This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Next-to-leading-order relativistic and QCD corrections to prompt 𝑱/𝝍\bm{J/\psi} pair photoproduction at future 𝒆+𝒆\bm{e^{+}e^{-}} colliders

Zhi-Guo He Department of Physics and Electronics, School of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany Institut für Theoretische Physik, Universität Regensburg, 93040 Regensburg, Germany    Xiao-Bo Jin Center of Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, China    Bernd A. Kniehl II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany    Rong Li MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China Institute of Theoretical Physics, Xi’an Jiaotong University, Xi’an 710049, China
Abstract

Within the framework of nonrelativistic-QCD factorization, we calculate both the next-to-leading-order relativistic and QCD corrections to prompt J/ψJ/\psi pair production, with feeddown from ψ(2S)\psi(2S) mesons, via photon-photon collisions at future e+ee^{+}e^{-} colliders including the Future Circular Lepton Collider (FCC-ee), the Circular Electron Positron Collider (CEPC), and the Compact Linear Collider (CLIC). We present total cross sections and distributions in single J/ψJ/\psi transverse momentum and rapidity, and in J/ψJ/\psi pair invariant mass. The relativistic and QCD corrections both turn out to be large and negative. Yet, the production rates are large enough for useful experimental studies.

I Introduction

The production of heavy quarkonia, including the J/ψJ/\psi meson as the most prominent specimen, provides a perfect laboratory to explore the interplay between perturbative and nonperturbative phenomena in quantum chromodynamics (QCD), since it accommodates the creation of a heavy quark pair QQ¯Q\bar{Q} at high energy as well as its transition into a heavy meson at low energy. The framework of nonrelativistic-QCD (NRQCD) factorization Bodwin:1994jh has been very successful in explaining the heavy-quarkonium production mechanism. However, the J/ψJ/\psi polarization puzzle Butenschoen:2012px and other problems in the validation of the predicted universality of the NRQCD long-distance matrix elements (LDMEs) Butenschoen:2014dra ; Butenschoen:2022wld still challenge NRQCD factorization. Shortly after the birth of NRQCD factorization, prompt J/ψJ/\psi pair hadroproduction was proposed as a showcase for the color-octet (CO) mechanism, a key feature of NRQCD factorization, because the hadronization occurs there twice Barger:1995vx . Later on, the color-singlet (CS) channel was found to contribute predominately in the region of small and moderate J/ψJ/\psi transverse momentum, pTJ/ψp_{T}^{J/\psi} Qiao:2002rh ; Li:2009ug ; Ko:2010xy ; He:2015qya . Meanwhile, prompt J/ψJ/\psi pair hadroproduction is also viewed as a good probe of the double parton scattering (DPS) mechanism in hadron collisions and as a tool to extract its key parameter σeff\sigma_{\mathrm{eff}} Kom:2011bd . However, fit results of σeff\sigma_{\mathrm{eff}} from experimental D0:2014vql ; LHCb:2016wuo ; ATLAS:2016ydt ; LHCb:2023ybt and theoretical Lansberg:2014swa ; Prokhorov:2020owf analyses exhibit an incoherent picture.

Since the discovery of the Higgs boson at the CERN LHC ATLAS:2012yve ; CMS:2012qbp , to build next-generation e+ee^{+}e^{-} colliders reaching center-of-mass energies of hundreds of GeV or even a few TeV for high-precision studies of the electroweak sector of the standard model has been on the agenda of the high-energy physics community. Possible realizations include the CERN Future Circular Lepton Collider (FCC-ee) FCC:2018evy , the Circular Electron Positron Collider (CEPC) CEPCStudyGroup:2018rmc in China, and the CERN Compact Linear Collider (CLIC) CLICdp:2018cto . As we will argue below, such high-luminosity e+ee^{+}e^{-} colliders will also offer great opportunities to deepen our understanding of the double prompt J/ψJ/\psi production mechanism. A decisive advantage of e+ee^{+}e^{-} colliders versus hadron colliders resides in the absence of DPS. Historically, inclusive single J/ψJ/\psi production in two-photon collisions at the CERN Large Electron Positron Collider (LEP) is among the earliest evidences of the CO mechanism Klasen:2001cu ; Butenschoen:2011yh .

In e+ee^{+}e^{-} collisions, there are generally two distinct production modes, e+ee^{+}e^{-} annihilation and two-photon scattering, where the photons originate from both electromagnetic bremsstrahlung and synchrotron radiation off the colliding bunches known as beamstrahlung. The photons can either directly participate in the hard collision as pointlike particles, or as resolved photons via their quark and gluon contents as described by photonic parton density functions (PDFs) DeWitt:1978wn . This results in three production channels: direct, single resolved, and double resolved. J/ψJ/\psi pair production by e+ee^{+}e^{-} annihilation was investigated by several groups Bodwin:2002fk ; Bodwin:2002kk ; Hagiwara:2003cw ; Bodwin:2006yd ; Braguta:2007ge ; Gong:2008ce ; Fan:2012dy , even through next-to-next-to-leading order in the strong-coupling constant αs\alpha_{s} Sang:2023liy ; Huang:2023pmn . J/ψJ/\psi pair production by two-photon scattering was first considered by Qiao in 2002 as a contribution to inclusive J/ψJ/\psi production Qiao:2001wv . Recently, exclusive J/ψJ/\psi pair production by two-photon scattering at e+ee^{+}e^{-} colliders was studied through next-to-leading order (NLO) in αs\alpha_{s}, with the result that QCD corrections, of relative order 𝒪(αs)\mathcal{O}(\alpha_{s}), can decrease theoretical predictions by almost 80%80\% Yang:2020xkl .

In the charmonium rest frame, the charm quark relative velocity vv is not small, with v2αs(2mc)v^{2}\sim\alpha_{s}(2m_{c}), which explains why relativistic corrections, being of relative order 𝒪(v2)\mathcal{O}(v^{2}), may be comparable to QCD corrections. In fact, in e+ee^{+}e^{-} annihilation at center-of-mass energy S=10.6\sqrt{S}=10.6 GeV, 𝒪(v2)\mathcal{O}(v^{2}) corrections largely enhance the LO predictions for exclusive double charmonium He:2007te and inclusive J/ψ+Xnoncc¯J/\psi+X_{\mathrm{non-c\bar{c}}} He:2009uf ; Jia:2009np production, and they are also considerable in J/ψJ/\psi photo- and hadroproduction, for both yield Xu:2012am ; He:2014sga and polarization He:2015gla . As for prompt J/ψJ/\psi pair hadroproduction, the 𝒪(v2)\mathcal{O}(v^{2}) corrections to the CS channel were found to reduce the cross section appreciably in the large-pTp_{T} region Li:2013csa and substantially near threshold He:2024ugx . This suggests that 𝒪(v2)\mathcal{O}(v^{2}) corrections may also be important in the case of J/ψJ/\psi pair production in two-photon scattering, the more so as 𝒪(αs)\mathcal{O}(\alpha_{s}) corrections were found to dramatically reduce the cross section Yang:2020xkl , as already mentioned above. This strongly motivates our analysis below. Since an independent cross check of the results of Ref. Yang:2020xkl is still lacking, we also recalculate the 𝒪(αs)\mathcal{O}(\alpha_{s}) corrections here.

The rest of this paper is organized as follows. In Sec. II, we describe techniques to calculate the 𝒪(v2)\mathcal{O}(v^{2}) and 𝒪(αs)\mathcal{O}(\alpha_{s}) corrections to the short-distance coefficients (SDCs) within the NRQCD factorization framework. In Sec. III, we present numerical predictions appropriate for FCC-ee, CEPC, and CLIC experimental conditions as anticipated today. In Sec. IV, we summarize our conclusion.

II Theoretical framework

According to the factorization theorem of the QCD parton model, the differential cross section of inclusive prompt J/ψJ/\psi pair production by two-photon scattering may be expressed as (see, e.g., Ref. Klasen:2001cu )

dσ(e+ee+e+2J/ψ+X)=i,j,H1,H2dx1dx2fγ(x1)fγ(x2)𝑑xi𝑑xjfi/γ(xi)fj/γ(xj)\displaystyle\mathrm{d}\sigma(e^{+}e^{-}\to e^{+}e^{-}+2J/\psi+X)=\sum_{i,j,H_{1},H_{2}}\int\mathrm{d}x_{1}\mathrm{d}x_{2}f_{\gamma}(x_{1})f_{\gamma}(x_{2})\int dx_{i}dx_{j}f_{i/\gamma}(x_{i})f_{j/\gamma}(x_{j})
×dσ^(i+jH1+H2)Br(H1J/ψ+X)Br(H2J/ψ+X),\displaystyle{}\times\mathrm{d}\hat{\sigma}(i+j\to H_{1}+H_{2})\mathrm{Br}(H_{1}\rightarrow J/\psi+X)\mathrm{Br}(H_{2}\rightarrow J/\psi+X)\,, (1)

where fγ(x)f_{\gamma}(x) is the scaled-energy distribution of the photons from both bremsstrahlung and beamstrahlung off the incoming leptons, fi/γ(x)f_{i/\gamma}(x) is the PDF in longitudinal-momentum fraction of parton ii in the resolved photon, being fγ/γ(x)=δ(1x)f_{\gamma/\gamma}(x)=\delta(1-x) for the direct photon, dσ^(i+jH1+H2)\mathrm{d}\hat{\sigma}(i+j\to H_{1}+H_{2}) is the partonic differential cross section for associated production of charmonium states H1,H2=J/ψ,χcJ,ψ(2S)H_{1},H_{2}=J/\psi,\chi_{cJ},\psi(2S), and Br(HJ/ψ+X)\mathrm{Br}(H\rightarrow J/\psi+X) is the branching fraction of HH decay into J/ψJ/\psi, being 1 for H=J/ψH=J/\psi implying direct production. In Eq. (1), XX collectively denotes the undetected particles in the respective final states, reflecting the inclusiveness of the experimental observation mode.

At parton level, the Feynman diagrams of 2J/ψ2J/\psi production are the same as those of J/ψ+cc¯J/\psi+c\bar{c} production, which was studied for two-photon scattering in Ref. Li:2009zzu , where the single-resolved and double-resolved contributions were found to be greatly suppressed. We recover this finding at LO for direct 2J/ψ2J/\psi production in two-photon scattering under FCC-ee experimental conditions, where we find the single-resolved and double-resolved contributions to be more than 3 orders of magnitude smaller than the direct contribution. In the following, we thus concentrate on direct photoproduction. In the latter case, CO contributions are known to be important only at large values of pTJ/ψp_{T}^{J/\psi} He:2015qya , where the cross sections are likely to be too small to be measurable in the first few years of running at the above-mentioned future e+ee^{+}e^{-} colliders. In the following, we thus focus on CS contributions, which arise from the partonic subprocesses

γ+γ\displaystyle\gamma+\gamma \displaystyle\to (cc¯)1(S1[1]3)+(cc¯)2(S1[1]3),\displaystyle(c\bar{c})_{1}({}^{3}S_{1}^{[1]})+(c\bar{c})_{2}({}^{3}S_{1}^{[1]})\,, (2)
γ+γ\displaystyle\gamma+\gamma \displaystyle\to (cc¯)1(PJ1[1]3)+(cc¯)2(PJ2[1]3),\displaystyle(c\bar{c})_{1}({}^{3}P_{J_{1}}^{[1]})+(c\bar{c})_{2}({}^{3}P_{J_{2}}^{[1]})\,, (3)

yielding 2J/ψ2J/\psi, J/ψ+ψ(2S)J/\psi+\psi(2S), 2ψ(2S)2\psi(2S), and χcJ1+χcJ2\chi_{c_{J1}}+\chi_{c_{J2}} final states. We verified that, under FCC-ee experimental conditions, the production rates of the χcJ1+χcJ2\chi_{c_{J1}}+\chi_{c_{J2}} channels are about one order of magnitude smaller than those of the other channels, and they are reduced by two additional factors of branching fraction to become negligibly small feed-down contributions. We thus concentrate on partonic subprocess (2) and compute relativistic corrections of 𝒪(v2)\mathcal{O}(v^{2}) and QCD corrections of 𝒪(αs)\mathcal{O}(\alpha_{s}) to its cross section. By color conservation, the latter are purely virtual.

Through 𝒪(v2)\mathcal{O}(v^{2}) in NRQCD, the relevant partonic cross section appearing in Eq. (1) factorizes as

dσ^(γ+γH1+H2)=m,n,H1,H2(dF(m,n)mcd𝒪(m)4mcd𝒪(n)4𝒪H1(m)𝒪H2(n)\displaystyle\mathrm{d}\hat{\sigma}(\gamma+\gamma\to H_{1}+H_{2})=\sum_{m,n,H_{1},H_{2}}\left(\frac{dF(m,n)}{m_{c}^{d_{\mathcal{O}(m)}-4}m_{c}^{d_{\mathcal{O}(n)}-4}}\langle\mathcal{O}^{H_{1}}(m)\rangle\langle\mathcal{O}^{H_{2}}(n)\rangle\right. (4)
+dG1(m,n)mcd𝒫(m)4mcd𝒪(n)4𝒫H1(m)𝒪H2(n)+dG2(m,n)mcd𝒪(m)4mcd𝒫(n)4𝒪H1(m)𝒫H2(n)),\displaystyle{}+\left.\frac{dG_{1}(m,n)}{m_{c}^{d_{\mathcal{P}(m)}-4}m_{c}^{d_{\mathcal{O}(n)}-4}}\langle\mathcal{P}^{H_{1}}(m)\rangle\langle\mathcal{O}^{H_{2}}(n)\rangle+\frac{dG_{2}(m,n)}{m_{c}^{d_{\mathcal{O}(m)}-4}m_{c}^{d_{\mathcal{P}(n)}-4}}\langle\mathcal{O}^{H_{1}}(m)\rangle\langle\mathcal{P}^{H_{2}}(n)\rangle\right)\,,

where m,n=LJ[a]2S+1m,n={}^{2S+1}L_{J}^{[a]} are quantum numbers in spectroscopic notation, with total spin SS, orbital angular momentum LL, total angular momentum JJ, and color configuration a=1,8a=1,8 for CS and CO; 𝒪H(n)\mathcal{O}^{H}(n) and 𝒫H(n)\mathcal{P}^{H}(n) are four-fermion operators of mass dimensions d𝒪d_{\mathcal{O}} and d𝒫d_{\mathcal{P}} describing the nonperturbative transition nHn\to H at LO and 𝒪(v2)\mathcal{O}(v^{2}); 𝒪H(n)\langle\mathcal{O}^{H}(n)\rangle and 𝒫H(n)\langle\mathcal{P}^{H}(n)\rangle are the respective LDMEs; and F(m,n)F(m,n) and Gi(m,n)G_{i}(m,n) are the appropriate SDCs. Definitions of the relevant four-fermion operators, 𝒪H(S1[1]3)\mathcal{O}^{H}({}^{3}S_{1}^{[1]}) and 𝒫H(S1[1]3)\mathcal{P}^{H}({}^{3}S_{1}^{[1]}), may be found, e.g., in Eq. (3) of Ref. He:2024ugx . The calculation of F(S1[1]3,S1[1]3)F({}^{3}S_{1}^{[1]},{}^{3}S_{1}^{[1]}) and Gi(S1[1]3,S1[1]3)G_{i}({}^{3}S_{1}^{[1]},{}^{3}S_{1}^{[1]}) proceeds in a fashion similar to the hadron collider case in Ref. He:2024ugx and references cited therein, and we merely list our final results. Notice that, according to the pTp_{T} power counting rules of Ref. He:2015qya , we have dσ^/dpT21/pT8\mathrm{d}\hat{\sigma}/\mathrm{d}p_{T}^{2}\propto 1/p_{T}^{8} for partonic subprocess (2).

Starting from the Mandelstam variables s=(k1+k2)2s=(k_{1}+k_{2})^{2}, t=(k1P1)2t=(k_{1}-P_{1})^{2}, and u=(k1P2)2u=(k_{1}-P_{2})^{2} of process γ(k1)+γ(k2)H1(P1)+H2(P2)\gamma(k_{1})+\gamma(k_{2})\to H_{1}(P_{1})+H_{2}(P_{2}), we denote the counterparts of tt and uu in the nonrelativistic limit as t0t_{0} and u0u_{0}, and define t^0=t0+(s8mc2)/2\hat{t}_{0}=t_{0}+(s-8m_{c}^{2})/2 and u^0=u0+(s8mc2)/2\hat{u}_{0}=u_{0}+(s-8m_{c}^{2})/2. The two-body phase space element in the nonrelativistic limit may thus be written as

dΦ20=dt^0du^08πsδ(t^0+u^0),d\Phi_{20}=\frac{\mathrm{d}\hat{t}_{0}\mathrm{d}\hat{u}_{0}}{8\pi s}\delta\left(\hat{t}_{0}+\hat{u}_{0}\right)\,, (5)

and receives the 𝒪(v2)\mathcal{O}(v^{2}) correction factor K=4/(s16mc2)K=-4/(s-16m_{c}^{2}). Our final results then read

F(S1[1]3,3S1[1])mc4\displaystyle\frac{F({{}^{3}S_{1}^{[1]},^{3}S_{1}^{[1]}})}{m_{c}^{4}} =\displaystyle= 12s𝑑Φ20(|M0|2+|M1|2),\displaystyle\frac{1}{2s}\int d\Phi_{20}\left(|M_{0}|^{2}+|M_{1}|^{2}\right)\,,
G1(S1[1]3,3S1[1])mc6\displaystyle\frac{G_{1}({{}^{3}S_{1}^{[1]},^{3}S_{1}^{[1]}})}{m_{c}^{6}} =\displaystyle= G2(S1[1]3,3S1[1])mc6=12s𝑑Φ20(K|M0|2+|N|2),\displaystyle\frac{G_{2}({{}^{3}S_{1}^{[1]},^{3}S_{1}^{[1]}})}{m_{c}^{6}}=\frac{1}{2s}\int d\Phi_{20}\left(K|M_{0}|^{2}+|N|^{2}\right)\,, (6)

where |M0|2|M_{0}|^{2} is the absolute square of the tree-level amplitude, |M1|2|M_{1}|^{2} stands for its 𝒪(αs)\mathcal{O}(\alpha_{s}) correction, and |N|2|N|^{2} for its 𝒪(v2)\mathcal{O}(v^{2}) correction. The expressions for |M0|2|M_{0}|^{2}, |M1|2|M_{1}|^{2}, and |N|2|N|^{2} assume relatively compact forms when they are written in terms of ss and t^0\hat{t}_{0}.

Below, we list |M0|2|M_{0}|^{2} for reference and |N|2|N|^{2} as a new result:

|M0|2\displaystyle|M_{0}|^{2} =\displaystyle= 262144π4α2ec4αs2729mc2(s34st^02)4[s10+48s9mc216s8(t^02188mc4)512s7mc2(4mc4+t^02)\displaystyle\frac{262144\pi^{4}\alpha^{2}e_{c}^{4}\alpha_{s}^{2}}{729m_{c}^{2}\left(s^{3}-4s\hat{t}_{0}^{2}\right)^{4}}\left[s^{10}+48s^{9}m_{c}^{2}-16s^{8}\left(\hat{t}_{0}^{2}-188m_{c}^{4}\right)-512s^{7}m_{c}^{2}\left(4m_{c}^{4}+\hat{t}_{0}^{2}\right)\right. (7)
+96s6(128t^02mc4+1024mc8+t^04)+1536s5t^02mc2(t^0216mc4)\displaystyle{}+96s^{6}\left(128\hat{t}_{0}^{2}m_{c}^{4}+1024m_{c}^{8}+\hat{t}_{0}^{4}\right)+1536s^{5}\hat{t}_{0}^{2}m_{c}^{2}\left(\hat{t}_{0}^{2}-16m_{c}^{4}\right)
256s4(3072t^02mc888t^04mc4+t^06)+32768s3t^04mc6\displaystyle{}-256s^{4}\left(-3072\hat{t}_{0}^{2}m_{c}^{8}-88\hat{t}_{0}^{4}m_{c}^{4}+\hat{t}_{0}^{6}\right)+32768s^{3}\hat{t}_{0}^{4}m_{c}^{6}
+256s2(128t^06mc4+6144t^04mc8+t^08)4096st^06mc2(t^0296mc4)+49152t^08mc4],\displaystyle{}+\left.256s^{2}\left(128\hat{t}_{0}^{6}m_{c}^{4}+6144\hat{t}_{0}^{4}m_{c}^{8}+\hat{t}_{0}^{8}\right)-4096s\hat{t}_{0}^{6}m_{c}^{2}\left(\hat{t}_{0}^{2}-96m_{c}^{4}\right)+49152\hat{t}_{0}^{8}m_{c}^{4}\right]\,,\quad
|N|2\displaystyle|N|^{2} =\displaystyle= 131072π4α2ec4αs22187mc4(s34st^02)5(s16mc2)[3s14144s13mc2+s12(832mc476t^02)\displaystyle-\frac{131072\pi^{4}\alpha^{2}e_{c}^{4}\alpha_{s}^{2}}{2187m_{c}^{4}\left(s^{3}-4s\hat{t}_{0}^{2}\right)^{5}\left(s-16m_{c}^{2}\right)}\left[3s^{14}-144s^{13}m_{c}^{2}+s^{12}\left(832m_{c}^{4}-76\hat{t}_{0}^{2}\right)\right. (8)
+64s11(55t^02mc22368mc6)+32s10(1192t^02mc4+82432mc8+25t^04)\displaystyle{}+64s^{11}\left(55\hat{t}_{0}^{2}m_{c}^{2}-2368m_{c}^{6}\right)+32s^{10}\left(-1192\hat{t}_{0}^{2}m_{c}^{4}+82432m_{c}^{8}+25\hat{t}_{0}^{4}\right)
1024s9mc2(2424t^02mc4+14336mc8+27t^04)\displaystyle{}-1024s^{9}m_{c}^{2}\left(-2424\hat{t}_{0}^{2}m_{c}^{4}+14336m_{c}^{8}+27\hat{t}_{0}^{4}\right)
128s8(29184t^02mc81488t^04mc41769472mc12+35t^06)\displaystyle{}-128s^{8}\left(-29184\hat{t}_{0}^{2}m_{c}^{8}-1488\hat{t}_{0}^{4}m_{c}^{4}-1769472m_{c}^{12}+35\hat{t}_{0}^{6}\right)
+2048s7t^02mc2(2656t^02mc4+50176mc8+47t^04)\displaystyle{}+2048s^{7}\hat{t}_{0}^{2}m_{c}^{2}\left(2656\hat{t}_{0}^{2}m_{c}^{4}+50176m_{c}^{8}+47\hat{t}_{0}^{4}\right)
+256s6(4325376t^02mc12+98304t^04mc81184t^06mc4+55t^08)\displaystyle{}+256s^{6}\left(4325376\hat{t}_{0}^{2}m_{c}^{12}+98304\hat{t}_{0}^{4}m_{c}^{8}-1184\hat{t}_{0}^{6}m_{c}^{4}+55\hat{t}_{0}^{8}\right)
4096s5t^04mc2(4352t^02mc4100352mc8+49t^04)\displaystyle{}-4096s^{5}\hat{t}_{0}^{4}m_{c}^{2}\left(-4352\hat{t}_{0}^{2}m_{c}^{4}-100352m_{c}^{8}+49\hat{t}_{0}^{4}\right)
1024s4t^04(204800t^02mc8272t^04mc42752512mc12+23t^06)\displaystyle{}-1024s^{4}\hat{t}_{0}^{4}\left(-204800\hat{t}_{0}^{2}m_{c}^{8}-272\hat{t}_{0}^{4}m_{c}^{4}-2752512m_{c}^{12}+23\hat{t}_{0}^{6}\right)
+16384s3t^06mc2(384t^02mc475776mc8+27t^04)\displaystyle{}+16384s^{3}\hat{t}_{0}^{6}m_{c}^{2}\left(-384\hat{t}_{0}^{2}m_{c}^{4}-75776m_{c}^{8}+27\hat{t}_{0}^{4}\right)
+16384s2t^06(4352t^02mc868t^04mc4+491520mc12+t^06)\displaystyle{}+16384s^{2}\hat{t}_{0}^{6}\left(-4352\hat{t}_{0}^{2}m_{c}^{8}-68\hat{t}_{0}^{4}m_{c}^{4}+491520m_{c}^{12}+\hat{t}_{0}^{6}\right)
131072st^08mc2(112t^02mc415360mc8+5t^04)+6291456t^010mc4(40mc4+t^02)],\displaystyle{}-\left.131072s\hat{t}_{0}^{8}m_{c}^{2}\left(112\hat{t}_{0}^{2}m_{c}^{4}-15360m_{c}^{8}+5\hat{t}_{0}^{4}\right)+6291456\hat{t}_{0}^{10}m_{c}^{4}\left(40m_{c}^{4}+\hat{t}_{0}^{2}\right)\right]\,,

where α\alpha is Sommerfeld’s fine-structure constant and ec=2/3e_{c}=2/3 is the fractional electric charge of the charm quark.

In the computation of |M1|2|M_{1}|^{2}, we encounter both ultraviolet (UV) and infrared (IR) divergences, which are both regularized using dimensional regularization with D=42ϵD=4-2\epsilon space-time dimensions. The UV divergences are removed by renormalizing the parameters and external fields of the tree-level amplitude M0M_{0}. As is usually done in loop computations of heavy-quarkonium production, we adopt the on-mass-shell (OM) scheme for the renormalization of the charm quark wave function (Z2Z_{2}) and mass (ZmZ_{m}), and the gluon wave function (Z3Z_{3}), and the modified minimal-subtraction (MS¯\overline{\mathrm{MS}}) scheme for the renormalization of the strong-coupling constant (ZgZ_{g}). For the reader’s convenience, we list the respective one-loop expressions here:

δZ2OS\displaystyle\delta Z_{2}^{\mathrm{OS}} =\displaystyle= CFαs4πNϵ(1ϵUV+2ϵIR+4)+𝒪(αs2),\displaystyle-C_{F}\frac{\alpha_{s}}{4\pi}N_{\epsilon}\left(\frac{1}{\epsilon_{\mathrm{UV}}}+\frac{2}{\epsilon_{\mathrm{IR}}}+4\right)+\mathcal{O}(\alpha_{s}^{2})\,,
δZmOS\displaystyle\delta Z_{m}^{\mathrm{OS}} =\displaystyle= 3CFαs4πNϵ(1ϵUV+43)+𝒪(αs2),\displaystyle-3C_{F}\frac{\alpha_{s}}{4\pi}N_{\epsilon}\left(\frac{1}{\epsilon_{\mathrm{UV}}}+\frac{4}{3}\right)+\mathcal{O}(\alpha_{s}^{2})\,,
δZ3OS\displaystyle\delta Z_{3}^{\mathrm{OS}} =\displaystyle= αs4πNϵ[(β02CA)(1ϵUV1ϵIR)43TF(nfnl)1ϵUV]+𝒪(αs2),\displaystyle\frac{\alpha_{s}}{4\pi}N_{\epsilon}\left[(\beta_{0}^{\prime}-2C_{A})\left(\frac{1}{\epsilon_{\mathrm{UV}}}-\frac{1}{\epsilon_{\mathrm{IR}}}\right)-\frac{4}{3}T_{F}(n_{f}-n_{l})\frac{1}{\epsilon_{\mathrm{UV}}}\right]+\mathcal{O}(\alpha_{s}^{2})\,,
δZgMS¯\displaystyle\delta Z_{g}^{\overline{\mathrm{MS}}} =\displaystyle= β02αs4πNϵ(1ϵUV+lnmc2μr2)+𝒪(αs2),\displaystyle-\frac{\beta_{0}}{2}\,\frac{\alpha_{s}}{4\pi}N_{\epsilon}\left(\frac{1}{\epsilon_{\mathrm{UV}}}+\ln\frac{m_{c}^{2}}{\mu_{r}^{2}}\right)+\mathcal{O}(\alpha_{s}^{2})\,, (9)

where Nϵ=(4πμr2/mc2)ϵ/Γ(1ϵ)N_{\epsilon}=(4\pi\mu_{r}^{2}/m_{c}^{2})^{\epsilon}/\Gamma(1-\epsilon), μr\mu_{r} is the renormalization scale, β0=11CA/34TFnf/3\beta_{0}=11C_{A}/3-4T_{F}n_{f}/3 is the one-loop coefficient of the QCD beta function, CA=3C_{A}=3, TF=1/2T_{F}=1/2, nf=4n_{f}=4 is the number of active quark flavors, and β0\beta_{0}^{\prime} emerges from β0\beta_{0} by replacing nfn_{f} with the number of light quark flavors nl=3n_{l}=3. Thanks to the absence of real gluon radiation, the IR singularities in |M1|2|M_{1}|^{2} cancel among themselves in combination with the IR divergences from wave function renormalization in Eq. (9). Our result for |M1|2|M_{1}|^{2} is too lengthy to be listed here. We find numerical agreement with the results for double charmonium photoproduction in Ref. Yang:2020xkl upon adopting the inputs specified there. Looking at the one-loop diagrams in Fig. 2 of Ref. Yang:2020xkl , we note that all of them scale with ec2e_{c}^{2}, except for the box diagrams in Fig. 2(l), which scale with eq2e_{q}^{2}. Keeping this in mind, our analytic results readily carry over to double bottomonium production.111We can also reproduce the numerical results for double bottomonium production in Ref. Yang:2020xkl , if we attach the superfluous factor of eb2/ec2=1/4e_{b}^{2}/e_{c}^{2}=1/4 to the contribution due to the box diagrams mentioned above.

We use the program packages FeynArts Kublbeck:1990xc and QGRAF Nogueira:1991ex to generate Feynman diagrams and amplitudes, and FeynCalc Mertig:1990an and FORM Vermaseren:2000nd to handle the Dirac and SU(3)c algebras. We reduce the one-loop scalar integrals to a small set of master integrals using the Laporta algorithm Laporta:2000dsw of integration by parts Chetyrkin:1981qh as implemented in the program packages Reduze 2 vonManteuffel:2012np and FIRE6 Smirnov:2019qkx . We evaluate the master integrals analytically using the program packages Package-X 2.0 Patel:2016fam and QCDloop Ellis:2007qk .

III Numerical results

In the numerical analysis, we evaluate αs(nf)(μr)\alpha_{s}^{(n_{f})}(\mu_{r}) with nf=4n_{f}=4 and ΛQCD(4)=215MeV\Lambda_{\mathrm{QCD}}^{(4)}=215~{}\mathrm{MeV} (326 MeV) at tree level (one loop) Pumplin:2002vw . We set μr=ξs\mu_{r}=\xi\sqrt{s}, take ξ=1\xi=1 as default, and vary ξ\xi between 1/2 and 2 to estimate the theoretical uncertainties from unknown higher orders in αs\alpha_{s}. For definiteness, we choose mc=1.5GeVm_{c}=1.5~{}\mathrm{GeV} as is frequently done in similar analyses, so as to facilitate comparisons with the literature. The values mJ/ψ=3.097GeVm_{J/\psi}=3.097~{}\mathrm{GeV}, mψ(2S)=3.686GeVm_{\psi(2S)}=3.686~{}\mathrm{GeV}, Br(ψ(2S)J/ψ+X)=61.4%\mathrm{Br}(\psi(2S)\rightarrow J/\psi+X)=61.4\% for masses and branching fraction are taken from the latest Review of Particle Physics ParticleDataGroup:2022pth . As for the J/ψJ/\psi and ψ(2S)\psi(2S) CS LDMEs, we use the ones evaluated from the wave functions at the origin for the Buchmüller-Tye potential Eichten:1995ch ,

𝒪J/ψ(S1[1]3)\displaystyle\langle\mathcal{O}^{J/\psi}({}^{3}S_{1}^{[1]})\rangle =\displaystyle= 1.16GeV3,\displaystyle 1.16~{}\mathrm{GeV}^{3}\,,
𝒪ψ(2S)(S1[1]3)\displaystyle\langle\mathcal{O}^{\psi(2S)}({}^{3}S_{1}^{[1]})\rangle =\displaystyle= 0.758GeV3,\displaystyle 0.758~{}\mathrm{GeV}^{3}\,, (10)

and estimate the 𝒪(v2)\mathcal{O}(v^{2}) ones by the ratio obtained for the J/ψJ/\psi case in Ref. Bodwin:2006dn ,

𝒫J/ψ(S1[1]3)𝒪J/ψ(S1[1]3=0.5GeV2𝒫ψ(2S)(S1[1]3)𝒪ψ(2S)(S1[1]3).\frac{\langle\mathcal{P}^{J/\psi}({}^{3}S_{1}^{[1]})\rangle}{\langle\mathcal{O}^{J/\psi}({}^{3}S_{1}^{[1]}\rangle}=0.5~{}\mathrm{GeV}^{2}\approx\frac{\langle\mathcal{P}^{\psi(2S)}({}^{3}S_{1}^{[1]})\rangle}{\langle\mathcal{O}^{\psi(2S)}({}^{3}S_{1}^{[1]})\rangle}\,. (11)

In the evaluation of feed-down contributions to differential cross sections, we approximate the momentum of the J/ψJ/\psi meson from ψ(2S)\psi(2S) decay as

pJ/ψ=mJ/ψmψ(2S)pψ(2S).p_{J/\psi}=\frac{m_{J/\psi}}{m_{\psi(2S)}}p_{\psi(2S)}\,. (12)

We include both bremsstrahlung and beamstrahlung by superimposing their spectra. The bremsstrahlung distribution is described in the Weizsacker-Williams approximation (WWA) as Frixione:1993yw

fγWWA(x)=α2π[1+(1x)2xlnQmax2Qmin2+2me2x(1Qmax21Qmin2)],f^{\mathrm{WWA}}_{\gamma}(x)=\frac{\alpha}{2\pi}\left[\frac{1+(1-x)^{2}}{x}\ln\frac{Q_{\mathrm{max}}^{2}}{Q_{\mathrm{min}}^{2}}+2m_{e}^{2}x\left(\frac{1}{Q_{\mathrm{max}}^{2}}-\frac{1}{Q_{\mathrm{min}}^{2}}\right)\right]\,, (13)

with photon virtuality Q2Q^{2} bounded by

Qmin2\displaystyle Q_{\mathrm{min}}^{2} =\displaystyle= me2x21x,\displaystyle\frac{m_{e}^{2}x^{2}}{1-x}\,,
Qmax2\displaystyle Q_{\mathrm{max}}^{2} =\displaystyle= Ee2θc2(1x)+Qmin2,\displaystyle E_{e}^{2}\theta_{c}^{2}(1-x)+Q_{\mathrm{min}}^{2}\,, (14)

where x=Eγ/Eex=E_{\gamma}/E_{e}, Ee=S/2E_{e}=\sqrt{S}/2 is incoming-lepton energy, EγE_{\gamma} is the radiated-photon energy, and θc\theta_{c} the maximum angle by which the photon is deflected from the flight direction of the emitting lepton in the center-of-mass frame. The xx distribution of beamstrahlung is characterized by the effective beamstrahlung parameter Υ\Upsilon. If Υ5\Upsilon\lesssim 5, a useful and convenient approximation is given by Chen:1991wd

fγbeam(x)\displaystyle f^{\mathrm{beam}}_{\gamma}(x) =\displaystyle= 1Γ(1/3)(23Υ)1/3x2/3(1x)1/3e2x/[3Υ(1x)]\displaystyle\frac{1}{\Gamma(1/3)}\left(\frac{2}{3\Upsilon}\right)^{1/3}x^{-2/3}(1-x)^{-1/3}e^{-2x/[3\Upsilon(1-x)]}
×{1Υ/24g(x)[11g(x)Nγ](1eg(x)Nγ)+Υ24[11Nγ(1eNγ)]},\displaystyle{}\times\left\{\frac{1-\sqrt{\Upsilon/24}}{g(x)}\left[1-\frac{1}{g(x)N_{\gamma}}\right]\left(1-e^{-g(x)N_{\gamma}}\right)+\sqrt{\frac{\Upsilon}{24}}\left[1-\frac{1}{N_{\gamma}}\left(1-e^{-N_{\gamma}}\right)\right]\right\}\,,

where

g(x)=112[(1+x)1+Υ2/3+1x](1x)2/3,g(x)=1-\frac{1}{2}\left[(1+x)\sqrt{1+\Upsilon^{2/3}}+1-x\right](1-x)^{2/3}\,, (16)

and

Nγ=5ασzme2Υ2Ee1+Υ2/3N_{\gamma}=\frac{5\alpha\sigma_{z}m_{e}^{2}\Upsilon}{2E_{e}\sqrt{1+\Upsilon^{2/3}}} (17)

is the average number of photons emitted by an electron or position during the collision, with σz\sigma_{z} being the longitudinal bunch length.

Table 1: Parameters of FCC-ee, CEPC, and CLIC relevant for our calculations.
facility S\sqrt{S} [GeV] θc\theta_{c} [mrad] average Υ\Upsilon σz\sigma_{z} [mm] dt\int\mathrm{d}t\,\mathcal{L} [ab1\mathrm{ab}^{-1}]
FCC-ee 92 30 10410^{-4} 15.5 17
CEPC 92 33 2×1042\times 10^{-4} 8.7 15
CLIC 3,000 20 5 0.044 0.6

As mentioned in Sec. I, we assess here three future realizations of high-energy, high-luminosity e+ee^{+}e^{-} colliders under discussion by the world-wide particle physics community, namely FCC-ee FCC:2018evy , CEPC CEPCStudyGroup:2018rmc , and CLIC CLICdp:2018cto , with regard to their potentials to allow for measurements of prompt J/ψJ/\psi pair photoproduction. For each of them, the set of parameters relevant for our numerical analysis, including e+ee^{+}e^{-} center-of-mass energy S\sqrt{S}, upper cut θc\theta_{c} on bremsstrahlung deflection angle, average beamstrahlung parameter Υ\Upsilon, longitudinal bunch length σz\sigma_{z}, and estimated luminosity per experiment dt\int\mathrm{d}t\,\mathcal{L} integrated over one year of running, as quoted in Ref. ParticleDataGroup:2022pth , are collected in Table 1. Throughout our study, we impose the cut pTJ/ψ2GeVp_{T}^{J/\psi}\geq 2~{}\mathrm{GeV} on the transverse momentum of each J/ψJ/\psi meson.

Table 2: NRQCD predictions of σ(e+e2J/ψ+X)\sigma(e^{+}e^{-}\to 2J/\psi+X) [fb] via photoproduction at LO and with 𝒪(v2)\mathcal{O}(v^{2}) and 𝒪(αs)\mathcal{O}(\alpha_{s}) corrections consecutively added at FCC-ee, CEPC, and CLIC with theoretical uncertainties.
order FCC-ee CEPC CLIC
LO 5.881.70+2.995.88^{+2.99}_{-1.70} 6.001.73+3.066.00^{+3.06}_{-1.73} 14436+73144^{+73}_{-36}
plus 𝒪(v2)\mathcal{O}(v^{2}) 5.171.49+2.645.17^{+2.64}_{-1.49} 5.281.53+2.695.28^{+2.69}_{-1.53} 12632+64126^{+64}_{-32}
plus 𝒪(αs)\mathcal{O}(\alpha_{s}) 2.651.99+0.342.65^{+0.34}_{-1.99} 2.712.03+0.342.71^{+0.34}_{-2.03} 64.647.9+7.564.6^{+7.5}_{-47.9}

We start by considering the total cross section σ(e+e2J/ψ+X)\sigma(e^{+}e^{-}\to 2J/\psi+X) via photoproduction. Starting from the LO NRQCD predictions, we in turn add the 𝒪(v2)\mathcal{O}(v^{2}) and 𝒪(αs)\mathcal{O}(\alpha_{s}) corrections. Our results for FCC-ee, CEPC, and CLIC are displayed in Table 2, where the central values refer to ξ=1\xi=1 and the theoretical error bands to ξ=1/2,2\xi=1/2,2. In all three cases, we observe that the 𝒪(v2)\mathcal{O}(v^{2}) corrections induce a reduction by about 12% and the 𝒪(αs)\mathcal{O}(\alpha_{s}) corrections a further reduction by about 49%, adding up to a total reduction by about 55%. To judge the phenomenological significance of the 𝒪(v2)\mathcal{O}(v^{2}) corrections in view of the status quo, we should rather compare them to the 𝒪(αs)\mathcal{O}(\alpha_{s})-corrected results Yang:2020xkl , in which case the reduction is as large as 176+3917^{+39}_{-6}%. As for theoretical uncertainties, we observe from Table 2 that their absolute sizes are reduced whenever 𝒪(v2)\mathcal{O}(v^{2}) or 𝒪(αs)\mathcal{O}(\alpha_{s}) corrections are included. Contrary to naïve expectations, the relative uncertainty is slightly increased upon inclusion of the 𝒪(αs)\mathcal{O}(\alpha_{s}) corrections. This is because of the abnormally large reductions of the central predictions under the influence of the 𝒪(v2)\mathcal{O}(v^{2}) and 𝒪(αs)\mathcal{O}(\alpha_{s}) corrections.

Experimentally, J/ψJ/\psi mesons may be most easily detected and reconstructed through their decays to e+ee^{+}e^{-} and μ+μ\mu^{+}\mu^{-} pairs, with a combined branching fraction of Br(J/ψl+l)=12%\mathrm{Br}(J/\psi\rightarrow l^{+}l^{-})=12\% ParticleDataGroup:2022pth . Dressing the final predictions in Table 2 with two factors of Br(J/ψl+l)\mathrm{Br}(J/\psi\rightarrow l^{+}l^{-}) and the respective integrated luminosities dt\int\mathrm{d}t\,\mathcal{L} per experiment from Table 1, we obtain 649488+82649^{+82}_{-488}, 584439+75584^{+75}_{-439}, and 558414+64558^{+64}_{-414} signal events per year at FCC-ee, CEPC, and CLIC, respectively.

Refer to caption Refer to caption Refer to caption
Refer to caption Refer to caption Refer to caption
Figure 1: NRQCD predictions of mψψm_{\psi\psi} (left), pTJ/ψp_{T}^{J/\psi} (center), and yJ/ψy^{J/\psi} (right) distributions of KαsK_{\alpha_{s}} (top) and Kv2K_{v^{2}} (bottom) at FCC-ee. The theoretical uncertainties in KαsK_{\alpha_{s}} and Kv2K_{v^{2}} are indicated by the shaded blue and yellow bands, respectively.

We now turn our attention to cross section distributions in the J/ψJ/\psi pair invariant mass mψψm_{\psi\psi} and the transverse momentum pTJ/ψp_{T}^{J/\psi} and rapidity yJ/ψy^{J/\psi} of any J/ψJ/\psi meson. Specifically, we consider the ranges 7GeVmψψ14GeV7~{}\mathrm{GeV}\leq m_{\psi\psi}\leq 14~{}\mathrm{GeV}, 2GeVpTJψ9GeV2~{}\mathrm{GeV}\leq p_{T}^{J\psi}\leq 9~{}\mathrm{GeV}, and 4yJ/ψ4-4\leq y^{J/\psi}\leq 4 in bins of unit length, yielding 7, 7, and 8 bins, respectively.

To obtain a more detailed picture of the sizes of corrections and theoretical uncertainties, we study the two consecutive correction factors Kαs=dσ𝒪(αs)/dσLOK_{\alpha_{s}}=\mathrm{d}\sigma^{\mathcal{O}(\alpha_{s})}/\mathrm{d}\sigma^{\mathrm{LO}} and Kv2=dσ𝒪(αs,v2)/dσ𝒪(αs)K_{v^{2}}=\mathrm{d}\sigma^{\mathcal{O}(\alpha_{s},v^{2})}/\mathrm{d}\sigma^{\mathcal{O}(\alpha_{s})}. For this purpose, we may concentrate on the FCC-ee case because the differences with respect to the CEPC and CLIC cases largely cancel out in the ratios. Our NRQCD predictions for KαsK_{\alpha_{s}} and Kv2K_{v^{2}} are presented in Fig. 1. We observe from Fig. 1, that the central values of KαsK_{\alpha_{s}} range between 0.55 and 0.75 in the mψψm_{\psi\psi}, pTJ/ψp_{T}^{J/\psi}, and yJ/ψy^{J/\psi} ranges considered; the mψψm_{\psi\psi} and |yJ/ψ||y^{J/\psi}| distributions monotonically increase, and so does the pTJ/ψp_{T}^{J/\psi} distribution beyond pTJ/ψ=4GeVp_{T}^{J/\psi}=4~{}\mathrm{GeV}. On the other hand, Fig. 1 shows that Kv2K_{v^{2}} ranges from 0.6 to 0.9 and exhibits mψψm_{\psi\psi}, pTJ/ψp_{T}^{J/\psi}, and yJ/ψy^{J/\psi} line shapes that behave inversely to KαsK_{\alpha_{s}}. In particular, the relativistic corrections are most important at large values of mψψm_{\psi\psi} and |yJ/ψ||y^{J/\psi}|, and small values of pTJ/ψp_{T}^{J/\psi}. We conclude that the overall correction factor K=dσ𝒪(αs,v2)/dσLO=KαsKv2K=\mathrm{d}\sigma^{\mathcal{O}(\alpha_{s},v^{2})}/\mathrm{d}\sigma^{\mathrm{LO}}=K_{\alpha_{s}}K_{v^{2}} exhibits a strongly reduced variation with mψψm_{\psi\psi}, pTJ/ψp_{T}^{J/\psi}, and yJ/ψy^{J/\psi}.

Refer to caption Refer to caption Refer to caption
Refer to caption Refer to caption Refer to caption
Refer to caption Refer to caption Refer to caption
Figure 2: LO and full NLO NRQCD predictions of dσ/dmψψ\mathrm{d}\sigma/\mathrm{d}m_{\psi\psi} [fb/GeV] (left), dσ/dpTJ/ψ\mathrm{d}\sigma/\mathrm{d}p_{T}^{J/\psi} [fb/GeV] (center), and dσ/dyJ/ψ\mathrm{d}\sigma/\mathrm{d}y^{J/\psi} [fb] (right) for e+e2J/ψ+Xe^{+}e^{-}\to 2J/\psi+X via photoproduction at FCC-ee (top), CEPC (center), and CLIC (bottom). The theoretical uncertainties at NLO and NLO are indicated by the shaded blue and yellow bands, respectively.

In Fig. 2, we present binned mψψm_{\psi\psi}, pTJ/ψp_{T}^{J/\psi}, and yJ/ψy^{J/\psi} distributions of e+e2J/ψ+Xe^{+}e^{-}\to 2J/\psi+X via photoproduction in NRQCD at LO and full NLO, including both 𝒪(v2)\mathcal{O}(v^{2}) and 𝒪(αs)\mathcal{O}(\alpha_{s}) corrections, for the FCC-ee, CEPC, and CLIC experimental setups. We observe from Fig. 2 (top row, center column) that the KK factors vary only feebly with mψψm_{\psi\psi} and yJ/ψy^{J/\psi} and moderately with pTJ/ψp_{T}^{J/\psi}, as expected from the above discussion of Fig. 1. In fact, again taking FCC-ee as a representative example, we have K=0450.37+0.26K=045_{-0.37}^{+0.26} for the mψψm_{\psi\psi} and yJ/ψy^{J/\psi} distributions, except for bins 1 and 8 of the latter, where K=0.410.30+0.23K=0.41_{-0.30}^{+0.23}. For the pTJ/ψp_{T}^{J/\psi} distribution, the KK factor ranges from 0.440.38+0.270.44_{-0.38}^{+0.27} in the first bin up to 0.660.27+0.210.66_{-0.27}^{+0.21} in the last bin.

Table 3: Numbers of expected signal events per year in each bin of mψψm_{\psi\psi}, pTJ/ψp_{T}^{J/\psi} and yJ/ψy^{J/\psi} at FCC-ee (top), CEPC (center), and CLIC (bottom).
bin 1 2 3 4 5 6 7 8
mψψm_{\psi\psi} 250197+30250^{+30}_{-197} 195148+25195^{+25}_{-148} 93.570.0+12.493.5^{+12.4}_{-70.0} 46.132.9+6.546.1^{+6.5}_{-32.9} 24.416.7+3.424.4^{+3.4}_{-16.7} 13.88.9+1.913.8^{+1.9}_{-8.9} 8.175.05+1.098.17^{+1.09}_{-5.05} -
pTp_{T} 486386+66486^{+66}_{-386} 12883+14128^{+14}_{-83} 24.413.7+2.324.4^{+2.3}_{-13.7} 5.562.49+0.385.56^{+0.38}_{-2.49} 1.530.52+0.071.53^{+0.07}_{-0.52} 0.5010.124+0.0100.501^{+0.010}_{-0.124} 0.1850.032+0.0010.185^{+0.001}_{-0.032} -
yy 0.1590.102+0.0230.159^{+0.023}_{-0.102} 39.430.2+5.339.4^{+5.3}_{-30.2} 12190+15121^{+15}_{-90} 164123+21164^{+21}_{-123} 164123+21164^{+21}_{-123} 12190+15121^{+15}_{-90} 39.430.1+5.339.4^{+5.3}_{-30.1} 0.1590.102+0.0230.159^{+0.023}_{-0.102}
mψψm_{\psi\psi} 225177+27225^{+27}_{-177} 176134+23176^{+23}_{-134} 84.262.3+11.084.2^{+11.0}_{-62.3} 41.629.6+5.841.6^{+5.8}_{-29.6} 22.015.0+3.122.0^{+3.1}_{-15.0} 12.48.1+1.712.4^{+1.7}_{-8.1} 7.374.55+0.987.37^{+0.98}_{-4.55}
pTp_{T} 438347+59438^{+59}_{-347} 11575+13115^{+13}_{-75} 22.012.3+2.122.0^{+2.1}_{-12.3} 5.012.25+0.355.01^{+0.35}_{-2.25} 1.380.47+0.061.38^{+0.06}_{-0.47} 0.4520.112+0.0100.452^{+0.010}_{-0.112} 0.1670.029+0.0010.167^{+0.001}_{-0.029}
yy 0.1440.093+0.0210.144^{+0.021}_{-0.093} 35.527.2+4.835.5^{+4.8}_{-27.2} 10981+14109^{+14}_{-81} 147110+19147^{+19}_{-110} 147111+19147^{+19}_{-111} 10981+14109^{+14}_{-81} 35.627.2+4.835.6^{+4.8}_{-27.2} 0.1440.093+0.0210.144^{+0.021}_{-0.093}
mψψm_{\psi\psi} 197154+22197^{+22}_{-154} 162123+20162^{+20}_{-123} 83.861.6+10.783.8^{+10.7}_{-61.6} 44.431.5+5.844.4^{+5.8}_{-31.5} 25.217.2+3.325.2^{+3.3}_{-17.2} 15.19.9+2.015.1^{+2.0}_{-9.9} 9.615.93+1.189.61^{+1.18}_{-5.93}
pTp_{T} 407319+50407^{+50}_{-319} 11877+13118^{+13}_{-77} 25.214.2+2.425.2^{+2.4}_{-14.2} 6.392.95+0.466.39^{+0.46}_{-2.95} 1.970.69+0.081.97^{+0.08}_{-0.69} 0.7180.184+0.0160.718^{+0.016}_{-0.184} 0.2960.053+0.0020.296^{+0.002}_{-0.053}
yy 51.538.3+6.251.5^{+6.2}_{-38.3} 45.934.0+5.545.9^{+5.5}_{-34.0} 41.931.0+5.041.9^{+5.0}_{-31.0} 39.929.4+4.839.9^{+4.8}_{-29.4} 40.029.5+4.840.0^{+4.8}_{-29.5} 41.930.9+5.041.9^{+5.0}_{-30.9} 45.933.9+5.545.9^{+5.5}_{-33.9} 51.438.1+6.251.4^{+6.2}_{-38.1}

The respective numbers of signal events per year, based on our best predictions, are collected in Table 3. For all three experimental setups, promising yields are expected in the lower mψψm_{\psi\psi} and pTJ/ψp_{T}^{J/\psi} ranges and in the central yJ/ψy^{J/\psi} region.

Table 4: Full-NLO NRQCD predictions of dσ/dpT\mathrm{d}\sigma/\mathrm{d}p_{T} [fb/GeV] at FCC-ee for μr=ξmT\mu_{r}=\xi m_{T}.
bin 1 2 3 4 5 6 7
ξ=1/2\xi=1/2 9.42-9.42 1.90-1.90 0.272-0.272 0.0430-0.0430 0.00726-0.00726 0.00120-0.00120 0.000124-0.000124
ξ=1\xi=1 0.162-0.162 0.0673 0.0270 0.00974 0.00370 0.00148 0.000620
ξ=2\xi=2 1.81 0.519 0.0100 0.023 0.00647 0.00213 0.000790

We are faced by considerable theoretical uncertainties in Tables 2 and 3 and Figs. 1 and 2, which manifest themselves in sizable shifts under μr\mu_{r} variations. While we believe that our default choice μr=s\mu_{r}=\sqrt{s} of renormalization scale is most appropriate for the problem at hand, it is instructive to also consider alternatives. In the case of J/ψJ/\psi single or associated production, the J/ψJ/\psi transverse mass mT=pT2+4mc2m_{T}=\sqrt{p_{T}^{2}+4m_{c}^{2}} is often chosen as the default. This motivates us to explore the choice μr=ξmT\mu_{r}=\xi m_{T} with ξ=1/2,1,2\xi=1/2,1,2. We do this taking dσ/dpT\mathrm{d}\sigma/\mathrm{d}p_{T} at FCC-ee as an example and present our full NLO NRQCD predictions in Table 4. These turn out to be considerably smaller than our default predictions in Fig. 2 and even partly negative, which disqualifies this low scale choice altogether.

IV Conclusions

A tantalizing aspect of the physics potentials of future high-energy, high-luminosity e+ee^{+}e^{-} colliders is to shed light on the mechanism underlying the formation of heavy quarkonia. J/ψJ/\psi pair production, which has been extensively studied at the LHC, provides a particularly sensitive probe for that. While the hadroproduction of J/ψJ/\psi pairs is plagued by sizable, but poorly known DPS contributions Kom:2011bd , the latter are absent in e+ee^{+}e^{-} collisions. This motivated us to study prompt J/ψJ/\psi pair production in two-photon collisions at future e+ee^{+}e^{-} colliders considering the FCC-ee FCC:2018evy , CEPC CEPCStudyGroup:2018rmc , and CLIC CLICdp:2018cto experimental setups. We derived, for the first time, the relativistic corrections of 𝒪(v2)\mathcal{O}(v^{2}), from both matrix elements and phase space, and provided an independent check of the quantum corrections of 𝒪(αs)\mathcal{O}(\alpha_{s}) presented in numerical form in Ref. Yang:2020xkl . We find that the familiar 𝒪(αs)\mathcal{O}(\alpha_{s}) reduction Yang:2020xkl is significantly amplified by the 𝒪(v2)\mathcal{O}(v^{2}) corrections. In fact, the 𝒪(αs)\mathcal{O}(\alpha_{s})-corrected results are typically reduced by 20%. Thanks to the extremely high luminosities envisaged at the future e+ee^{+}e^{-} facilities, promising signal yields may still be expected. Assuming the J/ψJ/\psi mesons to be reconstructed via their e+ee^{+}e^{-} and μ+μ\mu^{+}\mu^{-} decays, we predict 649488+82649^{+82}_{-488}, 584439+75584^{+75}_{-439}, and 558414+64558^{+64}_{-414} signal events per year at the FCC-ee, CEPC, and CLIC, respectively. The large theoretical uncertainties are due to the lack of knowledge of higher-order corrections and determined by variations of the renormalization scale as usual. As a by-product, our results can easily be applied to double J/ψJ/\psi production in ultra-peripheral collisions at hadron colliders.

Acknowledgements.
We thank Cong-Feng Qiao for helpful communications enabling a comparison with the results of Ref. Yang:2020xkl . This work was supported in part by the German Research Foundation DFG through Research Unit FOR 2926 “Next Generation Perturbative QCD for Hadron Structure: Preparing for the Electron-Ion Collider” under Grant No. 409651613. The work of X.B.J. was supported in part by National Natural Science Foundation of China under Grant No. 12061131006. The work of R.L. was supported in part by National Natural Science Foundation of China under Grant Nos. U1832160 and 12075177.

References

  • (1) G. T. Bodwin, E. Braaten, and G. P. Lepage, “Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium,” Phys. Rev. D 51 (1995), 1125–1171 doi.org/10.1103/PhysRevD.51.1125 [erratum: Phys. Rev. D 55 (1997), 5853–5854 doi:10.1103/PhysRevD.55.5853] [arXiv:hep-ph/9407339 [hep-ph]].
  • (2) M. Butenschoen and B. A. Kniehl, “J/ψJ/\psi Polarization at the Tevatron and the LHC: Nonrelativistic-QCD Factorization at the Crossroads,” Phys. Rev. Lett. 108 (2012), 172002 doi:10.1103/PhysRevLett.108.172002 [arXiv:1201.1872 [hep-ph]].
  • (3) M. Butenschoen, Z.-G. He, and B. A. Kniehl, “ηc\eta_{c} Production at the LHC Challenges Nonrelativistic QCD Factorization,” Phys. Rev. Lett. 114 (2015), 092004 doi:10.1103/PhysRevLett.114.092004 [arXiv:1411.5287 [hep-ph]].
  • (4) M. Butenschoen and B. A. Kniehl, “Constraints on Nonrelativistic-QCD Long-Distance Matrix Elements from J/ψJ/\psi Plus W/ZW/Z Production at the LHC,” Phys. Rev. Lett. 130 (2023), 041901 doi:10.1103/PhysRevLett.130.041901 [arXiv:2207.09366 [hep-ph]].
  • (5) V. Barger, S. Fleming, and R. J. N. Phillips, “Double gluon fragmentation to J/ψJ/\psi pairs at the Tevatron,” Phys. Lett. B 371 (1996), 111–116 doi:10.1016/0370-2693(95)01592-2 [arXiv:hep-ph/9510457 [hep-ph]].
  • (6) C.-F. Qiao, “J/ψJ/\psi pair production at the Fermilab Tevatron,” Phys. Rev. D 66 (2002), 057504 doi:10.1103/PhysRevD.66.057504 [arXiv:hep-ph/0206093 [hep-ph]].
  • (7) R. Li, Y.-J. Zhang, and K.-T. Chao, “Pair production of heavy quarkonium and Bc()B_{c}^{(*)} mesons at hadron colliders,” Phys. Rev. D 80 (2009), 014020 doi:10.1103/PhysRevD.80.014020 [arXiv:0903.2250 [hep-ph]].
  • (8) P. Ko, C. Yu, and J. Lee, “Inclusive double-quarkonium production at the Large Hadron Collider,” JHEP 01 (2011), 070 doi:10.1007/JHEP01(2011)070 [arXiv:1007.3095 [hep-ph]].
  • (9) Z.-G. He and B. A. Kniehl, “Complete Nonrelativistic-QCD Prediction for Prompt Double J/ψJ/\psi Hadroproduction,” Phys. Rev. Lett. 115 (2015), 022002 doi:10.1103/PhysRevLett.115.022002 [arXiv:1609.02786 [hep-ph]].
  • (10) C. H. Kom, A. Kulesza, and W. J. Stirling, “Pair Production of J/ψJ/\psi as a Probe of Double Parton Scattering at LHCb,” Phys. Rev. Lett. 107 (2011), 082002 doi:10.1103/PhysRevLett.107.082002 [arXiv:1105.4186 [hep-ph]].
  • (11) V. M. Abazov et al. (D0 Collaboration), “Observation and studies of double J/ψJ/\psi production at the Tevatron,” Phys. Rev. D 90 (2014), 111101(R) doi:10.1103/PhysRevD.90.111101 [arXiv:1406.2380 [hep-ex]].
  • (12) R. Aaij et al. (LHCb Collaboration), “Measurement of the J/ψJ/\psi pair production cross-section in pppp collisions at s=13TeV\sqrt{s}=13~{}\mathrm{TeV},” JHEP 06 (2017), 047 doi:10.1007/JHEP06(2017)047 [erratum: JHEP 10 (2017), 068 doi.org/10.1007/JHEP10(2017)068] [arXiv:1612.07451 [hep-ex]].
  • (13) M. Aaboud et al. (ATLAS Collaboration), “Measurement of the prompt J/ψJ/\psi pair production cross-section in pppp collisions at s=8TeV\sqrt{s}=8~{}\mathrm{TeV} with the ATLAS detector,” Eur. Phys. J. C 77 (2017), 76 doi:10.1140/epjc/s10052-017-4644-9 [arXiv:1612.02950 [hep-ex]].
  • (14) R. Aaij et al. (LHCb Collaboration), “Measurement of J/ψJ/\psi-pair production in pppp collisions at s=13TeV\sqrt{s}=13~{}\mathrm{TeV} and study of gluon transverse-momentum dependent PDFs,” JHEP 03, 088 (2024) doi:10.1007/JHEP03(2024)088 [arXiv:2311.14085 [hep-ex]].
  • (15) J.-P. Lansberg and H.-S. Shao, “J/ψJ/\psi-pair production at large momenta: Indications for double parton scatterings and large αs5\alpha_{s}^{5} contributions,” Phys. Lett. B 751 (2015), 479–486 doi:10.1016/j.physletb.2015.10.083 [arXiv:1410.8822 [hep-ph]].
  • (16) A. A. Prokhorov, A. V. Lipatov, M. A. Malyshev, and S. P. Baranov, “Revisiting the production of J/ψJ/\psi pairs at the LHC,” Eur. Phys. J. C 80 (2020), 1046 doi:10.1140/epjc/s10052-020-08631-2 [arXiv:2008.12089 [hep-ph]].
  • (17) G. Aad et al. (ATLAS Collaboration), “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC,” Phys. Lett. B 716 (2012), 1–29 doi:10.1016/j.physletb.2012.08.020 [arXiv:1207.7214 [hep-ex]].
  • (18) S. Chatrchyan et al. (CMS Collaboration), “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC,” Phys. Lett. B 716 (2012), 30–61 doi:10.1016/j.physletb.2012.08.021 [arXiv:1207.7235 [hep-ex]].
  • (19) A. Abada et al. (FCC Collaboration), “FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2,” Eur. Phys. J. Special Topics 228 (2019), 261–623 doi:10.1140/epjst/e2019-900045-4
  • (20) (CEPC Study Group), “CEPC Conceptual Design Report: Volume 1 - Accelerator,” [arXiv:1809.00285 [physics.acc-ph]].
  • (21) P. N. Burrows et al. (CLIC and CLICdp Collaborations), “The Compact Linear Collider (CLIC) - 2018 Summary Report,” doi:10.23731/CYRM-2018-002 [arXiv:1812.06018 [physics.acc-ph]].
  • (22) M. Klasen, B. A. Kniehl, L. N. Mihaila, and M. Steinhauser, “Evidence for the Color-Octet Mechanism from CERN LEP2 γγJ/ψ\gamma\gamma\to J/\psi + XX Data,” Phys. Rev. Lett. 89 (2002), 032001 doi:10.1103/PhysRevLett.89.032001 [arXiv:hep-ph/0112259 [hep-ph]].
  • (23) M. Butenschoen and B. A. Kniehl, “World data of J/ψJ/\psi production consolidate nonrelativistic QCD factorization at next-to-leading order,” Phys. Rev. D 84 (2011), 051501(R) doi:10.1103/PhysRevD.84.051501 [arXiv:1105.0820 [hep-ph]].
  • (24) R. J. DeWitt, L. M. Jones, J. D. Sullivan, D. E. Willen, and H. W. Wyld, Jr., “Anomalous components of the photon structure functions,” Phys. Rev. D 19 (1979), 2046–2052 doi:10.1103/PhysRevD.19.2046 [erratum: Phys. Rev. D 20 (1979), 1751 doi:10.1103/PhysRevD.20.1751].
  • (25) G. T. Bodwin, J. Lee, and E. Braaten, “e+ee^{+}e^{-} Annihilation into J/ψ+J/ψJ/\psi+J/\psi,” Phys. Rev. Lett. 90 (2003), 162001 doi:10.1103/PhysRevLett.90.162001 [erratum: Phys. Rev. Lett. 95 (2005), 239901 doi:10.1103/PhysRevLett.95.239901] [arXiv:hep-ph/0212181 [hep-ph]].
  • (26) G. T. Bodwin, J. Lee, and E. Braaten, “Exclusive double-charmonium production from e+ee^{+}e^{-} annihilation into two virtual photons,” Phys. Rev. D 67 (2003), 054023 doi:10.1103/PhysRevD.67.054023 [erratum: Phys. Rev. D 72 (2005), 099904 doi:10.1103/PhysRevD.72.099904] [arXiv:hep-ph/0212352 [hep-ph]].
  • (27) K. Hagiwara, E. Kou, and C. F. Qiao, “Exclusive J/ψJ/\psi productions at e+ee^{+}e^{-} colliders,” Phys. Lett. B 570 (2003), 39–45 doi:10.1016/j.physletb.2003.07.006 [arXiv:hep-ph/0305102 [hep-ph]].
  • (28) G. T. Bodwin, E. Braaten, J. Lee, and C. Yu, “Exclusive two-vector-meson production from e+ee^{+}e^{-} annihilation,” Phys. Rev. D 74 (2006), 074014 doi:10.1103/PhysRevD.74.074014 [arXiv:hep-ph/0608200 [hep-ph]].
  • (29) V. V. Braguta, “Study of double vector charmonium meson production at BB factories within light cone formalism,” Phys. Rev. D 78 (2008), 054025 doi:10.1103/PhysRevD.78.054025 [arXiv:0712.1475 [hep-ph]].
  • (30) B. Gong and J.-X. Wang, “QCD Corrections to Double J/ψJ/\psi Production in e+ee^{+}e^{-} Annihilation at s=10.6GeV\sqrt{s}=10.6~{}\mathrm{GeV},” Phys. Rev. Lett. 100 (2008), 181803 doi:10.1103/PhysRevLett.100.181803 [arXiv:0801.0648 [hep-ph]].
  • (31) Y. Fan, J. Lee, and C. Yu, “Resummation of relativistic corrections to exclusive productions of charmonia in e+ee^{+}e^{-} collisions,” Phys. Rev. D 87 (2013), 094032 doi:10.1103/PhysRevD.87.094032 [arXiv:1211.4111 [hep-ph]].
  • (32) W.-L. Sang, F. Feng, Y. Jia, Z. Mo, J. Pan, and J.-Y. Zhang, “Optimized 𝒪(αs2)\mathcal{O}(\alpha_{s}^{2}) Correction to Exclusive Double-J/ψJ/\psi Production at BB Factories,” Phys. Rev. Lett. 131 (2023), 161904 doi:10.1103/PhysRevLett.131.161904 [arXiv:2306.11538 [hep-ph]].
  • (33) X.-D. Huang, B. Gong, R.-C. Niu, H.-M. Yu, and J.-X. Wang, “Next-to-next-to-leading-order QCD corrections to double J/ψJ/\psi production at the BB factories,” JHEP 02 (2024), 055 doi:10.1007/JHEP02(2024)055 [arXiv:2311.04751 [hep-ph]].
  • (34) C.-F. Qiao, “Double J/ψJ/\psi production at photon colliders,” Phys. Rev. D 64 (2001), 077503 doi:10.1103/PhysRevD.64.077503 [arXiv:hep-ph/0104309 [hep-ph]].
  • (35) H. Yang, Z.-Q. Chen, and C.-F. Qiao, “NLO QCD corrections to exclusive quarkonium-pair production in photon–photon collision,” Eur. Phys. J. C 80 (2020), 806 doi:10.1140/epjc/s10052-020-8390-z.
  • (36) Z.-G. He, Y. Fan, and K.-T. Chao, “Relativistic corrections to J/ψJ/\psi exclusive and inclusive double charm production at BB factories,” Phys. Rev. D 75 (2007), 074011 doi:10.1103/PhysRevD.75.074011 [arXiv:hep-ph/0702239 [hep-ph]].
  • (37) Z.-G. He, Y. Fan, and K.-T. Chao, “Relativistic correction to e+eJ/ψ+gge^{+}e^{-}\to J/\psi+gg at BB factories and constraint on color-octet matrix elements,” Phys. Rev. D 81 (2010), 054036 doi:10.1103/PhysRevD.81.054036 [arXiv:0910.3636 [hep-ph]].
  • (38) Y. Jia, “Color-singlet relativistic correction to inclusive J/ψJ/\psi production associated with light hadrons at BB factories,” Phys. Rev. D 82 (2010), 034017 doi:10.1103/PhysRevD.82.034017 [arXiv:0912.5498 [hep-ph]].
  • (39) G.-Z. Xu, Y.-J. Li, K.-Y. Liu, and Y.-J. Zhang, “Relativistic correction to color-octet J/ψJ/\psi production at hadron colliders,” Phys. Rev. D 86 (2012), 094017 doi:10.1103/PhysRevD.86.094017 [arXiv:1203.0207 [hep-ph]].
  • (40) Z.-G. He and B. A. Kniehl, “Relativistic corrections to prompt J/ψJ/\psi photo- and hadroproduction,” Phys. Rev. D 90 (2014), 014045 doi:10.1103/PhysRevD.90.014045 [erratum: Phys. Rev. D 94 (2016), 079903 doi:10.1103/PhysRevD.94.079903] [arXiv:1507.03882 [hep-ph]].
  • (41) Z.-G. He and B. A. Kniehl, “Relativistic corrections to J/ψJ/\psi polarization in photo- and hadroproduction,” Phys. Rev. D 92 (2015), 014009 doi:10.1103/PhysRevD.92.014009 [arXiv:1507.03883 [hep-ph]].
  • (42) Y.-J. Li, G.-Z. Xu, K.-Y. Liu, and Y.-J. Zhang, “Relativistic correction to J/ψJ/\psi and Υ\Upsilon pair production,” JHEP 07 (2013), 051 doi:10.1007/JHEP07(2013)051 [arXiv:1303.1383 [hep-ph]].
  • (43) Z.-G. He, X.-B. Jin, and B. A. Kniehl, “Relativistic corrections to prompt double charmonium hadroproduction near threshold,” [arXiv:2402.07773 [hep-ph]], accepted for publication in Phys. Rev. D.
  • (44) R. Li and K.-T. Chao, “Photoproduction of J/ψJ/\psi in association with a cc¯c\bar{c} pair,” Phys. Rev. D 79 (2009), 114020 doi:10.1103/PhysRevD.79.114020 [arXiv:0904.1643 [hep-ph]].
  • (45) J. Küblbeck, M. Böhm, and A. Denner, “Feyn arts — computer-algebraic generation of Feynman graphs and amplitudes,” Comput. Phys. Commun. 60 (1990), 165–180 doi:10.1016/0010-4655(90)90001-H.
  • (46) P. Nogueira, “Automatic Feynman Graph Generation,” J. Comput. Phys. 105 (1993), 279–289 doi:10.1006/jcph.1993.1074.
  • (47) R. Mertig, M. Böhm, and A. Denner, “Feyn Calc — Computer-algebraic calculation of Feynman amplitudes,” ComputṖhys. Commun. 64 (1991), 345–359 doi:10.1016/0010-4655(91)90130-D
  • (48) J. A. M. Vermaseren, “New features of FORM,” [arXiv:math-ph/0010025 [math-ph]].
  • (49) S. Laporta, “High-precision calculation of multiloop Feynman integrals by difference equations,” Int. J. Mod. Phys. A 15 (2000), 5087–5159 doi:10.1142/S0217751X00002159 [arXiv:hep-ph/0102033 [hep-ph]].
  • (50) K. G. Chetyrkin and F. V. Tkachov, “Integration by parts: The algorithm to calculate β\beta-functions in 4 loops,” Nucl. Phys. B 192 (1981), 159–204 doi:10.1016/0550-3213(81)90199-1.
  • (51) A. von Manteuffel and C. Studerus, “Reduze 2 — Distributed Feynman Integral Reduction,” [arXiv:1201.4330 [hep-ph]].
  • (52) A. V. Smirnov and F. S. Chuharev, “FIRE6: Feynman Integral REduction with modular arithmetic,” Comput. Phys. Commun. 247 (2020), 106877 doi:10.1016/j.cpc.2019.106877 [arXiv:1901.07808 [hep-ph]].
  • (53) H. H. Patel, “Package-X 2.0: A Mathematica package for the analytic calculation of one-loop integrals,” Comput. Phys. Commun. 218 (2017), 66–70 doi:10.1016/j.cpc.2017.04.015 [arXiv:1612.00009 [hep-ph]].
  • (54) R. K. Ellis and G. Zanderighi, “Scalar one-loop integrals for QCD,” JHEP 02 (2008), 002 doi:10.1088/1126-6708/2008/02/002 [arXiv:0712.1851 [hep-ph]].
  • (55) J. Pumplin, D. R. Stump, J. Huston, H.-L. Lai, P. M. Nadolsky, and W.-K. Tung, “New generation of parton distributions with uncertainties from global QCD analysis,” JHEP 07 (2002), 012 doi:10.1088/1126-6708/2002/07/012 [arXiv:hep-ph/0201195 [hep-ph]].
  • (56) R. L. Workman et al. (Particle Data Group), “Review of Particle Physics,” Prog. Theor. Exp. Phys. 2022 (2022), 083C01 and 2023 update doi:10.1093/ptep/ptac097.
  • (57) E. J. Eichten and C. Quigg, “Quarkonium wave functions at the origin,” Phys. Rev. D 52 (1995), 1726–1728 doi:10.1103/PhysRevD.52.1726 [arXiv:hep-ph/9503356 [hep-ph]].
  • (58) G. T. Bodwin, D. Kang, and J. Lee, “Potential-model calculation of an order-v2v^{2} nonrelativistic QCD matrix element,” Phys. Rev. D 74 (2006), 014014 doi:10.1103/PhysRevD.74.014014 [arXiv:hep-ph/0603186 [hep-ph]].
  • (59) S. Frixione, M. L. Mangano, P. Nason, and G. Ridolfi, “Improving the Weizsäcker–Williams approximation in electron–proton collisions,” Phys. Lett. B 319 (1993), 339–345 doi:10.1016/0370-2693(93)90823-Z [arXiv:hep-ph/9310350 [hep-ph]].
  • (60) P. Chen, “Differential luminosity under multiphoton beamstrahlung,” Phys. Rev. D 46 (1992), 1186–1191 doi:10.1103/PhysRevD.46.1186.