x_{1},y_{5}+f(b/r)x_{2}-f(\beta/r)x_{3}-fy_{1} One checks readily that these changes do not affect (17)(17) and we get a new standard basis where a=b=c=d=e=f=0.a=b=c=d=e=f=0. We thus arrive at at presentation of the form 𝒫10(3,7)​(r){\mathcal{P}}_{10}^{(3,7)}(r) as given in the next proposition.

Proposition 4.12

Let LL be a nilpotent SAA of dimension 1010 with an isotropic centre of dimension 33 that has the further properties that dim ​L3=6\mbox{dim\,}L^{3}=6, L3​L2=L5L^{3}L^{2}=L^{5} and LL is of type B. Then LL has a presentation of the form

𝒫10(3,7)​(r):(x2​y4,y5)=r,(x1​y2,y4)=1,(y1​y2,y5)=1,(y1​y3,y4)=1{\mathcal{P}}_{10}^{(3,7)}(r):\ (x_{2}y_{4},y_{5})=r,\ (x_{1}y_{2},y_{4})=1,\ (y_{1}y_{2},y_{5})=1,\ (y_{1}y_{3},y_{4})=1

where rβ‰ 0r\not=0. Furthermore the presentations 𝒫10(3,6)​(r){\mathcal{P}}_{10}^{(3,6)}(r) and 𝒫10(3,6)​(s){\mathcal{P}}_{10}^{(3,6)}(s) describe the same algebra if and only if s/r∈(π”½βˆ—)3s/r\in({\mathbb{F}}^{*})^{3}.

ProofΒ Β Similar to the proof of Proposition 4.114.11.

III. Algebras of type C.

It turns out to be useful to consider the cases c​h​a​r​𝔽≠2{\mbox{c}har\,}{\mathbb{F}}\not=2 and c​h​a​r​𝔽=2{\mbox{c}har\,}{\mathbb{F}}=2 separately.

a. The algebras where c​h​a​r​𝔽≠2{\mbox{c}har\,}{\mathbb{F}}\not=2

Suppose the minimal polynomial of Ο„=Οˆβ€‹Ο•βˆ’1\tau=\psi\phi^{-1} is t2+a​t+bt^{2}+at+b with respect to some y2,y3y_{2},y_{3}. Replacing y3y_{3} by y3+(a/2)​y2y_{3}+(a/2)y_{2}, one gets a minimal polynomial of the form t2βˆ’st^{2}-s with sβˆ‰π”½2s\not\in{\mathbb{F}}^{2}.

Remark. Let y~3=α​y3+u\tilde{y}_{3}=\alpha y_{3}+u where Ξ±β‰ 0\alpha\not=0 and u∈L2u\in L^{2}. For the minimal polynomial of Ο„\tau to have trivial linear term we must have u∈L3u\in L^{3}. Thus 𝔽​y3+L3{\mathbb{F}}y_{3}+L^{3} is a characteristic subspace of LL.

Pick any 0β‰ x5∈L50\not=x_{5}\in L^{5} and let x4=Οˆβ€‹Ο•βˆ’1​(x5)x_{4}=\psi\phi^{-1}(x_{5}). Then Οˆβ€‹Ο•βˆ’1​(x4)=s​x5\psi\phi^{-1}(x_{4})=sx_{5}. We want to pick our standard basis such that Ο•βˆ’1​(x4)=x1+L4,Ο•βˆ’1​(x5)=y1+L4\phi^{-1}(x_{4})=x_{1}+L^{4},\phi^{-1}(x_{5})=y_{1}+L^{4}. For this to work out we need (x1,y1)=1(x_{1},y_{1})=1. Again this can be easily arranged. If (x1,y1)=Οƒ(x_{1},y_{1})=\sigma, then we replace x5,y1,y3x_{5},y_{1},y_{3} by (1/Οƒ)​x5(1/\sigma)x_{5}, (1/Οƒ)​y1(1/\sigma)y_{1}, σ​y3\sigma y_{3} and we get (x1,y1)=1(x_{1},y_{1})=1 and Οˆβ€‹Ο•βˆ’1​(x4)=(Οƒ2​s)​x5\psi\phi^{-1}(x_{4})=(\sigma^{2}s)x_{5}. We have thus seen that we choose our standard basis such that

x1​y2=x4,y1​y2=x5,x1​y3=s​x5,y1​y3=x4x_{1}y_{2}=x_{4},\ y_{1}y_{2}=x_{5},\ x_{1}y_{3}=sx_{5},\ y_{1}y_{3}=x_{4} (18)

for some sβˆ‰π”½2s\not\in{\mathbb{F}}^{2}. In order to clarify the structure further we are only left with the following triple values

(x1​y4,y5)=a,(y2​y3,y4)=c,(y2​y4,y5)=e,(x2​y4,y5)=r,(y1​y4,y5)=b,(y2​y3,y5)=d,(y3​y4,y5)=f.\begin{array}[]{llll}(x_{1}y_{4},y_{5})=a,&(y_{2}y_{3},y_{4})=c,&(y_{2}y_{4},y_{5})=e,&(x_{2}y_{4},y_{5})=r,\\ (y_{1}y_{4},y_{5})=b,&(y_{2}y_{3},y_{5})=d,&(y_{3}y_{4},y_{5})=f.\end{array}

Notice that rβ‰ 0r\not=0 as x2​y3=0x_{2}y_{3}=0 but x2βˆ‰Z​(L)x_{2}\not\in Z(L). Let Ξ±=(a2+a​c​rβˆ’b2​s+b​d​r)​r\alpha=(a^{2}+acr-b^{2}s+bdr)r, Ξ²=c+a/r\beta=c+a/r, Ξ³=(s​(b/r)βˆ’d)\gamma=(s(b/r)-d) and replace x1,y4,y1,y5,y2,y3x_{1},y_{4},y_{1},y_{5},y_{2},y_{3} by x1βˆ’(a/r)​x2βˆ’e​x4+f​x5βˆ’Ξ³β€‹x3,y4βˆ’e​(b/r)​x2+e​β​x3+e​y1,y1βˆ’(b/r)​x2+β​x3,y5+f​(b/r)​x2βˆ’f​β​x3βˆ’f​y1,y2βˆ’(b/r)​x1+(a/r)​y1,y3βˆ’(Ξ±/r)​x2+β​x1βˆ’Ξ³β€‹y1,x_{1}-(a/r)x_{2}-ex_{4}+fx_{5}-\gamma x_{3},y_{4}-e(b/r)x_{2}+e\beta x_{3}+ey_{1},y_{1}-(b/r)x_{2}+\beta x_{3},y_{5}+f(b/r)x_{2}-f\beta x_{3}-fy_{1},y_{2}-(b/r)x_{1}+(a/r)y_{1},y_{3}-(\alpha/r)x_{2}+\beta x_{1}-\gamma y_{1}, We see then that the remaining triple values are zero. Thus LL has a presentation of the form 𝒫10(3,8)​(r,s){\mathcal{P}}_{10}^{(3,8)}(r,s) as described in the next proposition.

Proposition 4.13

Let LL be a nilpotent SAA of dimension 1010 over a field of characteristic that is not 22 that has an isotropic centre of dimension 33. Suppose also that LL has the further properties that dim ​L3=6\mbox{dim\,}L^{3}=6, L3​L2=L5L^{3}L^{2}=L^{5} and LL is of type C. Then LL has a presentation of the form

𝒫10(3,8)​(r,s):\displaystyle{\mathcal{P}}_{10}^{(3,8)}(r,s):\ (x2​y4,y5)=r,(x1​y3,y5)=s,(x1​y2,y4)=1,(y1​y2,y5)=1,\displaystyle(x_{2}y_{4},y_{5})=r,\ (x_{1}y_{3},y_{5})=s,\ (x_{1}y_{2},y_{4})=1,\ (y_{1}y_{2},y_{5})=1,\
(y1​y3,y4)=1,\displaystyle(y_{1}y_{3},y_{4})=1,

where rβ‰ 0r\not=0 and sβˆ‰π”½2s\not\in{\mathbb{F}}^{2}. Furthermore the presentations 𝒫10(3,8)​(r~,s~){\mathcal{P}}_{10}^{(3,8)}(\tilde{r},\tilde{s}) and 𝒫10(3,8)​(r,s){\mathcal{P}}_{10}^{(3,8)}(r,s) describe the same algebra if and only if r~r∈(π”½βˆ—)3\frac{\tilde{r}}{r}\in({\mathbb{F}}^{*})^{3} and ss~∈G​(s)\frac{s}{\tilde{s}}\in G(s) where G​(s)={(x2βˆ’y2​s)2:(x,y)βˆˆπ”½Γ—π”½βˆ–{(0,0)}}G(s)=\{(x^{2}-y^{2}s)^{2}:\ (x,y)\in{\mathbb{F}}\times{\mathbb{F}}\setminus\{(0,0)\}\}.

ProofΒ Β We have already seen that any such algebra has a presentation of the given form. Direct calculations show that an algebra with a presentation 𝒫10(3,8)​(r,s){\mathcal{P}}_{10}^{(3,8)}(r,s) has the properties stated. We turn to the isomorphism property. To see that the condition is sufficient, suppose we have an algebra LL that has presentation 𝒫10(3,8)​(r,s){\mathcal{P}}_{10}^{(3,8)}(r,s) with respect to some standard basis x1,y1,…,x5,y5x_{1},y_{1},\ldots,x_{5},y_{5}. Suppose that r~r=1Ξ²3\frac{\tilde{r}}{r}=\frac{1}{\beta^{3}} and ss~=[(b/Ξ²)2βˆ’s​(a/Ξ²)2]2\frac{s}{\tilde{s}}=[(b/\beta)^{2}-s(a/\beta)^{2}]^{2} for some Ξ²βˆˆπ”½βˆ–{0}\beta\in\mathbb{F}\setminus\{0\} and (a,b)βˆˆπ”½Γ—π”½βˆ–{(0,0)}(a,b)\in{\mathbb{F}}\times{\mathbb{F}}\setminus\{(0,0)\}. Let Ξ±=Ξ²3b2βˆ’a2​s\alpha=\frac{\beta^{3}}{b^{2}-a^{2}s} and consider a new standard basis

x~1=(Ξ±/Ξ²2)​(b​x1+a​s​y1),y~1=(1/Ξ²)​(b​y1+a​x1),x~2=(1/Ξ²)​x2,y~2=β​y2x~3=(1/Ξ±)​x3,y~3=α​y3x~4=(Ξ±/Ξ²)​(b​x4+a​s​x5),y~4=(1/Ξ²2)​(b​y4βˆ’a​y5),x~5=a​x4+b​x5,y~5=(Ξ±/Ξ²3)​(b​y5βˆ’a​s​y4),\begin{array}[]{ll}\tilde{x}_{1}=(\alpha/\beta^{2})(bx_{1}+asy_{1}),&\tilde{y}_{1}=(1/\beta)(by_{1}+ax_{1}),\\ \tilde{x}_{2}=(1/\beta)x_{2},&\tilde{y}_{2}=\beta y_{2}\\ \tilde{x}_{3}=(1/\alpha)x_{3},&\tilde{y}_{3}=\alpha y_{3}\\ \tilde{x}_{4}=(\alpha/\beta)(bx_{4}+asx_{5}),&\tilde{y}_{4}=(1/\beta^{2})(by_{4}-ay_{5}),\\ \tilde{x}_{5}=ax_{4}+bx_{5},&\tilde{y}_{5}=(\alpha/\beta^{3})(by_{5}-asy_{4}),\end{array}

Calculations show that LL has then presentation 𝒫10(3,8)​(r~,s~){\mathcal{P}}_{10}^{(3,8)}(\tilde{r},\tilde{s}) with respect to the new standard basis.

It remains to see that the conditions are also necessary. Consider an algebra LL with presentation 𝒫10(3,8)​(r,s){\mathcal{P}}_{10}^{(3,8)}(r,s) with respect to some standard basis x1,y1,…,x5,y5x_{1},y_{1},\ldots,x_{5},y_{5}. Take some arbitrary new standard basis x~1,y~1,…,x~5,y~5\tilde{x}_{1},\tilde{y}_{1},\ldots,\tilde{x}_{5},\tilde{y}_{5} such that LL satisfies the presentation 𝒫10(3,8)​(r~,s~){\mathcal{P}}_{10}^{(3,8)}(\tilde{r},\tilde{s}) with respect to the new basis for some 0β‰ r~βˆˆπ”½0\neq\tilde{r}\in{\mathbb{F}} and s~βˆ‰π”½2\tilde{s}\not\in{\mathbb{F}}^{2}. Notice that

x~5\displaystyle\tilde{x}_{5} =\displaystyle= a​x4+b​x5\displaystyle ax_{4}+bx_{5}
y~2\displaystyle\tilde{y}_{2} =\displaystyle= β​y2+u\displaystyle\beta y_{2}+u
y~3\displaystyle\tilde{y}_{3} =\displaystyle= γ​y3+v,\displaystyle\gamma y_{3}+v,

such that u,v∈L3u,v\in L^{3} and 0β‰ Ξ±,Ξ²βˆˆπ”½0\not=\alpha,\beta\in{\mathbb{F}}. The reader can convince himself that r~/r∈(π”½βˆ—)3\tilde{r}/r\in({\mathbb{F}}^{*})^{3} and s/s~∈G​(s)s/\tilde{s}\in G(s). β–‘\Box

Examples. (1) If 𝔽=β„‚{\mathbb{F}}={\mathbb{C}} then as any quadratic polynomial is reducible, there are not algebras of type C. This holds more generally for any field 𝔽{\mathbb{F}} of characteristic that is not 22 and where all the elements in 𝔽{\mathbb{F}} have a square root in 𝔽{\mathbb{F}}.

(2) Suppose 𝔽=ℝ{\mathbb{F}}={\mathbb{R}}. Let sβˆ‰β„2s\not\in{\mathbb{R}}^{2} and 0β‰ rβˆˆβ„0\not=r\in{\mathbb{R}}. Then 1/r∈(β„βˆ—)31/r\in({\mathbb{R}}^{*})^{3} and s<0s<0. Also s/(βˆ’1)=a4=(a2βˆ’02​s)2s/(-1)=a^{4}=(a^{2}-0^{2}s)^{2} for some aβˆˆβ„βˆ–{0}a\in{\mathbb{R}}\setminus\{0\}. We thus have that 𝒫10(3,8)​(r,s){\mathcal{P}}_{10}^{(3,8)}(r,s) describes the same algebra as 𝒫10(3,8)​(1,βˆ’1){\mathcal{P}}_{10}^{(3,8)}(1,-1). There is thus a unique algebra in this case.

(3) Let 𝔽{\mathbb{F}} be a finite field of some odd characteristic pp. Suppose that |𝔽|=pn|{\mathbb{F}}|=p^{n}. Let ss be any element that is not in (π”½βˆ—)2({\mathbb{F}}^{*})^{2}. Notice then that π”½βˆ—=(π”½βˆ—)2βˆͺs​(π”½βˆ—)2{\mathbb{F}}^{*}=({\mathbb{F}}^{*})^{2}\cup s({\mathbb{F}}^{*})^{2} and thus for any s~\tilde{s} that is not in 𝔽2{\mathbb{F}}^{2}, we have s/s~∈(π”½βˆ—)2=G​(s)s/\tilde{s}\in({\mathbb{F}}^{*})^{2}=G(s). We can thus keep ss fixed and each algebra has a presentation of the form 𝒬​(r)=𝒫10(3,8)​(r,s){\mathcal{Q}}(r)={\mathcal{P}}_{10}^{(3,8)}(r,s) where 𝒬​(r~){\mathcal{Q}}(\tilde{r}) and 𝒬​(r){\mathcal{Q}}(r) describe the same algebra if and only if r~/r∈(π”½βˆ—)3\tilde{r}/r\in({\mathbb{F}}^{*})^{3}. There are thus either three or one algebra according to whether 33 divides pnβˆ’1p^{n}-1 or not. β–‘\Box

b. The algebras where c​h​a​r​𝔽=2{\mbox{c}har\,}{\mathbb{F}}=2

If the irreducible minimal polynomial of Οˆβ€‹Ο•βˆ’1\psi\phi^{-1} is t2+r​t+st^{2}+rt+s with respect to y2,y3y_{2},y_{3} then the minimal polynomial with respect to a​y2,b​y3+c​y2ay_{2},by_{3}+cy_{2}, where a,bβ‰ 0a,b\not=0, is

t2+r​(b/a)​t+[(c/a)2+r​(c/a)​(b/a)+(b/a)2​s].t^{2}+r(b/a)t+[(c/a)^{2}+r(c/a)(b/a)+(b/a)^{2}s].

Thus we have two distinct subcases (that do not depend on the choice of basis). Let m=m​(y2,y3)m=m(y_{2},y_{3}) be the minimal polynomial of Οˆβ€‹Ο•βˆ’1\psi\phi^{-1} with respect to a given standard basis for LL.

(1) The minimal polynomial mm is of the form t2βˆ’st^{2}-s for some sβˆ‰π”½2s\not\in{\mathbb{F}}^{2}.

(2) The minimal polynomial mm is of the form t2+r​t+st^{2}+rt+s where rβ‰ 0r\not=0 and the polynomial is irreducible.

For case (1) we get the same situation as in Proposition 4.13.

Proposition 4.14

Let LL be a nilpotent SAA of dimension 1010 over a field of characteristic 22 that has an isotropic centre of dimension 33. Suppose also that LL has the further properties that dim ​L3=6\mbox{dim\,}L^{3}=6, L3​L2=L5L^{3}L^{2}=L^{5} and LL is of type C where the minimal polynomial m​(y2,y3)m(y_{2},y_{3}) is of the form t2βˆ’st^{2}-s for some sβˆ‰π”½2s\not\in{\mathbb{F}}^{2}. Then LL has a presentation of the form

𝒫10(3,8)​(r,s):\displaystyle{\mathcal{P}}_{10}^{(3,8)}(r,s):\ (x2​y4,y5)=r,(x1​y3,y5)=s,(x1​y2,y4)=1,(y1​y2,y5)=1,\displaystyle(x_{2}y_{4},y_{5})=r,\ (x_{1}y_{3},y_{5})=s,\ (x_{1}y_{2},y_{4})=1,\ (y_{1}y_{2},y_{5})=1,\
(y1​y3,y4)=1,\displaystyle(y_{1}y_{3},y_{4})=1,

where rβ‰ 0r\not=0 and sβˆ‰π”½2s\not\in{\mathbb{F}}^{2}. Furthermore the presentations 𝒫10(3,8)​(r~,s~){\mathcal{P}}_{10}^{(3,8)}(\tilde{r},\tilde{s}) and 𝒫10(3,8)​(r,s){\mathcal{P}}_{10}^{(3,8)}(r,s) describe the same algebra if and only if r~r∈(π”½βˆ—)3\frac{\tilde{r}}{r}\in({\mathbb{F}}^{*})^{3} and ss~∈G​(s)\frac{s}{\tilde{s}}\in G(s) where G​(s)={(x2βˆ’y2​s)2:(x,y)βˆˆπ”½Γ—π”½βˆ–{(0,0)}}G(s)=\{(x^{2}-y^{2}s)^{2}:\ (x,y)\in{\mathbb{F}}\times{\mathbb{F}}\setminus\{(0,0)\}\}.

Example. Consider the field β„€2​(x){\mathbb{Z}}_{2}(x) of rational functions in one variable over β„€2{\mathbb{Z}}_{2}. Notice that

β„€2​(x)βˆ—={f​(x)2+x​g​(x)2:f​(x),g​(x)βˆˆβ„€2​(x)2βˆ–{(0,0)}}.{\mathbb{Z}}_{2}(x)^{*}=\{f(x)^{2}+xg(x)^{2}:\,f(x),g(x)\in{\mathbb{Z}}_{2}(x)^{2}\setminus\{(0,0)\}\}.

Thus G​(x)=(β„€2​(x)βˆ—)2G(x)=({\mathbb{Z}}_{2}(x)^{*})^{2} and the last proposition tells us that 𝒫10(3,8)​(r~​(x),s~​(x)){\mathcal{P}}_{10}^{(3,8)}(\tilde{r}(x),\tilde{s}(x)) and 𝒫10(3,8)​(r​(x),s​(x)){\mathcal{P}}_{10}^{(3,8)}(r(x),s(x)) describe the same algebra if and only if r~​(x)/r​(x)∈(β„€2​(x)βˆ—)3\tilde{r}(x)/r(x)\in({\mathbb{Z}}_{2}(x)^{*})^{3} and s​(x)/s~​(x)∈(β„€2​(x)βˆ—)2s(x)/\tilde{s}(x)\in({\mathbb{Z}}_{2}(x)^{*})^{2}. We thus have infinitely many algebras here.

We then move on to the latter collection of algebras. For the rest of this subsection we will be assuming that the minimal polynomial of Οˆβ€‹Ο•βˆ’1\psi\phi^{-1} is an irreducible polynomial of the form t2+r​t+st^{2}+rt+s where rβ‰ 0r\not=0.

Pick 0β‰ x5∈L50\not=x_{5}\in L^{5} and let x4=Οˆβ€‹Ο•βˆ’1​(x5)x_{4}=\psi\phi^{-1}(x_{5}). Then Οˆβ€‹Ο•βˆ’1​(x4)=r​x4+s​x5\psi\phi^{-1}(x_{4})=rx_{4}+sx_{5}. We want to pick our standard basis such that x1+L4=Ο•βˆ’1​(x4)x_{1}+L^{4}=\phi^{-1}(x_{4}) and y1+L4=Ο•βˆ’1​(x5)y_{1}+L^{4}=\phi^{-1}(x_{5}). The only constraint to worry about is, as before, that (x1,y1)=1(x_{1},y_{1})=1. If (x1,y1)=Οƒ(x_{1},y_{1})=\sigma, we just need to then replace y3y_{3} by (1/Οƒ)​y3(1/\sigma)y_{3}. Notice that this changes the minimal polynomial of Οˆβ€‹Ο•βˆ’1\psi\phi^{-1} to t2+(r/Οƒ)​t+(s/Οƒ2)t^{2}+(r/\sigma)t+(s/\sigma^{2}). In any case this shows that we can choose our standard basis such that

x1​y2=x4,y1​y2=x5,x1​y3=r​x4+s​x5,y1​y3=x4x_{1}y_{2}=x_{4},\ y_{1}y_{2}=x_{5},\ x_{1}y_{3}=rx_{4}+sx_{5},\ y_{1}y_{3}=x_{4} (19)

for some r,sβˆˆπ”½r,s\in{\mathbb{F}} where rβ‰ 0r\not=0 and t2+r​t+st^{2}+rt+s is irreducible. As before we also know that x2​y3=0x_{2}y_{3}=0. In order to clarify the structure further we are only left with the following triple values:

(x1​y4,y5)=a,(y2​y3,y4)=c,(y2​y4,y5)=e,(x2​y4,y5)=Ξ±,(y1​y4,y5)=b,(y2​y3,y5)=d,(y3​y4,y5)=f.\begin{array}[]{llll}(x_{1}y_{4},y_{5})=a,&(y_{2}y_{3},y_{4})=c,&(y_{2}y_{4},y_{5})=e,&(x_{2}y_{4},y_{5})=\alpha,\\ (y_{1}y_{4},y_{5})=b,&(y_{2}y_{3},y_{5})=d,&(y_{3}y_{4},y_{5})=f.&\end{array}

Notice that Ξ³β‰ 0\gamma\not=0 as x2​y3=0x_{2}y_{3}=0 but x2βˆ‰Z​(L)x_{2}\not\in Z(L). Let z1=(a+cβ€‹Ξ³βˆ’b​r)/Ξ³z_{1}=(a+c\gamma-br)/\gamma, z2=(dβˆ’s​(b/Ξ³))z_{2}=(d-s(b/\gamma)) and z3=z1​(a/Ξ³)+z2​(b/Ξ³)z_{3}=z_{1}(a/\gamma)+z_{2}(b/\gamma) and replace x1,y3,y1,y4,y2,y5x_{1},y_{3},y_{1},y_{4},y_{2},y_{5} by x1βˆ’(a/Ξ±)​x2βˆ’z2​x3βˆ’e​x4+f​x5,y3+z2​y1+z1​x1βˆ’z3​x2,y1βˆ’(b/Ξ³)​x2+z1​x3,y4βˆ’e​(b/Ξ³)​x2+e​y1+e​z1​x3,y2+(a/Ξ³)​y1βˆ’(b/Ξ³)​x1,y5+f​(b/Ξ³)​x2βˆ’f​y1βˆ’f​z1​x3x_{1}-(a/\alpha)x_{2}-z_{2}x_{3}-ex_{4}+fx_{5},y_{3}+z_{2}y_{1}+z_{1}x_{1}-z_{3}x_{2},y_{1}-(b/\gamma)x_{2}+z_{1}x_{3},y_{4}-e(b/\gamma)x_{2}+ey_{1}+ez_{1}x_{3},y_{2}+(a/\gamma)y_{1}-(b/\gamma)x_{1},y_{5}+f(b/\gamma)x_{2}-fy_{1}-fz_{1}x_{3}. This show that we can choose a new standard basis so that the remaining values are zero. We have thus arrived at a presentation of the form 𝒫10(3,9){\mathcal{P}}_{10}^{(3,9)} as described in next proposition. Before stating that proposition we introduce two groups that are going to play a role.

Definition. For each minimal polynomial t2+r​t+st^{2}+rt+s, we let

H​(r)\displaystyle H(r) =\displaystyle= {x2+r​x:xβˆˆπ”½}\displaystyle\{x^{2}+rx:\,x\in{\mathbb{F}}\}
G​(r,s)\displaystyle G(r,s) =\displaystyle= {x2+r​x​y+s​y2:(x,y)βˆˆπ”½Γ—π”½βˆ–{(0,0)}}.\displaystyle\{x^{2}+rxy+sy^{2}:\,(x,y)\in{\mathbb{F}}\times{\mathbb{F}}\setminus\{(0,0)\}\}.

Remarks. (1) H​(r)H(r) is a subgroup of the additive group of 𝔽{\mathbb{F}}.

(2) Consider the splitting field 𝔽​[Ξ±]{\mathbb{F}}[\alpha] of the polynomial t2+r​t+st^{2}+rt+s in 𝔽​[t]{\mathbb{F}}[t]. Then a2+a​b​r+b2​sa^{2}+abr+b^{2}s is the norm N​(a+b​α)=(a+b​α)​(a+b​(Ξ±+r))N(a+b\alpha)=(a+b\alpha)(a+b(\alpha+r)) of a+b​αa+b\alpha. As this is a multiplicative function we have that G​(r,s)G(r,s) is a multiplicative subgroup of π”½βˆ—{\mathbb{F}}^{*}.

Proposition 4.15

Let LL be a nilpotent SAA of dimension 1010 over a field of characteristic 22 that has an isotropic centre of dimension 33. Suppose also that LL has the further properties that dim ​L3=6\mbox{dim\,}L^{3}=6, L3​L2=L5L^{3}L^{2}=L^{5} and LL is of type C where the minimal polynomial m​(y2,y3)m(y_{2},y_{3}) is irreducible with a non-zero linear term. Then LL has a presentation of the form

𝒫10(3,9)​(Ξ³,r,s):\displaystyle{\mathcal{P}}_{10}^{(3,9)}(\gamma,r,s): (x2​y4,y5)=Ξ³,(x1​y3,y4)=r,(x1​y3,y5)=s,\displaystyle(x_{2}y_{4},y_{5})=\gamma,\ (x_{1}y_{3},y_{4})=r,\ (x_{1}y_{3},y_{5})=s,\
(x1​y2,y4)=1,(y1​y2,y5)=1,(y1​y3,y4)=1\displaystyle(x_{1}y_{2},y_{4})=1,\ (y_{1}y_{2},y_{5})=1,\,(y_{1}y_{3},y_{4})=1

where Ξ³,rβ‰ 0\gamma,r\not=0 and t2+r​t+st^{2}+rt+s is irreducible. Furthermore the presentations 𝒫10(3,9)​(Ξ³~,r~,s~){\mathcal{P}}_{10}^{(3,9)}(\tilde{\gamma},\tilde{r},\tilde{s}) and 𝒫10(3,9)​(Ξ³,r,s){\mathcal{P}}_{10}^{(3,9)}(\gamma,r,s) describe the same algebra if and only if Ξ³~γ∈(π”½βˆ—)3\frac{\tilde{\gamma}}{\gamma}\in({\mathbb{F}}^{*})^{3}, r~r∈G​(r,s)\frac{\tilde{r}}{r}\in G(r,s) and s~βˆ’(r~r)2​s∈H​(r~)\tilde{s}-(\frac{\tilde{r}}{r})^{2}s\in H(\tilde{r}).

ProofΒ Β We have already seen that any such algebra has a presentation of the given form. Direct calculations show that conversely any algebra with a presentation of this type satisfies all the properties listed. It remains to deal with the isomorphism property. To see that the condition is sufficient, suppose we have an algebra LL that has a presentation 𝒫10(3,9)​(Ξ³,r,s){\mathcal{P}}_{10}^{(3,9)}(\gamma,r,s) with respect to some standard basis x1,y1,…,x5,y5x_{1},y_{1},\ldots,x_{5},y_{5}. Suppose that Ξ³~Ξ³=1Ξ²3\frac{\tilde{\gamma}}{\gamma}=\frac{1}{\beta^{3}}, rr~=(bΞ²)2+(bΞ²)​(aΞ²)​r+(aΞ²)2​s\frac{r}{\tilde{r}}=(\frac{b}{\beta})^{2}+(\frac{b}{\beta})(\frac{a}{\beta})r+(\frac{a}{\beta})^{2}s and s~βˆ’(r~r)2​s=(δβ)2+(δβ)​r~\tilde{s}-(\frac{\tilde{r}}{r})^{2}s=(\frac{\delta}{\beta})^{2}+(\frac{\delta}{\beta})\tilde{r} for some a,b,Ξ΄,Ξ²βˆˆπ”½a,b,\delta,\beta\in{\mathbb{F}} where (a,b)β‰ (0,0)(a,b)\neq(0,0) and Ξ²β‰ 0\beta\not=0. We let Ξ±=Ξ²/((bΞ²)2+(bΞ²)​(aΞ²)​r+(aΞ²)2​s)\alpha=\beta/((\frac{b}{\beta})^{2}+(\frac{b}{\beta})(\frac{a}{\beta})r+(\frac{a}{\beta})^{2}s). Consider the new standard basis

x~1=1Ξ²2[Ξ±ar+Ξ±b+Ξ΄a)x1+(Ξ΄b+Ξ±as)y1],y~1=1β​(a​x1+b​y1)x~2=1α​β​(α​x2+δ​x2),y~2=β​y2,x~3=1α​x3,y~3=α​y3+δ​y2x~4=1β​[(α​a​r+α​b+δ​a)​x4+(δ​b+α​a​s)​x5],y~4=1Ξ²2​(b​y4+α​y5),x~5=a​x4+b​x5,y~5=1Ξ²3​[(α​a​r+α​b+δ​a)​y5+(δ​b+α​a​s)​y4].\begin{array}[]{ll}\tilde{x}_{1}=\frac{1}{\beta^{2}}[\alpha ar+\alpha b+\delta a)x_{1}+(\delta b+\alpha as)y_{1}],&\tilde{y}_{1}=\frac{1}{\beta}(ax_{1}+by_{1})\\ \tilde{x}_{2}=\frac{1}{\alpha\beta}(\alpha x_{2}+\delta x_{2}),&\tilde{y}_{2}=\beta y_{2},\\ \tilde{x}_{3}=\frac{1}{\alpha}x_{3},&\tilde{y}_{3}=\alpha y_{3}+\delta y_{2}\\ \tilde{x}_{4}=\frac{1}{\beta}[(\alpha ar+\alpha b+\delta a)x_{4}+(\delta b+\alpha as)x_{5}],&\tilde{y}_{4}=\frac{1}{\beta^{2}}(by_{4}+\alpha y_{5}),\\ \tilde{x}_{5}=ax_{4}+bx_{5},&\tilde{y}_{5}=\frac{1}{\beta^{3}}[(\alpha ar+\alpha b+\delta a)y_{5}+(\delta b+\alpha as)y_{4}].\end{array}

Calculations show that LL has then presentation 𝒫10(3,9)​(Ξ³~,r~,s~){\mathcal{P}}_{10}^{(3,9)}(\tilde{\gamma},\tilde{r},\tilde{s}) with respect to the new standard basis.

It remains to see that the conditions are also necessary. Consider an algebra LL with presentation 𝒫10(3,9)​(Ξ³,r,s){\mathcal{P}}_{10}^{(3,9)}(\gamma,r,s) with respect to some standard basis x1,y1,…,x5,y5x_{1},y_{1},\ldots,x_{5},y_{5}. Take some arbitrary new standard basis x~1,y~1,…,x~5,y~5\tilde{x}_{1},\tilde{y}_{1},\ldots,\tilde{x}_{5},\tilde{y}_{5} such that LL has presentation 𝒫10(3,9)​(Ξ³~,r~,s~){\mathcal{P}}_{10}^{(3,9)}(\tilde{\gamma},\tilde{r},\tilde{s}) with respect to the new basis where Ξ³~,r~β‰ 0\tilde{\gamma},\tilde{r}\not=0 and where t2+r~​t+s~t^{2}+\tilde{r}t+\tilde{s} is irreducible. Then x~5=a​x4+b​x5\tilde{x}_{5}=ax_{4}+bx_{5}, y~2=β​y2+u\tilde{y}_{2}=\beta y_{2}+u and y~3=α​y3+δ​y2+v\tilde{y}_{3}=\alpha y_{3}+\delta y_{2}+v for some u,v∈L3u,v\in L^{3}, Ξ±,Ξ²,Ξ΄βˆˆπ”½\alpha,\beta,\delta\in{\mathbb{F}} and (a,b)βˆˆπ”½Γ—π”½βˆ–{(0,0)}(a,b)\in{\mathbb{F}}\times{\mathbb{F}}\setminus\{(0,0)\} where Ξ±,Ξ²β‰ 0\alpha,\beta\neq 0. The reader can convince himself that new basis that we get satisfies the conditions stated. β–‘\Box

Before we give an example of an algebra of this form, we list some useful properties of the groups G​(r,s)G(r,s) and H​(r)H(r).

Lemma 4.16

For any irreducible polynomials t2+r​t+st^{2}+rt+s and t2+r~​t+s~t^{2}+\tilde{r}t+\tilde{s}, we have that

(1) H​(r~)=(r~/r)2​H​(r)H(\tilde{r})=(\tilde{r}/r)^{2}H(r).
(2) G​(r~,s~)=G​(r,s)G(\tilde{r},\tilde{s})=G(r,s) if s~βˆ’(r~/r)2​s∈H​(r~)\tilde{s}-(\tilde{r}/r)^{2}s\in H(\tilde{r}).

ProofΒ Β Straightforward calculations.

Example. Let 𝔽{\mathbb{F}} be the finite field of order 2n2^{n}. Let r,s,r~,s~r,s,\tilde{r},\tilde{s} be as in the last lemma. Then G​(r~,s~)=G​(r,s)=π”½βˆ—G(\tilde{r},\tilde{s})=G(r,s)={\mathbb{F}}^{*} and thus r~/r∈G​(r,s)\tilde{r}/r\in G(r,s). Also [𝔽:H(r~)]=2[{\mathbb{F}}:H(\tilde{r})]=2 and thus s~βˆ’(r~/r)2​s∈H​(r~)\tilde{s}-(\tilde{r}/r)^{2}s\in H(\tilde{r}). It follows from the last proposition that the presentations 𝒫10(3,9)​(Ξ³,r,s){\mathcal{P}}_{10}^{(3,9)}(\gamma,r,s) and 𝒫10(3,9)​(Ξ³~,r~,s~){\mathcal{P}}_{10}^{(3,9)}(\tilde{\gamma},\tilde{r},\tilde{s}) describe the same algebra if and only if Ξ³~/γ∈(π”½βˆ—)3\tilde{\gamma}/\gamma\in({\mathbb{F}}^{*})^{3}. There are thus either three algebras or one algebra according to whether 33 divides 2nβˆ’12^{n}-1 or not.

We end this section by giving a direct explanation why the relation

(r~,s~)∼(r,s)​ if ​r~r∈G​(r,s),s~βˆ’(r~r)2​s∈H​(r~)(\tilde{r},\tilde{s})\sim(r,s)\mbox{\ if\ }\frac{\tilde{r}}{r}\in G(r,s),\tilde{s}-(\frac{\tilde{r}}{r})^{2}s\in H(\tilde{r})

is an equivalence relation.

First it is easy to see that (r,s)∼(r,s)(r,s)\sim(r,s) as 1∈G​(r,s)1\in G(r,s) and 0∈H​(r)0\in H(r). Next if (r~,s~)∼(r,s)(\tilde{r},\tilde{s})\sim(r,s) then, as G​(r,s)=G​(r~,s~)G(r,s)=G(\tilde{r},\tilde{s}) is a group, we have that r/r~∈G​(r~,s~)r/\tilde{r}\in G(\tilde{r},\tilde{s}) and sβˆ’(r/r~)2​s~=(r/r~)2​(βˆ’s~+(r~/r)2​s)∈(r/r~)2​H​(r~)=H​(r)s-(r/\tilde{r})^{2}\tilde{s}=(r/\tilde{r})^{2}(-\tilde{s}+(\tilde{r}/r)^{2}s)\in(r/\tilde{r})^{2}H(\tilde{r})=H(r). This shows that ∼\sim is symmetric. Finally suppose (rβˆ—,sβˆ—)∼(r~,s~)(r^{*},s^{*})\sim(\tilde{r},\tilde{s}) and (r~,s~)∼(r,s)(\tilde{r},\tilde{s})\sim(r,s). Then we have that rβˆ—/r=rβˆ—/r~β‹…r~/r∈G​(r,s)r^{*}/r=r^{*}/\tilde{r}\cdot\tilde{r}/r\in G(r,s) and sβˆ—βˆ’(rβˆ—/r)2​s=[sβˆ—βˆ’(rβˆ—/r~)2​s~]+[(rβˆ—/r~)2​s~βˆ’(rβˆ—/r)2​s]=[sβˆ—βˆ’(rβˆ—/r~)2​s~]+(rβˆ—/r~)2​[s~βˆ’(r~/r)2​s]s^{*}-(r^{*}/r)^{2}s=[s^{*}-(r^{*}/\tilde{r})^{2}\tilde{s}]+[(r^{*}/\tilde{r})^{2}\tilde{s}-(r^{*}/r)^{2}s]=[s^{*}-(r^{*}/\tilde{r})^{2}\tilde{s}]+(r^{*}/\tilde{r})^{2}[\tilde{s}-(\tilde{r}/r)^{2}s] is in H​(rβˆ—)+(rβˆ—/r~)2​H​(r~)=H​(rβˆ—)H(r^{*})+(r^{*}/\tilde{r})^{2}H(\tilde{r})=H(r^{*}). Hence ∼\sim is also transitive and we have an equivalence relation.

References

  • [1] P.Β Moravec and G.Β Traustason. Powerful 2-Engel groups. Communications in Algebra, 36(11):4096–4119, 2008.
  • [2] L.Β Sorkatti and G.Β Traustason. Nilpotent Symplectic Alternating Algebras I. Journal of Algebra, 423:615–635, 2015. arXiv:2404.11039.
  • [3] L.Β H. E.Β M. Sorkatti. Nilpotent Symplectic Alternating Algebras. PhD thesis, University of Bath, 2015. URL: https://www.proquest.com/dissertations-theses/nilpotent-symplectic-alternating-algebras/docview/3067598814/se-2, arXiv:2405.15091.
  • [4] M.Β Tortora, A.;Β Tota and G.Β Traustason. Symplectic alternating nil-algebras. Journal of Algebra, 357:183–202, 2012.
  • [5] G.Β Traustason. Powerful 2-Engel groups II. Journal of Algebra, 319:3301–3323, 2008.
  • [6] G.Β Traustason. Symplectic Alternating Algebras. International Journal of Algebra and Computation, 18:719–757, 2008.