This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

New representation of Drazin inverse for a block complex matrix

Huanyin Chen  and  Marjan Sheibani Department of Mathematics
Hangzhou Normal University
Hang -zhou, China
¡[email protected]¿ Farzanegan Campus, Semnan University, Semnan, Iran ¡[email protected]¿
Abstract.

We present a new formula for the Drazin inverse of the sum of two complex matrices under weaker conditions with perturbations. By using this additive results, we establish new representations for the Drazin inverse of 2×22\times 2 block complex matrix (ABCD)\left(\begin{array}[]{cc}A&B\\ C&D\end{array}\right) under certain new conditions involving perturbations. These extend many known results, e.g., Yang and Liu (J. Comput. Applied Math., 235(2011), 1412–1417), Dopazo and Martinez-Serrano (Linear Algebra Appl., 432(2010), 1896–1904).

Key words and phrases:
Drazin inverse; additive formula; spectral idempotent; block matrix.
2010 Mathematics Subject Classification:
15A09, 15A10.
Corresponding author

1. Introduction

Let n×n{\mathbb{C}}^{n\times n} be the set of all n×nn\times n matrices over the complex field {\mathbb{C}}, and let An×nA\in{\mathbb{C}}^{n\times n}. The Drazin inverse of AA is the unique matrix ADn×nA^{D}\in{\mathbb{C}}^{n\times n} satisfying the following relations:

AAD=ADA,AD=ADAADandAm=Am+1ADAA^{D}=A^{D}A,A^{D}=A^{D}AA^{D}~{}\mbox{and}~{}A^{m}=A^{m+1}A^{D}

for some mm\in{\mathbb{N}}. As is well known, AA has Drazin inverse if and only if rank(Am)=rank(Am+1)rank(A^{m})=rank(A^{m+1}) for some mm\in{\mathbb{N}}. The Drazin invertibility of a complex matrix is attractive. It has widespread applications in singular differential equations, Markov chains, and iterative methods (see [1]). Many authors have studied such problems from many different views, e.g.,  [1, 7, 9, 10, Z1, 13].

Let P,Qn×nP,Q\in{\mathbb{C}}^{n\times n}. It is attractive to give the explicit formula of (P+Q)D(P+Q)^{D}. The formula was firstly obtained by Drazin in the case of PQ=QP=0PQ=QP=0. In 2001, Hartwig et al. gave the formula when PQ=0PQ=0 in  [H]. In 2011, the additive formula was given under the new condition PQ2=0,PQP=0PQ^{2}=0,PQP=0 (see  [9, Theorem 2.1]). This is an elementary result and it deduce many wider conditions under which the Drazin inverse is expressed, e.g.,  [7, 10]. We denote by AπA^{\pi} the eigenprojection of AA corresponding to the eigenvalue 0 that is given by Aπ=IAADA^{\pi}=I-AA^{D}. The aim of this paper is to generalize elementary result. In Section 2, we extend  [9, Theorem 2.1] and present a representation of (P+Q)D(P+Q)^{D} in the case of PQ2=0PQ^{2}=0 and PQP(PQ)π=0PQP(PQ)^{\pi}=0.

Let M=(ABCD)M=\left(\begin{array}[]{cc}A&B\\ C&D\end{array}\right), where Am×m,Bm×n,Cn×m,A\in{\mathbb{C}}^{m\times m},B\in{\mathbb{C}}^{m\times n},C\in{\mathbb{C}}^{n\times m}, Dn×nD\in{\mathbb{C}}^{n\times n}. It is of interesting to find the Drazin inverse of the block complex matrix MM. This problem is quite complicated and was expensively studied by many authors, see for example [3, 4, 9, 10]. In Section 3, we apply these computational formulas to give the Drazin inverse of a block complex matrix MM. If BCB=0,DCB=0,BCA(BC)π=0BCB=0,DCB=0,BCA(BC)^{\pi}=0 and DCA(BC)π=0DCA(BC)^{\pi}=0, we establish the representation of MDM^{D}, which also extend the result of Yang and Liu (see [9, Theorem 3.1]).

2. additive results

In this section, we will give a new additive formula for the Drazin inverse under a weaker condition, for which the following has been developed. We begin with

Lemma 2.1.

Let P,Qn×nP,Q\in{\mathbb{C}}^{n\times n}. If PQ=0PQ=0, then

(P+Q)D=i=0(QD)i+1PiPπ+i=0QiQπ(PD)i+1.(P+Q)^{D}=\sum\limits_{i=0}^{\infty}(Q^{D})^{i+1}P^{i}P^{\pi}+\sum\limits_{i=0}^{\infty}Q^{i}Q^{\pi}(P^{D})^{i+1}.
Proof.

See [10, Lemma 1.2].∎

Lemma 2.2.

Let M=(EIF0),E,Fn×nM=\left(\begin{array}[]{cc}E&I\\ F&0\end{array}\right),E,F\in{\mathbb{C}}^{n\times n}. If FEFπ=0FEF^{\pi}=0, then

MD=(ΓΔΛΞ)()\begin{array}[]{lll}M^{D}&=&\left(\begin{array}[]{cc}\Gamma&\Delta\\ \Lambda&\Xi\\ \end{array}\right)~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}(*)\end{array}

where

Γ=i=0(ED)2i+1FiFπ+(Eπj=1(ED)2jFj)FπEFD+i=1[(Eπj=1(ED)2jFj)FiFπE+EπE2iFπEFFD+k=0i2EπE2k+2Fik1FπE]FDCi+i=1[EπE2i1FπEFFDj=0(ED)2j+1Fi+jFπE+k=0i2EπE2k+1Fik1FπE]Ai,Δ=FDEDFπEFDi=1(ED)2i+1FiFπEFD+i=0(ED)2iFiFπ[Eπj=1(ED)2jFj]FπEFDEFD+i=1[(Eπj=1(ED)2jFj)FiFπE+EπE2iFπEFFD+k=0i2EπE2k+2Fik1FπE]FDDi+i=1[EπE2i1FπEFFDj=0(ED)2j+1Fi+jFπE+k=0i2EπE2k+1Fik1FπE]Bi,Λ=FFD+i=1FiFπEAi,Ξ=FFDEFD+i=1FiFπEB;\begin{array}[]{lll}\Gamma&=&\sum\limits_{i=0}^{\infty}(E^{D})^{2i+1}F^{i}F^{\pi}+(E^{\pi}-\sum\limits_{j=1}^{\infty}(E^{D})^{2j}F^{j})F^{\pi}EF^{D}\\ &+&\sum\limits_{i=1}^{\infty}[(E^{\pi}-\sum\limits_{j=1}^{\infty}(E^{D})^{2j}F^{j})F^{i}F^{\pi}E+E^{\pi}E^{2i}F^{\pi}EFF^{D}\\ &+&\sum\limits_{k=0}^{i-2}E^{\pi}E^{2k+2}F^{i-k-1}F^{\pi}E]F^{D}C_{i}+\sum\limits_{i=1}^{\infty}[E^{\pi}E^{2i-1}F^{\pi}EFF^{D}\\ &-&\sum\limits_{j=0}^{\infty}(E^{D})^{2j+1}F^{i+j}F^{\pi}E+\sum\limits_{k=0}^{i-2}E^{\pi}E^{2k+1}F^{i-k-1}F^{\pi}E]A_{i},\\ \Delta&=&-F^{D}-E^{D}F^{\pi}EF^{D}-\sum\limits_{i=1}^{\infty}(E^{D})^{2i+1}F^{i}F^{\pi}EF^{D}+\sum\limits_{i=0}^{\infty}(E^{D})^{2i}F^{i}F^{\pi}\\ &-&[E^{\pi}-\sum\limits_{j=1}^{\infty}(E^{D})^{2j}F^{j}]F^{\pi}EF^{D}EF^{D}+\sum\limits_{i=1}^{\infty}[(E^{\pi}-\sum\limits_{j=1}^{\infty}(E^{D})^{2j}F^{j})F^{i}F^{\pi}E\\ &+&E^{\pi}E^{2i}F^{\pi}EFF^{D}+\sum\limits_{k=0}^{i-2}E^{\pi}E^{2k+2}F^{i-k-1}F^{\pi}E]F^{D}D_{i}\\ &+&\sum\limits_{i=1}^{\infty}[E^{\pi}E^{2i-1}F^{\pi}EFF^{D}-\sum\limits_{j=0}^{\infty}(E^{D})^{2j+1}F^{i+j}F^{\pi}E\\ &+&\sum\limits_{k=0}^{i-2}E^{\pi}E^{2k+1}F^{i-k-1}F^{\pi}E]B_{i},\\ \Lambda&=&FF^{D}+\sum\limits_{i=1}^{\infty}F^{i}F^{\pi}EA_{i},\\ \Xi&=&-FF^{D}EF^{D}+\sum\limits_{i=1}^{\infty}F^{i}F^{\pi}EB_{;}\\ \end{array}
A1=FDE,B1=(FD)2+FDE2,C1=FD+FFDE2,D1=FDEFFDEFDFFDE3;\begin{array}[]{lll}A_{1}&=&-F^{D}E,\\ B_{1}&=&(F^{D})^{2}+F^{D}E^{2},\\ C_{1}&=&F^{D}+FF^{D}E^{2},\\ D_{1}&=&-F^{D}E-FF^{D}EF^{D}-FF^{D}E^{3};\end{array}
Ai+1=FDAiFDECi,Bi+1=FDBiFDEDi,Ci+1=FFDEAi+(FD+FFDE2)Ci,Di+1=FFDEBi+(FD+FFDE2)Di.\begin{array}[]{lll}A_{i+1}&=&F^{D}A_{i}-F^{D}EC_{i},\\ B_{i+1}&=&F^{D}B_{i}-F^{D}ED_{i},\\ C_{i+1}&=&-FF^{D}EA_{i}+(F^{D}+FF^{D}E^{2})C_{i},\\ D_{i+1}&=&-FF^{D}EB_{i}+(F^{D}+FF^{D}E^{2})D_{i}.\end{array}
Proof.

Construct Ai,Bi,Ci,Di(i)A_{i},B_{i},C_{i},D_{i}(i\in{\mathbb{N}}) as in the preceding, we easily check that

(0FDFFDFFDEFD)2i+1=(AiBiCiDi),\begin{array}[]{rll}\left(\begin{array}[]{cc}0&F^{D}\\ FF^{D}&-FF^{D}EF^{D}\end{array}\right)^{2i+1}&=&\left(\begin{array}[]{cc}A_{i}&B_{i}\\ C_{i}&D_{i}\end{array}\right),\end{array}
(0FDFFDFFDEFD)2i+2=(0FDFFDFFDEFD)(AiBiCiDi)=(FDCiFDDiFFDAiFFDEFDCiFFDBiFFDEFDDi).\begin{array}[]{ll}&\left(\begin{array}[]{cc}0&F^{D}\\ FF^{D}&-FF^{D}EF^{D}\end{array}\right)^{2i+2}\\ =&\left(\begin{array}[]{cc}0&F^{D}\\ FF^{D}&-FF^{D}EF^{D}\end{array}\right)\left(\begin{array}[]{cc}A_{i}&B_{i}\\ C_{i}&D_{i}\end{array}\right)\\ =&\left(\begin{array}[]{cc}F^{D}C_{i}&F^{D}D_{i}\\ FF^{D}A_{i}-FF^{D}EF^{D}C_{i}&FF^{D}B_{i}-FF^{D}EF^{D}D_{i}\end{array}\right).\end{array}

As the g-Drazin and Drazin inverse for a complex matrix coincide with each other, we obtain the result by [11, Theorem 2.3].∎

We now apply the preceding lemmas to obtain the following useful result.

Theorem 2.3.

Let P,Qn×nP,Q\in{\mathbb{C}}^{n\times n}. If PQ2=0PQ^{2}=0 and PQP(PQ)π=0PQP(PQ)^{\pi}=0, then

(P+Q)D=(I,Q)[(PPQIQ)D]2(PI),(P+Q)^{D}=(I,Q)\big{[}\left(\begin{array}[]{cc}P&PQ\\ I&Q\end{array}\right)^{D}\big{]}^{2}\left(\begin{array}[]{c}P\\ I\end{array}\right),

where

(PPQIQ)D=i=0(LD)i+1KiKπ+i=0LiLπ(KD)i+1,\left(\begin{array}[]{cc}P&PQ\\ I&Q\end{array}\right)^{D}=\sum\limits_{i=0}^{\infty}(L^{D})^{i+1}K^{i}K^{\pi}+\sum\limits_{i=0}^{\infty}L^{i}L^{\pi}(K^{D})^{i+1},
L=(000Q),LD=(000QD),K=(PPQI0),KD=(PII0)(HD)2(I00PQ),\begin{array}[]{c}L=\left(\begin{array}[]{cc}0&0\\ 0&Q\end{array}\right),L^{D}=\left(\begin{array}[]{cc}0&0\\ 0&Q^{D}\end{array}\right),\\ K=\left(\begin{array}[]{cc}P&PQ\\ I&0\end{array}\right),K^{D}=\left(\begin{array}[]{cc}P&I\\ I&0\end{array}\right)(H^{D})^{2}\left(\begin{array}[]{cc}I&0\\ 0&PQ\end{array}\right),\end{array}
HD=(ΓΔΛΞ),E=P,F=PQ,H^{D}=\left(\begin{array}[]{cc}\Gamma&\Delta\\ \Lambda&\Xi\\ \end{array}\right),E=P,F=PQ,

where Γ,Δ,Λ\Gamma,\Delta,\Lambda and Ξ\Xi constructed as in ()(*).

Proof.

Clearly, we have P+Q=(I,Q)(PI)P+Q=(I,Q)\left(\begin{array}[]{c}P\\ I\end{array}\right). By using the Cline’s formula (see [8, Lemma 1.5]), we have

(P+Q)D=(I,Q)[(PPQIQ)D]2(PI).(P+Q)^{D}=(I,Q)\big{[}\left(\begin{array}[]{cc}P&PQ\\ I&Q\end{array}\right)^{D}\big{]}^{2}\left(\begin{array}[]{c}P\\ I\end{array}\right).

Moreover, we have

(PPQIQ)=K+L,\left(\begin{array}[]{cc}P&PQ\\ I&Q\end{array}\right)=K+L,

where

K=(PPQI0),L=(000Q).K=\left(\begin{array}[]{cc}P&PQ\\ I&0\end{array}\right),L=\left(\begin{array}[]{cc}0&0\\ 0&Q\end{array}\right).

Let

H=(PIPQ0),E=P,F=PQ.H=\left(\begin{array}[]{cc}P&I\\ PQ&0\end{array}\right),E=P,F=PQ.

Then FEFπ=PQP(PQ)π=0FEF^{\pi}=PQP(PQ)^{\pi}=0. In view of Lemma 2.2,

HD=(ΓΔΛΞ),H^{D}=\left(\begin{array}[]{cc}\Gamma&\Delta\\ \Lambda&\Xi\\ \end{array}\right),

where Γ,Δ,Λ\Gamma,\Delta,\Lambda and Ξ\Xi are constructed as in ()(*).

Obviously, we check that

K=(PII0)(I00PQ),H=(I00PQ)(PII0).\begin{array}[]{lll}K&=&\left(\begin{array}[]{cc}P&I\\ I&0\end{array}\right)\left(\begin{array}[]{cc}I&0\\ 0&PQ\end{array}\right),\\ H&=&\left(\begin{array}[]{cc}I&0\\ 0&PQ\end{array}\right)\left(\begin{array}[]{cc}P&I\\ I&0\end{array}\right).\end{array}

By using Cline’s formula, we have

KD=(PII0)(HD)2(I00PQ).K^{D}=\left(\begin{array}[]{cc}P&I\\ I&0\end{array}\right)(H^{D})^{2}\left(\begin{array}[]{cc}I&0\\ 0&PQ\end{array}\right).

Since KL=0KL=0, it follows by Lemma 2.1 that

(PPQIQ)D=i=0(LD)i+1KiKπ+i=0LiLπ(KD)i+1,\left(\begin{array}[]{cc}P&PQ\\ I&Q\end{array}\right)^{D}=\sum\limits_{i=0}^{\infty}(L^{D})^{i+1}K^{i}K^{\pi}+\sum\limits_{i=0}^{\infty}L^{i}L^{\pi}(K^{D})^{i+1},

where

(KD)i=(PII0)(HD)i+1(I00PQ),Kπ=I2(PII0)HD(I00PQ),\begin{array}[]{rll}(K^{D})^{i}&=&\left(\begin{array}[]{cc}P&I\\ I&0\end{array}\right)(H^{D})^{i+1}\left(\begin{array}[]{cc}I&0\\ 0&PQ\end{array}\right),\\ K^{\pi}&=&I_{2}-\left(\begin{array}[]{cc}P&I\\ I&0\end{array}\right)H^{D}\left(\begin{array}[]{cc}I&0\\ 0&PQ\end{array}\right),\\ \end{array}
KiKπ=(PII0)Hi1Hπ(I00PQ)(i1).K^{i}K^{\pi}=\left(\begin{array}[]{cc}P&I\\ I&0\end{array}\right)H^{i-1}H^{\pi}\left(\begin{array}[]{cc}I&0\\ 0&PQ\end{array}\right)(i\geq 1).

This completes the proof.∎

For future use, we now record the following.

Corollary 2.4.

Let P,Qn×nP,Q\in{\mathbb{C}}^{n\times n}. If Q2=0Q^{2}=0 and PQP(PQ)π=0PQP(PQ)^{\pi}=0, then

(P+Q)D=(I,Q)[KD+L(KD)2]2(PI),E=P,F=PQ,L=(000Q),KD=(PII0)(ΓΔΛΞ)2(I00PQ),\begin{array}[]{c}(P+Q)^{D}=(I,Q)\big{[}K^{D}+L(K^{D})^{2}\big{]}^{2}\left(\begin{array}[]{c}P\\ I\end{array}\right),E=P,F=PQ,\\ L=\left(\begin{array}[]{cc}0&0\\ 0&Q\end{array}\right),K^{D}=\left(\begin{array}[]{cc}P&I\\ I&0\end{array}\right)\left(\begin{array}[]{cc}\Gamma&\Delta\\ \Lambda&\Xi\\ \end{array}\right)^{2}\left(\begin{array}[]{cc}I&0\\ 0&PQ\end{array}\right),\end{array}

where Γ,Δ,Λ\Gamma,\Delta,\Lambda and Ξ\Xi are constructed as in ()(*).

Proof.

Since KL=0KL=0 and L2=0L^{2}=0, it follows by Theorem ??? that

(PPQIQ)D=(K+L)D=KD+L(KD)2.\begin{array}[]{lll}\left(\begin{array}[]{cc}P&PQ\\ I&Q\end{array}\right)^{D}&=&(K+L)^{D}\\ &=&K^{D}+L(K^{D})^{2}.\end{array}

Therefore we obtain the result by Theorem 2.3.∎

As a direct consequence of Theorem 2.3, we derive

Corollary 2.5.

(see [9, Theorem 2.1]) Let P,Qn×nP,Q\in{\mathbb{C}}^{n\times n}. If PQ2=0PQ^{2}=0 and PQP=0PQP=0, then

(P+Q)D=i=0(QD)i+1PiPπ+i=0QiQπ(PD)i+1+i=0QiQπ(PD)i+2Q+i=0(QD)i+3Pi+1PπQDPDQ(QD)2PPDQ.\begin{array}[]{lll}(P+Q)^{D}&=&\sum\limits_{i=0}^{\infty}(Q^{D})^{i+1}P^{i}P^{\pi}+\sum\limits_{i=0}^{\infty}Q^{i}Q^{\pi}(P^{D})^{i+1}\\ &+&\sum\limits_{i=0}^{\infty}Q^{i}Q^{\pi}(P^{D})^{i+2}Q+\sum\limits_{i=0}^{\infty}(Q^{D})^{i+3}P^{i+1}P^{\pi}\\ &-&Q^{D}P^{D}Q-(Q^{D})^{2}PP^{D}Q.\end{array}

3. block complex matrices

The purpose of this section is to use the preceding additive results to give some representations for the Drazin inverse of block matrix MM. We come now to extend  [9, Theorem 3.1] as follows.

Theorem 3.1.

Let M=(ABCD)(m+n)×(m+n)M=\left(\begin{array}[]{cc}A&B\\ C&D\end{array}\right)\in{\mathbb{C}}^{(m+n)\times(m+n)}. If BCB=0,DCB=0,BCA(BC)π=0BCB=0,DCB=0,BCA(BC)^{\pi}=0 and DCA(BC)π=0DCA(BC)^{\pi}=0, then

MD=(I0000IC0)[KD+L(KD)2]2(AB0DI00I),E=(AB0D),F=(BC0DC0),L=(00000000000000C0),KD=(ABI00D0II0000I00)(ΓΔΛΞ)2(I0000I0000BC000DC0),\begin{array}[]{c}M^{D}=\left(\begin{array}[]{cccc}I&0&0&0\\ 0&I&C&0\end{array}\right)\big{[}K^{D}+L(K^{D})^{2}\big{]}^{2}\left(\begin{array}[]{cc}A&B\\ 0&D\\ I&0\\ 0&I\end{array}\right),\\ E=\left(\begin{array}[]{cc}A&B\\ 0&D\end{array}\right),F=\left(\begin{array}[]{cc}BC&0\\ DC&0\end{array}\right),\\ L=\left(\begin{array}[]{cccc}0&0&0&0\\ 0&0&0&0\\ 0&0&0&0\\ 0&0&C&0\end{array}\right),\\ K^{D}=\left(\begin{array}[]{cccc}A&B&I&0\\ 0&D&0&I\\ I&0&0&0\\ 0&I&0&0\end{array}\right)\left(\begin{array}[]{cc}\Gamma&\Delta\\ \Lambda&\Xi\\ \end{array}\right)^{2}\left(\begin{array}[]{cccc}I&0&0&0\\ 0&I&0&0\\ 0&0&BC&0\\ 0&0&DC&0\end{array}\right),\end{array}

where Γ,Δ,Λ\Gamma,\Delta,\Lambda and Ξ\Xi are constructed as in ()(*).

Proof.

Clearly, we have M=P+QM=P+Q, where

P=(AB0D),Q=(00C0).P=\left(\begin{array}[]{cc}A&B\\ 0&D\end{array}\right),Q=\left(\begin{array}[]{cc}0&0\\ C&0\end{array}\right).

Then

Q2=0,PQP(PQ)π=0.Q^{2}=0,PQP(PQ)^{\pi}=0.

Therefore we complete the proof by Corollary 2.4.∎

As a consequence, we can extend [4, Theorem 2.2] as follows:

Corollary 3.2.

Let M=(ABCD)(m+n)×(m+n)M=\left(\begin{array}[]{cc}A&B\\ C&D\end{array}\right)\in{\mathbb{C}}^{(m+n)\times(m+n)}. If BCB=0,BDC=0,BD2=0BCB=0,BDC=0,BD^{2}=0 and BCA(BC)π=0BCA(BC)^{\pi}=0, then

MD=Qπi=0Qi(PD)i+1+i=0(QD)i+1PiPπ+Qπi=0Qi(PD)i+2Q+i=0(QD)i+3Pi+1PπQQDPDQ(QD)2PPDQ,\begin{array}[]{rll}M^{D}&=&Q^{\pi}\sum\limits_{i=0}^{\infty}Q^{i}(P^{D})^{i+1}+\sum\limits_{i=0}^{\infty}(Q^{D})^{i+1}P^{i}P^{\pi}+Q^{\pi}\sum\limits_{i=0}^{\infty}Q^{i}(P^{D})^{i+2}Q\\ &+&\sum\limits_{i=0}^{\infty}(Q^{D})^{i+3}P^{i+1}P^{\pi}Q-Q^{D}P^{D}Q-(Q^{D})^{2}PP^{D}Q,\\ \end{array}
P=(ABC0),Q=(000D),PD=(I0000IC0)[KD+L(KD)2]2(AB00I00I),E=(AB00),F=(BC000),L=(00000000000000C0),KD=(ABI0000II0000I00)(ΓΔΛΞ)2(I0000I0000BC00000),\begin{array}[]{c}P=\left(\begin{array}[]{cc}A&B\\ C&0\end{array}\right),Q=\left(\begin{array}[]{cc}0&0\\ 0&D\end{array}\right),\\ P^{D}=\left(\begin{array}[]{cccc}I&0&0&0\\ 0&I&C&0\end{array}\right)\big{[}K^{D}+L(K^{D})^{2}\big{]}^{2}\left(\begin{array}[]{cc}A&B\\ 0&0\\ I&0\\ 0&I\end{array}\right),\\ E=\left(\begin{array}[]{cc}A&B\\ 0&0\end{array}\right),F=\left(\begin{array}[]{cc}BC&0\\ 0&0\end{array}\right),\\ L=\left(\begin{array}[]{cccc}0&0&0&0\\ 0&0&0&0\\ 0&0&0&0\\ 0&0&C&0\end{array}\right),\\ K^{D}=\left(\begin{array}[]{cccc}A&B&I&0\\ 0&0&0&I\\ I&0&0&0\\ 0&I&0&0\end{array}\right)\left(\begin{array}[]{cc}\Gamma&\Delta\\ \Lambda&\Xi\\ \end{array}\right)^{2}\left(\begin{array}[]{cccc}I&0&0&0\\ 0&I&0&0\\ 0&0&BC&0\\ 0&0&0&0\end{array}\right),\end{array}

where Γ,Δ,Λ\Gamma,\Delta,\Lambda and Ξ\Xi are constructed as in ()(*).

Proof.

Let

P=(ABC0),Q=(000D).P=\left(\begin{array}[]{cc}A&B\\ C&0\end{array}\right),Q=\left(\begin{array}[]{cc}0&0\\ 0&D\end{array}\right).

Since BDC=0BDC=0 and BD2=0BD^{2}=0, we verify that PQ2=0PQ^{2}=0 and PQP=0PQP=0. In view of Corollary 2.5,

MD=Qπi=0Qi(PD)i+1+i=0(QD)i+1PiPπ+Qπi=0Qi(PD)i+2Q+i=0(QD)i+3Pi+1PπQQDPDQ(QD)2PPDQ,\begin{array}[]{rll}M^{D}&=&Q^{\pi}\sum\limits_{i=0}^{\infty}Q^{i}(P^{D})^{i+1}+\sum\limits_{i=0}^{\infty}(Q^{D})^{i+1}P^{i}P^{\pi}\\ &+&Q^{\pi}\sum\limits_{i=0}^{\infty}Q^{i}(P^{D})^{i+2}Q+\sum\limits_{i=0}^{\infty}(Q^{D})^{i+3}P^{i+1}P^{\pi}Q\\ &-&Q^{D}P^{D}Q-(Q^{D})^{2}PP^{D}Q,\\ \end{array}

This complete the proof by applying Theorem 3.1 to PP.∎

The following example illustrates that Corollary 3.4 is a nontrivial generalization of [4, Theorem 2.2].

Example 3.3.

Let M=(ABCD)M4()M=\left(\begin{array}[]{cc}A&B\\ C&D\end{array}\right)\in M_{4}({\mathbb{C}}), where

A=(0100),B=(0200),C=(0101),D=(1100).A=\left(\begin{array}[]{cc}0&1\\ 0&0\end{array}\right),B=\left(\begin{array}[]{cc}0&2\\ 0&0\end{array}\right),C=\left(\begin{array}[]{cc}0&1\\ 0&-1\end{array}\right),D=\left(\begin{array}[]{cc}-1&1\\ 0&0\end{array}\right).

Then BCB=0,BDC=0,BD2=0BCB=0,BDC=0,BD^{2}=0 and BCA(BC)π=0BCA(BC)^{\pi}=0 while BC0BC\neq 0. Clearly, we compute that

AD=0,DD=(1100).A^{D}=0,D^{D}=\left(\begin{array}[]{cc}-1&1\\ 0&0\end{array}\right).

Construct E,F,PE,F,P and QQ as in Theorem 3.1. Obviously, we have Q2=0Q^{2}=0. Hence, by Corollary 3.2, we obtain the exact value MDM^{D}:

MD=PD+Q(PD)2=(0000000002110000).\begin{array}[]{lll}M^{D}&=&P^{D}+Q(P^{D})^{2}\\ &=&\left(\begin{array}[]{cccc}0&0&0&0\\ 0&0&0&0\\ 0&2&-1&1\\ 0&0&0&0\\ \end{array}\right).\end{array}

In a similar way as it was done in Theorem 3.1, using the another splitting, we have

Theorem 3.4.

Let M=(ABCD)(m+n)×(m+n)M=\left(\begin{array}[]{cc}A&B\\ C&D\end{array}\right)\in{\mathbb{C}}^{(m+n)\times(m+n)}. If ABC=0,CBC=0,ABD(CB)π=0ABC=0,CBC=0,ABD(CB)^{\pi}=0 and CBD(CB)π=0CBD(CB)^{\pi}=0, then

MD=(I00B0I00)[KD+L(KD)2]2(A0CDI00I),E=(A0CD),F=(0AB0CB),L=(00000000000B0000),KD=(A0I0CD0II0000I00)(ΓΔΛΞ)2(I0000I00000AB000CB),\begin{array}[]{c}M^{D}=\left(\begin{array}[]{cccc}I&0&0&B\\ 0&I&0&0\end{array}\right)\big{[}K^{D}+L(K^{D})^{2}\big{]}^{2}\left(\begin{array}[]{cc}A&0\\ C&D\\ I&0\\ 0&I\end{array}\right),\\ E=\left(\begin{array}[]{cc}A&0\\ C&D\end{array}\right),F=\left(\begin{array}[]{cc}0&AB\\ 0&CB\end{array}\right),\\ L=\left(\begin{array}[]{cccc}0&0&0&0\\ 0&0&0&0\\ 0&0&0&B\\ 0&0&0&0\end{array}\right),\\ K^{D}=\left(\begin{array}[]{cccc}A&0&I&0\\ C&D&0&I\\ I&0&0&0\\ 0&I&0&0\end{array}\right)\left(\begin{array}[]{cc}\Gamma&\Delta\\ \Lambda&\Xi\\ \end{array}\right)^{2}\left(\begin{array}[]{cccc}I&0&0&0\\ 0&I&0&0\\ 0&0&0&AB\\ 0&0&0&CB\end{array}\right),\end{array}

where Γ,Δ,Λ\Gamma,\Delta,\Lambda and Ξ\Xi are constructed as in ()(*).

Proof.

Write M=P+QM=P+Q, where

P=(A0CD),Q=(0B00).P=\left(\begin{array}[]{cc}A&0\\ C&D\end{array}\right),Q=\left(\begin{array}[]{cc}0&B\\ 0&0\end{array}\right).

Then one checks that

Q2=0,PQP(PQ)π=0.Q^{2}=0,PQP(PQ)^{\pi}=0.

Therefore we complete the proof by using Corollary 2.4.∎

As a consequence of the preceding theorem, we now derive

Corollary 3.5.

Let M=(ABCD)(m+n)×(m+n)M=\left(\begin{array}[]{cc}A&B\\ C&D\end{array}\right)\in{\mathbb{C}}^{(m+n)\times(m+n)}. If CAB=0,CBC=0,A2B=0CAB=0,CBC=0,A^{2}B=0 and CBD(CB)π=0CBD(CB)^{\pi}=0, then

MD=Qπi=0Qi(PD)i+1+i=0(QD)i+1PiPπ+Pi=0(QD)i+2PiPπ+Pi=0QπQi+1(PD)i+3PQDPDPQQD(PD)2,\begin{array}[]{rll}M^{D}&=&Q^{\pi}\sum\limits_{i=0}^{\infty}Q^{i}(P^{D})^{i+1}+\sum\limits_{i=0}^{\infty}(Q^{D})^{i+1}P^{i}P^{\pi}+P\sum\limits_{i=0}^{\infty}(Q^{D})^{i+2}P^{i}P^{\pi}\\ &+&P\sum\limits_{i=0}^{\infty}Q^{\pi}Q^{i+1}(P^{D})^{i+3}-PQ^{D}P^{D}-PQQ^{D}(P^{D})^{2},\\ \end{array}
P=(A000),Q=(0BCD),\begin{array}[]{c}P=\left(\begin{array}[]{cc}A&0\\ 0&0\end{array}\right),Q=\left(\begin{array}[]{cc}0&B\\ C&D\end{array}\right),\end{array}
QD=(I00B0I00)[KD+L(KD)2]2(00CDI00I),E=(00CD),F=(000CB),L=(00000000000B0000),KD=(00I0CD0II0000I00)(ΓΔΛΞ)2(I0000I000000000CB),\begin{array}[]{c}Q^{D}=\left(\begin{array}[]{cccc}I&0&0&B\\ 0&I&0&0\end{array}\right)\big{[}K^{D}+L(K^{D})^{2}\big{]}^{2}\left(\begin{array}[]{cc}0&0\\ C&D\\ I&0\\ 0&I\end{array}\right),\\ E=\left(\begin{array}[]{cc}0&0\\ C&D\end{array}\right),F=\left(\begin{array}[]{cc}0&0\\ 0&CB\end{array}\right),\\ L=\left(\begin{array}[]{cccc}0&0&0&0\\ 0&0&0&0\\ 0&0&0&B\\ 0&0&0&0\end{array}\right),\\ K^{D}=\left(\begin{array}[]{cccc}0&0&I&0\\ C&D&0&I\\ I&0&0&0\\ 0&I&0&0\end{array}\right)\left(\begin{array}[]{cc}\Gamma&\Delta\\ \Lambda&\Xi\\ \end{array}\right)^{2}\left(\begin{array}[]{cccc}I&0&0&0\\ 0&I&0&0\\ 0&0&0&0\\ 0&0&0&CB\end{array}\right),\end{array}

where Γ,Δ,Λ\Gamma,\Delta,\Lambda and Ξ\Xi are constructed as in ()(*).

Proof.

Write M=P+QM=P+Q, where

P=(A000),Q=(0BCD).P=\left(\begin{array}[]{cc}A&0\\ 0&0\end{array}\right),Q=\left(\begin{array}[]{cc}0&B\\ C&D\end{array}\right).

Then we have

P2Q=0,QPQ=0.P^{2}Q=0,QPQ=0.

In view of [9, Theorem 2.2], we have

MD=Qπi=0Qi(PD)i+1+i=0(QD)i+1PiPπ+Pi=0(QD)i+2PiPπ+Pi=0QπQi+1(PD)i+3PQDPDPQQD(PD)2.\begin{array}[]{lll}M^{D}&=&Q^{\pi}\sum\limits_{i=0}^{\infty}Q^{i}(P^{D})^{i+1}+\sum\limits_{i=0}^{\infty}(Q^{D})^{i+1}P^{i}P^{\pi}+P\sum\limits_{i=0}^{\infty}(Q^{D})^{i+2}P^{i}P^{\pi}\\ &+&P\sum\limits_{i=0}^{\infty}Q^{\pi}Q^{i+1}(P^{D})^{i+3}-PQ^{D}P^{D}-PQQ^{D}(P^{D})^{2}.\end{array}

Applying Theorem 2.3 to QQ, we complete the proof.∎


References

  • [1] C. Bu; K. Zhang and J. Zhao, Representation of the Drazin inverse on solution of a class singular differential equations, Linear Multilinear Algebra, 59(2011), 863–877.
  • [2] H. Chen and M. Sheibani, Generalized Drazin inverses in a ring, Filomat, 32(2018), 5289–5295.
  • [3] M. Dana and R. Yousefi, Formulas for the Drazin inverse of matrices with new conditions and its applications, Int. J. Appl. Comput. Math., 4(2018), https://doi.org/10.1007/s40819-017-0459-5.
  • [4] E. Dopazo and M.F. Martinez-Serrano, Further results on the representation of the Drazin inverse of a 2×22\times 2 block matrix, Linear Algebra Appl., 432(2010), 1896–1904.
  • [5] D. Mosic, The Drazin inverse of the sum of two matrices, Math. Slovaca, 68(2018), 767–772.
  • [6] D. Mosic; H. Zou and J. Chen, The generalized Drazin inverse of the sum in a Banach algebra, Ann. Funct. Anal., 8(2017), 90–105.
  • [7] A. Shakoor; I. Ali; S. Wali and A. Rehman, Some formulas on the Drazin inverse for the sum of two matrices and block matrices, Bull. Iran. Math. Soc., 2021, https://doi.org/10.1007/s41980-020-00521-3.
  • [8] L. Xia and B. Deng, The Drazin inverse of the sum of two matrices and its applications, Filomat, 31 (2017), 5151-5158.
  • [9] H. Yang and X. Liu, The Drazin inverse of the sum of two matrices and its applications, J. Comput. Applied Math., 235(2011), 1412–1417.
  • [10] R. Yousefi and M. Dana, Generalizations of some conditions for Drazin inverses of the sum of two matrices, Filomat, 32(2018), 6417–6430.
  • [11] D. Zhang and D. Mosic, Explicit formulae for the generalized Drazin inverse of block matrices over a Banach algebra, Filomat, 32(2018), 5907–5917.
  • [12] H. Zou; D. Mosic and J. Chen, Generalized Drazin invertibility of the product and sum of two elements in a Banach algebra and its applications, Turk. J. Math., 41(2017), 548–563.
  • [13] H. Zou; D. Mosić and Y. Chen, The existence and representation of the Drazin inverse of a 2×22\times 2 block matrix over a ring, J. Algebra Appl., 2019, 1950212 (23 pages), DOI: 10.1142/S0219498819502128.