This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\jyear

2021

\equalcont

These authors contributed equally to this work.

[1]\fnmZhengchun \surZhou \equalcontThese authors contributed equally to this work.

\equalcont

These authors contributed equally to this work.

\equalcont

These authors contributed equally to this work.

[1]\orgdivDepartment of Mathematics, \orgnameSouthwest Jiaotong University, \orgaddress\streetXipu, \cityChengdu, \postcode610031, \stateSichuan, \countryChina

New sets of Non-Orthogonal Spreading Sequences With Low Correlation and Low PAPR Using Extended Boolean Functions

\fnmKaiqiang \surLiu [email protected]    [email protected]    \fnmAvik Ranjan \surAdhikary [email protected]    \fnmRong \surLuo [email protected] *
Abstract

Extended Boolean functions (EBFs) are one of the most important tools in cryptography and spreading sequence design in communication systems. In this paper, we use EBFs to design new sets of spreading sequences for non-orthogonal multiple access (NOMA), which is an emerging technique capable of supporting massive machine-type communications (mMTC) in 5G and beyond. In this work, first pp-ary complementary sequences are constructed using EBFs and then, these sequences are used to design new sets of non-orthogonal spreading sequence sets having very low coherence and peak to average power ratio (PAPR). The proposed spreading sequence sets are capable of supporting a large number of active devices simultaneously. In fact, for a pp-ary spreading sequence set, we theoretically achieve an overloading factor of 2p2p, where pp is an odd prime. Specifically, for p=3p=3, we achieve an overloading factor of 66, which cannot be achieved through the existing constructions till date.

keywords:
Extended Boolean functions (EBFs), spreading sequence sets, Non-orthogonal multiple access (NOMA)

1 Introduction

Extended Boolean functions (EBFs) are pp-ary functions over finite field, which play a very important role in cryptography and designing spreading sequences for communication systems Mesnager2016 . Recently, Boolean functions have been used to design spreading sequences for non-orthogonal multiple access (NOMA) Nam2021 ; Nam2020 ; LYB2022CL . NOMA is a multiple access scheme, in which, each user utilizes the time and frequency resources at the same time, where they are categorised by their power levels. At the transmitter, NOMA uses superposition coding, where each user is assigned a unique spreading sequence, such that the successive interference cancellation (SIC) receiver can separate the users both in the uplink and in the downlink channels. Owing to its various advantages like spectral efficiency and low latency, NOMA is a preferred technique for massive machine-type communication (mMTC), which is a new service category of 5G that can support an extremely high connection density of IoT (Internet of Things) devices surveyDai2015 ; surveyDai2018 . In mMTC, at a specific time slot, only a small number of devices are active. This leads to the use of compressed sensing (CS) for joint channel estimation (CE) and multiuser detection (MUD) in NOMA BookEldar2012 ; Du2018 .

For a successful compressed sensing based detection, the coherence of the spreading sequences should be sufficiently low BookEldar2012 . Also, when the transmitted signals are spread over multiple subcarriers, the peak-to-average power ratio (PAPR) should be sufficiently low, to ensure that the transmitted signals of the active devices does not suffer from the PAPR problem BookLitsyn2007 . In this scenario, designing spreading sequences with low coherence as well as low PAPR is an important research topic for uplink grant-free NOMA.

In general, designing sequence sets with low coherence and low PAPR is a very challenging problem. In literature, complementary sequences are explored in detail for their low PAPR properties GDJ1999 ; Paterson2000 . Complementary sets are sets of sequences, in which autocorrelation of each of the sequences sum up to zero at each non-zero time-shifts. Generalized Boolean functions (GBFs) GDJ1999 ; Paterson2000 ; chen2016cs ; chen2018cs ; Shen2020cs and other recusrsive constructions Avik2019cs ; Avik2020cs are extensively used to construct complementary sets with various parameters. To satisfy the additional property of low coherrence along with low PAPR, various sequences such as pseudo-random noise, quasi-orthogonal, and random Gaussian sequences have been analysed Yang2000 ; Zhang2022 ; Du2017 ; Liang2018 . Recently, Yu proposed a systematic framework based on GBFs to construct non-orthogonal spreading sequences with low PAPR for reliable multiuser detection in uplink grant-free access Nam2021 . In Nam2021 , exhaustive computer search were carried out to find a set of permutations, which can be used to ensure low coherence of the spreading sequence matrix. In another work of Yu Nam2020 , spreading sequence matrices with low coherence and low PAPR are proposed, by exploiting the graph structure associated with GBFs. Tian et al. LYB2022CL exploited the relationship between the coherence of the spreading matrices with the Walsh transform of the GBFs, to design spreading sequence matrices with low coherence. Note that, since all the constructions are based on GBFs, the spreading sequences are constructed over alphabet size 2h2^{h}, where hh is an integer.

In literature, EBFs are used to design pp-ary complementary sequences with low PAPR WZL2021 . Motivated by the works of Nam2021 ; Nam2020 ; LYB2022CL , we use EBFs to design sequence sets with low coherence as well as low PAPR. First, we represent the quadratic EBFs in the form of matrices and then, relate coherence of the spreading sequences, corresponding to the function, with the rank of those matrices. The resultant spreading sequence matrices are over alphabet of size php^{h}, where pp is an odd prime and hh is an integer. Also, the length of the sequences are of the form pmp^{m} where mm is an integer. This largely extends the constructions reported in Nam2020 and improves flexibility of the parameters of the spreading sequence sets. The contributions of the paper can be listed as follows:

  • Using EBFs, three new sets of pp-ary spreading sequence matrices are proposed.

  • The overloading factor can be increased up to 2p2p, in contrast to 33 in Nam2020 and 44 in LYB2022CL . This significantly increases the capability to support more active devices in NOMA, when choosing large pp.

The parameters of the spreading sequences matrices for uplink NOMA, proposed till date, through algebraic constructions are listed in Table 2.

The rest of the paper is organised as follows. In Section 2, we have fixed some notations and revisited basic definitions. In Section 3, we have recalled some recent results about designing spreading sequences using EBFs. In this section, we have also established the relationship between rank of the symplectic matrix related to the quadratic EBFs and the coherence of the spreading sequence matrix. In Section 4, we have proposed several frameworks to design infinite families of non-orthogonal spreading sequence matrices with optimum and near-optimum coherence and low PAPR. In this section, we have also shown that one of the proposed construction can be considered as an extended version of a previous construction reported in Nam2020 . Finally, we conclude the paper in Section 5.

2 Preliminaries

Before we begin, let us define some notations, which will be used throughout this paper.

  • 𝟎m\mathbf{0}_{m} and 𝟏m\mathbf{1}_{m} denote mm number of consecutive 0’s and 11’s, respectively.

  • Let pp be an odd prime, 𝔽p\mathbb{F}_{p} denotes the finite field with pp elements, 𝔽p=𝔽p{0}\mathbb{F}_{p}^{*}=\mathbb{F}_{p}\setminus\{0\}.

  • ωp=e12π/p\omega_{p}=e^{\sqrt{-1}2\pi/p} denotes the pp-th root of unity.

  • A matrix (or vector) is represented by a bold-face upper (or lower) case letter.

  • 𝐚,𝐛\langle\mathbf{a},\mathbf{b}\rangle denotes the inner-product of 𝐚\mathbf{a} and 𝐛\mathbf{b}.

  • aa^{*} denotes the conjugate of aa.

  • rankp(𝐀)rank_{p}(\mathbf{A}) denotes the rank of the matrix 𝐀\mathbf{A} over field 𝔽p\mathbb{F}_{p}.

2.1 Peak-to-Average Power Ratio

In a multicarrier communication, the transmitted signal of a device is spread onto multiple subcarriers using a spreading sequence. The spreading sequences with high peak-to-average power ratio (PAPR) will cause signal distortion due to the non-linearity of power amplifiers, which will further affects the performance of the transmission system. Suppose that 𝐬=(s0,,sM1)TM\mathbf{s}=(s_{0},\cdots,s_{M-1})^{T}\in\mathbb{C}^{M} is a spreading sequence which is used to transmitted via MM subcarriers. The peak-to-average power ratio (PAPR) of 𝐬\mathbf{s}’s multicarrier signal is defined by BookLitsyn2007

PAPR(𝐬)=1i=0M1si2maxt[0,1)k=0M1ske12πktPAPR(\mathbf{s})=\frac{1}{\sum_{i=0}^{M-1}\mid s_{i}\mid^{2}}\cdot\max_{t\in[0,1)}\mid\sum_{k=0}^{M-1}s_{k}e^{\sqrt{-1}2\pi kt}\mid (1)

Moreover, the PAPR of a sequence set 𝚽\mathbf{\Phi} is defined as:

PAPR(𝚽)=max𝐬𝚽PAPR(𝐬).{\rm PAPR}(\mathbf{\Phi})=\max_{\mathbf{s}\in\mathbf{\Phi}}{\rm PAPR}(\mathbf{s}). (2)

In general, for a given sequence, it is not easy to determine its PAPR. Fortunately, for complementary sequences, there exists an upper bound on their PAPR.

2.2 Complementary sequences

Definition 1.

Let 𝐚={aj}j=0M1\mathbf{a}=\{a_{j}\}_{j=0}^{M-1}, 𝐛={bj}j=0M1\mathbf{b}=\{b_{j}\}_{j=0}^{M-1} be two complex-valued sequence of length MM. The aperiodic correlation function R𝐚,𝐛(τ)R_{\mathbf{a},\mathbf{b}}(\tau) of 𝐚\mathbf{a} and 𝐛\mathbf{b} at time delay τ\tau is defined by

R𝐚,𝐛(τ)={k=0M1τakbk+τ,0τM1,k=0M1+τakτbk,1Mτ1,0,τM.R_{\mathbf{a},\mathbf{b}}(\tau)=\begin{cases}\sum_{k=0}^{M-1-\tau}a_{k}b_{k+\tau}^{*},&0\leq\tau\leq M-1,\\ \sum_{k=0}^{M-1+\tau}a_{k-\tau}b_{k}^{*},&1-M\leq\tau\leq-1,\\ 0,&\mid\tau\mid\geq M.\end{cases} (3)

When 𝐚=𝐛\mathbf{a}=\mathbf{b}, then it is called the aperiodic autocorrelation function, and is denoted by R𝐚(τ)R_{\mathbf{a}}(\tau).

Definition 2.

Let 𝐒\mathbf{S} be a set of NN sequences, each of length MM, then 𝐒\mathbf{S} is called a complementary set (CS) with parameters (N,M)(N,M) if

i=0N1R𝐚i(τ)=0,1τM1,\sum_{i=0}^{N-1}R_{\mathbf{a}_{i}}(\tau)=0,~{}~{}1\leq\tau\leq M-1, (4)

where 𝐚i\mathbf{a}_{i} denotes the ii-th sequence of 𝐒\mathbf{S}.

The following lemma, proposed in Paterson2000 , gives the upper bound about the PAPR of complementary sequences.

Lemma 2.1.

(Paterson2000 ) Let 𝐒\mathbf{S} be an (N,M)(N,M)-CS. Then the PAPR of any sequence in 𝐒\mathbf{S} is upper bounded by NN.

2.3 Coherence of sequence set

Let 𝐚,𝐛M\mathbf{a},\mathbf{b}\in\mathbb{C}^{M}, then 𝐚\mathbf{a} and 𝐛\mathbf{b} are said orthogonal if 𝐚,𝐛=0\langle\mathbf{a},\mathbf{b}\rangle=0. Let 𝐒=[𝐬1,,𝐬N]\mathbf{S}=[\mathbf{s}_{1},\ldots,\mathbf{s}_{N}] be a sequence set with NN sequences, each of length MM. Then 𝐒\mathbf{S} is called an orthogonal sequence set if the sequences in 𝐒\mathbf{S} are pairwise orthogonal. If 𝐒\mathbf{S} is non-orthogonal, the coherence of 𝐒\mathbf{S} is defined as follows:

μ(𝐒)=max1ijN𝐬i,𝐬j𝐬i2𝐬j2,\mu(\mathbf{S})=\max\limits_{1\leq i\neq j\leq N}\frac{\mid\langle\mathbf{s}_{i},\mathbf{s}_{j}\rangle\mid}{\|\mathbf{s}_{i}\|_{2}\|\mathbf{s}_{j}\|_{2}}, (5)

where 𝐬i2=(k=1Msik2)\|\mathbf{s}_{i}\|_{2}=\sqrt{(\sum_{k=1}^{M}\mid s_{ik}\mid^{2})} denotes the 2\ell_{2}-norm of 𝐬i\mathbf{s}_{i}, and siks_{ik} is the kk-th element of the ii-th sequence of 𝐒\mathbf{S}.

Definition 3.

Suppose that 𝐒\mathbf{S} is a non-orthogonal sequence set with NN sequences, each of length MM, then the overloading factor of 𝐒\mathbf{S} is defined as N/M\lceil N/M\rceil Nam2021 .

2.4 Extended Boolean functions (EBFs)

Extended Boolean functions (EBFs) are functions on mm variables, from 𝔽pm\mathbb{F}_{p}^{m} to 𝔽p\mathbb{F}_{p}, represented as

f(𝐱)=𝐛𝔽pmλ𝐛(i=1mxibi),f(\mathbf{x})=\sum_{\mathbf{b}\in\mathbb{F}_{p}^{m}}\lambda_{\mathbf{b}}(\prod_{i=1}^{m}x_{i}^{b_{i}}), (6)

where λ𝐛𝔽p\lambda_{\mathbf{b}}\in\mathbb{F}_{p}, 𝐛=(b1,,bm)𝔽pm\mathbf{b}=(b_{1},\ldots,b_{m})\in\mathbb{F}_{p}^{m}, and 𝐱=(x1,x2,,xm)\mathbf{x}=(x_{1},x_{2},\ldots,x_{m}) be the pp-ary representation of the integer x=k=1mxkpk1x=\sum_{k=1}^{m}x_{k}p^{k-1} SBS2021 .

Given f(𝐱)f(\mathbf{x}), the corresponding complex-valued sequence 𝐬f\mathbf{s}_{f} of length pmp^{m} is generated as follows:

𝐬f=(ωpf0,ωpf1,,ωpfpm1),\mathbf{s}_{f}=(\omega_{p}^{f_{0}},\omega_{p}^{f_{1}},\ldots,\omega_{p}^{f_{p^{m}-1}}), (7)

where fi=f(i1,i2,,im)f_{i}=f(i_{1},i_{2},\ldots,i_{m}), and i=k=1mikpk1i=\sum_{k=1}^{m}i_{k}p^{k-1}.

Example 1.

Let p=3,m=2p=3,m=2, 𝐛={(b1,b2)bi𝔽3,i=1,2}\mathbf{b}=\{(b_{1},b_{2})\mid b_{i}\in\mathbb{F}_{3},i=1,2\}, λ(0,0)=1,λ(1,1)=2,λ(2,0)=1\lambda_{(0,0)}=1,\lambda_{(1,1)}=2,\lambda_{(2,0)}=1 and λ𝐛=0\lambda_{\mathbf{b}}=0 for any other 𝐛𝔽32\mathbf{b}\in\mathbb{F}_{3}^{2}. Then

f(𝐱)=𝐛𝔽32λ𝐛(i=1mxibi)=1+2x1x2+x12,\begin{split}f(\mathbf{x})&=\sum_{\mathbf{b}\in\mathbb{F}_{3}^{2}}\lambda_{\mathbf{b}}(\prod_{i=1}^{m}x_{i}^{b_{i}})\\ &=1+2x_{1}x_{2}+x_{1}^{2},\end{split} (8)

and the associated sequence 𝐬f=(1,2,2,1,1,0,1,0,1)\mathbf{s}_{f}=(1,2,2,1,1,0,1,0,1), where the entries are power of ω3\omega_{3}.

3 Spreading Sequences using EBFs

To design a non-orthogonal spreading sequence set with low PAPR and low coherence, we will use sequence sets having low correlation and theoretically bounded PAPR. In this paper, we have considered the complementary sequences generated by EBFs, as the sequences with low PAPR.

3.1 Complementary sequences using EBFs

Lemma 3.1.

(SBS2021, , Theorem 1) For 0np10\leq n\leq p-1, let fn(𝐱)f_{n}(\mathbf{x}) denotes the EBF of the following form:

fn(𝐱)=i=1m1aixπ(i)xπ(i+1)+t=1p1k=1mct,kxkt+nxπ(1),f_{n}(\mathbf{x})=\sum_{i=1}^{m-1}a_{i}x_{\pi(i)}x_{\pi(i+1)}+\sum_{t=1}^{p-1}\sum_{k=1}^{m}c_{t,k}x_{k}^{t}+nx_{\pi(1)}, (9)

where π\pi is a permutation over {1,,m}\{1,\ldots,m\}, ai𝔽p,ct,k𝔽pa_{i}\in\mathbb{F}_{p}^{*},c_{t,k}\in\mathbb{F}_{p}. Then the sequence set 𝐒=[𝐬f0,,𝐬fp1]\mathbf{S}=[\mathbf{s}_{f_{0}},\ldots,\mathbf{s}_{f_{p-1}}] forms a (p,pm)(p,p^{m})-CS.

Suppose f(𝐱)f(\mathbf{x}) is a pp-ary function with the form in Lemma 3.1, then by Lemma 2.1, PAPR(𝐬f)p{\rm PAPR}(\mathbf{s}_{f})\leq p.

3.2 Non-orthogonal Sequences from pp-ary complementary sequences

Since the degree of the EBFs in Lemma 3.1 is at most p1p-1, it is very challenging to calculate the coherence for a large pp. Therefore, in this paper, we study the sequences generated by quadratic EBFs, whose coherence can be determined by the rank information of some sympletic matrices.

Regardless of the constant term, the EBFs in Lemma 3.1 can be represented as

f(𝐱)=i=1m1aixπ(i)xπ(i+1)+k=1mdkxk2+k=1mckxk=𝐱𝐀𝐱T+𝐜𝐱T,f(\mathbf{x})=\sum_{i=1}^{m-1}a_{i}x_{\pi(i)}x_{\pi(i+1)}+\sum_{k=1}^{m}d_{k}x_{k}^{2}+\sum_{k=1}^{m}c_{k}x_{k}=\mathbf{x}\mathbf{A}\mathbf{x}^{T}+\mathbf{c}\mathbf{x}^{T}, (10)

where 𝐜=(c1,,cm)\mathbf{c}=(c_{1},\ldots,c_{m}), 𝐚=(a1,,am1)\mathbf{a}=(a_{1},\ldots,a_{m-1}), 𝐝=(d1,,dm)\mathbf{d}=(d_{1},\ldots,d_{m}) and 𝐀\mathbf{A} is a matrix determined by π,𝐚,𝐝\pi,~{}\mathbf{a},~{}\mathbf{d}. Without loss of generality, let us use ψ(π,𝐚,𝐝)\psi(\pi,\mathbf{a},\mathbf{d}) to represent 𝐀\mathbf{A}, where

A(i,j)={di,if i=j;ak,if π(k)=i,π(k+1)=j;0,otherwise.A(i,j)=\begin{cases}d_{i},&\text{if~{}~{}}i=j\mathchar 24635\relax\\ a_{k},&\text{if~{}~{}}\pi(k)=i,\pi(k+1)=j\mathchar 24635\relax\\ 0,&\text{otherwise.}\end{cases} (11)

Let Mm(𝔽p)M_{m}(\mathbb{F}_{p}) denote the set of all square matrices of size m×mm\times m(or order mm) over 𝔽p\mathbb{F}_{p}, and 𝒜pMm(𝔽p)\mathcal{A}_{p}\subset M_{m}(\mathbb{F}_{p}) denote the set of all matrices which satisfies (11). Considering (9) for a EBF of degree 22, any quadratic EBF f𝐀(c)(𝐱)=𝐱𝐀𝐱T+𝐜𝐱Tf_{\mathbf{A}}^{(c)}(\mathbf{x})=\mathbf{x}\mathbf{A}\mathbf{x}^{T}+\mathbf{c}\mathbf{x}^{T} with 𝐀𝒜p\mathbf{A}\in\mathcal{A}_{p} and c=k=1mckpk1c=\sum_{k=1}^{m}c_{k}p^{k-1} will generate a complex-valued sequence 𝐬f\mathbf{s}_{f} with PAPR(𝐬f)p{\rm PAPR}(\mathbf{s}_{f})\leq p. For simplicity, we denote 𝐬𝐀(c)\mathbf{s}_{\mathbf{A}}^{(c)} as the corresponding sequence of f𝐀(c)f_{\mathbf{A}}^{(c)}.

Example 2.

Let p=3,m=4p=3,m=4, π=[1,2,4,3]\pi=[1,2,4,3] denote the permutation defined in {1,2,3,4}\{1,2,3,4\}, 𝐚=(2,1,1),𝐝=(2,0,2,1)𝔽pm\mathbf{a}=(2,1,1),\mathbf{d}=(2,0,2,1)\in\mathbb{F}_{p}^{m}. Let ff be the EBF defined as follows:

f(𝐱)=i=1m1aixπ(i)xπ(i+1)+k=1mdkxk2=2x1x2+x2x4+x4x3+2x12+x32+x42\begin{split}f(\mathbf{x})&=\sum_{i=1}^{m-1}a_{i}x_{\pi(i)}x_{\pi(i+1)}+\sum_{k=1}^{m}d_{k}x_{k}^{2}\\ &=2x_{1}x_{2}+x_{2}x_{4}+x_{4}x_{3}+2x_{1}^{2}+x_{3}^{2}+x_{4}^{2}\end{split} (12)

Then by (10), we have

f(𝐱)=𝐱𝐀𝐱T,f(\mathbf{x})=\mathbf{x}\mathbf{A}\mathbf{x}^{T}, (13)

where

𝐀=ψ(π,𝐚,𝐝)=(2200000100100011).\mathbf{A}=\psi(\pi,\mathbf{a},\mathbf{d})=\left(\begin{array}[]{cccc}2&2&0&0\\ 0&0&0&1\\ 0&0&1&0\\ 0&0&1&1\end{array}\right). (14)
Remark 1.

For p=2p=2, since xk2=xkx_{k}^{2}=x_{k} in 𝔽2\mathbb{F}_{2}, the quadratic binary functions in (10) can be expressed as f(𝐱)=i=1m1aixπ(i)xπ(i+1)+k=1mckxkf(\mathbf{x})=\sum_{i=1}^{m-1}a_{i}x_{\pi(i)}x_{\pi(i+1)}+\sum_{k=1}^{m}c_{k}x_{k}. Then the corresponding quadratic matrix 𝐀\mathbf{A} is represented as ψ(π,𝟏m1,𝟎m)\psi(\pi,\mathbf{1}_{m-1},\mathbf{0}_{m}).

Let M=pmM=p^{m}, and 0c<M0\leq c<M. Given 𝐀𝒜p\mathbf{A}\in\mathcal{A}_{p}, the sequence set generated by 𝐀\mathbf{A} is defined as follows:

𝚽𝐀=[𝐬𝐀(0),𝐬𝐀(1),,𝐬𝐀(M1)],\mathbf{\Phi}_{\mathbf{A}}=[\mathbf{s}_{\mathbf{A}}^{(0)},\mathbf{s}_{\mathbf{A}}^{(1)},\ldots,\mathbf{s}_{\mathbf{A}}^{(M-1)}], (15)

where 𝐬𝐀(i)\mathbf{s}_{\mathbf{A}}^{(i)} is the ii-th column of 𝚽𝐀\mathbf{\Phi}_{\mathbf{A}}.

Lemma 3.2.

𝚽𝐀\mathbf{\Phi}_{\mathbf{A}} is an orthogonal sequence set.

Proof: Suppose that 𝐬𝐀(a)\mathbf{s}_{\mathbf{A}}^{(a)} and 𝐬𝐀(b)\mathbf{s}_{\mathbf{A}}^{(b)} are different sequences in 𝚽𝐀\mathbf{\Phi}_{\mathbf{A}} with 0abpm10\leq a\not=b\leq p^{m}-1. Let f1(𝐱)=𝐱T𝐀𝐱+𝐚T𝐱f_{1}(\mathbf{x})=\mathbf{x}^{T}\mathbf{A}\mathbf{x}+\mathbf{a}^{T}\mathbf{x} and f2(𝐱)=𝐱T𝐀𝐱+𝐛T𝐱f_{2}(\mathbf{x})=\mathbf{x}^{T}\mathbf{A}\mathbf{x}+\mathbf{b}^{T}\mathbf{x} be the two EBFs associated to 𝐬𝐀(a)\mathbf{s}_{\mathbf{A}}^{(a)} and 𝐬𝐀(b)\mathbf{s}_{\mathbf{A}}^{(b)}, where 𝐚=(a1,,am),𝐛=(b1,,bm)\mathbf{a}=(a_{1},\ldots,a_{m}),\mathbf{b}=(b_{1},\ldots,b_{m}) denotes the pp-ary representation of aa and bb. Then, we have

𝐬𝐀(a),𝐬𝐀(b)=𝐱𝔽pmωpf1(𝐱)f2(𝐱)=𝐱𝔽pmωp(𝐚𝐛)T𝐱=𝐱𝔽pmωp𝐜T𝐱=0,\begin{split}\langle\mathbf{s}_{\mathbf{A}}^{(a)},\mathbf{s}_{\mathbf{A}}^{(b)}\rangle&=\sum_{\mathbf{x}\in\mathbb{F}_{p}^{m}}\omega_{p}^{f_{1}(\mathbf{x})-f_{2}(\mathbf{x})}\\ &=\sum_{\mathbf{x}\in\mathbb{F}_{p}^{m}}\omega_{p}^{(\mathbf{a}-\mathbf{b})^{T}\mathbf{x}}\\ &=\sum_{\mathbf{x}\in\mathbb{F}_{p}^{m}}\omega_{p}^{\mathbf{c}^{T}\mathbf{x}}\\ &=0,\end{split} (16)

since 𝐜=𝐚𝐛𝟎𝔽pm\mathbf{c}=\mathbf{a}-\mathbf{b}\not=\mathbf{0}\in\mathbb{F}_{p}^{m}. This completes the proof. To obtain a large non-orthogonal sequence set, we expand the sequence set by exploiting more quadratic matrices from 𝒜p\mathcal{A}_{p}. Let ={𝐀1,𝐀2,,𝐀L}𝒜p\mathcal{M}=\{\mathbf{A}_{1},\mathbf{A}_{2},\ldots,\mathbf{A}_{L}\}\subset\mathcal{A}_{p}, the non-orthogonal sequence set generated by \mathcal{M} is defined by

𝚽=[𝚽𝐀1,𝚽𝐀2,,𝚽𝐀L].\mathbf{\Phi}=[\mathbf{\Phi}_{\mathbf{A}_{1}},\mathbf{\Phi}_{\mathbf{A}_{2}},\ldots,\mathbf{\Phi}_{\mathbf{A}_{L}}]. (17)

From (5), the coherence of 𝚽\mathbf{\Phi} is given by

μ(𝚽)=max1i,jL0c1,c2M1𝐬𝐀i(c1),𝐬𝐀j(c2)M,\mu(\mathbf{\Phi})=\max\limits_{\begin{subarray}{c}1\leq i,j\leq L\\ 0\leq c_{1},c_{2}\leq M-1\end{subarray}}\frac{\mid\langle\mathbf{s}_{\mathbf{A}_{i}}^{(c_{1})},\mathbf{s}_{\mathbf{A}_{j}}^{(c_{2})}\rangle\mid}{M}, (18)

where c1c2c_{1}\not=c_{2} if i=ji=j.

Next, we will show that the coherence of 𝚽\mathbf{\Phi} depends on the rank information of the symplectic matrix corresponding to a pair of matrices in \mathcal{M}.

Lemma 3.3.

Let pp be an odd prime, M=pmM=p^{m}, ={𝐀1,𝐀2}\mathcal{M}=\{\mathbf{A}_{1},\mathbf{A}_{2}\} and 𝚽\mathbf{\Phi} is generated by \mathcal{M}, as defined in (17). Define a symplectic matrix 𝐐1,2=(𝐀1𝐀2)+(𝐀1𝐀2)T\mathbf{Q}_{1,2}=(\mathbf{A}_{1}-\mathbf{A}_{2})+(\mathbf{A}_{1}-\mathbf{A}_{2})^{T}. Then, if rankp(𝐐1,2)=rrank_{p}(\mathbf{Q}_{1,2})=r,

μ(𝚽)=1pr.\mu(\mathbf{\Phi})=\frac{1}{\sqrt{p^{r}}}. (19)

Proof: Let f(𝐱)=𝐱T𝐀1𝐱+𝐚𝟏T𝐱f(\mathbf{x})=\mathbf{x}^{T}\mathbf{A}_{1}\mathbf{x}+\mathbf{a_{1}}^{T}\mathbf{x}, and g(𝐱)=𝐱T𝐀2𝐱+𝐚𝟐T𝐱g(\mathbf{x})=\mathbf{x}^{T}\mathbf{A}_{2}\mathbf{x}+\mathbf{a_{2}}^{T}\mathbf{x}. Also let 𝐬f\mathbf{s}_{f} and 𝐬g\mathbf{s}_{g} be the corresponding spreading sequences of the EBFs ff and gg, respectively. Then, we have

𝐬f,𝐬g=𝐱𝔽pmωf(𝐱)g(𝐱)=𝐱𝔽pmω𝐱T(𝐀1𝐀2)𝐱+(𝐚𝟏T𝐚𝟐T)𝐱=𝐱𝔽pmω𝐱T𝐂𝐱+𝐜T𝐱(𝐂=𝐀1𝐀2,𝐜=𝐚𝟏𝐚𝟐)=((𝐱𝔽pmω𝐱T𝐂𝐱+𝐜T𝐱)(𝐲𝔽pmω(𝐲T𝐂𝐲+𝐜T𝐲)))12=(𝐳𝔽pm𝐲𝔽pmω𝐳T𝐂𝐳+𝐜T𝐳ω𝐲T𝐂𝐳+𝐳T𝐂𝐲)12(let 𝐱=𝐲+𝐳)=(𝐳𝔽pmω𝐳T𝐂𝐳+𝐜T𝐳𝐲𝔽pmω𝐲T(𝐂+𝐂T)𝐳)12.\begin{split}\mid\langle\mathbf{s}_{f},\mathbf{s}_{g}\rangle\mid&=\mid\sum_{\mathbf{x}\in\mathbb{F}_{p}^{m}}\omega^{f(\mathbf{x})-g(\mathbf{x})}\mid\\ &=\mid\sum_{\mathbf{x}\in\mathbb{F}_{p}^{m}}\omega^{\mathbf{x}^{T}(\mathbf{A}_{1}-\mathbf{A}_{2})\mathbf{x}+(\mathbf{a_{1}}^{T}-\mathbf{a_{2}}^{T})\mathbf{x}}\mid\\ &=\mid\sum_{\mathbf{x}\in\mathbb{F}_{p}^{m}}\omega^{\mathbf{x}^{T}\mathbf{C}\mathbf{x}+\mathbf{c}^{T}\mathbf{x}}\mid(\mathbf{C}=\mathbf{A}_{1}-\mathbf{A}_{2},\mathbf{c}=\mathbf{a_{1}}-\mathbf{a_{2}})\\ &=\left(\left(\sum_{\mathbf{x}\in\mathbb{F}_{p}^{m}}\omega^{\mathbf{x}^{T}\mathbf{C}\mathbf{x}+\mathbf{c}^{T}\mathbf{x}}\right)\left(\sum_{\mathbf{y}\in\mathbb{F}_{p}^{m}}\omega^{-(\mathbf{y}^{T}\mathbf{C}\mathbf{y}+\mathbf{c}^{T}\mathbf{y})}\right)\right)^{\frac{1}{2}}\\ &=\left(\sum_{\mathbf{z}\in\mathbb{F}_{p}^{m}}\sum_{\mathbf{y}\in\mathbb{F}_{p}^{m}}\omega^{\mathbf{z}^{T}\mathbf{C}\mathbf{z}+\mathbf{c}^{T}\mathbf{z}}\cdot\omega^{\mathbf{y}^{T}\mathbf{C}\mathbf{z}+\mathbf{z}^{T}\mathbf{C}\mathbf{y}}\right)^{\frac{1}{2}}(\text{let~{}~{}}\mathbf{x}=\mathbf{y}+\mathbf{z})\\ &=\left(\sum_{\mathbf{z}\in\mathbb{F}_{p}^{m}}\omega^{\mathbf{z}^{T}\mathbf{C}\mathbf{z}+\mathbf{c}^{T}\mathbf{z}}\sum_{\mathbf{y}\in\mathbb{F}_{p}^{m}}\omega^{\mathbf{y}^{T}(\mathbf{C}+\mathbf{C}^{T})\mathbf{z}}\right)^{\frac{1}{2}}.\end{split} (20)

We have,

𝐲𝔽pmω𝐲T(𝐂+𝐂T)𝐳={pm,if (𝐂+𝐂T)𝐳=𝟎;0,other cases.\sum_{\mathbf{y}\in\mathbb{F}_{p}^{m}}\omega^{\mathbf{y}^{T}(\mathbf{C}+\mathbf{C}^{T})\mathbf{z}}=\begin{cases}p^{m},&\text{if~{}~{}}(\mathbf{C}+\mathbf{C}^{T})\mathbf{z}=\mathbf{0}\mathchar 24635\relax\\ 0,&\text{other cases}.\end{cases} (21)

Let Ω={𝐳(𝐂+𝐂T)𝐳=𝟎,𝐳𝔽pm}\Omega=\{\mathbf{z}\mid(\mathbf{C}+\mathbf{C}^{T})\mathbf{z}=\mathbf{0},\mathbf{z}\in\mathbb{F}_{p}^{m}\}. Then Ω\Omega is a subspace of 𝔽pm\mathbb{F}_{p}^{m}. Let ss denote the dimension of Ω\Omega, hence, the rank rr of 𝐂+𝐂T\mathbf{C}+\mathbf{C}^{T} is msm-s. Then (20) can be written as follows:

𝐬f,𝐬g\displaystyle\mid\langle\mathbf{s}_{f},\mathbf{s}_{g}\rangle\mid =(𝐳𝔽pmω𝐳T𝐂𝐳+𝐜T𝐳𝐲𝔽pmω𝐲T(𝐂+𝐂T)𝐳)12\displaystyle=\left(\sum_{\mathbf{z}\in\mathbb{F}_{p}^{m}}\omega^{\mathbf{z}^{T}\mathbf{C}\mathbf{z}+\mathbf{c}^{T}\mathbf{z}}\sum_{\mathbf{y}\in\mathbb{F}_{p}^{m}}\omega^{\mathbf{y}^{T}(\mathbf{C}+\mathbf{C}^{T})\mathbf{z}}\right)^{\frac{1}{2}} (22)
=(pm𝐳Ωω𝐳T𝐂𝐳+𝐜T𝐳)12\displaystyle=\left(p^{m}\sum_{\mathbf{z}\in\Omega}\omega^{\mathbf{z}^{T}\mathbf{C}\mathbf{z}+\mathbf{c}^{T}\mathbf{z}}\right)^{\frac{1}{2}}
=(pm𝐳Ωω𝐜T𝐳)12,\displaystyle=\left(p^{m}\sum_{\mathbf{z}\in\Omega}\omega^{\mathbf{c}^{T}\mathbf{z}}\right)^{\frac{1}{2}},

since, 𝐳T𝐂𝐳=(𝐳T𝐂T𝐳)T=𝐳T𝐂𝐳\mathbf{z}^{T}\mathbf{C}\mathbf{z}=(-\mathbf{z}^{T}\mathbf{C}^{T}\mathbf{z})^{T}=-\mathbf{z}^{T}\mathbf{C}\mathbf{z} for 𝐳Ω\mathbf{z}\in\Omega, which means that 𝐳T𝐂𝐳=0\mathbf{z}^{T}\mathbf{C}\mathbf{z}=0. Hence,

𝐬f,𝐬gpm+s2.\mid\langle\mathbf{s}_{f},\mathbf{s}_{g}\rangle\mid\leq p^{\frac{m+s}{2}}. (23)

Since, s=mrs=m-r, using (18), the proof is completed.

Remark 2.

Note that, when r=mr=m, the pp-ary function 𝐱(𝐂+𝐂T)𝐱T\mathbf{x}(\mathbf{C}+\mathbf{C}^{T})\mathbf{x}^{T} corresponding to the matrix 𝐂=𝐀1𝐀2\mathbf{C}=\mathbf{A}_{1}-\mathbf{A}_{2} is a generalized bent function KUMAR1985 .

The following theorem establishes the relation between the coherence of 𝚽\mathbf{\Phi} and the rank of the matrices in \mathcal{M}, which is also discussed in (Nam2021, , Theorem 1) for p=2p=2.

Theorem 3.1.

(Nam2021 ) Suppose that 𝚽\mathbf{\Phi} is the sequence set generated by ={𝐀1,,𝐀L}\mathcal{M}=\{\mathbf{A}_{1},\ldots,\mathbf{A}_{L}\}, as defined in (17). The coherence of 𝚽\mathbf{\Phi} is given by

μ(𝚽)=1prmin,\mu(\mathbf{\Phi})=\frac{1}{\sqrt{p^{r_{min}}}}, (24)

where

rmin=min1ijLrankp(𝐐i,j).r_{min}=\min_{1\leq i\not=j\leq L}rank_{p}(\mathbf{Q}_{i,j}). (25)

Proof: The proof can be directly derived from Lemma 3.3.

Hence, from the above theorem, we observe that, to design a spreading sequence matrix 𝚽\mathbf{\Phi} with very small value of μ(𝚽)\mu(\mathbf{\Phi}), we need to get rminr_{min} as large as possible. In this paper, the coherence of 𝚽\mathbf{\Phi} is optimum, when the rank of the corresponding symplectic matrix achieves its maximum value, i.e., rmin=mr_{min}=m which implies μ(𝚽)=1M\mu(\mathbf{\Phi})=\sqrt{\frac{1}{M}}. When rmin=m1r_{\min}=m-1, then μ(𝚽)=1pm1\mu(\mathbf{\Phi})=\frac{1}{\sqrt{p^{m-1}}} and we call it near-optimum.

4 Proposed spreading sequence sets with low coherence and low PAPR

In this section, we will propose several new non-orthogonal sequence set 𝚽\mathbf{\Phi} with large LL for p3p\geq 3.

4.1 Spreading sequences of length M=pmM=p^{m} for p3p\geq 3

Recall that our objective is to find a class of matrices 𝒜p\mathcal{M}\subset\mathcal{A}_{p} with rminm1r_{min}\geq m-1. Note that, if we consider a special case that 𝐀i,𝐀j\forall\mathbf{A}_{i},\mathbf{A}_{j}\in\mathcal{M}, 𝐀i𝐀j\mathbf{A}_{i}-\mathbf{A}_{j} is a diagonal matrix with full rank, then we have rmin=mr_{min}=m. Based on this special case, we give the following construction.

Theorem 4.1.

Let π\pi be a permutation over {1,,m}\{1,\cdots,m\} and 𝐚=(a1,,am1)\mathbf{a}=(a_{1},\cdots,a_{m-1}) with ai0(1im1)a_{i}\not=0~{}(1\leq i\leq m-1). Let 𝐝1,𝐝2,,𝐝p\mathbf{d}_{1},\mathbf{d}_{2},\cdots,\mathbf{d}_{p} be pp vectors defined over 𝔽pm\mathbb{F}_{p}^{m}, which satisfy the condition that k{1,,m},di,kdj,k(1i<jp)\forall k\in\{1,\cdots,m\},d_{i,k}\not=d_{j,k}(1\leq i<j\leq p). Let ={𝐀1,𝐀2,,𝐀p}\mathcal{M}=\{\mathbf{A}_{1},\mathbf{A}_{2},\cdots,\mathbf{A}_{p}\} where

𝐀1\displaystyle\mathbf{A}_{1} =ψ(π,𝐚,𝐝1),\displaystyle=\psi(\pi,\mathbf{a},\mathbf{d}_{1}), (26)
𝐀2\displaystyle\mathbf{A}_{2} =ψ(π,𝐚,𝐝2),\displaystyle=\psi(\pi,\mathbf{a},\mathbf{d}_{2}),
\displaystyle~{}~{}\vdots
𝐀p\displaystyle\mathbf{A}_{p} =ψ(π,𝐚,𝐝p).\displaystyle=\psi(\pi,\mathbf{a},\mathbf{d}_{p}).

Let 𝚽\mathbf{\Phi} be the sequence set generated by \mathcal{M}, as defined in (17). Then 𝚽\mathbf{\Phi} is a sequence set with pm+1p^{m+1} sequences, each of length pmp^{m}, and μ(𝚽)=1M\mu(\mathbf{\Phi})=\sqrt{\frac{1}{M}}, PAPR(𝚽)pPAPR(\mathbf{\Phi})\leq p .

Proof: Suppose that i,j{1,,p}i,j\in\{1,\ldots,p\} with iji\not=j, and recall from Lemma 3.3 that 𝐐i,j=(𝐀i𝐀j)+(𝐀i𝐀j)T𝔽pm×m\mathbf{Q}_{i,j}=(\mathbf{A}_{i}-\mathbf{A}_{j})+(\mathbf{A}_{i}-\mathbf{A}_{j})^{T}\in\mathbb{F}_{p}^{m\times m}. Then, we have

det(𝐐i,j)=|2(di,1dj,1)2(di,2dj,2)2(di,mdj,m)|=2mk=1m(di,kdj,k).\begin{split}\det(\mathbf{Q}_{i,j})&=\begin{vmatrix}2(d_{i,1}-d_{j,1})&&&\\ &2(d_{i,2}-d_{j,2})&&\\ &&\ddots&\\ &&&2(d_{i,m}-d_{j,m})\end{vmatrix}\\ &=2^{m}\prod_{k=1}^{m}(d_{i,k}-d_{j,k}).\end{split} (27)

Since di,kdj,k(1i<jp)d_{i,k}\not=d_{j,k}~{}(1\leq i<j\leq p), we have det(𝐐i,j)0\det(\mathbf{Q}_{i,j})\not=0, and hence rankp(𝐐i,j)=mrank_{p}(\mathbf{Q}_{i,j})=m. According to Theorem 3.1, the coherence of 𝚽\mathbf{\Phi} is given by

μ(𝚽)=1prmin=1pm=1M,\mu(\mathbf{\Phi})=\frac{1}{\sqrt{p^{r_{min}}}}=\frac{1}{\sqrt{p^{m}}}=\sqrt{\frac{1}{M}}, (28)

since rmin=min1ijLrankp(𝐐i,j)r_{min}=\min_{1\leq i\not=j\leq L}rank_{p}(\mathbf{Q}_{i,j}).

Example 3.

Let p=5,m=3p=5,m=3, π=[3,1,2]\pi=[3,1,2], 𝐚=(2,2)\mathbf{a}=(2,2), and 𝐝1=(0,3,4),𝐝2=(1,0,1),𝐝3=(2,1,2),𝐝4=(3,2,0),𝐝5=(4,4,3)\mathbf{d}_{1}=(0,3,4),\mathbf{d}_{2}=(1,0,1),\mathbf{d}_{3}=(2,1,2),\mathbf{d}_{4}=(3,2,0),\mathbf{d}_{5}=(4,4,3). According to Theorem 4.1 and (11), we get the following 55 matrices:

𝐀1=(020030204),𝐀2=(120000201),𝐀3=(220010202),𝐀4=(320020200),𝐀5=(420040203).\begin{split}&\mathbf{A}_{1}=\left(\begin{array}[]{ccc}0&2&0\\ 0&3&0\\ 2&0&4\end{array}\right),\mathbf{A}_{2}=\left(\begin{array}[]{ccc}1&2&0\\ 0&0&0\\ 2&0&1\end{array}\right),\mathbf{A}_{3}=\left(\begin{array}[]{ccc}2&2&0\\ 0&1&0\\ 2&0&2\end{array}\right),\\ &\mathbf{A}_{4}=\left(\begin{array}[]{ccc}3&2&0\\ 0&2&0\\ 2&0&0\end{array}\right),\mathbf{A}_{5}=\left(\begin{array}[]{ccc}4&2&0\\ 0&4&0\\ 2&0&3\end{array}\right).\end{split}

Here, rank5(𝐐i,j)=3rank_{5}(\mathbf{Q}_{i,j})=3 for any iji\not=j. Let 𝚽=153[𝚽𝐀1,𝚽𝐀2,𝚽𝐀3,𝚽𝐀4,𝚽𝐀5]\mathbf{\Phi}=\frac{1}{5^{3}}[\mathbf{\Phi}_{\mathbf{A}_{1}},\mathbf{\Phi}_{\mathbf{A}_{2}},\mathbf{\Phi}_{\mathbf{A}_{3}},\mathbf{\Phi}_{\mathbf{A}_{4}},\mathbf{\Phi}_{\mathbf{A}_{5}}] be the 55-ary spreading matrix of size 53×545^{3}\times 5^{4}. Then, PAPR(𝚽)=3.5223<5{\rm PAPR}({\mathbf{\Phi}})=3.5223<5 and μ(𝚽)=1530.0894\mu(\mathbf{\Phi})=\sqrt{\frac{1}{5^{3}}}\approx 0.0894, which is optimum.

Remark 3.

For a given permutation π\pi and 𝐚𝐅pm\mathbf{a}\in\mathbf{F}_{p}^{m}, let 𝒩𝚽\mathcal{N}_{\mathbf{\Phi}} denotes the number of 𝚽\mathbf{\Phi}. Then 𝒩𝚽\mathcal{N}_{\mathbf{\Phi}} equals to all the different choice of (𝐝1,,𝐝p)(\mathbf{d}_{1},\ldots,\mathbf{d}_{p}). Hence, we have

𝒩𝚽=(p!)m1.\mathcal{N}_{\mathbf{\Phi}}=(p!)^{m-1}. (29)

Before we proceed, we need the following lemma.

Lemma 4.1.

Let 𝒜p\mathcal{A}_{p} be the set of matrices defined in Section 3. Then 𝐀𝒜p\forall\mathbf{A}\in\mathcal{A}_{p},

rankp(𝐀+𝐀T)m1.rank_{p}(\mathbf{A}+\mathbf{A}^{T})\geq m-1. (30)

Proof: Suppose that 𝐀=ψ(π,𝐚,𝐝)𝒜p\mathbf{A}=\psi(\pi,\mathbf{a},\mathbf{d})\in\mathcal{A}_{p}. Let f𝐀(𝐱)=𝐱𝐀𝐱Tf_{\mathbf{A}}(\mathbf{x})=\mathbf{x}\mathbf{A}\mathbf{x}^{T}. For any 𝐱𝔽pm\mathbf{x}\in\mathbb{F}_{p}^{m}, let 𝐏\mathbf{P} denotes the permutation matrix defined by π\pi, i.e. for any 𝐱=(x1,,xm)\mathbf{x}=(x_{1},\cdots,x_{m}), 𝐱𝐏=(xπ(1),,xπ(m))\mathbf{x}\mathbf{P}=(x_{\pi(1)},\cdots,x_{\pi(m)}). Suppose that 𝐲=𝐱𝐏\mathbf{y}=\mathbf{x}\mathbf{P} and g𝐀(𝐱)=𝐱(𝐀+𝐀T)𝐱Tg_{\mathbf{A}}(\mathbf{x})=\mathbf{x}(\mathbf{A}+\mathbf{A}^{T})\mathbf{x}^{T}, then,

g𝐀(𝐱)\displaystyle g_{\mathbf{A}}(\mathbf{x}) =𝐱(𝐀+𝐀T)𝐱T\displaystyle=\mathbf{x}(\mathbf{A}+\mathbf{A}^{T})\mathbf{x}^{T} (31)
=i=1m12aixπ(i)xπ(i+1)+j=1m2djxj2\displaystyle=\sum_{i=1}^{m-1}2a_{i}x_{\pi(i)}x_{\pi(i+1)}+\sum_{j=1}^{m}2d_{j}x_{j}^{2}
=i=1m12aiyiyi+1+j=1m2dπ(j)yj2\displaystyle=\sum_{i=1}^{m-1}2a_{i}y_{i}y_{i+1}+\sum_{j=1}^{m}2d_{\pi(j)}y_{j}^{2}
=𝐲(𝐁+𝐁T)𝐲T\displaystyle=\mathbf{y}(\mathbf{B}+\mathbf{B}^{T})\mathbf{y}^{T}
=𝐱𝐏(𝐁+𝐁T)𝐏T𝐱T,\displaystyle=\mathbf{x}\mathbf{P}(\mathbf{B}+\mathbf{B}^{T})\mathbf{P}^{T}\mathbf{x}^{T},

where 𝐁=ψ(π,𝐚,𝐝)\mathbf{B}=\psi(\pi^{\prime},\mathbf{a},\mathbf{d}^{{}^{\prime}}) with di=dπ(i), and π(i)=i for 1imd_{i}^{{}^{\prime}}=d_{\pi(i)},\text{ and }\pi^{\prime}(i)=i\text{ for }1\leq i\leq m. Since 𝐏\mathbf{P} is a permutation matrix with 𝐏𝐏T=𝐈\mathbf{P}\mathbf{P}^{T}=\mathbf{I}, we have

rankp(𝐀+𝐀T)=rankp(𝐏(𝐁+𝐁T)𝐏T)=rankp(𝐁+𝐁T).rank_{p}(\mathbf{A}+\mathbf{A}^{T})=rank_{p}(\mathbf{P}(\mathbf{B}+\mathbf{B}^{T})\mathbf{P}^{T})=rank_{p}(\mathbf{B}+\mathbf{B}^{T}). (32)

Note that 𝐁+𝐁T\mathbf{B}+\mathbf{B}^{T} is a tridiagonal matrix, which can be written as

(2d1a1a12d2a2a22d3a3am22dm1am1am12dm),\left(\begin{array}[]{cccccc}2d_{1}^{{}^{\prime}}&a_{1}&&&&\\ a_{1}&2d_{2}^{{}^{\prime}}&a_{2}&&&\\ &a_{2}&2d_{3}^{{}^{\prime}}&a_{3}&&\\ &&\ddots&\ddots&\ddots&\\ &&&a_{m-2}&2d_{m-1}^{{}^{\prime}}&a_{m-1}\\ &&&&a_{m-1}&2d_{m}^{{}^{\prime}}\end{array}\right), (33)

by considering its top right (m1)×(m1)(m-1)\times(m-1) sub-matrix 𝐁\mathbf{B}^{{}^{\prime}}, we have

det(𝐁)=|a12d2a2a22d3a3am32dm2am2am22dm1am1|=k=1m1ak0,\begin{split}\det(\mathbf{B}^{{}^{\prime}})&=\begin{vmatrix}a_{1}&&&&&\\ 2d_{2}^{{}^{\prime}}&a_{2}&&&&\\ a_{2}&2d_{3}^{{}^{\prime}}&a_{3}&&&\\ &\ddots&\ddots&\ddots&&\\ &&a_{m-3}&2d_{m-2}^{{}^{\prime}}&a_{m-2}&\\ &&&a_{m-2}&2d_{m-1}^{{}^{\prime}}&a_{m-1}\end{vmatrix}\\ &=\prod_{k=1}^{m-1}a_{k}\not=0,\end{split} (34)

i.e. rankp(𝐁)=m1rank_{p}(\mathbf{B}^{{}^{\prime}})=m-1. Then rankp(𝐁+𝐁T)rankp(𝐁)=m1rank_{p}(\mathbf{B}+\mathbf{B}^{T})\geq rank_{p}(\mathbf{B}^{{}^{\prime}})=m-1.

Next, we propose two more constructions, generalizing the construction proposed in Theorem 4.1.

Theorem 4.2.

Let π\pi be a permutation over {1,,m}\{1,\ldots,m\}. Let 𝐚=(a1,,am1)\mathbf{a}=(a_{1},\ldots,a_{m-1}),𝐛=(b1,,bm1)𝔽pm1\mathbf{b}=(b_{1},\ldots,b_{m-1})\in\mathbb{F}_{p}^{m-1}, which satisfy the condition that i{1,,m1},aibi0\forall i\in\{1,\cdots,m-1\},a_{i}-b_{i}\not=0. Let the set of matrices ={𝐀1,,𝐀2p}\mathcal{M}=\{\mathbf{A}_{1},\cdots,\mathbf{A}_{2p}\} be defined as follows:

𝐀i={ψ(π,𝐚,𝐝i),1ip,ψ(π,𝐛,𝐝i),p+1i2p,\mathbf{A}_{i}=\begin{cases}\psi(\pi,\mathbf{a},\mathbf{d}_{i}),&1\leq i\leq p,\\ \psi(\pi,\mathbf{b},\mathbf{d}_{i}),&p+1\leq i\leq 2p,\end{cases} (35)

where {𝐝1,,𝐝p},{𝐝p+1,,𝐝2p}\{\mathbf{d}_{1},\cdots,\mathbf{d}_{p}\},\{\mathbf{d}_{p+1},\cdots,\mathbf{d}_{2p}\} denote two sets of vectors each of which satisfy the conditions in Theorem 4.1. Let 𝚽\mathbf{\Phi} be the spreading sequence set generated by \mathcal{M}, as defined in (17). Then 𝚽\mathbf{\Phi} is a sequence set with 2pm+12p^{m+1} sequences, each of length pmp^{m}, and PAPR(𝚽)p{\rm PAPR}(\mathbf{\Phi})\leq p, μ(𝚽)pM\mu(\mathbf{\Phi})\leq\sqrt{\frac{p}{M}}.

Proof: From Lemma 3.1, we have PAPR(𝚽𝐀i)p{\rm PAPR}(\mathbf{\Phi}_{\mathbf{A}_{i}})\leq p for any 1i2p1\leq i\leq 2p, hence, eventually we have PAPR(𝚽)p{\rm PAPR}(\mathbf{\Phi})\leq p.

By Theorem 3.1, the coherence of 𝚽\mathbf{\Phi} depends on the minimum rank of 𝐐i,j=(𝐀i𝐀j)+(𝐀i𝐀j)T\mathbf{Q}_{i,j}=(\mathbf{A}_{i}-\mathbf{A}_{j})+(\mathbf{A}_{i}-\mathbf{A}_{j})^{T}, where 1i<j2p1\leq i<j\leq 2p. Recall from the proof of Theorem 4.1, when i,j{1,,p}i,j\in\{1,\cdots,p\} or i,j{p+1,,2p}i,j\in\{p+1,\cdots,2p\}, 𝐐i,j\mathbf{Q}_{i,j} is a diagonal matrix with full rank, i.e. rankp(𝐐i,j)=mrank_{p}(\mathbf{Q}_{i,j})=m. Next, consider the case, when i{1,,p},j{p+1,,2p}i\in\{1,\cdots,p\},j\in\{p+1,\cdots,2p\}, then we have

𝐀i𝐀j=ψ(π,𝐚,𝐝i)ψ(π,𝐛,𝐝j)=ψ(π,𝐚𝐛,𝐝i𝐝j).\begin{split}\mathbf{A}_{i}-\mathbf{A}_{j}&=\psi(\pi,\mathbf{a},\mathbf{d}_{i})-\psi(\pi,\mathbf{b},\mathbf{d}_{j})\\ &=\psi(\pi,\mathbf{a}-\mathbf{b},\mathbf{d}_{i}-\mathbf{d}_{j}).\end{split} (36)

Since aibi0(1im1)a_{i}-b_{i}\not=0(1\leq i\leq m-1), we have 𝐀i𝐀j𝒜p\mathbf{A}_{i}-\mathbf{A}_{j}\in\mathcal{A}_{p}. By Lemma 4.1, rankp(𝐐i,j)m1rank_{p}(\mathbf{Q}_{i,j})\geq m-1. Recalling M=pmM=p^{m}, using Theorem 3.1, we get μ(𝚽)pM\mu(\mathbf{\Phi})\leq\sqrt{\frac{p}{M}}.

Theorem 4.3.

Let π\pi be a permutation over {1,,m}\{1,\ldots,m\}. Let πτ\pi^{\tau} denote the cyclic τ(τ>0)\tau~{}(\tau>0) shift of π\pi, where πτ(i)=π([i+τ]m)\pi^{\tau}(i)=\pi([i+\tau]_{m}) with

[k]m={m,if mk;v,if k=sm+v,v0.[k]_{m}=\begin{cases}m,&\text{if $m\mid k$}\mathchar 24635\relax\\ v,&\text{if~{}}k=sm+v,v\not=0.\end{cases} (37)

Let 𝐚=(a1,,am1),𝐛=(b1,,bm1)𝔽pm1\mathbf{a}=(a_{1},\ldots,a_{m-1}),\mathbf{b}=(b_{1},\ldots,b_{m-1})\in\mathbb{F}_{p}^{m-1}, which satisfy the following two conditions:

(1) i{1,,m1}\forall i\in\{1,\cdots,m-1\}, ai0,bi0a_{i}\not=0,b_{i}\not=0;

(2) there exist one t{1,,m1}{mτ}t\in\{1,\cdots,m-1\}\setminus\{m-\tau\}, such that i{1,,m1}{mτ,t}\forall i\in\{1,\cdots,m-1\}\setminus\{m-\tau,t\},bia[i+τ]m0b_{i}-a_{[i+\tau]_{m}}\not=0 and bta[t+τ]m=0b_{t}-a_{[t+\tau]_{m}}=0. Let ={𝐀1,,𝐀2p}\mathcal{M}=\{\mathbf{A}_{1},\cdots,\mathbf{A}_{2p}\} with

𝐀i={ψ(π,𝐚,𝐝i),1ip,ψ(πτ,𝐛,𝐝i),p+1i2p,\mathbf{A}_{i}=\begin{cases}\psi(\pi,\mathbf{a},\mathbf{d}_{i}),&1\leq i\leq p,\\ \psi({{{\color[rgb]{0,0,0}\pi^{\tau}}}},\mathbf{b},\mathbf{d}_{i}),&p+1\leq i\leq 2p,\end{cases} (38)

where {𝐝1,,𝐝p},{𝐝p+1,,𝐝2p}\{\mathbf{d}_{1},\cdots,\mathbf{d}_{p}\},\{\mathbf{d}_{p+1},\cdots,\mathbf{d}_{2p}\} denote two sets of vectors each of which satisfy the conditions in Theorem 4.1. Let 𝚽\mathbf{\Phi} be the spreading sequence set generated by \mathcal{M}, as defined in (17). Then 𝚽\mathbf{\Phi} is a sequence set with 2pm+12p^{m+1} sequences, each of length pmp^{m}, and PAPR(𝚽)p{\rm PAPR}(\mathbf{\Phi})\leq p, and μ(𝚽)pM\mu(\mathbf{\Phi})\leq\sqrt{\frac{p}{M}}.

Proof: From Lemma 3.1, we have PAPR(𝚽𝐀i)p{\rm PAPR}(\mathbf{\Phi}_{\mathbf{A}_{i}})\leq p for any 1i2p1\leq i\leq 2p, hence, eventually we have PAPR(𝚽)p{\rm PAPR}(\mathbf{\Phi})\leq p.

By Theorem 3.1, the coherence of 𝚽\mathbf{\Phi} is depend on the minimum rank of 𝐐i,j=(𝐀i𝐀j)+(𝐀i𝐀j)T\mathbf{Q}_{i,j}=(\mathbf{A}_{i}-\mathbf{A}_{j})+(\mathbf{A}_{i}-\mathbf{A}_{j})^{T}, where 1i<j2p1\leq i<j\leq 2p. Recall from the proof of Theorem 4.1, when i,j{1,,p}i,j\in\{1,\cdots,p\} or i,j{p+1,,2p}i,j\in\{p+1,\cdots,2p\}, 𝐐i,j\mathbf{Q}_{i,j} is a diagonal matrix with full rank, i.e. rankp(𝐐i,j)=mrank_{p}(\mathbf{Q}_{i,j})=m. Next, consider the case, when i{1,,p},j{p+1,,2p}i\in\{1,\cdots,p\},j\in\{p+1,\cdots,2p\}, we have 𝐀i=ψ(π,𝐚,𝐝i),𝐀j=ψ(πτ,𝐛,𝐝j)\mathbf{A}_{i}=\psi(\pi,\mathbf{a},\mathbf{d}_{i}),\mathbf{A}_{j}=\psi(\pi^{\tau},\mathbf{b},\mathbf{d}_{j}), then the quadratic form corresponding to 𝐐i,j\mathbf{Q}_{i,j} can be expressed as follows:

𝐱𝐐i,j𝐱T=𝐱𝐀i𝐱T𝐱𝐀j𝐱T+𝐱𝐀iT𝐱T𝐱𝐀jT𝐱T=2(k=1m1akxπ(k)xπ(k+1)+k=1mdi,kxk2k=1m1bkxπτ(k)xπτ(k+1)k=1mdj,kxk2)=2(k=1m1ckxπ([τ+t+k]m)xπ([τ+t+k+1]m)+k=1md^kxk2)=𝐱(ψ(π,𝐜,𝐝^)+ψ(π,𝐜,𝐝^)T)𝐱T,\begin{split}\mathbf{x}\mathbf{Q}_{i,j}\mathbf{x}^{T}&=\mathbf{x}\mathbf{A}_{i}\mathbf{x}^{T}-\mathbf{x}\mathbf{A}_{j}\mathbf{x}^{T}+\mathbf{x}\mathbf{A}_{i}^{T}\mathbf{x}^{T}-\mathbf{x}\mathbf{A}_{j}^{T}\mathbf{x}^{T}\\ &=2\big{(}\sum_{k=1}^{m-1}a_{k}x_{\pi(k)}x_{\pi(k+1)}+\sum_{k=1}^{m}d_{i,k}x_{k}^{2}\\ &-\sum_{k=1}^{m-1}b_{k}x_{\pi^{\tau}(k)}x_{\pi^{\tau}(k+1)}-\sum_{k=1}^{m}d_{j,k}x_{k}^{2}\big{)}\\ &=2\big{(}\sum_{k=1}^{m-1}c_{k}x_{\pi([\tau+t+k]_{m})}x_{\pi([\tau+t+k+1]_{m})}+\sum_{k=1}^{m}\hat{d}_{k}x_{k}^{2}\big{)}\\ &=\mathbf{x}(\psi({{{\color[rgb]{0,0,0}\pi^{\prime}}}},\mathbf{c},\hat{\mathbf{d}})+\psi({{{\color[rgb]{0,0,0}\pi^{\prime}}}},\mathbf{c},\hat{\mathbf{d}})^{T})\mathbf{x}^{T},\end{split} (39)

where π(i)=i\pi^{\prime}(i)=i for 1im1\leq i\leq m. The second to last identity followed by d^k=di,πt+τ(k)dj,πt+τ(k)\hat{d}_{k}=d_{i,\pi^{t+\tau}(k)}-d_{j,\pi^{t+\tau}(k)} and

ck={aτ,if [k+t+τ]m=τ;bmτ,if [k+t+τ]m=m;a[k+t+τ]mb[k+t]m,other cases.c_{k}=\begin{cases}a_{\tau},&\text{if~{}}[k+t+\tau]_{m}=\tau\mathchar 24635\relax\\ -b_{m-\tau},&\text{if~{}}[k+t+\tau]_{m}=m\mathchar 24635\relax\\ a_{[k+t+\tau]_{m}}-b_{[k+t]_{m}},&\text{other cases.}\end{cases} (40)

Since 𝐐i,j=ψ(π,𝐜,𝐝^)+ψ(π,𝐜,𝐝^)T\mathbf{Q}_{i,j}=\psi({{{\color[rgb]{0,0,0}\pi^{\prime}}}},\mathbf{c},\hat{\mathbf{d}})+\psi({{{\color[rgb]{0,0,0}\pi^{\prime}}}},\mathbf{c},\hat{\mathbf{d}})^{T} with ψ(π,𝐜,𝐝^)𝒜p\psi({{{\color[rgb]{0,0,0}\pi^{\prime}}}},\mathbf{c},\hat{\mathbf{d}})\in\mathcal{A}_{p}, by Lemma 4.1, rankp(𝐐i,j)m1rank_{p}(\mathbf{Q}_{i,j})\geq m-1.

The proof is completed using Theorem 3.1, since rmin=min1ijLrankp(𝐐i,j)m1r_{min}=\min\limits_{1\leq i\not=j\leq L}rank_{p}(\mathbf{Q}_{i,j})\geq m-1.

Remark 4.

Using the same notation as in Remark 3, for a given permutation π\pi and 𝐚,𝐛𝐅pm1\mathbf{a},\mathbf{b}\in\mathbf{F}_{p}^{m-1}, we have

𝒩𝚽=(p!)2m2\mathcal{N}_{\mathbf{\Phi}}=(p!)^{2m-2} (41)

where 𝚽\mathbf{\Phi} is defined in Theorem 4.2 and Theorem 4.3.

Example 4.

Let p=3,m=4p=3,m=4, π=[1,2,3,4]\pi=[1,2,3,4], 𝐚=(1,2,2),𝐛=(2,1,1)\mathbf{a}=(1,2,2),\mathbf{b}=(2,1,1), and 𝐝1=𝐝4=(0,0,0,0),𝐝2=𝐝5=(1,1,1,1),𝐝3=𝐝6=(2,2,2,2)\mathbf{d}_{1}=\mathbf{d}_{4}=(0,0,0,0),\mathbf{d}_{2}=\mathbf{d}_{5}=(1,1,1,1),\mathbf{d}_{3}=\mathbf{d}_{6}=(2,2,2,2). According to Theorem 4.2 and (11), we get the following six matrices:

𝐀1=(0100002000020000),𝐀2=(1100012000120001),𝐀3=(2100022000220002),𝐀4=(0200001000010000),𝐀5=(1200011000110001),𝐀6=(2200021000210002).\begin{split}&\mathbf{A}_{1}=\left(\begin{array}[]{cccc}0&1&0&0\\ 0&0&2&0\\ 0&0&0&2\\ 0&0&0&0\end{array}\right),\mathbf{A}_{2}=\left(\begin{array}[]{cccc}1&1&0&0\\ 0&1&2&0\\ 0&0&1&2\\ 0&0&0&1\end{array}\right),\mathbf{A}_{3}=\left(\begin{array}[]{cccc}2&1&0&0\\ 0&2&2&0\\ 0&0&2&2\\ 0&0&0&2\end{array}\right),\\ &\mathbf{A}_{4}=\left(\begin{array}[]{cccc}0&2&0&0\\ 0&0&1&0\\ 0&0&0&1\\ 0&0&0&0\end{array}\right),\mathbf{A}_{5}=\left(\begin{array}[]{cccc}1&2&0&0\\ 0&1&1&0\\ 0&0&1&1\\ 0&0&0&1\end{array}\right),\mathbf{A}_{6}=\left(\begin{array}[]{cccc}2&2&0&0\\ 0&2&1&0\\ 0&0&2&1\\ 0&0&0&2\end{array}\right).\end{split}

Here, rank3(𝐐i,j)=4rank_{3}(\mathbf{Q}_{i,j})=4 for any iji\not=j. Let 𝚽=[𝚽𝐀1,𝚽𝐀2,𝚽𝐀3,𝚽𝐀4,𝚽𝐀5,𝚽𝐀6]\mathbf{\Phi}=[\mathbf{\Phi}_{\mathbf{A}_{1}},\mathbf{\Phi}_{\mathbf{A}_{2}},\mathbf{\Phi}_{\mathbf{A}_{3}},\mathbf{\Phi}_{\mathbf{A}_{4}},\mathbf{\Phi}_{\mathbf{A}_{5}},\mathbf{\Phi}_{\mathbf{A}_{6}}]. Then, PAPR(𝚽)=2.8738<3{\rm PAPR}({\mathbf{\Phi}})={\color[rgb]{0,0,0}2.8738}<3 and μ(𝚽)=132=19\mu(\mathbf{\Phi})=\frac{1}{3^{2}}=\frac{1}{9}, which is optimum. Note that each of 𝚽𝐀i\mathbf{\Phi}_{\mathbf{A}_{i}} is of size 34×343^{4}\times 3^{4}. The first, second and last columns of each of the 𝚽𝐀i\mathbf{\Phi}_{\mathbf{A}_{i}} for 1i61\leq i\leq 6 are given in Table 1, the elements are power of ω3\omega_{3}.

Table 1: The spreading sequences corresponding to the matrices 𝐀i\mathbf{A}_{i} for 1i61\leq i\leq 6, in Example 4.
𝚽𝐀1\mathbf{\Phi}_{\mathbf{A}_{1}} 𝚽𝐀2\mathbf{\Phi}_{\mathbf{A}_{2}} 𝚽𝐀3\mathbf{\Phi}_{\mathbf{A}_{3}} 𝚽𝐀4\mathbf{\Phi}_{\mathbf{A}_{4}} 𝚽𝐀5\mathbf{\Phi}_{\mathbf{A}_{5}} 𝚽𝐀6\mathbf{\Phi}_{\mathbf{A}_{6}}
0
0
0
0
1
2
0
2
1
0
0
0
2
0
1
1
0
2
0
0
0
1
2
0
2
1
0
0
0
0
0
1
2
0
2
1
2
2
2
1
2
0
0
2
1
1
1
1
2
0
1
0
2
1
0
0
0
0
1
2
0
2
1
1
1
1
0
1
2
2
1
0
2
2
2
0
1
2
1
0
2
0
1
2
0
2
1
0
0
0
0
1
2
2
1
0
1
1
1
0
1
2
1
0
2
2
2
2
0
1
2
0
2
1
0
0
0
2
0
1
1
0
2
0
0
0
1
2
0
2
1
0
0
0
0
0
1
2
0
2
1
0
0
0
1
2
0
0
2
1
2
2
2
2
0
1
0
2
1
1
1
1
\ldots
0
2
1
2
2
2
1
2
0
2
1
0
0
0
0
1
2
0
1
0
2
1
1
1
1
2
0
2
1
0
1
1
1
0
1
2
0
2
1
1
1
1
2
0
1
1
0
2
1
1
1
1
2
0
1
0
2
0
0
0
2
0
1
1
0
2
2
2
2
0
1
2
1
0
2
1
1
1
1
2
0
0
1
1
1
0
1
1
1
0
1
2
2
1
0
1
0
0
2
1
2
2
0
2
0
1
1
0
1
2
2
2
1
2
2
2
1
1
2
2
1
0
1
0
0
2
0
1
1
2
1
2
0
0
2
1
2
2
2
1
2
2
2
1
0
1
1
0
2
0
2
2
1
1
2
2
0
2
0
1
1
0
0
2
0
1
1
0
1
2
2
1
0
1
1
1
0
0
1
1
1
0
1
0
0
2
1
2
2
1
0
1
2
2
1
2
0
0
1
0
1
1
1
0
0
1
1
0
2
0
2
2
1
0
1
1
1
0
1
2
2
1
2
0
0
0
2
0
0
0
2
2
0
0
1
0
1
0
0
2
1
2
2
\ldots
0
0
2
0
1
1
2
1
2
0
0
2
2
0
0
0
2
0
2
2
1
0
1
1
0
2
0
0
0
2
0
1
1
2
1
2
2
2
1
1
2
2
2
1
2
0
0
2
1
2
2
1
0
1
2
2
1
2
0
0
1
0
1
0
0
2
2
0
0
0
2
0
0
0
2
1
2
2
1
0
1
0
2
2
2
2
0
2
0
2
2
1
1
0
0
1
2
0
2
2
1
1
2
2
0
0
1
0
2
1
1
1
1
2
1
2
1
0
2
2
1
1
2
0
1
0
2
1
1
2
2
0
0
1
0
2
1
1
1
1
2
1
2
1
2
1
1
0
0
1
2
0
2
0
2
2
0
0
1
1
2
1
0
0
1
2
0
2
2
1
1
2
2
0
0
1
0
2
1
1
2
2
0
2
0
2
0
2
2
2
2
0
1
2
1
1
0
0
0
0
1
1
2
1
0
2
2
2
2
0
2
0
2
0
2
2
2
2
0
1
2
1
1
0
0
2
2
0
0
1
0
2
1
1
0
0
1
0
1
0
1
0
0
\ldots
0
1
0
1
0
0
0
0
1
1
2
1
1
0
0
2
2
0
0
1
0
2
1
1
2
2
0
1
2
1
2
1
1
1
1
2
1
2
1
1
0
0
2
2
0
2
0
2
1
0
0
1
1
2
0
1
0
1
0
0
0
0
1
2
0
2
2
1
1
0
0
1
2
0
2
1
0
0
1
1
2
0
0
0
0
2
1
0
1
2
0
0
0
1
0
2
2
0
1
0
0
0
2
1
0
1
2
0
0
0
0
0
2
1
0
1
2
1
1
1
2
1
0
0
1
2
2
2
2
1
0
2
0
1
2
0
0
0
0
2
1
0
1
2
2
2
2
0
2
1
1
2
0
1
1
1
0
2
1
2
0
1
0
1
2
0
0
0
0
2
1
0
1
2
1
1
1
2
1
0
0
1
2
2
2
2
1
0
2
0
1
2
0
0
0
0
2
1
1
2
0
2
2
2
0
2
1
2
0
1
1
1
1
0
2
1
0
1
2
0
0
0
0
2
1
2
0
1
0
0
0
1
0
2
1
2
0
0
0
0
2
1
0
\ldots
0
2
1
2
0
1
1
1
1
2
1
0
2
0
1
2
2
2
1
0
2
2
0
1
0
0
0
2
1
0
1
2
0
0
0
0
2
1
0
2
0
1
2
2
2
2
1
0
0
1
2
1
1
1
1
0
2
0
1
2
2
2
2
2
1
0
2
0
1
2
2
2
0
2
1
1
2
0
2
2
2
0
1
1
1
1
0
1
0
1
1
2
2
0
0
2
1
0
1
1
2
2
1
1
0
0
2
0
1
2
2
2
2
1
2
1
2
0
1
1
2
2
1
0
2
0
1
2
2
1
1
0
0
2
0
1
2
2
2
2
1
2
1
2
1
2
2
0
0
2
1
0
1
0
1
1
0
0
2
2
1
2
0
2
0
1
2
2
1
1
0
1
0
1
0
1
1
1
1
0
1
0
1
1
2
2
0
0
2
1
0
1
2
0
0
2
2
1
0
2
0
2
0
0
0
0
2
1
0
1
1
2
2
0
0
2
1
0
1
2
0
0
2
2
1
1
0
1
0
1
1
1
1
0
0
2
0
0
1
1
2
2
1
\ldots
0
0
2
0
2
0
2
0
0
0
0
2
1
0
1
1
2
2
2
2
1
1
0
1
2
0
0
0
0
2
0
2
0
2
0
0
1
1
0
2
1
2
2
0
0
1
1
0
0
2
0
1
2
2
2
2
1
2
1
2
1
2
2
1
1
0
2
1
2
2
0
0
2
2
1
1
0
1
2
0
0
0
2
2
2
0
2
2
2
0
2
1
1
2
0
2
0
0
1
2
1
1
0
1
0
2
2
0
2
1
1
1
2
1
1
1
2
2
1
1
2
0
2
0
0
1
0
2
2
1
2
1
0
0
1
2
1
1
1
2
1
1
1
2
0
2
2
0
1
0
1
1
2
2
1
1
0
1
0
2
2
0
0
0
1
2
1
1
2
0
2
2
2
0
2
1
1
0
1
0
2
2
0
0
2
2
2
0
2
2
2
0
1
0
0
1
2
1
2
2
0
2
1
1
0
1
0
0
0
1
1
0
0
0
1
0
2
2
0
1
0
0
1
2
1
0
0
1
0
2
2
1
2
1
2
2
0
0
2
2
2
0
2
\ldots
0
1
0
1
1
2
0
2
2
1
2
1
0
0
1
0
2
2
0
1
0
0
0
1
1
0
0
1
2
1
2
2
0
1
0
0
0
1
0
2
2
0
2
1
1
0
1
0
0
0
1
1
0
0
0
1
0
1
1
2
0
2
2
0
1
0
2
2
0
2
1
1
1
2
1
1
1
2
2
1
1
Example 5.

Let p=3,m=4p=3,m=4, π=[2,3,1,4]\pi=[2,3,1,4], 𝐚=(1,1,2),𝐛=(1,1,1)\mathbf{a}=(1,1,2),\mathbf{b}=(1,1,1), τ=1\tau=1 and 𝐝1=(0,2,1,2),𝐝2=(1,1,0,0),𝐝3=(2,0,2,1),𝐝4=(0,0,0,0),𝐝5=(1,1,1,1),𝐝6=(2,2,2,2)\mathbf{d}_{1}=(0,2,1,2),\mathbf{d}_{2}=(1,1,0,0),\mathbf{d}_{3}=(2,0,2,1),\mathbf{d}_{4}=(0,0,0,0),\mathbf{d}_{5}=(1,1,1,1),\mathbf{d}_{6}=(2,2,2,2). According to Theorem 4.3 and (11), we get the following six matrices:

𝐀1=(0002021010100002),𝐀2=(1002011010000000),𝐀3=(2002001010200001),𝐀4=(0001000010000100),𝐀5=(1001010010100101),𝐀6=(2001020010200102).\begin{split}&\mathbf{A}_{1}=\left(\begin{array}[]{cccc}0&0&0&2\\ 0&2&1&0\\ 1&0&1&0\\ 0&0&0&2\end{array}\right),\mathbf{A}_{2}=\left(\begin{array}[]{cccc}1&0&0&2\\ 0&1&1&0\\ 1&0&0&0\\ 0&0&0&0\end{array}\right),\mathbf{A}_{3}=\left(\begin{array}[]{cccc}2&0&0&2\\ 0&0&1&0\\ 1&0&2&0\\ 0&0&0&1\end{array}\right),\\ &\mathbf{A}_{4}=\left(\begin{array}[]{cccc}0&0&0&1\\ 0&0&0&0\\ 1&0&0&0\\ 0&1&0&0\end{array}\right),\mathbf{A}_{5}=\left(\begin{array}[]{cccc}1&0&0&1\\ 0&1&0&0\\ 1&0&1&0\\ 0&1&0&1\end{array}\right),\mathbf{A}_{6}=\left(\begin{array}[]{cccc}2&0&0&1\\ 0&2&0&0\\ 1&0&2&0\\ 0&1&0&2\end{array}\right).\end{split}

Here, rank3(𝐐i,j)=4rank_{3}(\mathbf{Q}_{i,j})=4 for any iji\not=j. Let 𝚽=134[𝚽𝐀1,𝚽𝐀2,𝚽𝐀3,𝚽𝐀4,𝚽𝐀5,𝚽𝐀6]\mathbf{\Phi}=\frac{1}{3^{4}}[\mathbf{\Phi}_{\mathbf{A}_{1}},\mathbf{\Phi}_{\mathbf{A}_{2}},\mathbf{\Phi}_{\mathbf{A}_{3}},\mathbf{\Phi}_{\mathbf{A}_{4}},\mathbf{\Phi}_{\mathbf{A}_{5}},\mathbf{\Phi}_{\mathbf{A}_{6}}] be the 33-ary spreading matrix of size 34×(235)3^{4}\times(2\cdot 3^{5}). Then, PAPR(𝚽)=2.8795<3{\rm PAPR}({\mathbf{\Phi}})=2.8795<3 and μ(𝚽)=1340.1111<334\mu(\mathbf{\Phi})=\sqrt{\frac{1}{3^{4}}}\approx 0.1111<\sqrt{\frac{3}{3^{4}}}, which is optimum.

4.2 Proposed infinite families of spreading sequence sets 𝚽\mathbf{\Phi} with optimum coherence for p=3p=3

In the previous sub-section we propose several infinite families of spreading sequence matrices \mathcal{M} with rminm1r_{min}\geq m-1. In this section, we are focused on constructing classes of \mathcal{M} with rmin=mr_{min}=m, which can be used to generate 𝚽\mathbf{\Phi} with optimum coherence. Based on the above constructions, several classes of \mathcal{M} with rmin=mr_{min}=m will be proposed for p=3p=3.

Theorem 4.4.

Let p=3p=3, m4m\geq 4 be an even integer with m2mod3m\not\equiv 2\bmod 3 and π\pi be a permutation over {1,,m}\{1,\cdots,m\}. Let 𝐝1\mathbf{d}_{1} be a vector defined in 𝔽3m\mathbb{F}_{3}^{m}, and for i=2,3i=2,3 define 𝐝i=𝐝1+(i1)𝟏m\mathbf{d}_{i}=\mathbf{d}_{1}+(i-1)\mathbf{1}_{m}. Let 𝐚,𝐛𝔽3m1\mathbf{a},\mathbf{b}\in\mathbb{F}_{3}^{m-1} such that k{1,,m1},ak,bk0,akbk0\forall k\in\{1,\cdots,m-1\},a_{k},b_{k}\not=0,a_{k}-b_{k}\not=0. Let ={𝐀1,𝐀2,𝐀3,𝐀4,𝐀5,𝐀6}\mathcal{M}=\{\mathbf{A}_{1},\mathbf{A}_{2},\mathbf{A}_{3},\mathbf{A}_{4},\mathbf{A}_{5},\mathbf{A}_{6}\} with

𝐀i={ψ(π,𝐚,𝐝i),1i3;ψ(π,𝐛,𝐝i3),4i6.\mathbf{A}_{i}=\begin{cases}\psi(\pi,\mathbf{a},\mathbf{d}_{i}),&1\leq i\leq 3\mathchar 24635\relax\\ \psi(\pi,\mathbf{b},\mathbf{d}_{i-3}),&4\leq i\leq 6.\end{cases} (42)

Let 𝚽\mathbf{\Phi} be the spreading sequence set generated by \mathcal{M}, as defined in (17). Then 𝚽\mathbf{\Phi} is a sequence set with 2×3m+12\times 3^{m+1} sequences, each of length 3m3^{m}, and PAPR(𝚽)3{\rm PAPR}(\mathbf{\Phi})\leq 3, μ(𝚽)=1M\mu(\mathbf{\Phi})=\sqrt{\frac{1}{M}}.

Proof: From Lemma 3.1, we have PAPR(𝚽𝐀i)3{\rm PAPR}(\mathbf{\Phi}_{\mathbf{A}_{i}})\leq 3 for any 1i61\leq i\leq 6, hence, eventually we have PAPR(𝚽)3{\rm PAPR}(\mathbf{\Phi})\leq 3.

Next, let us calculate the coherence. Since 𝐀i𝐀j\mathbf{A}_{i}-\mathbf{A}_{j} with i,j{1,2,3}i,j\in\{1,2,3\} or i,j{4,5,6}i,j\in\{4,5,6\} is a diagonal matrix with full rank, we only need to consider the rank of 𝐐i,j\mathbf{Q}_{i,j} for i{1,2,3},j{4,5,6}i\in\{1,2,3\},j\in\{4,5,6\}.

By Theorem 4.2, if i{1,2,3},j{4,5,6}i\in\{1,2,3\},j\in\{4,5,6\}, we have 𝐀i𝐀j=ψ(π,𝐜,(ij)𝟏m)\mathbf{A}_{i}-\mathbf{A}_{j}=\psi(\pi,\mathbf{c},(i-j)\mathbf{1}_{m}) where 𝐜=𝐚𝐛\mathbf{c}=\mathbf{a}-\mathbf{b}. By Lemma 4.1, the rank of 𝐐i,j\mathbf{Q}_{i,j} is equal to the rank of the following tridiagonal matrix:

𝐃=(2(ij)c1c12(ij)c2c22(ij)c3cm22(ij)cm1cm12(ij)),\mathbf{D}=\left(\begin{array}[]{cccccc}2(i-j)&c_{1}&&&&\\ c_{1}&2(i-j)&c_{2}&&&\\ &c_{2}&2(i-j)&c_{3}&&\\ &&\ddots&\ddots&\ddots&\\ &&&c_{m-2}&2(i-j)&c_{m-1}\\ &&&&c_{m-1}&2(i-j)\end{array}\right), (43)

where 𝐃=𝐁(i,j)+𝐁(i,j)T\mathbf{D}=\mathbf{B}_{(i,j)}+\mathbf{B}_{(i,j)}^{T} and 𝐁i,j=ψ(π,𝐜,(ij)𝟏m) where π(i)=i\mathbf{B}_{i,j}=\psi(\pi^{\prime},\mathbf{c},(i-j)\mathbf{1}_{m})\text{ where }\pi^{\prime}(i)=i for 1im1\leq i\leq m. Since m2mod3m\not\equiv 2\bmod 3 and ij𝔽3i-j\in{{{\color[rgb]{0,0,0}\mathbb{F}_{3}^{*}}}}, we obtain (ij)2=ci2=1(i-j)^{2}=c_{i}^{2}=1. By simple calculations, we get det(𝐃)0\det(\mathbf{D})\not=0, which implies that rankp(𝐐i,j)=mrank_{p}(\mathbf{Q}_{i,j})=m for i{1,2,3},j{4,5,6}i\in\{1,2,3\},j\in\{4,5,6\}. Hence, we conclude that rmin=mr_{min}=m.

Therefore, using Theorem 3.1, μ(𝚽)=1M\mu(\mathbf{\Phi})=\sqrt{\frac{1}{M}}.

Example 6.

Let p=3,m=4p=3,m=4, π=[1,4,3,2]\pi=[1,4,3,2], 𝐚=(2,2,2),𝐛=(1,1,1)\mathbf{a}=(2,2,2),\mathbf{b}=(1,1,1), and 𝐝1=(0,0,0,0),𝐝2=(1,1,1,1),𝐝3=(2,2,2,2),𝐝4=(0,0,1,0),𝐝5=(1,1,2,1),𝐝6=(2,2,0,2)\mathbf{d}_{1}=(0,0,0,0),\mathbf{d}_{2}=(1,1,1,1),\mathbf{d}_{3}=(2,2,2,2),\mathbf{d}_{4}=(0,0,1,0),\mathbf{d}_{5}=(1,1,2,1),\mathbf{d}_{6}=(2,2,0,2). According to Theorem 4.4 and (11), we get the following 66 matrices:

𝐀1=(0002000002000020),𝐀2=(1002010002100021),𝐀3=(2002020002200022),𝐀4=(0001000001100010),𝐀5=(1001010001200011),𝐀6=(2001020001000012).\begin{split}&\mathbf{A}_{1}=\left(\begin{array}[]{cccc}0&0&0&2\\ 0&0&0&0\\ 0&2&0&0\\ 0&0&2&0\end{array}\right),\mathbf{A}_{2}=\left(\begin{array}[]{cccc}1&0&0&2\\ 0&1&0&0\\ 0&2&1&0\\ 0&0&2&1\end{array}\right),\mathbf{A}_{3}=\left(\begin{array}[]{cccc}2&0&0&2\\ 0&2&0&0\\ 0&2&2&0\\ 0&0&2&2\end{array}\right),\\ &\mathbf{A}_{4}=\left(\begin{array}[]{cccc}0&0&0&1\\ 0&0&0&0\\ 0&1&1&0\\ 0&0&1&0\end{array}\right),\mathbf{A}_{5}=\left(\begin{array}[]{cccc}1&0&0&1\\ 0&1&0&0\\ 0&1&2&0\\ 0&0&1&1\end{array}\right),\mathbf{A}_{6}=\left(\begin{array}[]{cccc}2&0&0&1\\ 0&2&0&0\\ 0&1&0&0\\ 0&0&1&2\end{array}\right).\end{split}

Here, rank3(𝐐i,j)=4rank_{3}(\mathbf{Q}_{i,j})=4 for any iji\not=j. Let 𝚽=134[𝚽𝐀1,𝚽𝐀2,𝚽𝐀3,𝚽𝐀4,𝚽𝐀5,𝚽𝐀6]\mathbf{\Phi}=\frac{1}{3^{4}}[\mathbf{\Phi}_{\mathbf{A}_{1}},\mathbf{\Phi}_{\mathbf{A}_{2}},\mathbf{\Phi}_{\mathbf{A}_{3}},\mathbf{\Phi}_{\mathbf{A}_{4}},\mathbf{\Phi}_{\mathbf{A}_{5}},\mathbf{\Phi}_{\mathbf{A}_{6}}] be the 33-ary spreading matrix of size 34×(235)3^{4}\times(2\cdot 3^{5}). Then, PAPR(𝚽)=2.8931<3{\rm PAPR}({\mathbf{\Phi}})=2.8931<3 and μ(𝚽)=1340.1111<334\mu(\mathbf{\Phi})=\sqrt{\frac{1}{3^{4}}}\approx 0.1111<\sqrt{\frac{3}{3^{4}}}, which is optimum.

The above result presents a family of 𝚽\mathbf{\Phi} with optimum coherence for p=3p=3, however mm is constrained to an even integer with m2mod3m\not\equiv 2\bmod 3. Inspired by Theorem 4.4, we find a class of \mathcal{M} with rmin=mr_{min}=m for p=3p=3 while m2m\geq 2 can be any integer.

Theorem 4.5.

Let p=3p=3 and m=3l+um=3l+u be a positive integer, u{0,1,2}u\in\{0,1,2\}. Let π\pi be a permutation over {1,,m}\{1,\cdots,m\} and 𝐝1𝔽3m\mathbf{d}_{1}\in\mathbb{F}_{3}^{m}. For i=2,3i=2,3, define 𝐝i=𝐝1+(i1)𝟏m\mathbf{d}_{i}=\mathbf{d}_{1}+(i-1)\mathbf{1}_{m}. Suppose that UU is a index set defined as follows:

U={U0U1,if u=0U0U2,if u=1U1U2,if u=2U=\begin{cases}U_{0}\cup U_{1},&\text{if $u=0$}\\ U_{0}\cup U_{2},&\text{if $u=1$}\\ U_{1}\cup U_{2},&\text{if $u=2$}\\ \end{cases} (44)

where

Ui={{l11l1m,l1imod3},m is even;{l11l1m,l1imod3,l11mod2},m is odd.U_{i}=\begin{cases}\{l_{1}\mid 1\leq l_{1}\leq m,l_{1}\equiv i\bmod 3\},&\text{$m$ is even}\mathchar 24635\relax\\ \{l_{1}\mid 1\leq l_{1}\leq m,l_{1}\equiv i\bmod 3,l_{1}\equiv 1\bmod 2\},&\text{$m$ is odd}.\end{cases} (45)

Let sUs\in U with π(s)=s\pi(s)=s^{\prime}, and e𝔽3{0}e\in\mathbb{F}_{3}\setminus\{0\}, for i{4,5,6}i\in\{4,5,6\} define 𝐝i\mathbf{d}_{i} as follows:

di,k={di3,k,k{1,,m}{s};di3,k+e,k=s.d_{i,k}=\begin{cases}d_{i-3,k},&k\in\{1,\cdots,m\}\setminus\{s^{\prime}\}\mathchar 24635\relax\\ d_{i-3,k}+e,&k=s^{\prime}.\end{cases} (46)

Let 𝐚,𝐛\mathbf{a},\mathbf{b} satisfy the condition that k{1,,m1},ak,bk0,akbk\forall k\in\{1,\cdots,m-1\},a_{k},b_{k}\not=0,a_{k}\not=b_{k}. Let ={𝐀1,𝐀2,𝐀3,𝐀4,𝐀5,𝐀6}\mathcal{M}=\{\mathbf{A}_{1},\mathbf{A}_{2},\mathbf{A}_{3},\mathbf{A}_{4},\mathbf{A}_{5},\mathbf{A}_{6}\} with

𝐀i={ψ(π,𝐚,𝐝i),1i3;ψ(π,𝐛,𝐝i),4i6.\mathbf{A}_{i}=\begin{cases}\psi(\pi,\mathbf{a},\mathbf{d}_{i}),&1\leq i\leq 3\mathchar 24635\relax\\ \psi(\pi,\mathbf{b},\mathbf{d}_{i}),&4\leq i\leq 6.\end{cases} (47)

Let 𝚽\mathbf{\Phi} be the spreading sequence set generated by \mathcal{M}, as defined in (17). Then 𝚽\mathbf{\Phi} is a sequence set with 2×3m2\times 3^{m} sequences, each of length 3m3^{m}, and PAPR(𝚽)3{\rm PAPR}(\mathbf{\Phi})\leq 3, μ(𝚽)=1M\mu(\mathbf{\Phi})=\sqrt{\frac{1}{M}}.

Proof: From Lemma 3.1, we have PAPR(𝚽𝐀i)3{\rm PAPR}(\mathbf{\Phi}_{\mathbf{A}_{i}})\leq 3 for any 1i61\leq i\leq 6, hence, eventually we have PAPR(𝚽)3{\rm PAPR}(\mathbf{\Phi})\leq 3.

Similar to the proof of Theorem 4.4, we only need to consider the rank of 𝐐i,j\mathbf{Q}_{i,j} for i{1,2,3},j{4,5,6}i\in\{1,2,3\},j\in\{4,5,6\}.

For j=i+3j=i+3, we have 𝐐i,j=ψ(π,𝐜,𝐝i𝐝j)+ψ(π,𝐜,𝐝i𝐝j)T\mathbf{Q}_{i,j}=\psi(\pi,\mathbf{c},\mathbf{d}_{i}-\mathbf{d}_{j})+\psi(\pi,\mathbf{c},\mathbf{d}_{i}-\mathbf{d}_{j})^{T} where 𝐜=𝐚𝐛\mathbf{c}=\mathbf{a}-\mathbf{b}. By Lemma 4.1, the rank of rankp(𝐐i,j)=rankp(𝐃i,j)rank_{p}(\mathbf{Q}_{i,j})=rank_{p}(\mathbf{D}_{i,j}), where 𝐃i,j=ψ(π,𝐜,𝐝)+ψ(π,𝐜,𝐝)T\mathbf{D}_{i,j}=\psi(\pi^{\prime},\mathbf{c},\mathbf{d}^{{}^{\prime}})+\psi(\pi^{\prime},\mathbf{c},\mathbf{d}^{{}^{\prime}})^{T}, π(i)=i\pi^{\prime}(i)=i for 1im1\leq i\leq m and the kk-th element of 𝐝\mathbf{d}^{{}^{\prime}} is given by dk=di,π(k)dj,π(k)d^{{}^{\prime}}_{k}=d_{i,\pi(k)}-d_{j,\pi(k)}. As per the construction, the matrix 𝐃i,j\mathbf{D}_{i,j} is as follows:

𝐃i,j=(2d1c1c12d2c2c22d3c3cm22dm1cm1cm12dm).\mathbf{D}_{i,j}=\left(\begin{array}[]{cccccc}2d_{1}^{{}^{\prime}}&c_{1}&&&&\\ c_{1}&2d_{2}^{{}^{\prime}}&c_{2}&&&\\ &c_{2}&2d_{3}^{{}^{\prime}}&c_{3}&&\\ &&\ddots&\ddots&\ddots&\\ &&&c_{m-2}&2d_{m-1}^{{}^{\prime}}&c_{m-1}\\ &&&&c_{m-1}&2d_{m}^{{}^{\prime}}\end{array}\right). (48)

From (46), we have dk=di,π(k)dj3,π(k)=0d_{k}^{{}^{\prime}}=d_{i,\pi(k)}-d_{j-3,\pi(k)}=0 for π(k)s\pi(k)\not=s and ds=ed_{s}^{{}^{\prime}}=-e, where sUs\in U, then

𝐃i,j=(0c1c10cs1cs12ecscs0cm1cm10).\mathbf{D}_{i,j}=\left(\begin{array}[]{ccccccc}0&c_{1}&&&&&\\ c_{1}&\ddots&\ddots&&&&\\ &\ddots&0&c_{s-1}&&&\\ &&c_{s-1}&-2e&c_{s}&&\\ &&&c_{s}&0&\ddots&\\ &&&&\ddots&\ddots&c_{m-1}\\ &&&&&c_{m-1}&0\end{array}\right). (49)

Calculating the determinant of 𝐃i,j\mathbf{D}_{i,j}, we have:

det(𝐃i,j)={k=1m2(c2k12),m0mod2;(2e)×k1=1s12(c2k112)×k2=s+12m12(c2k22),m1mod2.\det(\mathbf{D}_{i,j})=\begin{cases}\prod\limits_{k=1}^{\frac{m}{2}}(-c_{2k-1}^{2}),&m\equiv 0\bmod 2\mathchar 24635\relax\\ (-2e)\times\prod\limits_{k_{1}=1}^{\frac{s-1}{2}}(-c_{2k_{1}-1}^{2})\times\prod\limits_{k_{2}=\frac{s+1}{2}}^{\frac{m-1}{2}}(-c_{2k_{2}}^{2}),&m\equiv 1\bmod 2.\end{cases} (50)

Since k{1,,m},ck=akbk0\forall k\in\{1,\cdots,m\},c_{k}=a_{k}-b_{k}\not=0 and e0e\not=0, we have det(𝐃i,j)0\det(\mathbf{D}_{i,j})\not=0, and hence, rankp(𝐐i,j)=rankp(𝐃i,j)=mrank_{p}(\mathbf{Q}_{i,j})=rank_{p}(\mathbf{D}_{i,j})=m.

Similarly, for i+3ji+3\not=j, suppose that j+3=jj^{{}^{\prime}}+3=j, we obtain 𝐐i,j=ψ(π,𝐜,𝐝i𝐝j+3)+ψ(π,𝐜,𝐝i𝐝j+3)T\mathbf{Q}_{i,j}=\psi(\pi,\mathbf{c},\mathbf{d}_{i}-\mathbf{d}_{j^{{}^{\prime}}+3})+\psi(\pi,\mathbf{c},\mathbf{d}_{i}-\mathbf{d}_{j^{{}^{\prime}}+3})^{T}, where 𝐜=𝐚𝐛\mathbf{c}=\mathbf{a}-\mathbf{b}. Suppose that 𝐃i,j=ψ(π,𝐜,𝐝)+ψ(π,𝐜,𝐝)T\mathbf{D}_{i,j}=\psi(\pi^{\prime},\mathbf{c},\mathbf{d}^{{}^{\prime}})+\psi(\pi^{\prime},\mathbf{c},\mathbf{d}^{{}^{\prime}})^{T}, where π(i)=i\pi^{\prime}(i)=i for 1im1\leq i\leq m and dk=di,π(k)dj,π(k)d^{{}^{\prime}}_{k}=d_{i,\pi(k)}-d_{j,\pi(k)}. By Lemma 4.1, we have rankp(𝐐i,j)=rankp(𝐃i,j)rank_{p}(\mathbf{Q}_{i,j})=rank_{p}(\mathbf{D}_{i,j}). In this case, 𝐃i,j\mathbf{D}_{i,j} is as follows:

𝐃i,j=(2d1c1c12d2c2c22d3c3cm22dm1cm1cm12dm).\mathbf{D}_{i,j}=\left(\begin{array}[]{cccccc}2d_{1}^{{}^{\prime}}&c_{1}&&&&\\ c_{1}&2d_{2}^{{}^{\prime}}&c_{2}&&&\\ &c_{2}&2d_{3}^{{}^{\prime}}&c_{3}&&\\ &&\ddots&\ddots&\ddots&\\ &&&c_{m-2}&2d_{m-1}^{{}^{\prime}}&c_{m-1}\\ &&&&c_{m-1}&2d_{m}^{{}^{\prime}}\end{array}\right). (51)

From (46), we have dk=di,π(k)dj,π(k)=di,π(k)dj+3,π(k)=ijd_{k}^{{}^{\prime}}=d_{i,\pi(k)}-d_{j,\pi(k)}=d_{i,\pi(k)}-d_{j^{{}^{\prime}}+3,\pi(k)}=i-j^{\prime} for π(k)s\pi(k)\not=s and ds=ijed_{s}^{{}^{\prime}}=i-j^{\prime}-e, where sUs\in U, then

𝐃i,j=(2(ij)c1c12(ij)cs1cs12(ij)2ecscs2(ij)cm1cm12(ij)).\mathbf{D}_{i,j}=\left(\begin{array}[]{ccccccc}2(i-j^{{}^{\prime}})&c_{1}&&&&&\\ c_{1}&\ddots&\ddots&&&&\\ &\ddots&2(i-j^{{}^{\prime}})&c_{s-1}&&&\\ &&c_{s-1}&2(i-j^{{}^{\prime}})-2e&c_{s}&&\\ &&&c_{s}&2(i-j^{{}^{\prime}})&\ddots&\\ &&&&\ddots&\ddots&c_{m-1}\\ &&&&&c_{m-1}&2(i-j^{{}^{\prime}})\end{array}\right). (52)

Therefore,

det(𝐃i,j)=2d1det(𝐃i,j(m1×m1))+(c12)det(𝐃i,j(m2×m2))=((2d1)(2d2)c12)det(𝐃i,j(m2×m2))+(2d)(c22)det(𝐃i,j(m3×m3))=(2d1)(c22)det(𝐃i,j(m3×m3))\begin{split}\det(\mathbf{D}_{i,j})&=2d_{1}^{{}^{\prime}}\det(\mathbf{D}_{i,j}^{(m-1\times m-1)})+(-c_{1}^{2})\det(\mathbf{D}_{i,j}^{(m-2\times m-2)})\\ &=((2d_{1}{{}^{\prime}})(2d_{2}^{{}^{\prime}})-c_{1}^{2})\det(\mathbf{D}_{i,j}^{(m-2\times m-2)})+(2d^{{}^{\prime}})(-c_{2}^{2})\det(\mathbf{D}_{i,j}^{(m-3\times m-3)})\\ &=(2d_{1}^{{}^{\prime}})(-c_{2}^{2})\det(\mathbf{D}_{i,j}^{(m-3\times m-3)})\end{split} (53)

where 𝐃i,j(m1)×(m1)\mathbf{D}_{i,j}^{(m-1)\times(m-1)} denotes the bottom right sub-matrix of order (m1)(m-1) of 𝐃i,j\mathbf{D}_{i,j}. Since ((2d1)(2d2)c12)=(2(ij))2c12=0((2d_{1}{{}^{\prime}})(2d_{2}^{{}^{\prime}})-c_{1}^{2})=(2(i-j^{{}^{\prime}}))^{2}-c_{1}^{2}=0 with ij,c1𝔽3{0}i-j^{{}^{\prime}},c_{1}\in\mathbb{F}_{3}\setminus\{0\}, (53) holds. Suppose that s=3t+vs=3t+v with 0v20\leq v\leq 2, by applying the above method, we get:

det(𝐃i,j)={(2(ij))l(cs+v12)k1=0t+v2(c3k1+22)×k2=t+vl1(c3k2+12),m0mod3;(2(ij))l+1(cs1+v32)k1=0t+v32(c3k1+22)×k2=t+v3l1(c3k2+22),m1mod3;((ije)(ij)csv+12)(2(ij))lk1=0t1(c3k1+12)×k2=t+1l1(c3k2+32),m2mod3;\begin{split}&\det(\mathbf{D}_{i,j})=\\ &\begin{cases}(2(i-j^{{}^{\prime}}))^{l}(-c_{s+v-1}^{2})\prod\limits_{k_{1}=0}^{t+v-2}(-c_{3k_{1}+2}^{2})\times\prod\limits_{k_{2}=t+v}^{l-1}(-c_{3k_{2}+1}^{2}),\\ \hskip 270.30118ptm\equiv 0\bmod 3\mathchar 24635\relax\;\\ (2(i-j^{{}^{\prime}}))^{l+1}(-c_{s-1+\lceil\frac{v}{3}\rceil}^{2})\prod\limits_{k_{1}=0}^{t+\lceil\frac{v}{3}\rceil-2}(-c_{3k_{1}+2}^{2})\times\prod\limits_{k_{2}=t+\lceil\frac{v}{3}\rceil}^{l-1}(-c_{3k_{2}+2}^{2}),\\ \hskip 270.30118ptm\equiv 1\bmod 3\mathchar 24635\relax\;\\ ((i-j^{{}^{\prime}}-e)(i-j^{{}^{\prime}})-c_{s-v+1}^{2})(2(i-j^{{}^{\prime}}))^{l}\prod\limits_{k_{1}=0}^{t-1}(-c_{3k_{1}+1}^{2})\times\prod\limits_{k_{2}=t+1}^{l-1}(-c_{3k_{2}+3}^{2}),\\ \hskip 270.30118ptm\equiv 2\bmod 3\mathchar 24635\relax\;\end{cases}\end{split} (54)

Since k{1,,m},ck=akbk0\forall k\in\{1,\cdots,m\},c_{k}=a_{k}-b_{k}\not=0 and ij0i-j^{{}^{\prime}}\not=0, we have det(𝐃i,j)0\det(\mathbf{D}_{i,j})\not=0, and hence, rankp(𝐐i,j)=rankp(𝐃i,j)=mrank_{p}(\mathbf{Q}_{i,j})=rank_{p}(\mathbf{D}_{i,j})=m. The rest of the proof is completed using Theorem 3.1, since rmin=mr_{min}=m and M=pmM=p^{m}.

Example 7.

Let p=3,m=5p=3,m=5, π=[1,2,3,4,5]\pi=[1,2,3,4,5], 𝐚=(2,1,2,2),𝐛=(1,2,1,1)\mathbf{a}=(2,1,2,2),\mathbf{b}=(1,2,1,1), and 𝐝1=(0,0,0,0,0),𝐝2=(1,1,1,1,1),𝐝3=(2,2,2,2,2),𝐝4=(0,0,0,0,1),𝐝5=(1,1,1,1,2),𝐝6=(2,2,2,2,0)\mathbf{d}_{1}=(0,0,0,0,0),\mathbf{d}_{2}=(1,1,1,1,1),\mathbf{d}_{3}=(2,2,2,2,2),\mathbf{d}_{4}=(0,0,0,0,1),\mathbf{d}_{5}=(1,1,1,1,2),\mathbf{d}_{6}=(2,2,2,2,0). According to Theorem 4.5 and (11), we get the following 66 matrices:

𝐀1=(0200000100000200000200000),𝐀2=(1200001100001200001200001),𝐀3=(2200002100002200002200002),𝐀4=(0100000200000100000100001),𝐀5=(1100001200001100001100002),𝐀6=(2100002200002100002100000).\begin{split}&\mathbf{A}_{1}=\left(\begin{array}[]{ccccc}0&2&0&0&0\\ 0&0&1&0&0\\ 0&0&0&2&0\\ 0&0&0&0&2\\ 0&0&0&0&0\end{array}\right),\mathbf{A}_{2}=\left(\begin{array}[]{ccccc}1&2&0&0&0\\ 0&1&1&0&0\\ 0&0&1&2&0\\ 0&0&0&1&2\\ 0&0&0&0&1\end{array}\right),\mathbf{A}_{3}=\left(\begin{array}[]{ccccc}2&2&0&0&0\\ 0&2&1&0&0\\ 0&0&2&2&0\\ 0&0&0&2&2\\ 0&0&0&0&2\end{array}\right),\\ &\mathbf{A}_{4}=\left(\begin{array}[]{ccccc}0&1&0&0&0\\ 0&0&2&0&0\\ 0&0&0&1&0\\ 0&0&0&0&1\\ 0&0&0&0&1\end{array}\right),\mathbf{A}_{5}=\left(\begin{array}[]{ccccc}1&1&0&0&0\\ 0&1&2&0&0\\ 0&0&1&1&0\\ 0&0&0&1&1\\ 0&0&0&0&2\end{array}\right),\mathbf{A}_{6}=\left(\begin{array}[]{ccccc}2&1&0&0&0\\ 0&2&2&0&0\\ 0&0&2&1&0\\ 0&0&0&2&1\\ 0&0&0&0&0\end{array}\right).\end{split}

Here, rank3(𝐐i,j)=5rank_{3}(\mathbf{Q}_{i,j})=5 for any iji\not=j. Let 𝚽=135[𝚽𝐀1,𝚽𝐀2,𝚽𝐀3,𝚽𝐀4,𝚽𝐀5,𝚽𝐀6]\mathbf{\Phi}=\frac{1}{3^{5}}[\mathbf{\Phi}_{\mathbf{A}_{1}},\mathbf{\Phi}_{\mathbf{A}_{2}},\mathbf{\Phi}_{\mathbf{A}_{3}},\mathbf{\Phi}_{\mathbf{A}_{4}},\mathbf{\Phi}_{\mathbf{A}_{5}},\mathbf{\Phi}_{\mathbf{A}_{6}}] be the 33-ary spreading matrix of size 35×(236)3^{5}\times(2\cdot 3^{6}). Then, PAPR(𝚽)=3{\rm PAPR}({\mathbf{\Phi}})=3 and μ(𝚽)=1350.0642\mu(\mathbf{\Phi})=\sqrt{\frac{1}{3^{5}}}\approx 0.0642, which is optimum.

4.3 Spreading sequence sets with low coherence and low PAPR over alphabet size php^{h}

In Nam2020 , two classes of 2h2^{h}-ary spreading sequences were proposed by using the quadratic forms defined in 𝔽2\mathbb{F}_{2}. Similarly, we can extend our construction to php^{h}-ary case by applying the quadratic matrices defined in 𝔽p\mathbb{F}_{p} and make the parameters more flexible.

For any m2m\geq 2, let q=phq=p^{h} for 1hm1\leq h\leq m. Define

c(𝐱)=qpi=h+1mvixi+di=1hxipi1,\mathcal{L}_{c}(\mathbf{x})=\frac{q}{p}\sum_{i=h+1}^{m}v_{i}x_{i}+d\sum_{i=1}^{h}x_{i}p^{i-1}, (55)

where c=d+i=h+1mvipi1c=d+\sum_{i=h+1}^{m}v_{i}p^{i-1} for vipv_{i}\in\mathbb{Z}_{p} and dqd\in\mathbb{Z}_{q}. Using c(𝐱)\mathcal{L}_{c}(\mathbf{x}) as a linear form, similar to (10), we define an EBF ff from 𝔽pm\mathbb{F}_{p}^{m} to q\mathbb{Z}_{q} as follows:

f(𝐱)=qp(i=1m1aixπ(i)xπ(i+1)+k=1mdkxk2)+c(x)=qp𝐱T𝐀𝐱+c(𝐱)f(\mathbf{x})=\frac{q}{p}\left(\sum_{i=1}^{m-1}a_{i}x_{\pi(i)}x_{\pi(i+1)}+\sum_{k=1}^{m}d_{k}x_{k}^{2}\right)+\mathcal{L}_{c}(x)=\frac{q}{p}\mathbf{x}^{T}\mathbf{A}\mathbf{x}+\mathcal{L}_{c}(\mathbf{x}) (56)

where 𝐀𝒜p\mathbf{A}\in\mathcal{A}_{p} is a square matrix.

Lemma 4.2.

Let pp be a prime, m2m\geq 2 be a positive integer, and q=phq=p^{h} with 1hm1\leq h\leq m. For a given 𝐀𝒜pMm(𝔽p)\mathbf{A}\in\mathcal{A}_{p}\subset M_{m}(\mathbb{F}_{p}) and 0cpm10\leq c\leq p^{m}-1, define the EBFs f0,f1,,fp1f_{0},f_{1},\cdots,f_{p-1} from 𝔽pm\mathbb{F}_{p}^{m} to q\mathbb{Z}_{q} as follows:

f0(𝐱)=qp𝐱T𝐀𝐱+c(𝐱),f1(𝐱)=f0(𝐱)+qpxπ(1),fp1(𝐱)=f0(𝐱)+qp(p1)xπ(1).\begin{split}f_{0}(\mathbf{x})&=\frac{q}{p}\mathbf{x}^{T}\mathbf{A}\mathbf{x}+\mathcal{L}_{c}(\mathbf{x}),\\ f_{1}(\mathbf{x})&=f_{0}(\mathbf{x})+\frac{q}{p}x_{\pi(1)},\\ &\vdots\\ f_{p-1}(\mathbf{x})&=f_{0}(\mathbf{x})+\frac{q}{p}(p-1)x_{\pi(1)}.\end{split} (57)

then {f0,,fp1}\{f_{0},\cdots,f_{p-1}\} forms a qq-ary (p,pm)(p,p^{m})-CS.

Proof: Suppose that 𝐬n\mathbf{s}_{n} denotes the corresponding php^{h}-ary complex valued sequence of fnf_{n}(0np10\leq n\leq p-1). For a given τ0\tau\neq 0, by (3), we have:

n=0p1R𝐬n(τ)=n=0p1i=0pm1τωqfn,ifn,i+τ=i=0pm1τn=0p1ωqfn,ifn,j(let j=i+τ),\begin{split}\sum_{n=0}^{p-1}R_{\mathbf{s}_{n}}(\tau)&=\sum_{n=0}^{p-1}\sum_{i=0}^{p^{m}-1-\tau}\omega_{q}^{f_{n,i}-f_{n,i+\tau}}\\ &=\sum_{i=0}^{p^{m}-1-\tau}\sum_{n=0}^{p-1}\omega_{q}^{f_{n,i}-f_{n,j}}(\text{let $j=i+\tau$}),\end{split} (58)

where fn,i=fn(i1,,im)f_{n,i}=f_{n}(i_{1},\cdots,i_{m}) with k=1mikpk1=i\sum_{k=1}^{m}i_{k}p^{k-1}=i.

Since

fn,ifn,j=f0,if0,j+qpn(iπ(1)jπ(1)),f_{n,i}-f_{n,j}=f_{0,i}-f_{0,j}+\frac{q}{p}n(i_{\pi(1)}-j_{\pi(1)}), (59)

we have

n=0p1R𝐬n(τ)=iΩ1n=0p1ωqfn,ifn,j+iΩ2n=0p1ωqfn,ifn,j=piΩ1ωqf0,if0,j,\begin{split}\sum_{n=0}^{p-1}R_{\mathbf{s}_{n}}(\tau)&=\sum_{i\in\Omega_{1}}\sum_{n=0}^{p-1}\omega_{q}^{f_{n,i}-f_{n,j}}+\sum_{i\in\Omega_{2}}\sum_{n=0}^{p-1}\omega_{q}^{f_{n,i}-f_{n,j}}\\ &=p\sum_{i\in\Omega_{1}}\omega_{q}^{f_{0,i}-f_{0,j}},\end{split} (60)

where Ω1={i0ipm1,iπ(1)=jπ(1)},Ω2={i0ipm1,iπ(1)jπ(1)}\Omega_{1}=\{i\mid 0\leq i\leq p^{m}-1,i_{\pi(1)}=j_{\pi(1)}\},\Omega_{2}=\{i\mid 0\leq i\leq p^{m}-1,i_{\pi(1)}\neq j_{\pi(1)}\}.

Now consider the elements in Ω1\Omega_{1}. Since iji\neq j, we can define vv to be the smallest integer for which iπ(v)jπ(v)i_{\pi(v)}\neq j_{\pi(v)}. Let i(n)i^{(n)} and j(n)j^{(n)} denote two integers whose pp-ary representation satisfies

iπ(k)(n)={iπ(k),if kv1iπ(k)+n,if k=v1,jπ(k)(n)={jπ(k),if kv1jπ(k)+n,if k=v1i^{(n)}_{\pi(k)}=\begin{cases}i_{\pi(k)},&\text{if $k\neq v-1$}\\ i_{\pi(k)}+n,&\text{if $k=v-1$}\end{cases},j^{(n)}_{\pi(k)}=\begin{cases}j_{\pi(k)},&\text{if $k\neq v-1$}\\ j_{\pi(k)}+n,&\text{if $k=v-1$}\end{cases} (61)

for 0np10\leq n\leq p-1, then i(n)Ω1i^{(n)}\in\Omega_{1}. It means that we define an invertible map from the ordered pair (i,j)(i,j) to (i(n),j(n))(i^{(n)},j^{(n)}) and both pairs contribute to (60).

Note that

f0,i(n)f0,if0,j(n)+f0,j=qp(k=1m1ak(iπ(k)(n)iπ(k+1)(n)iπ(k)iπ(k+1)jπ(k)(n)jπ(k+1)(n)+jπ(k)jπ(k+1)))+qp(k=h+1mvk(ik(n)ikjk(n)+jk))+dk=1hpk1(ik(n)ikjk(n)+jk)=qpnav1(iπ(v)jπ(v)),\begin{split}&f_{0,i^{(n)}}-f_{0,i}-f_{0,j^{(n)}}+f_{0,j}\\ =&\frac{q}{p}\left(\sum_{k=1}^{m-1}a_{k}\left(i_{\pi(k)}^{(n)}i_{\pi(k+1)}^{(n)}-i_{\pi(k)}i_{\pi(k+1)}-j_{\pi(k)}^{(n)}j_{\pi(k+1)}^{(n)}+j_{\pi(k)}j_{\pi(k+1)}\right)\right)\\ &+\frac{q}{p}\left(\sum_{k=h+1}^{m}v_{k}\left(i_{k}^{(n)}-i_{k}-j_{k}^{(n)}+j_{k}\right)\right)+d\sum_{k=1}^{h}p^{k-1}(i_{k}^{(n)}-i_{k}-j_{k}^{(n)}+j_{k})\\ =&\frac{q}{p}na_{v-1}(i_{\pi(v)}-j_{\pi(v)}),\end{split} (62)

we finally get

n=0p1ωqf0,i(n)f0,j(n)=ωqf0,if0,jn=0p1ωqqpnav1(iπ(v)jπ(v))=0.\sum_{n=0}^{p-1}\omega_{q}^{f_{0,i^{(n)}}-f_{0,j^{(n)}}}=\omega_{q}^{f_{0,i}-f_{0,j}}\sum_{n=0}^{p-1}\omega_{q}^{\frac{q}{p}na_{v-1}(i_{\pi(v)}-j_{\pi(v)})}=0. (63)

Combining the above cases, we see

n=0p1R𝐬n(τ)=0.\sum_{n=0}^{p-1}R_{\mathbf{s}_{n}}(\tau)=0. (64)

Therefore, {f0,,fp1}\{f_{0},\cdots,f_{p-1}\} forms a qq-ary (p,pm)(p,p^{m})-CS. This completes the proof.

The above lemma provide a construction of php^{h}-ary CS extended from pp-ary case, which means that the constructions of 𝚽\mathbf{\Phi} in the above sections can also be extended to php^{h} case. Suppose that ={𝐀1,,𝐀L}\mathcal{M}=\{\mathbf{A}_{1},\cdots,\mathbf{A}_{L}\} is a set of matrices we have proposed in the above theorems. We define

𝚽𝐀k=[𝐬k(0),𝐬k(1),,𝐬k(pm1)].\mathbf{\Phi}_{\mathbf{A}_{k}}^{{}^{\prime}}=[\mathbf{s}_{k}^{(0)},\mathbf{s}_{k}^{(1)},\cdots,\mathbf{s}_{k}^{(p^{m}-1)}]. (65)

where 𝐬k(c)\mathbf{s}_{k}^{(c)} is the php^{h}-ary complex-valued sequence corresponding to the following EBF

fk(c)(𝐱)=qp𝐱T𝐀k𝐱+c(𝐱).f_{k}^{(c)}(\mathbf{x})=\frac{q}{p}\mathbf{x}^{T}\mathbf{A}_{k}\mathbf{x}+\mathcal{L}_{c}(\mathbf{x}). (66)

It is easy to verify that 𝚽𝐀k\mathbf{\Phi}_{\mathbf{A}_{k}}^{{}^{\prime}} is orthogonal. Similar to Section 3, the php^{h}-ary sequence set 𝚽\mathbf{\Phi}^{{}^{\prime}} generated by \mathcal{M} is defined as:

𝚽=[𝚽𝐀1,,𝚽𝐀L].\mathbf{\Phi}^{{}^{\prime}}=[\mathbf{\Phi}_{\mathbf{A}_{1}}^{{}^{\prime}},\cdots,\mathbf{\Phi}_{\mathbf{A}_{L}}^{{}^{\prime}}]. (67)

Since, the quadratic part of (56) and (66) are similar to that of (10), using the results in Section 4.1 and Section 4.2, we get the following Corollaries.

Corollary 4.1.

Let \mathcal{M} be the set of 𝐀k\mathbf{A}_{k}’s as described in Theorem 4.1. Then 𝚽\mathbf{\Phi}^{\prime}, as described in (67), is a php^{h}-ary sequence set with pm+1p^{m+1} sequences, each of length pmp^{m}, PAPR(𝚽)p{\rm PAPR}(\mathbf{\Phi}^{\prime})\leq p, and μ(𝚽)=1M\mu(\mathbf{\Phi}^{\prime})=\sqrt{\frac{1}{M}}.

Proof: Since every sequence in 𝚽\mathbf{\Phi}^{\prime} is generated by a function with the form given in (56), by Lemma 4.2, we obtain that each sequence in (56) is from a qq-ary (p,pm)(p,p^{m})-CS. Then by Lemma 2.1, we have PAPR(𝚽)=max𝐬𝚽PAPR(𝐬)p{\rm PAPR}(\mathbf{\Phi}^{\prime})=\max_{\mathbf{s}\in\mathbf{\Phi}^{\prime}}{\rm PAPR}(\mathbf{s})\leq p.

The proof for the coherence can be derived directly from Theorem 4.1.

Corollary 4.2.

Let \mathcal{M} be the set of 𝐀k\mathbf{A}_{k}’s as described in Theorem 4.2 or Theorem 4.3. Then 𝚽\mathbf{\Phi}^{\prime}, as described in (67), is a php^{h}-ary sequence set with 2×pm+12\times p^{m+1} sequences, each of length pmp^{m}, PAPR(𝚽)p{\rm PAPR}(\mathbf{\Phi}^{\prime})\leq p, and μ(𝚽)1M\mu(\mathbf{\Phi}^{\prime})\leq\sqrt{\frac{1}{M}}.

Proof: The proof for PAPR is same as Corollary 4.1. The proof for the coherence can be derived directly from Theorem 4.2 or Theorem 4.3, according to the choice of \mathcal{M}.

Corollary 4.3.

Let \mathcal{M} be the set of 𝐀k\mathbf{A}_{k}’s as described in Theorem 4.4 or Theorem 4.5. Then 𝚽\mathbf{\Phi}^{\prime}, as described in (67), is a 3h3^{h}-ary sequence set with 2×3m+12\times 3^{m+1} sequences, each of length 3m3^{m}, PAPR(𝚽)3{\rm PAPR}(\mathbf{\Phi}^{\prime})\leq 3, and μ(𝚽)=1M\mu(\mathbf{\Phi}^{\prime})=\sqrt{\frac{1}{M}}.

Proof: The proof for PAPR is same as Corollary 4.1. The proof for the coherence can be derived directly from Theorem 4.4 or Theorem 4.5, according to the choice of \mathcal{M}.

Finally, we compare the parameters of existing spreading sequences in table 2.

Table 2: The parameters of the spreading sequence matrices proposed till date.
Reference Constraint Alphabet size Coherence Overloading factor PAPR
Nam2020 mm is even 2h2^{h} 2/M2/\sqrt{M} 33 4\leq 4
mm is odd 2h2^{h} 2/M\sqrt{2/M} 33 2\leq 2
Nam2021 m=6,8,10m=6,8,10 22 1/M1/\sqrt{M} 55 2\leq 2
m=5,7,9m=5,7,9 22 2/M\sqrt{2/M} 88 2\leq 2
LYB2022CL mm is even 22 1/M1/\sqrt{M} 33 2\leq 2
m1(mod4)m\equiv 1(\bmod 4) 22 2/M\sqrt{2/M} 44 2\leq 2
Theorem 4.1 m2m\geq 2 pp 1/M1/\sqrt{M} pp p\leq p
Theorem 4.2 m2m\geq 2 pp p/M\leq\sqrt{p/M} 2p2p p\leq p
Theorem 4.3 m2m\geq 2 pp p/M\leq\sqrt{p/M} 2p2p p\leq p
Theorem 4.4 mm is even, m4m\geq 4, m2mod3m\not\equiv 2\bmod 3 33 1/M1/\sqrt{M} 66 3\leq 3
Theorem 4.5 m2m\geq 2 33 1/M1/\sqrt{M} 66 3\leq 3
Corollary 4.1 Similar to Theorem 4.1 php^{h} 1/M1/\sqrt{M} pp p\leq p
Corollary 4.2 Similar to Theorem 4.2 or Theorem 4.3 php^{h} p/M\leq\sqrt{p/M} 2p2p p\leq p
Corollary 4.3 Similar to Theorem 4.4 or Theorem 4.5 3h3^{h} 1/M1/\sqrt{M} 66 3\leq 3

5 Concluding Remarks

In this paper, we have proposed three infinite families of non-orthogonal spreading sequence matrices over 𝔽p\mathbb{F}_{p}, where pp is an odd prime, for uplink NOMA, using EBFs. We have represented the EBFs of degree two, in the form of matrices, and associated the coherence of the related spreading sequences with the rank of those matrices. To be more specific, the rank of the matrices are inversely proportional to the coherence of the spreading sequence matrices associated with the corresponding EBF. Each of the proposed spreading sequence matrices have low PAPR and low coherence. We have proved that we can achieve optimum coherence for p=3p=3. For the other prime cases, we can achieve near-optimum coherence. We have also changed the alphabet size of the proposed sequence sets from pp or 33 to php^{h} or 3h3^{h}, respectively. The proposed constructions hugely increases the overloading factor. For a given pp, the overloading factor is 2p2p. Specifically, for p=3p=3, it is 66. Due to computational complexity, we have only considered EBFs of degree two. As a future work, EBFs with higher degrees can be considered.

References

  • \bibcommenthead
  • (1) Mesnager, S.: Generalities on Boolean Functions and p-Ary Functions, pp. 1–15. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32595-8_1
  • (2) Yu, N.Y.: Binary Golay Spreading Sequences and Reed-Muller Codes for Uplink Grant-Free NOMA. IEEE Transactions on Communications 69(1), 276–290 (2021). https://doi.org/10.1109/TCOMM.2020.3031613
  • (3) Yu, N.Y.: Non-Orthogonal Golay-Based Spreading Sequences for Uplink Grant-Free Access. IEEE Communications Letters 24(10), 2104–2108 (2020). https://doi.org/10.1109/LCOMM.2020.3004640
  • (4) Tian, L., Liu, T., Li, Y.: New constructions of binary golay spreading sequences for uplink grant-free noma. IEEE Communications Letters, 1–1 (2022). https://doi.org/10.1109/LCOMM.2022.3194158
  • (5) Dai, L., Wang, B., Yuan, Y., Han, S., Chih-lin, I., Wang, Z.: Non-orthogonal multiple access for 5g: solutions, challenges, opportunities, and future research trends. IEEE Communications Magazine 53(9), 74–81 (2015). https://doi.org/10.1109/MCOM.2015.7263349
  • (6) Dai, L., Wang, B., Ding, Z., Wang, Z., Chen, S., Hanzo, L.: A survey of non-orthogonal multiple access for 5g. IEEE Communications Surveys Tutorials 20(3), 2294–2323 (2018). https://doi.org/10.1109/COMST.2018.2835558
  • (7) Kutyniok, G., Eldar, Y.C.: Compressed sensing : Theory and applications. Cambridge University Press (2012)
  • (8) Du, Y., Dong, B., Zhu, W., Gao, P., Chen, Z., Wang, X., Fang, J.: Joint channel estimation and multiuser detection for uplink grant-free noma. IEEE Wireless Communications Letters 7(4), 682–685 (2018). https://doi.org/10.1109/LWC.2018.2810278
  • (9) Litsyn, S.: Peak power control in multicarrier communications. Cambridge University Press, 682–685 (2007)
  • (10) Davis, J.A., Jedwab, J.: Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes. IEEE Transactions on Information Theory 45(7), 2397–2417 (1999). https://doi.org/10.1109/18.796380
  • (11) Paterson, K.G.: Generalized reed-muller codes and power control in ofdm modulation. IEEE Transactions on Information Theory 46(1), 104–120 (2000). https://doi.org/10.1109/18.817512
  • (12) Chen, C.-Y.: Complementary sets of non-power-of-two length for peak-to-average power ratio reduction in ofdm. IEEE Transactions on Information Theory 62(12), 7538–7545 (2016). https://doi.org/10.1109/TIT.2016.2613994
  • (13) Chen, C.-Y.: A novel construction of complementary sets with flexible lengths based on boolean functions. IEEE Communications Letters 22(2), 260–263 (2018). https://doi.org/10.1109/LCOMM.2017.2773093
  • (14) Shen, B., Yang, Y., Zhou, Z.: A construction of binary golay complementary sets based on even-shift complementary pairs. IEEE Access 8, 29882–29890 (2020). https://doi.org/10.1109/ACCESS.2020.2972598
  • (15) Adhikary, A.R., Majhi, S.: New constructions of complementary sets of sequences of lengths non-power-of-two. IEEE Communications Letters 23(7), 1119–1122 (2019). https://doi.org/10.1109/LCOMM.2019.2913382
  • (16) Wang, G., Adhikary, A.R., Zhou, Z., Yang, Y.: Generalized constructions of complementary sets of sequences of lengths non-power-of-two. IEEE Signal Processing Letters 27, 136–140 (2020). https://doi.org/10.1109/LSP.2019.2960155
  • (17) Yang, K., Kim, Y.-K., Vijay Kumar, P.: Quasi-orthogonal sequences for code-division multiple-access systems. IEEE Transactions on Information Theory 46(3), 982–993 (2000). https://doi.org/10.1109/18.841175
  • (18) Zhang, W., Pasalic, E., Zhang, L.: Phase orthogonal sequence sets for (qs)cdma communications. Designs, Codes and Cryptography 90, 1139–1156 (2022). https://doi.org/10.1007/s10623-022-01031-5
  • (19) Du, Y., Dong, B., Chen, Z., Wang, X., Liu, Z., Gao, P., Li, S.: Efficient multi-user detection for uplink grant-free noma: Prior-information aided adaptive compressive sensing perspective. IEEE Journal on Selected Areas in Communications 35(12), 2812–2828 (2017). https://doi.org/10.1109/JSAC.2017.2726279
  • (20) Liu, L., Larsson, E.G., Yu, W., Popovski, P., Stefanovic, C., de Carvalho, E.: Sparse signal processing for grant-free massive connectivity: A future paradigm for random access protocols in the internet of things. IEEE Signal Processing Magazine 35(5), 88–99 (2018). https://doi.org/%****␣Kaiquiang_NOMA_Paper.bbl␣Line␣350␣****10.1109/MSP.2018.2844952
  • (21) Wang, Z., Ma, D., Gong, G., Xue, E.: New Construction of Complementary Sequence (or Array) Sets and Complete Complementary Codes. IEEE Transactions on Information Theory 67(7), 4902–4928 (2021). https://doi.org/10.1109/TIT.2021.3079124
  • (22) Shen, B., Yang, Y., Zhou, Z.: New construction of z-complementary code sets and mutually orthogonal complementary sequence sets. CoRR abs/2105.10147 (2021) 2105.10147
  • (23) Kumar, P.V., Scholtz, R.A., Welch, L.R.: Generalized bent functions and their properties. Journal of Combinatorial Theory, Series A 40(1), 90–107 (1985). https://doi.org/10.1016/0097-3165(85)90049-4