This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Next-to-Next-to-Leading-Order QCD Prediction for the Pion Form Factor

Yao Jia,b corresponding author: [email protected]    Bo-Xuan Shic corresponding author: [email protected]    Jian Wangd,e corresponding author: [email protected]    Ye-Fan Wangf corresponding author: [email protected]    Yu-Ming Wangc corresponding author: [email protected]    Hui-Xin Yuc corresponding author: [email protected] a School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
b Physik Department T31, James-Franck-Straße1, Technische Universität München, D–85748 Garching, Germany
c School of Physics, Nankai University,
Weijin Road 94, Tianjin 300071, P.R. China
d School of Physics, Shandong University, Jinan, Shandong 250100, China
e Center for High Energy Physics, Peking University, Beijing 100871, China
f Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing, Jiangsu 210023, China
Abstract

We accomplish for the first time the two-loop computation of the leading-twist contribution to the pion electromagnetic form factor by employing the effective field theory formalism rigorously. The next-to-next-to-leading-order short-distance matching coefficient is determined by evaluating the appropriate 55-point QCD amplitude with the modern multi-loop technique and subsequently by implementing the ultraviolet renormalization and infrared subtractions with the inclusion of evanescent operators. The renormalization/factorization scale independence of the obtained form factor is then validated explicitly at 𝒪(αs3){\cal O}(\alpha_{s}^{3}). The yielding two-loop QCD correction to this fundamental quantity turns out to be numerically significant at experimentally accessible momentum transfers. We further demonstrate that the newly computed two-loop radiative correction is highly beneficial for an improved determination of the leading-twist pion distribution amplitude.

preprint: TUM-HEP-1533/24

I Introduction

It is generally accepted that the pion electromagnetic form factor (EMFF) is of paramount importance for probing the infrared structure of QCD scattering amplitudes of hard exclusive reactions at leading power and beyond and for unraveling the precise mechanisms that dictate the intricate nature of composite hadron systems. Advancing our understanding towards this gold-plated form factor is especially suitable for delivering deep and far-reaching insights into the delicate interplay between the emergent and Higgs mass generation mechanisms for such lightest pseudoscalar mesons as the Nambu-Goldstone modes of QCD. Historically, the systematic analysis of the pion form factor played an indispensable role in establishing the perturbative factorization formalism for the entire domain of exclusive hadronic processes with large momentum transfers Lepage and Brodsky (1979, 1980); Efremov and Radyushkin (1980a, b); Duncan and Mueller (1980a, b); Brodsky and Lepage (1989). As a consequence, the dimensional-counting rules for the power-law behaviour of numerous hard exclusive reactions on the basis of the parton model Brodsky and Farrar (1973); Matveev et al. (1973) can be placed on a solid footing within this field-theoretical framework (see Gross et al. (2023) for an overview). Additionally, the developed perturbative factorization technique has been extended to the first-principles calculations of the deeply virtual Compton scattering Ji (1997); Radyushkin (1997); Diehl et al. (1999a, b), the hard diffraction of light mesons at high energies Collins et al. (1997); Brodsky et al. (1994); Pire et al. (2021), and the exclusive heavy-to-light BB-meson decays at large hadronic recoil Beneke and Feldmann (2001, 2004); Bauer et al. (2001, 2003). Moreover, the time-like scalar-current pion form factors are intimately connected with the chirally-enhanced weak annihilation contributions to the flagship charmless two-body hadronic BππB\to\pi\pi decays Beneke et al. (2001); Duraisamy and Kagan (2010); Lü et al. (2023), which provide an essential testing ground for CP violation in the Standard Model (SM) with controllable theoretical uncertainties.

Experimentally, the pion EMFF at low momentum transfers (Q2[0.015, 0.253]GeV2Q^{2}\in[0.015,\,0.253]\,{\rm GeV^{2}}) has been measured from the elastic scattering of high-energy pions off the atomic electrons in a liquid-hydrogen target at Fermilab Dally et al. (1981, 1982) and CERN Amendolia et al. (1984, 1986). The challenging measurement of the pion form factor at intermediate momentum transfers, up to Q2=10GeV2Q^{2}=10\,{\rm GeV^{2}}, has been further carried out at Cornell Bebek et al. (1976a, b, 1978), DESY Brauel et al. (1979); Ackermann et al. (1978) and JLab Volmer et al. (2001); Tadevosyan et al. (2007); Horn et al. (2006); Blok et al. (2008); Huber et al. (2008), by exploiting the so-called Sullivan mechanism and by extrapolating the determined longitudinal cross section at negative values of the Mandelstam variable tt to the pion pole at t=mπ2t=m_{\pi}^{2} Sullivan (1972). Extracting the charged pion form factor over a wide range of the moderate momentum transfers (Q2[2.0, 6.0]GeV2Q^{2}\in[2.0,\,6.0]\,{\rm GeV^{2}}) can be also anticipated from the E12-06-101 experiment with the upgraded JLab accelerator Arrington et al. (2022). Accessing the space-like pion form factor at yet higher momentum transfers (10GeV2Q240GeV210\,{\rm GeV^{2}}\leq Q^{2}\leq 40\,{\rm GeV^{2}}) with high precision will be one of the key targets for the forthcoming EIC experiment at BNL Abdul Khalek et al. (2022).

According to the hard-collinear factorization theorem Lepage and Brodsky (1979, 1980); Efremov and Radyushkin (1980a, b); Duncan and Mueller (1980a, b), the leading-power contribution to the pion EMFF in the large-momentum expansion can be expressed in terms of the short-distance matching coefficient and the twist-two light-cone distribution amplitude (LCDA) for the (anti)-collinear pion state. The next-to-leading order (NLO) QCD correction to the perturbatively calculable hard function had been explicitly determined with the diagrammatic factorization approach more than forty years ago Field et al. (1981); Dittes and Radyushkin (1981); Sarmadi (1982); Khalmuradov and Radyushkin (1985); Braaten and Tse (1987) (see Melic et al. (1999) for further verification). Including the complete NLO radiative correction in the factorization analysis of the pion EMFF turns out to be extraordinarily advantageous to pin down the intrinsic theory uncertainty from varying the renormalization and factorization scales in comparison with the counterpart tree-level prediction Melic et al. (1999). Accomplishing the next-to-next-to-leading-order (NNLO) computation of the short-distance coefficient function rigorously is therefore in high demand, on the one hand, for enriching and developing the perturbative factorization formalism at an unprecedented level, and on the other hand, for improving further the resulting theory prediction of the charged pion form factor in order to match the ever-growing precision of the dedicated experimental measurements at JLab and EIC. It is our primary objective to fill such an important and longstanding gap in this Letter, by evaluating an appropriate 55-point partonic matrix element at 𝒪(αs3){\cal O}(\alpha_{s}^{3}) with the contemporary advanced multi-loop computational strategies and by carrying out the ultraviolet (UV) renormalization and infrared (IR) subtractions in a meticulous and factorization-compatible manner CCF . Phenomenological implications of the thus determined two-loop QCD correction to the space-like pion form factor at large momentum transfers will be then explored comprehensively, by adopting four sample models for the leading-twist pion distribution amplitude at a low reference scale.

II General analysis

We first lay out the theoretical framework for constructing the hard-collinear factorization formula of the pion EMFF at leading power in an expansion in powers of ΛQCD2/Q2\Lambda_{\rm QCD}^{2}/Q^{2}, where ΛQCD\Lambda_{\rm QCD} stands for the strong interaction scale. Applying the general decomposition for the hadronic matrix element of the quark electromagnetic current enables us to write down

π+(p)|jμem(0)|π+(p)\displaystyle\langle\pi^{+}(p^{\prime})|j_{\mu}^{\rm em}(0)|\pi^{+}(p)\rangle
=Fπ(Q2)(p+p)μ+F~π(Q2)(pp)μ,\displaystyle=F_{\pi}(Q^{2})\,(p+p^{\prime})_{\mu}+\tilde{F}_{\pi}(Q^{2})\,(p-p^{\prime})_{\mu}\,, (1)

where pp and pp^{\prime} correspond to the four-momenta carried by the initial and final pion states, respectively. Employing the vector-current conservation condition immediately leads to F~π(Q2)=0\tilde{F}_{\pi}(Q^{2})=0, thus leaving us with a single form factor Fπ(Q2)F_{\pi}(Q^{2}). Implementing further the charge conjugation transformation for the matrix element on the left-hand side of (1) indicates an isospin relation between the two charged pion form factors Fπ(Q2)=Fπ(Q2)F_{\pi^{-}}(Q^{2})=-F_{\pi}(Q^{2}) for an arbitrary value of Q2Q^{2}. In addition, the electric charge conservation determines the normalization condition for the pion form factor in the forward-scattering limit Fπ(0)=1F_{\pi}(0)=1 (see, for instance, Khodjamirian (2020) for an elementary discussion). Here the customary notation Q2=(pp)2Q^{2}=-(p-p^{\prime})^{2} has been employed and the quark electromagnetic current is given by

jμem(x)=qeqq¯(x)γμq(x),\displaystyle j_{\mu}^{\rm em}(x)=\sum_{q}e_{q}\,\bar{q}(x)\gamma_{\mu}q(x)\,, (2)

with eu=2/3e_{u}=2/3 and ed=1/3e_{d}=-1/3 for the up and down quarks. Introducing two light-like reference vectors nμn_{\mu} and n¯μ\bar{n}_{\mu} with the constraints n2=n¯2=0n^{2}=\bar{n}^{2}=0 and nn¯=2n\cdot\bar{n}=2 then allows for the decomposition pμ=(np/2)n¯μp_{\mu}=({n\cdot p}/2)\,\bar{n}_{\mu} and pμ=(n¯p/2)nμp^{\prime}_{\mu}=({\bar{n}\cdot p^{\prime}}/2)\,n_{\mu} at the leading-power accuracy.

Taking advantage of the modern effective theory field technique Bauer et al. (2002); Rothstein (2004), the hard-collinear factorization formula for the pion form factor at large momentum transfers can be cast in the desired form (see Li and Sterman (1992); Li et al. (2011, 2013, 2014); Li and Wang (2015) for an alternative formalism)

Fπ(Q2)\displaystyle F_{\pi}(Q^{2}) =\displaystyle= (eued)4παs(ν)Q2fπ2𝑑x𝑑yT1(x,y,Q2,ν,μ)\displaystyle(e_{u}-e_{d}){4\pi\alpha_{s}(\nu)\over Q^{2}}f_{\pi}^{2}\int dx\int dy\,T_{1}(x,y,Q^{2},\nu,\mu) (3)
×ϕπ(x,μ)ϕπ(y,μ),\displaystyle\times\,\phi_{\pi}(x,\mu)\,\,\phi_{\pi}(y,\mu)\,,

which is valid to all orders in perturbation theory and at leading power in the ΛQCD2/Q2\Lambda_{\rm QCD}^{2}/Q^{2} expansion. We take the charged pion decay constant from the three-flavour FLAG average fπ=(130.2±1.2)MeVf_{\pi}=(130.2\pm 1.2)\,{\rm MeV} Aoki et al. (2022) with an increased uncertainty from adding an approximate 0.7%0.7\% charm sea-quark contribution. Apparently, the hard-scattering kernel T1T_{1} depends on both the renormalization scale ν\nu and the factorization scale μ\mu, the latter of which corresponds to the resolution with which the microscopic structure of the π\pi-meson is being probed. This short-distance coefficient function can be expanded perturbatively in terms of the strong coupling constant (similarly for any other QCD quantity)

T1==0(αs4π)T1().\displaystyle T_{1}=\sum_{\ell=0}^{\infty}\,\left({\alpha_{s}\over 4\pi}\right)^{\ell}\,T_{1}^{(\ell)}\,. (4)

The leading-twist pion distribution amplitude ϕπ\phi_{\pi} in the factorized expression (3) can be defined by the renormalized QCD matrix element on the light-cone Braun and Filyanov (1989, 1990)

π+(p)|u¯(τn¯)[τn¯,0]γμγ5d(0)|0\displaystyle\langle\pi^{+}(p^{\prime})|\bar{u}(\tau\,\bar{n})\,\,[\tau\,\bar{n},0]\,\,\gamma_{\mu}\,\gamma_{5}\,d(0)|0\rangle
=ifπpμ01𝑑xeixτn¯pϕπ(x,μ),\displaystyle=-i\,f_{\pi}\,p^{\prime}_{\mu}\,\int^{1}_{0}dx\,e^{ix\,\tau\,\bar{n}\cdot p^{\prime}}\,\phi_{\pi}(x,\mu)\,, (5)

where [τn¯,0][\tau\,\bar{n},0] is the finite-length collinear Wilson line ensuring gauge invariance. The one-loop renormalization-group (RG) equation for the light-ray operator on the left-hand side of (5) implies the conformal partial wave expansion of ϕπ(x,μ)\phi_{\pi}(x,\mu) in terms of the Gegenbauer polynomials with multiplicatively renormalizable coefficients (see Braun et al. (2003) for an excellent overview)

ϕπ(x,μ)=6x(1x)m=0am(μ)Cm3/2(2x1).\displaystyle\phi_{\pi}(x,\mu)=6\,x\,(1-x)\,\sum_{m=0}^{\infty}\,a_{m}(\mu)\,C_{m}^{3/2}(2x-1)\,. (6)

The normalization condition 01𝑑xϕπ(x,μ)=1\int_{0}^{1}dx\,\phi_{\pi}(x,\mu)=1 has been adopted throughout this work and the odd moments a1,3,(μ)a_{1,3,...}(\mu) vanish due to the G{\rm G}-parity symmetry.

The short-distance matching coefficient T1T_{1} can be routinely determined by investigating the 55-point QCD matrix element below

Πμ=u(p1)d¯(p2)|jμem(0)|u(p1)d¯(p2),\displaystyle\Pi_{\mu}=\langle u(p_{1}^{\prime})\,\bar{d}(p_{2}^{\prime})|j_{\mu}^{\rm em}(0)|u(p_{1})\,\bar{d}(p_{2})\rangle\,, (7)

where the external momenta can be restricted to their leading components p1=xpp_{1}=x\,p, p2=x¯pp_{2}=\bar{x}\,p, p1=ypp_{1}^{\prime}=y\,p^{\prime} and p2=y¯pp_{2}^{\prime}=\bar{y}\,p^{\prime} with the “bar notation” x¯1x\bar{x}\equiv 1-x, y¯1y\bar{y}\equiv 1-y. We will perform the computation of the bare amplitude in dimensional regularization with D=42ϵD=4-2\,\epsilon, where UV and IR divergences manifest themselves as poles up to the second order in ϵ\epsilon. The former divergences are evidently cancelled by the UV renormalization for the strong coupling constant αs\alpha_{s} in the MS¯\overline{\rm MS} scheme, while the latter disappear after executing the nowadays standard IR subtraction procedure.

III Next-to-next-to-leading-order QCD computation

We will dedicate this section to a brief technical description of the two-loop QCD calculation for the considered partonic quantity Πμ\Pi_{\mu}. We start with generating the NNLO Feynman diagrams with FeynArts Hahn (2001) and, independently, by means of an in-house routine. Taking into account the observation that a subset of the two-loop diagrams yield the vanishing contribution, due to the Furry theorem and/or the zero colour (electric) charge factors, we eventually encounter 10661066 non-vanishing diagrams of our interest. The two sample Feynman diagrams are depicted in Figure 1 explicitly.

Refer to caption
Figure 1: Sample two-loop Feynman diagrams. The circled cross \otimes marks an electromagnetic current insertion.

All tensor integrals can be expressed in terms of scalar integrals and algebraic tensorial structures using the Passarino-Veltman decomposition Passarino and Veltman (1979). We then perform the Dirac and tensor reductions with in-house Mathematica routines, by applying further the QCD equations of motion and on-shell conditions. The large amount of two-loop scalar integrals are further reduced to an irreducible set of master integrals with the packages Apart Feng (2012) and FIRE Smirnov (2008). In total, we obtain 5757 two-loop master integrals that appear in our computation, 11/16/3011/16/30 of which appear to depend on 1/2/31/2/3 physical scale(s). Unsurprisingly, we encounter the entire list of the 1212 one- and two-scale master integrals entering the NNLO computation of the photon-pion form factor Gao et al. (2022a, b). The evaluation of the remaining master integrals can be accomplished in an analytic fashion by employing the method of differential equations Kotikov (1991); Gehrmann and Remiddi (2000). In order to identify a suitable linear transformation such that the master integrals in the new basis satisfy a set of differential equations in an ϵ\epsilon-factorized form (i.e., canonical form) Henn (2013), we take advantage of Lee’s algorithm Lee (2015) as implemented in the program Libra Lee (2021). The boundary conditions to the differential equations are determined by capitalizing on the package AMFlow Liu and Ma (2023) based upon Liu et al. (2018); Liu and Ma (2022). The yielding numerical results of the master integrals at three distinct kinematic points (x,y){(1/2,1/5),(1/3,1/6),(1/4,1/8)}(x,y)\in\{(1/2,1/5),\,(1/3,1/6),(1/4,1/8)\}, with approximately 100100 digits, allow us to construct the desired boundary constants of the differential equations in terms of transcendental numbers using the PSLQ algorithm Ferguson et al. (1999, 1998). It is thus straightforward to express the master integrals through Goncharov polylogarithms (GPLs) Goncharov (1998, 2001) up to the required order in ϵ\epsilon. We will present the analytic expressions for all master integrals in the forthcoming write-up.

IV Ultraviolet renormalization and infrared subtractions

We proceed to deduce the master formula for the hard-scattering kernel T1T_{1} by performing the UV renormalization and IR subtractions in the presence of evanescent operators, whose significance in the perturbative treatment of quantum field theory has been explored at length ever since the pioneering era of dimensional regularization Breitenlohner and Maison (1977); Bonneau (1980a, b); Collins (2023). To achieve this goal, we exploit the matching equation for the interested QCD amplitude Πμ\Pi_{\mu} onto the effective matrix elements

Πμ\displaystyle\Pi_{\mu} =\displaystyle= (p+p)μ[(eued)4παsQ4kTk𝒪k],\displaystyle(p+p^{\prime})_{\mu}\,\left[(e_{u}-e_{d})\,{4\pi\alpha_{s}\over Q^{4}}\,\sum_{k}\,T_{k}\otimes\langle{\cal O}_{k}\rangle\right],
𝒪k\displaystyle{\cal O}_{k} \displaystyle\in {𝒪1,𝒪2,𝒪3},\displaystyle\left\{{\cal O}_{1},\,{\cal O}_{2},\,{\cal O}_{3}\right\}\,, (8)

with the following choice of the collinear operator basis

𝒪1\displaystyle{\cal O}_{1} =[χ¯un¯γ5χd][ξ¯dγ5ξu],\displaystyle=\left[\bar{\chi}_{u}\not{\bar{n}}\gamma_{5}\chi_{d}\right]\left[\bar{\xi}_{d}\not{n}\gamma_{5}\xi_{u}\right],
𝒪2\displaystyle{\cal O}_{2} =[χ¯uγαξu][ξ¯dγαχd]14𝒪1,\displaystyle=\left[\bar{\chi}_{u}\gamma_{\perp\alpha}\xi_{u}\right]\left[\bar{\xi}_{d}\gamma_{\perp}^{\alpha}\chi_{d}\right]-{1\over 4}\,{\cal O}_{1},
𝒪3\displaystyle{\cal O}_{3} =[χ¯uγαγμ1γμ2ξu][ξ¯dγαγμ2γμ1χd].\displaystyle=\left[\bar{\chi}_{u}\gamma_{\perp\alpha}\gamma_{\perp\mu_{1}}\gamma_{\perp\mu_{2}}\xi_{u}\right]\left[\bar{\xi}_{d}\gamma_{\perp}^{\alpha}\gamma_{\perp}^{\mu_{2}}\gamma_{\perp}^{\mu_{1}}\chi_{d}\right]. (9)

One can readily verify that 𝒪1{\cal O}_{1} is the only physical operator in our problem and the other two operators are evanescent, i.e., vanish algebraically in four dimensions. To reduce our notation to the essentials, we strip off the collinear Wilson lines and the position arguments of quark fields from 𝒪k{\cal O}_{k}, and represent them merely by their flavour and Dirac structure. Following the conventions of Beneke and Jager (2006), we label the collinear and anti-collinear effective fields moving into the directions of n¯\bar{n} and nn by ξ\xi and χ\chi, respectively, which evidently satisfy n¯ξ=0\not{\bar{n}}\,\xi=0 and χ¯=0\bar{\chi}\,\not{n}=0.

We are now in a position to organize the perturbative expansion of the renormalized QCD correlation function Πμ\Pi_{\mu} in terms of the partonic tree-level matrix elements of the effective operators 𝒪k{\cal O}_{k}

Πμ\displaystyle\Pi_{\mu} =\displaystyle= (p+p)μ(eued)(4π)2Q4k=1,2,3\displaystyle(p+p^{\prime})_{\mu}\,\,(e_{u}-e_{d})\,{(4\pi)^{2}\over Q^{4}}\,\sum_{k}\,\sum_{\ell=1,2,3}\, (10)
[(Zααs4π)+1Ak()𝒪k(0)],\displaystyle\left[\left({Z_{\alpha}\alpha_{s}\over 4\pi}\right)^{\ell+1}\,A_{k}^{(\ell)}\otimes\langle{\cal O}_{k}\rangle^{(0)}\right]\,,

where the renormalization constant of the strong coupling in the standard MS¯\overline{\rm MS} scheme takes the form of Zα=1αs4π1ϵβ0+(αs4π)2(1ϵ2β0212ϵβ1)+𝒪(αs3)Z_{\alpha}=1-{\alpha_{s}\over 4\pi}\,{1\over\epsilon}\,\beta_{0}\,+\left({\alpha_{s}\over 4\pi}\right)^{2}\left({1\over\epsilon^{2}}\,\beta_{0}^{2}-{1\over 2\epsilon}\,\beta_{1}\right)+{\cal O}(\alpha_{s}^{3}) (see Herzog et al. (2017); Luthe et al. (2017); Chetyrkin et al. (2017) for the five-loop expression). The scalar quantities Ak()A_{k}^{(\ell)} in (10) represent the bare \ell-loop on-shell QCD amplitudes. In the same vein, the UV-renormalized matrix elements of the collinear operators 𝒪k{\cal O}_{k} can be expanded according to

𝒪k=i=0(αs4π)Zki()𝒪i(0),\displaystyle\langle{\cal O}_{k}\rangle=\sum_{i}\,\sum_{\ell=0}^{\infty}\,\left({\alpha_{s}\over 4\pi}\right)^{\ell}\,Z_{ki}^{(\ell)}\otimes\langle{\cal O}_{i}\rangle^{(0)}\,, (11)

further taking into account that scaleless integrals vanish in dimensional regularization. Since the collinear fields for distinct directions already decouple at the hard scale, the renormalization constant Z11()Z_{11}^{(\ell)} can be therefore determined from the celebrated Efremov-Radyushkin-Brodske-Lepage (ERBL) kernel with the one- and two-loop results obtained in Lepage and Brodsky (1980); Efremov and Radyushkin (1980b) and Sarmadi (1984); Dittes and Radyushkin (1984); Katz (1985); Mikhailov and Radyushkin (1985); Belitsky et al. (1999). Substituting Eqs. (4), (10) and (11) into the matching equation (8) leads us to derive the master formulae for the short-distance coefficient function

T1(0)\displaystyle T_{1}^{(0)} =\displaystyle= A1(0),\displaystyle A_{1}^{(0)}\,,
T1(1)\displaystyle T_{1}^{(1)} =\displaystyle= A1(1)+Zα(1)A1(0)k=1,2Zk1(1)Tk(0),\displaystyle A_{1}^{(1)}+Z_{\alpha}^{(1)}\,A_{1}^{(0)}-\sum_{k=1,2}\,Z_{k1}^{(1)}\otimes T_{k}^{(0)}\,,
T1(2)\displaystyle T_{1}^{(2)} =\displaystyle= A1(2)+2Zα(1)A1(1)+Zα(2)A1(0)\displaystyle A_{1}^{(2)}+2\,Z_{\alpha}^{(1)}\,A_{1}^{(1)}+Z_{\alpha}^{(2)}\,A_{1}^{(0)} (12)
k=1,2,3=1,2Zk1()Tk(2),\displaystyle-\sum_{k=1,2,3}\,\sum_{\ell=1,2}\,Z_{k1}^{(\ell)}\otimes T_{k}^{(2-\ell)}\,,

by comparing the coefficient of the tree-level matrix element of the physical operator 𝒪1(0)\langle{\cal O}_{1}\rangle^{(0)}. Following the prescription proposed in Dugan and Grinstein (1991); Herrlich and Nierste (1995); Buras and Weisz (1990); Jamin and Pich (1994); Buras (2023), the renormalization constants for the evanescent operators are adjusted to ensure that the IR-finite matrix elements 𝒪k\langle{\cal O}_{k}\rangle (k=2,3k=2,3) vanish at an arbitrary scale. Adopting the preferred collinear operator basis (9) yields the peculiar evanescent-to-physical operator mixing under the RG evolution, which turns out to be adequately captured by the finite renormalization constant Z21(2)Z_{21}^{(2)} at two-loop order. This justifies the essential role of introducing evanescent operators in constructing the QCD factorization formulae with dimensional regularization beyond the leading logarithmic approximation Beneke and Jager (2006, 2007); Becher and Hill (2004); Hill et al. (2004); Beneke and Yang (2006); Buchalla et al. (1996); Buras et al. (2000); Wang and Shen (2015, 2017); Gao et al. (2020, 2022a); Huang et al. (2024); Li et al. (2020); Cui et al. (2023).

Inserting the newly obtained two-loop expression of the hard-scattering kernel T1T_{1} into the collinear factorization formula (3) and then performing the two-fold integration over x(0,1)x\in(0,1) and y(0,1)y\in(0,1) analytically with the Mathematica package PolyLogTools Duhr and Dulat (2019) in the asymptotic approximation (namely, ϕπAsy(x,μ)=6x(1x)\phi_{\pi}^{\rm Asy}(x,\mu)=6\,x\,(1-x)) results in

FπAsy(Q2)\displaystyle F_{\pi}^{\rm Asy}(Q^{2}) =\displaystyle= (eued)4παs(ν)Q2 9fπ2(CF2Nc){1+(αs4π)[β0lnν2Q2+143β0716CF+13Nc]\displaystyle(e_{u}-e_{d})\,{4\pi\alpha_{s}(\nu)\over Q^{2}}\,9\,f_{\pi}^{2}\,\left({C_{F}\over 2N_{c}}\right)\,\bigg{\{}1+{\color[rgb]{1,0,1}\left({\alpha_{s}\over 4\pi}\right)}\,{\color[rgb]{0,0,1}\left[\beta_{0}\,\ln{\nu^{2}\over Q^{2}}+{14\over 3}\,\beta_{0}-{71\over 6}\,C_{F}+{1\over 3N_{c}}\right]} (13)
+(αs4π)2[(β1lnν2Q2β02ln2ν2Q2)+2β0lnν2Q2(β0lnν2Q2+143β0716CF+13Nc)\displaystyle+\,{\color[rgb]{1,0,1}\left({\alpha_{s}\over 4\pi}\right)^{2}}\,\bigg{[}\left(\beta_{1}\,\ln{\nu^{2}\over Q^{2}}-\beta_{0}^{2}\,\ln^{2}{\nu^{2}\over Q^{2}}\right)+2\,\beta_{0}\,\ln{\nu^{2}\over Q^{2}}\,{\color[rgb]{0,0,1}\left(\beta_{0}\,\ln{\nu^{2}\over Q^{2}}+{14\over 3}\,\beta_{0}-{71\over 6}\,C_{F}+{1\over 3N_{c}}\right)}
+ 4(CFβ0(52ζ2)2CF2(ζ2+ζ3))lnμ2Q2+CA2(3487381+883ζ2+1523ζ3160ζ5)\displaystyle+\,4\left(C_{F}\,\beta_{0}\,\left({5\over 2}-\zeta_{2}\right)-2\,C_{F}^{2}(\zeta_{2}+\zeta_{3})\right)\,\ln{\mu^{2}\over Q^{2}}+C_{A}^{2}\left({34873\over 81}+{88\over 3}\,\zeta_{2}+{152\over 3}\,\zeta_{3}-160\,\zeta_{5}\right)
CACF(819118+11639ζ2+418ζ32ζ4760ζ5)+CF2(194+61ζ2+246ζ318ζ4560ζ5)\displaystyle-\,C_{A}\,C_{F}\left({8191\over 18}+{1163\over 9}\,\zeta_{2}+418\,\zeta_{3}-2\,\zeta_{4}-760\,\zeta_{5}\right)+\,C_{F}^{2}\left(194+61\,\zeta_{2}+246\,\zeta_{3}-18\,\zeta_{4}-560\,\zeta_{5}\right)
CAnTF(2174281+323ζ248ζ3+1603ζ5)+CFnTF(7699+3169ζ28ζ3)+(nTF)2349681]},\displaystyle-\,C_{A}\,n_{\ell}\,T_{F}\left({21742\over 81}+{32\over 3}\,\zeta_{2}-48\,\zeta_{3}+{160\over 3}\,\zeta_{5}\right)+C_{F}\,n_{\ell}\,T_{F}\left({769\over 9}+{316\over 9}\,\zeta_{2}-8\,\zeta_{3}\right)+\left(n_{\ell}\,T_{F}\right)^{2}{3496\over 81}\bigg{]}\bigg{\}},\hskip 22.76228pt

where CF=(Nc21)/(2Nc)C_{F}=(N_{c}^{2}-1)/(2N_{c}) and CA=NcC_{A}=N_{c} denote the Casimir operators of the fundamental and adjoint representations of the SU(Nc){\rm SU}(N_{c}) gauge group with the standard normalization TF=1/2T_{F}=1/2. In addition, nn_{\ell} stands for the number of active quark flavours, and ζn\zeta_{n} represents the Riemann zeta function with ζ2=π2/6\zeta_{2}=\pi^{2}/6, ζ31.202056903\zeta_{3}\cong 1.202056903, ζ4=π4/90\zeta_{4}=\pi^{4}/90, and ζ51.036927755\zeta_{5}\cong 1.036927755 Vermaseren (1999); Smirnov (2012). Including the higher conformal spin contributions from the twist-two pion LCDA ϕπ\phi_{\pi} leads to the lengthy results for the non-asymptotic corrections to the charged pion form factor, whose explicit expressions with the m=12m=12 truncation of the Gegenbauer expansion are collected in the Supplemental Material for completeness. In particular, we have verified that the thus achieved NNLO QCD computation of Fπ(Q2)F_{\pi}(Q^{2}) with the perturbative factorization formula (3) is truly independent of the renormalization/factorization scale at the 𝒪(αs3){\cal O}(\alpha_{s}^{3}) accuracy, by applying the two-loop evolution equation of ϕπ(x,μ)\phi_{\pi}(x,\mu) Sarmadi (1984); Dittes and Radyushkin (1984); Katz (1985); Mikhailov and Radyushkin (1985); Belitsky et al. (1999). Taking advantage of the momentum-space RG formalism enables us to accomplish an all-order summation of the enhanced logarithms of Q2/ΛQCD2Q^{2}/\Lambda_{\rm QCD}^{2} entering the factorized expression of Fπ(Q2)F_{\pi}(Q^{2}) in the next-to-next-to-leading-logarithmic (NNLL) approximation, which necessitates an implementation of the three-loop evolution of the leading-twist pion distribution amplitude Braun et al. (2017); Strohmaier (2018).

V Numerical analysis

We are now prepared to explore the phenomenological implication of the newly determined two-loop QCD correction to the pion EMFF, with an emphasis on the detailed comparison with both the available experimental measurements and the state-of-the-art lattice QCD results. To achieve this goal, we proceed by first discussing our choice for the phenomenological models of the twist-two pion LCDA appearing in the hard-collinear factorization formula (3). The first model ϕπModelI(x,μ0)=[Γ(2+2απ)/Γ2(1+απ)](xx¯)απ\phi_{\pi}^{\rm Model\,\,I}(x,\mu_{0})=\left[\Gamma(2+2\alpha_{\pi})/\Gamma^{2}(1+\alpha_{\pi})\right]\,(x\bar{x})^{\alpha_{\pi}} is motivated from the anti-de Sitter-QCD correspondence Brodsky and de Teramond (2008) with the non-perturbative parameter απ(μ0)=0.5850.055+0.061\alpha_{\pi}(\mu_{0})=0.585^{+0.061}_{-0.055} Khodjamirian et al. (2021) determined by matching to the updated lattice result of the second Gegenbauer moment a2(μ0)=0.1160.020+0.019a_{2}(\mu_{0})=0.116^{+0.019}_{-0.020} at the reference scale μ0=2.0GeV\mu_{0}=2.0\,{\rm GeV} Bali et al. (2019). Our second model {a2,a4,a6,a8}(μ0)={0.181(32), 0.107(36), 0.073(50), 0.022(55)}\{a_{2},\,a_{4},a_{6},a_{8}\}\,(\mu_{0})=\{0.181(32),\,0.107(36),\,0.073(50),\,0.022(55)\} Cheng et al. (2020) is obtained from the comparison of the light-cone sum rule for the pion EMFF Braun et al. (2000) with the experimental measurements (see Bijnens and Khodjamirian (2002); Khodjamirian et al. (2011) for the earlier construction along this line). By contrast, the numerical intervals for the two lowest conformal coefficients in model III {a2,a4}(μ0)={0.1490.043+0.052,0.0960.058+0.063}\{a_{2},\,a_{4}\}\,(\mu_{0})=\{0.149^{+0.052}_{-0.043},\,-0.096^{+0.063}_{-0.058}\} Bakulev et al. (2001); Mikhailov et al. (2016); Stefanis (2020) are extracted from the method of QCD sum rules with non-local condensates Mikhailov and Radyushkin (1992). Furthermore, we employ an alternative model (hereafter labelled as model IV) with the first three non-vanishing Gegenbauer coefficients {a2,a4,a6}(μ0)={0.196(32), 0.085(26), 0.056(15)}\{a_{2},\,a_{4},\,a_{6}\}\,(\mu_{0})=\{0.196(32),\,0.085(26),\,0.056(15)\} Cloet et al. (2024) determined from the lattice prediction for the dynamic shape of the pion distribution amplitude in the range of x[0.25,0.75]x\in[0.25,0.75] using large momentum effective theory Ji (2013, 2014); Ji et al. (2021) and from a simple power-law parametrization of the corresponding end-point behaviour. Additionally, we will vary the renormalization scale for the strong coupling αs\alpha_{s} in the interval ν2[Q2/2, 2Q2]\nu^{2}\in[Q^{2}/2,\,2\,Q^{2}] with the central value Q2Q^{2}. Following Agaev et al. (2011), the factorization scale μ\mu characterizing the virtualities of quark and gluon propagators in the hard-scattering partonic process will be taken as μ2=xQ2\mu^{2}=\langle x\rangle\,Q^{2} with 1/4x3/41/4\leq\langle x\rangle\leq 3/4 (see Melic et al. (1999, 2002); Stefanis (1999); Mojaza et al. (2013); He et al. (2006); Lu et al. (2009); Wang and Shen (2016, 2017); Di Giustino et al. (2024) for an elaborate discussion on the renormalization/factorization scale setting).

Refer to caption
Figure 2: Theory predictions for the pion EMFF from the soft “end-point” Feynman mechanism Braun et al. (2000) (yellow curve) and the (competing) hard-scattering contribution in the kinematic region Q2[2.0, 20.0]GeV2Q^{2}\in[2.0,\,20.0]\,{\rm GeV}^{2}. We further collect here the experimental data points for the space-like pion form factor at intermediate momentum transfers (Bebek 78 Bebek et al. (1978) and JLab 08 Huber et al. (2008)) and the most recent lattice QCD predictions with the physical pion mass at Q2={2.34, 2.58, 3.12, 3.90, 5.20, 5.50, 6.50, 6.75, 7.80, 8.10, 9.35,  9.61}GeV2Q^{2}=\{2.34,\,2.58,\,3.12,\,3.90,\,5.20,\,5.50,\,6.50,\,6.75,\,7.80,\,8.10,\,9.35,\\ \,\,9.61\}\,\,{\rm GeV^{2}}(LAT 24 Ding et al. (2024)) for an exploratory comparison.

In order to facilitate an in-depth exploration of the dynamical pattern dictating the pion form factor, we display explicitly in Figure 2 the obtained theory predictions for the leading-power hard-gluon-exchange contributions at leading-logarithmic (LL), NLL, and NNLL accuracy accomplished in this Letter as well as the subleading power corrections arising from I) an atypical “end-point” configuration of twist-two in the one-loop approximation and II) the higher-twist pion distribution amplitudes up to the twist-six accuracy with the dispersion technique Braun et al. (2000), by adopting model I of the pion distribution amplitude ϕπ\phi_{\pi} as our default choice. Inspecting the distinctive feature for a variety of higher-order corrections in Figure 2 implies that the newly determined two-loop QCD correction to the hard-scattering contribution based upon the hard-collinear factorization theorem can substantially enhance the corresponding NLL prediction of the pion form factor at intermediate and large momentum transfers: numerically at the level of (3050)%(30-50)\%. In analogy to the QCD anatomy of the radiative leptonic B¯γν¯\bar{B}\to\gamma\ell\bar{\nu}_{\ell} decay with an energetic photon Braun and Khodjamirian (2013); Wang (2016); Wang and Shen (2018); Beneke et al. (2018); Khodjamirian et al. (2024), the soft non-factorizable correction to the charged pion form factor can constantly shift the NNLL resummation improved leading-power contribution by approximately an amount of 𝒪(25%){\cal O}(25\%) in the kinematic domain 5.0GeV2Q220.0GeV25.0\,{\rm GeV^{2}}\leq Q^{2}\leq 20.0\,{\rm GeV^{2}}. We are then led to conclude that an ironclad and fully analytical extraction of the two-loop short-distance coefficient function T1(2)T_{1}^{(2)} in the factorized expression (3) is evidently vital for obtaining the robust and accurate theory prediction of the flagship hadron form factor FπF_{\pi} and for advancing further the QCD factorization programme targeting at the high-precision computation of hard exclusive reactions. It remains interesting to observe that the very inclusion of the NNLO QCD correction to the pion EMFF turns out to be especially beneficial for better accommodating the benchmark lattice simulation results at intermediate momentum transfers Ding et al. (2024).

Refer to caption
Figure 3: Theory predictions for the pion EMFF with the four sample models of the leading-twist pion distribution amplitude ϕπ(x,μ)\phi_{\pi}(x,\mu) in the kinematic range Q2[2.0, 20.0]GeV2Q^{2}\in[2.0,\,20.0]\,{\rm GeV}^{2} obtained by adding together both the factorizable hard-gluon-exchange contribution at two loops and the various power-suppressed contributions discussed in the text. We also display here the perturbative uncertainties from varying the renormalization and factorization scales in the default intervals as indicated by the colour bands.

We now turn to present in Figure 3 our final theory predictions for the pion form factor FπF_{\pi} with the four different phenomenological models of the twist-two pion LCDA discussed above, confronting with the two experimental measurements Bebek 78 Bebek et al. (1978) and JLab 08 Huber et al. (2008) at four distinct kinematic points of Q2={2.45, 3.33, 6.30, 9.77}GeV2Q^{2}=\{2.45,\,3.33,\,6.30,\,9.77\}\,{\rm GeV^{2}}. It can then be observed that the yielding numerical prediction with the anti-de Sitter-QCD inspired model fulfilling an additional constraint from the lattice determination of a2(μ0)a_{2}(\mu_{0}) Bali et al. (2019) (i.e., our model I) provides us with the most optimized description of the available experimental data points and the model-independent lattice QCD results Ding et al. (2024) simultaneously. The extraordinary snapshot of the well-separated uncertainty bands for the first three sample models due to the variations of the renormalization/factorization scales in the preferred intervals is particularly encouraging to acquire new insights on the intricate behaviour of the leading-twist pion distribution amplitude, in combination with the envisaged precision measurements at JLab and EIC. In contrast with the NNLL QCD computation for the photon-pion transition form factor Gao et al. (2022a); Braun et al. (2021), our two-loop prediction of the pion EMFF based upon the hard-collinear factorization prescription approaches the desired scaling behaviour in the formal Q2Q^{2}\rightarrow\infty limit rather slowly. This intriguing pattern can be attributed to the fact that the determined hierarchy between the subleading conformal spin effect and the counterpart asymptotic contribution grows steadily with the increasing loop order \ell at realistic momentum transfers accessible in the current and forthcoming experimental facilities, thus postponing the onset of the asymptotic regime to an enormously higher value of Q2Q^{2} (see Braun et al. (2002, 2006); Anikin et al. (2013); Huang et al. (2024) for further discussions in the context of the nucleon electromagnetic form factors).

Refer to caption
Figure 4: Theory predictions for the dynamical dependence of the pion EMFF on the fourth conformal coefficient a4(μ0)a_{4}(\mu_{0}) of the leading-twist π\pi-meson distribution amplitude at the sample kinematic point Q2=30.0GeV2Q^{2}=30.0\,{\rm GeV}^{2}, by taking advantage of the lattice determination of the second Gegenbauer moment from the RQCD Collaboration Bali et al. (2019) and by further discarding the higher conformal moments (namely, an6(μ0)=0a_{n\geq 6}(\mu_{0})=0) for illustration purposes.

We finally address the genuine benefit of the full two-loop QCD calculation of the charged pion form factor on the model-independent extraction of the shape parameters dictating the twist-two pion distribution amplitude on the light-cone. To this end, we proceed to explore the intrinsic sensitivity of the exclusive π+γπ+\pi^{+}\,\gamma^{\ast}\to\pi^{+} form factor on the currently poorly constrained conformal coefficient a4(μ0)a_{4}(\mu_{0}) by combining the achieved NNLL prediction of the leading-twist contribution with the previously determined subleading power corrections in the ΛQCD2/Q2\Lambda_{\rm QCD}^{2}/Q^{2} expansion. It is evident from Figure 4 that taking into account the newly obtained two-loop QCD correction to the pion EMFF form factor will indeed be advantageous to enhance the sensitivity of extracting the key shape parameter a4(μ0)a_{4}(\mu_{0}) in anticipation of the prospective precision EIC measurements Abdul Khalek et al. (2022), complementary to an alternative strategy on the basis of the factorization analysis of the photon-pion form factor Gao et al. (2022a).

VI Conclusions

In conclusion, we have endeavored to accomplish for the first time the rigorous two-loop QCD computation of the pion form factor in an analytical fashion, by applying the modern effective field theory formalism that enables us to implement the UV renormalization and IR subtractions of evanescent operators systematically. Crucially, we have demonstrated that the thus determined NNLO QCD correction to the short-distance coefficient function can bring about an enormous impact on the pion form factor over a wide range of momentum transfers, by employing the four phenomenologically acceptable models of the leading-twist pion distribution amplitude. In particular, the very inclusion of the two-loop radiative correction allowed for an improved extraction of the essential shape parameters dictating the intricate profile of the pion distribution amplitude, when confronted with the encouraging measurements from the upcoming EIC experiment. Extending and developing further our factorization prescription to the charged kaon form factor and to the more challenging Bcηcν¯B_{c}\to\eta_{c}\,\ell\,\bar{\nu}_{\ell} transition form factors Böer (2018); Bell and Feldmann (2007); Bell (2006); Böer et al. (2024) will be highly beneficial for deepening our understanding towards the diverse facets of the strong interaction dynamics encoded in the hard-scattering processes.

Acknowledgements.

Acknowledgements

It is our pleasure to thank Yong-Kang Huang for illuminating discussions. The research of Y.J. was supported in part by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through the Sino-German Collaborative Research Center TRR110 “Symmetries and the Emergence of Structure in QCD” (DFG Project-ID 196253076, NSFC Grant No. 12070131001, - TRR 110). J.W. is supported by the National Natural Science Foundation of China with Grant No. 12005117, No. 12321005, and No. 12375076, and the Taishan Scholar Foundation of Shandong province with Grant No. TSQN201909011. The work of Y.F.W. is supported in part by the National Natural Science Foundation of China with Grant No. 12405117. Y.M.W. acknowledges support from the National Natural Science Foundation of China with Grant No. 12075125 and No. 2475097.

Appendix A SUPPLEMENTAL MATERIAL

Here we collect the general expression for the derived two-loop pion electromagnetic form factor with the inclusion of the non-asymptotic corrections

Fπ(Q2)\displaystyle F_{\pi}(Q^{2}) =\displaystyle= (eued)4παs(ν)Q2 9fπ2(CF2Nc)m=0,2,4,n=0,2,4,am(μ)an(μ)\displaystyle(e_{u}-e_{d})\,{4\pi\alpha_{s}(\nu)\over Q^{2}}\,9\,f_{\pi}^{2}\,\left({C_{F}\over 2N_{c}}\right)\,\sum_{m=0,2,4,...}\,\,\sum_{n=0,2,4,...}\,a_{m}(\mu)\,\,a_{n}(\mu)\, (14)
×{1+(αs4π)[β0lnν2Q2+(γm,m(0)+γn,n(0))lnμ2Q2+mn(1)]\displaystyle\times\,\bigg{\{}1+{\color[rgb]{1,0,1}\left({\alpha_{s}\over 4\pi}\right)}\,{\color[rgb]{0,0,1}\left[\beta_{0}\,\ln{\nu^{2}\over Q^{2}}+\left(\gamma_{m,m}^{(0)}+\gamma_{n,n}^{(0)}\right)\,\ln{\mu^{2}\over Q^{2}}+{\cal R}_{mn}^{(1)}\right]}
+(αs4π)2[(β1lnν2Q2β02ln2ν2Q2)+ 2β0lnν2Q2(β0lnν2Q2+(γm,m(0)+γn,n(0))lnμ2Q2+m,n(1))\displaystyle\hskip 14.22636pt+\,{\color[rgb]{1,0,1}\left({\alpha_{s}\over 4\pi}\right)^{2}}\,\bigg{[}\left(\beta_{1}\,\ln{\nu^{2}\over Q^{2}}-\beta_{0}^{2}\,\ln^{2}{\nu^{2}\over Q^{2}}\right)+\,2\,\beta_{0}\,\ln{\nu^{2}\over Q^{2}}\,{\color[rgb]{0,0,1}\left(\beta_{0}\,\ln{\nu^{2}\over Q^{2}}+\left(\gamma_{m,m}^{(0)}+\gamma_{n,n}^{(0)}\right)\,\ln{\mu^{2}\over Q^{2}}+{\cal R}_{m,n}^{(1)}\right)}
+(m=mγm,m(1)+n=nγn,n(1))lnμ2Q212((γm,m(0)+γn,n(0))2+β0(γm,m(0)+γn,n(0)))ln2μ2Q2\displaystyle\hskip 14.22636pt+\,\left(\sum_{m^{\prime}=m}^{\infty}\gamma_{m^{\prime},m}^{(1)}+\sum_{n^{\prime}=n}^{\infty}\gamma_{n^{\prime},n}^{(1)}\right)\,\ln{\mu^{2}\over Q^{2}}-{1\over 2}\,\left(\left(\gamma_{m,m}^{(0)}+\gamma_{n,n}^{(0)}\right)^{2}+\beta_{0}\,\left(\gamma_{m,m}^{(0)}+\gamma_{n,n}^{(0)}\right)\right)\,\ln^{2}{\mu^{2}\over Q^{2}}
+(γm,m(0)+γn,n(0))lnμ2Q2(β0lnν2Q2+(γm,m(0)+γn,n(0))lnμ2Q2+m,n(1))\displaystyle\hskip 14.22636pt+\,\left(\gamma_{m,m}^{(0)}+\gamma_{n,n}^{(0)}\right)\,\ln{\mu^{2}\over Q^{2}}\,{\color[rgb]{0,0,1}\left(\beta_{0}\,\ln{\nu^{2}\over Q^{2}}+\left(\gamma_{m,m}^{(0)}+\gamma_{n,n}^{(0)}\right)\,\ln{\mu^{2}\over Q^{2}}+{\cal R}_{m,n}^{(1)}\right)}
β0lnν2Q2(γm,m(0)+γn,n(0))lnμ2Q2+m,n(2)]+𝒪(αs3)},\displaystyle\hskip 14.22636pt-\,\beta_{0}\,\ln{\nu^{2}\over Q^{2}}\,\left(\gamma_{m,m}^{(0)}+\gamma_{n,n}^{(0)}\right)\,\,\ln{\mu^{2}\over Q^{2}}+{\cal R}_{m,n}^{(2)}\bigg{]}+\,{\color[rgb]{1,0,1}{\cal O}(\alpha_{s}^{3})}\bigg{\}},

by inserting the Gegenbauer expansion of the pion distribution amplitude (6) into the hard-collinear factorization formula (3) and then by evaluating the double convolution integrals over the quark momentum fractions analytically. We can readily verify that the two coefficient matrices 𝜸(0)\bm{\gamma}^{(0)} and 𝜸(1)\bm{\gamma}^{(1)} coincide with the one- and two-loop anomalous dimensions (apart from an overall minus sign) of the flavour-octet local operators defining the conformal moments of the twist-two distribution amplitude ϕπ\phi_{\pi}. The explicit expressions of these anomalous dimensions are given by Mueller (1994)

γm,n(0)\displaystyle\gamma_{m,n}^{(0)} =\displaystyle= γm(0)δmn=CF[4S1(m+1)2(m+1)(m+2)3]δmn,\displaystyle\gamma_{m}^{(0)}\,\,\delta_{mn}=C_{F}\,\left[4\,S_{1}(m+1)-\frac{2}{(m+1)(m+2)}-3\right]\,\,\delta_{mn}\,,
γm,n(1)\displaystyle\gamma_{m,n}^{(1)} =\displaystyle= γm(1)δmn+(n+1)(n+2)(m+1)(m+2)γm(0)γn(0)𝒂(m,n)[2(2m+3)(β0+γn(0))2m+32n+3𝒘m,n(0)]ϑmn,\displaystyle\gamma_{m}^{(1)}\,\,\delta_{mn}+\frac{(n+1)(n+2)}{(m+1)(m+2)}\,\frac{\gamma_{m}^{(0)}-\gamma_{n}^{(0)}}{\bm{a}(m,n)}\,\left[2\,(2m+3)\left(\beta_{0}+\gamma_{n}^{(0)}\right)-{2m+3\over 2n+3}\bm{w}_{m,n}^{(0)}\right]\,\vartheta_{mn}\,, (15)

where we have introduced the following definitions and conventions Braun et al. (2017); Strohmaier (2018); Belitsky and Radyushkin (2005)

S(m)\displaystyle S_{\ell}(m) =\displaystyle= k=1m1k,S(m)=21k=1m[1+(1)k]1k,S~(m)=k=1m(1)kk2S1(k),\displaystyle\sum_{k=1}^{m}\,{1\over k^{\ell}}\,,\qquad S_{\ell}^{\prime}(m)=2^{\ell-1}\,\sum_{k=1}^{m}\,\left[1+(-1)^{k}\right]\,{1\over k^{\ell}}\,,\qquad\tilde{S}(m)=\sum_{k=1}^{m}\,{(-1)^{k}\over k^{2}}\,S_{1}(k)\,,
𝒂(m,n)\displaystyle\bm{a}(m,n) =\displaystyle= (mn)(m+n+3),ϑmn={1ifmn>0andeven0else.\displaystyle(m-n)\,(m+n+3)\,,\qquad\vartheta_{mn}=\left\{\begin{array}[]{l}1\hskip 56.9055pt{\rm if}\,\,m-n>0\,\,{\rm and\,\,even}\\ 0\hskip 56.9055pt{\rm else}\,.\end{array}\right. (18)

It is straightforward to express the diagonal two-loop anomalous dimensions in terms of the preceding harmonic sums

γm(1)\displaystyle\gamma_{m}^{(1)} =\displaystyle= 2(CF212CFCA)[4(2m+3)(m+1)2(m+2)2S1(m+1)23m3+10m2+11m+3(m+1)3(m+2)3\displaystyle 2\,\left(C_{F}^{2}-{1\over 2}\,C_{F}\,C_{A}\right)\,\bigg{[}\frac{4\,(2m+3)}{(m+1)^{2}(m+2)^{2}}\,S_{1}(m+1)-2\,\frac{3\,m^{3}+10\,m^{2}+11\,m+3}{(m+1)^{3}(m+2)^{3}} (19)
+ 4(2S1(m+1)1(m+1)(m+2))(S2(m+1)S2(m+1))+16S~(m+1)\displaystyle+\,4\,\left(2\,S_{1}(m+1)-{1\over(m+1)(m+2)}\right)\,\left(S_{2}(m+1)-S_{2}^{\prime}(m+1)\right)+16\,\tilde{S}(m+1)
+6S2(m+1)342S3(m+1)4(1)m+12m2+6m+5(m+1)3(m+2)3]\displaystyle+6\,S_{2}(m+1)-{3\over 4}-2\,S_{3}^{\prime}(m+1)-4\,(-1)^{m+1}\,\frac{2\,m^{2}+6\,m+5}{(m+1)^{3}(m+2)^{3}}\bigg{]}
+ 2CFCA[S1(m+1)(1349+2(2m+3)(m+1)2(m+2)2)4S1(m+1)S2(m+1)\displaystyle+\,2\,C_{F}\,C_{A}\,\bigg{[}S_{1}(m+1)\,\left({134\over 9}+\frac{2\,(2m+3)}{(m+1)^{2}(m+2)^{2}}\right)-4\,S_{1}(m+1)\,S_{2}(m+1)
+S2(m+1)(133+2(m+1)(m+2))432419151m4+867m3+1792m2+1590m+523(m+1)3(m+2)3]\displaystyle+\,S_{2}(m+1)\,\left(-{13\over 3}+\frac{2}{(m+1)(m+2)}\right)-{43\over 24}-{1\over 9}\,\frac{151\,m^{4}+867\,m^{3}+1792\,m^{2}+1590\,m+523}{(m+1)^{3}(m+2)^{3}}\bigg{]}
+ 2CFnTF[409S1(m+1)+83S2(m+1)+13+4911m2+27m+13(m+1)2(m+2)2].\displaystyle+\,2\,C_{F}\,n_{\ell}\,T_{F}\,\left[-{40\over 9}\,S_{1}(m+1)+{8\over 3}\,S_{2}(m+1)+{1\over 3}\,+{4\over 9}\,\frac{11\,m^{2}+27\,m+13}{(m+1)^{2}(m+2)^{2}}\right].

The non-trivial matrix 𝒘(0)\bm{w}^{(0)} arises from the one-loop conformal anomaly Braun et al. (2017)

𝒘mn(0)\displaystyle\bm{w}_{mn}^{(0)} =\displaystyle= 4CF(2n+3)𝒂(m,n)[AmnS1(m+1)(n+1)(n+2)+2Amn𝒂(m,n)],\displaystyle 4\,C_{F}\,(2n+3)\,\bm{a}(m,n)\,\left[\frac{A_{mn}-S_{1}(m+1)}{(n+1)(n+2)}+{2\,A_{mn}\over\bm{a}(m,n)}\right], (20)

where

Amn=S1(m+n+22)S1(mn22)+2S1(mn1)S1(m+1).\displaystyle A_{mn}=S_{1}\left({m+n+2\over 2}\right)-S_{1}\left({m-n-2\over 2}\right)+2\,S_{1}(m-n-1)-S_{1}(m+1)\,. (21)

We now turn to present the desired expressions for the scattering kernels (1){\cal R}^{(1)} and (2){\cal R}^{(2)} by truncating the Gegenbauer expansion (6) at m=12m=12 (which is sufficient for practical purposes)

0,0(1)\displaystyle\mathcal{R}_{0,0}^{(1)} =793,\displaystyle={79\over 3}, 2,0(1)\displaystyle\mathcal{R}_{2,0}^{(1)} =2959544ζ3,\displaystyle={2959\over 54}-4\,\zeta_{3},
2,2(1)\displaystyle\mathcal{R}_{2,2}^{(1)} =20563252+247ζ3,\displaystyle={20563\over 252}+{24\over 7}\,\zeta_{3}, 4,0(1)\displaystyle\mathcal{R}_{4,0}^{(1)} =475376754ζ3,\displaystyle={47537\over 675}-4\,\zeta_{3},
4,2(1)\displaystyle\mathcal{R}_{4,2}^{(1)} =732221540024ζ3,\displaystyle={732221\over 5400}-24\,\zeta_{3}, 4,4(1)\displaystyle\mathcal{R}_{4,4}^{(1)} =6747017425+36011ζ3,\displaystyle={674701\over 7425}+{360\over 11}\,\zeta_{3},
6,0(1)\displaystyle\mathcal{R}_{6,0}^{(1)} =13066150915876004ζ3,\displaystyle={130661509\over 1587600}-4\,\zeta_{3}, 6,2(1)\displaystyle\mathcal{R}_{6,2}^{(1)} =239823149158760024ζ3,\displaystyle={239823149\over 1587600}-24\,\zeta_{3},
6,4(1)\displaystyle\mathcal{R}_{6,4}^{(1)} =348346949158760060ζ3,\displaystyle={348346949\over 1587600}-60\,\zeta_{3}, 6,6(1)\displaystyle\mathcal{R}_{6,6}^{(1)} =2447159117938000+112ζ3,\displaystyle={244715911\over 7938000}+112\,\zeta_{3}, (22)
8,0(1)\displaystyle\mathcal{R}_{8,0}^{(1)} =10954697311907004ζ3,\displaystyle={109546973\over 1190700}-4\,\zeta_{3}, 8,2(1)\displaystyle\mathcal{R}_{8,2}^{(1)} =31141856931905120024ζ3,\displaystyle={3114185693\over 19051200}-24\,\zeta_{3},
8,4(1)\displaystyle\mathcal{R}_{8,4}^{(1)} =44397572811905120060ζ3,\displaystyle={4439757281\over 19051200}-60\,\zeta_{3}, 8,6(1)\displaystyle\mathcal{R}_{8,6}^{(1)} =2996081296395256000112ζ3,\displaystyle={29960812963\over 95256000}-112\,\zeta_{3},
8,8(1)\displaystyle\mathcal{R}_{8,8}^{(1)} =747523862360328800+504019ζ3,\displaystyle=-{7475238623\over 60328800}+{5040\over 19}\,\zeta_{3}, 10,0(1)\displaystyle\mathcal{R}_{10,0}^{(1)} =770400222237683984004ζ3,\displaystyle={77040022223\over 768398400}-4\,\zeta_{3},
10,2(1)\displaystyle\mathcal{R}_{10,2}^{(1)} =1002154859077576298800024ζ3,\displaystyle={1002154859077\over 5762988000}-24\,\zeta_{3}, 10,4(1)\displaystyle\mathcal{R}_{10,4}^{(1)} =352200966463144074700060ζ3,\displaystyle={352200966463\over 1440747000}-60\,\zeta_{3},
10,6(1)\displaystyle\mathcal{R}_{10,6}^{(1)} =209131003489640332000112ζ3,\displaystyle={209131003489\over 640332000}-112\,\zeta_{3}, 10,8(1)\displaystyle\mathcal{R}_{10,8}^{(1)} =1139994754429126893944000180ζ3,\displaystyle={11399947544291\over 26893944000}-180\,\zeta_{3},
10,10(1)\displaystyle\mathcal{R}_{10,10}^{(1)} =61920191868971154640178000+1188023ζ3,\displaystyle=-{61920191868971\over 154640178000}+{11880\over 23}\,\zeta_{3}, 12,0(1)\displaystyle\mathcal{R}_{12,0}^{(1)} =12561872621413111687339664004ζ3,\displaystyle={125618726214131\over 1168733966400}-4\,\zeta_{3},
12,2(1)\displaystyle\mathcal{R}_{12,2}^{(1)} =267253043878417146091745800024ζ3,\displaystyle={267253043878417\over 1460917458000}-24\,\zeta_{3}, 12,4(1)\displaystyle\mathcal{R}_{12,4}^{(1)} =743080051414439292183491600060ζ3,\displaystyle={743080051414439\over 2921834916000}-60\,\zeta_{3},
12,6(1)\displaystyle\mathcal{R}_{12,6}^{(1)} =19693638003859395843669832000112ζ3,\displaystyle={1969363800385939\over 5843669832000}-112\,\zeta_{3}, 12,8(1)\displaystyle\mathcal{R}_{12,8}^{(1)} =29636760525869816817614804000180ζ3,\displaystyle={2963676052586981\over 6817614804000}-180\,\zeta_{3},
12,10(1)\displaystyle\mathcal{R}_{12,10}^{(1)} =2245609301613398340905688824000264ζ3,\displaystyle={22456093016133983\over 40905688824000}-264\,\zeta_{3}, 12,12(1)\displaystyle\mathcal{R}_{12,12}^{(1)} =6520226605684726378889542732000+80089ζ3,\displaystyle=-{65202266056847263\over 78889542732000}+{8008\over 9}\,\zeta_{3}, (23)

and

0,0(2)\displaystyle\mathcal{R}_{0,0}^{(2)} =13136911009ζ217363ζ324ζ4+32809ζ5,\displaystyle={13136\over 9}-{1100\over 9}\,\zeta_{2}-{1736\over 3}\,\zeta_{3}-24\,\zeta_{4}+{3280\over 9}\,\zeta_{5},
2,0(2)\displaystyle\mathcal{R}_{2,0}^{(2)} =254500067583202368481ζ2429964405ζ3107227ζ4+12409ζ5643ζ2ζ3,\displaystyle={254500067\over 58320}-{23684\over 81}\,\zeta_{2}-{429964\over 405}\,\zeta_{3}-{1072\over 27}\,\zeta_{4}+{1240\over 9}\,\zeta_{5}-{64\over 3}\,\zeta_{2}\,\zeta_{3},
2,2(2)\displaystyle\mathcal{R}_{2,2}^{(2)} =9777759592857680148996567ζ21636376246615ζ346463ζ4+75020021ζ5+1287ζ2ζ3,\displaystyle=-{977775959\over 2857680}-{148996\over 567}\,\zeta_{2}-{163637624\over 6615}\,\zeta_{3}-{464\over 63}\,\zeta_{4}+{750200\over 21}\,\zeta_{5}+{128\over 7}\,\zeta_{2}\,\zeta_{3},
4,0(2)\displaystyle\mathcal{R}_{4,0}^{(2)} =257785535129408240007402132025ζ27633685956700ζ35588135ζ4+14209ζ5643ζ2ζ3,\displaystyle={257785535129\over 40824000}-{740213\over 2025}\,\zeta_{2}-{76336859\over 56700}\,\zeta_{3}-{5588\over 135}\,\zeta_{4}+{1420\over 9}\,\zeta_{5}-{64\over 3}\,\zeta_{2}\,\zeta_{3},
4,2(2)\displaystyle\mathcal{R}_{4,2}^{(2)} =10650856963916123600022168132025ζ2254328774725ζ3677645ζ4+24403ζ5128ζ2ζ3,\displaystyle={1065085696391\over 61236000}-{2216813\over 2025}\,\zeta_{2}-{25432877\over 4725}\,\zeta_{3}-{6776\over 45}\,\zeta_{4}+{2440\over 3}\,\zeta_{5}-128\,\zeta_{2}\,\zeta_{3},
4,4(2)\displaystyle\mathcal{R}_{4,4}^{(2)} =11028087335760793148191120000+40906487425ζ2889757896938115ζ3+536033ζ4+389420011ζ5+192011ζ2ζ3,\displaystyle=-{11028087335760793\over 148191120000}+{4090648\over 7425}\,\zeta_{2}-{8897578969\over 38115}\,\zeta_{3}+{5360\over 33}\,\zeta_{4}+{3894200\over 11}\,\zeta_{5}+{1920\over 11}\,\zeta_{2}\,\zeta_{3},
6,0(2)\displaystyle\mathcal{R}_{6,0}^{(2)} =8365125958659071050197400005003572131190700ζ2307464947198450ζ313394315ζ4+5603ζ5643ζ2ζ3,\displaystyle={836512595865907\over 105019740000}-{500357213\over 1190700}\,\zeta_{2}-{307464947\over 198450}\,\zeta_{3}-{13394\over 315}\,\zeta_{4}+{560\over 3}\,\zeta_{5}-{64\over 3}\,\zeta_{2}\,\zeta_{3},
6,2(2)\displaystyle\mathcal{R}_{6,2}^{(2)} =30124559889343361913862605680000469249769396900ζ2148613061492182950ζ349564315ζ4+78409ζ5128ζ2ζ3,\displaystyle={301245598893433619\over 13862605680000}-{469249769\over 396900}\,\zeta_{2}-{14861306149\over 2182950}\,\zeta_{3}-{49564\over 315}\,\zeta_{4}+{7840\over 9}\,\zeta_{5}-128\,\zeta_{2}\,\zeta_{3},
6,4(2)\displaystyle\mathcal{R}_{6,4}^{(2)} =4041625435883618391126336711500072485992940ζ2759067475095675670ζ32411063ζ4+179209ζ5320ζ2ζ3,\displaystyle={404162543588361839\over 11263367115000}-{7248599\over 2940}\,\zeta_{2}-{75906747509\over 5675670}\,\zeta_{3}-{24110\over 63}\,\zeta_{4}+{17920\over 9}\,\zeta_{5}-320\,\zeta_{2}\,\zeta_{3},
6,6(2)\displaystyle\mathcal{R}_{6,6}^{(2)} =12253429054400973586613003564564000000+101307322672976750ζ222407109756092027025ζ3+3047245ζ4+151877609ζ5\displaystyle=-{1225342905440097358661\over 3003564564000000}+{10130732267\over 2976750}\,\zeta_{2}-{2240710975609\over 2027025}\,\zeta_{3}+{30472\over 45}\,\zeta_{4}+{15187760\over 9}\,\zeta_{5}
+17923ζ2ζ3,\displaystyle\hskip 14.22636pt+{1792\over 3}\,\zeta_{2}\,\zeta_{3}, (24)
8,0(2)\displaystyle\mathcal{R}_{8,0}^{(2)} =376332080294137607873992430435840000110645531238140ζ24493468423326195400ζ324592567ζ4+20209ζ5643ζ2ζ3,\displaystyle={37633208029413760787\over 3992430435840000}-{110645531\over 238140}\,\zeta_{2}-{44934684233\over 26195400}\,\zeta_{3}-{24592\over 567}\,\zeta_{4}+{2020\over 9}\,\zeta_{5}-{64\over 3}\,\zeta_{2}\,\zeta_{3},
8,2(2)\displaystyle\mathcal{R}_{8,2}^{(2)} =1631121306889036083076487699458240000178296143142884ζ23081644849093397296900ζ330704189ζ4+28403ζ5128ζ2ζ3,\displaystyle={163112130688903608307\over 6487699458240000}-{178296143\over 142884}\,\zeta_{2}-{3081644849093\over 397296900}\,\zeta_{3}-{30704\over 189}\,\zeta_{4}+{2840\over 3}\,\zeta_{5}-128\,\zeta_{2}\,\zeta_{3},
8,4(2)\displaystyle\mathcal{R}_{8,4}^{(2)} =22547396769263918979895190159566592000045752970011786050ζ278134480337745405360ζ374744189ζ4+62003ζ5320ζ2ζ3,\displaystyle={2254739676926391897989\over 51901595665920000}-{4575297001\over 1786050}\,\zeta_{2}-{781344803377\over 45405360}\,\zeta_{3}-{74744\over 189}\,\zeta_{4}+{6200\over 3}\,\zeta_{5}-320\,\zeta_{2}\,\zeta_{3},
8,6(2)\displaystyle\mathcal{R}_{8,6}^{(2)} =48110260708157296342781096243228000005397965880711907000ζ2140443143676956756700ζ3303344405ζ4+331609ζ517923ζ2ζ3,\displaystyle={481102607081572963427\over 8109624322800000}-{53979658807\over 11907000}\,\zeta_{2}-{1404431436769\over 56756700}\,\zeta_{3}-{303344\over 405}\,\zeta_{4}+{33160\over 9}\,\zeta_{5}-{1792\over 3}\,\zeta_{2}\,\zeta_{3},
8,8(2)\displaystyle\mathcal{R}_{8,8}^{(2)} =180398275019354202293598809131155332247779840000+32316333925333934950ζ2148331844892562774097833740ζ3+299176171ζ4+10506500019ζ5\displaystyle=-{180398275019354202293598809\over 131155332247779840000}+{323163339253\over 33934950}\,\zeta_{2}-{14833184489256277\over 4097833740}\,\zeta_{3}+{299176\over 171}\,\zeta_{4}+{105065000\over 19}\,\zeta_{5}
+2688019ζ2ζ3,\displaystyle\hskip 14.22636pt+{26880\over 19}\,\zeta_{2}\,\zeta_{3},
10,0(2)\displaystyle\mathcal{R}_{10,0}^{(2)} =185638345738169068707650317270255957834880000072378211243144074700ζ2697029440729374594220ζ3137392431185ζ4+24409ζ5643ζ2ζ3,\displaystyle={1856383457381690687076503\over 172702559578348800000}-{72378211243\over 144074700}\,\zeta_{2}-{697029440729\over 374594220}\,\zeta_{3}-{1373924\over 31185}\,\zeta_{4}+{2440\over 9}\,\zeta_{5}-{64\over 3}\,\zeta_{2}\,\zeta_{3},
10,2(2)\displaystyle\mathcal{R}_{10,2}^{(2)} =6060354009649111368784732158781994729360000028101062464192161120500ζ2148937526813711748106360ζ3173144810395ζ4+1040ζ5128ζ2ζ3,\displaystyle={606035400964911136878473\over 21587819947293600000}-{2810106246419\over 2161120500}\,\zeta_{2}-{14893752681371\over 1748106360}\,\zeta_{3}-{1731448\over 10395}\,\zeta_{4}+1040\,\zeta_{5}-128\,\zeta_{2}\,\zeta_{3},
10,4(2)\displaystyle\mathcal{R}_{10,4}^{(2)} =21058835693654378341521494317563989458720000056943819084232161120500ζ2901175969934624620ζ38435482079ζ4+2160ζ5320ζ2ζ3,\displaystyle={2105883569365437834152149\over 43175639894587200000}-{5694381908423\over 2161120500}\,\zeta_{2}-{90117596993\over 4624620}\,\zeta_{3}-{843548\over 2079}\,\zeta_{4}+2160\,\zeta_{5}-320\,\zeta_{2}\,\zeta_{3},
10,6(2)\displaystyle\mathcal{R}_{10,6}^{(2)} =201402980629029726257551883327891463371903331200000100319921033412161120500ζ2331804628380878411008282775500ζ3684448891ζ4+340009ζ5\displaystyle={2014029806290297262575518833\over 27891463371903331200000}-{10031992103341\over 2161120500}\,\zeta_{2}-{33180462838087841\over 1008282775500}\,\zeta_{3}-{684448\over 891}\,\zeta_{4}+{34000\over 9}\,\zeta_{5}
17923ζ2ζ3,\displaystyle\hskip 14.22636pt-{1792\over 3}\,\zeta_{2}\,\zeta_{3},
10,8(2)\displaystyle\mathcal{R}_{10,8}^{(2)} =106011079498944308655353977312202515225207707400000557554642474197563921750ζ223461093286572259604969665300ζ3290672231ζ4+176803ζ5\displaystyle={1060110794989443086553539773\over 12202515225207707400000}-{55755464247419\over 7563921750}\,\zeta_{2}-{23461093286572259\over 604969665300}\,\zeta_{3}-{290672\over 231}\,\zeta_{4}+{17680\over 3}\,\zeta_{5}
960ζ2ζ3,\displaystyle\hskip 14.22636pt-960\,\zeta_{2}\,\zeta_{3},
10,10(2)\displaystyle\mathcal{R}_{10,10}^{(2)} =76231630522478131641971611612113433554775142600000+3521098742449999173970200250ζ24038145298287288999427846193775ζ3+1741904483ζ4\displaystyle=-{7623163052247813164197161161\over 2113433554775142600000}+{3521098742449999\over 173970200250}\,\zeta_{2}-{4038145298287288999\over 427846193775}\,\zeta_{3}+{1741904\over 483}\,\zeta_{4}
+33147884023ζ5+6336023ζ2ζ3,\displaystyle\hskip 14.22636pt+{331478840\over 23}\,\zeta_{5}+{63360\over 23}\,\zeta_{2}\,\zeta_{3},
12,0(2)\displaystyle\mathcal{R}_{12,0}^{(2)} =27238692085662585312666509011227656514036179388160000058662551981653109568809350ζ233289175053791669619952ζ318093512405405ζ4+9803ζ5\displaystyle={27238692085662585312666509011\over 2276565140361793881600000}-{58662551981653\over 109568809350}\,\zeta_{2}-{3328917505379\over 1669619952}\,\zeta_{3}-{18093512\over 405405}\,\zeta_{4}+{980\over 3}\,\zeta_{5}
643ζ2ζ3,\displaystyle\hskip 14.22636pt-{64\over 3}\,\zeta_{2}\,\zeta_{3},
12,2(2)\displaystyle\mathcal{R}_{12,2}^{(2)} =927536216695933062333555226730235630770430074990000014727487578231731095688093500ζ2348867081370873801366855ζ322973824135135ζ4+103609ζ5\displaystyle={9275362166959330623335552267\over 302356307704300749900000}-{1472748757823173\over 1095688093500}\,\zeta_{2}-{34886708137087\over 3801366855}\,\zeta_{3}-{22973824\over 135135}\,\zeta_{4}+{10360\over 9}\,\zeta_{5}
128ζ2ζ3,\displaystyle\hskip 14.22636pt-128\,\zeta_{2}\,\zeta_{3},
12,4(2)\displaystyle\mathcal{R}_{12,4}^{(2)} =3913183848904245438830200224258173533054033685942375680000029510464061568611095688093500ζ210743538046061211505581791715ζ31119862427027ζ4\displaystyle={39131838489042454388302002242581\over 735330540336859423756800000}-{2951046406156861\over 1095688093500}\,\zeta_{2}-{10743538046061211\over 505581791715}\,\zeta_{3}-{11198624\over 27027}\,\zeta_{4}
+204409ζ5320ζ2ζ3,\displaystyle\hskip 14.22636pt+{20440\over 9}\,\zeta_{5}-320\,\zeta_{2}\,\zeta_{3},
12,6(2)\displaystyle\mathcal{R}_{12,6}^{(2)} =7370624376245151247754283251569919163175421074279696000001479636772346807313053741000ζ262808370866216282116852726390500ζ3908382411583ζ4\displaystyle={7370624376245151247754283251569\over 91916317542107427969600000}-{1479636772346807\over 313053741000}\,\zeta_{2}-{628083708662162821\over 16852726390500}\,\zeta_{3}-{9083824\over 11583}\,\zeta_{4}
+350009ζ517923ζ2ζ3,\displaystyle\hskip 14.22636pt+{35000\over 9}\,\zeta_{5}-{1792\over 3}\,\zeta_{2}\,\zeta_{3},
12,8(2)\displaystyle\mathcal{R}_{12,8}^{(2)} =213530063188504657686437616263094119731369499039061204140800000143716103564857541917454163625ζ229274971196758882773542657789774100ζ312854121001ζ4\displaystyle={2135300631885046576864376162630941\over 19731369499039061204140800000}-{14371610356485754\over 1917454163625}\,\zeta_{2}-{29274971196758882773\over 542657789774100}\,\zeta_{3}-{1285412\over 1001}\,\zeta_{4}
+540409ζ5960ζ2ζ3,\displaystyle\hskip 14.22636pt+{54040\over 9}\,\zeta_{5}-960\,\zeta_{2}\,\zeta_{3},
12,10(2)\displaystyle\mathcal{R}_{12,10}^{(2)} =34759246718509381395382960927377323295970542485585918062112000000846013860417512477669816654500ζ2739685202813833717811356644474435250ζ3\displaystyle={34759246718509381395382960927377323\over 295970542485585918062112000000}-{84601386041751247\over 7669816654500}\,\zeta_{2}-{73968520281383371781\over 1356644474435250}\,\zeta_{3}
2355528812285ζ4+775609ζ51408ζ2ζ3,\displaystyle\hskip 14.22636pt-{23555288\over 12285}\,\zeta_{4}+{77560\over 9}\,\zeta_{5}-1408\,\zeta_{2}\,\zeta_{3},
12,12(2)\displaystyle\mathcal{R}_{12,12}^{(2)} =20233840212533868013654477744867777045325115214605205433618413504000000+6748656400305647182614682250ζ22829435642800818984903134173629339750ζ3\displaystyle=-{202338402125338680136544777448677770453\over 25115214605205433618413504000000}+{6748656400305647\over 182614682250}\,\zeta_{2}-{2829435642800818984903\over 134173629339750}\,\zeta_{3}
+236379683645ζ4+86888620027ζ5+12812827ζ2ζ3.\displaystyle\hskip 14.22636pt+{23637968\over 3645}\,\zeta_{4}+{868886200\over 27}\,\zeta_{5}+{128128\over 27}\,\zeta_{2}\,\zeta_{3}. (25)

It remains important to point out the interesting relations m,n(1)=n,m(1){\cal R}_{m,n}^{(1)}={\cal R}_{n,m}^{(1)} and m,n(2)=n,m(2){\cal R}_{m,n}^{(2)}={\cal R}_{n,m}^{(2)} on account of the charge-conjugation symmetry of the pion form factor.

References