This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Next-to-leading order QCD corrections to ZηQ+Q+Q¯Z\to\eta_{Q}+Q+\bar{Q}

Xu-Chang Zhenga [email protected]    Xing-Gang Wua [email protected]    Xi-Jie Zhana [email protected]    Hua Zhoua,b [email protected]    Hong-Tai Lia [email protected] a Department of Physics, Chongqing Key Laboratory for Strongly Coupled Physics, Chongqing University, Chongqing 401331, People’s Republic of China
b Department of Physics, Norwegian University of Science and Technology, Høgskoleringen 5, N-7491 Trondheim, Norway
Abstract

It has been found that at a high luminosity e+ee^{+}e^{-} collider, sizable ηc+cc¯X\eta_{c}+c\bar{c}X and ηb+bb¯X\eta_{b}+b\bar{b}X events can be produced when it works around the ZZ peak. In this paper, we calculate the decay widths of Zηc+c+c¯+XZ\to\eta_{c}+c+\bar{c}+X and Zηb+b+b¯+XZ\to\eta_{b}+b+\bar{b}+X up to next-to-leading order (NLO) accuracy. We find that the NLO corrections are significant in these two processes. After including the NLO corrections, the decay widths of Zηc+c+c¯+XZ\to\eta_{c}+c+\bar{c}+X and Zηb+b+b¯+XZ\to\eta_{b}+b+\bar{b}+X are enhanced by about 34%34\% and 28%28\% for the case of μR=2mQ\mu_{R}=2m_{Q}, and are enhanced by about 112%112\% and 83%83\% for the case of μR=mZ\mu_{R}=m_{{}_{Z}}, respectively. The differential decay widths dΓ/dzd\Gamma/dz, dΓ/dm12d\Gamma/dm_{12} and dΓ/dm23d\Gamma/dm_{23} for these two decay processes are also analyzed.

I Introduction

Heavy quarkonium production presents an ideal laboratory for the study of the interplay between the perturbative and nonperturbative effects of QCD; it has been a focus of theoretical and experimental interest since the discovery of J/ψJ/\psi in 1974. In order to describe the quarkonium production, the color-evaporation model (CEM) Fritzsch:1977ay ; Halzen:1977rs , the color-singlet model (CSM) Chang:1979nn ; Berger:1980ni ; Matsui:1986dk , and the nonrelativistic QCD (NRQCD) effective theory nrqcd have been proposed. Among them, the NRQCD effective theory provides a systematic way of separating the short-distance and long-distance effects in the quarkonium production, and has achieved great success in describing the experimental data of the quarkonium production, especially for the unpolarized cross section of the J/ψJ/\psi hadroproduction ybook1 ; Andronic:2015wma ; Lansberg:2019adr ; Chen:2021tmf . However, there are still challenges to NRQCD. For instance, the hadroproduction cross section of ηc\eta_{c} measured by the LHCb experiments Aaij:2014bga can be well described by the color-singlet contribution, i.e., the color-octet contribution should be very small Butenschoen:2014dra . This seems inconsistent with the heavy-quark spin symmetry (HQSS) relation between the long-distance matrix elements (LDMEs) of ηc\eta_{c} and J/ψJ/\psi.111References Han:2014jya ; Zhang:2014ybe pointed out that the hadroproduction data of J/ψJ/\psi and ηc\eta_{c} can be simultaneously described by one set of LDMEs. However, theoretical predictions based on this set of LDMEs fail to describe the J/ψJ/\psi production data from e+ee^{+}e^{-} annihilation at the B-factory Belle:2009bxr ; Li:2014fya . It is important to study more processes involving the charmonium for testing the NRQCD factorization.

It has been found that the heavy quarkonium production through ZZ boson decays can provide a good platform for studying the production mechanism of quarkonia, which has attracted great attention Guberina:1980dc ; Keung:1980ev ; Abraham:1989ri ; Barger:1989cq ; Hagiwara:1991mt ; Braaten:1993mp ; Fleming:1993fq ; Cheung:1995ka ; Cho:1995vv ; Ernstrom:1996aa ; Schuler:1997is ; JXWang ; Liao:2015vqa ; Huang:2014cxa ; Likhoded:2017jmx ; Bodwin:2017pzj ; Sun:2018hpb ; Chung:2019ota ; jpsiFFNLO ; Sun:2020yrb ; Sun:2021avu ; Zheng:2021jyd ; Sun:2022iir . A large number of ZZ boson events can be accumulated at the LHC or a future high-luminosity e+ee^{+}e^{-} collider running around the ZZ pole. At the LHC, there are about 10910^{9} ZZ bosons to be produced per year Liao:2015vqa . It is well known that several proposed high-luminosity e+ee^{+}e^{-} colliders, such as the ILC Baer:2013cma , FCC-ee FCC:2018byv , CEPC CEPCStudyGroup:2018ghi , and Super ZZ Factory zfactory , are planned to run at the ZZ pole for a period of time. When the e+ee^{+}e^{-} collider runs at the ZZ pole and with a luminosity of 103436cm2s110^{34-36}{\rm cm}^{-2}{\rm s}^{-1}, there are about 1091110^{9-11} ZZ bosons to be produced per year Erler:2000jg . These colliders will open new opportunities for studying the quarkonium production through ZZ boson decays.

Most studies on the heavy quarkonium production through the ZZ boson decays focus on the spin-triplet J/ψJ/\psi and Υ\Upsilon production, while few studies are for the spin-singlet ηQ\eta_{Q} (Q=bQ=b or cc) production. In our recent work Zheng:2021jyd , we studied the inclusive production of the ηQ\eta_{Q} via the ZZ boson decays up to order ααs2\alpha\alpha_{s}^{2} within the framework of NRQCD, in which the leading color-singlet (S0[1]1{}^{1}S_{0}^{[1]}) and color-octet (S0[8]1{}^{1}S_{0}^{[8]}, S1[8]3{}^{3}S_{1}^{[8]}, and P1[8]1{}^{1}P_{1}^{[8]}) Fock states are considered. The study found that there are many interesting features in these production processes. An important channel contributing to the inclusive production ZηQ+XZ\to\eta_{Q}+X is ZηQ+Q+Q¯Z\to\eta_{Q}+Q+\bar{Q}. Experimentally, its decay width can be measured separately through the heavy-flavor tagging technology. Therefore, it is helpful to do a precise theoretical study on this channel. In this paper, we devote ourselves to studying the decay ZηQ+Q+Q¯+XZ\to\eta_{Q}+Q+\bar{Q}+X, which starts at order ααs2\alpha\alpha_{s}^{2}, up to NLO QCD accuracy. We will use the CSM, which is the leading-order (LO) contribution (in vQv_{Q}, where vQv_{Q} is the velocity of the heavy quark or the heavy antiquark in the quarkonium rest frame, vc230%v_{c}^{2}\approx 30\% for the ηc\eta_{c} and vb210%v_{b}^{2}\approx 10\% for the ηb\eta_{b} Buchmuller:1980su ) of NRQCD,222The next-order relativistic correction to the color-singlet contribution is suppressed by order vQ2v_{Q}^{2}, while the color-octet contribution is suppressed by order vQ4v_{Q}^{4}. It is noted that the short-distance factor of the color-octet contribution may be enhanced compared to that of the color-singlet contribution. In this work, we assume the color-octet contribution is very small, and focus on the color-singlet contribution. to calculate the decay width of ZηQ+Q+Q¯+XZ\to\eta_{Q}+Q+\bar{Q}+X.

The NLO QCD corrections to ZηQ+ggZ\to\eta_{Q}+gg have recently been finished through the CSM Sun:2022iir . The authors there found that the NLO corrections are significant due to the fragmentation diagrams appearing at the NLO level.333The large fragmentation contribution in the NLO corrections of ZηQ+ggZ\to\eta_{Q}+gg can be calculated through the fragmentation-function approach, where the large logarithms of mZ/mQm_{{}_{Z}}/m_{Q} in higher-order corrections can be resummed through the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution of the fragmentation functions Zheng:2021mqr . Reference Sun:2022iir and the present paper give a complete study on the ηQ\eta_{Q} production through ZZ boson decays up to NLO QCD accuracy under the CSM.

The remaining parts of the paper are organized as follows. In Sec.II, we briefly present useful formulas for the process ZηQ+Q+Q¯+XZ\to\eta_{Q}+Q+\bar{Q}+X at the LO accuracy. In Sec.III, we present the formulas for calculating the NLO QCD corrections to the process ZηQ+Q+Q¯+XZ\to\eta_{Q}+Q+\bar{Q}+X. In Sec.IV, numerical results and discussions are presented. Section V is reserved as a summary.

II LO decay width

Under the NRQCD factorization, the decay width for ZηQ+Q+Q¯+XZ\to\eta_{Q}+Q+\bar{Q}+X can be written as

dΓZηQ+Q+Q¯+X\displaystyle d\Gamma_{Z\to\eta_{Q}+Q+\bar{Q}+X}
=ndΓ~Z(QQ¯)[n]+Q+Q¯+X𝒪ηQ(n),\displaystyle=\sum_{n}d\tilde{\Gamma}_{Z\to(Q\bar{Q})[n]+Q+\bar{Q}+X}\langle{\cal O}^{\eta_{Q}}(n)\rangle, (1)

where dΓ~d\tilde{\Gamma} are short-distance coefficients (SDCs) and 𝒪ηc(n)\langle{\cal O}^{\eta_{c}}(n)\rangle are LDMEs. The sum extends over all of the intermediate color-singlet and color-octet states LJ[1,8]2S+1{}^{2S+1}L_{J}^{[1,8]}. In the lowest-order nonrelativistic approximation (i.e., the CSM), only the color-singlet contribution with n=1S0[1]n=\,^{1}S_{0}^{[1]} needs to be considered.

In the practical calculation, we first calculate the decay width for a free on-shell (QQ¯)(Q\bar{Q}) pair with quantum number S0[1]1{}^{1}S_{0}^{[1]}, i.e., dΓZ(QQ¯)[1S0[1]]+Q+Q¯+Xd\Gamma_{Z\to(Q\bar{Q})[^{1}S_{0}^{[1]}]+Q+\bar{Q}+X}. Then the decay width for the ηQ\eta_{Q} meson can be obtained from dΓZ(QQ¯)[1S0[1]]+Q+Q¯+Xd\Gamma_{Z\to(Q\bar{Q})[^{1}S_{0}^{[1]}]+Q+\bar{Q}+X} through replacing 𝒪(QQ¯)[1S0[1]](1S0[1])\langle{\cal O}^{(Q\bar{Q})[^{1}S_{0}^{[1]}]}(^{1}S_{0}^{[1]})\rangle by 𝒪ηQ(1S0[1])\langle{\cal O}^{\eta_{Q}}(^{1}S_{0}^{[1]})\rangle.

Refer to caption
Figure 1: The LO Feynman diagrams for Z(QQ¯)[1S0[1]]+Q+Q¯Z\to(Q\bar{Q})[^{1}S_{0}^{[1]}]+Q+\bar{Q}.

At the LO level, there are four Feynman diagrams for the decay process Z(QQ¯)[1S0[1]]+Q+Q¯Z\to(Q\bar{Q})[^{1}S_{0}^{[1]}]+Q+\bar{Q}, which are shown in Fig.1. Corresponding to the four Feynman diagrams, the LO amplitude for this process can be written as MLO=M1+M2+M3+M4M_{\rm LO}=M_{1}+M_{2}+M_{3}+M_{4}, where

iM1=\displaystyle iM_{1}= ig2cosθWi(p1/2+p2)2+iϵu¯(p2)(igsγμTa)\displaystyle-\frac{ig}{2{\rm cos}\,\theta_{W}}\frac{-i}{(p_{1}/2+p_{2})^{2}+i\epsilon}\bar{u}(p_{2})(ig_{s}\gamma^{\mu}T^{a}) (2)
Π1Λ1(igsγμTa)i1+2mQ+iϵϵν(p0)γν\displaystyle\cdot\Pi_{1}\Lambda_{1}(ig_{s}\gamma_{\mu}T^{a})\frac{i}{\not{p}_{1}+\not{p}_{2}-m_{Q}+i\epsilon}\epsilon_{\nu}(p_{0})\gamma^{\nu}
(VQAQγ5)v(p3),\displaystyle\cdot(V_{Q}-A_{Q}\gamma_{5})v(p_{3}),
iM2=\displaystyle iM_{2}= ig2cosθWi(p1/2+p2)2+iϵu¯(p2)(igsγμTa)Π1\displaystyle-\frac{ig}{2{\rm cos}\,\theta_{W}}\frac{-i}{(p_{1}/2+p_{2})^{2}+i\epsilon}\bar{u}(p_{2})(ig_{s}\gamma^{\mu}T^{a})\Pi_{1} (3)
Λ1ϵν(p0)γν(VQAQγ5)i0+1/2mQ+iϵ\displaystyle\cdot\Lambda_{1}\epsilon_{\nu}(p_{0})\gamma^{\nu}(V_{Q}-A_{Q}\gamma_{5})\frac{i}{-\not{p}_{0}+\not{p}_{1}/2-m_{Q}+i\epsilon}
.(igsγμTa)v(p3),\displaystyle.(ig_{s}\gamma_{\mu}T^{a})v(p_{3}),
iM3=\displaystyle iM_{3}= ig2cosθWi(p1/2+p3)2+iϵu¯(p2)ϵν(p0)γν\displaystyle-\frac{ig}{2{\rm cos}\,\theta_{W}}\frac{-i}{(p_{1}/2+p_{3})^{2}+i\epsilon}\bar{u}(p_{2})\epsilon_{\nu}(p_{0})\gamma^{\nu} (4)
(VQAQγ5)i13mQ+iϵ(igsγμTa)\displaystyle\cdot(V_{Q}-A_{Q}\gamma_{5})\frac{i}{-\not{p}_{1}-\not{p}_{3}-m_{Q}+i\epsilon}(ig_{s}\gamma_{\mu}T^{a})
.Π1Λ1(igsγμTa)v(p3),\displaystyle.\Pi_{1}\Lambda_{1}(ig_{s}\gamma^{\mu}T^{a})v(p_{3}),
iM4=\displaystyle iM_{4}= ig2cosθWi(p1/2+p3)2+iϵu¯(p2)(igsγμTa)\displaystyle-\frac{ig}{2{\rm cos}\,\theta_{W}}\frac{-i}{(p_{1}/2+p_{3})^{2}+i\epsilon}\bar{u}(p_{2})(ig_{s}\gamma_{\mu}T^{a}) (5)
i01/2mQ+iϵϵν(p0)γν(VQAQγ5)\displaystyle\cdot\frac{i}{\not{p}_{0}-\not{p}_{1}/2-m_{Q}+i\epsilon}\epsilon_{\nu}(p_{0})\gamma^{\nu}(V_{Q}-A_{Q}\gamma_{5})
.Π1Λ1(igsγμTa)v(p3).\displaystyle.\Pi_{1}\Lambda_{1}(ig_{s}\gamma^{\mu}T^{a})v(p_{3}).

Here, VQV_{Q} and AQA_{Q} are vector and axial electroweak couplings, respectively. More explicitly, Vc=1243sin2θWV_{c}=\frac{1}{2}-\frac{4}{3}\,{\rm sin}^{2}\theta_{W}, Ac=12A_{c}=\frac{1}{2}, Vb=12+23sin2θWV_{b}=-\frac{1}{2}+\frac{2}{3}\,{\rm sin}^{2}\theta_{W} and Ab=12A_{b}=-\frac{1}{2}. Π1\Pi_{1} is the projector for SS-wave spin-singlet state

Π1=1(2mQ)3/2(1/2mQ)γ5(1/2+mQ),\displaystyle\Pi_{1}=\frac{1}{(2\,m_{Q})^{3/2}}(\not{p}_{1}/2-m_{Q})\gamma_{5}(\not{p}_{1}/2+m_{Q}), (6)

and Λ1\Lambda_{1} is the color projector for color-singlet state

Λ1=13,\displaystyle\Lambda_{1}=\frac{\textbf{1}}{\sqrt{3}}, (7)

where 1 is the unit matrix of the SU(3)cSU(3)_{c} group.

With these amplitudes, the LO decay width for the (QQ¯)[1S0[1]](Q\bar{Q})[^{1}S_{0}^{[1]}] pair can be calculated through

dΓLO(QQ¯)[1S0[1]]=1312mZ|MLO|2dΦ3,\displaystyle d\Gamma_{\rm LO}^{(Q\bar{Q})[^{1}S_{0}^{[1]}]}=\frac{1}{3}\frac{1}{2m_{{}_{Z}}}\sum|M_{\rm LO}|^{2}d\Phi_{3}, (8)

where \sum denotes the sum over the spin and color states of initial and final particles. dΦ3d\Phi_{3} is the differential phase space for the three-body final state, and

dΦ3=(2π)dδd(p0f=13pf)f=13dd1pf(2π)d12Ef,\displaystyle d\Phi_{3}=(2\pi)^{d}\delta^{d}\left(p_{0}-\sum_{f=1}^{3}p_{f}\right)\prod_{f=1}^{3}\frac{d^{d-1}\textbf{p}_{f}}{(2\pi)^{d-1}2E_{f}}, (9)

where dd is the number of the space-time dimensions. With these formulas, the LO decay width for Z(QQ¯)[1S0[1]]+Q+Q¯Z\to(Q\bar{Q})[^{1}S_{0}^{[1]}]+Q+\bar{Q} can be calculated directly.

III NLO corrections

At the NLO level, the virtual and real corrections need to be calculated. There are ultraviolet (UV) and infrared (IR) divergences in virtual correction, and IR divergence in real correction. The conventional dimensional regularization with d=42ϵd=4-2\epsilon is employed to regularize both UV and IR divergences throughout this paper. In dimensional regularization, the γ5\gamma_{5} problem is notorious, and we adopt a practical prescription proposed in Ref.Korner:1991sx . In the following subsections, we explain our main steps in calculating the virtual and real corrections.

III.1 Virtual NLO correction

Refer to caption
Figure 2: Four typical one-loop Feynman diagrams for Z(QQ¯)[1S0[1]]+Q+Q¯Z\to(Q\bar{Q})[^{1}S_{0}^{[1]}]+Q+\bar{Q}.

The virtual correction at the NLO level comes from the interference of the one-loop Feynman diagrams and the LO Feynman diagrams. Four typical one-loop Feynman diagrams are shown in Fig.2. It is noted that, compared to the J/ψJ/\psi case JXWang , there are new type Feynman diagrams, in which the (QQ¯)[1S0[1]](Q\bar{Q})[^{1}S_{0}^{[1]}] pair is produced from two virtual gluons, need to be calculated in the ηQ\eta_{Q} case. These new type Feynman diagrams do not contribute to the J/ψJ/\psi case. One of the new type diagrams is shown by the fourth diagram in Fig.2.

The virtual correction to the decay width of the process Z(QQ¯)[1S0[1]]+Q+Q¯Z\to(Q\bar{Q})[^{1}S_{0}^{[1]}]+Q+\bar{Q} can be calculated through

dΓVirtual(QQ¯)[1S0[1]]=1312mZ2Re(MLOMVirtual)dΦ3,d\Gamma_{\rm Virtual}^{(Q\bar{Q})[^{1}S_{0}^{[1]}]}=\frac{1}{3}\frac{1}{2m_{{}_{Z}}}\sum 2{\rm Re}\left(M^{*}_{\rm LO}M_{\rm Virtual}\right)d\Phi_{3}, (10)

where MVirtualM_{\rm Virtual} is the amplitude for the virtual correction, and dΦ3d\Phi_{3} is the differential three-body phase space, which has been presented in Eq.(9).

In order to take the lowest-order nonrelativistic approximation, we need to expand the amplitude in qq (the relative momentum between the quark and antiquark in the (QQ¯)[1S0[1]](Q\bar{Q})[^{1}S_{0}^{[1]}] pair). In the actual calculation, we expand the amplitude in qq (it is equivalent to taking q=0q=0 here) before performing the loop integration. In the language of method of region region , this amounts to directly calculating the contributions from the hard region. The Coulomb divergence, which is power IR divergence, will vanish in the calculation under dimensional regularization.

There are UV and IR divergences in the loop integrals. The IR divergences from the virtual correction will be canceled by the IR divergences from the real correction. The UV divergences need to be removed through renormalization. The renormalization scheme is taken as follows: For the renormalization of the heavy quark field, the heavy quark mass and the gluon field, the on-mass-shell (OS) scheme is adopted, while for the renormalization of the strong coupling constant, the modified minimal subtraction (MS¯\overline{\rm MS}) scheme is adopted. With this renormalization scheme, the quantities δZiZi1\delta Z_{i}\equiv Z_{i}-1 can be derived Klasen:2004tz

δZ2,QOS\displaystyle\delta Z^{\rm OS}_{2,Q} =\displaystyle= CFαs4π[1ϵUV+2ϵIR3γE+3ln4πμR2mQ2+4],\displaystyle-C_{F}\frac{\alpha_{s}}{4\pi}\left[\frac{1}{\epsilon_{UV}}+\frac{2}{\epsilon_{IR}}-3~{}\gamma_{E}+3~{}{\rm ln}\frac{4\pi\mu_{R}^{2}}{m_{Q}^{2}}+4\right],
δZm,QOS\displaystyle\delta Z^{\rm OS}_{m,Q} =\displaystyle= 3CFαs4π[1ϵUVγE+ln4πμR2mQ2+43],\displaystyle-3~{}C_{F}\frac{\alpha_{s}}{4\pi}\left[\frac{1}{\epsilon_{UV}}-\gamma_{E}+{\rm ln}\frac{4\pi\mu_{R}^{2}}{m_{Q}^{2}}+\frac{4}{3}\right],
δZ3OS\displaystyle\delta Z^{\rm OS}_{3} =\displaystyle= αs4π[(β02CA)(1ϵUV1ϵIR)\displaystyle\frac{\alpha_{s}}{4\pi}\left[(\beta^{\prime}_{0}-2C_{A})\left(\frac{1}{\epsilon_{UV}}-\frac{1}{\epsilon_{IR}}\right)\right.
43TFQ(1ϵUVγE+ln4πμR2mc2)],\displaystyle\left.-\frac{4}{3}T_{F}\sum_{Q}\left(\frac{1}{\epsilon_{UV}}-\gamma_{E}+{\rm ln}\frac{4\pi\mu_{R}^{2}}{m_{c}^{2}}\right)\right],
δZgMS¯\displaystyle\delta Z^{\overline{\rm MS}}_{g} =\displaystyle= β02αs4π[1ϵUVγE+ln(4π)],\displaystyle-\frac{\beta_{0}}{2}\frac{\alpha_{s}}{4\pi}\left[\frac{1}{\epsilon_{UV}}-\gamma_{E}+{\rm ln}~{}(4\pi)\right], (11)

where μR\mu_{R} is the renormalization scale, γE\gamma_{E} is the Euler constant. β0=11CA/34TFnf/3\beta_{0}=11C_{A}/3-4T_{F}n_{f}/3 is the one-loop coefficient of the QCD β\beta function, in which nfn_{f} is the number of active quark flavors. β0=11CA/34TFnlf/3\beta^{\prime}_{0}=11C_{A}/3-4T_{F}n_{lf}/3 and nlf=3n_{lf}=3 is the number of light-quark flavors. When μR[mc,mb)\mu_{R}\in[m_{c},m_{b}), we consider the charm-quark loop in the gluon self-energy but neglect the bottom-quark and top-quark loops in the gluon self-energy, i.e. nf=nlf+1=4n_{f}=n_{lf}+1=4; when μR[mb,mt)\mu_{R}\in[m_{b},m_{t}), we consider the charm-quark and bottom-quark loops in the gluon self-energy but neglect the top-quark loop in the gluon self-energy, i.e. nf=nlf+2=5n_{f}=n_{lf}+2=5. For SU(3)cSU(3)_{c} group, CA=3C_{A}=3, CF=4/3C_{F}=4/3 and TF=1/2T_{F}=1/2.

In the calculations, the package FeynArts feynarts is employed to generate Feynman diagrams and amplitudes, the package FeynCalc feyncalc1 ; feyncalc2 is employed to carry out the color and Dirac traces, the packages $Apart apart and FIRE fire are employed to conduct partial fraction and integration-by-parts (IBP) reduction. After the IBP reduction, all one-loop integrals are reduced into master integrals, and the master integrals are calculated by the package LoopTools looptools numerically. The final phase-space integrations are calculated with the help of the package Vegas vegas .

III.2 Real NLO correction

Refer to caption
Figure 3: Four typical real-correction Feynman diagrams for the decay process, Z(QQ¯)[1S0[1]]+Q+Q¯Z\to(Q\bar{Q})[^{1}S_{0}^{[1]}]+Q+\bar{Q}.

The real correction to the process Z(QQ¯)[1S0[1]]+Q+Q¯Z\to(Q\bar{Q})[^{1}S_{0}^{[1]}]+Q+\bar{Q} comes from the process Z(p0)(QQ¯)[1S0[1]](p1)+Q(p2)+Q¯(p3)+g(p4)Z(p_{0})\to(Q\bar{Q})[^{1}S_{0}^{[1]}](p_{1})+Q(p_{2})+\bar{Q}(p_{3})+g(p_{4}). Four typical Feynman diagrams are shown in Fig.3. Compared to the J/ψJ/\psi case, we need to deal with new type Feynman diagrams, in which the (QQ¯)[1S0[1]](Q\bar{Q})[^{1}S_{0}^{[1]}] pair is produced from the gluon fragmentation, such as the fourth diagram of Fig.3.

Using these Feynman diagrams, the amplitude (MRealM_{\rm Real}) for the real correction can be written down directly. Then the differential decay width for the real correction can be calculated through

dΓReal(QQ¯)[1S0[1]]=1312mZ|MReal|2dΦ4,\displaystyle d\Gamma_{\rm Real}^{(Q\bar{Q})[^{1}S_{0}^{[1]}]}=\frac{1}{3}\frac{1}{2m_{{}_{Z}}}\sum|M_{\rm Real}|^{2}d\Phi_{4}, (12)

where dΦ4d\Phi_{4} is the differential four-body phase space,

dΦ4=(2π)dδd(p0f=14pf)f=14dd1pf(2π)d12Ef.\displaystyle d\Phi_{4}=(2\pi)^{d}\delta^{d}\left(p_{0}-\sum_{f=1}^{4}p_{f}\right)\prod_{f=1}^{4}\frac{d^{d-1}\textbf{p}_{f}}{(2\pi)^{d-1}2E_{f}}. (13)

There are IR divergences in the real correction, which come from the phase-space integration over the region where the momentum of the final gluon is close to zero. We employ the two-cutoff phase-space slicing method twocutoff to isolate the IR divergences in the real correction. Due to the fact that there is no collinear divergence in the present process, we only need to introduce one cutoff parameter δs\delta_{s}. Then the phase space for the real correction is divided into two regions: The soft region with E4mZδs/2E_{4}\leq m_{{}_{Z}}\delta_{s}/2 and the hard region with E4>mZδs/2E_{4}>m_{{}_{Z}}\delta_{s}/2. Here, we define the gluon energy E4E_{4} in the rest frame of the initial ZZ boson. More explicitly, the real correction can be divided into two parts

dΓReal(QQ¯)[1S0[1]]=dΓS(QQ¯)[1S0[1]]+dΓH(QQ¯)[1S0[1]],\displaystyle d\Gamma_{\rm Real}^{(Q\bar{Q})[^{1}S_{0}^{[1]}]}=d\Gamma_{\rm S}^{(Q\bar{Q})[^{1}S_{0}^{[1]}]}+d\Gamma_{\rm H}^{(Q\bar{Q})[^{1}S_{0}^{[1]}]}, (14)

where

dΓS(QQ¯)[1S0[1]]=1312mZ|MReal|2dΦ4|E4mZδs/2,\displaystyle d\Gamma_{\rm S}^{(Q\bar{Q})[^{1}S_{0}^{[1]}]}=\frac{1}{3}\frac{1}{2m_{{}_{Z}}}\sum|M_{\rm Real}|^{2}d\Phi_{4}|_{E_{4}\leq m_{{}_{Z}}\delta_{s}/2}, (15)

and

dΓH(QQ¯)[1S0[1]]=1312mZ|MReal|2dΦ4|E4>mZδs/2.\displaystyle d\Gamma_{\rm H}^{(Q\bar{Q})[^{1}S_{0}^{[1]}]}=\frac{1}{3}\frac{1}{2m_{{}_{Z}}}\sum|M_{\rm Real}|^{2}d\Phi_{4}|_{E_{4}>m_{{}_{Z}}\delta_{s}/2}. (16)

Applying the eikonal approximation to the amplitude in the soft region twocutoff ; Bassetto:1983mvz , we obtain

|MReal|2|E4mZδs/2\displaystyle\sum|M_{\rm Real}|^{2}|_{E_{4}\leq m_{{}_{Z}}\delta_{s}/2}
=4παsCFμR2ϵ[p22(p2p4)2+2p2p3(p2p4)(p3p4)\displaystyle=4\pi\alpha_{s}C_{F}\mu_{R}^{2\epsilon}\bigg{[}-\frac{p_{2}^{2}}{(p_{2}\cdot p_{4})^{2}}+\frac{2p_{2}\cdot p_{3}}{(p_{2}\cdot p_{4})(p_{3}\cdot p_{4})}
p32(p3p4)2]|MLO|2.\displaystyle~{}~{}~{}-\frac{p_{3}^{2}}{(p_{3}\cdot p_{4})^{2}}\bigg{]}\sum|M_{\rm LO}|^{2}. (17)

Up to 𝒪(δs){\cal O}(\delta_{s}) corrections, the differential phase space for the soft region can be factorized as twocutoff

dΦ4|E4mZδs/2=dΦ3dd1p4(2π)d12E4|E4mZδs/2,\displaystyle d\Phi_{4}|_{E_{4}\leq m_{{}_{Z}}\delta_{s}/2}=d\Phi_{3}\frac{d^{d-1}\textbf{p}_{4}}{(2\pi)^{d-1}2E_{4}}|_{E_{4}\leq m_{{}_{Z}}\delta_{s}/2}, (18)

where dΦ3d\Phi_{3} denotes the differential three-body phase space without emitting a gluon, whose expression has been shown in Eq.(9).

Inserting Eqs.(17) and (18) into Eq.(15), and carrying out the integration over p4p_{4} Denner:1991kt ; Beenakker:2002nc , we obtain

dΓS(QQ¯)[1S0[1]]\displaystyle d\Gamma^{(Q\bar{Q})[^{1}S_{0}^{[1]}]}_{\rm S}
=dΓLO(QQ¯)[1S0[1]][CFαsΓ(1+ϵ)π(4πμR2mZ2)ϵ]{(1ϵlnδs2)\displaystyle=d\Gamma^{(Q\bar{Q})[^{1}S_{0}^{[1]}]}_{\rm LO}\left[\frac{C_{F}\alpha_{s}\Gamma(1+\epsilon)}{\pi}\left(\frac{4\pi\mu_{R}^{2}}{m_{{}_{Z}}^{2}}\right)^{\epsilon}\right]\left\{\left(\frac{1}{\epsilon}-{\rm ln}\,\delta_{s}^{2}\right)\right.
×(1κp2p3(κ21)mQ2lnκ2)+12β2ln(1+β21β2)\displaystyle~{}~{}~{}\times\left(1-\frac{\kappa\,p_{2}\cdot p_{3}}{(\kappa^{2}-1)m_{Q}^{2}}{\rm ln}\,\kappa^{2}\right)+\frac{1}{2\beta_{2}}{\rm ln}\left(\frac{1+\beta_{2}}{1-\beta_{2}}\right)
+12β3ln(1+β31β3)+2κp2p3(κ21)mQ2[14ln2u0|u|u0+|u|\displaystyle~{}~{}~{}+\frac{1}{2\beta_{3}}{\rm ln}\left(\frac{1+\beta_{3}}{1-\beta_{3}}\right)+\frac{2\,\kappa\,p_{2}\cdot p_{3}}{(\kappa^{2}-1)m_{Q}^{2}}\left[\frac{1}{4}{\rm ln}^{2}\frac{u^{0}-|\textbf{u}|}{u^{0}+|\textbf{u}|}\right.
+Li2(1u0+|u|v)+Li2(1u0|u|v)]|u=p3u=κp2},\displaystyle~{}~{}~{}\left.\left.\left.+{\rm Li}_{2}\left(1-\frac{u^{0}+|\textbf{u}|}{v}\right)+{\rm Li}_{2}\left(1-\frac{u^{0}-|\textbf{u}|}{v}\right)\right]\right|^{u=\kappa\,p_{2}}_{u=p_{3}}\right\},

where

β2\displaystyle\beta_{2} =\displaystyle= 1mQ2/E22,\displaystyle\sqrt{1-m_{Q}^{2}/E_{2}^{2}},
β3\displaystyle\beta_{3} =\displaystyle= 1mQ2/E32,\displaystyle\sqrt{1-m_{Q}^{2}/E_{3}^{2}},
v\displaystyle v =\displaystyle= (κ21)mQ22(κE2E3),\displaystyle\frac{(\kappa^{2}-1)m_{Q}^{2}}{2(\kappa\,E_{2}-E_{3})},
κ\displaystyle\kappa =\displaystyle= p2p3+(p2p3)2mQ4mQ2,\displaystyle\frac{p_{2}\cdot p_{3}+\sqrt{(p_{2}\cdot p_{3})^{2}-m_{Q}^{4}}}{m_{Q}^{2}},

where E2E_{2} and E3E_{3} are also defined in the rest frame of the initial ZZ boson.

Due to the constraint E4>mZδs/2E_{4}>m_{{}_{Z}}\delta_{s}/2 for the hard region, the contribution from the hard region is finite, then ΓH(QQ¯)[1S0[1]]\Gamma_{\rm H}^{(Q\bar{Q})[^{1}S_{0}^{[1]}]} can be numerically calculated in four dimensions. The real correction can be obtained by summing the contributions from the hard and soft regions easily. Both the contributions from the soft and hard regions are separately dependent on the cutoff parameter δs\delta_{s}, while the sum of these two contributions should be independent to the choice of δs\delta_{s} (δs\delta_{s} should be small enough.). Verifying this δs\delta_{s} independence is an important test of the correctness of the calculation. We have checked the δs\delta_{s} independence, and have found that the results are independent of δs\delta_{s} within the error of the numerical integration when δs\delta_{s} varies from 10510^{-5} to 10710^{-7}.

The net NLO corrections can be obtained through summing the virtual and real corrections. After summing the virtual and real corrections, the UV and IR divergences are exactly canceled, and the finite results are obtained. The decay width dΓZηQ+QQ¯Xd\Gamma_{Z\to\eta_{Q}+Q\bar{Q}X} can be obtained from dΓZ(QQ¯)[1S0[1]]+QQ¯Xd\Gamma_{Z\to(Q\bar{Q})[^{1}S_{0}^{[1]}]+Q\bar{Q}X} by multiplying a factor 𝒪ηQ(1S0[1])/𝒪(QQ¯)[1S0[1]](1S0[1])|RηQ(0)|2/(4π)\langle{\cal O}^{\eta_{Q}}(^{1}S_{0}^{[1]})\rangle/\langle{\cal O}^{(Q\bar{Q})[^{1}S_{0}^{[1]}]}(^{1}S_{0}^{[1]})\rangle\approx|R_{\eta_{Q}}(0)|^{2}/(4\pi), where RηQ(0)R_{\eta_{Q}}(0) is ηQ\eta_{Q} radial wave function at the origin, which can be calculated by using the potential model pot .

IV Numerical results and discussions

The input parameters for the numerical calculation are taken as follows Workman:2022ynf :

mc=1.67±0.07GeV,mb=4.78±0.06GeV,\displaystyle m_{c}=1.67\pm 0.07\,{\rm GeV},\;m_{b}=4.78\pm 0.06\,{\rm GeV},
mZ=91.1876GeV,sin2θW=0.231,α=1/128,\displaystyle m_{{}_{Z}}=91.1876\,{\rm GeV},\;{\rm sin}^{2}\theta_{W}=0.231,\alpha=1/128, (20)

where mcm_{c} and mbm_{b} are the pole masses, α\alpha is the electromagnetic coupling constant at mZm_{{}_{Z}}. For the running strong coupling constant, we use the two-loop formula

αs(μR)=4πβ0ln(μR2/ΛQCD2)[1β1lnln(μR2/ΛQCD2)β02ln(μR2/ΛQCD2)],\displaystyle\alpha_{s}(\mu_{R})=\frac{4\pi}{\beta_{0}{\rm ln}(\mu_{R}^{2}/\Lambda^{2}_{QCD})}\left[1-\frac{\beta_{1}{\rm ln}\,{\rm ln}(\mu_{R}^{2}/\Lambda^{2}_{QCD})}{\beta_{0}^{2}\,{\rm ln}(\mu_{R}^{2}/\Lambda^{2}_{QCD})}\right],
(21)

where β1=34CA2/34TFCFnf20TFCAnf/3\beta_{1}=34\,C_{A}^{2}/3-4\,T_{F}\,C_{F}n_{f}-20\,T_{F}\,C_{A}n_{f}/3 is the two-loop coefficient of the QCD β\beta function. According to αs(mZ)=0.118\alpha_{s}(m_{{}_{Z}})=0.118 Workman:2022ynf , we obtain ΛQCDnf=5=0.226GeV\Lambda^{n_{f}=5}_{\rm QCD}=0.226\,{\rm GeV} and ΛQCDnf=4=0.328GeV\Lambda^{n_{f}=4}_{\rm QCD}=0.328\,{\rm GeV}. With the values for ΛQCD\Lambda_{\rm QCD}, the strong coupling constant at any scale can be directly calculated through Eq.(21). For the radial wave functions at the origin, we adopt the values from the potential-model calculation pot , i.e.,

|Rηc(0)|2=0.810GeV3,|Rηb(0)|2=6.477GeV3.\displaystyle|R_{\eta_{c}}(0)|^{2}=0.810\,{\rm GeV}^{3},|R_{\eta_{b}}(0)|^{2}=6.477\,{\rm GeV}^{3}. (22)

IV.1 Integrated decay widths

In this subsection, we give the integrated decay widths for the decay channel ZηQ+Q+Q¯+XZ\to\eta_{Q}+Q+\bar{Q}+X up to the NLO level.

μR\mu_{R} αs(μR)\alpha_{s}(\mu_{R})   ΓLO\Gamma_{\rm LO}   ΓNLO\Gamma_{\rm NLO}   KK
2mc2m_{c} 0.245 62.7 84.3 1.34
mZm_{{}_{Z}} 0.118 14.5 30.8 2.12
Table 1: The decay width (in unit: keV) of Zηc+c+c¯+XZ\to\eta_{c}+c+\bar{c}+X up to the NLO level under two different choices of μR\mu_{R}, where the input charm quark mass is taken as the central value (i.e. mc=1.67GeVm_{c}=1.67\,{\rm GeV}) and the K factor is defined as K=ΓNLO/ΓLOK=\Gamma_{\rm NLO}/\Gamma_{\rm LO}.
μR\mu_{R} αs(μR)\alpha_{s}(\mu_{R})   ΓLO\Gamma_{\rm LO}   ΓNLO\Gamma_{\rm NLO}   KK
2mb2m_{b} 0.180 10.8 13.8 1.28
mZm_{{}_{Z}} 0.118 4.65 8.49 1.83
Table 2: The decay width (in unit: keV) of Zηb+b+b¯+XZ\to\eta_{b}+b+\bar{b}+X up to the NLO level under two different choices of μR\mu_{R}, where the input bottom quark mass is taken as the central value (i.e. mb=4.78GeVm_{b}=4.78\,{\rm GeV}) and the K factor is defined as K=ΓNLO/ΓLOK=\Gamma_{\rm NLO}/\Gamma_{\rm LO}.
Refer to caption
Figure 4: The LO and NLO decay widths for Zηc+c+c¯+XZ\to\eta_{c}+c+\bar{c}+X as functions of the renormalization scale μR\mu_{R}.
Refer to caption
Figure 5: The LO and NLO decay widths for Zηb+b+b¯+XZ\to\eta_{b}+b+\bar{b}+X as functions of the renormalization scale μR\mu_{R}.

In order to have a glance on the size of the NLO corrections, we first present the decay widths when the input quark masses are taken as their central values (i.e., mc=1.67GeVm_{c}=1.67\,{\rm GeV} and mb=4.78GeVm_{b}=4.78\,{\rm GeV}), an analysis of the uncertainties of these decay widths will be presented later. The decay widths of ZηQ+Q+Q¯+XZ\to\eta_{Q}+Q+\bar{Q}+X up to the NLO level are given in Tables 1 and 2, where ΓNLO\Gamma_{\rm NLO} denotes the sum of the LO contribution and the NLO corrections. The renormalization scales are set as two energy scales involved in the processes, i.e., 2mQ2m_{Q} and mZm_{{}_{Z}}. Tables 1 and 2 show that the NLO corrections contribute significantly to the decay widths in both cases. The NLO corrections increase the decay width of Zηc+c+c¯+XZ\to\eta_{c}+c+\bar{c}+X by 34%\sim 34\% for μR=2mc\mu_{R}=2m_{c} and 112%\sim 112\% for μR=mZ\mu_{R}=m_{{}_{Z}}; and they increase the decay width of Zηb+b+b¯+XZ\to\eta_{b}+b+\bar{b}+X by 28%\sim 28\% for μR=2mb\mu_{R}=2m_{b} and 83%\sim 83\% for μR=mZ\mu_{R}=m_{{}_{Z}}.

In Figs.4 and 5, the dependence of the decay widths on the renormalization scale is shown. After including the NLO corrections, the dependence of the decay widths on the renormalization scale is weakened. For Zηc+c+c¯+X(Zηb+b+b¯+X)Z\to\eta_{c}+c+\bar{c}+X(Z\to\eta_{b}+b+\bar{b}+X), the decay width decreases by 77%77\%(57%57\%) at LO, and by 63%63\%(39%39\%) at NLO when μR\mu_{R} varies from 2mQ2m_{Q} to mZm_{{}_{Z}}. However, this dependence is still strong even including the NLO corrections.

Now, let us estimate the theoretical uncertainties for these decay widths. The main uncertainty sources include the renormalization scale, the heavy quark masses and the radial wave functions at the origin 444The Monte Carlo numerical integration in the calculation would lead to an error. However, the error of the numerical integration is on the order of 102keV10^{-2}\,{\rm keV} for the ηc\eta_{c} case, and 103keV10^{-3}\,{\rm keV} for the ηb\eta_{b} case in our calculation. Thus, the error from the numerical integration is negligible.. For the uncertainties caused by the renormalization scale, we estimate them by varying the renormalization scale between two physical energy scales involved in the processes, i.e. 2mQ2m_{Q} and mZm_{{}_{Z}}. Furthermore, we take the average values of the decay widths under the two choices of the renormalization scale as their central values. For the uncertainties caused by the heavy quark masses, we estimate them by varying the heavy quark masses in the ranges given in Eq.(20), i.e., mc=1.67±0.07GeVm_{c}=1.67\pm 0.07\,{\rm GeV} and mb=4.78±0.06GeVm_{b}=4.78\pm 0.06\,{\rm GeV}. For the radial wave functions at the origin, the authors of Ref.pot did not give an error estimate. Since the potential used in Ref.pot does not include the spin effect, the wave functions calculated in this way are accurate up to corrections of relative order vQ2v_{Q}^{2}. Therefore, we estimate the uncertainties by attaching an error of 30%30\% of the central value for ηc\eta_{c}, and 10%10\% of the central value for ηb\eta_{b}. More explicitly, we take |Rηc(0)|2=0.810±0.243GeV3|R_{\eta_{c}}(0)|^{2}=0.810\pm 0.243\,{\rm GeV}^{3} and |Rηb(0)|2=6.477±0.648GeV3|R_{\eta_{b}}(0)|^{2}=6.477\pm 0.648\,{\rm GeV}^{3}. Then we obtain

ΓZηc+cc¯XLO\displaystyle\Gamma^{\rm LO}_{Z\to\eta_{c}+c\bar{c}X} =\displaystyle= 38.624.15.511.6+24.1+6.7+11.6keV,\displaystyle 38.6^{+24.1+6.7+11.6}_{-24.1-5.5-11.6}\,{\rm keV},
ΓZηc+cc¯XNLO\displaystyle\Gamma^{\rm NLO}_{Z\to\eta_{c}+c\bar{c}X} =\displaystyle= 57.626.88.417.3+26.7+10.3+17.3keV,\displaystyle 57.6^{+26.7+10.3+17.3}_{-26.8-8.4-17.3}\,{\rm keV}, (23)

and

ΓZηb+bb¯XLO\displaystyle\Gamma^{\rm LO}_{Z\to\eta_{b}+b\bar{b}X} =\displaystyle= 7.743.090.40+0.78+3.09+0.35+0.78keV,\displaystyle 7.74^{+3.09+0.35+0.78}_{-3.09-0.40+0.78}\,{\rm keV},
ΓZηb+bb¯XNLO\displaystyle\Gamma^{\rm NLO}_{Z\to\eta_{b}+b\bar{b}X} =\displaystyle= 11.12.70.51.2+2.7+0.5+1.2keV.\displaystyle 11.1^{+2.7+0.5+1.2}_{-2.7-0.5-1.2}\,{\rm keV}. (24)

Here, the first error is caused by the renormalization scale, the second error is caused by the heavy quark mass, and the last error is caused by the radial wave function at the origin. From Eqs.(23) and (24), we can see that the largest error arises from the renormalization scale uncertainty for both ηc\eta_{c} and ηb\eta_{b} cases. Furthermore, we find that although the K factors are sensitive to the renormalization scale, they are insensitive to the heavy quark mass, e.g., when we vary the charm (bottom) quark mass from 1.60GeV1.60{\rm GeV} (4.72GeV4.72{\rm GeV}) to 1.74GeV1.74{\rm GeV} (4.84GeV4.84{\rm GeV}), the K factor changes from 1.501.50 (1.431.43) to 1.491.49 (1.441.44) for the ηc\eta_{c} (ηb\eta_{b}) case.

Adding the uncertainties in quadrature, we obtain

ΓZηc+cc¯XLO\displaystyle\Gamma^{\rm LO}_{Z\to\eta_{c}+c\bar{c}X} =\displaystyle= 38.627.3+27.6keV,\displaystyle 38.6^{+27.6}_{-27.3}\,{\rm keV},
ΓZηc+cc¯XNLO\displaystyle\Gamma^{\rm NLO}_{Z\to\eta_{c}+c\bar{c}X} =\displaystyle= 57.633.0+33.4keV,\displaystyle 57.6^{+33.4}_{-33.0}\,{\rm keV}, (25)

and

ΓZηb+bb¯XLO\displaystyle\Gamma^{\rm LO}_{Z\to\eta_{b}+b\bar{b}X} =\displaystyle= 7.743.21+3.21keV,\displaystyle 7.74^{+3.21}_{-3.21}\,{\rm keV},
ΓZηb+bb¯XNLO\displaystyle\Gamma^{\rm NLO}_{Z\to\eta_{b}+b\bar{b}X} =\displaystyle= 11.13.0+3.0keV.\displaystyle 11.1^{+3.0}_{-3.0}\,{\rm keV}. (26)

IV.2 Differential decay widths

Refer to caption
Figure 6: The LO and NLO differential decay widths dΓ/dzd\Gamma/dz for Zηc+c+c¯+XZ\to\eta_{c}+c+\bar{c}+X. The error bars show the total uncertainties caused by the renormalization scale, the heavy quark mass and the wave function at the origin, and the total uncertainties are obtained by adding each uncertainty in quadrature.
Refer to caption
Figure 7: The LO and NLO differential decay widths dΓ/dzd\Gamma/dz for Zηb+b+b¯+XZ\to\eta_{b}+b+\bar{b}+X. The error bars show the total uncertainties caused by the renormalization scale, the heavy quark mass and the wave function at the origin, and the total uncertainties are obtained by adding each uncertainty in quadrature.
Refer to caption
Figure 8: The LO and NLO differential decay widths dΓ/dm12d\Gamma/dm_{12} for Zηc+c+c¯+XZ\to\eta_{c}+c+\bar{c}+X. The error bars show the total uncertainties caused by the renormalization scale, the heavy quark mass and the wave function at the origin, and the total uncertainties are obtained by adding each uncertainty in quadrature.
Refer to caption
Figure 9: The LO and NLO differential decay widths dΓ/dm12d\Gamma/dm_{12} for Zηb+b+b¯+XZ\to\eta_{b}+b+\bar{b}+X. The error bars show the total uncertainties caused by the renormalization scale, the heavy quark mass and the wave function at the origin, and the total uncertainties are obtained by adding each uncertainty in quadrature.
Refer to caption
Figure 10: The LO and NLO differential decay widths dΓ/dm23d\Gamma/dm_{23} for Zηc+c+c¯+XZ\to\eta_{c}+c+\bar{c}+X. The error bars show the total uncertainties caused by the renormalization scale, the heavy quark mass and the wave function at the origin, and the total uncertainties are obtained by adding each uncertainty in quadrature.
Refer to caption
Figure 11: The LO and NLO differential decay widths dΓ/dm23d\Gamma/dm_{23} for Zηb+b+b¯+XZ\to\eta_{b}+b+\bar{b}+X. The error bars show the total uncertainties caused by the renormalization scale, the heavy quark mass and the wave function at the origin, and the total uncertainties are obtained by adding each uncertainty in quadrature.

The differential distributions contain more information than the integrated decay widths, which can be used to test the current theory. Therefore, it is interesting to see the differential distributions of the two ZZ boson decay processes.

The energy fraction carrying by ηc\eta_{c} or ηb\eta_{b} in the processes can be defined as z2p0p1/mZ2z\equiv 2\,p_{0}\cdot p_{1}/m_{{}_{Z}}^{2}. The LO and NLO differential decay widths dΓ/dzd\Gamma/dz for the processes Zηc+c+c¯+XZ\to\eta_{c}+c+\bar{c}+X and Zηb+b+b¯+XZ\to\eta_{b}+b+\bar{b}+X are shown in Figs. 6 and 7, respectively. Figs. 6 and 7 confirm the importance of the NLO corrections. For the ηc\eta_{c} production, the magnitude of dΓ/dzd\Gamma/dz is increased obviously at small and moderate zz values and decreased slightly at higher zz values. And for the ηb\eta_{b} production, the magnitude of dΓ/dzd\Gamma/dz is increased at all zz values. The uncertainties for dΓ/dzd\Gamma/dz are also shown in the figures, which are obtained by combining the uncertainties of the renormalization scale, the heavy quark mass and the wave function at the origin.

The momenta of heavy quarks in the final state can be determined experimentally using the heavy-flavor tagging technology. Therefore, the differential decay widths dΓ/dm12d\Gamma/dm_{12} and dΓ/dm23d\Gamma/dm_{23} can be measured experimentally, where m12(p1+p2)2m_{12}\equiv\sqrt{(p_{1}+p_{2})^{2}} and m23(p2+p3)2m_{23}\equiv\sqrt{(p_{2}+p_{3})^{2}} are invariant masses of two final-state particles. We present the LO and NLO differential decay widths dΓ/dm12d\Gamma/dm_{12} and dΓ/dm23d\Gamma/dm_{23} for Zηc+c+c¯+XZ\to\eta_{c}+c+\bar{c}+X and Zηb+b+b¯+XZ\to\eta_{b}+b+\bar{b}+X in Figs. 8, 9, 10 and 11, respectively. The uncertainties for these differential decay widths are also shown in these figures. From the figures, we can see that the differential decay widths dΓ/dm12d\Gamma/dm_{12} and dΓ/dm23d\Gamma/dm_{23} are changed significantly after including the NLO corrections, especially for the decay Zηc+c+c¯+XZ\to\eta_{c}+c+\bar{c}+X. Moreover, it is found that the NLO differential decay widths dΓ/dm12d\Gamma/dm_{12} and dΓ/dm23d\Gamma/dm_{23} are negative at the large m12m_{12} or m23m_{23} for Zηc+c+c¯+XZ\to\eta_{c}+c+\bar{c}+X. This indicates that the NLO corrections are negative and larger than LO contribution in these phase space regions. In the boundary regions of the phase space, some large logarithmic terms often appear in the coefficients of the perturbation expansion, which may spoil the convergence of the perturbation series. In these boundary regions, it is necessary to resum these large logarithmic terms so as to obtain precise theoretical results. Because of these large logarithmic terms, if we calculate to a certain order (e.g. NLO) in these regions, we may obtain nonphysical negative results. Fortunately, in the considered processes, the absolute values of the negative contributions of these regions are not large. Thus, we believe that the differential decay widths for most regions of the phase space and the integrated decay widths, which are obtained in this paper, are reliable.

V Summary

In the present paper, we have studied the decays Zηc+c+c¯+XZ\to\eta_{c}+c+\bar{c}+X and Zηb+b+b¯+XZ\to\eta_{b}+b+\bar{b}+X up to NLO QCD accuracy. Integrated and differential decay widths of both decay processes are obtained, and the uncertainties for them are estimated. We find that the NLO corrections to the decay widths for Zηc+c+c¯+XZ\to\eta_{c}+c+\bar{c}+X and Zηb+b+b¯+XZ\to\eta_{b}+b+\bar{b}+X are significant. The dependence of the decay widths on the renormalization scale is very strong although the dependence is weakened after including the NLO corrections. This brings a big uncertainty to the theoretical predictions under the conventional renormalization scale setting. The higher-order corrections can reduce the uncertainty caused by the renormalization scale. However, it is very difficult to calculate the higher-order corrections beyond the NLO for these processes at present. In the literature, the principle of maximum conformality (PMC) scale-setting approach pmc1 ; pmc2 ; pmc4 ; pmc5 has been suggested to eliminate such scale uncertainty, whose key idea is to determine the correct momentum flow of the process by using the nonconformal β\beta-terms that govern the αs\alpha_{s} running behavior with the help of renormalization group equation. As a comparison, we also calculate the integrated decay widths under the PMC scale setting. Following the standard PMC procedures to the decay width of ZηQ+Q+Q¯+XZ\to\eta_{Q}+Q+\bar{Q}+X, we obtain ΓZηc+cc¯XPMC=95.432.2+34.1keV\Gamma_{Z\to\eta_{c}+c\bar{c}X}^{\rm PMC}=95.4^{+34.1}_{-32.2}\,{\rm keV} and ΓZηb+bb¯XPMC=14.71.7+1.7keV\Gamma_{Z\to\eta_{b}+b\bar{b}X}^{\rm PMC}=14.7^{+1.7}_{-1.7}\,{\rm keV}. Here, the PMC predictions of the decay width are independent to the choices of μR\mu_{R}, and the errors come from the uncertainties of the heavy quark masses and the wave functions at the origin.

The cross sections for e+eZηQ+Q+Q¯+Xe^{+}e^{-}\to Z\to\eta_{Q}+Q+\bar{Q}+X at the ZZ pole 555The γ\gamma-exchange contribution is negligibly small at the ZZ pole, which can be safely neglected. can be derived from the decay widths ΓZηQ+QQ¯X\Gamma_{Z\to\eta_{Q}+Q\bar{Q}X} through the formulas derived in the Appendix A1 of Ref.Zheng:2017xgj , i.e.,

σe+eηQ+QQ¯X=\displaystyle\sigma_{e^{+}e^{-}\to\eta_{Q}+Q\bar{Q}X}= e2(14sin2θW+8sin4θW)8sin2θWcos2θWmZΓZ2\displaystyle\frac{e^{2}(1-4{\rm sin}^{2}\theta_{W}+8{\rm sin}^{4}\theta_{W})}{8{\rm sin}^{2}\theta_{W}{\rm cos}^{2}\theta_{W}m_{{}_{Z}}\Gamma_{Z}^{2}} (27)
×ΓZηQ+QQ¯X.\displaystyle\times\Gamma_{Z\to\eta_{Q}+Q\bar{Q}X}.

Then we obtain

σe+eηc+cc¯X\displaystyle\sigma_{e^{+}e^{-}\to\eta_{c}+c\bar{c}X} =\displaystyle= 1.370.78+0.80pb,\displaystyle 1.37^{+0.80}_{-0.78}\,{\rm pb}, (28)
σe+eηb+bb¯X\displaystyle\sigma_{e^{+}e^{-}\to\eta_{b}+b\bar{b}X} =\displaystyle= 0.2640.071+0.072pb.\displaystyle 0.264^{+0.072}_{-0.071}\,{\rm pb}. (29)

If the luminosity of a ZZ factory can be up to 1035cm2s110^{35}{\rm cm}^{-2}{\rm s}^{-1} zfactory , there are about 1.4×1061.4\times 10^{6} ηc+cc¯X\eta_{c}+c\bar{c}X events and 2.6×1052.6\times 10^{5} ηb+bb¯X\eta_{b}+b\bar{b}X events to be produced per operation year. Moreover, the background of the Z factory is clean. Therefore, the two production processes may be studied at a high luminosity ZZ factory.

Acknowledgments: This work was supported in part by the Natural Science Foundation of China under Grants No. 12005028, No. 12175025, No. 12147116 and No. 12147102, by the China Postdoctoral Science Foundation under Grant No. 2021M693743, by the Fundamental Research Funds for the Central Universities under Grant No. 2020CQJQY-Z003, and by the Chongqing Graduate Research and Innovation Foundation under Grant No. ydstd1912.

References

  • (1) H. Fritzsch, Producing Heavy Quark Flavors in Hadronic Collisions: A Test of Quantum Chromodynamics, Phys. Lett. B 67, 217-221 (1977).
  • (2) F. Halzen, Cvc for Gluons and Hadroproduction of Quark Flavors, Phys. Lett. B 69, 105-108 (1977).
  • (3) C. H. Chang, Hadronic Production of J/ψJ/\psi Associated With a Gluon, Nucl. Phys. B 172, 425-434 (1980).
  • (4) E. L. Berger and D. L. Jones, Inelastic Photoproduction of J/psi and Upsilon by Gluons, Phys. Rev. D 23, 1521-1530 (1981).
  • (5) T. Matsui and H. Satz, J/ψJ/\psi Suppression by Quark-Gluon Plasma Formation, Phys. Lett. B 178, 416-422 (1986).
  • (6) G.T. Bodwin, E. Braaten and G.P. Lepage, Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium, Phys. Rev. D 51, 1125 (1995) [Erratum-ibid. D 55, 5853 (1997)].
  • (7) N. Brambilla, et al. Heavy quarkonium: progress, puzzles, and opportunities, Eur. Phys. J. C 71, 1534 (2011) and references therein.
  • (8) A. Andronic, F. Arleo, R. Arnaldi, A. Beraudo, E. Bruna, D. Caffarri, Z. C. del Valle, J. G. Contreras, T. Dahms and A. Dainese, et al. Heavy-flavour and quarkonium production in the LHC era: from proton–proton to heavy-ion collisions, Eur. Phys. J. C 76, no.3, 107 (2016).
  • (9) J. P. Lansberg, New Observables in Inclusive Production of Quarkonia, Phys. Rept. 889, 1-106 (2020).
  • (10) A. P. Chen, Y. Q. Ma and H. Zhang, A short theoretical review of charmonium production, arXiv:2109.04028 [hep-ph].
  • (11) R. Aaij et al. [LHCb Collabration], Measurement of the ηc(1S)\eta_{c}(1S) production cross-section in proton-proton collisions via the decay ηc(1S)pp¯\eta_{c}(1S)\rightarrow p\bar{p}, Eur. Phys. J. C 75, 311 (2015).
  • (12) M. Butenschoen, Z. G. He and B. A. Kniehl, ηc\eta_{c} production at the LHC challenges nonrelativistic-QCD factorization, Phys. Rev. Lett. 114, 092004 (2015).
  • (13) H. Han, Y. Q. Ma, C. Meng, H. S. Shao and K. T. Chao, ηc\eta_{c} production at LHC and indications on the understanding of J/ψJ/\psi production, Phys. Rev. Lett. 114, 092005 (2015).
  • (14) H. F. Zhang, Z. Sun, W. L. Sang and R. Li, Impact of ηc\eta_{c} hadroproduction data on charmonium production and polarization within NRQCD framework, Phys. Rev. Lett. 114, 092006 (2015).
  • (15) P. Pakhlov et al. [Belle], Measurement of the e+eJ/ψcc¯e^{+}e^{-}\to J/\psi c\bar{c} cross section at s10.6\sqrt{s}\approx 10.6 GeV, Phys. Rev. D 79, 071101 (2009).
  • (16) Y. J. Li, G. Z. Xu, P. P. Zhang, Y. J. Zhang and K. Y. Liu, Study of Color Octet Matrix Elements Through J/ψJ/\psi Production in e+ee^{+}e^{-} Annihilation, Eur. Phys. J. C 77, 597 (2017).
  • (17) B. Guberina, J. H. Kuhn, R. D. Peccei and R. Ruckl, Rare Decays of the Z0Z^{0}, Nucl. Phys. B 174, 317-334 (1980).
  • (18) W. Y. Keung, Off Resonance Production of Heavy Vector Quarkonium States in e+ee^{+}e^{-} Annihilation, Phys. Rev. D 23, 2072 (1981).
  • (19) K. J. Abraham, Bottonium production at LEP, Z. Phys. C 44, 467-469 (1989).
  • (20) V. D. Barger, K. m. Cheung and W. Y. Keung, Z-boson decays to heavy quarkonium, Phys. Rev. D 41, 1541 (1990).
  • (21) K. Hagiwara, A. D. Martin and W. J. Stirling, J / psi production from gluon jets at LEP, Phys. Lett. B 267, 527-531 (1991).
  • (22) E. Braaten, K. m. Cheung and T. C. Yuan, Z0Z^{0} decay into charmonium via charm quark fragmentation, Phys. Rev. D 48, 4230-4235 (1993).
  • (23) S. Fleming, Electromagnetic production of quarkonium in Z0Z^{0} decay, Phys. Rev. D 48, 1914-1916 (1993).
  • (24) K. m. Cheung, W. Y. Keung and T. C. Yuan, Color octet quarkonium production at the ZZ pole, Phys. Rev. Lett. 76, 877-880 (1996).
  • (25) P. L. Cho, Prompt upsilon and psi production at LEP, Phys. Lett. B 368, 171-178 (1996).
  • (26) P. Ernstrom, L. Lonnblad and M. Vanttinen, Evolution effects in Z0Z^{0} fragmentation into charmonium, Z. Phys. C 76, 515-521 (1997).
  • (27) G. A. Schuler, Quarkonium production: Velocity scaling rules and long distance matrix elements, Int. J. Mod. Phys. A 12, 3951-3964 (1997).
  • (28) R. Li and J. X. Wang, Next-to-leading-order QCD correction to inclusive J/Ψ(Υ)J/\Psi(\Upsilon) production in Z0Z^{0} decay, Phys. Rev. D 82, 054006 (2010).
  • (29) Q. L. Liao, Y. Yu, Y. Deng, G. Y. Xie and G. C. Wang, Excited heavy quarkonium production via Z0 decays at a high luminosity collider, Phys. Rev. D 91, 114030 (2015).
  • (30) T. C. Huang and F. Petriello, Rare exclusive decays of the Z-boson revisited, Phys. Rev. D 92, 014007 (2015).
  • (31) A. K. Likhoded and A. V. Luchinsky, Double Charmonia Production in Exclusive ZZ Boson Decays, Mod. Phys. Lett. A 33, 1850078 (2018).
  • (32) G. T. Bodwin, H. S. Chung, J. H. Ee and J. Lee, ZZ-boson decays to a vector quarkonium plus a photon, Phys. Rev. D 97, 016009 (2018).
  • (33) Z. Sun and H. F. Zhang, Next-to-leading-order QCD corrections to the decay of ZZ boson into χc(χb)\chi_{c}(\chi_{b}), Phys. Rev. D 99, 094009 (2019).
  • (34) H. S. Chung, J. H. Ee, D. Kang, U. R. Kim, J. Lee and X. P. Wang, Pseudoscalar Quarkonium+gamma Production at NLL+NLO accuracy, JHEP 10, 162 (2019).
  • (35) X. C. Zheng, C. H. Chang and X. G. Wu, NLO fragmentation functions of heavy quarks into heavy quarkonia, Phys. Rev. D 100, 014005 (2019).
  • (36) Z. Sun, The studies on ZΥ(1S)+g+gZ\rightarrow\Upsilon(1S)+g+g at the next-to-leading-order QCD accuracy, Eur. Phys. J. C 80, 311 (2020).
  • (37) Z. Sun and H. F. Zhang, Comprehensive studies of Υ\Upsilon inclusive production in Z boson decay, JHEP 06, 152 (2021).
  • (38) X. C. Zheng, C. H. Chang, X. G. Wu, X. D. Huang and G. Y. Wang, Inclusive production of heavy quarkonium η\etaQ via Z boson decays within the framework of nonrelativistic QCD, Phys. Rev. D 104, 054044 (2021).
  • (39) Z. Sun, X. Luo and Y. Z. Jiang, Impact of Zηc,b+g+gZ\to\eta_{c,b}+g+g on the inclusive ηc,b\eta_{c,b} meson yield in Z-boson decay, Phys. Rev. D 106, 034001 (2022).
  • (40) H. Baer, T. Barklow, K. Fujii, Y. Gao, A. Hoang, S. Kanemura, J. List, H. E. Logan, A. Nomerotski and M. Perelstein, et al. The International Linear Collider Technical Design Report - Volume 2: Physics, arXiv:1306.6352 [hep-ph].
  • (41) A. Abada et al. [FCC], FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1, Eur. Phys. J. C 79, no.6, 474 (2019).
  • (42) J. B. Guimarães da Costa et al. [CEPC Study Group], CEPC Conceptual Design Report: Volume 2 - Physics & Detector, arXiv:1811.10545 [hep-ex].
  • (43) J. P. Ma and Z. X. Zhang (The super Z-factory group), Preface, Sci. China: Phys., Mech. Astron. 53, 1947 (2010).
  • (44) J. Erler, S. Heinemeyer, W. Hollik, G. Weiglein and P. M. Zerwas, Physics impact of GigaZ, Phys. Lett. B 486, 125-133 (2000).
  • (45) W. Buchmuller and S. H. H. Tye, Quarkonia and Quantum Chromodynamics, Phys. Rev. D 24, 132 (1981).
  • (46) X. C. Zheng, Z. Y. Zhang and X. G. Wu, Fragmentation functions for a quark into a spin-singlet quarkonium: Different flavor case, Phys. Rev. D 103, no.7, 074004 (2021).
  • (47) J. G. Korner, D. Kreimer and K. Schilcher, A Practicable gamma(5) scheme in dimensional regularization, Z. Phys. C 54, 503-512 (1992).
  • (48) M. Beneke and V.A. Smirnov, Asymptotic expansion of Feynman integrals near threshold, Nucl. Phys. B522, 321 (1998).
  • (49) M. Klasen, B. A. Kniehl, L. N. Mihaila and M. Steinhauser, J/ψJ/\psi plus jet associated production in two-photon collisions at next-to-leading order, Nucl. Phys. B 713, 487-521 (2005).
  • (50) T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun 140, 418 (2001).
  • (51) R. Mertig, M. Bohm and A. Denner, Feyn Calc - Computer-algebraic calculation of Feynman amplitudes, Comput. Phys. Commun 64, 345 (1991).
  • (52) V. Shtabovenko, R. Mertig and F. Orellana, New Developments in FeynCalc 9.0, Comput. Phys. Commun 207, 432 (2016).
  • (53) F. Feng, $Apart: A Generalized Mathematica Apart Function, Comput. Phys. Commun 183, 2158 (2012).
  • (54) A.V. Smirnov, Algorithm FIRE - Feynman Integral REduction, J. High Energy Phys. 0810, 107 (2008).
  • (55) T. Hahn and M. Perez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun 118, 153 (1999).
  • (56) G. P. Lepage, A new algorithm for adaptive multidimensional integration, J. Comp. Phys. 27, 192 (1978).
  • (57) B.W. Harris and J.F. Owens, The Two cutoff phase space slicing method, Phys. Rev. D 65, 094032 (2001).
  • (58) A. Bassetto, M. Ciafaloni and G. Marchesini, Jet Structure and Infrared Sensitive Quantities in Perturbative QCD, Phys. Rept. 100, 201-272 (1983).
  • (59) A. Denner, Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200, Fortsch. Phys. 41, 307-420 (1993).
  • (60) W. Beenakker, S. Dittmaier, M. Kramer, B. Plumper, M. Spira and P. M. Zerwas, NLO QCD corrections to t anti-t H production in hadron collisions, Nucl. Phys. B 653, 151-203 (2003).
  • (61) E.J. Eichten and C. Quigg, Mesons with beauty and charm: Spectroscopy, Phys.Rev. D49, 5845 (1994).
  • (62) R. L. Workman [Particle Data Group], Review of Particle Physics, PTEP 2022, 083C01 (2022).
  • (63) S. J. Brodsky and X.-G. Wu, Scale Setting Using the Extended Renormalization Group and the Principle of Maximum Conformality: the QCD Coupling Constant at Four Loops, Phys. Rev. D 85, 034038 (2012).
  • (64) S. J. Brodsky and X.-G. Wu, Eliminating the Renormalization Scale Ambiguity for Top-Pair Production Using the Principle of Maximum Conformality, Phys. Rev. Lett. 109, 042002 (2012).
  • (65) M. Mojaza, S. J. Brodsky, and X.-G. Wu, Systematic All-Orders Method to Eliminate Renormalization-Scale and Scheme Ambiguities in Perturbative QCD, Phys. Rev. Lett. 110, 192001 (2013).
  • (66) S. J. Brodsky, M. Mojaza, and X.-G. Wu, Systematic Scale-Setting to All Orders: The Principle of Maximum Conformality and Commensurate Scale Relations, Phys. Rev. D 89, 014027 (2014).
  • (67) X. C. Zheng, C. H. Chang, T. F. Feng and Z. Pan, NLO QCD corrections to Bc(B*c) production around the Z pole at an e+ e- collider, Sci. China Phys. Mech. Astron. 61, 031012 (2018).