This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

New Relativistic Theory for Modified Newtonian Dynamics

Constantinos Skordis [email protected]    Tom Złośnik [email protected] CEICO, Institute of Physics (FZU) of the Czech Academy of Sciences, Na Slovance 1999/2, 182  21, Prague, Czech Republic
Abstract

We propose a relativistic gravitational theory leading to modified Newtonian dynamics, a paradigm that explains the observed universal galactic acceleration scale and related phenomenology. We discuss phenomenological requirements leading to its construction and demonstrate its agreement with the observed cosmic microwave background and matter power spectra on linear cosmological scales. We show that its action expanded to second order is free of ghost instabilities and discuss its possible embedding in a more fundamental theory.

Introduction. –

Alternative theories of gravity to general relativity (GR) have received immense interest in the past 20 years or so [1, 2]. The driving force behind this interest is not so much that gravity has not been tested in a large region of parameter space [3], but, more importantly, the cosmological systems residing in some parts of that region exhibit behavior from which dark matter (DM) and dark energy (DE), collectively called the dark sector, are inferred.

While most investigations deal with DE, the hypothesis that the DM phenomenon is due to gravitational degrees of freedom (d.o.f.) has received less attention [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. Earliest evidence for the existence of DM [15, 16, 17] was later supported by observations of the motion of stars within galaxies [18, 19]. Milgrom proposed [20, 21, 22] that this could, instead, result from modifying the inertia or dynamics of baryons or the gravitational law at accelerations smaller than a01.2×1010m/s2a_{0}\sim 1.2\times 10^{-10}{\rm m/s^{2}}. The latter is further explored in [23] where if gradients of the potential Φ\Phi are smaller than a0a_{0}, nonrelativistic gravity is effectively governed by

(|Φ|a0Φ)=4πGNρ.\vec{\nabla}\cdot\left(\frac{|\vec{\nabla}\Phi|}{a_{0}}\vec{\nabla}\Phi\right)=4\pi G_{N}\rho. (1)

Here, GNG_{N} is the Newtonian gravitational constant, and ρ\rho the matter density. These models are referred to as modified Newtonian dynamics (MOND).

Much work has gone into deducing astrophysical consequences of MOND, its consistency with data [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46], and alternative DM based explanations of this law [47, 48, 49, 50] It is inherently nonrelativistic and, thus, difficult to test in cosmological settings (but see [51]) as systems such as the cosmic microwave background (CMB) require a relativistic treatment. CMB physics involves only linearly perturbing a Friedmann-Lemaître-Robertson-Walker (FLRW) background, making it a particularly useful system, devoid of nonlinear modeling systematics, for testing relativistic MOND (RMOND). Relativistic theories that yield MOND behavior have been proposed [23, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67] making clear predictions regarding gravitational lensing and cosmology. In cases where the CMB and matter power spectra (MPS) have been computed, no theory has been shown to fit all of the cosmological data while preserving MOND phenomenology in galaxies [68, 69, 70, 71, 72, 73, 74, 75, 76], (though see [77]).

We present the first RMOND theory which reproduces galactic and lensing phenomenology similar to the Bekenstein-Sanders Tensor-Vector-Scalar (TeVeS) theory [53, 54] and, unlike TeVeS, successfully reproduces the key cosmological observables: CMB and MPS. We describe its construction, discuss its cosmology and show that it is devoid of ghost instabilities. We discuss open questions and possibilities toward its more fundamental grounding.

Phenomenological requirements. –

RMOND theories have always been constructed on phenomenological grounds rather than based on fundamental principles. Quite likely the reason is that the MOND law is empirical, and even the observation that it is scale invariant [78, 79] has not yet led to a definitive conclusion as to how this invariance could lead to a MOND gravitational theory. RMOND theories should obey the principle of general covariance and the Einstein equivalence principle. These are, however, do not provide any guidance as to how RMOND should look like. Indeed, many theories obeying these have nothing to do with MOND, and many RMOND theories obeying these same principles are in conflict with observations. Principle-based MOND theories include [80, 81, 82], however, these are nonrelativistic. Still, the phenomenological approach, that we also follow, can provide valuable guidance toward a more fundamental theory.

What are the necessary phenomenological facts that any successful MOND theory should lead to? It must (i) return to GR (hence, Newtonian gravity) when Φa0\vec{\nabla}\Phi\gg a_{0} in quasistatic situations while (ii) reproducing the MOND law (1) when Φa0\vec{\nabla}\Phi\ll a_{0}. It should also (iii) be in harmony with cosmological observations including the CMB and MPS, (iv) reproduce the observed gravitational lensing of isolated objects without DM halos, and (v) propagate tensor mode gravitational waves (GWs) at the speed of light.

We consider each requirement in turn. Clearly, (i) means that when |Φ|a0|\vec{\nabla}\Phi|\gg a_{0}, the standard Poisson equation 2Φ=4πGNρ\vec{\nabla}^{2}\Phi=4\pi G_{N}\rho holds while (ii) means that when |Φ|a0|\vec{\nabla}\Phi|\ll a_{0} the MOND equation (1) holds. While in many cases [60, 61, 56] the transition between (i) and (ii) depends only on |Φ||\vec{\nabla}\Phi|, in TeVeS it is facilitated by a scalar d.o.f. φ\varphi. We follow the latter and assume that the physics encapsulated by (i) and (ii) fits within the TeVeS framework.

A template nonrelativistic action then, is

S=d4x{18πG^[|Φ^|2+𝒥(𝒴)]+Φρ},S=\int d^{4}x\left\{\frac{1}{8\pi\hat{G}}\left[|\vec{\nabla}\hat{\Phi}|^{2}+{\cal J}({\cal Y})\right]+\Phi\rho\right\}, (2)

where Φ=Φ^+φ\Phi=\hat{\Phi}+\varphi is the potential that couples universally to matter, G^\hat{G} is a constant and 𝒴=|φ|2{\cal Y}=|\vec{\nabla}\varphi|^{2}. The field φ\varphi obeys    [(d𝒥/d𝒴)φ]=4πG^ρ\vec{\nabla}\cdot[(d{\cal J}/d{\cal Y})\vec{\nabla}\varphi]=4\pi\hat{G}\rho while Φ^\hat{\Phi} obeys the Poisson equation 2Φ^=4πG^ρ\vec{\nabla}^{2}\hat{\Phi}=4\pi\hat{G}\rho. Emergence of MOND is then ensured if 𝒥2λs3(1+λs)a0𝒴3/2{\cal J}\rightarrow\frac{2\lambda_{s}}{3(1+\lambda_{s})a_{0}}{\cal Y}^{3/2} as φ0\vec{\nabla}\varphi\rightarrow 0. It is in this limit that a0a_{0} appears.

For a point source of mass MM, the MOND-to-Newton transition occurs at rM(GNM/a0)r_{M}\sim\sqrt{(G_{N}M/a_{0})}. A MOND force GNMa0/r\sim\sqrt{G_{N}Ma_{0}}/r lends its way trivially to a Newtonian force GNM/r2G_{N}M/r^{2} as rrMr\ll r_{M} but in the inner Solar System this is not sufficient. Corrections to r2r^{-2} due to φ\varphi will compete with the post-Newtonian force (GNM)2/r3\sim(G_{N}M)^{2}/r^{3}, and these are constrained at Mercury’s orbit to less than 104\sim 10^{-4} [83, 84]. Suppressing these may happen either through screening or tracking. In the former, φ\varphi is screened at large φ\vec{\nabla}\varphi so that ΦΦ^\Phi\approx\hat{\Phi} while in the latter φΦ^/λs\varphi\rightarrow\hat{\Phi}/\lambda_{s}, so that GN=(1+1/λs)G^G_{N}=(1+1/\lambda_{s})\hat{G}. We model both with λs\lambda_{s} since screening is equivalent to λs\lambda_{s}\rightarrow\infty. In terms of 𝒥{\cal J}, tracking happens if 𝒥λs𝒴{\cal J}\rightarrow\lambda_{s}{\cal Y}, while screening occurs if 𝒥{\cal J} has terms 𝒴p{\cal Y}^{p} with p3/2p\geq 3/2 (this may be in conflict with Mercury’s orbit even as pp\rightarrow\infty) or via higher-derivative terms absent from (2).

Consider requirement (iii), that is, successful cosmology. In (2) we have a new d.o.f. φ(x)\varphi(\vec{x}) and we expect that the same will appear in cosmology, albeit with a time dependence, i.e. ϕ¯(t){\bar{\phi}}(t). Consider a flat FLRW metric so that g00=N2g_{00}=-N^{2} and gij=a2γijg_{ij}=a^{2}\gamma_{ij} where N(t)N(t) is the lapse function and a(t)a(t) the scale factor. What should the expectation for a cosmological evolution of ϕ¯(t){\bar{\phi}}(t) be? The MOND law for galaxies is silent regarding this matter. There is, however, another empirical law which concerns cosmology: the existence of sizable amounts of energy density scaling precisely as a3a^{-3}. Within the DM paradigm such a law is a natural consequence of particles obeying the collisionless Boltzmann equation. The validity of this law has been tested [85, 86] and during the time between radiation-matter equality and recombination it is valid within an accuracy of 103\sim 10^{-3}. Do scalar field models leading to energy density scaling as ρ¯a3{\bar{\rho}}\sim a^{-3} exist?

The answer is yes: shift symmetric kk essence. It has been shown [87] that a scalar field with Lagrangian 𝒦(𝒳¯)\sim{\cal K}(\bar{{\cal X}}) where 𝒳¯=ϕ¯˙2/N2\bar{{\cal X}}=\dot{{\bar{\phi}}}^{2}/N^{2}, leads to dust (i.e. ρ¯a3{\bar{\rho}}\sim a^{-3}) plus cosmological constant (CC) solutions provided 𝒦(𝒳¯){\cal K}(\bar{{\cal X}}) has a minimum at 𝒳¯=𝒳00\bar{{\cal X}}={\cal X}_{0}\neq 0. Such a model is the low energy limit of ghost condensation [88, 89] although the latter also contains higher derivative terms (ϕ)2\sim(\square\phi)^{2} in its action. The FLRW action is

S=\displaystyle S= 18πG~d4xNa3[3H2N2+𝒦(𝒬¯)]+Sm[g]\displaystyle\frac{1}{8\pi\tilde{G}}\int d^{4}xNa^{3}\left[-\frac{3H^{2}}{N^{2}}+{\cal K}(\bar{{\cal Q}})\right]+S_{m}[g] (3)

where 𝒬¯=ϕ¯˙/N\bar{{\cal Q}}=\dot{{\bar{\phi}}}/N and H=a˙/aH=\dot{a}/a. Interestingly, (2) and (3) are shift symmetric in φ\varphi and ϕ¯{\bar{\phi}} respectively.

We propose that the MOND analog on FLRW is given by (3) with

𝒦=2Λ+𝒦2(𝒬¯𝒬0)2+{\cal K}=-2\Lambda+{\cal K}_{2}(\bar{{\cal Q}}-{\cal Q}_{0})^{2}+\ldots (4)

where Λ\Lambda is the CC, 𝒦2{\cal K}_{2} and 𝒬0{\cal Q}_{0} parameters and ()(\ldots) denote higher powers in this expansion. Expanding in 𝒬𝒬0{\cal Q}-{\cal Q}_{0} rather than 𝒳𝒳0{\cal X}-{\cal X}_{0} is the most general expansion leading to dust solutions and includes the 𝒦(𝒳¯){\cal K}(\bar{{\cal X}}) case. The CC in this model remains a freely specifiable parameter, just as in the Λ\Lambda-cold dark matter (Λ\LambdaCDM) model. Following [88, 89], we call this the (gravitational) Higgs phase.

Requirement (iv), that is, correct gravitational lensing without DM, requires a relativistic theory. A minimal theory for RMOND is a scalar-tensor theory[23] with the scalar providing for a conformal factor between two metrics. However, since null geodesics are unaltered by conformal transformations, such theories cannot produce enough lensing from baryons in the MOND regime. Sanders solved the lensing problem by changing the conformal into a disformal transformation [53] using a unit-timelike vector field, incorporated by Bekenstein [54] into TeVeS. The unit-timelike vector has component A0g00A^{0}\sim\sqrt{-g^{00}} and this ensures that the two metric potentials are equal (as in GR), so that solutions which mimic DM also produce the correct light deflection.

Meanwhile the anisotropic scaling of the MOND law |φ|3\sim|\vec{\nabla}\varphi|^{3} compared with a well-behaved cosmology implying terms like ϕ¯˙2\dot{{\bar{\phi}}}^{2} and ϕ¯˙4\dot{{\bar{\phi}}}^{4}, heuristically implies (gravitational) Lorentz violation. A good way of introducing such an ingredient is via a unit-timelike vector field AμA_{\mu}, much like the spirit of the Einstein-Æther theory [90, 91], and TeVeS [53, 54].

The advanced Laser Interferometer Gravitational Observatory (LIGO) and Virgo interferometers [92] observed GWs from a binary neutron star merger. Combined with electromagnetic observations [93, 94], this strongly constrains the GW tensor mode speed to be effectively equal to that of light. By analyzing the tensor mode speed, TeVeS has been shown [95, 96, 97, 98] to be incompatible with the LIGO-Virgo observations for any choice of parameters. The necessary d.o.f. ϕ\phi and AμA_{\mu} are also ingredients of TeVeS, only there, a second metric was introduced as a combination of gμνg_{\mu\nu}, ϕ\phi and AμA_{\mu}. In [99], ϕ\phi and AμA_{\mu} were combined into a timelike (but not unit) vector BμB_{\mu}, and it was shown that TeVeS may be equivalently formulated with a single metric gμνg_{\mu\nu} minimally coupled to matter, and BμB_{\mu} with a noncanonical and rather complicated kinetic term. A general class of theories based on the pair {gμν,Bμ}\{g_{\mu\nu},B_{\mu}\} was uncovered [98] where the tensor mode speed equals the speed of light in all situations, satisfying requirement (v).

The new theory. –

A subset of the general class [98] depends on a scalar ϕ\phi and unit-timelike vector AμA^{\mu} such that [100]

S=\displaystyle S= d4xg16πG~[RKB2FμνFμν+2(2KB)Jμμϕ\displaystyle\int d^{4}x\frac{\sqrt{-g}}{16\pi\tilde{G}}\bigg{[}R-\frac{K_{B}}{2}F^{\mu\nu}F_{\mu\nu}+2(2-K_{B}){J}^{\mu}\nabla_{\mu}\phi
(2KB)𝒴(𝒴,𝒬)λ(AμAμ+1)]+Sm[g]\displaystyle-(2-K_{B}){\cal Y}-{\cal F}({\cal Y},{\cal Q})-\lambda({A}^{\mu}{A}_{\mu}+1)\bigg{]}+S_{m}[g] (5)

where Fμν=2[μAν]F_{\mu\nu}=2\nabla_{[\mu}{A}_{\nu]}, Jμ=AααAμ{J}_{\mu}={A}^{\alpha}\nabla_{\alpha}{A}_{\mu}, and the Lagrange multiplier λ\lambda imposes the unit-timelike constraint on Aμ{A}_{\mu}. In addition (𝒴,𝒬){\cal F}({\cal Y},{\cal Q}) is a free function of 𝒬=Aμμϕ{\cal Q}={A}^{\mu}\nabla_{\mu}\phi and 𝒴=qμνμϕνϕ{\cal Y}=q^{\mu\nu}\nabla_{\mu}\phi\nabla_{\nu}\phi where qμν=gμν+AμAνq_{\mu\nu}=g_{\mu\nu}+{A}_{\mu}{A}_{\nu} is the three-metric orthogonal to Aμ{A}^{\mu}. Notice that (5) is shift symmetric under ϕϕ+ϕ0\phi\rightarrow\phi+\phi_{0}.

On FLRW ϕ=ϕ¯(t)\phi={\bar{\phi}}(t) while A0=N{A}_{0}=-N and Ai=0{A}_{i}=0, hence 𝒴=0{\cal Y}=0 and 𝒬=𝒬¯{\cal Q}=\bar{{\cal Q}}. We define 𝒦(𝒬¯)=12(0,𝒬¯){\cal K}(\bar{{\cal Q}})=-\frac{1}{2}{\cal F}(0,\bar{{\cal Q}}) so that (5) turns precisely into (3), which we have argued that it satisfies requirement (iii).

In the weak-field quasistatic limit, we set g00=12Ψg_{00}=-1-2\Psi and gij=(12Φ)γijg_{ij}=(1-2\Phi)\gamma_{ij} and assume that Aμ{A}^{\mu} aligns with the time direction so that A0=1Ψ{A}^{0}=1-\Psi and Ai=0{A}^{i}=0. The scalar is expanded as ϕ=ϕ¯+φ\phi={\bar{\phi}}+\varphi with φ˙|φ|\dot{\varphi}\ll|\vec{\nabla}\varphi| and ϕ¯˙\dot{{\bar{\phi}}} may be set to its (late Universe) FLRW minimum 𝒬0{\cal Q}_{0}. Hence, 𝒬=(1Ψ)𝒬0{\cal Q}=(1-\Psi){\cal Q}_{0}. Then (5) leads to Ψ=Φ\Psi=\Phi which can be subbed back to get

S=\displaystyle S= d4x{2KB16πG~[|Φ|22Φφ\displaystyle-\int d^{4}x\bigg{\{}\frac{2-K_{B}}{16\pi\tilde{G}}\bigg{[}|\vec{\nabla}\Phi|^{2}-2\vec{\nabla}\Phi\vec{\nabla}\varphi
+|φ|2μ2Φ2+𝒥(𝒴)]+Φρ}\displaystyle+|\vec{\nabla}\varphi|^{2}-\mu^{2}\Phi^{2}+{\cal J}({\cal Y})\bigg{]}+\Phi\rho\Bigg{\}} (6)

where 𝒥(𝒴)=(𝒴,𝒬0)/(2KB){\cal J}({\cal Y})={\cal F}({\cal Y},{\cal Q}_{0})/(2-K_{B}). Compared with (2) a new term appears which looks like a “mass term” for Φ\Phi, with μ=2𝒦22KB𝒬0\mu=\sqrt{\frac{2{\cal K}_{2}}{2-K_{B}}}{\cal Q}_{0}. The solution for Φ\Phi will be as obtained from (2) only for rrCr\lesssim r_{C} where rC(rMμ2)1/3r_{C}\sim\left(r_{M}\mu^{-2}\right)^{1/3}, and oscillatory for rrCr\gtrsim r_{C}. We require μ11Mpc\mu^{-1}\gtrsim 1{\rm Mpc} so that MOND behavior according to (2) may still be attained in galaxies. Thus, the quasistatic limit has at least three parameters: λs\lambda_{s}, a0a_{0} and μ\mu.

While matter couples only to Φ\Phi, gravity comes with two potentials Φ\Phi and φ\varphi whose action is not diagonal but contains the mixing term JμμϕΨφJ^{\mu}\nabla_{\mu}\phi\rightarrow\vec{\nabla}\Psi\cdot\vec{\nabla}\varphi. Without the latter, φ\varphi decouples and no modification of gravity arises in this situation, apart from μ2Φ\mu^{2}\Phi which is akin to ghost condensation [88, 89]. Diagonalizing by setting Φ=Φ^+φ\Phi=\hat{\Phi}+\varphi and identifying G~=(1KB2)G^\tilde{G}=(1-\frac{K_{B}}{2})\hat{G} turns (6) into (2) (plus the μ2Φ2\mu^{2}\Phi^{2} term). Since, Ψ=Φ\Psi=\Phi, (6) leads to the right lensing whenever the solution for Φ\Phi mimics DM. This satisfies requirements (i), (ii) and (iv).

Cosmological observables. –

The theory just presented was constructed to lead to a FLRW universe resembling Λ\LambdaCDM. Given a general 𝒦(𝒬){\cal K}({\cal Q}), we define the energy density as 8πG~ρ¯=𝒬d𝒦d𝒬𝒦8\pi\tilde{G}{\bar{\rho}}={\cal Q}\frac{d{\cal K}}{d{\cal Q}}-{\cal K} and pressure as 8πG~P¯=𝒦8\pi\tilde{G}{\bar{P}}={\cal K} so that the usual FLRW equations are satisfied. The field equation for ϕ¯{\bar{\phi}} may be integrated once to give d𝒦d𝒬=I0a3\frac{d{\cal K}}{d{\cal Q}}=\frac{I_{0}}{a^{3}} for initial condition I0I_{0}. When 𝒦{\cal K} obeys the expansion (4), then 𝒬=𝒬0+I0/a3+{\cal Q}={\cal Q}_{0}+I_{0}/a^{3}+\ldots, so that ρ¯=ρ¯0/a3+{\bar{\rho}}={\bar{\rho}}_{0}/a^{3}+\ldots, where 8πG~ρ¯0=𝒬0I08\pi\tilde{G}{\bar{\rho}}_{0}={\cal Q}_{0}I_{0}. The pressure is P¯=w0ρ¯0/a6+{\bar{P}}=w_{0}{\bar{\rho}}_{0}/a^{6}+\ldots where w0=8πG~ρ¯04𝒬02𝒦2w_{0}=\frac{8\pi\tilde{G}{\bar{\rho}}_{0}}{4{\cal Q}_{0}^{2}{\cal K}_{2}} is the equation of state at a=1a=1, that is, w=w0/a3+w=w_{0}/a^{3}+\ldots so that P¯=wρ¯{\bar{P}}=w{\bar{\rho}}. A time-varying ww implies an adiabatic sound speed cad2=dP¯/dρ¯=d𝒦/d𝒬𝒬d2𝒦/d𝒬2c_{\rm ad}^{2}=d{\bar{P}}/d{\bar{\rho}}=\frac{d{\cal K}/d{\cal Q}}{{\cal Q}\;d^{2}{\cal K}/d{\cal Q}^{2}} and if 𝒦{\cal K} obeys (4) then cad2=2w0/a3+c_{\rm ad}^{2}=2w_{0}/a^{3}+\ldots. Clearly, w0w\geq 0 and cad20c_{\rm ad}^{2}\geq 0, where the zero point is reached as aa\rightarrow\infty. As the solution depends on the initial condition I0I_{0}, the density ρ¯{\bar{\rho}} is not (classically) predicted.

For a proper cosmological matter era in the Higgs phase we need w0w_{0} to be sufficiently small. Observations [85, 86] give w0.02w\lesssim 0.02 at a104a\sim 10^{-4}, hence, w02×1014w_{0}\lesssim 2\times 10^{-14}. Meanwhile, μ1Mpc\mu^{-1}\gtrsim{\rm Mpc} in order not to spoil the MOND behavior, leading to w0>3H02Mpc2Ω02(2KB)108w_{0}>\frac{3H_{0}^{2}{\rm Mpc}^{2}\Omega_{0}}{2(2-K_{B})}\gtrsim 10^{-8}. Unless the effect of the μ\mu term in (6) is alleviated in some future theory, the Higgs phase cannot be extended too long in the past, and higher terms in (4) must be taken into consideration. Within the present setup, one can arrange this with a function 𝒦(𝒬){\cal K}({\cal Q}) which suppresses ww and cad2c_{\rm ad}^{2} during most of the cosmic evolution. Examples are 𝒦=2𝒦2𝒵02[cosh(𝒵)1]{\cal K}=2{\cal K}_{2}{\cal Z}_{0}^{2}\left[\cosh({\cal Z})-1\right] (“Cosh function”) and 𝒦=2𝒦2𝒵02[e𝒵21]{\cal K}=2{\cal K}_{2}{\cal Z}_{0}^{2}\left[e^{{\cal Z}^{2}}-1\right] (“Exp function”) where 𝒵=(𝒬𝒬0)/𝒵0{\cal Z}=({\cal Q}-{\cal Q}_{0})/{\cal Z}_{0}.

The tight coupling of baryons to photons in the early Universe leads to Silk damping and wipes out all small-scale structure in baryons, preventing the formation of galaxies in the late Universe. Within GR, cold DM sustains the gravitational potentials during the tight coupling period, driving the formation of galaxies and affecting the relative peak heights of the CMB as further corroborated by e.g. the Planck satellite [101]. Checking whether this theory fits the CMB and MPS spectra requires studying linear fluctuations on FLRW.

We consider scalar modes in the Newtonian gauge so that g00=(1+2Ψ)g_{00}=-(1+2\Psi), g0i=0g_{0i}=0 and gij=a2(12Φ)γijg_{ij}=a^{2}(1-2\Phi)\gamma_{ij} and perturb the scalar as ϕ=ϕ¯+φ\phi={\bar{\phi}}+\varphi and the vector as Aμ={1Ψ,iα}{A}_{\mu}=\{-1-\Psi,\,\vec{\nabla}_{i}\alpha\}. The perturbed Einstein, vector and scalar equations, then depend on the new scalar modes φ\varphi and α\alpha and their derivatives. The shear equation remains as in GR, as do the usual perturbed Boltzmann equations for baryon, photons and neutrinos, since they couple only to gμνg_{\mu\nu}.

Setting χφ+ϕ¯˙α\chi\equiv\varphi+\dot{{\bar{\phi}}}\alpha, γφ˙ϕ¯˙Ψ\gamma\equiv\dot{\varphi}-\dot{{\bar{\phi}}}\Psi, Eα˙+ΨE\equiv\dot{\alpha}+\Psi and defining the density contrast δ\delta and momentum divergence θ\theta via

δ\displaystyle\delta\equiv 1+wϕ¯˙cad2γ+18πG~a2ρ¯2[KBE+(2KB)χ]\displaystyle\frac{1+w}{\dot{{\bar{\phi}}}c_{\rm ad}^{2}}\gamma+\frac{1}{8\pi\tilde{G}a^{2}{\bar{\rho}}}\vec{\nabla}^{2}\left[K_{B}E+\left(2-K_{B}\right)\chi\right] (7)
θ\displaystyle\theta\equiv φϕ¯˙\displaystyle\frac{\varphi}{\dot{{\bar{\phi}}}} (8)

the Einstein equations take the same form as in GR, i.e. δG  00=8πGIρ¯IδI\delta G^{0}_{\;\;0}=8\pi G\sum_{I}{\bar{\rho}}_{I}\delta_{I} and δGj0=8πGI(ρ¯I+P¯I)jθI\delta G^{0}_{\;\;j}=-8\pi G\sum_{I}({\bar{\rho}}_{I}+{\bar{P}}_{I})\vec{\nabla}_{j}\theta_{I} where the index II runs over all matter species including the new variables δ\delta and θ\theta. These obey standard fluid equations

δ˙=\displaystyle\dot{\delta}= 3H(wδΠ)+(1+w)(3Φ˙k2a2θ)\displaystyle 3H\left(w\delta-\Pi\right)+(1+w)\left(3\dot{\Phi}-\frac{k^{2}}{a^{2}}\theta\right) (9)
θ˙=\displaystyle\dot{\theta}= 3cad2Hθ+Π1+w+Ψ\displaystyle 3c_{\rm ad}^{2}H\theta+\frac{\Pi}{1+w}+\Psi (10)

but with nonstandard pressure contrast:

Π=cad2δcad28πG~a2ρ¯2[KBE+(2KB)χ]\Pi=c_{\rm ad}^{2}\delta-\frac{c_{\rm ad}^{2}}{8\pi\tilde{G}a^{2}{\bar{\rho}}}\vec{\nabla}^{2}\left[K_{B}E+\left(2-K_{B}\right)\chi\right] (11)
Refer to caption
Figure 1: The CMB temperature (T) CTTC_{\ell}^{TT} and EE-mode polarization CEEC_{\ell}^{EE} angular power spectra for Λ\LambdaCDM and this theory for a collection of functions and parameter values. The Λ\LambdaCDM parameters are angular acoustic scale 100θs=1.04171100\theta_{s}=1.04171, DM density Ωch2=0.1202\Omega_{c}h^{2}=0.1202, baryon density Ωbh2=0.02235\Omega_{b}h^{2}=0.02235, reionization optical depth τ=0.049\tau=0.049, helium fraction YHe=0.242Y_{\rm He}=0.242, primordial scalar amplitude 109As=2.07810^{9}A_{s}=2.078 and spectral index ns=0.963n_{s}=0.963, while the MOND curves deviate from these within {0.07,0.33,3.98,14.29,1.57,0.58,2.60}\sim\{0.07,0.33,3.98,14.29,1.57,0.58,2.60\} percent. MOND models have λs=\lambda_{s}=\infty and their other parameters are shown in the CTTC_{\ell}^{TT} panel, with 𝒬0{\cal Q}_{0} and 𝒵0{\cal Z}_{0} in Mpc1{\rm Mpc}^{-1}. The “Higgs-like” function parameters are incompatible with a MOND limit.

Hence, the resulting system is not equivalent to a dark fluid: the nonstandard pressure, thus defined, does not close under the fluid variables but, rather, depends on the vector field perturbations α\alpha and EE. The latter evolves with

KB(E˙+HE)=\displaystyle K_{B}\left(\dot{E}+HE\right)= d𝒦d𝒬χ(2KB)[ϕ¯˙1+wΠ\displaystyle\frac{d{\cal K}}{d{\cal Q}}\chi-(2-K_{B})\bigg{[}\frac{\dot{{\bar{\phi}}}}{1+w}\Pi
+(H+ϕ¯˙)χ3cad2Hϕ¯˙α]\displaystyle+\left(H+\dot{{\bar{\phi}}}\right)\chi-3c_{\rm ad}^{2}H\dot{{\bar{\phi}}}\alpha\bigg{]} (12)

Cosmologically, the necessary additional free parameters to Λ\LambdaCDM are λs\lambda_{s} (influencing the effective cosmological gravitational strength), KBK_{B}, 𝒦2{\cal K}_{2} (or equivalently w0w_{0}) and 𝒬0{\cal Q}_{0}. These fix μ\mu appearing in the quasistatic regime. More elaborate functions 𝒦(𝒬){\cal K}({\cal Q}) introduce further parameters, e.g. 𝒵0{\cal Z}_{0} in the case of the “Cosh” or “Exp” functions above. Note that a0a_{0} does not appear in the linear cosmological regime but will play a role once nonlinear terms from (𝒴,𝒬){\cal F}({\cal Y},{\cal Q}) kick in.

In Figs. 1 and 2 we show the CMB and MPS in the case of a “Cosh”, an “Exp” and a “Higgs-like” function 𝒦(𝒬)=𝒦24𝒬02(𝒬2𝒬02)2{\cal K}({\cal Q})=\frac{{\cal K}_{2}}{4{\cal Q}_{0}^{2}}\left({\cal Q}^{2}-{\cal Q}_{0}^{2}\right)^{2}, computed numerically by evolving the FLRW background and linearized equations using our own Boltzmann code [102], which is in excellent agreement with other codes, see [103] for a comparison. We have used adiabatic initial conditions [104] and a standard initial power spectrum P0=AsknsP_{0}=A_{s}k^{n_{s}} with amplitude AsA_{s} and spectral index nsn_{s}. The MPS has an additional bias parameter bb. We used RECFAST version 1.5 for modeling recombination and have boosted kk sampling, time sampling and \ell sampling accuracy for ensuring robust results. The detailed cosmology and the dependence of the spectra on the parameters will be investigated elsewhere [104]. For a wide range of parameters, this relativistic MOND theory is consistent with the CMB measurements from Planck. This happens because cad2c_{\rm ad}^{2} and ww are small enough so that Π0\Pi\rightarrow 0 and we get dustlike evolution as δ˙=3Φ˙k2a2θ\dot{\delta}=3\dot{\Phi}-\frac{k^{2}}{a^{2}}\theta and θ˙=Ψ\dot{\theta}=\Psi, while the vector field decouples.

Refer to caption
Figure 2: The linear MPS P(k)P(k) for the models of Fig. 1 showing excellent fits to the Sloan Digital Sky Survey (SDSS) data release 7 (DR7) luminous red galaxies (LRG) [105]. We also include a bias parameter bb. Note that the (derived) Hubble constant for each model is different.

Stability and waves. –

Now, we consider stability of the theory on Minkowski spacetime. We expand gμν=ημνhμνg^{\mu\nu}=\eta^{\mu\nu}-h^{\mu\nu}, split Aμ=(1+12h00,Ai){A}_{\mu}=(-1+\frac{1}{2}h^{00},{A}_{i}) and let μϕ=(𝒬0+φ˙,φ)\nabla_{\mu}\phi=({\cal Q}_{0}+\dot{\varphi},\vec{\nabla}\varphi) with hμνh^{\mu\nu}, Ai{A}_{i} and φ\varphi being small perturbations. Expanding (5) to second order gives

S=\displaystyle S= d4x{12¯μh¯νhμν+14¯ρh¯ρh+12¯μhμρ¯νhρν14¯ρhμν¯ρhμνKB|A˙12h00|22KB[iAj][iAj]\displaystyle\int d^{4}x\bigg{\{}-\frac{1}{2}\bar{\nabla}_{\mu}h\bar{\nabla}_{\nu}h^{\mu\nu}+\frac{1}{4}\bar{\nabla}_{\rho}h\bar{\nabla}^{\rho}h+\frac{1}{2}\bar{\nabla}_{\mu}h^{\mu\rho}\bar{\nabla}_{\nu}h^{\nu}_{\;\;\rho}-\frac{1}{4}\bar{\nabla}^{\rho}h^{\mu\nu}\bar{\nabla}_{\rho}h_{\mu\nu}K_{B}|\dot{\vec{{A}}}-\frac{1}{2}\vec{\nabla}h^{00}|^{2}-2K_{B}\vec{\nabla}_{[i}{A}_{j]}\vec{\nabla}^{[i}{A}^{j]}
+(2KB)[2(A˙12h00)(φ+𝒬0A)(1+λs)|φ+𝒬0A|2]+2𝒦2|φ˙+12𝒬0h00|2+1M~p2Tμνhμν}\displaystyle+\left(2-K_{B}\right)\left[2(\dot{\vec{{A}}}-\frac{1}{2}\vec{\nabla}h^{00})\cdot(\vec{\nabla}\varphi+{\cal Q}_{0}\vec{{A}})-(1+\lambda_{s})|\vec{\nabla}\varphi+{\cal Q}_{0}\vec{{A}}|^{2}\right]+2{\cal K}_{2}\left|\dot{\varphi}+\frac{1}{2}{\cal Q}_{0}h^{00}\right|^{2}+\frac{1}{\tilde{M}_{p}^{2}}T_{\mu\nu}h^{\mu\nu}\bigg{\}} (13)

where we have used the desired late Universe limit for which 2¯/𝒬22d2𝒦/d𝒬2=4𝒦2\partial^{2}\bar{{\cal F}}/\partial{\cal Q}^{2}\rightarrow-2d^{2}{\cal K}/d{\cal Q}^{2}=-4{\cal K}_{2} and /𝒬=¯=0\partial{\cal F}/\partial{\cal Q}=\bar{{\cal F}}=0. We set /𝒴=(2KB)λs\partial{\cal F}/\partial{\cal Y}=(2-K_{B})\lambda_{s} as a free parameter which is zero in the MOND limit but nonzero in the GR limit when reached by tracking. Inspecting (13), the tensor mode action is as in GR as expected.

For vector modes we choose the gauge h00=0h^{00}=0, h0i=Wih^{0i}=W^{i} and hij=0h^{ij}=0 while Ai=βi{A}_{i}=\beta_{i} and φ=0\varphi=0 where WiW^{i} and βi\beta^{i} are transverse. Setting all modes ei(ωt+kx)\propto e^{i(-\omega t+\vec{k}\cdot\vec{x})}, the dispersion relation for βi\beta^{i} is ω2=k2+2\omega^{2}=k^{2}+{\cal M}^{2} where their mass is 2=(2KB)(1+λs)𝒬02KB{\cal M}^{2}=\frac{(2-K_{B})(1+\lambda_{s}){\cal Q}_{0}^{2}}{K_{B}}, hence, they are healthy if 0<KB<20<K_{B}<2 and λs>1\lambda_{s}>-1. They decouple from TμνT_{\mu\nu} and are not expected to be generated to leading order by compact objects.

Considering scalar modes in the Newtonian gauge we set h00=2Ψh^{00}=-2\Psi, h0i=0h^{0i}=0 and hij=2Φγijh^{ij}=-2\Phi\gamma^{ij} while Ai=iα{A}_{i}=\vec{\nabla}_{i}\alpha and find the dispersion relations ω2=0\omega^{2}=0 and ω2=(2KB)𝒦2KB(1+12KBλs)k2+2\omega^{2}=\frac{(2-K_{B})}{{\cal K}_{2}K_{B}}(1+\frac{1}{2}K_{B}\lambda_{s})k^{2}+{\cal M}^{2}. Thus, we require that 𝒦2>0{\cal K}_{2}>0 in addition to the vector stability conditions. Only two normal modes exist implying the presence of constraints. These are revealed through a Hamiltonian analysis which also shows that these conditions lead to a positive Hamiltonian [106, 107] for the ω0\omega\neq 0 modes. The ω=0\omega=0 case leads to a constant mode with zero Hamiltonian but, also, to a mode varying linearly with tt. The Hamiltonian for the latter is positive for momenta larger than μ\sim\mu and otherwise negative, also requiring that λs>0\lambda_{s}>0. Such instabilities are likely akin to Jeans-type instabilities and do not cause quantum vacuum instability at low momenta [108].

Discussion. –

MOND has enjoyed success in fitting galactic rotation curves [24, 25, 27, 29, 44] and reproducing the baryonic Tully-Fisher relation [31, 33, 45]. The radial acceleration relation (RAR) [41] finds a comfortable interpretation within MOND. Studies of MOND with galaxy clusters [30, 109, 110, 38, 111, 112] report that either a0a_{0} is larger in clusters and/or an additional dark component is necessary even when the MOND prescription is used. These studies, however, use the classic modified-inertia MOND while the theory presented here has additional features warranting its separate testing with clusters. We note that a RAR for clusters was reported [112], similar to the galaxy one albeit with a0a_{0} a factor of 10 higher. MOND has been tested with dwarf spheroidal galaxies where discrepancies for some [26] were later dismissed with improved data [28, 113, 114, 115, 116]. There, good agreement was reported, except for Draco and Carina where the fits are quite poor [26, 114, 116, 117]. It is argued [113] that those two might be systems not in equilibrium. The global stability of M33 has been tested [118] with positive results while wide-binary data do not yet yield a decisive test [119].

We have shown how the cosmological regime of this theory reproduces the CMB and MPS power spectra on linear scales and that MOND-like behavior emerges in the quasistatic approximation. The latter is expected to hold for virialized objects, however, how such objects emerge from the underlying density field, i.e. how the two regimes connect, is an open problem. This will happen at a scale which is expected to depend on a0a_{0}, μ\mu and 𝒬0{\cal Q}_{0} and quite likely the nonlinear (ϕ)2/a0\sim\nabla(\nabla\phi)^{2}/a_{0} term coming from {\cal F} will play a role. It is reasonable to expect that on mildly nonlinear scales, the quasistatic regime is not yet reached.

We remark that AμA_{\mu} also contains a pure vector mode perturbation which is expected to behave similarly as in the Einstein-Æther theory [90, 91]. This may lead to imprints on the BB-mode CMB polarization signal [120].

Setting M~p2=1/(8πG~)\tilde{M}_{p}^{2}=1/(8\pi\tilde{G}) and canonically normalizing as ϕ~=2𝒦2M~pϕ\tilde{\phi}=\sqrt{2{\cal K}_{2}}\tilde{M}_{p}\phi in (4), the FLRW action (3) becomes

S=d4xNa3[3M~p2H2N2+12(ϕ~˙NΛc2)2+]S=\int d^{4}xNa^{3}\bigg{[}-3\tilde{M}_{p}^{2}\frac{H^{2}}{N^{2}}+\frac{1}{2}\left(\frac{\dot{\tilde{\phi}}}{N}-\Lambda_{c}^{2}\right)^{2}+\ldots\bigg{]} (14)

where Λc2=M~p2𝒦2𝒬0\Lambda_{c}^{2}=\tilde{M}_{p}\sqrt{2{\cal K}_{2}}{\cal Q}_{0}. Considering the MOND limit in (5) gives M~p2/2|ϕ~|3/Λ02\tilde{M}_{p}^{2}{\cal F}/2\rightarrow|\vec{\nabla}\tilde{\phi}|^{3}/\Lambda_{0}^{2} where Λ02=12[𝒦2(1+1/λs)/(2KB)]3/2Mpa0\Lambda_{0}^{2}=12\left[{\cal K}_{2}(1+1/\lambda_{s})/(2-K_{B})\right]^{3/2}M_{p}a_{0}. This scale is indicative of the energy scale above which quantum corrections may be important and below which we can trust the classical theory. Since a0H0/6a_{0}\sim H_{0}/6 then Λ0meV(0.1mm)1\Lambda_{0}\gtrsim{\rm meV}\sim(0.1{\rm mm})^{-1}. Newton’s r2r^{-2} law has been tested down to 52μm\sim 52\mu{\rm m} [121] and the curves in Figs.1 and 2 have Λ01100nm\Lambda_{0}^{-1}\lesssim 100{\rm nm}.

Absence of ghosts to quadratic order signifies a healthy theory that could arise as a limit of a more fundamental theory. We do not have such a theory at present but we discuss a case that may bring us closer. The vector in (5) does not seem to obey gauge invariance but in the quadratic action (13) it does so through mixing with diffeomorphisms of hμνh_{\mu\nu}. This is not an accident. Let us normalize via A^μ=MGGCAμ\hat{A}_{\mu}=M_{{\rm GGC}}{A}_{\mu} for some scale MGGCM_{{\rm GGC}} and insert the term 14M~p4MGGC4λ2-\frac{1}{4}\frac{\tilde{M}_{p}^{4}}{M_{{\rm GGC}}^{4}}\lambda^{2}. Varying with λ\lambda and using the constraint to eliminate λ\lambda from the action, perform a Stückelberg transformation A^μA^μ+μξ/MGGC\hat{A}_{\mu}\rightarrow\hat{A}_{\mu}+\nabla_{\mu}\xi/M_{{\rm GGC}} and define the covariant derivative acting on “angular field” ξ\xi as 𝒟μξ=μξ/MGGC+A^μ{\cal D}_{\mu}\xi=\nabla_{\mu}\xi/M_{{\rm GGC}}+\hat{A}_{\mu}. The action turns to S=SEH+d4xg{14gGGC2F^μνF^μν+14(𝒟μξ𝒟μξ+MGGC2)2}S=S_{EH}+\int d^{4}x\sqrt{-g}\bigg{\{}-\frac{1}{4g_{{\rm GGC}}^{2}}\hat{F}_{\mu\nu}\hat{F}^{\mu\nu}+\frac{1}{4}({\cal D}^{\mu}\xi{\cal D}_{\mu}\xi+M_{{\rm GGC}}^{2})^{2}\bigg{\}} plus ϕ\phi-dependent terms, where F^μν=μA^ννA^μ\hat{F}_{\mu\nu}=\nabla_{\mu}\hat{A}_{\nu}-\nabla_{\nu}\hat{A}_{\mu}, gGGC2=MGGC2KBM~p2g_{{\rm GGC}}^{2}=\frac{M_{{\rm GGC}}^{2}}{K_{B}\tilde{M}_{p}^{2}}. The resulting action is that of the gauged ghost condensate (GGC) [122] or bumblebee field [123, 124] which has been proposed as a healthy gauge-invariant theory of spontaneous Lorentz violation. The Einstein-Æther theory, part of (5), is the (healthy) decoupling limit of GGC by taking MGGCM_{{\rm GGC}}\rightarrow\infty if 0<KB<20<K_{B}<2 (in our notation) [122]. It is argued [122] that MGGCM_{{\rm GGC}} can be as high as 1012GeV10^{12}{\rm GeV}.

Given that ϕ\phi is shift symmetric it is natural to charge it under this symmetry similar to ξ\xi letting 𝒟μϕ=μϕ/MGGC+A^μ{\cal D}_{\mu}\phi=\nabla_{\mu}\phi/M_{{\rm GGC}}+\hat{A}_{\mu}. Interestingly, we may identify 𝒬𝒬0𝒟μξ𝒟μϕ{\cal Q}-{\cal Q}_{0}\rightarrow{\cal D}^{\mu}\xi{\cal D}_{\mu}\phi while the term JμμϕF^μν𝒟μξ𝒟νϕ{J}^{\mu}\nabla_{\mu}\phi\rightarrow\hat{F}^{\mu\nu}{\cal D}_{\mu}\xi{\cal D}_{\nu}\phi, both multiplied by appropriate constants. The terms involving 𝒴{\cal Y} may be constructed using (gμν+𝒟μξ𝒟νξ/MGGC4)𝒟μϕ𝒟νϕ\left(g^{\mu\nu}+{\cal D}^{\mu}\xi{\cal D}^{\nu}\xi/M_{{\rm GGC}}^{4}\right){\cal D}_{\mu}\phi{\cal D}_{\nu}\phi. Although extending our work as such does not explain the MOND term 𝒴3/2{\cal Y}^{3/2}, it may provide promising directions for further improvements.

Acknowledgements.
Acknowledgments We thank C. Burrage, P. Creminelli, S. Ilic, E. Kiritsis, M. Kopp, M. Milgrom, A. Padilla, R. Sanders and I. Sawicki for discussions. The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC Grant Agreement No. 617656 “Theories and Models of the Dark Sector: Dark Matter, Dark Energy and Gravity” and from the European Structural and Investment Funds and the Czech Ministry of Education, Youth and Sports (MSMT) (Project CoGraDS - CZ.02.1.01/0.0/0.0/15003/0000437).

References

  • Jain and Khoury [2010] B. Jain and J. Khoury, Annals Phys. 325, 1479 (2010), eprint arXiv:1004.3294.
  • Clifton et al. [2012] T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis, Phys. Rept. 513, 1 (2012), eprint arXiv:1106.2476.
  • Baker et al. [2015] T. Baker, D. Psaltis, and C. Skordis, Astrophys. J. 802, 63 (2015), eprint arXiv:1412.3455.
  • Cembranos [2009] J. A. R. Cembranos, Phys. Rev. Lett. 102, 141301 (2009), eprint arXiv:0809.1653.
  • Chamseddine and Mukhanov [2013] A. H. Chamseddine and V. Mukhanov, JHEP 11, 135 (2013), eprint arXiv:1308.5410.
  • Arroja et al. [2016] F. Arroja, N. Bartolo, P. Karmakar, and S. Matarrese, JCAP 04, 042 (2016), eprint arXiv:1512.09374.
  • Sebastiani et al. [2017] L. Sebastiani, S. Vagnozzi, and R. Myrzakulov, Adv. High Energy Phys. 2017, 3156915 (2017), eprint arXiv:1612.08661.
  • Casalino et al. [2018] A. Casalino, M. Rinaldi, L. Sebastiani, and S. Vagnozzi, Phys. Dark Univ. 22, 108 (2018), eprint arXiv:1803.02620.
  • Bettoni et al. [2014] D. Bettoni, M. Colombo, and S. Liberati, JCAP 02, 004 (2014), eprint arXiv:1310.3753.
  • Mendoza et al. [2012] S. Mendoza, T. Bernal, J. C. Hidalgo, and S. Capozziello, AIP Conf. Proc. 1458, 483 (2012), eprint arXiv:1202.3629.
  • Rinaldi [2017] M. Rinaldi, Phys. Dark Univ. 16, 14 (2017), eprint arXiv:1608.03839.
  • Koutsoumbas et al. [2018] G. Koutsoumbas, K. Ntrekis, E. Papantonopoulos, and E. N. Saridakis, JCAP 02, 003 (2018), eprint arXiv:1704.08640.
  • Diez-Tejedor et al. [2018a] A. Diez-Tejedor, F. Flores, and G. Niz, Phys. Rev. D 97, 123524 (2018a), eprint arXiv:1803.00014.
  • Milgrom [2020] M. Milgrom, MOND from a brane-world picture (2020), eprint arXiv:1804.05840.
  • Oort [1932] J. Oort, Bull. Astron. Inst. Neth. 6, 249 (1932).
  • Zwicky [1933] F. Zwicky, Helv. Phys. Acta 6, 110 (1933), [Gen. Rel. Grav.41,207(2009)].
  • Smith [1936] S. Smith, Astrophys. J. 83, 23 (1936).
  • Rubin and Ford [1970] V. C. Rubin and W. K. Ford, Jr., Astrophys. J. 159, 379 (1970).
  • Rubin et al. [1980] V. C. Rubin, N. Thonnard, and W. K. Ford, Jr., Astrophys. J. 238, 471 (1980).
  • Milgrom [1983a] M. Milgrom, Astrophys. J. 270, 365 (1983a).
  • Milgrom [1983b] M. Milgrom, Astrophys. J. 270, 371 (1983b).
  • Milgrom [1983c] M. Milgrom, Astrophys. J. 270, 384 (1983c).
  • Bekenstein and Milgrom [1984] J. Bekenstein and M. Milgrom, Astrophys. J. 286, 7 (1984).
  • Milgrom [1988] M. Milgrom, Astrophys. J.  333, 689 (1988).
  • Kent [1987] S. M. Kent, Astrophys. J.  93, 816 (1987).
  • Gerhard and Spergel [1992] O. E. Gerhard and D. N. Spergel, Astrophys. J.  397, 38 (1992).
  • Begeman et al. [1991] K. G. Begeman, A. H. Broeils, and R. H. Sanders, Mon. Not. Roy. Astron. Soc. 249, 523 (1991).
  • Milgrom [1995] M. Milgrom, Astrophys. J. 455, 439 (1995), eprint astro-ph/9503056.
  • Sanders [1996] R. H. Sanders, Astrophys. J. 473, 117 (1996), eprint astro-ph/9606089.
  • Sanders [1999] R. H. Sanders, Astrophys. J. Lett. 512, L23 (1999), eprint astro-ph/9807023.
  • McGaugh et al. [2000] S. S. McGaugh, J. M. Schombert, G. D. Bothun, and W. J. G. de Blok, Astrophys. J. Lett. 533, L99 (2000), eprint astro-ph/0003001.
  • Sanders and McGaugh [2002] R. H. Sanders and S. S. McGaugh, Ann. Rev. Astron. Astrophys. 40, 263 (2002), eprint astro-ph/0204521.
  • McGaugh [2005] S. S. McGaugh, Astrophys. J. 632, 859 (2005), eprint astro-ph/0506750.
  • Famaey and Binney [2005] B. Famaey and J. Binney, Mon. Not. Roy. Astron. Soc. 363, 603 (2005), eprint astro-ph/0506723.
  • Bekenstein and Magueijo [2006] J. Bekenstein and J. Magueijo, Phys. Rev. D73, 103513 (2006), eprint astro-ph/0602266.
  • Gentile et al. [2007] G. Gentile, B. Famaey, F. Combes, P. Kroupa, H. S. Zhao, and O. Tiret, Astron. Astrophys. 472, L25 (2007), eprint arXiv:0706.1976.
  • Magueijo and Mozaffari [2012] J. Magueijo and A. Mozaffari, Phys. Rev. D85, 043527 (2012), eprint arXiv:1107.1075.
  • Famaey and McGaugh [2012] B. Famaey and S. McGaugh, Living Rev. Rel. 15, 10 (2012), eprint arXiv:1112.3960.
  • Hees et al. [2016] A. Hees, B. Famaey, G. W. Angus, and G. Gentile, Mon. Not. Roy. Astron. Soc. 455, 449 (2016), eprint arXiv:1510.01369.
  • Margalit and Shaviv [2016] B. Margalit and N. J. Shaviv, Mon. Not. Roy. Astron. Soc. 456, 1163 (2016), eprint arXiv:1505.04790.
  • McGaugh et al. [2016] S. S. McGaugh, F. Lelli, and J. M. Schombert, Phys. Rev. Lett. 117, 201101 (2016), eprint arXiv:1609.05917.
  • Hodson and Zhao [2017] A. O. Hodson and H. Zhao (2017), eprint arXiv:1703.10219.
  • Bílek et al. [2018] M. Bílek, I. Thies, P. Kroupa, and B. Famaey, Astron. Astrophys. 614, A59 (2018), eprint arXiv:1712.04938.
  • Sanders [2019] R. H. Sanders, Mon. Not. Roy. Astron. Soc. 485, 513 (2019), eprint arXiv:1811.05260.
  • Lelli et al. [2019] F. Lelli, S. S. McGaugh, J. M. Schombert, H. Desmond, and H. Katz, Mon. Not. Roy. Astron. Soc. 484, 3267 (2019), eprint arXiv:1901.05966.
  • Petersen and Lelli [2020] J. Petersen and F. Lelli, Astron. Astrophys. 636, A56 (2020), eprint arXiv:2001.03348.
  • Blanchet [2007] L. Blanchet, Class. Quant. Grav. 24, 3529 (2007), eprint astro-ph/0605637.
  • Blanchet and Le Tiec [2009] L. Blanchet and A. Le Tiec, Phys. Rev. D 80, 023524 (2009), eprint arXiv:0901.3114.
  • Berezhiani and Khoury [2016] L. Berezhiani and J. Khoury, Phys. Lett. B753, 639 (2016), eprint arXiv:1506.07877.
  • Berezhiani and Khoury [2015] L. Berezhiani and J. Khoury, Phys. Rev. D92, 103510 (2015), eprint arXiv:1507.01019.
  • Pardo and Spergel [2020] K. Pardo and D. N. Spergel, Phys. Rev. Lett. 125, 211101 (2020), eprint arXiv:2007.00555.
  • Bekenstein [1988] J. D. Bekenstein, Phys. Lett. B202, 497 (1988).
  • Sanders [1997] R. H. Sanders, Astrophys. J. 480, 492 (1997), eprint astro-ph/9612099.
  • Bekenstein [2004] J. D. Bekenstein, Phys. Rev. D70, 083509 (2004), ;71, 069901 (E) (2005).
  • Navarro and Van Acoleyen [2006] I. Navarro and K. Van Acoleyen, JCAP 0609, 006 (2006), eprint gr-qc/0512109.
  • Zlosnik et al. [2007] T. G. Zlosnik, P. G. Ferreira, and G. D. Starkman, Phys. Rev. D75, 044017 (2007), eprint astro-ph/0607411.
  • Sanders [2007] R. H. Sanders, Lect. Notes Phys. 720, 375 (2007), eprint astro-ph/0601431.
  • Milgrom [2009a] M. Milgrom, Phys. Rev. D80, 123536 (2009a), eprint arXiv:0912.0790.
  • Babichev et al. [2011] E. Babichev, C. Deffayet, and G. Esposito-Farese, Phys. Rev. D84, 061502(R) (2011), eprint arXiv:1106.2538.
  • Deffayet et al. [2011] C. Deffayet, G. Esposito-Farese, and R. P. Woodard, Phys. Rev. D84, 124054 (2011), eprint arXiv:1106.4984.
  • Woodard [2015] R. P. Woodard, Can. J. Phys. 93, 242 (2015), eprint arXiv:1403.6763.
  • Khoury [2015] J. Khoury, Phys. Rev. D91, 024022 (2015), eprint arXiv:1409.0012.
  • Blanchet and Heisenberg [2015] L. Blanchet and L. Heisenberg, Phys. Rev. D 91, 103518 (2015), eprint arXiv:1504.00870.
  • Hossenfelder [2017] S. Hossenfelder, Phys. Rev. D 95, 124018 (2017), eprint arXiv:1703.01415.
  • Burrage et al. [2019] C. Burrage, E. J. Copeland, C. Kading, and P. Millington, Phys. Rev. D 99, 043539 (2019), eprint arXiv:1811.12301.
  • Milgrom [2019] M. Milgrom, Phys. Rev. D 100, 084039 (2019), eprint arXiv:1908.01691.
  • D’Ambrosio et al. [2020] F. D’Ambrosio, M. Garg, and L. Heisenberg, Phys. Lett. B 811, 135970 (2020), eprint arXiv:2004.00888.
  • Skordis et al. [2006] C. Skordis, D. F. Mota, P. G. Ferreira, and C. Boehm, Phys. Rev. Lett. 96, 011301 (2006), eprint astro-ph/0505519.
  • Bourliot et al. [2007] F. Bourliot, P. G. Ferreira, D. F. Mota, and C. Skordis, Phys. Rev. D75, 063508 (2007), eprint astro-ph/0611255.
  • Dodelson and Liguori [2006] S. Dodelson and M. Liguori, Phys. Rev. Lett. 97, 231301 (2006), eprint astro-ph/0608602.
  • Zuntz et al. [2010] J. Zuntz, T. G. Zlosnik, F. Bourliot, P. G. Ferreira, and G. D. Starkman, Phys. Rev. D81, 104015 (2010), eprint arXiv:1002.0849.
  • Xu et al. [2015] X.-d. Xu, B. Wang, and P. Zhang, Phys. Rev. D92, 083505 (2015), eprint arXiv:1412.4073.
  • Dai and Stojkovic [2017a] D.-C. Dai and D. Stojkovic, Phys. Rev. D 96, 108501 (2017a), eprint arXiv:1706.07854.
  • Dai and Stojkovic [2017b] D.-C. Dai and D. Stojkovic, JHEP 11, 007 (2017b), eprint arXiv:1710.00946.
  • Zlosnik and Skordis [2017] T. G. Zlosnik and C. Skordis, Phys. Rev. D95, 124023 (2017), eprint arXiv:1702.00683.
  • Tan and Woodard [2018] L. Tan and R. P. Woodard, JCAP 1805, 037 (2018), eprint arXiv:1804.01669.
  • Sanders [2005] R. Sanders, Mon. Not. Roy. Astron. Soc. 363, 459 (2005), eprint astro-ph/0502222.
  • Milgrom [1997] M. Milgrom, Phys. Rev. E56, 1148 (1997), eprint gr-qc/9705003.
  • Milgrom [2009b] M. Milgrom, Astrophys. J. 698, 1630 (2009b), eprint arXiv:0810.4065.
  • Milgrom [1999] M. Milgrom, Phys. Lett. A 253, 273 (1999), eprint astro-ph/9805346.
  • Klinkhamer and Kopp [2011] F. Klinkhamer and M. Kopp, Mod. Phys. Lett. A 26, 2783 (2011), eprint arXiv:1104.2022.
  • Verlinde [2017] E. P. Verlinde, SciPost Phys. 2, 016 (2017), eprint arXiv:1611.02269.
  • Will [2014] C. M. Will, Living Rev. Rel. 17, 4 (2014), eprint arXiv:1403.7377.
  • Will [2018] C. M. Will, Theory and Experiment in Gravitational Physics (Cambridge University Press, 2018), ISBN 9781108679824, 9781107117440.
  • Kopp et al. [2018] M. Kopp, C. Skordis, D. B. Thomas, and S. Ilić, Phys. Rev. Lett. 120, 221102 (2018), eprint arXiv:1802.09541.
  • Ilić et al. [2021] S. Ilić, M. Kopp, C. Skordis, and D. B. Thomas, Phys. Rev. D 104, 043520 (2021).
  • Scherrer [2004] R. J. Scherrer, Phys. Rev. Lett. 93, 011301 (2004), eprint astro-ph/0402316.
  • Arkani-Hamed et al. [2004] N. Arkani-Hamed, H.-C. Cheng, M. A. Luty, and S. Mukohyama, JHEP 05, 074 (2004), eprint hep-th/0312099.
  • Arkani-Hamed et al. [2007] N. Arkani-Hamed, H.-C. Cheng, M. A. Luty, S. Mukohyama, and T. Wiseman, JHEP 01, 036 (2007), eprint hep-ph/0507120.
  • Dirac [1962] P. A. M. Dirac, Proc. Roy. Soc. Lond. A268, 57 (1962).
  • Jacobson and Mattingly [2001] T. Jacobson and D. Mattingly, Phys. Rev. D64, 024028 (2001), eprint gr-qc/0007031.
  • Abbott et al. [2017] B. Abbott et al. (Virgo, LIGO Scientific), Phys. Rev. Lett. 119, 161101 (2017), eprint arXiv:1710.05832.
  • Goldstein et al. [2017] A. Goldstein et al., Astrophys. J. 848, L14 (2017), eprint arXiv:1710.05446.
  • Savchenko et al. [2017] V. Savchenko et al., Astrophys. J. 848, L15 (2017), eprint arXiv:1710.05449.
  • Boran et al. [2018] S. Boran, S. Desai, E. O. Kahya, and R. P. Woodard, Phys. Rev. D97, 041501(R) (2018), eprint arXiv:1710.06168.
  • Gong et al. [2018] Y. Gong, S. Hou, D. Liang, and E. Papantonopoulos, Phys. Rev. D97, 084040 (2018), eprint arXiv:1801.03382.
  • Hou and Gong [2018] S. Hou and Y. Gong (2018), [Universe4,no.8,84(2018)], eprint arXiv:1806.02564.
  • Skordis and Zlosnik [2019] C. Skordis and T. Zlosnik, Phys. Rev. D100, 104013 (2019), eprint arXiv:1905.09465.
  • Zlosnik et al. [2006] T. G. Zlosnik, P. G. Ferreira, and G. D. Starkman, Phys. Rev. D74, 044037 (2006), eprint gr-qc/0606039.
  • Skordis and Zlosnik [2021a] C. Skordis and T. G. Zlosnik, in preparation (2021a).
  • Aghanim et al. [2020] N. Aghanim et al. (Planck), Astron. Astrophys. 641, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)].
  • Kaplinghat et al. [2002] M. Kaplinghat, L. Knox, and C. Skordis, Astrophys. J. 578, 665 (2002), eprint astro-ph/0203413.
  • Bellini et al. [2018] E. Bellini et al., Phys. Rev. D 97, 023520 (2018), eprint arXiv:1709.09135.
  • Skordis et al. [2021] C. Skordis, S. Ilić, and T. G. Zlosnik, in preparation (2021).
  • Reid et al. [2010] B. A. Reid et al., Mon. Not. Roy. Astron. Soc. 404, 60 (2010), eprint arXiv:0907.1659.
  • Skordis and Zlosnik [2021b] C. Skordis and T. Zlosnik (2021b), eprint arXiv:2109.13287.
  • Bataki et al. [2021] M. Bataki, C. Skordis, and T. G. Zlosnik, in preparation (2021).
  • Gumrukcuoglu et al. [2016] A. E. Gumrukcuoglu, S. Mukohyama, and T. P. Sotiriou, Phys. Rev. D 94, 064001 (2016), eprint arXiv:1606.00618.
  • Sanders [2003] R. H. Sanders, Mon. Not. Roy. Astron. Soc. 342, 901 (2003), eprint astro-ph/0212293.
  • Pointecouteau and Silk [2005] E. Pointecouteau and J. Silk, Mon. Not. Roy. Astron. Soc. 364, 654 (2005), eprint astro-ph/0505017.
  • Ettori et al. [2019] S. Ettori, V. Ghirardini, D. Eckert, E. Pointecouteau, F. Gastaldello, M. Sereno, M. Gaspari, S. Ghizzardi, M. Roncarelli, and M. Rossetti, Astron. Astrophys. 621, A39 (2019), eprint arXiv:1805.00035.
  • Tian et al. [2020] Y. Tian, K. Umetsu, C.-M. Ko, M. Donahue, and I.-N. Chiu, Astrophys. J. 896, 70 (2020), eprint arXiv:2001.08340.
  • Angus [2008] G. W. Angus, Mon. Not. Roy. Astron. Soc. 387, 1481 (2008), eprint arXiv:0804.3812.
  • Serra et al. [2010] A. L. Serra, G. W. Angus, and A. Diaferio, Astron. Astrophys. 524, A16 (2010), eprint arXiv:0907.3691.
  • Diez-Tejedor et al. [2018b] A. Diez-Tejedor, A. X. Gonzalez-Morales, and G. Niz, Mon. Not. Roy. Astron. Soc. 477, 1285 (2018b), eprint arXiv:1612.06282.
  • Alexander et al. [2017] S. G. Alexander, M. J. Walentosky, J. Messinger, A. Staron, B. Blankartz, and T. Clark, Astrophys. J.  835, 233 (2017).
  • Read et al. [2019] J. I. Read, M. G. Walker, and P. Steger, Mon. Not. Roy. Astron. Soc. 484, 1401 (2019), eprint arXiv:1808.06634.
  • Banik et al. [2020] I. Banik, I. Thies, G. Candlish, B. Famaey, R. Ibata, and P. Kroupa, Astrophys. J. 905, 135 (2020), eprint arXiv:2011.12293.
  • Pittordis and Sutherland [2019] C. Pittordis and W. Sutherland, Mon. Not. Roy. Astron. Soc. 488, 4740 (2019), eprint arXiv:1905.09619.
  • Nakashima and Kobayashi [2011] M. Nakashima and T. Kobayashi, Phys. Rev. D 84, 084051 (2011), eprint arXiv:1103.2197.
  • Lee et al. [2020] J. G. Lee, E. G. Adelberger, T. S. Cook, S. M. Fleischer, and B. R. Heckel, Phys. Rev. Lett. 124, 101101 (2020), eprint arXiv:2002.11761.
  • Cheng et al. [2006] H.-C. Cheng, M. A. Luty, S. Mukohyama, and J. Thaler, JHEP 05, 076 (2006), eprint hep-th/0603010.
  • Kostelecky and Samuel [1989a] V. A. Kostelecky and S. Samuel, Phys. Rev. D 39, 683 (1989a).
  • Kostelecky and Samuel [1989b] V. A. Kostelecky and S. Samuel, Phys. Rev. D 40, 1886 (1989b).